| author | wenzelm | 
| Thu, 12 Oct 2017 21:22:02 +0200 | |
| changeset 66852 | d20a668b394e | 
| parent 66804 | 3f9bb52082c4 | 
| child 67399 | eab6ce8368fa | 
| permissions | -rw-r--r-- | 
| 63627 | 1 | (* Title: HOL/Analysis/Linear_Algebra.thy | 
| 44133 | 2 | Author: Amine Chaieb, University of Cambridge | 
| 3 | *) | |
| 4 | ||
| 60420 | 5 | section \<open>Elementary linear algebra on Euclidean spaces\<close> | 
| 44133 | 6 | |
| 7 | theory Linear_Algebra | |
| 8 | imports | |
| 9 | Euclidean_Space | |
| 66453 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
66447diff
changeset | 10 | "HOL-Library.Infinite_Set" | 
| 44133 | 11 | begin | 
| 12 | ||
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 13 | lemma linear_simps: | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 14 | assumes "bounded_linear f" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 15 | shows | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 16 | "f (a + b) = f a + f b" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 17 | "f (a - b) = f a - f b" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 18 | "f 0 = 0" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 19 | "f (- a) = - f a" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 20 | "f (s *\<^sub>R v) = s *\<^sub>R (f v)" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 21 | proof - | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 22 | interpret f: bounded_linear f by fact | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 23 | show "f (a + b) = f a + f b" by (rule f.add) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 24 | show "f (a - b) = f a - f b" by (rule f.diff) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 25 | show "f 0 = 0" by (rule f.zero) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 26 | show "f (- a) = - f a" by (rule f.minus) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 27 | show "f (s *\<^sub>R v) = s *\<^sub>R (f v)" by (rule f.scaleR) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 28 | qed | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 29 | |
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 30 | lemma bounded_linearI: | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 31 | assumes "\<And>x y. f (x + y) = f x + f y" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 32 | and "\<And>r x. f (r *\<^sub>R x) = r *\<^sub>R f x" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 33 | and "\<And>x. norm (f x) \<le> norm x * K" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 34 | shows "bounded_linear f" | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 35 | using assms by (rule bounded_linear_intro) (* FIXME: duplicate *) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63881diff
changeset | 36 | |
| 63050 | 37 | subsection \<open>A generic notion of "hull" (convex, affine, conic hull and closure).\<close> | 
| 38 | ||
| 39 | definition hull :: "('a set \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "hull" 75)
 | |
| 40 |   where "S hull s = \<Inter>{t. S t \<and> s \<subseteq> t}"
 | |
| 41 | ||
| 42 | lemma hull_same: "S s \<Longrightarrow> S hull s = s" | |
| 43 | unfolding hull_def by auto | |
| 44 | ||
| 45 | lemma hull_in: "(\<And>T. Ball T S \<Longrightarrow> S (\<Inter>T)) \<Longrightarrow> S (S hull s)" | |
| 46 | unfolding hull_def Ball_def by auto | |
| 47 | ||
| 48 | lemma hull_eq: "(\<And>T. Ball T S \<Longrightarrow> S (\<Inter>T)) \<Longrightarrow> (S hull s) = s \<longleftrightarrow> S s" | |
| 49 | using hull_same[of S s] hull_in[of S s] by metis | |
| 50 | ||
| 51 | lemma hull_hull [simp]: "S hull (S hull s) = S hull s" | |
| 52 | unfolding hull_def by blast | |
| 53 | ||
| 54 | lemma hull_subset[intro]: "s \<subseteq> (S hull s)" | |
| 55 | unfolding hull_def by blast | |
| 56 | ||
| 57 | lemma hull_mono: "s \<subseteq> t \<Longrightarrow> (S hull s) \<subseteq> (S hull t)" | |
| 58 | unfolding hull_def by blast | |
| 59 | ||
| 60 | lemma hull_antimono: "\<forall>x. S x \<longrightarrow> T x \<Longrightarrow> (T hull s) \<subseteq> (S hull s)" | |
| 61 | unfolding hull_def by blast | |
| 62 | ||
| 63 | lemma hull_minimal: "s \<subseteq> t \<Longrightarrow> S t \<Longrightarrow> (S hull s) \<subseteq> t" | |
| 64 | unfolding hull_def by blast | |
| 65 | ||
| 66 | lemma subset_hull: "S t \<Longrightarrow> S hull s \<subseteq> t \<longleftrightarrow> s \<subseteq> t" | |
| 67 | unfolding hull_def by blast | |
| 68 | ||
| 69 | lemma hull_UNIV [simp]: "S hull UNIV = UNIV" | |
| 70 | unfolding hull_def by auto | |
| 71 | ||
| 72 | lemma hull_unique: "s \<subseteq> t \<Longrightarrow> S t \<Longrightarrow> (\<And>t'. s \<subseteq> t' \<Longrightarrow> S t' \<Longrightarrow> t \<subseteq> t') \<Longrightarrow> (S hull s = t)" | |
| 73 | unfolding hull_def by auto | |
| 74 | ||
| 75 | lemma hull_induct: "(\<And>x. x\<in> S \<Longrightarrow> P x) \<Longrightarrow> Q {x. P x} \<Longrightarrow> \<forall>x\<in> Q hull S. P x"
 | |
| 76 |   using hull_minimal[of S "{x. P x}" Q]
 | |
| 77 | by (auto simp add: subset_eq) | |
| 78 | ||
| 79 | lemma hull_inc: "x \<in> S \<Longrightarrow> x \<in> P hull S" | |
| 80 | by (metis hull_subset subset_eq) | |
| 81 | ||
| 66297 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 82 | lemma hull_Un_subset: "(S hull s) \<union> (S hull t) \<subseteq> (S hull (s \<union> t))" | 
| 63050 | 83 | unfolding Un_subset_iff by (metis hull_mono Un_upper1 Un_upper2) | 
| 84 | ||
| 66297 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 85 | lemma hull_Un: | 
| 63050 | 86 | assumes T: "\<And>T. Ball T S \<Longrightarrow> S (\<Inter>T)" | 
| 87 | shows "S hull (s \<union> t) = S hull (S hull s \<union> S hull t)" | |
| 66297 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 88 | apply (rule equalityI) | 
| 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 89 | apply (meson hull_mono hull_subset sup.mono) | 
| 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 90 | by (metis hull_Un_subset hull_hull hull_mono) | 
| 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 91 | |
| 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 92 | lemma hull_Un_left: "P hull (S \<union> T) = P hull (P hull S \<union> T)" | 
| 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 93 | apply (rule equalityI) | 
| 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 94 | apply (simp add: Un_commute hull_mono hull_subset sup.coboundedI2) | 
| 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 95 | by (metis Un_subset_iff hull_hull hull_mono hull_subset) | 
| 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 96 | |
| 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 97 | lemma hull_Un_right: "P hull (S \<union> T) = P hull (S \<union> P hull T)" | 
| 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 98 | by (metis hull_Un_left sup.commute) | 
| 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 99 | |
| 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 100 | lemma hull_insert: | 
| 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 101 | "P hull (insert a S) = P hull (insert a (P hull S))" | 
| 
d425bdf419f5
polytopes: simplical subdivisions, etc.
 paulson <lp15@cam.ac.uk> parents: 
66287diff
changeset | 102 | by (metis hull_Un_right insert_is_Un) | 
| 44133 | 103 | |
| 63050 | 104 | lemma hull_redundant_eq: "a \<in> (S hull s) \<longleftrightarrow> S hull (insert a s) = S hull s" | 
| 105 | unfolding hull_def by blast | |
| 106 | ||
| 107 | lemma hull_redundant: "a \<in> (S hull s) \<Longrightarrow> S hull (insert a s) = S hull s" | |
| 108 | by (metis hull_redundant_eq) | |
| 49522 | 109 | |
| 60420 | 110 | subsection \<open>Linear functions.\<close> | 
| 49522 | 111 | |
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 112 | lemma linear_iff: | 
| 53716 | 113 | "linear f \<longleftrightarrow> (\<forall>x y. f (x + y) = f x + f y) \<and> (\<forall>c x. f (c *\<^sub>R x) = c *\<^sub>R f x)" | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 114 | (is "linear f \<longleftrightarrow> ?rhs") | 
| 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 115 | proof | 
| 56444 | 116 | assume "linear f" | 
| 117 | then interpret f: linear f . | |
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 118 | show "?rhs" by (simp add: f.add f.scaleR) | 
| 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 119 | next | 
| 56444 | 120 | assume "?rhs" | 
| 121 | then show "linear f" by unfold_locales simp_all | |
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 122 | qed | 
| 44133 | 123 | |
| 53406 | 124 | lemma linear_compose_cmul: "linear f \<Longrightarrow> linear (\<lambda>x. c *\<^sub>R f x)" | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 125 | by (simp add: linear_iff algebra_simps) | 
| 44133 | 126 | |
| 63007 
aa894a49f77d
new theorems about convex hulls, etc.; also, renamed some theorems
 paulson <lp15@cam.ac.uk> parents: 
62948diff
changeset | 127 | lemma linear_compose_scaleR: "linear f \<Longrightarrow> linear (\<lambda>x. f x *\<^sub>R c)" | 
| 
aa894a49f77d
new theorems about convex hulls, etc.; also, renamed some theorems
 paulson <lp15@cam.ac.uk> parents: 
62948diff
changeset | 128 | by (simp add: linear_iff scaleR_add_left) | 
| 
aa894a49f77d
new theorems about convex hulls, etc.; also, renamed some theorems
 paulson <lp15@cam.ac.uk> parents: 
62948diff
changeset | 129 | |
| 53406 | 130 | lemma linear_compose_neg: "linear f \<Longrightarrow> linear (\<lambda>x. - f x)" | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 131 | by (simp add: linear_iff) | 
| 44133 | 132 | |
| 53406 | 133 | lemma linear_compose_add: "linear f \<Longrightarrow> linear g \<Longrightarrow> linear (\<lambda>x. f x + g x)" | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 134 | by (simp add: linear_iff algebra_simps) | 
| 44133 | 135 | |
| 53406 | 136 | lemma linear_compose_sub: "linear f \<Longrightarrow> linear g \<Longrightarrow> linear (\<lambda>x. f x - g x)" | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 137 | by (simp add: linear_iff algebra_simps) | 
| 44133 | 138 | |
| 53406 | 139 | lemma linear_compose: "linear f \<Longrightarrow> linear g \<Longrightarrow> linear (g \<circ> f)" | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 140 | by (simp add: linear_iff) | 
| 44133 | 141 | |
| 53406 | 142 | lemma linear_id: "linear id" | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 143 | by (simp add: linear_iff id_def) | 
| 53406 | 144 | |
| 145 | lemma linear_zero: "linear (\<lambda>x. 0)" | |
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 146 | by (simp add: linear_iff) | 
| 44133 | 147 | |
| 63072 | 148 | lemma linear_uminus: "linear uminus" | 
| 149 | by (simp add: linear_iff) | |
| 150 | ||
| 64267 | 151 | lemma linear_compose_sum: | 
| 56196 
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
 huffman parents: 
56166diff
changeset | 152 | assumes lS: "\<forall>a \<in> S. linear (f a)" | 
| 64267 | 153 | shows "linear (\<lambda>x. sum (\<lambda>a. f a x) S)" | 
| 56196 
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
 huffman parents: 
56166diff
changeset | 154 | proof (cases "finite S") | 
| 
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
 huffman parents: 
56166diff
changeset | 155 | case True | 
| 
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
 huffman parents: 
56166diff
changeset | 156 | then show ?thesis | 
| 
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
 huffman parents: 
56166diff
changeset | 157 | using lS by induct (simp_all add: linear_zero linear_compose_add) | 
| 56444 | 158 | next | 
| 159 | case False | |
| 160 | then show ?thesis | |
| 161 | by (simp add: linear_zero) | |
| 162 | qed | |
| 44133 | 163 | |
| 164 | lemma linear_0: "linear f \<Longrightarrow> f 0 = 0" | |
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 165 | unfolding linear_iff | 
| 44133 | 166 | apply clarsimp | 
| 167 | apply (erule allE[where x="0::'a"]) | |
| 168 | apply simp | |
| 169 | done | |
| 170 | ||
| 53406 | 171 | lemma linear_cmul: "linear f \<Longrightarrow> f (c *\<^sub>R x) = c *\<^sub>R f x" | 
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 172 | by (rule linear.scaleR) | 
| 44133 | 173 | |
| 53406 | 174 | lemma linear_neg: "linear f \<Longrightarrow> f (- x) = - f x" | 
| 44133 | 175 | using linear_cmul [where c="-1"] by simp | 
| 176 | ||
| 53716 | 177 | lemma linear_add: "linear f \<Longrightarrow> f (x + y) = f x + f y" | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 178 | by (metis linear_iff) | 
| 44133 | 179 | |
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 180 | lemma linear_diff: "linear f \<Longrightarrow> f (x - y) = f x - f y" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53939diff
changeset | 181 | using linear_add [of f x "- y"] by (simp add: linear_neg) | 
| 44133 | 182 | |
| 64267 | 183 | lemma linear_sum: | 
| 56196 
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
 huffman parents: 
56166diff
changeset | 184 | assumes f: "linear f" | 
| 64267 | 185 | shows "f (sum g S) = sum (f \<circ> g) S" | 
| 56196 
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
 huffman parents: 
56166diff
changeset | 186 | proof (cases "finite S") | 
| 
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
 huffman parents: 
56166diff
changeset | 187 | case True | 
| 
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
 huffman parents: 
56166diff
changeset | 188 | then show ?thesis | 
| 
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
 huffman parents: 
56166diff
changeset | 189 | by induct (simp_all add: linear_0 [OF f] linear_add [OF f]) | 
| 56444 | 190 | next | 
| 191 | case False | |
| 192 | then show ?thesis | |
| 193 | by (simp add: linear_0 [OF f]) | |
| 194 | qed | |
| 44133 | 195 | |
| 64267 | 196 | lemma linear_sum_mul: | 
| 53406 | 197 | assumes lin: "linear f" | 
| 64267 | 198 | shows "f (sum (\<lambda>i. c i *\<^sub>R v i) S) = sum (\<lambda>i. c i *\<^sub>R f (v i)) S" | 
| 199 | using linear_sum[OF lin, of "\<lambda>i. c i *\<^sub>R v i" , unfolded o_def] linear_cmul[OF lin] | |
| 49522 | 200 | by simp | 
| 44133 | 201 | |
| 202 | lemma linear_injective_0: | |
| 53406 | 203 | assumes lin: "linear f" | 
| 44133 | 204 | shows "inj f \<longleftrightarrow> (\<forall>x. f x = 0 \<longrightarrow> x = 0)" | 
| 49663 | 205 | proof - | 
| 53406 | 206 | have "inj f \<longleftrightarrow> (\<forall> x y. f x = f y \<longrightarrow> x = y)" | 
| 207 | by (simp add: inj_on_def) | |
| 208 | also have "\<dots> \<longleftrightarrow> (\<forall> x y. f x - f y = 0 \<longrightarrow> x - y = 0)" | |
| 209 | by simp | |
| 44133 | 210 | also have "\<dots> \<longleftrightarrow> (\<forall> x y. f (x - y) = 0 \<longrightarrow> x - y = 0)" | 
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 211 | by (simp add: linear_diff[OF lin]) | 
| 53406 | 212 | also have "\<dots> \<longleftrightarrow> (\<forall> x. f x = 0 \<longrightarrow> x = 0)" | 
| 213 | by auto | |
| 44133 | 214 | finally show ?thesis . | 
| 215 | qed | |
| 216 | ||
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 217 | lemma linear_scaleR [simp]: "linear (\<lambda>x. scaleR c x)" | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 218 | by (simp add: linear_iff scaleR_add_right) | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 219 | |
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 220 | lemma linear_scaleR_left [simp]: "linear (\<lambda>r. scaleR r x)" | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 221 | by (simp add: linear_iff scaleR_add_left) | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 222 | |
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 223 | lemma injective_scaleR: "c \<noteq> 0 \<Longrightarrow> inj (\<lambda>x::'a::real_vector. scaleR c x)" | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 224 | by (simp add: inj_on_def) | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 225 | |
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 226 | lemma linear_add_cmul: | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 227 | assumes "linear f" | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 228 | shows "f (a *\<^sub>R x + b *\<^sub>R y) = a *\<^sub>R f x + b *\<^sub>R f y" | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 229 | using linear_add[of f] linear_cmul[of f] assms by simp | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 230 | |
| 63050 | 231 | subsection \<open>Subspaces of vector spaces\<close> | 
| 44133 | 232 | |
| 49522 | 233 | definition (in real_vector) subspace :: "'a set \<Rightarrow> bool" | 
| 56444 | 234 | where "subspace S \<longleftrightarrow> 0 \<in> S \<and> (\<forall>x \<in> S. \<forall>y \<in> S. x + y \<in> S) \<and> (\<forall>c. \<forall>x \<in> S. c *\<^sub>R x \<in> S)" | 
| 44133 | 235 | |
| 236 | definition (in real_vector) "span S = (subspace hull S)" | |
| 53716 | 237 | definition (in real_vector) "dependent S \<longleftrightarrow> (\<exists>a \<in> S. a \<in> span (S - {a}))"
 | 
| 53406 | 238 | abbreviation (in real_vector) "independent s \<equiv> \<not> dependent s" | 
| 44133 | 239 | |
| 60420 | 240 | text \<open>Closure properties of subspaces.\<close> | 
| 44133 | 241 | |
| 53406 | 242 | lemma subspace_UNIV[simp]: "subspace UNIV" | 
| 243 | by (simp add: subspace_def) | |
| 244 | ||
| 245 | lemma (in real_vector) subspace_0: "subspace S \<Longrightarrow> 0 \<in> S" | |
| 246 | by (metis subspace_def) | |
| 247 | ||
| 248 | lemma (in real_vector) subspace_add: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x + y \<in> S" | |
| 44133 | 249 | by (metis subspace_def) | 
| 250 | ||
| 251 | lemma (in real_vector) subspace_mul: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> c *\<^sub>R x \<in> S" | |
| 252 | by (metis subspace_def) | |
| 253 | ||
| 254 | lemma subspace_neg: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> - x \<in> S" | |
| 255 | by (metis scaleR_minus1_left subspace_mul) | |
| 256 | ||
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 257 | lemma subspace_diff: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x - y \<in> S" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53939diff
changeset | 258 | using subspace_add [of S x "- y"] by (simp add: subspace_neg) | 
| 44133 | 259 | |
| 64267 | 260 | lemma (in real_vector) subspace_sum: | 
| 53406 | 261 | assumes sA: "subspace A" | 
| 63075 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 262 | and f: "\<And>x. x \<in> B \<Longrightarrow> f x \<in> A" | 
| 64267 | 263 | shows "sum f B \<in> A" | 
| 56196 
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
 huffman parents: 
56166diff
changeset | 264 | proof (cases "finite B") | 
| 
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
 huffman parents: 
56166diff
changeset | 265 | case True | 
| 
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
 huffman parents: 
56166diff
changeset | 266 | then show ?thesis | 
| 
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
 huffman parents: 
56166diff
changeset | 267 | using f by induct (simp_all add: subspace_0 [OF sA] subspace_add [OF sA]) | 
| 
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
 huffman parents: 
56166diff
changeset | 268 | qed (simp add: subspace_0 [OF sA]) | 
| 44133 | 269 | |
| 63075 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 270 | lemma subspace_trivial [iff]: "subspace {0}"
 | 
| 44133 | 271 | by (simp add: subspace_def) | 
| 272 | ||
| 53406 | 273 | lemma (in real_vector) subspace_inter: "subspace A \<Longrightarrow> subspace B \<Longrightarrow> subspace (A \<inter> B)" | 
| 44133 | 274 | by (simp add: subspace_def) | 
| 275 | ||
| 53406 | 276 | lemma subspace_Times: "subspace A \<Longrightarrow> subspace B \<Longrightarrow> subspace (A \<times> B)" | 
| 44521 | 277 | unfolding subspace_def zero_prod_def by simp | 
| 278 | ||
| 63075 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 279 | lemma subspace_sums: "\<lbrakk>subspace S; subspace T\<rbrakk> \<Longrightarrow> subspace {x + y|x y. x \<in> S \<and> y \<in> T}"
 | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 280 | apply (simp add: subspace_def) | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 281 | apply (intro conjI impI allI) | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 282 | using add.right_neutral apply blast | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 283 | apply clarify | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 284 | apply (metis add.assoc add.left_commute) | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 285 | using scaleR_add_right by blast | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 286 | |
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 287 | subsection \<open>Properties of span\<close> | 
| 44521 | 288 | |
| 53406 | 289 | lemma (in real_vector) span_mono: "A \<subseteq> B \<Longrightarrow> span A \<subseteq> span B" | 
| 44133 | 290 | by (metis span_def hull_mono) | 
| 291 | ||
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 292 | lemma (in real_vector) subspace_span [iff]: "subspace (span S)" | 
| 44133 | 293 | unfolding span_def | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 294 | apply (rule hull_in) | 
| 44133 | 295 | apply (simp only: subspace_def Inter_iff Int_iff subset_eq) | 
| 296 | apply auto | |
| 297 | done | |
| 298 | ||
| 299 | lemma (in real_vector) span_clauses: | |
| 53406 | 300 | "a \<in> S \<Longrightarrow> a \<in> span S" | 
| 44133 | 301 | "0 \<in> span S" | 
| 53406 | 302 | "x\<in> span S \<Longrightarrow> y \<in> span S \<Longrightarrow> x + y \<in> span S" | 
| 44133 | 303 | "x \<in> span S \<Longrightarrow> c *\<^sub>R x \<in> span S" | 
| 53406 | 304 | by (metis span_def hull_subset subset_eq) (metis subspace_span subspace_def)+ | 
| 44133 | 305 | |
| 44521 | 306 | lemma span_unique: | 
| 49522 | 307 | "S \<subseteq> T \<Longrightarrow> subspace T \<Longrightarrow> (\<And>T'. S \<subseteq> T' \<Longrightarrow> subspace T' \<Longrightarrow> T \<subseteq> T') \<Longrightarrow> span S = T" | 
| 44521 | 308 | unfolding span_def by (rule hull_unique) | 
| 309 | ||
| 310 | lemma span_minimal: "S \<subseteq> T \<Longrightarrow> subspace T \<Longrightarrow> span S \<subseteq> T" | |
| 311 | unfolding span_def by (rule hull_minimal) | |
| 312 | ||
| 66641 
ff2e0115fea4
Simplicial complexes and triangulations; Baire Category Theorem
 paulson <lp15@cam.ac.uk> parents: 
66503diff
changeset | 313 | lemma span_UNIV [simp]: "span UNIV = UNIV" | 
| 63053 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 314 | by (intro span_unique) auto | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 315 | |
| 44521 | 316 | lemma (in real_vector) span_induct: | 
| 49522 | 317 | assumes x: "x \<in> span S" | 
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 318 | and P: "subspace (Collect P)" | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 319 | and SP: "\<And>x. x \<in> S \<Longrightarrow> P x" | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 320 | shows "P x" | 
| 49522 | 321 | proof - | 
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 322 | from SP have SP': "S \<subseteq> Collect P" | 
| 53406 | 323 | by (simp add: subset_eq) | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 324 | from x hull_minimal[where S=subspace, OF SP' P, unfolded span_def[symmetric]] | 
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 325 | show ?thesis | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 326 | using subset_eq by force | 
| 44133 | 327 | qed | 
| 328 | ||
| 329 | lemma span_empty[simp]: "span {} = {0}"
 | |
| 330 | apply (simp add: span_def) | |
| 331 | apply (rule hull_unique) | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 332 | apply (auto simp add: subspace_def) | 
| 44133 | 333 | done | 
| 334 | ||
| 62948 
7700f467892b
lots of new theorems for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 335 | lemma (in real_vector) independent_empty [iff]: "independent {}"
 | 
| 44133 | 336 | by (simp add: dependent_def) | 
| 337 | ||
| 49522 | 338 | lemma dependent_single[simp]: "dependent {x} \<longleftrightarrow> x = 0"
 | 
| 44133 | 339 | unfolding dependent_def by auto | 
| 340 | ||
| 53406 | 341 | lemma (in real_vector) independent_mono: "independent A \<Longrightarrow> B \<subseteq> A \<Longrightarrow> independent B" | 
| 44133 | 342 | apply (clarsimp simp add: dependent_def span_mono) | 
| 343 |   apply (subgoal_tac "span (B - {a}) \<le> span (A - {a})")
 | |
| 344 | apply force | |
| 345 | apply (rule span_mono) | |
| 346 | apply auto | |
| 347 | done | |
| 348 | ||
| 349 | lemma (in real_vector) span_subspace: "A \<subseteq> B \<Longrightarrow> B \<le> span A \<Longrightarrow> subspace B \<Longrightarrow> span A = B" | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 350 | by (metis order_antisym span_def hull_minimal) | 
| 44133 | 351 | |
| 49711 | 352 | lemma (in real_vector) span_induct': | 
| 63050 | 353 |   "\<forall>x \<in> S. P x \<Longrightarrow> subspace {x. P x} \<Longrightarrow> \<forall>x \<in> span S. P x"
 | 
| 354 | unfolding span_def by (rule hull_induct) auto | |
| 44133 | 355 | |
| 56444 | 356 | inductive_set (in real_vector) span_induct_alt_help for S :: "'a set" | 
| 53406 | 357 | where | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 358 | span_induct_alt_help_0: "0 \<in> span_induct_alt_help S" | 
| 49522 | 359 | | span_induct_alt_help_S: | 
| 53406 | 360 | "x \<in> S \<Longrightarrow> z \<in> span_induct_alt_help S \<Longrightarrow> | 
| 361 | (c *\<^sub>R x + z) \<in> span_induct_alt_help S" | |
| 44133 | 362 | |
| 363 | lemma span_induct_alt': | |
| 53406 | 364 | assumes h0: "h 0" | 
| 365 | and hS: "\<And>c x y. x \<in> S \<Longrightarrow> h y \<Longrightarrow> h (c *\<^sub>R x + y)" | |
| 49522 | 366 | shows "\<forall>x \<in> span S. h x" | 
| 367 | proof - | |
| 53406 | 368 |   {
 | 
| 369 | fix x :: 'a | |
| 370 | assume x: "x \<in> span_induct_alt_help S" | |
| 44133 | 371 | have "h x" | 
| 372 | apply (rule span_induct_alt_help.induct[OF x]) | |
| 373 | apply (rule h0) | |
| 53406 | 374 | apply (rule hS) | 
| 375 | apply assumption | |
| 376 | apply assumption | |
| 377 | done | |
| 378 | } | |
| 44133 | 379 | note th0 = this | 
| 53406 | 380 |   {
 | 
| 381 | fix x | |
| 382 | assume x: "x \<in> span S" | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 383 | have "x \<in> span_induct_alt_help S" | 
| 49522 | 384 | proof (rule span_induct[where x=x and S=S]) | 
| 53406 | 385 | show "x \<in> span S" by (rule x) | 
| 49522 | 386 | next | 
| 53406 | 387 | fix x | 
| 388 | assume xS: "x \<in> S" | |
| 389 | from span_induct_alt_help_S[OF xS span_induct_alt_help_0, of 1] | |
| 390 | show "x \<in> span_induct_alt_help S" | |
| 391 | by simp | |
| 49522 | 392 | next | 
| 393 | have "0 \<in> span_induct_alt_help S" by (rule span_induct_alt_help_0) | |
| 394 | moreover | |
| 53406 | 395 |       {
 | 
| 396 | fix x y | |
| 49522 | 397 | assume h: "x \<in> span_induct_alt_help S" "y \<in> span_induct_alt_help S" | 
| 398 | from h have "(x + y) \<in> span_induct_alt_help S" | |
| 399 | apply (induct rule: span_induct_alt_help.induct) | |
| 400 | apply simp | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 401 | unfolding add.assoc | 
| 49522 | 402 | apply (rule span_induct_alt_help_S) | 
| 403 | apply assumption | |
| 404 | apply simp | |
| 53406 | 405 | done | 
| 406 | } | |
| 49522 | 407 | moreover | 
| 53406 | 408 |       {
 | 
| 409 | fix c x | |
| 49522 | 410 | assume xt: "x \<in> span_induct_alt_help S" | 
| 411 | then have "(c *\<^sub>R x) \<in> span_induct_alt_help S" | |
| 412 | apply (induct rule: span_induct_alt_help.induct) | |
| 413 | apply (simp add: span_induct_alt_help_0) | |
| 414 | apply (simp add: scaleR_right_distrib) | |
| 415 | apply (rule span_induct_alt_help_S) | |
| 416 | apply assumption | |
| 417 | apply simp | |
| 418 | done } | |
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 419 |       ultimately show "subspace {a. a \<in> span_induct_alt_help S}"
 | 
| 49522 | 420 | unfolding subspace_def Ball_def by blast | 
| 53406 | 421 | qed | 
| 422 | } | |
| 44133 | 423 | with th0 show ?thesis by blast | 
| 424 | qed | |
| 425 | ||
| 426 | lemma span_induct_alt: | |
| 53406 | 427 | assumes h0: "h 0" | 
| 428 | and hS: "\<And>c x y. x \<in> S \<Longrightarrow> h y \<Longrightarrow> h (c *\<^sub>R x + y)" | |
| 429 | and x: "x \<in> span S" | |
| 44133 | 430 | shows "h x" | 
| 49522 | 431 | using span_induct_alt'[of h S] h0 hS x by blast | 
| 44133 | 432 | |
| 60420 | 433 | text \<open>Individual closure properties.\<close> | 
| 44133 | 434 | |
| 435 | lemma span_span: "span (span A) = span A" | |
| 436 | unfolding span_def hull_hull .. | |
| 437 | ||
| 53406 | 438 | lemma (in real_vector) span_superset: "x \<in> S \<Longrightarrow> x \<in> span S" | 
| 439 | by (metis span_clauses(1)) | |
| 440 | ||
| 63075 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 441 | lemma (in real_vector) span_0 [simp]: "0 \<in> span S" | 
| 53406 | 442 | by (metis subspace_span subspace_0) | 
| 44133 | 443 | |
| 444 | lemma span_inc: "S \<subseteq> span S" | |
| 445 | by (metis subset_eq span_superset) | |
| 446 | ||
| 63053 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 447 | lemma span_eq: "span S = span T \<longleftrightarrow> S \<subseteq> span T \<and> T \<subseteq> span S" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 448 | using span_inc[unfolded subset_eq] using span_mono[of T "span S"] span_mono[of S "span T"] | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 449 | by (auto simp add: span_span) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 450 | |
| 53406 | 451 | lemma (in real_vector) dependent_0: | 
| 452 | assumes "0 \<in> A" | |
| 453 | shows "dependent A" | |
| 454 | unfolding dependent_def | |
| 455 | using assms span_0 | |
| 63075 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 456 | by blast | 
| 53406 | 457 | |
| 458 | lemma (in real_vector) span_add: "x \<in> span S \<Longrightarrow> y \<in> span S \<Longrightarrow> x + y \<in> span S" | |
| 44133 | 459 | by (metis subspace_add subspace_span) | 
| 460 | ||
| 53406 | 461 | lemma (in real_vector) span_mul: "x \<in> span S \<Longrightarrow> c *\<^sub>R x \<in> span S" | 
| 44133 | 462 | by (metis subspace_span subspace_mul) | 
| 463 | ||
| 53406 | 464 | lemma span_neg: "x \<in> span S \<Longrightarrow> - x \<in> span S" | 
| 44133 | 465 | by (metis subspace_neg subspace_span) | 
| 466 | ||
| 63938 | 467 | lemma span_diff: "x \<in> span S \<Longrightarrow> y \<in> span S \<Longrightarrow> x - y \<in> span S" | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 468 | by (metis subspace_span subspace_diff) | 
| 44133 | 469 | |
| 64267 | 470 | lemma (in real_vector) span_sum: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> span S) \<Longrightarrow> sum f A \<in> span S" | 
| 471 | by (rule subspace_sum [OF subspace_span]) | |
| 44133 | 472 | |
| 473 | lemma span_add_eq: "x \<in> span S \<Longrightarrow> x + y \<in> span S \<longleftrightarrow> y \<in> span S" | |
| 55775 | 474 | by (metis add_minus_cancel scaleR_minus1_left subspace_def subspace_span) | 
| 44133 | 475 | |
| 63050 | 476 | text \<open>The key breakdown property.\<close> | 
| 477 | ||
| 478 | lemma span_singleton: "span {x} = range (\<lambda>k. k *\<^sub>R x)"
 | |
| 479 | proof (rule span_unique) | |
| 480 |   show "{x} \<subseteq> range (\<lambda>k. k *\<^sub>R x)"
 | |
| 481 | by (fast intro: scaleR_one [symmetric]) | |
| 482 | show "subspace (range (\<lambda>k. k *\<^sub>R x))" | |
| 483 | unfolding subspace_def | |
| 484 | by (auto intro: scaleR_add_left [symmetric]) | |
| 485 | next | |
| 486 | fix T | |
| 487 |   assume "{x} \<subseteq> T" and "subspace T"
 | |
| 488 | then show "range (\<lambda>k. k *\<^sub>R x) \<subseteq> T" | |
| 489 | unfolding subspace_def by auto | |
| 490 | qed | |
| 491 | ||
| 60420 | 492 | text \<open>Mapping under linear image.\<close> | 
| 44133 | 493 | |
| 63050 | 494 | lemma subspace_linear_image: | 
| 495 | assumes lf: "linear f" | |
| 496 | and sS: "subspace S" | |
| 497 | shows "subspace (f ` S)" | |
| 498 | using lf sS linear_0[OF lf] | |
| 499 | unfolding linear_iff subspace_def | |
| 500 | apply (auto simp add: image_iff) | |
| 501 | apply (rule_tac x="x + y" in bexI) | |
| 502 | apply auto | |
| 503 | apply (rule_tac x="c *\<^sub>R x" in bexI) | |
| 504 | apply auto | |
| 505 | done | |
| 506 | ||
| 507 | lemma subspace_linear_vimage: "linear f \<Longrightarrow> subspace S \<Longrightarrow> subspace (f -` S)" | |
| 508 | by (auto simp add: subspace_def linear_iff linear_0[of f]) | |
| 509 | ||
| 510 | lemma subspace_linear_preimage: "linear f \<Longrightarrow> subspace S \<Longrightarrow> subspace {x. f x \<in> S}"
 | |
| 511 | by (auto simp add: subspace_def linear_iff linear_0[of f]) | |
| 512 | ||
| 44521 | 513 | lemma span_linear_image: | 
| 514 | assumes lf: "linear f" | |
| 56444 | 515 | shows "span (f ` S) = f ` span S" | 
| 44521 | 516 | proof (rule span_unique) | 
| 517 | show "f ` S \<subseteq> f ` span S" | |
| 518 | by (intro image_mono span_inc) | |
| 519 | show "subspace (f ` span S)" | |
| 520 | using lf subspace_span by (rule subspace_linear_image) | |
| 521 | next | |
| 53406 | 522 | fix T | 
| 523 | assume "f ` S \<subseteq> T" and "subspace T" | |
| 49522 | 524 | then show "f ` span S \<subseteq> T" | 
| 44521 | 525 | unfolding image_subset_iff_subset_vimage | 
| 526 | by (intro span_minimal subspace_linear_vimage lf) | |
| 527 | qed | |
| 528 | ||
| 63053 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 529 | lemma spans_image: | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 530 | assumes lf: "linear f" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 531 | and VB: "V \<subseteq> span B" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 532 | shows "f ` V \<subseteq> span (f ` B)" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 533 | unfolding span_linear_image[OF lf] by (metis VB image_mono) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 534 | |
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 535 | lemma span_Un: "span (A \<union> B) = (\<lambda>(a, b). a + b) ` (span A \<times> span B)" | 
| 44521 | 536 | proof (rule span_unique) | 
| 537 | show "A \<union> B \<subseteq> (\<lambda>(a, b). a + b) ` (span A \<times> span B)" | |
| 538 | by safe (force intro: span_clauses)+ | |
| 539 | next | |
| 540 | have "linear (\<lambda>(a, b). a + b)" | |
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 541 | by (simp add: linear_iff scaleR_add_right) | 
| 44521 | 542 | moreover have "subspace (span A \<times> span B)" | 
| 543 | by (intro subspace_Times subspace_span) | |
| 544 | ultimately show "subspace ((\<lambda>(a, b). a + b) ` (span A \<times> span B))" | |
| 545 | by (rule subspace_linear_image) | |
| 546 | next | |
| 49711 | 547 | fix T | 
| 548 | assume "A \<union> B \<subseteq> T" and "subspace T" | |
| 49522 | 549 | then show "(\<lambda>(a, b). a + b) ` (span A \<times> span B) \<subseteq> T" | 
| 44521 | 550 | by (auto intro!: subspace_add elim: span_induct) | 
| 44133 | 551 | qed | 
| 552 | ||
| 49522 | 553 | lemma span_insert: "span (insert a S) = {x. \<exists>k. (x - k *\<^sub>R a) \<in> span S}"
 | 
| 44521 | 554 | proof - | 
| 555 |   have "span ({a} \<union> S) = {x. \<exists>k. (x - k *\<^sub>R a) \<in> span S}"
 | |
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 556 | unfolding span_Un span_singleton | 
| 44521 | 557 | apply safe | 
| 558 | apply (rule_tac x=k in exI, simp) | |
| 559 | apply (erule rev_image_eqI [OF SigmaI [OF rangeI]]) | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53939diff
changeset | 560 | apply auto | 
| 44521 | 561 | done | 
| 49522 | 562 | then show ?thesis by simp | 
| 44521 | 563 | qed | 
| 564 | ||
| 44133 | 565 | lemma span_breakdown: | 
| 53406 | 566 | assumes bS: "b \<in> S" | 
| 567 | and aS: "a \<in> span S" | |
| 44521 | 568 |   shows "\<exists>k. a - k *\<^sub>R b \<in> span (S - {b})"
 | 
| 569 |   using assms span_insert [of b "S - {b}"]
 | |
| 570 | by (simp add: insert_absorb) | |
| 44133 | 571 | |
| 53406 | 572 | lemma span_breakdown_eq: "x \<in> span (insert a S) \<longleftrightarrow> (\<exists>k. x - k *\<^sub>R a \<in> span S)" | 
| 44521 | 573 | by (simp add: span_insert) | 
| 44133 | 574 | |
| 60420 | 575 | text \<open>Hence some "reversal" results.\<close> | 
| 44133 | 576 | |
| 577 | lemma in_span_insert: | |
| 49711 | 578 | assumes a: "a \<in> span (insert b S)" | 
| 579 | and na: "a \<notin> span S" | |
| 44133 | 580 | shows "b \<in> span (insert a S)" | 
| 49663 | 581 | proof - | 
| 55910 | 582 | from a obtain k where k: "a - k *\<^sub>R b \<in> span S" | 
| 583 | unfolding span_insert by fast | |
| 53406 | 584 | show ?thesis | 
| 585 | proof (cases "k = 0") | |
| 586 | case True | |
| 55910 | 587 | with k have "a \<in> span S" by simp | 
| 588 | with na show ?thesis by simp | |
| 53406 | 589 | next | 
| 590 | case False | |
| 55910 | 591 | from k have "(- inverse k) *\<^sub>R (a - k *\<^sub>R b) \<in> span S" | 
| 44133 | 592 | by (rule span_mul) | 
| 55910 | 593 | then have "b - inverse k *\<^sub>R a \<in> span S" | 
| 60420 | 594 | using \<open>k \<noteq> 0\<close> by (simp add: scaleR_diff_right) | 
| 55910 | 595 | then show ?thesis | 
| 596 | unfolding span_insert by fast | |
| 53406 | 597 | qed | 
| 44133 | 598 | qed | 
| 599 | ||
| 600 | lemma in_span_delete: | |
| 601 | assumes a: "a \<in> span S" | |
| 53716 | 602 |     and na: "a \<notin> span (S - {b})"
 | 
| 44133 | 603 |   shows "b \<in> span (insert a (S - {b}))"
 | 
| 604 | apply (rule in_span_insert) | |
| 605 | apply (rule set_rev_mp) | |
| 606 | apply (rule a) | |
| 607 | apply (rule span_mono) | |
| 608 | apply blast | |
| 609 | apply (rule na) | |
| 610 | done | |
| 611 | ||
| 60420 | 612 | text \<open>Transitivity property.\<close> | 
| 44133 | 613 | |
| 44521 | 614 | lemma span_redundant: "x \<in> span S \<Longrightarrow> span (insert x S) = span S" | 
| 615 | unfolding span_def by (rule hull_redundant) | |
| 616 | ||
| 44133 | 617 | lemma span_trans: | 
| 53406 | 618 | assumes x: "x \<in> span S" | 
| 619 | and y: "y \<in> span (insert x S)" | |
| 44133 | 620 | shows "y \<in> span S" | 
| 44521 | 621 | using assms by (simp only: span_redundant) | 
| 44133 | 622 | |
| 623 | lemma span_insert_0[simp]: "span (insert 0 S) = span S" | |
| 44521 | 624 | by (simp only: span_redundant span_0) | 
| 44133 | 625 | |
| 60420 | 626 | text \<open>An explicit expansion is sometimes needed.\<close> | 
| 44133 | 627 | |
| 628 | lemma span_explicit: | |
| 64267 | 629 |   "span P = {y. \<exists>S u. finite S \<and> S \<subseteq> P \<and> sum (\<lambda>v. u v *\<^sub>R v) S = y}"
 | 
| 44133 | 630 |   (is "_ = ?E" is "_ = {y. ?h y}" is "_ = {y. \<exists>S u. ?Q S u y}")
 | 
| 49663 | 631 | proof - | 
| 53406 | 632 |   {
 | 
| 633 | fix x | |
| 55910 | 634 | assume "?h x" | 
| 64267 | 635 | then obtain S u where "finite S" and "S \<subseteq> P" and "sum (\<lambda>v. u v *\<^sub>R v) S = x" | 
| 44133 | 636 | by blast | 
| 55910 | 637 | then have "x \<in> span P" | 
| 64267 | 638 | by (auto intro: span_sum span_mul span_superset) | 
| 53406 | 639 | } | 
| 44133 | 640 | moreover | 
| 55910 | 641 | have "\<forall>x \<in> span P. ?h x" | 
| 49522 | 642 | proof (rule span_induct_alt') | 
| 55910 | 643 | show "?h 0" | 
| 644 |       by (rule exI[where x="{}"], simp)
 | |
| 44133 | 645 | next | 
| 646 | fix c x y | |
| 53406 | 647 | assume x: "x \<in> P" | 
| 55910 | 648 | assume hy: "?h y" | 
| 44133 | 649 | from hy obtain S u where fS: "finite S" and SP: "S\<subseteq>P" | 
| 64267 | 650 | and u: "sum (\<lambda>v. u v *\<^sub>R v) S = y" by blast | 
| 44133 | 651 | let ?S = "insert x S" | 
| 49522 | 652 | let ?u = "\<lambda>y. if y = x then (if x \<in> S then u y + c else c) else u y" | 
| 53406 | 653 | from fS SP x have th0: "finite (insert x S)" "insert x S \<subseteq> P" | 
| 654 | by blast+ | |
| 655 | have "?Q ?S ?u (c*\<^sub>R x + y)" | |
| 656 | proof cases | |
| 657 | assume xS: "x \<in> S" | |
| 64267 | 658 |       have "sum (\<lambda>v. ?u v *\<^sub>R v) ?S = (\<Sum>v\<in>S - {x}. u v *\<^sub>R v) + (u x + c) *\<^sub>R x"
 | 
| 659 | using xS by (simp add: sum.remove [OF fS xS] insert_absorb) | |
| 44133 | 660 | also have "\<dots> = (\<Sum>v\<in>S. u v *\<^sub>R v) + c *\<^sub>R x" | 
| 64267 | 661 | by (simp add: sum.remove [OF fS xS] algebra_simps) | 
| 44133 | 662 | also have "\<dots> = c*\<^sub>R x + y" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 663 | by (simp add: add.commute u) | 
| 64267 | 664 | finally have "sum (\<lambda>v. ?u v *\<^sub>R v) ?S = c*\<^sub>R x + y" . | 
| 53406 | 665 | then show ?thesis using th0 by blast | 
| 666 | next | |
| 667 | assume xS: "x \<notin> S" | |
| 49522 | 668 | have th00: "(\<Sum>v\<in>S. (if v = x then c else u v) *\<^sub>R v) = y" | 
| 669 | unfolding u[symmetric] | |
| 64267 | 670 | apply (rule sum.cong) | 
| 53406 | 671 | using xS | 
| 672 | apply auto | |
| 49522 | 673 | done | 
| 53406 | 674 | show ?thesis using fS xS th0 | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 675 | by (simp add: th00 add.commute cong del: if_weak_cong) | 
| 53406 | 676 | qed | 
| 55910 | 677 | then show "?h (c*\<^sub>R x + y)" | 
| 678 | by fast | |
| 44133 | 679 | qed | 
| 680 | ultimately show ?thesis by blast | |
| 681 | qed | |
| 682 | ||
| 683 | lemma dependent_explicit: | |
| 64267 | 684 | "dependent P \<longleftrightarrow> (\<exists>S u. finite S \<and> S \<subseteq> P \<and> (\<exists>v\<in>S. u v \<noteq> 0 \<and> sum (\<lambda>v. u v *\<^sub>R v) S = 0))" | 
| 49522 | 685 | (is "?lhs = ?rhs") | 
| 686 | proof - | |
| 53406 | 687 |   {
 | 
| 688 | assume dP: "dependent P" | |
| 44133 | 689 | then obtain a S u where aP: "a \<in> P" and fS: "finite S" | 
| 64267 | 690 |       and SP: "S \<subseteq> P - {a}" and ua: "sum (\<lambda>v. u v *\<^sub>R v) S = a"
 | 
| 44133 | 691 | unfolding dependent_def span_explicit by blast | 
| 692 | let ?S = "insert a S" | |
| 693 | let ?u = "\<lambda>y. if y = a then - 1 else u y" | |
| 694 | let ?v = a | |
| 53406 | 695 | from aP SP have aS: "a \<notin> S" | 
| 696 | by blast | |
| 697 | from fS SP aP have th0: "finite ?S" "?S \<subseteq> P" "?v \<in> ?S" "?u ?v \<noteq> 0" | |
| 698 | by auto | |
| 64267 | 699 | have s0: "sum (\<lambda>v. ?u v *\<^sub>R v) ?S = 0" | 
| 44133 | 700 | using fS aS | 
| 55910 | 701 | apply simp | 
| 44133 | 702 | apply (subst (2) ua[symmetric]) | 
| 64267 | 703 | apply (rule sum.cong) | 
| 49522 | 704 | apply auto | 
| 705 | done | |
| 55910 | 706 | with th0 have ?rhs by fast | 
| 49522 | 707 | } | 
| 44133 | 708 | moreover | 
| 53406 | 709 |   {
 | 
| 710 | fix S u v | |
| 49522 | 711 | assume fS: "finite S" | 
| 53406 | 712 | and SP: "S \<subseteq> P" | 
| 713 | and vS: "v \<in> S" | |
| 714 | and uv: "u v \<noteq> 0" | |
| 64267 | 715 | and u: "sum (\<lambda>v. u v *\<^sub>R v) S = 0" | 
| 44133 | 716 | let ?a = v | 
| 717 |     let ?S = "S - {v}"
 | |
| 718 | let ?u = "\<lambda>i. (- u i) / u v" | |
| 53406 | 719 | have th0: "?a \<in> P" "finite ?S" "?S \<subseteq> P" | 
| 720 | using fS SP vS by auto | |
| 64267 | 721 | have "sum (\<lambda>v. ?u v *\<^sub>R v) ?S = | 
| 722 | sum (\<lambda>v. (- (inverse (u ?a))) *\<^sub>R (u v *\<^sub>R v)) S - ?u v *\<^sub>R v" | |
| 723 | using fS vS uv by (simp add: sum_diff1 field_simps) | |
| 53406 | 724 | also have "\<dots> = ?a" | 
| 64267 | 725 | unfolding scaleR_right.sum [symmetric] u using uv by simp | 
| 726 | finally have "sum (\<lambda>v. ?u v *\<^sub>R v) ?S = ?a" . | |
| 44133 | 727 | with th0 have ?lhs | 
| 728 | unfolding dependent_def span_explicit | |
| 729 | apply - | |
| 730 | apply (rule bexI[where x= "?a"]) | |
| 731 | apply (simp_all del: scaleR_minus_left) | |
| 732 | apply (rule exI[where x= "?S"]) | |
| 49522 | 733 | apply (auto simp del: scaleR_minus_left) | 
| 734 | done | |
| 735 | } | |
| 44133 | 736 | ultimately show ?thesis by blast | 
| 737 | qed | |
| 738 | ||
| 63075 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 739 | lemma dependent_finite: | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 740 | assumes "finite S" | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 741 | shows "dependent S \<longleftrightarrow> (\<exists>u. (\<exists>v \<in> S. u v \<noteq> 0) \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = 0)" | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 742 | (is "?lhs = ?rhs") | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 743 | proof | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 744 | assume ?lhs | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 745 | then obtain T u v | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 746 | where "finite T" "T \<subseteq> S" "v\<in>T" "u v \<noteq> 0" "(\<Sum>v\<in>T. u v *\<^sub>R v) = 0" | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 747 | by (force simp: dependent_explicit) | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 748 | with assms show ?rhs | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 749 | apply (rule_tac x="\<lambda>v. if v \<in> T then u v else 0" in exI) | 
| 64267 | 750 | apply (auto simp: sum.mono_neutral_right) | 
| 63075 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 751 | done | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 752 | next | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 753 | assume ?rhs with assms show ?lhs | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 754 | by (fastforce simp add: dependent_explicit) | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 755 | qed | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 756 | |
| 63051 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 757 | lemma span_alt: | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 758 |   "span B = {(\<Sum>x | f x \<noteq> 0. f x *\<^sub>R x) | f. {x. f x \<noteq> 0} \<subseteq> B \<and> finite {x. f x \<noteq> 0}}"
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 759 | unfolding span_explicit | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 760 | apply safe | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 761 | subgoal for x S u | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 762 | by (intro exI[of _ "\<lambda>x. if x \<in> S then u x else 0"]) | 
| 64267 | 763 | (auto intro!: sum.mono_neutral_cong_right) | 
| 63051 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 764 | apply auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 765 | done | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 766 | |
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 767 | lemma dependent_alt: | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 768 | "dependent B \<longleftrightarrow> | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 769 |     (\<exists>X. finite {x. X x \<noteq> 0} \<and> {x. X x \<noteq> 0} \<subseteq> B \<and> (\<Sum>x|X x \<noteq> 0. X x *\<^sub>R x) = 0 \<and> (\<exists>x. X x \<noteq> 0))"
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 770 | unfolding dependent_explicit | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 771 | apply safe | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 772 | subgoal for S u v | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 773 | apply (intro exI[of _ "\<lambda>x. if x \<in> S then u x else 0"]) | 
| 64267 | 774 | apply (subst sum.mono_neutral_cong_left[where T=S]) | 
| 775 | apply (auto intro!: sum.mono_neutral_cong_right cong: rev_conj_cong) | |
| 63051 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 776 | done | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 777 | apply auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 778 | done | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 779 | |
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 780 | lemma independent_alt: | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 781 | "independent B \<longleftrightarrow> | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 782 |     (\<forall>X. finite {x. X x \<noteq> 0} \<longrightarrow> {x. X x \<noteq> 0} \<subseteq> B \<longrightarrow> (\<Sum>x|X x \<noteq> 0. X x *\<^sub>R x) = 0 \<longrightarrow> (\<forall>x. X x = 0))"
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 783 | unfolding dependent_alt by auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 784 | |
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 785 | lemma independentD_alt: | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 786 |   "independent B \<Longrightarrow> finite {x. X x \<noteq> 0} \<Longrightarrow> {x. X x \<noteq> 0} \<subseteq> B \<Longrightarrow> (\<Sum>x|X x \<noteq> 0. X x *\<^sub>R x) = 0 \<Longrightarrow> X x = 0"
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 787 | unfolding independent_alt by blast | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 788 | |
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 789 | lemma independentD_unique: | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 790 | assumes B: "independent B" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 791 |     and X: "finite {x. X x \<noteq> 0}" "{x. X x \<noteq> 0} \<subseteq> B"
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 792 |     and Y: "finite {x. Y x \<noteq> 0}" "{x. Y x \<noteq> 0} \<subseteq> B"
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 793 | and "(\<Sum>x | X x \<noteq> 0. X x *\<^sub>R x) = (\<Sum>x| Y x \<noteq> 0. Y x *\<^sub>R x)" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 794 | shows "X = Y" | 
| 49522 | 795 | proof - | 
| 63051 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 796 | have "X x - Y x = 0" for x | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 797 | using B | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 798 | proof (rule independentD_alt) | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 799 |     have "{x. X x - Y x \<noteq> 0} \<subseteq> {x. X x \<noteq> 0} \<union> {x. Y x \<noteq> 0}"
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 800 | by auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 801 |     then show "finite {x. X x - Y x \<noteq> 0}" "{x. X x - Y x \<noteq> 0} \<subseteq> B"
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 802 | using X Y by (auto dest: finite_subset) | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 803 |     then have "(\<Sum>x | X x - Y x \<noteq> 0. (X x - Y x) *\<^sub>R x) = (\<Sum>v\<in>{S. X S \<noteq> 0} \<union> {S. Y S \<noteq> 0}. (X v - Y v) *\<^sub>R v)"
 | 
| 64267 | 804 | using X Y by (intro sum.mono_neutral_cong_left) auto | 
| 63051 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 805 |     also have "\<dots> = (\<Sum>v\<in>{S. X S \<noteq> 0} \<union> {S. Y S \<noteq> 0}. X v *\<^sub>R v) - (\<Sum>v\<in>{S. X S \<noteq> 0} \<union> {S. Y S \<noteq> 0}. Y v *\<^sub>R v)"
 | 
| 64267 | 806 | by (simp add: scaleR_diff_left sum_subtractf assms) | 
| 63051 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 807 |     also have "(\<Sum>v\<in>{S. X S \<noteq> 0} \<union> {S. Y S \<noteq> 0}. X v *\<^sub>R v) = (\<Sum>v\<in>{S. X S \<noteq> 0}. X v *\<^sub>R v)"
 | 
| 64267 | 808 | using X Y by (intro sum.mono_neutral_cong_right) auto | 
| 63051 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 809 |     also have "(\<Sum>v\<in>{S. X S \<noteq> 0} \<union> {S. Y S \<noteq> 0}. Y v *\<^sub>R v) = (\<Sum>v\<in>{S. Y S \<noteq> 0}. Y v *\<^sub>R v)"
 | 
| 64267 | 810 | using X Y by (intro sum.mono_neutral_cong_right) auto | 
| 63051 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 811 | finally show "(\<Sum>x | X x - Y x \<noteq> 0. (X x - Y x) *\<^sub>R x) = 0" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 812 | using assms by simp | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 813 | qed | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 814 | then show ?thesis | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 815 | by auto | 
| 44133 | 816 | qed | 
| 817 | ||
| 60420 | 818 | text \<open>This is useful for building a basis step-by-step.\<close> | 
| 44133 | 819 | |
| 820 | lemma independent_insert: | |
| 53406 | 821 | "independent (insert a S) \<longleftrightarrow> | 
| 822 | (if a \<in> S then independent S else independent S \<and> a \<notin> span S)" | |
| 823 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 824 | proof (cases "a \<in> S") | |
| 825 | case True | |
| 826 | then show ?thesis | |
| 827 | using insert_absorb[OF True] by simp | |
| 828 | next | |
| 829 | case False | |
| 830 | show ?thesis | |
| 831 | proof | |
| 832 | assume i: ?lhs | |
| 833 | then show ?rhs | |
| 834 | using False | |
| 835 | apply simp | |
| 836 | apply (rule conjI) | |
| 837 | apply (rule independent_mono) | |
| 838 | apply assumption | |
| 839 | apply blast | |
| 840 | apply (simp add: dependent_def) | |
| 841 | done | |
| 842 | next | |
| 843 | assume i: ?rhs | |
| 844 | show ?lhs | |
| 845 | using i False | |
| 846 | apply (auto simp add: dependent_def) | |
| 60810 
9ede42599eeb
tweaks. Got rid of a really slow step
 paulson <lp15@cam.ac.uk> parents: 
60800diff
changeset | 847 | by (metis in_span_insert insert_Diff_if insert_Diff_single insert_absorb) | 
| 53406 | 848 | qed | 
| 44133 | 849 | qed | 
| 850 | ||
| 63051 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 851 | lemma independent_Union_directed: | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 852 | assumes directed: "\<And>c d. c \<in> C \<Longrightarrow> d \<in> C \<Longrightarrow> c \<subseteq> d \<or> d \<subseteq> c" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 853 | assumes indep: "\<And>c. c \<in> C \<Longrightarrow> independent c" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 854 | shows "independent (\<Union>C)" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 855 | proof | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 856 | assume "dependent (\<Union>C)" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 857 | then obtain u v S where S: "finite S" "S \<subseteq> \<Union>C" "v \<in> S" "u v \<noteq> 0" "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 858 | by (auto simp: dependent_explicit) | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 859 | |
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 860 |   have "S \<noteq> {}"
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 861 | using \<open>v \<in> S\<close> by auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 862 | have "\<exists>c\<in>C. S \<subseteq> c" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 863 |     using \<open>finite S\<close> \<open>S \<noteq> {}\<close> \<open>S \<subseteq> \<Union>C\<close>
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 864 | proof (induction rule: finite_ne_induct) | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 865 | case (insert i I) | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 866 | then obtain c d where cd: "c \<in> C" "d \<in> C" and iI: "I \<subseteq> c" "i \<in> d" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 867 | by blast | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 868 | from directed[OF cd] cd have "c \<union> d \<in> C" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 869 | by (auto simp: sup.absorb1 sup.absorb2) | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 870 | with iI show ?case | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 871 | by (intro bexI[of _ "c \<union> d"]) auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 872 | qed auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 873 | then obtain c where "c \<in> C" "S \<subseteq> c" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 874 | by auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 875 | have "dependent c" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 876 | unfolding dependent_explicit | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 877 | by (intro exI[of _ S] exI[of _ u] bexI[of _ v] conjI) fact+ | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 878 | with indep[OF \<open>c \<in> C\<close>] show False | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 879 | by auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 880 | qed | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 881 | |
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 882 | text \<open>Hence we can create a maximal independent subset.\<close> | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 883 | |
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 884 | lemma maximal_independent_subset_extend: | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 885 | assumes "S \<subseteq> V" "independent S" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 886 | shows "\<exists>B. S \<subseteq> B \<and> B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 887 | proof - | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 888 |   let ?C = "{B. S \<subseteq> B \<and> independent B \<and> B \<subseteq> V}"
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 889 | have "\<exists>M\<in>?C. \<forall>X\<in>?C. M \<subseteq> X \<longrightarrow> X = M" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 890 | proof (rule subset_Zorn) | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 891 | fix C :: "'a set set" assume "subset.chain ?C C" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 892 | then have C: "\<And>c. c \<in> C \<Longrightarrow> c \<subseteq> V" "\<And>c. c \<in> C \<Longrightarrow> S \<subseteq> c" "\<And>c. c \<in> C \<Longrightarrow> independent c" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 893 | "\<And>c d. c \<in> C \<Longrightarrow> d \<in> C \<Longrightarrow> c \<subseteq> d \<or> d \<subseteq> c" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 894 | unfolding subset.chain_def by blast+ | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 895 | |
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 896 | show "\<exists>U\<in>?C. \<forall>X\<in>C. X \<subseteq> U" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 897 | proof cases | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 898 |       assume "C = {}" with assms show ?thesis
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 899 | by (auto intro!: exI[of _ S]) | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 900 | next | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 901 |       assume "C \<noteq> {}"
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 902 | with C(2) have "S \<subseteq> \<Union>C" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 903 | by auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 904 | moreover have "independent (\<Union>C)" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 905 | by (intro independent_Union_directed C) | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 906 | moreover have "\<Union>C \<subseteq> V" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 907 | using C by auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 908 | ultimately show ?thesis | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 909 | by auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 910 | qed | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 911 | qed | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 912 | then obtain B where B: "independent B" "B \<subseteq> V" "S \<subseteq> B" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 913 | and max: "\<And>S. independent S \<Longrightarrow> S \<subseteq> V \<Longrightarrow> B \<subseteq> S \<Longrightarrow> S = B" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 914 | by auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 915 | moreover | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 916 |   { assume "\<not> V \<subseteq> span B"
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 917 | then obtain v where "v \<in> V" "v \<notin> span B" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 918 | by auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 919 | with B have "independent (insert v B)" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 920 | unfolding independent_insert by auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 921 | from max[OF this] \<open>v \<in> V\<close> \<open>B \<subseteq> V\<close> | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 922 | have "v \<in> B" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 923 | by auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 924 | with \<open>v \<notin> span B\<close> have False | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 925 | by (auto intro: span_superset) } | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 926 | ultimately show ?thesis | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 927 | by (auto intro!: exI[of _ B]) | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 928 | qed | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 929 | |
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 930 | |
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 931 | lemma maximal_independent_subset: | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 932 | "\<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 933 |   by (metis maximal_independent_subset_extend[of "{}"] empty_subsetI independent_empty)
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 934 | |
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 935 | lemma span_finite: | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 936 | assumes fS: "finite S" | 
| 64267 | 937 |   shows "span S = {y. \<exists>u. sum (\<lambda>v. u v *\<^sub>R v) S = y}"
 | 
| 63051 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 938 | (is "_ = ?rhs") | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 939 | proof - | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 940 |   {
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 941 | fix y | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 942 | assume y: "y \<in> span S" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 943 | from y obtain S' u where fS': "finite S'" | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 944 | and SS': "S' \<subseteq> S" | 
| 64267 | 945 | and u: "sum (\<lambda>v. u v *\<^sub>R v) S' = y" | 
| 63051 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 946 | unfolding span_explicit by blast | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 947 | let ?u = "\<lambda>x. if x \<in> S' then u x else 0" | 
| 64267 | 948 | have "sum (\<lambda>v. ?u v *\<^sub>R v) S = sum (\<lambda>v. u v *\<^sub>R v) S'" | 
| 949 | using SS' fS by (auto intro!: sum.mono_neutral_cong_right) | |
| 950 | then have "sum (\<lambda>v. ?u v *\<^sub>R v) S = y" by (metis u) | |
| 63051 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 951 | then have "y \<in> ?rhs" by auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 952 | } | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 953 | moreover | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 954 |   {
 | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 955 | fix y u | 
| 64267 | 956 | assume u: "sum (\<lambda>v. u v *\<^sub>R v) S = y" | 
| 63051 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 957 | then have "y \<in> span S" using fS unfolding span_explicit by auto | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 958 | } | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 959 | ultimately show ?thesis by blast | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 960 | qed | 
| 
e5e69206d52d
Linear_Algebra: alternative representation of linear combination
 hoelzl parents: 
63050diff
changeset | 961 | |
| 63052 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 962 | lemma linear_independent_extend_subspace: | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 963 | assumes "independent B" | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 964 | shows "\<exists>g. linear g \<and> (\<forall>x\<in>B. g x = f x) \<and> range g = span (f`B)" | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 965 | proof - | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 966 | from maximal_independent_subset_extend[OF _ \<open>independent B\<close>, of UNIV] | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 967 | obtain B' where "B \<subseteq> B'" "independent B'" "span B' = UNIV" | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 968 | by (auto simp: top_unique) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 969 |   have "\<forall>y. \<exists>X. {x. X x \<noteq> 0} \<subseteq> B' \<and> finite {x. X x \<noteq> 0} \<and> y = (\<Sum>x|X x \<noteq> 0. X x *\<^sub>R x)"
 | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 970 | using \<open>span B' = UNIV\<close> unfolding span_alt by auto | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 971 |   then obtain X where X: "\<And>y. {x. X y x \<noteq> 0} \<subseteq> B'" "\<And>y. finite {x. X y x \<noteq> 0}"
 | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 972 | "\<And>y. y = (\<Sum>x|X y x \<noteq> 0. X y x *\<^sub>R x)" | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 973 | unfolding choice_iff by auto | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 974 | |
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 975 | have X_add: "X (x + y) = (\<lambda>z. X x z + X y z)" for x y | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 976 | using \<open>independent B'\<close> | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 977 | proof (rule independentD_unique) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 978 | have "(\<Sum>z | X x z + X y z \<noteq> 0. (X x z + X y z) *\<^sub>R z) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 979 |       = (\<Sum>z\<in>{z. X x z \<noteq> 0} \<union> {z. X y z \<noteq> 0}. (X x z + X y z) *\<^sub>R z)"
 | 
| 64267 | 980 | by (intro sum.mono_neutral_cong_left) (auto intro: X) | 
| 63052 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 981 |     also have "\<dots> = (\<Sum>z\<in>{z. X x z \<noteq> 0}. X x z *\<^sub>R z) + (\<Sum>z\<in>{z. X y z \<noteq> 0}. X y z *\<^sub>R z)"
 | 
| 64267 | 982 | by (auto simp add: scaleR_add_left sum.distrib | 
| 983 | intro!: arg_cong2[where f="op +"] sum.mono_neutral_cong_right X) | |
| 63052 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 984 | also have "\<dots> = x + y" | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 985 | by (simp add: X(3)[symmetric]) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 986 | also have "\<dots> = (\<Sum>z | X (x + y) z \<noteq> 0. X (x + y) z *\<^sub>R z)" | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 987 | by (rule X(3)) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 988 | finally show "(\<Sum>z | X (x + y) z \<noteq> 0. X (x + y) z *\<^sub>R z) = (\<Sum>z | X x z + X y z \<noteq> 0. (X x z + X y z) *\<^sub>R z)" | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 989 | .. | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 990 |     have "{z. X x z + X y z \<noteq> 0} \<subseteq> {z. X x z \<noteq> 0} \<union> {z. X y z \<noteq> 0}"
 | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 991 | by auto | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 992 |     then show "finite {z. X x z + X y z \<noteq> 0}" "{xa. X x xa + X y xa \<noteq> 0} \<subseteq> B'"
 | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 993 |         "finite {xa. X (x + y) xa \<noteq> 0}" "{xa. X (x + y) xa \<noteq> 0} \<subseteq> B'"
 | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 994 | using X(1) by (auto dest: finite_subset intro: X) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 995 | qed | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 996 | |
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 997 | have X_cmult: "X (c *\<^sub>R x) = (\<lambda>z. c * X x z)" for x c | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 998 | using \<open>independent B'\<close> | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 999 | proof (rule independentD_unique) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1000 |     show "finite {z. X (c *\<^sub>R x) z \<noteq> 0}" "{z. X (c *\<^sub>R x) z \<noteq> 0} \<subseteq> B'"
 | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1001 |       "finite {z. c * X x z \<noteq> 0}" "{z. c * X x z \<noteq> 0} \<subseteq> B' "
 | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1002 | using X(1,2) by auto | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1003 | show "(\<Sum>z | X (c *\<^sub>R x) z \<noteq> 0. X (c *\<^sub>R x) z *\<^sub>R z) = (\<Sum>z | c * X x z \<noteq> 0. (c * X x z) *\<^sub>R z)" | 
| 64267 | 1004 | unfolding scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] | 
| 63052 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1005 | by (cases "c = 0") (auto simp: X(3)[symmetric]) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1006 | qed | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1007 | |
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1008 | have X_B': "x \<in> B' \<Longrightarrow> X x = (\<lambda>z. if z = x then 1 else 0)" for x | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1009 | using \<open>independent B'\<close> | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1010 | by (rule independentD_unique[OF _ X(2) X(1)]) (auto intro: X simp: X(3)[symmetric]) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1011 | |
| 63148 | 1012 | define f' where "f' y = (if y \<in> B then f y else 0)" for y | 
| 1013 | define g where "g y = (\<Sum>x|X y x \<noteq> 0. X y x *\<^sub>R f' x)" for y | |
| 63052 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1014 | |
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1015 | have g_f': "x \<in> B' \<Longrightarrow> g x = f' x" for x | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1016 | by (auto simp: g_def X_B') | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1017 | |
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1018 | have "linear g" | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1019 | proof | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1020 | fix x y | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1021 | have *: "(\<Sum>z | X x z + X y z \<noteq> 0. (X x z + X y z) *\<^sub>R f' z) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1022 |       = (\<Sum>z\<in>{z. X x z \<noteq> 0} \<union> {z. X y z \<noteq> 0}. (X x z + X y z) *\<^sub>R f' z)"
 | 
| 64267 | 1023 | by (intro sum.mono_neutral_cong_left) (auto intro: X) | 
| 63052 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1024 | show "g (x + y) = g x + g y" | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1025 | unfolding g_def X_add * | 
| 64267 | 1026 | by (auto simp add: scaleR_add_left sum.distrib | 
| 1027 | intro!: arg_cong2[where f="op +"] sum.mono_neutral_cong_right X) | |
| 63052 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1028 | next | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1029 | show "g (r *\<^sub>R x) = r *\<^sub>R g x" for r x | 
| 64267 | 1030 | by (auto simp add: g_def X_cmult scaleR_sum_right intro!: sum.mono_neutral_cong_left X) | 
| 63052 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1031 | qed | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1032 | moreover have "\<forall>x\<in>B. g x = f x" | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1033 | using \<open>B \<subseteq> B'\<close> by (auto simp: g_f' f'_def) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1034 | moreover have "range g = span (f`B)" | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1035 | unfolding \<open>span B' = UNIV\<close>[symmetric] span_linear_image[OF \<open>linear g\<close>, symmetric] | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1036 | proof (rule span_subspace) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1037 |     have "g ` B' \<subseteq> f`B \<union> {0}"
 | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1038 | by (auto simp: g_f' f'_def) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1039 | also have "\<dots> \<subseteq> span (f`B)" | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1040 | by (auto intro: span_superset span_0) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1041 | finally show "g ` B' \<subseteq> span (f`B)" | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1042 | by auto | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1043 | have "x \<in> B \<Longrightarrow> f x = g x" for x | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1044 | using \<open>B \<subseteq> B'\<close> by (auto simp add: g_f' f'_def) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1045 | then show "span (f ` B) \<subseteq> span (g ` B')" | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1046 | using \<open>B \<subseteq> B'\<close> by (intro span_mono) auto | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1047 | qed (rule subspace_span) | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1048 | ultimately show ?thesis | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1049 | by auto | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1050 | qed | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1051 | |
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1052 | lemma linear_independent_extend: | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1053 | "independent B \<Longrightarrow> \<exists>g. linear g \<and> (\<forall>x\<in>B. g x = f x)" | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1054 | using linear_independent_extend_subspace[of B f] by auto | 
| 
c968bce3921e
Linear_Algebra: generalize linear_independent_extend to all real vector spaces
 hoelzl parents: 
63051diff
changeset | 1055 | |
| 63053 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1056 | text \<open>Linear functions are equal on a subspace if they are on a spanning set.\<close> | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1057 | |
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1058 | lemma subspace_kernel: | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1059 | assumes lf: "linear f" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1060 |   shows "subspace {x. f x = 0}"
 | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1061 | apply (simp add: subspace_def) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1062 | apply (simp add: linear_add[OF lf] linear_cmul[OF lf] linear_0[OF lf]) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1063 | done | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1064 | |
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1065 | lemma linear_eq_0_span: | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1066 | assumes lf: "linear f" and f0: "\<forall>x\<in>B. f x = 0" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1067 | shows "\<forall>x \<in> span B. f x = 0" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1068 | using f0 subspace_kernel[OF lf] | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1069 | by (rule span_induct') | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1070 | |
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1071 | lemma linear_eq_0: "linear f \<Longrightarrow> S \<subseteq> span B \<Longrightarrow> \<forall>x\<in>B. f x = 0 \<Longrightarrow> \<forall>x\<in>S. f x = 0" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1072 | using linear_eq_0_span[of f B] by auto | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1073 | |
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1074 | lemma linear_eq_span: "linear f \<Longrightarrow> linear g \<Longrightarrow> \<forall>x\<in>B. f x = g x \<Longrightarrow> \<forall>x \<in> span B. f x = g x" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1075 | using linear_eq_0_span[of "\<lambda>x. f x - g x" B] by (auto simp: linear_compose_sub) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1076 | |
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1077 | lemma linear_eq: "linear f \<Longrightarrow> linear g \<Longrightarrow> S \<subseteq> span B \<Longrightarrow> \<forall>x\<in>B. f x = g x \<Longrightarrow> \<forall>x\<in>S. f x = g x" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1078 | using linear_eq_span[of f g B] by auto | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1079 | |
| 60420 | 1080 | text \<open>The degenerate case of the Exchange Lemma.\<close> | 
| 44133 | 1081 | |
| 1082 | lemma spanning_subset_independent: | |
| 49711 | 1083 | assumes BA: "B \<subseteq> A" | 
| 1084 | and iA: "independent A" | |
| 49522 | 1085 | and AsB: "A \<subseteq> span B" | 
| 44133 | 1086 | shows "A = B" | 
| 1087 | proof | |
| 49663 | 1088 | show "B \<subseteq> A" by (rule BA) | 
| 1089 | ||
| 44133 | 1090 | from span_mono[OF BA] span_mono[OF AsB] | 
| 1091 | have sAB: "span A = span B" unfolding span_span by blast | |
| 1092 | ||
| 53406 | 1093 |   {
 | 
| 1094 | fix x | |
| 1095 | assume x: "x \<in> A" | |
| 44133 | 1096 |     from iA have th0: "x \<notin> span (A - {x})"
 | 
| 1097 | unfolding dependent_def using x by blast | |
| 53406 | 1098 | from x have xsA: "x \<in> span A" | 
| 1099 | by (blast intro: span_superset) | |
| 44133 | 1100 |     have "A - {x} \<subseteq> A" by blast
 | 
| 53406 | 1101 |     then have th1: "span (A - {x}) \<subseteq> span A"
 | 
| 1102 | by (metis span_mono) | |
| 1103 |     {
 | |
| 1104 | assume xB: "x \<notin> B" | |
| 1105 |       from xB BA have "B \<subseteq> A - {x}"
 | |
| 1106 | by blast | |
| 1107 |       then have "span B \<subseteq> span (A - {x})"
 | |
| 1108 | by (metis span_mono) | |
| 1109 | with th1 th0 sAB have "x \<notin> span A" | |
| 1110 | by blast | |
| 1111 | with x have False | |
| 1112 | by (metis span_superset) | |
| 1113 | } | |
| 1114 | then have "x \<in> B" by blast | |
| 1115 | } | |
| 44133 | 1116 | then show "A \<subseteq> B" by blast | 
| 1117 | qed | |
| 1118 | ||
| 63053 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1119 | text \<open>Relation between bases and injectivity/surjectivity of map.\<close> | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1120 | |
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1121 | lemma spanning_surjective_image: | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1122 | assumes us: "UNIV \<subseteq> span S" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1123 | and lf: "linear f" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1124 | and sf: "surj f" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1125 | shows "UNIV \<subseteq> span (f ` S)" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1126 | proof - | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1127 | have "UNIV \<subseteq> f ` UNIV" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1128 | using sf by (auto simp add: surj_def) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1129 | also have " \<dots> \<subseteq> span (f ` S)" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1130 | using spans_image[OF lf us] . | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1131 | finally show ?thesis . | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1132 | qed | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1133 | |
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1134 | lemma independent_inj_on_image: | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1135 | assumes iS: "independent S" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1136 | and lf: "linear f" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1137 | and fi: "inj_on f (span S)" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1138 | shows "independent (f ` S)" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1139 | proof - | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1140 |   {
 | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1141 | fix a | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1142 |     assume a: "a \<in> S" "f a \<in> span (f ` S - {f a})"
 | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1143 |     have eq: "f ` S - {f a} = f ` (S - {a})"
 | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1144 | using fi \<open>a\<in>S\<close> by (auto simp add: inj_on_def span_superset) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1145 |     from a have "f a \<in> f ` span (S - {a})"
 | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1146 |       unfolding eq span_linear_image[OF lf, of "S - {a}"] by blast
 | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1147 |     then have "a \<in> span (S - {a})"
 | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1148 | by (rule inj_on_image_mem_iff_alt[OF fi, rotated]) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1149 |          (insert span_mono[of "S - {a}" S], auto intro: span_superset \<open>a\<in>S\<close>)
 | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1150 | with a(1) iS have False | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1151 | by (simp add: dependent_def) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1152 | } | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1153 | then show ?thesis | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1154 | unfolding dependent_def by blast | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1155 | qed | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1156 | |
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1157 | lemma independent_injective_image: | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1158 | "independent S \<Longrightarrow> linear f \<Longrightarrow> inj f \<Longrightarrow> independent (f ` S)" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1159 | using independent_inj_on_image[of S f] by (auto simp: subset_inj_on) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1160 | |
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1161 | text \<open>Detailed theorems about left and right invertibility in general case.\<close> | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1162 | |
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1163 | lemma linear_inj_on_left_inverse: | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1164 | assumes lf: "linear f" and fi: "inj_on f (span S)" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1165 | shows "\<exists>g. range g \<subseteq> span S \<and> linear g \<and> (\<forall>x\<in>span S. g (f x) = x)" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1166 | proof - | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1167 | obtain B where "independent B" "B \<subseteq> S" "S \<subseteq> span B" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1168 | using maximal_independent_subset[of S] by auto | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1169 | then have "span S = span B" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1170 | unfolding span_eq by (auto simp: span_superset) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1171 | with linear_independent_extend_subspace[OF independent_inj_on_image, OF \<open>independent B\<close> lf] fi | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1172 | obtain g where g: "linear g" "\<forall>x\<in>f ` B. g x = inv_into B f x" "range g = span (inv_into B f ` f ` B)" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1173 | by fastforce | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1174 | have fB: "inj_on f B" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1175 | using fi by (auto simp: \<open>span S = span B\<close> intro: subset_inj_on span_superset) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1176 | |
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1177 | have "\<forall>x\<in>span B. g (f x) = x" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1178 | proof (intro linear_eq_span) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1179 | show "linear (\<lambda>x. x)" "linear (\<lambda>x. g (f x))" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1180 | using linear_id linear_compose[OF \<open>linear f\<close> \<open>linear g\<close>] by (auto simp: id_def comp_def) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1181 | show "\<forall>x \<in> B. g (f x) = x" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1182 | using g fi \<open>span S = span B\<close> by (auto simp: fB) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1183 | qed | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1184 | moreover | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1185 | have "inv_into B f ` f ` B \<subseteq> B" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1186 | by (auto simp: fB) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1187 | then have "range g \<subseteq> span S" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1188 | unfolding g \<open>span S = span B\<close> by (intro span_mono) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1189 | ultimately show ?thesis | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1190 | using \<open>span S = span B\<close> \<open>linear g\<close> by auto | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1191 | qed | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1192 | |
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1193 | lemma linear_injective_left_inverse: "linear f \<Longrightarrow> inj f \<Longrightarrow> \<exists>g. linear g \<and> g \<circ> f = id" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1194 | using linear_inj_on_left_inverse[of f UNIV] by (auto simp: fun_eq_iff span_UNIV) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1195 | |
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1196 | lemma linear_surj_right_inverse: | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1197 | assumes lf: "linear f" and sf: "span T \<subseteq> f`span S" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1198 | shows "\<exists>g. range g \<subseteq> span S \<and> linear g \<and> (\<forall>x\<in>span T. f (g x) = x)" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1199 | proof - | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1200 | obtain B where "independent B" "B \<subseteq> T" "T \<subseteq> span B" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1201 | using maximal_independent_subset[of T] by auto | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1202 | then have "span T = span B" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1203 | unfolding span_eq by (auto simp: span_superset) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1204 | |
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1205 | from linear_independent_extend_subspace[OF \<open>independent B\<close>, of "inv_into (span S) f"] | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1206 | obtain g where g: "linear g" "\<forall>x\<in>B. g x = inv_into (span S) f x" "range g = span (inv_into (span S) f`B)" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1207 | by auto | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1208 | moreover have "x \<in> B \<Longrightarrow> f (inv_into (span S) f x) = x" for x | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1209 | using \<open>B \<subseteq> T\<close> \<open>span T \<subseteq> f`span S\<close> by (intro f_inv_into_f) (auto intro: span_superset) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1210 | ultimately have "\<forall>x\<in>B. f (g x) = x" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1211 | by auto | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1212 | then have "\<forall>x\<in>span B. f (g x) = x" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1213 | using linear_id linear_compose[OF \<open>linear g\<close> \<open>linear f\<close>] | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1214 | by (intro linear_eq_span) (auto simp: id_def comp_def) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1215 | moreover have "inv_into (span S) f ` B \<subseteq> span S" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1216 | using \<open>B \<subseteq> T\<close> \<open>span T \<subseteq> f`span S\<close> by (auto intro: inv_into_into span_superset) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1217 | then have "range g \<subseteq> span S" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1218 | unfolding g by (intro span_minimal subspace_span) auto | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1219 | ultimately show ?thesis | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1220 | using \<open>linear g\<close> \<open>span T = span B\<close> by auto | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1221 | qed | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1222 | |
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1223 | lemma linear_surjective_right_inverse: "linear f \<Longrightarrow> surj f \<Longrightarrow> \<exists>g. linear g \<and> f \<circ> g = id" | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1224 | using linear_surj_right_inverse[of f UNIV UNIV] | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1225 | by (auto simp: span_UNIV fun_eq_iff) | 
| 
4a108f280dc2
Linear_Algebra: generalize linear_surjective_right/injective_left_inverse to real vector spaces
 hoelzl parents: 
63052diff
changeset | 1226 | |
| 60420 | 1227 | text \<open>The general case of the Exchange Lemma, the key to what follows.\<close> | 
| 44133 | 1228 | |
| 1229 | lemma exchange_lemma: | |
| 49711 | 1230 | assumes f:"finite t" | 
| 1231 | and i: "independent s" | |
| 1232 | and sp: "s \<subseteq> span t" | |
| 53406 | 1233 | shows "\<exists>t'. card t' = card t \<and> finite t' \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'" | 
| 49663 | 1234 | using f i sp | 
| 49522 | 1235 | proof (induct "card (t - s)" arbitrary: s t rule: less_induct) | 
| 44133 | 1236 | case less | 
| 60420 | 1237 | note ft = \<open>finite t\<close> and s = \<open>independent s\<close> and sp = \<open>s \<subseteq> span t\<close> | 
| 53406 | 1238 | let ?P = "\<lambda>t'. card t' = card t \<and> finite t' \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'" | 
| 44133 | 1239 | let ?ths = "\<exists>t'. ?P t'" | 
| 53406 | 1240 |   {
 | 
| 55775 | 1241 | assume "s \<subseteq> t" | 
| 1242 | then have ?ths | |
| 1243 | by (metis ft Un_commute sp sup_ge1) | |
| 53406 | 1244 | } | 
| 44133 | 1245 | moreover | 
| 53406 | 1246 |   {
 | 
| 1247 | assume st: "t \<subseteq> s" | |
| 1248 | from spanning_subset_independent[OF st s sp] st ft span_mono[OF st] | |
| 1249 | have ?ths | |
| 55775 | 1250 | by (metis Un_absorb sp) | 
| 53406 | 1251 | } | 
| 44133 | 1252 | moreover | 
| 53406 | 1253 |   {
 | 
| 1254 | assume st: "\<not> s \<subseteq> t" "\<not> t \<subseteq> s" | |
| 1255 | from st(2) obtain b where b: "b \<in> t" "b \<notin> s" | |
| 1256 | by blast | |
| 1257 |     from b have "t - {b} - s \<subset> t - s"
 | |
| 1258 | by blast | |
| 1259 |     then have cardlt: "card (t - {b} - s) < card (t - s)"
 | |
| 1260 | using ft by (auto intro: psubset_card_mono) | |
| 1261 | from b ft have ct0: "card t \<noteq> 0" | |
| 1262 | by auto | |
| 1263 | have ?ths | |
| 1264 | proof cases | |
| 53716 | 1265 |       assume stb: "s \<subseteq> span (t - {b})"
 | 
| 1266 |       from ft have ftb: "finite (t - {b})"
 | |
| 53406 | 1267 | by auto | 
| 44133 | 1268 | from less(1)[OF cardlt ftb s stb] | 
| 53716 | 1269 |       obtain u where u: "card u = card (t - {b})" "s \<subseteq> u" "u \<subseteq> s \<union> (t - {b})" "s \<subseteq> span u"
 | 
| 49522 | 1270 | and fu: "finite u" by blast | 
| 44133 | 1271 | let ?w = "insert b u" | 
| 53406 | 1272 | have th0: "s \<subseteq> insert b u" | 
| 1273 | using u by blast | |
| 1274 | from u(3) b have "u \<subseteq> s \<union> t" | |
| 1275 | by blast | |
| 1276 | then have th1: "insert b u \<subseteq> s \<union> t" | |
| 1277 | using u b by blast | |
| 1278 | have bu: "b \<notin> u" | |
| 1279 | using b u by blast | |
| 1280 | from u(1) ft b have "card u = (card t - 1)" | |
| 1281 | by auto | |
| 49522 | 1282 | then have th2: "card (insert b u) = card t" | 
| 44133 | 1283 | using card_insert_disjoint[OF fu bu] ct0 by auto | 
| 1284 | from u(4) have "s \<subseteq> span u" . | |
| 53406 | 1285 | also have "\<dots> \<subseteq> span (insert b u)" | 
| 1286 | by (rule span_mono) blast | |
| 44133 | 1287 | finally have th3: "s \<subseteq> span (insert b u)" . | 
| 53406 | 1288 | from th0 th1 th2 th3 fu have th: "?P ?w" | 
| 1289 | by blast | |
| 1290 | from th show ?thesis by blast | |
| 1291 | next | |
| 53716 | 1292 |       assume stb: "\<not> s \<subseteq> span (t - {b})"
 | 
| 53406 | 1293 |       from stb obtain a where a: "a \<in> s" "a \<notin> span (t - {b})"
 | 
| 1294 | by blast | |
| 1295 | have ab: "a \<noteq> b" | |
| 1296 | using a b by blast | |
| 1297 | have at: "a \<notin> t" | |
| 1298 |         using a ab span_superset[of a "t- {b}"] by auto
 | |
| 44133 | 1299 |       have mlt: "card ((insert a (t - {b})) - s) < card (t - s)"
 | 
| 1300 | using cardlt ft a b by auto | |
| 53406 | 1301 |       have ft': "finite (insert a (t - {b}))"
 | 
| 1302 | using ft by auto | |
| 1303 |       {
 | |
| 1304 | fix x | |
| 1305 | assume xs: "x \<in> s" | |
| 1306 |         have t: "t \<subseteq> insert b (insert a (t - {b}))"
 | |
| 1307 | using b by auto | |
| 1308 | from b(1) have "b \<in> span t" | |
| 1309 | by (simp add: span_superset) | |
| 1310 |         have bs: "b \<in> span (insert a (t - {b}))"
 | |
| 1311 | apply (rule in_span_delete) | |
| 1312 | using a sp unfolding subset_eq | |
| 1313 | apply auto | |
| 1314 | done | |
| 1315 | from xs sp have "x \<in> span t" | |
| 1316 | by blast | |
| 1317 |         with span_mono[OF t] have x: "x \<in> span (insert b (insert a (t - {b})))" ..
 | |
| 1318 |         from span_trans[OF bs x] have "x \<in> span (insert a (t - {b}))" .
 | |
| 1319 | } | |
| 1320 |       then have sp': "s \<subseteq> span (insert a (t - {b}))"
 | |
| 1321 | by blast | |
| 1322 | from less(1)[OF mlt ft' s sp'] obtain u where u: | |
| 53716 | 1323 |         "card u = card (insert a (t - {b}))"
 | 
| 1324 |         "finite u" "s \<subseteq> u" "u \<subseteq> s \<union> insert a (t - {b})"
 | |
| 53406 | 1325 | "s \<subseteq> span u" by blast | 
| 1326 | from u a b ft at ct0 have "?P u" | |
| 1327 | by auto | |
| 1328 | then show ?thesis by blast | |
| 1329 | qed | |
| 44133 | 1330 | } | 
| 49522 | 1331 | ultimately show ?ths by blast | 
| 44133 | 1332 | qed | 
| 1333 | ||
| 60420 | 1334 | text \<open>This implies corresponding size bounds.\<close> | 
| 44133 | 1335 | |
| 1336 | lemma independent_span_bound: | |
| 53406 | 1337 | assumes f: "finite t" | 
| 1338 | and i: "independent s" | |
| 1339 | and sp: "s \<subseteq> span t" | |
| 44133 | 1340 | shows "finite s \<and> card s \<le> card t" | 
| 1341 | by (metis exchange_lemma[OF f i sp] finite_subset card_mono) | |
| 1342 | ||
| 1343 | lemma finite_Atleast_Atmost_nat[simp]: "finite {f x |x. x\<in> (UNIV::'a::finite set)}"
 | |
| 49522 | 1344 | proof - | 
| 53406 | 1345 |   have eq: "{f x |x. x\<in> UNIV} = f ` UNIV"
 | 
| 1346 | by auto | |
| 44133 | 1347 | show ?thesis unfolding eq | 
| 1348 | apply (rule finite_imageI) | |
| 1349 | apply (rule finite) | |
| 1350 | done | |
| 1351 | qed | |
| 1352 | ||
| 53406 | 1353 | |
| 63050 | 1354 | subsection \<open>More interesting properties of the norm.\<close> | 
| 1355 | ||
| 1356 | lemma cond_application_beta: "(if b then f else g) x = (if b then f x else g x)" | |
| 1357 | by auto | |
| 1358 | ||
| 1359 | notation inner (infix "\<bullet>" 70) | |
| 1360 | ||
| 1361 | lemma square_bound_lemma: | |
| 1362 | fixes x :: real | |
| 1363 | shows "x < (1 + x) * (1 + x)" | |
| 1364 | proof - | |
| 1365 | have "(x + 1/2)\<^sup>2 + 3/4 > 0" | |
| 1366 | using zero_le_power2[of "x+1/2"] by arith | |
| 1367 | then show ?thesis | |
| 1368 | by (simp add: field_simps power2_eq_square) | |
| 1369 | qed | |
| 1370 | ||
| 1371 | lemma square_continuous: | |
| 1372 | fixes e :: real | |
| 1373 | shows "e > 0 \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>y. \<bar>y - x\<bar> < d \<longrightarrow> \<bar>y * y - x * x\<bar> < e)" | |
| 1374 | using isCont_power[OF continuous_ident, of x, unfolded isCont_def LIM_eq, rule_format, of e 2] | |
| 1375 | by (force simp add: power2_eq_square) | |
| 1376 | ||
| 1377 | ||
| 1378 | lemma norm_eq_0_dot: "norm x = 0 \<longleftrightarrow> x \<bullet> x = (0::real)" | |
| 1379 | by simp (* TODO: delete *) | |
| 1380 | ||
| 1381 | lemma norm_triangle_sub: | |
| 1382 | fixes x y :: "'a::real_normed_vector" | |
| 1383 | shows "norm x \<le> norm y + norm (x - y)" | |
| 1384 | using norm_triangle_ineq[of "y" "x - y"] by (simp add: field_simps) | |
| 1385 | ||
| 1386 | lemma norm_le: "norm x \<le> norm y \<longleftrightarrow> x \<bullet> x \<le> y \<bullet> y" | |
| 1387 | by (simp add: norm_eq_sqrt_inner) | |
| 1388 | ||
| 1389 | lemma norm_lt: "norm x < norm y \<longleftrightarrow> x \<bullet> x < y \<bullet> y" | |
| 1390 | by (simp add: norm_eq_sqrt_inner) | |
| 1391 | ||
| 1392 | lemma norm_eq: "norm x = norm y \<longleftrightarrow> x \<bullet> x = y \<bullet> y" | |
| 1393 | apply (subst order_eq_iff) | |
| 1394 | apply (auto simp: norm_le) | |
| 1395 | done | |
| 1396 | ||
| 1397 | lemma norm_eq_1: "norm x = 1 \<longleftrightarrow> x \<bullet> x = 1" | |
| 1398 | by (simp add: norm_eq_sqrt_inner) | |
| 1399 | ||
| 1400 | ||
| 1401 | text\<open>Equality of vectors in terms of @{term "op \<bullet>"} products.\<close>
 | |
| 1402 | ||
| 1403 | lemma linear_componentwise: | |
| 1404 | fixes f:: "'a::euclidean_space \<Rightarrow> 'b::real_inner" | |
| 1405 | assumes lf: "linear f" | |
| 1406 | shows "(f x) \<bullet> j = (\<Sum>i\<in>Basis. (x\<bullet>i) * (f i\<bullet>j))" (is "?lhs = ?rhs") | |
| 1407 | proof - | |
| 1408 | have "?rhs = (\<Sum>i\<in>Basis. (x\<bullet>i) *\<^sub>R (f i))\<bullet>j" | |
| 64267 | 1409 | by (simp add: inner_sum_left) | 
| 63050 | 1410 | then show ?thesis | 
| 64267 | 1411 | unfolding linear_sum_mul[OF lf, symmetric] | 
| 63050 | 1412 | unfolding euclidean_representation .. | 
| 1413 | qed | |
| 1414 | ||
| 1415 | lemma vector_eq: "x = y \<longleftrightarrow> x \<bullet> x = x \<bullet> y \<and> y \<bullet> y = x \<bullet> x" | |
| 1416 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 1417 | proof | |
| 1418 | assume ?lhs | |
| 1419 | then show ?rhs by simp | |
| 1420 | next | |
| 1421 | assume ?rhs | |
| 1422 | then have "x \<bullet> x - x \<bullet> y = 0 \<and> x \<bullet> y - y \<bullet> y = 0" | |
| 1423 | by simp | |
| 1424 | then have "x \<bullet> (x - y) = 0 \<and> y \<bullet> (x - y) = 0" | |
| 1425 | by (simp add: inner_diff inner_commute) | |
| 1426 | then have "(x - y) \<bullet> (x - y) = 0" | |
| 1427 | by (simp add: field_simps inner_diff inner_commute) | |
| 1428 | then show "x = y" by simp | |
| 1429 | qed | |
| 1430 | ||
| 1431 | lemma norm_triangle_half_r: | |
| 1432 | "norm (y - x1) < e / 2 \<Longrightarrow> norm (y - x2) < e / 2 \<Longrightarrow> norm (x1 - x2) < e" | |
| 1433 | using dist_triangle_half_r unfolding dist_norm[symmetric] by auto | |
| 1434 | ||
| 1435 | lemma norm_triangle_half_l: | |
| 1436 | assumes "norm (x - y) < e / 2" | |
| 1437 | and "norm (x' - y) < e / 2" | |
| 1438 | shows "norm (x - x') < e" | |
| 1439 | using dist_triangle_half_l[OF assms[unfolded dist_norm[symmetric]]] | |
| 1440 | unfolding dist_norm[symmetric] . | |
| 1441 | ||
| 1442 | lemma norm_triangle_le: "norm x + norm y \<le> e \<Longrightarrow> norm (x + y) \<le> e" | |
| 1443 | by (rule norm_triangle_ineq [THEN order_trans]) | |
| 1444 | ||
| 1445 | lemma norm_triangle_lt: "norm x + norm y < e \<Longrightarrow> norm (x + y) < e" | |
| 1446 | by (rule norm_triangle_ineq [THEN le_less_trans]) | |
| 1447 | ||
| 66420 | 1448 | lemma abs_triangle_half_r: | 
| 1449 | fixes y :: "'a::linordered_field" | |
| 1450 | shows "abs (y - x1) < e / 2 \<Longrightarrow> abs (y - x2) < e / 2 \<Longrightarrow> abs (x1 - x2) < e" | |
| 1451 | by linarith | |
| 1452 | ||
| 1453 | lemma abs_triangle_half_l: | |
| 1454 | fixes y :: "'a::linordered_field" | |
| 1455 | assumes "abs (x - y) < e / 2" | |
| 1456 | and "abs (x' - y) < e / 2" | |
| 1457 | shows "abs (x - x') < e" | |
| 1458 | using assms by linarith | |
| 1459 | ||
| 64267 | 1460 | lemma sum_clauses: | 
| 1461 |   shows "sum f {} = 0"
 | |
| 1462 | and "finite S \<Longrightarrow> sum f (insert x S) = (if x \<in> S then sum f S else f x + sum f S)" | |
| 63050 | 1463 | by (auto simp add: insert_absorb) | 
| 1464 | ||
| 64267 | 1465 | lemma sum_norm_bound: | 
| 63050 | 1466 | fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" | 
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 1467 | assumes K: "\<And>x. x \<in> S \<Longrightarrow> norm (f x) \<le> K" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 1468 | shows "norm (sum f S) \<le> of_nat (card S)*K" | 
| 64267 | 1469 | using sum_norm_le[OF K] sum_constant[symmetric] | 
| 63050 | 1470 | by simp | 
| 1471 | ||
| 64267 | 1472 | lemma sum_group: | 
| 63050 | 1473 | assumes fS: "finite S" and fT: "finite T" and fST: "f ` S \<subseteq> T" | 
| 64267 | 1474 |   shows "sum (\<lambda>y. sum g {x. x \<in> S \<and> f x = y}) T = sum g S"
 | 
| 1475 | apply (subst sum_image_gen[OF fS, of g f]) | |
| 1476 | apply (rule sum.mono_neutral_right[OF fT fST]) | |
| 1477 | apply (auto intro: sum.neutral) | |
| 63050 | 1478 | done | 
| 1479 | ||
| 1480 | lemma vector_eq_ldot: "(\<forall>x. x \<bullet> y = x \<bullet> z) \<longleftrightarrow> y = z" | |
| 1481 | proof | |
| 1482 | assume "\<forall>x. x \<bullet> y = x \<bullet> z" | |
| 1483 | then have "\<forall>x. x \<bullet> (y - z) = 0" | |
| 1484 | by (simp add: inner_diff) | |
| 1485 | then have "(y - z) \<bullet> (y - z) = 0" .. | |
| 1486 | then show "y = z" by simp | |
| 1487 | qed simp | |
| 1488 | ||
| 1489 | lemma vector_eq_rdot: "(\<forall>z. x \<bullet> z = y \<bullet> z) \<longleftrightarrow> x = y" | |
| 1490 | proof | |
| 1491 | assume "\<forall>z. x \<bullet> z = y \<bullet> z" | |
| 1492 | then have "\<forall>z. (x - y) \<bullet> z = 0" | |
| 1493 | by (simp add: inner_diff) | |
| 1494 | then have "(x - y) \<bullet> (x - y) = 0" .. | |
| 1495 | then show "x = y" by simp | |
| 1496 | qed simp | |
| 1497 | ||
| 1498 | ||
| 1499 | subsection \<open>Orthogonality.\<close> | |
| 1500 | ||
| 1501 | context real_inner | |
| 1502 | begin | |
| 1503 | ||
| 1504 | definition "orthogonal x y \<longleftrightarrow> x \<bullet> y = 0" | |
| 1505 | ||
| 63072 | 1506 | lemma orthogonal_self: "orthogonal x x \<longleftrightarrow> x = 0" | 
| 1507 | by (simp add: orthogonal_def) | |
| 1508 | ||
| 63050 | 1509 | lemma orthogonal_clauses: | 
| 1510 | "orthogonal a 0" | |
| 1511 | "orthogonal a x \<Longrightarrow> orthogonal a (c *\<^sub>R x)" | |
| 1512 | "orthogonal a x \<Longrightarrow> orthogonal a (- x)" | |
| 1513 | "orthogonal a x \<Longrightarrow> orthogonal a y \<Longrightarrow> orthogonal a (x + y)" | |
| 1514 | "orthogonal a x \<Longrightarrow> orthogonal a y \<Longrightarrow> orthogonal a (x - y)" | |
| 1515 | "orthogonal 0 a" | |
| 1516 | "orthogonal x a \<Longrightarrow> orthogonal (c *\<^sub>R x) a" | |
| 1517 | "orthogonal x a \<Longrightarrow> orthogonal (- x) a" | |
| 1518 | "orthogonal x a \<Longrightarrow> orthogonal y a \<Longrightarrow> orthogonal (x + y) a" | |
| 1519 | "orthogonal x a \<Longrightarrow> orthogonal y a \<Longrightarrow> orthogonal (x - y) a" | |
| 1520 | unfolding orthogonal_def inner_add inner_diff by auto | |
| 1521 | ||
| 1522 | end | |
| 1523 | ||
| 1524 | lemma orthogonal_commute: "orthogonal x y \<longleftrightarrow> orthogonal y x" | |
| 1525 | by (simp add: orthogonal_def inner_commute) | |
| 1526 | ||
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1527 | lemma orthogonal_scaleR [simp]: "c \<noteq> 0 \<Longrightarrow> orthogonal (c *\<^sub>R x) = orthogonal x" | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1528 | by (rule ext) (simp add: orthogonal_def) | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1529 | |
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1530 | lemma pairwise_ortho_scaleR: | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1531 | "pairwise (\<lambda>i j. orthogonal (f i) (g j)) B | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1532 | \<Longrightarrow> pairwise (\<lambda>i j. orthogonal (a i *\<^sub>R f i) (a j *\<^sub>R g j)) B" | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1533 | by (auto simp: pairwise_def orthogonal_clauses) | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1534 | |
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1535 | lemma orthogonal_rvsum: | 
| 64267 | 1536 | "\<lbrakk>finite s; \<And>y. y \<in> s \<Longrightarrow> orthogonal x (f y)\<rbrakk> \<Longrightarrow> orthogonal x (sum f s)" | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1537 | by (induction s rule: finite_induct) (auto simp: orthogonal_clauses) | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1538 | |
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1539 | lemma orthogonal_lvsum: | 
| 64267 | 1540 | "\<lbrakk>finite s; \<And>x. x \<in> s \<Longrightarrow> orthogonal (f x) y\<rbrakk> \<Longrightarrow> orthogonal (sum f s) y" | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1541 | by (induction s rule: finite_induct) (auto simp: orthogonal_clauses) | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1542 | |
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1543 | lemma norm_add_Pythagorean: | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1544 | assumes "orthogonal a b" | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1545 | shows "norm(a + b) ^ 2 = norm a ^ 2 + norm b ^ 2" | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1546 | proof - | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1547 | from assms have "(a - (0 - b)) \<bullet> (a - (0 - b)) = a \<bullet> a - (0 - b \<bullet> b)" | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1548 | by (simp add: algebra_simps orthogonal_def inner_commute) | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1549 | then show ?thesis | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1550 | by (simp add: power2_norm_eq_inner) | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1551 | qed | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1552 | |
| 64267 | 1553 | lemma norm_sum_Pythagorean: | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1554 | assumes "finite I" "pairwise (\<lambda>i j. orthogonal (f i) (f j)) I" | 
| 64267 | 1555 | shows "(norm (sum f I))\<^sup>2 = (\<Sum>i\<in>I. (norm (f i))\<^sup>2)" | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1556 | using assms | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1557 | proof (induction I rule: finite_induct) | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1558 | case empty then show ?case by simp | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1559 | next | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1560 | case (insert x I) | 
| 64267 | 1561 | then have "orthogonal (f x) (sum f I)" | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1562 | by (metis pairwise_insert orthogonal_rvsum) | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1563 | with insert show ?case | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1564 | by (simp add: pairwise_insert norm_add_Pythagorean) | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1565 | qed | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63075diff
changeset | 1566 | |
| 63050 | 1567 | |
| 1568 | subsection \<open>Bilinear functions.\<close> | |
| 1569 | ||
| 1570 | definition "bilinear f \<longleftrightarrow> (\<forall>x. linear (\<lambda>y. f x y)) \<and> (\<forall>y. linear (\<lambda>x. f x y))" | |
| 1571 | ||
| 1572 | lemma bilinear_ladd: "bilinear h \<Longrightarrow> h (x + y) z = h x z + h y z" | |
| 1573 | by (simp add: bilinear_def linear_iff) | |
| 1574 | ||
| 1575 | lemma bilinear_radd: "bilinear h \<Longrightarrow> h x (y + z) = h x y + h x z" | |
| 1576 | by (simp add: bilinear_def linear_iff) | |
| 1577 | ||
| 1578 | lemma bilinear_lmul: "bilinear h \<Longrightarrow> h (c *\<^sub>R x) y = c *\<^sub>R h x y" | |
| 1579 | by (simp add: bilinear_def linear_iff) | |
| 1580 | ||
| 1581 | lemma bilinear_rmul: "bilinear h \<Longrightarrow> h x (c *\<^sub>R y) = c *\<^sub>R h x y" | |
| 1582 | by (simp add: bilinear_def linear_iff) | |
| 1583 | ||
| 1584 | lemma bilinear_lneg: "bilinear h \<Longrightarrow> h (- x) y = - h x y" | |
| 1585 | by (drule bilinear_lmul [of _ "- 1"]) simp | |
| 1586 | ||
| 1587 | lemma bilinear_rneg: "bilinear h \<Longrightarrow> h x (- y) = - h x y" | |
| 1588 | by (drule bilinear_rmul [of _ _ "- 1"]) simp | |
| 1589 | ||
| 1590 | lemma (in ab_group_add) eq_add_iff: "x = x + y \<longleftrightarrow> y = 0" | |
| 1591 | using add_left_imp_eq[of x y 0] by auto | |
| 1592 | ||
| 1593 | lemma bilinear_lzero: | |
| 1594 | assumes "bilinear h" | |
| 1595 | shows "h 0 x = 0" | |
| 1596 | using bilinear_ladd [OF assms, of 0 0 x] by (simp add: eq_add_iff field_simps) | |
| 1597 | ||
| 1598 | lemma bilinear_rzero: | |
| 1599 | assumes "bilinear h" | |
| 1600 | shows "h x 0 = 0" | |
| 1601 | using bilinear_radd [OF assms, of x 0 0 ] by (simp add: eq_add_iff field_simps) | |
| 1602 | ||
| 1603 | lemma bilinear_lsub: "bilinear h \<Longrightarrow> h (x - y) z = h x z - h y z" | |
| 1604 | using bilinear_ladd [of h x "- y"] by (simp add: bilinear_lneg) | |
| 1605 | ||
| 1606 | lemma bilinear_rsub: "bilinear h \<Longrightarrow> h z (x - y) = h z x - h z y" | |
| 1607 | using bilinear_radd [of h _ x "- y"] by (simp add: bilinear_rneg) | |
| 1608 | ||
| 64267 | 1609 | lemma bilinear_sum: | 
| 63050 | 1610 | assumes bh: "bilinear h" | 
| 1611 | and fS: "finite S" | |
| 1612 | and fT: "finite T" | |
| 64267 | 1613 | shows "h (sum f S) (sum g T) = sum (\<lambda>(i,j). h (f i) (g j)) (S \<times> T) " | 
| 63050 | 1614 | proof - | 
| 64267 | 1615 | have "h (sum f S) (sum g T) = sum (\<lambda>x. h (f x) (sum g T)) S" | 
| 1616 | apply (rule linear_sum[unfolded o_def]) | |
| 63050 | 1617 | using bh fS | 
| 1618 | apply (auto simp add: bilinear_def) | |
| 1619 | done | |
| 64267 | 1620 | also have "\<dots> = sum (\<lambda>x. sum (\<lambda>y. h (f x) (g y)) T) S" | 
| 1621 | apply (rule sum.cong, simp) | |
| 1622 | apply (rule linear_sum[unfolded o_def]) | |
| 63050 | 1623 | using bh fT | 
| 1624 | apply (auto simp add: bilinear_def) | |
| 1625 | done | |
| 1626 | finally show ?thesis | |
| 64267 | 1627 | unfolding sum.cartesian_product . | 
| 63050 | 1628 | qed | 
| 1629 | ||
| 1630 | ||
| 1631 | subsection \<open>Adjoints.\<close> | |
| 1632 | ||
| 1633 | definition "adjoint f = (SOME f'. \<forall>x y. f x \<bullet> y = x \<bullet> f' y)" | |
| 1634 | ||
| 1635 | lemma adjoint_unique: | |
| 1636 | assumes "\<forall>x y. inner (f x) y = inner x (g y)" | |
| 1637 | shows "adjoint f = g" | |
| 1638 | unfolding adjoint_def | |
| 1639 | proof (rule some_equality) | |
| 1640 | show "\<forall>x y. inner (f x) y = inner x (g y)" | |
| 1641 | by (rule assms) | |
| 1642 | next | |
| 1643 | fix h | |
| 1644 | assume "\<forall>x y. inner (f x) y = inner x (h y)" | |
| 1645 | then have "\<forall>x y. inner x (g y) = inner x (h y)" | |
| 1646 | using assms by simp | |
| 1647 | then have "\<forall>x y. inner x (g y - h y) = 0" | |
| 1648 | by (simp add: inner_diff_right) | |
| 1649 | then have "\<forall>y. inner (g y - h y) (g y - h y) = 0" | |
| 1650 | by simp | |
| 1651 | then have "\<forall>y. h y = g y" | |
| 1652 | by simp | |
| 1653 | then show "h = g" by (simp add: ext) | |
| 1654 | qed | |
| 1655 | ||
| 1656 | text \<open>TODO: The following lemmas about adjoints should hold for any | |
| 63680 | 1657 | Hilbert space (i.e. complete inner product space). | 
| 1658 | (see \<^url>\<open>http://en.wikipedia.org/wiki/Hermitian_adjoint\<close>) | |
| 63050 | 1659 | \<close> | 
| 1660 | ||
| 1661 | lemma adjoint_works: | |
| 1662 | fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space" | |
| 1663 | assumes lf: "linear f" | |
| 1664 | shows "x \<bullet> adjoint f y = f x \<bullet> y" | |
| 1665 | proof - | |
| 1666 | have "\<forall>y. \<exists>w. \<forall>x. f x \<bullet> y = x \<bullet> w" | |
| 1667 | proof (intro allI exI) | |
| 1668 | fix y :: "'m" and x | |
| 1669 | let ?w = "(\<Sum>i\<in>Basis. (f i \<bullet> y) *\<^sub>R i) :: 'n" | |
| 1670 | have "f x \<bullet> y = f (\<Sum>i\<in>Basis. (x \<bullet> i) *\<^sub>R i) \<bullet> y" | |
| 1671 | by (simp add: euclidean_representation) | |
| 1672 | also have "\<dots> = (\<Sum>i\<in>Basis. (x \<bullet> i) *\<^sub>R f i) \<bullet> y" | |
| 64267 | 1673 | unfolding linear_sum[OF lf] | 
| 63050 | 1674 | by (simp add: linear_cmul[OF lf]) | 
| 1675 | finally show "f x \<bullet> y = x \<bullet> ?w" | |
| 64267 | 1676 | by (simp add: inner_sum_left inner_sum_right mult.commute) | 
| 63050 | 1677 | qed | 
| 1678 | then show ?thesis | |
| 1679 | unfolding adjoint_def choice_iff | |
| 1680 | by (intro someI2_ex[where Q="\<lambda>f'. x \<bullet> f' y = f x \<bullet> y"]) auto | |
| 1681 | qed | |
| 1682 | ||
| 1683 | lemma adjoint_clauses: | |
| 1684 | fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space" | |
| 1685 | assumes lf: "linear f" | |
| 1686 | shows "x \<bullet> adjoint f y = f x \<bullet> y" | |
| 1687 | and "adjoint f y \<bullet> x = y \<bullet> f x" | |
| 1688 | by (simp_all add: adjoint_works[OF lf] inner_commute) | |
| 1689 | ||
| 1690 | lemma adjoint_linear: | |
| 1691 | fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space" | |
| 1692 | assumes lf: "linear f" | |
| 1693 | shows "linear (adjoint f)" | |
| 1694 | by (simp add: lf linear_iff euclidean_eq_iff[where 'a='n] euclidean_eq_iff[where 'a='m] | |
| 1695 | adjoint_clauses[OF lf] inner_distrib) | |
| 1696 | ||
| 1697 | lemma adjoint_adjoint: | |
| 1698 | fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space" | |
| 1699 | assumes lf: "linear f" | |
| 1700 | shows "adjoint (adjoint f) = f" | |
| 1701 | by (rule adjoint_unique, simp add: adjoint_clauses [OF lf]) | |
| 1702 | ||
| 1703 | ||
| 1704 | subsection \<open>Interlude: Some properties of real sets\<close> | |
| 1705 | ||
| 1706 | lemma seq_mono_lemma: | |
| 1707 | assumes "\<forall>(n::nat) \<ge> m. (d n :: real) < e n" | |
| 1708 | and "\<forall>n \<ge> m. e n \<le> e m" | |
| 1709 | shows "\<forall>n \<ge> m. d n < e m" | |
| 1710 | using assms | |
| 1711 | apply auto | |
| 1712 | apply (erule_tac x="n" in allE) | |
| 1713 | apply (erule_tac x="n" in allE) | |
| 1714 | apply auto | |
| 1715 | done | |
| 1716 | ||
| 1717 | lemma infinite_enumerate: | |
| 1718 | assumes fS: "infinite S" | |
| 66447 
a1f5c5c26fa6
Replaced subseq with strict_mono
 eberlm <eberlm@in.tum.de> parents: 
66420diff
changeset | 1719 | shows "\<exists>r::nat\<Rightarrow>nat. strict_mono r \<and> (\<forall>n. r n \<in> S)" | 
| 
a1f5c5c26fa6
Replaced subseq with strict_mono
 eberlm <eberlm@in.tum.de> parents: 
66420diff
changeset | 1720 | unfolding strict_mono_def | 
| 63050 | 1721 | using enumerate_in_set[OF fS] enumerate_mono[of _ _ S] fS by auto | 
| 1722 | ||
| 1723 | lemma approachable_lt_le: "(\<exists>(d::real) > 0. \<forall>x. f x < d \<longrightarrow> P x) \<longleftrightarrow> (\<exists>d>0. \<forall>x. f x \<le> d \<longrightarrow> P x)" | |
| 1724 | apply auto | |
| 1725 | apply (rule_tac x="d/2" in exI) | |
| 1726 | apply auto | |
| 1727 | done | |
| 1728 | ||
| 1729 | lemma approachable_lt_le2: \<comment>\<open>like the above, but pushes aside an extra formula\<close> | |
| 1730 | "(\<exists>(d::real) > 0. \<forall>x. Q x \<longrightarrow> f x < d \<longrightarrow> P x) \<longleftrightarrow> (\<exists>d>0. \<forall>x. f x \<le> d \<longrightarrow> Q x \<longrightarrow> P x)" | |
| 1731 | apply auto | |
| 1732 | apply (rule_tac x="d/2" in exI, auto) | |
| 1733 | done | |
| 1734 | ||
| 1735 | lemma triangle_lemma: | |
| 1736 | fixes x y z :: real | |
| 1737 | assumes x: "0 \<le> x" | |
| 1738 | and y: "0 \<le> y" | |
| 1739 | and z: "0 \<le> z" | |
| 1740 | and xy: "x\<^sup>2 \<le> y\<^sup>2 + z\<^sup>2" | |
| 1741 | shows "x \<le> y + z" | |
| 1742 | proof - | |
| 1743 | have "y\<^sup>2 + z\<^sup>2 \<le> y\<^sup>2 + 2 * y * z + z\<^sup>2" | |
| 1744 | using z y by simp | |
| 1745 | with xy have th: "x\<^sup>2 \<le> (y + z)\<^sup>2" | |
| 1746 | by (simp add: power2_eq_square field_simps) | |
| 1747 | from y z have yz: "y + z \<ge> 0" | |
| 1748 | by arith | |
| 1749 | from power2_le_imp_le[OF th yz] show ?thesis . | |
| 1750 | qed | |
| 1751 | ||
| 1752 | ||
| 1753 | ||
| 1754 | subsection \<open>Archimedean properties and useful consequences\<close> | |
| 1755 | ||
| 1756 | text\<open>Bernoulli's inequality\<close> | |
| 1757 | proposition Bernoulli_inequality: | |
| 1758 | fixes x :: real | |
| 1759 | assumes "-1 \<le> x" | |
| 1760 | shows "1 + n * x \<le> (1 + x) ^ n" | |
| 1761 | proof (induct n) | |
| 1762 | case 0 | |
| 1763 | then show ?case by simp | |
| 1764 | next | |
| 1765 | case (Suc n) | |
| 1766 | have "1 + Suc n * x \<le> 1 + (Suc n)*x + n * x^2" | |
| 1767 | by (simp add: algebra_simps) | |
| 1768 | also have "... = (1 + x) * (1 + n*x)" | |
| 1769 | by (auto simp: power2_eq_square algebra_simps of_nat_Suc) | |
| 1770 | also have "... \<le> (1 + x) ^ Suc n" | |
| 1771 | using Suc.hyps assms mult_left_mono by fastforce | |
| 1772 | finally show ?case . | |
| 1773 | qed | |
| 1774 | ||
| 1775 | corollary Bernoulli_inequality_even: | |
| 1776 | fixes x :: real | |
| 1777 | assumes "even n" | |
| 1778 | shows "1 + n * x \<le> (1 + x) ^ n" | |
| 1779 | proof (cases "-1 \<le> x \<or> n=0") | |
| 1780 | case True | |
| 1781 | then show ?thesis | |
| 1782 | by (auto simp: Bernoulli_inequality) | |
| 1783 | next | |
| 1784 | case False | |
| 1785 | then have "real n \<ge> 1" | |
| 1786 | by simp | |
| 1787 | with False have "n * x \<le> -1" | |
| 1788 | by (metis linear minus_zero mult.commute mult.left_neutral mult_left_mono_neg neg_le_iff_le order_trans zero_le_one) | |
| 1789 | then have "1 + n * x \<le> 0" | |
| 1790 | by auto | |
| 1791 | also have "... \<le> (1 + x) ^ n" | |
| 1792 | using assms | |
| 1793 | using zero_le_even_power by blast | |
| 1794 | finally show ?thesis . | |
| 1795 | qed | |
| 1796 | ||
| 1797 | corollary real_arch_pow: | |
| 1798 | fixes x :: real | |
| 1799 | assumes x: "1 < x" | |
| 1800 | shows "\<exists>n. y < x^n" | |
| 1801 | proof - | |
| 1802 | from x have x0: "x - 1 > 0" | |
| 1803 | by arith | |
| 1804 | from reals_Archimedean3[OF x0, rule_format, of y] | |
| 1805 | obtain n :: nat where n: "y < real n * (x - 1)" by metis | |
| 1806 | from x0 have x00: "x- 1 \<ge> -1" by arith | |
| 1807 | from Bernoulli_inequality[OF x00, of n] n | |
| 1808 | have "y < x^n" by auto | |
| 1809 | then show ?thesis by metis | |
| 1810 | qed | |
| 1811 | ||
| 1812 | corollary real_arch_pow_inv: | |
| 1813 | fixes x y :: real | |
| 1814 | assumes y: "y > 0" | |
| 1815 | and x1: "x < 1" | |
| 1816 | shows "\<exists>n. x^n < y" | |
| 1817 | proof (cases "x > 0") | |
| 1818 | case True | |
| 1819 | with x1 have ix: "1 < 1/x" by (simp add: field_simps) | |
| 1820 | from real_arch_pow[OF ix, of "1/y"] | |
| 1821 | obtain n where n: "1/y < (1/x)^n" by blast | |
| 1822 | then show ?thesis using y \<open>x > 0\<close> | |
| 1823 | by (auto simp add: field_simps) | |
| 1824 | next | |
| 1825 | case False | |
| 1826 | with y x1 show ?thesis | |
| 1827 | apply auto | |
| 1828 | apply (rule exI[where x=1]) | |
| 1829 | apply auto | |
| 1830 | done | |
| 1831 | qed | |
| 1832 | ||
| 1833 | lemma forall_pos_mono: | |
| 1834 | "(\<And>d e::real. d < e \<Longrightarrow> P d \<Longrightarrow> P e) \<Longrightarrow> | |
| 1835 | (\<And>n::nat. n \<noteq> 0 \<Longrightarrow> P (inverse (real n))) \<Longrightarrow> (\<And>e. 0 < e \<Longrightarrow> P e)" | |
| 1836 | by (metis real_arch_inverse) | |
| 1837 | ||
| 1838 | lemma forall_pos_mono_1: | |
| 1839 | "(\<And>d e::real. d < e \<Longrightarrow> P d \<Longrightarrow> P e) \<Longrightarrow> | |
| 1840 | (\<And>n. P (inverse (real (Suc n)))) \<Longrightarrow> 0 < e \<Longrightarrow> P e" | |
| 1841 | apply (rule forall_pos_mono) | |
| 1842 | apply auto | |
| 1843 | apply (metis Suc_pred of_nat_Suc) | |
| 1844 | done | |
| 1845 | ||
| 1846 | ||
| 60420 | 1847 | subsection \<open>Euclidean Spaces as Typeclass\<close> | 
| 44133 | 1848 | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1849 | lemma independent_Basis: "independent Basis" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1850 | unfolding dependent_def | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1851 | apply (subst span_finite) | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1852 | apply simp | 
| 44133 | 1853 | apply clarify | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1854 | apply (drule_tac f="inner a" in arg_cong) | 
| 64267 | 1855 | apply (simp add: inner_Basis inner_sum_right eq_commute) | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1856 | done | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1857 | |
| 53939 | 1858 | lemma span_Basis [simp]: "span Basis = UNIV" | 
| 1859 | unfolding span_finite [OF finite_Basis] | |
| 1860 | by (fast intro: euclidean_representation) | |
| 44133 | 1861 | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1862 | lemma in_span_Basis: "x \<in> span Basis" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1863 | unfolding span_Basis .. | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1864 | |
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1865 | lemma Basis_le_norm: "b \<in> Basis \<Longrightarrow> \<bar>x \<bullet> b\<bar> \<le> norm x" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1866 | by (rule order_trans [OF Cauchy_Schwarz_ineq2]) simp | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1867 | |
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1868 | lemma norm_bound_Basis_le: "b \<in> Basis \<Longrightarrow> norm x \<le> e \<Longrightarrow> \<bar>x \<bullet> b\<bar> \<le> e" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1869 | by (metis Basis_le_norm order_trans) | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1870 | |
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1871 | lemma norm_bound_Basis_lt: "b \<in> Basis \<Longrightarrow> norm x < e \<Longrightarrow> \<bar>x \<bullet> b\<bar> < e" | 
| 53595 | 1872 | by (metis Basis_le_norm le_less_trans) | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1873 | |
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1874 | lemma norm_le_l1: "norm x \<le> (\<Sum>b\<in>Basis. \<bar>x \<bullet> b\<bar>)" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1875 | apply (subst euclidean_representation[of x, symmetric]) | 
| 64267 | 1876 | apply (rule order_trans[OF norm_sum]) | 
| 1877 | apply (auto intro!: sum_mono) | |
| 49522 | 1878 | done | 
| 44133 | 1879 | |
| 64267 | 1880 | lemma sum_norm_allsubsets_bound: | 
| 56444 | 1881 | fixes f :: "'a \<Rightarrow> 'n::euclidean_space" | 
| 53406 | 1882 | assumes fP: "finite P" | 
| 64267 | 1883 | and fPs: "\<And>Q. Q \<subseteq> P \<Longrightarrow> norm (sum f Q) \<le> e" | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1884 |   shows "(\<Sum>x\<in>P. norm (f x)) \<le> 2 * real DIM('n) * e"
 | 
| 49522 | 1885 | proof - | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1886 | have "(\<Sum>x\<in>P. norm (f x)) \<le> (\<Sum>x\<in>P. \<Sum>b\<in>Basis. \<bar>f x \<bullet> b\<bar>)" | 
| 64267 | 1887 | by (rule sum_mono) (rule norm_le_l1) | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1888 | also have "(\<Sum>x\<in>P. \<Sum>b\<in>Basis. \<bar>f x \<bullet> b\<bar>) = (\<Sum>b\<in>Basis. \<Sum>x\<in>P. \<bar>f x \<bullet> b\<bar>)" | 
| 66804 
3f9bb52082c4
avoid name clashes on interpretation of abstract locales
 haftmann parents: 
66641diff
changeset | 1889 | by (rule sum.swap) | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1890 | also have "\<dots> \<le> of_nat (card (Basis :: 'n set)) * (2 * e)" | 
| 64267 | 1891 | proof (rule sum_bounded_above) | 
| 53406 | 1892 | fix i :: 'n | 
| 1893 | assume i: "i \<in> Basis" | |
| 1894 | have "norm (\<Sum>x\<in>P. \<bar>f x \<bullet> i\<bar>) \<le> | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1895 |       norm ((\<Sum>x\<in>P \<inter> - {x. f x \<bullet> i < 0}. f x) \<bullet> i) + norm ((\<Sum>x\<in>P \<inter> {x. f x \<bullet> i < 0}. f x) \<bullet> i)"
 | 
| 64267 | 1896 | by (simp add: abs_real_def sum.If_cases[OF fP] sum_negf norm_triangle_ineq4 inner_sum_left | 
| 56444 | 1897 | del: real_norm_def) | 
| 53406 | 1898 | also have "\<dots> \<le> e + e" | 
| 1899 | unfolding real_norm_def | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1900 | by (intro add_mono norm_bound_Basis_le i fPs) auto | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1901 | finally show "(\<Sum>x\<in>P. \<bar>f x \<bullet> i\<bar>) \<le> 2*e" by simp | 
| 44133 | 1902 | qed | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61520diff
changeset | 1903 |   also have "\<dots> = 2 * real DIM('n) * e" by simp
 | 
| 44133 | 1904 | finally show ?thesis . | 
| 1905 | qed | |
| 1906 | ||
| 53406 | 1907 | |
| 60420 | 1908 | subsection \<open>Linearity and Bilinearity continued\<close> | 
| 44133 | 1909 | |
| 1910 | lemma linear_bounded: | |
| 56444 | 1911 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" | 
| 44133 | 1912 | assumes lf: "linear f" | 
| 1913 | shows "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x" | |
| 53939 | 1914 | proof | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1915 | let ?B = "\<Sum>b\<in>Basis. norm (f b)" | 
| 53939 | 1916 | show "\<forall>x. norm (f x) \<le> ?B * norm x" | 
| 1917 | proof | |
| 53406 | 1918 | fix x :: 'a | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1919 | let ?g = "\<lambda>b. (x \<bullet> b) *\<^sub>R f b" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1920 | have "norm (f x) = norm (f (\<Sum>b\<in>Basis. (x \<bullet> b) *\<^sub>R b))" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1921 | unfolding euclidean_representation .. | 
| 64267 | 1922 | also have "\<dots> = norm (sum ?g Basis)" | 
| 1923 | by (simp add: linear_sum [OF lf] linear_cmul [OF lf]) | |
| 1924 | finally have th0: "norm (f x) = norm (sum ?g Basis)" . | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 1925 | have th: "norm (?g i) \<le> norm (f i) * norm x" if "i \<in> Basis" for i | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 1926 | proof - | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 1927 | from Basis_le_norm[OF that, of x] | 
| 53939 | 1928 | show "norm (?g i) \<le> norm (f i) * norm x" | 
| 49663 | 1929 | unfolding norm_scaleR | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 1930 | apply (subst mult.commute) | 
| 49663 | 1931 | apply (rule mult_mono) | 
| 1932 | apply (auto simp add: field_simps) | |
| 53406 | 1933 | done | 
| 53939 | 1934 | qed | 
| 64267 | 1935 | from sum_norm_le[of _ ?g, OF th] | 
| 53939 | 1936 | show "norm (f x) \<le> ?B * norm x" | 
| 64267 | 1937 | unfolding th0 sum_distrib_right by metis | 
| 53939 | 1938 | qed | 
| 44133 | 1939 | qed | 
| 1940 | ||
| 1941 | lemma linear_conv_bounded_linear: | |
| 1942 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" | |
| 1943 | shows "linear f \<longleftrightarrow> bounded_linear f" | |
| 1944 | proof | |
| 1945 | assume "linear f" | |
| 53939 | 1946 | then interpret f: linear f . | 
| 44133 | 1947 | show "bounded_linear f" | 
| 1948 | proof | |
| 1949 | have "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x" | |
| 60420 | 1950 | using \<open>linear f\<close> by (rule linear_bounded) | 
| 49522 | 1951 | then show "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 1952 | by (simp add: mult.commute) | 
| 44133 | 1953 | qed | 
| 1954 | next | |
| 1955 | assume "bounded_linear f" | |
| 1956 | then interpret f: bounded_linear f . | |
| 53939 | 1957 | show "linear f" .. | 
| 1958 | qed | |
| 1959 | ||
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61306diff
changeset | 1960 | lemmas linear_linear = linear_conv_bounded_linear[symmetric] | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61306diff
changeset | 1961 | |
| 53939 | 1962 | lemma linear_bounded_pos: | 
| 56444 | 1963 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" | 
| 53939 | 1964 | assumes lf: "linear f" | 
| 1965 | shows "\<exists>B > 0. \<forall>x. norm (f x) \<le> B * norm x" | |
| 1966 | proof - | |
| 1967 | have "\<exists>B > 0. \<forall>x. norm (f x) \<le> norm x * B" | |
| 1968 | using lf unfolding linear_conv_bounded_linear | |
| 1969 | by (rule bounded_linear.pos_bounded) | |
| 1970 | then show ?thesis | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 1971 | by (simp only: mult.commute) | 
| 44133 | 1972 | qed | 
| 1973 | ||
| 49522 | 1974 | lemma bounded_linearI': | 
| 56444 | 1975 | fixes f ::"'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" | 
| 53406 | 1976 | assumes "\<And>x y. f (x + y) = f x + f y" | 
| 1977 | and "\<And>c x. f (c *\<^sub>R x) = c *\<^sub>R f x" | |
| 49522 | 1978 | shows "bounded_linear f" | 
| 53406 | 1979 | unfolding linear_conv_bounded_linear[symmetric] | 
| 49522 | 1980 | by (rule linearI[OF assms]) | 
| 44133 | 1981 | |
| 1982 | lemma bilinear_bounded: | |
| 56444 | 1983 | fixes h :: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space \<Rightarrow> 'k::real_normed_vector" | 
| 44133 | 1984 | assumes bh: "bilinear h" | 
| 1985 | shows "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y" | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1986 | proof (clarify intro!: exI[of _ "\<Sum>i\<in>Basis. \<Sum>j\<in>Basis. norm (h i j)"]) | 
| 53406 | 1987 | fix x :: 'm | 
| 1988 | fix y :: 'n | |
| 64267 | 1989 | have "norm (h x y) = norm (h (sum (\<lambda>i. (x \<bullet> i) *\<^sub>R i) Basis) (sum (\<lambda>i. (y \<bullet> i) *\<^sub>R i) Basis))" | 
| 53406 | 1990 | apply (subst euclidean_representation[where 'a='m]) | 
| 1991 | apply (subst euclidean_representation[where 'a='n]) | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1992 | apply rule | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1993 | done | 
| 64267 | 1994 | also have "\<dots> = norm (sum (\<lambda> (i,j). h ((x \<bullet> i) *\<^sub>R i) ((y \<bullet> j) *\<^sub>R j)) (Basis \<times> Basis))" | 
| 1995 | unfolding bilinear_sum[OF bh finite_Basis finite_Basis] .. | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1996 | finally have th: "norm (h x y) = \<dots>" . | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 1997 | show "norm (h x y) \<le> (\<Sum>i\<in>Basis. \<Sum>j\<in>Basis. norm (h i j)) * norm x * norm y" | 
| 64267 | 1998 | apply (auto simp add: sum_distrib_right th sum.cartesian_product) | 
| 1999 | apply (rule sum_norm_le) | |
| 53406 | 2000 | apply (auto simp add: bilinear_rmul[OF bh] bilinear_lmul[OF bh] | 
| 2001 | field_simps simp del: scaleR_scaleR) | |
| 2002 | apply (rule mult_mono) | |
| 2003 | apply (auto simp add: zero_le_mult_iff Basis_le_norm) | |
| 2004 | apply (rule mult_mono) | |
| 2005 | apply (auto simp add: zero_le_mult_iff Basis_le_norm) | |
| 2006 | done | |
| 44133 | 2007 | qed | 
| 2008 | ||
| 2009 | lemma bilinear_conv_bounded_bilinear: | |
| 2010 | fixes h :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector" | |
| 2011 | shows "bilinear h \<longleftrightarrow> bounded_bilinear h" | |
| 2012 | proof | |
| 2013 | assume "bilinear h" | |
| 2014 | show "bounded_bilinear h" | |
| 2015 | proof | |
| 53406 | 2016 | fix x y z | 
| 2017 | show "h (x + y) z = h x z + h y z" | |
| 60420 | 2018 | using \<open>bilinear h\<close> unfolding bilinear_def linear_iff by simp | 
| 44133 | 2019 | next | 
| 53406 | 2020 | fix x y z | 
| 2021 | show "h x (y + z) = h x y + h x z" | |
| 60420 | 2022 | using \<open>bilinear h\<close> unfolding bilinear_def linear_iff by simp | 
| 44133 | 2023 | next | 
| 53406 | 2024 | fix r x y | 
| 2025 | show "h (scaleR r x) y = scaleR r (h x y)" | |
| 60420 | 2026 | using \<open>bilinear h\<close> unfolding bilinear_def linear_iff | 
| 44133 | 2027 | by simp | 
| 2028 | next | |
| 53406 | 2029 | fix r x y | 
| 2030 | show "h x (scaleR r y) = scaleR r (h x y)" | |
| 60420 | 2031 | using \<open>bilinear h\<close> unfolding bilinear_def linear_iff | 
| 44133 | 2032 | by simp | 
| 2033 | next | |
| 2034 | have "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y" | |
| 60420 | 2035 | using \<open>bilinear h\<close> by (rule bilinear_bounded) | 
| 49522 | 2036 | then show "\<exists>K. \<forall>x y. norm (h x y) \<le> norm x * norm y * K" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 2037 | by (simp add: ac_simps) | 
| 44133 | 2038 | qed | 
| 2039 | next | |
| 2040 | assume "bounded_bilinear h" | |
| 2041 | then interpret h: bounded_bilinear h . | |
| 2042 | show "bilinear h" | |
| 2043 | unfolding bilinear_def linear_conv_bounded_linear | |
| 49522 | 2044 | using h.bounded_linear_left h.bounded_linear_right by simp | 
| 44133 | 2045 | qed | 
| 2046 | ||
| 53939 | 2047 | lemma bilinear_bounded_pos: | 
| 56444 | 2048 | fixes h :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector" | 
| 53939 | 2049 | assumes bh: "bilinear h" | 
| 2050 | shows "\<exists>B > 0. \<forall>x y. norm (h x y) \<le> B * norm x * norm y" | |
| 2051 | proof - | |
| 2052 | have "\<exists>B > 0. \<forall>x y. norm (h x y) \<le> norm x * norm y * B" | |
| 2053 | using bh [unfolded bilinear_conv_bounded_bilinear] | |
| 2054 | by (rule bounded_bilinear.pos_bounded) | |
| 2055 | then show ?thesis | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 2056 | by (simp only: ac_simps) | 
| 53939 | 2057 | qed | 
| 2058 | ||
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2059 | lemma bounded_linear_imp_has_derivative: | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2060 | "bounded_linear f \<Longrightarrow> (f has_derivative f) net" | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2061 | by (simp add: has_derivative_def bounded_linear.linear linear_diff) | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2062 | |
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2063 | lemma linear_imp_has_derivative: | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2064 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2065 | shows "linear f \<Longrightarrow> (f has_derivative f) net" | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2066 | by (simp add: has_derivative_def linear_conv_bounded_linear linear_diff) | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2067 | |
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2068 | lemma bounded_linear_imp_differentiable: "bounded_linear f \<Longrightarrow> f differentiable net" | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2069 | using bounded_linear_imp_has_derivative differentiable_def by blast | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2070 | |
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2071 | lemma linear_imp_differentiable: | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2072 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2073 | shows "linear f \<Longrightarrow> f differentiable net" | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2074 | by (metis linear_imp_has_derivative differentiable_def) | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2075 | |
| 49522 | 2076 | |
| 60420 | 2077 | subsection \<open>We continue.\<close> | 
| 44133 | 2078 | |
| 2079 | lemma independent_bound: | |
| 53716 | 2080 | fixes S :: "'a::euclidean_space set" | 
| 2081 |   shows "independent S \<Longrightarrow> finite S \<and> card S \<le> DIM('a)"
 | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 2082 | using independent_span_bound[OF finite_Basis, of S] by auto | 
| 44133 | 2083 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61520diff
changeset | 2084 | corollary | 
| 60303 | 2085 | fixes S :: "'a::euclidean_space set" | 
| 2086 | assumes "independent S" | |
| 2087 |   shows independent_imp_finite: "finite S" and independent_card_le:"card S \<le> DIM('a)"
 | |
| 2088 | using assms independent_bound by auto | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61520diff
changeset | 2089 | |
| 63075 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 2090 | lemma independent_explicit: | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 2091 | fixes B :: "'a::euclidean_space set" | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 2092 | shows "independent B \<longleftrightarrow> | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 2093 | finite B \<and> (\<forall>c. (\<Sum>v\<in>B. c v *\<^sub>R v) = 0 \<longrightarrow> (\<forall>v \<in> B. c v = 0))" | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 2094 | apply (cases "finite B") | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 2095 | apply (force simp: dependent_finite) | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 2096 | using independent_bound | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 2097 | apply auto | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 2098 | done | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 2099 | |
| 49663 | 2100 | lemma dependent_biggerset: | 
| 56444 | 2101 | fixes S :: "'a::euclidean_space set" | 
| 2102 |   shows "(finite S \<Longrightarrow> card S > DIM('a)) \<Longrightarrow> dependent S"
 | |
| 44133 | 2103 | by (metis independent_bound not_less) | 
| 2104 | ||
| 60420 | 2105 | text \<open>Notion of dimension.\<close> | 
| 44133 | 2106 | |
| 53406 | 2107 | definition "dim V = (SOME n. \<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> card B = n)" | 
| 44133 | 2108 | |
| 49522 | 2109 | lemma basis_exists: | 
| 2110 |   "\<exists>B. (B :: ('a::euclidean_space) set) \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (card B = dim V)"
 | |
| 2111 | unfolding dim_def some_eq_ex[of "\<lambda>n. \<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (card B = n)"] | |
| 2112 | using maximal_independent_subset[of V] independent_bound | |
| 2113 | by auto | |
| 44133 | 2114 | |
| 60307 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60303diff
changeset | 2115 | corollary dim_le_card: | 
| 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60303diff
changeset | 2116 | fixes s :: "'a::euclidean_space set" | 
| 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60303diff
changeset | 2117 | shows "finite s \<Longrightarrow> dim s \<le> card s" | 
| 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60303diff
changeset | 2118 | by (metis basis_exists card_mono) | 
| 
75e1aa7a450e
Convex hulls: theorems about interior, etc. And a few simple lemmas.
 paulson <lp15@cam.ac.uk> parents: 
60303diff
changeset | 2119 | |
| 60420 | 2120 | text \<open>Consequences of independence or spanning for cardinality.\<close> | 
| 44133 | 2121 | |
| 53406 | 2122 | lemma independent_card_le_dim: | 
| 2123 | fixes B :: "'a::euclidean_space set" | |
| 2124 | assumes "B \<subseteq> V" | |
| 2125 | and "independent B" | |
| 49522 | 2126 | shows "card B \<le> dim V" | 
| 44133 | 2127 | proof - | 
| 60420 | 2128 | from basis_exists[of V] \<open>B \<subseteq> V\<close> | 
| 53406 | 2129 | obtain B' where "independent B'" | 
| 2130 | and "B \<subseteq> span B'" | |
| 2131 | and "card B' = dim V" | |
| 2132 | by blast | |
| 60420 | 2133 | with independent_span_bound[OF _ \<open>independent B\<close> \<open>B \<subseteq> span B'\<close>] independent_bound[of B'] | 
| 44133 | 2134 | show ?thesis by auto | 
| 2135 | qed | |
| 2136 | ||
| 49522 | 2137 | lemma span_card_ge_dim: | 
| 53406 | 2138 | fixes B :: "'a::euclidean_space set" | 
| 2139 | shows "B \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> finite B \<Longrightarrow> dim V \<le> card B" | |
| 44133 | 2140 | by (metis basis_exists[of V] independent_span_bound subset_trans) | 
| 2141 | ||
| 2142 | lemma basis_card_eq_dim: | |
| 53406 | 2143 | fixes V :: "'a::euclidean_space set" | 
| 2144 | shows "B \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> finite B \<and> card B = dim V" | |
| 44133 | 2145 | by (metis order_eq_iff independent_card_le_dim span_card_ge_dim independent_bound) | 
| 2146 | ||
| 53406 | 2147 | lemma dim_unique: | 
| 2148 | fixes B :: "'a::euclidean_space set" | |
| 2149 | shows "B \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> card B = n \<Longrightarrow> dim V = n" | |
| 44133 | 2150 | by (metis basis_card_eq_dim) | 
| 2151 | ||
| 60420 | 2152 | text \<open>More lemmas about dimension.\<close> | 
| 44133 | 2153 | |
| 64122 | 2154 | lemma dim_UNIV [simp]: "dim (UNIV :: 'a::euclidean_space set) = DIM('a)"
 | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 2155 | using independent_Basis | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 2156 | by (intro dim_unique[of Basis]) auto | 
| 44133 | 2157 | |
| 2158 | lemma dim_subset: | |
| 53406 | 2159 | fixes S :: "'a::euclidean_space set" | 
| 2160 | shows "S \<subseteq> T \<Longrightarrow> dim S \<le> dim T" | |
| 44133 | 2161 | using basis_exists[of T] basis_exists[of S] | 
| 2162 | by (metis independent_card_le_dim subset_trans) | |
| 2163 | ||
| 53406 | 2164 | lemma dim_subset_UNIV: | 
| 2165 | fixes S :: "'a::euclidean_space set" | |
| 2166 |   shows "dim S \<le> DIM('a)"
 | |
| 44133 | 2167 | by (metis dim_subset subset_UNIV dim_UNIV) | 
| 2168 | ||
| 60420 | 2169 | text \<open>Converses to those.\<close> | 
| 44133 | 2170 | |
| 2171 | lemma card_ge_dim_independent: | |
| 53406 | 2172 | fixes B :: "'a::euclidean_space set" | 
| 2173 | assumes BV: "B \<subseteq> V" | |
| 2174 | and iB: "independent B" | |
| 2175 | and dVB: "dim V \<le> card B" | |
| 44133 | 2176 | shows "V \<subseteq> span B" | 
| 53406 | 2177 | proof | 
| 2178 | fix a | |
| 2179 | assume aV: "a \<in> V" | |
| 2180 |   {
 | |
| 2181 | assume aB: "a \<notin> span B" | |
| 2182 | then have iaB: "independent (insert a B)" | |
| 2183 | using iB aV BV by (simp add: independent_insert) | |
| 2184 | from aV BV have th0: "insert a B \<subseteq> V" | |
| 2185 | by blast | |
| 2186 | from aB have "a \<notin>B" | |
| 2187 | by (auto simp add: span_superset) | |
| 2188 | with independent_card_le_dim[OF th0 iaB] dVB independent_bound[OF iB] | |
| 2189 | have False by auto | |
| 2190 | } | |
| 2191 | then show "a \<in> span B" by blast | |
| 44133 | 2192 | qed | 
| 2193 | ||
| 2194 | lemma card_le_dim_spanning: | |
| 49663 | 2195 |   assumes BV: "(B:: ('a::euclidean_space) set) \<subseteq> V"
 | 
| 2196 | and VB: "V \<subseteq> span B" | |
| 2197 | and fB: "finite B" | |
| 2198 | and dVB: "dim V \<ge> card B" | |
| 44133 | 2199 | shows "independent B" | 
| 49522 | 2200 | proof - | 
| 53406 | 2201 |   {
 | 
| 2202 | fix a | |
| 53716 | 2203 |     assume a: "a \<in> B" "a \<in> span (B - {a})"
 | 
| 53406 | 2204 | from a fB have c0: "card B \<noteq> 0" | 
| 2205 | by auto | |
| 53716 | 2206 |     from a fB have cb: "card (B - {a}) = card B - 1"
 | 
| 53406 | 2207 | by auto | 
| 53716 | 2208 |     from BV a have th0: "B - {a} \<subseteq> V"
 | 
| 53406 | 2209 | by blast | 
| 2210 |     {
 | |
| 2211 | fix x | |
| 2212 | assume x: "x \<in> V" | |
| 53716 | 2213 |       from a have eq: "insert a (B - {a}) = B"
 | 
| 53406 | 2214 | by blast | 
| 2215 | from x VB have x': "x \<in> span B" | |
| 2216 | by blast | |
| 44133 | 2217 | from span_trans[OF a(2), unfolded eq, OF x'] | 
| 53716 | 2218 |       have "x \<in> span (B - {a})" .
 | 
| 53406 | 2219 | } | 
| 53716 | 2220 |     then have th1: "V \<subseteq> span (B - {a})"
 | 
| 53406 | 2221 | by blast | 
| 53716 | 2222 |     have th2: "finite (B - {a})"
 | 
| 53406 | 2223 | using fB by auto | 
| 44133 | 2224 | from span_card_ge_dim[OF th0 th1 th2] | 
| 53716 | 2225 |     have c: "dim V \<le> card (B - {a})" .
 | 
| 53406 | 2226 | from c c0 dVB cb have False by simp | 
| 2227 | } | |
| 2228 | then show ?thesis | |
| 2229 | unfolding dependent_def by blast | |
| 44133 | 2230 | qed | 
| 2231 | ||
| 53406 | 2232 | lemma card_eq_dim: | 
| 2233 | fixes B :: "'a::euclidean_space set" | |
| 2234 | shows "B \<subseteq> V \<Longrightarrow> card B = dim V \<Longrightarrow> finite B \<Longrightarrow> independent B \<longleftrightarrow> V \<subseteq> span B" | |
| 49522 | 2235 | by (metis order_eq_iff card_le_dim_spanning card_ge_dim_independent) | 
| 44133 | 2236 | |
| 60420 | 2237 | text \<open>More general size bound lemmas.\<close> | 
| 44133 | 2238 | |
| 2239 | lemma independent_bound_general: | |
| 53406 | 2240 | fixes S :: "'a::euclidean_space set" | 
| 2241 | shows "independent S \<Longrightarrow> finite S \<and> card S \<le> dim S" | |
| 44133 | 2242 | by (metis independent_card_le_dim independent_bound subset_refl) | 
| 2243 | ||
| 49522 | 2244 | lemma dependent_biggerset_general: | 
| 53406 | 2245 | fixes S :: "'a::euclidean_space set" | 
| 2246 | shows "(finite S \<Longrightarrow> card S > dim S) \<Longrightarrow> dependent S" | |
| 44133 | 2247 | using independent_bound_general[of S] by (metis linorder_not_le) | 
| 2248 | ||
| 60303 | 2249 | lemma dim_span [simp]: | 
| 53406 | 2250 | fixes S :: "'a::euclidean_space set" | 
| 2251 | shows "dim (span S) = dim S" | |
| 49522 | 2252 | proof - | 
| 44133 | 2253 | have th0: "dim S \<le> dim (span S)" | 
| 2254 | by (auto simp add: subset_eq intro: dim_subset span_superset) | |
| 2255 | from basis_exists[of S] | |
| 53406 | 2256 | obtain B where B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" | 
| 2257 | by blast | |
| 2258 | from B have fB: "finite B" "card B = dim S" | |
| 2259 | using independent_bound by blast+ | |
| 2260 | have bSS: "B \<subseteq> span S" | |
| 2261 | using B(1) by (metis subset_eq span_inc) | |
| 2262 | have sssB: "span S \<subseteq> span B" | |
| 2263 | using span_mono[OF B(3)] by (simp add: span_span) | |
| 44133 | 2264 | from span_card_ge_dim[OF bSS sssB fB(1)] th0 show ?thesis | 
| 49522 | 2265 | using fB(2) by arith | 
| 44133 | 2266 | qed | 
| 2267 | ||
| 53406 | 2268 | lemma subset_le_dim: | 
| 2269 | fixes S :: "'a::euclidean_space set" | |
| 2270 | shows "S \<subseteq> span T \<Longrightarrow> dim S \<le> dim T" | |
| 44133 | 2271 | by (metis dim_span dim_subset) | 
| 2272 | ||
| 53406 | 2273 | lemma span_eq_dim: | 
| 56444 | 2274 | fixes S :: "'a::euclidean_space set" | 
| 53406 | 2275 | shows "span S = span T \<Longrightarrow> dim S = dim T" | 
| 44133 | 2276 | by (metis dim_span) | 
| 2277 | ||
| 2278 | lemma dim_image_le: | |
| 2279 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | |
| 49663 | 2280 | assumes lf: "linear f" | 
| 2281 | shows "dim (f ` S) \<le> dim (S)" | |
| 49522 | 2282 | proof - | 
| 44133 | 2283 | from basis_exists[of S] obtain B where | 
| 2284 | B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" by blast | |
| 53406 | 2285 | from B have fB: "finite B" "card B = dim S" | 
| 2286 | using independent_bound by blast+ | |
| 44133 | 2287 | have "dim (f ` S) \<le> card (f ` B)" | 
| 2288 | apply (rule span_card_ge_dim) | |
| 53406 | 2289 | using lf B fB | 
| 2290 | apply (auto simp add: span_linear_image spans_image subset_image_iff) | |
| 49522 | 2291 | done | 
| 53406 | 2292 | also have "\<dots> \<le> dim S" | 
| 2293 | using card_image_le[OF fB(1)] fB by simp | |
| 44133 | 2294 | finally show ?thesis . | 
| 2295 | qed | |
| 2296 | ||
| 60420 | 2297 | text \<open>Picking an orthogonal replacement for a spanning set.\<close> | 
| 44133 | 2298 | |
| 53406 | 2299 | lemma vector_sub_project_orthogonal: | 
| 2300 | fixes b x :: "'a::euclidean_space" | |
| 2301 | shows "b \<bullet> (x - ((b \<bullet> x) / (b \<bullet> b)) *\<^sub>R b) = 0" | |
| 44133 | 2302 | unfolding inner_simps by auto | 
| 2303 | ||
| 44528 | 2304 | lemma pairwise_orthogonal_insert: | 
| 2305 | assumes "pairwise orthogonal S" | |
| 49522 | 2306 | and "\<And>y. y \<in> S \<Longrightarrow> orthogonal x y" | 
| 44528 | 2307 | shows "pairwise orthogonal (insert x S)" | 
| 2308 | using assms unfolding pairwise_def | |
| 2309 | by (auto simp add: orthogonal_commute) | |
| 2310 | ||
| 44133 | 2311 | lemma basis_orthogonal: | 
| 53406 | 2312 | fixes B :: "'a::real_inner set" | 
| 44133 | 2313 | assumes fB: "finite B" | 
| 2314 | shows "\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C" | |
| 2315 | (is " \<exists>C. ?P B C") | |
| 49522 | 2316 | using fB | 
| 2317 | proof (induct rule: finite_induct) | |
| 2318 | case empty | |
| 53406 | 2319 | then show ?case | 
| 2320 |     apply (rule exI[where x="{}"])
 | |
| 2321 | apply (auto simp add: pairwise_def) | |
| 2322 | done | |
| 44133 | 2323 | next | 
| 49522 | 2324 | case (insert a B) | 
| 60420 | 2325 | note fB = \<open>finite B\<close> and aB = \<open>a \<notin> B\<close> | 
| 2326 | from \<open>\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C\<close> | |
| 44133 | 2327 | obtain C where C: "finite C" "card C \<le> card B" | 
| 2328 | "span C = span B" "pairwise orthogonal C" by blast | |
| 64267 | 2329 | let ?a = "a - sum (\<lambda>x. (x \<bullet> a / (x \<bullet> x)) *\<^sub>R x) C" | 
| 44133 | 2330 | let ?C = "insert ?a C" | 
| 53406 | 2331 | from C(1) have fC: "finite ?C" | 
| 2332 | by simp | |
| 49522 | 2333 | from fB aB C(1,2) have cC: "card ?C \<le> card (insert a B)" | 
| 2334 | by (simp add: card_insert_if) | |
| 53406 | 2335 |   {
 | 
| 2336 | fix x k | |
| 49522 | 2337 | have th0: "\<And>(a::'a) b c. a - (b - c) = c + (a - b)" | 
| 2338 | by (simp add: field_simps) | |
| 44133 | 2339 | have "x - k *\<^sub>R (a - (\<Sum>x\<in>C. (x \<bullet> a / (x \<bullet> x)) *\<^sub>R x)) \<in> span C \<longleftrightarrow> x - k *\<^sub>R a \<in> span C" | 
| 2340 | apply (simp only: scaleR_right_diff_distrib th0) | |
| 2341 | apply (rule span_add_eq) | |
| 2342 | apply (rule span_mul) | |
| 64267 | 2343 | apply (rule span_sum) | 
| 44133 | 2344 | apply (rule span_mul) | 
| 49522 | 2345 | apply (rule span_superset) | 
| 2346 | apply assumption | |
| 53406 | 2347 | done | 
| 2348 | } | |
| 44133 | 2349 | then have SC: "span ?C = span (insert a B)" | 
| 2350 | unfolding set_eq_iff span_breakdown_eq C(3)[symmetric] by auto | |
| 53406 | 2351 |   {
 | 
| 2352 | fix y | |
| 2353 | assume yC: "y \<in> C" | |
| 2354 |     then have Cy: "C = insert y (C - {y})"
 | |
| 2355 | by blast | |
| 2356 |     have fth: "finite (C - {y})"
 | |
| 2357 | using C by simp | |
| 44528 | 2358 | have "orthogonal ?a y" | 
| 2359 | unfolding orthogonal_def | |
| 64267 | 2360 | unfolding inner_diff inner_sum_left right_minus_eq | 
| 2361 | unfolding sum.remove [OF \<open>finite C\<close> \<open>y \<in> C\<close>] | |
| 44528 | 2362 | apply (clarsimp simp add: inner_commute[of y a]) | 
| 64267 | 2363 | apply (rule sum.neutral) | 
| 44528 | 2364 | apply clarsimp | 
| 2365 | apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format]) | |
| 60420 | 2366 | using \<open>y \<in> C\<close> by auto | 
| 53406 | 2367 | } | 
| 60420 | 2368 | with \<open>pairwise orthogonal C\<close> have CPO: "pairwise orthogonal ?C" | 
| 44528 | 2369 | by (rule pairwise_orthogonal_insert) | 
| 53406 | 2370 | from fC cC SC CPO have "?P (insert a B) ?C" | 
| 2371 | by blast | |
| 44133 | 2372 | then show ?case by blast | 
| 2373 | qed | |
| 2374 | ||
| 2375 | lemma orthogonal_basis_exists: | |
| 2376 |   fixes V :: "('a::euclidean_space) set"
 | |
| 2377 | shows "\<exists>B. independent B \<and> B \<subseteq> span V \<and> V \<subseteq> span B \<and> (card B = dim V) \<and> pairwise orthogonal B" | |
| 49663 | 2378 | proof - | 
| 49522 | 2379 | from basis_exists[of V] obtain B where | 
| 53406 | 2380 | B: "B \<subseteq> V" "independent B" "V \<subseteq> span B" "card B = dim V" | 
| 2381 | by blast | |
| 2382 | from B have fB: "finite B" "card B = dim V" | |
| 2383 | using independent_bound by auto | |
| 44133 | 2384 | from basis_orthogonal[OF fB(1)] obtain C where | 
| 53406 | 2385 | C: "finite C" "card C \<le> card B" "span C = span B" "pairwise orthogonal C" | 
| 2386 | by blast | |
| 2387 | from C B have CSV: "C \<subseteq> span V" | |
| 2388 | by (metis span_inc span_mono subset_trans) | |
| 2389 | from span_mono[OF B(3)] C have SVC: "span V \<subseteq> span C" | |
| 2390 | by (simp add: span_span) | |
| 44133 | 2391 | from card_le_dim_spanning[OF CSV SVC C(1)] C(2,3) fB | 
| 53406 | 2392 | have iC: "independent C" | 
| 44133 | 2393 | by (simp add: dim_span) | 
| 53406 | 2394 | from C fB have "card C \<le> dim V" | 
| 2395 | by simp | |
| 2396 | moreover have "dim V \<le> card C" | |
| 2397 | using span_card_ge_dim[OF CSV SVC C(1)] | |
| 2398 | by (simp add: dim_span) | |
| 2399 | ultimately have CdV: "card C = dim V" | |
| 2400 | using C(1) by simp | |
| 2401 | from C B CSV CdV iC show ?thesis | |
| 2402 | by auto | |
| 44133 | 2403 | qed | 
| 2404 | ||
| 60420 | 2405 | text \<open>Low-dimensional subset is in a hyperplane (weak orthogonal complement).\<close> | 
| 44133 | 2406 | |
| 49522 | 2407 | lemma span_not_univ_orthogonal: | 
| 53406 | 2408 | fixes S :: "'a::euclidean_space set" | 
| 44133 | 2409 | assumes sU: "span S \<noteq> UNIV" | 
| 56444 | 2410 | shows "\<exists>a::'a. a \<noteq> 0 \<and> (\<forall>x \<in> span S. a \<bullet> x = 0)" | 
| 49522 | 2411 | proof - | 
| 53406 | 2412 | from sU obtain a where a: "a \<notin> span S" | 
| 2413 | by blast | |
| 44133 | 2414 | from orthogonal_basis_exists obtain B where | 
| 2415 | B: "independent B" "B \<subseteq> span S" "S \<subseteq> span B" "card B = dim S" "pairwise orthogonal B" | |
| 2416 | by blast | |
| 53406 | 2417 | from B have fB: "finite B" "card B = dim S" | 
| 2418 | using independent_bound by auto | |
| 44133 | 2419 | from span_mono[OF B(2)] span_mono[OF B(3)] | 
| 53406 | 2420 | have sSB: "span S = span B" | 
| 2421 | by (simp add: span_span) | |
| 64267 | 2422 | let ?a = "a - sum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *\<^sub>R b) B" | 
| 2423 | have "sum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *\<^sub>R b) B \<in> span S" | |
| 44133 | 2424 | unfolding sSB | 
| 64267 | 2425 | apply (rule span_sum) | 
| 44133 | 2426 | apply (rule span_mul) | 
| 49522 | 2427 | apply (rule span_superset) | 
| 2428 | apply assumption | |
| 2429 | done | |
| 53406 | 2430 | with a have a0:"?a \<noteq> 0" | 
| 2431 | by auto | |
| 44133 | 2432 | have "\<forall>x\<in>span B. ?a \<bullet> x = 0" | 
| 49522 | 2433 | proof (rule span_induct') | 
| 2434 |     show "subspace {x. ?a \<bullet> x = 0}"
 | |
| 2435 | by (auto simp add: subspace_def inner_add) | |
| 2436 | next | |
| 53406 | 2437 |     {
 | 
| 2438 | fix x | |
| 2439 | assume x: "x \<in> B" | |
| 2440 |       from x have B': "B = insert x (B - {x})"
 | |
| 2441 | by blast | |
| 2442 |       have fth: "finite (B - {x})"
 | |
| 2443 | using fB by simp | |
| 44133 | 2444 | have "?a \<bullet> x = 0" | 
| 53406 | 2445 | apply (subst B') | 
| 2446 | using fB fth | |
| 64267 | 2447 | unfolding sum_clauses(2)[OF fth] | 
| 44133 | 2448 | apply simp unfolding inner_simps | 
| 64267 | 2449 | apply (clarsimp simp add: inner_add inner_sum_left) | 
| 2450 | apply (rule sum.neutral, rule ballI) | |
| 63170 | 2451 | apply (simp only: inner_commute) | 
| 49711 | 2452 | apply (auto simp add: x field_simps | 
| 2453 | intro: B(5)[unfolded pairwise_def orthogonal_def, rule_format]) | |
| 53406 | 2454 | done | 
| 2455 | } | |
| 2456 | then show "\<forall>x \<in> B. ?a \<bullet> x = 0" | |
| 2457 | by blast | |
| 44133 | 2458 | qed | 
| 53406 | 2459 | with a0 show ?thesis | 
| 2460 | unfolding sSB by (auto intro: exI[where x="?a"]) | |
| 44133 | 2461 | qed | 
| 2462 | ||
| 2463 | lemma span_not_univ_subset_hyperplane: | |
| 53406 | 2464 | fixes S :: "'a::euclidean_space set" | 
| 2465 | assumes SU: "span S \<noteq> UNIV" | |
| 44133 | 2466 |   shows "\<exists> a. a \<noteq>0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}"
 | 
| 2467 | using span_not_univ_orthogonal[OF SU] by auto | |
| 2468 | ||
| 49663 | 2469 | lemma lowdim_subset_hyperplane: | 
| 53406 | 2470 | fixes S :: "'a::euclidean_space set" | 
| 44133 | 2471 |   assumes d: "dim S < DIM('a)"
 | 
| 56444 | 2472 |   shows "\<exists>a::'a. a \<noteq> 0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}"
 | 
| 49522 | 2473 | proof - | 
| 53406 | 2474 |   {
 | 
| 2475 | assume "span S = UNIV" | |
| 2476 |     then have "dim (span S) = dim (UNIV :: ('a) set)"
 | |
| 2477 | by simp | |
| 2478 |     then have "dim S = DIM('a)"
 | |
| 2479 | by (simp add: dim_span dim_UNIV) | |
| 2480 | with d have False by arith | |
| 2481 | } | |
| 2482 | then have th: "span S \<noteq> UNIV" | |
| 2483 | by blast | |
| 44133 | 2484 | from span_not_univ_subset_hyperplane[OF th] show ?thesis . | 
| 2485 | qed | |
| 2486 | ||
| 60420 | 2487 | text \<open>We can extend a linear basis-basis injection to the whole set.\<close> | 
| 44133 | 2488 | |
| 2489 | lemma linear_indep_image_lemma: | |
| 49663 | 2490 | assumes lf: "linear f" | 
| 2491 | and fB: "finite B" | |
| 49522 | 2492 | and ifB: "independent (f ` B)" | 
| 49663 | 2493 | and fi: "inj_on f B" | 
| 2494 | and xsB: "x \<in> span B" | |
| 49522 | 2495 | and fx: "f x = 0" | 
| 44133 | 2496 | shows "x = 0" | 
| 2497 | using fB ifB fi xsB fx | |
| 49522 | 2498 | proof (induct arbitrary: x rule: finite_induct[OF fB]) | 
| 49663 | 2499 | case 1 | 
| 2500 | then show ?case by auto | |
| 44133 | 2501 | next | 
| 2502 | case (2 a b x) | |
| 2503 | have fb: "finite b" using "2.prems" by simp | |
| 2504 | have th0: "f ` b \<subseteq> f ` (insert a b)" | |
| 53406 | 2505 | apply (rule image_mono) | 
| 2506 | apply blast | |
| 2507 | done | |
| 44133 | 2508 | from independent_mono[ OF "2.prems"(2) th0] | 
| 2509 | have ifb: "independent (f ` b)" . | |
| 2510 | have fib: "inj_on f b" | |
| 2511 | apply (rule subset_inj_on [OF "2.prems"(3)]) | |
| 49522 | 2512 | apply blast | 
| 2513 | done | |
| 44133 | 2514 | from span_breakdown[of a "insert a b", simplified, OF "2.prems"(4)] | 
| 53406 | 2515 |   obtain k where k: "x - k*\<^sub>R a \<in> span (b - {a})"
 | 
| 2516 | by blast | |
| 44133 | 2517 | have "f (x - k*\<^sub>R a) \<in> span (f ` b)" | 
| 2518 | unfolding span_linear_image[OF lf] | |
| 2519 | apply (rule imageI) | |
| 53716 | 2520 |     using k span_mono[of "b - {a}" b]
 | 
| 53406 | 2521 | apply blast | 
| 49522 | 2522 | done | 
| 2523 | then have "f x - k*\<^sub>R f a \<in> span (f ` b)" | |
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2524 | by (simp add: linear_diff[OF lf] linear_cmul[OF lf]) | 
| 49522 | 2525 | then have th: "-k *\<^sub>R f a \<in> span (f ` b)" | 
| 44133 | 2526 | using "2.prems"(5) by simp | 
| 53406 | 2527 | have xsb: "x \<in> span b" | 
| 2528 | proof (cases "k = 0") | |
| 2529 | case True | |
| 53716 | 2530 |     with k have "x \<in> span (b - {a})" by simp
 | 
| 2531 |     then show ?thesis using span_mono[of "b - {a}" b]
 | |
| 53406 | 2532 | by blast | 
| 2533 | next | |
| 2534 | case False | |
| 2535 | with span_mul[OF th, of "- 1/ k"] | |
| 44133 | 2536 | have th1: "f a \<in> span (f ` b)" | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56444diff
changeset | 2537 | by auto | 
| 44133 | 2538 |     from inj_on_image_set_diff[OF "2.prems"(3), of "insert a b " "{a}", symmetric]
 | 
| 2539 |     have tha: "f ` insert a b - f ` {a} = f ` (insert a b - {a})" by blast
 | |
| 2540 | from "2.prems"(2) [unfolded dependent_def bex_simps(8), rule_format, of "f a"] | |
| 2541 | have "f a \<notin> span (f ` b)" using tha | |
| 2542 | using "2.hyps"(2) | |
| 2543 | "2.prems"(3) by auto | |
| 2544 | with th1 have False by blast | |
| 53406 | 2545 | then show ?thesis by blast | 
| 2546 | qed | |
| 2547 | from "2.hyps"(3)[OF fb ifb fib xsb "2.prems"(5)] show "x = 0" . | |
| 44133 | 2548 | qed | 
| 2549 | ||
| 60420 | 2550 | text \<open>Can construct an isomorphism between spaces of same dimension.\<close> | 
| 44133 | 2551 | |
| 2552 | lemma subspace_isomorphism: | |
| 53406 | 2553 | fixes S :: "'a::euclidean_space set" | 
| 2554 | and T :: "'b::euclidean_space set" | |
| 2555 | assumes s: "subspace S" | |
| 2556 | and t: "subspace T" | |
| 49522 | 2557 | and d: "dim S = dim T" | 
| 44133 | 2558 | shows "\<exists>f. linear f \<and> f ` S = T \<and> inj_on f S" | 
| 49522 | 2559 | proof - | 
| 53406 | 2560 | from basis_exists[of S] independent_bound | 
| 2561 | obtain B where B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" and fB: "finite B" | |
| 2562 | by blast | |
| 2563 | from basis_exists[of T] independent_bound | |
| 2564 | obtain C where C: "C \<subseteq> T" "independent C" "T \<subseteq> span C" "card C = dim T" and fC: "finite C" | |
| 2565 | by blast | |
| 2566 | from B(4) C(4) card_le_inj[of B C] d | |
| 60420 | 2567 | obtain f where f: "f ` B \<subseteq> C" "inj_on f B" using \<open>finite B\<close> \<open>finite C\<close> | 
| 53406 | 2568 | by auto | 
| 2569 | from linear_independent_extend[OF B(2)] | |
| 2570 | obtain g where g: "linear g" "\<forall>x\<in> B. g x = f x" | |
| 2571 | by blast | |
| 2572 | from inj_on_iff_eq_card[OF fB, of f] f(2) have "card (f ` B) = card B" | |
| 44133 | 2573 | by simp | 
| 53406 | 2574 | with B(4) C(4) have ceq: "card (f ` B) = card C" | 
| 2575 | using d by simp | |
| 2576 | have "g ` B = f ` B" | |
| 2577 | using g(2) by (auto simp add: image_iff) | |
| 44133 | 2578 | also have "\<dots> = C" using card_subset_eq[OF fC f(1) ceq] . | 
| 2579 | finally have gBC: "g ` B = C" . | |
| 53406 | 2580 | have gi: "inj_on g B" | 
| 2581 | using f(2) g(2) by (auto simp add: inj_on_def) | |
| 44133 | 2582 | note g0 = linear_indep_image_lemma[OF g(1) fB, unfolded gBC, OF C(2) gi] | 
| 53406 | 2583 |   {
 | 
| 2584 | fix x y | |
| 2585 | assume x: "x \<in> S" and y: "y \<in> S" and gxy: "g x = g y" | |
| 2586 | from B(3) x y have x': "x \<in> span B" and y': "y \<in> span B" | |
| 2587 | by blast+ | |
| 2588 | from gxy have th0: "g (x - y) = 0" | |
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 2589 | by (simp add: linear_diff[OF g(1)]) | 
| 53406 | 2590 | have th1: "x - y \<in> span B" | 
| 63938 | 2591 | using x' y' by (metis span_diff) | 
| 53406 | 2592 | have "x = y" | 
| 2593 | using g0[OF th1 th0] by simp | |
| 2594 | } | |
| 44133 | 2595 | then have giS: "inj_on g S" | 
| 2596 | unfolding inj_on_def by blast | |
| 53406 | 2597 | from span_subspace[OF B(1,3) s] have "g ` S = span (g ` B)" | 
| 2598 | by (simp add: span_linear_image[OF g(1)]) | |
| 44133 | 2599 | also have "\<dots> = span C" unfolding gBC .. | 
| 2600 | also have "\<dots> = T" using span_subspace[OF C(1,3) t] . | |
| 2601 | finally have gS: "g ` S = T" . | |
| 53406 | 2602 | from g(1) gS giS show ?thesis | 
| 2603 | by blast | |
| 44133 | 2604 | qed | 
| 2605 | ||
| 2606 | lemma linear_eq_stdbasis: | |
| 56444 | 2607 | fixes f :: "'a::euclidean_space \<Rightarrow> _" | 
| 2608 | assumes lf: "linear f" | |
| 49663 | 2609 | and lg: "linear g" | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 2610 | and fg: "\<forall>b\<in>Basis. f b = g b" | 
| 44133 | 2611 | shows "f = g" | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 2612 | using linear_eq[OF lf lg, of _ Basis] fg by auto | 
| 44133 | 2613 | |
| 60420 | 2614 | text \<open>Similar results for bilinear functions.\<close> | 
| 44133 | 2615 | |
| 2616 | lemma bilinear_eq: | |
| 2617 | assumes bf: "bilinear f" | |
| 49522 | 2618 | and bg: "bilinear g" | 
| 53406 | 2619 | and SB: "S \<subseteq> span B" | 
| 2620 | and TC: "T \<subseteq> span C" | |
| 49522 | 2621 | and fg: "\<forall>x\<in> B. \<forall>y\<in> C. f x y = g x y" | 
| 44133 | 2622 | shows "\<forall>x\<in>S. \<forall>y\<in>T. f x y = g x y " | 
| 49663 | 2623 | proof - | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 2624 |   let ?P = "{x. \<forall>y\<in> span C. f x y = g x y}"
 | 
| 44133 | 2625 | from bf bg have sp: "subspace ?P" | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 2626 | unfolding bilinear_def linear_iff subspace_def bf bg | 
| 49663 | 2627 | by (auto simp add: span_0 bilinear_lzero[OF bf] bilinear_lzero[OF bg] span_add Ball_def | 
| 2628 | intro: bilinear_ladd[OF bf]) | |
| 44133 | 2629 | |
| 2630 | have "\<forall>x \<in> span B. \<forall>y\<in> span C. f x y = g x y" | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 2631 | apply (rule span_induct' [OF _ sp]) | 
| 44133 | 2632 | apply (rule ballI) | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 2633 | apply (rule span_induct') | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44166diff
changeset | 2634 | apply (simp add: fg) | 
| 44133 | 2635 | apply (auto simp add: subspace_def) | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53596diff
changeset | 2636 | using bf bg unfolding bilinear_def linear_iff | 
| 49522 | 2637 | apply (auto simp add: span_0 bilinear_rzero[OF bf] bilinear_rzero[OF bg] span_add Ball_def | 
| 49663 | 2638 | intro: bilinear_ladd[OF bf]) | 
| 49522 | 2639 | done | 
| 53406 | 2640 | then show ?thesis | 
| 2641 | using SB TC by auto | |
| 44133 | 2642 | qed | 
| 2643 | ||
| 49522 | 2644 | lemma bilinear_eq_stdbasis: | 
| 53406 | 2645 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> _" | 
| 44133 | 2646 | assumes bf: "bilinear f" | 
| 49522 | 2647 | and bg: "bilinear g" | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 2648 | and fg: "\<forall>i\<in>Basis. \<forall>j\<in>Basis. f i j = g i j" | 
| 44133 | 2649 | shows "f = g" | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 2650 | using bilinear_eq[OF bf bg equalityD2[OF span_Basis] equalityD2[OF span_Basis] fg] by blast | 
| 44133 | 2651 | |
| 60420 | 2652 | text \<open>An injective map @{typ "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"} is also surjective.\<close>
 | 
| 44133 | 2653 | |
| 49522 | 2654 | lemma linear_injective_imp_surjective: | 
| 56444 | 2655 | fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space" | 
| 53406 | 2656 | assumes lf: "linear f" | 
| 2657 | and fi: "inj f" | |
| 44133 | 2658 | shows "surj f" | 
| 49522 | 2659 | proof - | 
| 44133 | 2660 | let ?U = "UNIV :: 'a set" | 
| 2661 | from basis_exists[of ?U] obtain B | |
| 2662 | where B: "B \<subseteq> ?U" "independent B" "?U \<subseteq> span B" "card B = dim ?U" | |
| 2663 | by blast | |
| 53406 | 2664 | from B(4) have d: "dim ?U = card B" | 
| 2665 | by simp | |
| 44133 | 2666 | have th: "?U \<subseteq> span (f ` B)" | 
| 2667 | apply (rule card_ge_dim_independent) | |
| 2668 | apply blast | |
| 2669 | apply (rule independent_injective_image[OF B(2) lf fi]) | |
| 2670 | apply (rule order_eq_refl) | |
| 2671 | apply (rule sym) | |
| 2672 | unfolding d | |
| 2673 | apply (rule card_image) | |
| 2674 | apply (rule subset_inj_on[OF fi]) | |
| 49522 | 2675 | apply blast | 
| 2676 | done | |
| 44133 | 2677 | from th show ?thesis | 
| 2678 | unfolding span_linear_image[OF lf] surj_def | |
| 2679 | using B(3) by blast | |
| 2680 | qed | |
| 2681 | ||
| 60420 | 2682 | text \<open>And vice versa.\<close> | 
| 44133 | 2683 | |
| 2684 | lemma surjective_iff_injective_gen: | |
| 49663 | 2685 | assumes fS: "finite S" | 
| 2686 | and fT: "finite T" | |
| 2687 | and c: "card S = card T" | |
| 49522 | 2688 | and ST: "f ` S \<subseteq> T" | 
| 53406 | 2689 | shows "(\<forall>y \<in> T. \<exists>x \<in> S. f x = y) \<longleftrightarrow> inj_on f S" | 
| 2690 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 2691 | proof | |
| 2692 | assume h: "?lhs" | |
| 2693 |   {
 | |
| 2694 | fix x y | |
| 2695 | assume x: "x \<in> S" | |
| 2696 | assume y: "y \<in> S" | |
| 2697 | assume f: "f x = f y" | |
| 2698 | from x fS have S0: "card S \<noteq> 0" | |
| 2699 | by auto | |
| 2700 | have "x = y" | |
| 2701 | proof (rule ccontr) | |
| 53716 | 2702 | assume xy: "\<not> ?thesis" | 
| 53406 | 2703 |       have th: "card S \<le> card (f ` (S - {y}))"
 | 
| 2704 | unfolding c | |
| 2705 | apply (rule card_mono) | |
| 2706 | apply (rule finite_imageI) | |
| 2707 | using fS apply simp | |
| 2708 | using h xy x y f unfolding subset_eq image_iff | |
| 2709 | apply auto | |
| 2710 | apply (case_tac "xa = f x") | |
| 2711 | apply (rule bexI[where x=x]) | |
| 2712 | apply auto | |
| 2713 | done | |
| 53716 | 2714 |       also have " \<dots> \<le> card (S - {y})"
 | 
| 53406 | 2715 | apply (rule card_image_le) | 
| 2716 | using fS by simp | |
| 2717 | also have "\<dots> \<le> card S - 1" using y fS by simp | |
| 2718 | finally show False using S0 by arith | |
| 2719 | qed | |
| 2720 | } | |
| 2721 | then show ?rhs | |
| 2722 | unfolding inj_on_def by blast | |
| 2723 | next | |
| 2724 | assume h: ?rhs | |
| 2725 | have "f ` S = T" | |
| 2726 | apply (rule card_subset_eq[OF fT ST]) | |
| 2727 | unfolding card_image[OF h] | |
| 2728 | apply (rule c) | |
| 2729 | done | |
| 2730 | then show ?lhs by blast | |
| 44133 | 2731 | qed | 
| 2732 | ||
| 49522 | 2733 | lemma linear_surjective_imp_injective: | 
| 53406 | 2734 | fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space" | 
| 2735 | assumes lf: "linear f" | |
| 2736 | and sf: "surj f" | |
| 44133 | 2737 | shows "inj f" | 
| 49522 | 2738 | proof - | 
| 44133 | 2739 | let ?U = "UNIV :: 'a set" | 
| 2740 | from basis_exists[of ?U] obtain B | |
| 2741 | where B: "B \<subseteq> ?U" "independent B" "?U \<subseteq> span B" and d: "card B = dim ?U" | |
| 2742 | by blast | |
| 53406 | 2743 |   {
 | 
| 2744 | fix x | |
| 2745 | assume x: "x \<in> span B" | |
| 2746 | assume fx: "f x = 0" | |
| 2747 | from B(2) have fB: "finite B" | |
| 2748 | using independent_bound by auto | |
| 44133 | 2749 | have fBi: "independent (f ` B)" | 
| 2750 | apply (rule card_le_dim_spanning[of "f ` B" ?U]) | |
| 2751 | apply blast | |
| 2752 | using sf B(3) | |
| 2753 | unfolding span_linear_image[OF lf] surj_def subset_eq image_iff | |
| 2754 | apply blast | |
| 2755 | using fB apply blast | |
| 2756 | unfolding d[symmetric] | |
| 2757 | apply (rule card_image_le) | |
| 2758 | apply (rule fB) | |
| 2759 | done | |
| 2760 | have th0: "dim ?U \<le> card (f ` B)" | |
| 2761 | apply (rule span_card_ge_dim) | |
| 2762 | apply blast | |
| 2763 | unfolding span_linear_image[OF lf] | |
| 2764 | apply (rule subset_trans[where B = "f ` UNIV"]) | |
| 53406 | 2765 | using sf unfolding surj_def | 
| 2766 | apply blast | |
| 44133 | 2767 | apply (rule image_mono) | 
| 2768 | apply (rule B(3)) | |
| 2769 | apply (metis finite_imageI fB) | |
| 2770 | done | |
| 2771 | moreover have "card (f ` B) \<le> card B" | |
| 2772 | by (rule card_image_le, rule fB) | |
| 53406 | 2773 | ultimately have th1: "card B = card (f ` B)" | 
| 2774 | unfolding d by arith | |
| 44133 | 2775 | have fiB: "inj_on f B" | 
| 49522 | 2776 | unfolding surjective_iff_injective_gen[OF fB finite_imageI[OF fB] th1 subset_refl, symmetric] | 
| 2777 | by blast | |
| 44133 | 2778 | from linear_indep_image_lemma[OF lf fB fBi fiB x] fx | 
| 53406 | 2779 | have "x = 0" by blast | 
| 2780 | } | |
| 2781 | then show ?thesis | |
| 2782 | unfolding linear_injective_0[OF lf] | |
| 2783 | using B(3) | |
| 2784 | by blast | |
| 44133 | 2785 | qed | 
| 2786 | ||
| 60420 | 2787 | text \<open>Hence either is enough for isomorphism.\<close> | 
| 44133 | 2788 | |
| 2789 | lemma left_right_inverse_eq: | |
| 53406 | 2790 | assumes fg: "f \<circ> g = id" | 
| 2791 | and gh: "g \<circ> h = id" | |
| 44133 | 2792 | shows "f = h" | 
| 49522 | 2793 | proof - | 
| 53406 | 2794 | have "f = f \<circ> (g \<circ> h)" | 
| 2795 | unfolding gh by simp | |
| 2796 | also have "\<dots> = (f \<circ> g) \<circ> h" | |
| 2797 | by (simp add: o_assoc) | |
| 2798 | finally show "f = h" | |
| 2799 | unfolding fg by simp | |
| 44133 | 2800 | qed | 
| 2801 | ||
| 2802 | lemma isomorphism_expand: | |
| 53406 | 2803 | "f \<circ> g = id \<and> g \<circ> f = id \<longleftrightarrow> (\<forall>x. f (g x) = x) \<and> (\<forall>x. g (f x) = x)" | 
| 44133 | 2804 | by (simp add: fun_eq_iff o_def id_def) | 
| 2805 | ||
| 49522 | 2806 | lemma linear_injective_isomorphism: | 
| 56444 | 2807 | fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space" | 
| 53406 | 2808 | assumes lf: "linear f" | 
| 2809 | and fi: "inj f" | |
| 44133 | 2810 | shows "\<exists>f'. linear f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)" | 
| 49522 | 2811 | unfolding isomorphism_expand[symmetric] | 
| 2812 | using linear_surjective_right_inverse[OF lf linear_injective_imp_surjective[OF lf fi]] | |
| 2813 | linear_injective_left_inverse[OF lf fi] | |
| 2814 | by (metis left_right_inverse_eq) | |
| 44133 | 2815 | |
| 53406 | 2816 | lemma linear_surjective_isomorphism: | 
| 2817 | fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space" | |
| 2818 | assumes lf: "linear f" | |
| 2819 | and sf: "surj f" | |
| 44133 | 2820 | shows "\<exists>f'. linear f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)" | 
| 49522 | 2821 | unfolding isomorphism_expand[symmetric] | 
| 2822 | using linear_surjective_right_inverse[OF lf sf] | |
| 2823 | linear_injective_left_inverse[OF lf linear_surjective_imp_injective[OF lf sf]] | |
| 2824 | by (metis left_right_inverse_eq) | |
| 44133 | 2825 | |
| 60420 | 2826 | text \<open>Left and right inverses are the same for | 
| 2827 |   @{typ "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"}.\<close>
 | |
| 44133 | 2828 | |
| 49522 | 2829 | lemma linear_inverse_left: | 
| 53406 | 2830 | fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space" | 
| 2831 | assumes lf: "linear f" | |
| 2832 | and lf': "linear f'" | |
| 2833 | shows "f \<circ> f' = id \<longleftrightarrow> f' \<circ> f = id" | |
| 49522 | 2834 | proof - | 
| 53406 | 2835 |   {
 | 
| 2836 | fix f f':: "'a \<Rightarrow> 'a" | |
| 2837 | assume lf: "linear f" "linear f'" | |
| 2838 | assume f: "f \<circ> f' = id" | |
| 44133 | 2839 | from f have sf: "surj f" | 
| 2840 | apply (auto simp add: o_def id_def surj_def) | |
| 49522 | 2841 | apply metis | 
| 2842 | done | |
| 44133 | 2843 | from linear_surjective_isomorphism[OF lf(1) sf] lf f | 
| 53406 | 2844 | have "f' \<circ> f = id" | 
| 2845 | unfolding fun_eq_iff o_def id_def by metis | |
| 2846 | } | |
| 2847 | then show ?thesis | |
| 2848 | using lf lf' by metis | |
| 44133 | 2849 | qed | 
| 2850 | ||
| 60420 | 2851 | text \<open>Moreover, a one-sided inverse is automatically linear.\<close> | 
| 44133 | 2852 | |
| 49522 | 2853 | lemma left_inverse_linear: | 
| 53406 | 2854 | fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space" | 
| 2855 | assumes lf: "linear f" | |
| 2856 | and gf: "g \<circ> f = id" | |
| 44133 | 2857 | shows "linear g" | 
| 49522 | 2858 | proof - | 
| 2859 | from gf have fi: "inj f" | |
| 2860 | apply (auto simp add: inj_on_def o_def id_def fun_eq_iff) | |
| 2861 | apply metis | |
| 2862 | done | |
| 44133 | 2863 | from linear_injective_isomorphism[OF lf fi] | 
| 53406 | 2864 | obtain h :: "'a \<Rightarrow> 'a" where h: "linear h" "\<forall>x. h (f x) = x" "\<forall>x. f (h x) = x" | 
| 2865 | by blast | |
| 49522 | 2866 | have "h = g" | 
| 2867 | apply (rule ext) using gf h(2,3) | |
| 44133 | 2868 | apply (simp add: o_def id_def fun_eq_iff) | 
| 49522 | 2869 | apply metis | 
| 2870 | done | |
| 44133 | 2871 | with h(1) show ?thesis by blast | 
| 2872 | qed | |
| 2873 | ||
| 60800 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 2874 | lemma inj_linear_imp_inv_linear: | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 2875 | fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 2876 | assumes "linear f" "inj f" shows "linear (inv f)" | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 2877 | using assms inj_iff left_inverse_linear by blast | 
| 
7d04351c795a
New material for Cauchy's integral theorem
 paulson <lp15@cam.ac.uk> parents: 
60762diff
changeset | 2878 | |
| 49522 | 2879 | |
| 60420 | 2880 | subsection \<open>Infinity norm\<close> | 
| 44133 | 2881 | |
| 56444 | 2882 | definition "infnorm (x::'a::euclidean_space) = Sup {\<bar>x \<bullet> b\<bar> |b. b \<in> Basis}"
 | 
| 44133 | 2883 | |
| 2884 | lemma infnorm_set_image: | |
| 53716 | 2885 | fixes x :: "'a::euclidean_space" | 
| 56444 | 2886 |   shows "{\<bar>x \<bullet> i\<bar> |i. i \<in> Basis} = (\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis"
 | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 2887 | by blast | 
| 44133 | 2888 | |
| 53716 | 2889 | lemma infnorm_Max: | 
| 2890 | fixes x :: "'a::euclidean_space" | |
| 56444 | 2891 | shows "infnorm x = Max ((\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61973diff
changeset | 2892 | by (simp add: infnorm_def infnorm_set_image cSup_eq_Max) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2893 | |
| 44133 | 2894 | lemma infnorm_set_lemma: | 
| 53716 | 2895 | fixes x :: "'a::euclidean_space" | 
| 56444 | 2896 |   shows "finite {\<bar>x \<bullet> i\<bar> |i. i \<in> Basis}"
 | 
| 2897 |     and "{\<bar>x \<bullet> i\<bar> |i. i \<in> Basis} \<noteq> {}"
 | |
| 44133 | 2898 | unfolding infnorm_set_image | 
| 2899 | by auto | |
| 2900 | ||
| 53406 | 2901 | lemma infnorm_pos_le: | 
| 2902 | fixes x :: "'a::euclidean_space" | |
| 2903 | shows "0 \<le> infnorm x" | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2904 | by (simp add: infnorm_Max Max_ge_iff ex_in_conv) | 
| 44133 | 2905 | |
| 53406 | 2906 | lemma infnorm_triangle: | 
| 2907 | fixes x :: "'a::euclidean_space" | |
| 2908 | shows "infnorm (x + y) \<le> infnorm x + infnorm y" | |
| 49522 | 2909 | proof - | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2910 | have *: "\<And>a b c d :: real. \<bar>a\<bar> \<le> c \<Longrightarrow> \<bar>b\<bar> \<le> d \<Longrightarrow> \<bar>a + b\<bar> \<le> c + d" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2911 | by simp | 
| 44133 | 2912 | show ?thesis | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2913 | by (auto simp: infnorm_Max inner_add_left intro!: *) | 
| 44133 | 2914 | qed | 
| 2915 | ||
| 53406 | 2916 | lemma infnorm_eq_0: | 
| 2917 | fixes x :: "'a::euclidean_space" | |
| 2918 | shows "infnorm x = 0 \<longleftrightarrow> x = 0" | |
| 49522 | 2919 | proof - | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2920 | have "infnorm x \<le> 0 \<longleftrightarrow> x = 0" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2921 | unfolding infnorm_Max by (simp add: euclidean_all_zero_iff) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2922 | then show ?thesis | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2923 | using infnorm_pos_le[of x] by simp | 
| 44133 | 2924 | qed | 
| 2925 | ||
| 2926 | lemma infnorm_0: "infnorm 0 = 0" | |
| 2927 | by (simp add: infnorm_eq_0) | |
| 2928 | ||
| 2929 | lemma infnorm_neg: "infnorm (- x) = infnorm x" | |
| 2930 | unfolding infnorm_def | |
| 2931 | apply (rule cong[of "Sup" "Sup"]) | |
| 49522 | 2932 | apply blast | 
| 2933 | apply auto | |
| 2934 | done | |
| 44133 | 2935 | |
| 2936 | lemma infnorm_sub: "infnorm (x - y) = infnorm (y - x)" | |
| 49522 | 2937 | proof - | 
| 44133 | 2938 | have "y - x = - (x - y)" by simp | 
| 53406 | 2939 | then show ?thesis | 
| 2940 | by (metis infnorm_neg) | |
| 44133 | 2941 | qed | 
| 2942 | ||
| 53406 | 2943 | lemma real_abs_sub_infnorm: "\<bar>infnorm x - infnorm y\<bar> \<le> infnorm (x - y)" | 
| 49522 | 2944 | proof - | 
| 56444 | 2945 | have th: "\<And>(nx::real) n ny. nx \<le> n + ny \<Longrightarrow> ny \<le> n + nx \<Longrightarrow> \<bar>nx - ny\<bar> \<le> n" | 
| 44133 | 2946 | by arith | 
| 2947 | from infnorm_triangle[of "x - y" " y"] infnorm_triangle[of "x - y" "-x"] | |
| 2948 | have ths: "infnorm x \<le> infnorm (x - y) + infnorm y" | |
| 2949 | "infnorm y \<le> infnorm (x - y) + infnorm x" | |
| 44454 | 2950 | by (simp_all add: field_simps infnorm_neg) | 
| 53406 | 2951 | from th[OF ths] show ?thesis . | 
| 44133 | 2952 | qed | 
| 2953 | ||
| 53406 | 2954 | lemma real_abs_infnorm: "\<bar>infnorm x\<bar> = infnorm x" | 
| 44133 | 2955 | using infnorm_pos_le[of x] by arith | 
| 2956 | ||
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 2957 | lemma Basis_le_infnorm: | 
| 53406 | 2958 | fixes x :: "'a::euclidean_space" | 
| 2959 | shows "b \<in> Basis \<Longrightarrow> \<bar>x \<bullet> b\<bar> \<le> infnorm x" | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2960 | by (simp add: infnorm_Max) | 
| 44133 | 2961 | |
| 56444 | 2962 | lemma infnorm_mul: "infnorm (a *\<^sub>R x) = \<bar>a\<bar> * infnorm x" | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2963 | unfolding infnorm_Max | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2964 | proof (safe intro!: Max_eqI) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2965 | let ?B = "(\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis" | 
| 53406 | 2966 |   {
 | 
| 2967 | fix b :: 'a | |
| 2968 | assume "b \<in> Basis" | |
| 2969 | then show "\<bar>a *\<^sub>R x \<bullet> b\<bar> \<le> \<bar>a\<bar> * Max ?B" | |
| 2970 | by (simp add: abs_mult mult_left_mono) | |
| 2971 | next | |
| 2972 | from Max_in[of ?B] obtain b where "b \<in> Basis" "Max ?B = \<bar>x \<bullet> b\<bar>" | |
| 2973 | by (auto simp del: Max_in) | |
| 2974 | then show "\<bar>a\<bar> * Max ((\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis) \<in> (\<lambda>i. \<bar>a *\<^sub>R x \<bullet> i\<bar>) ` Basis" | |
| 2975 | by (intro image_eqI[where x=b]) (auto simp: abs_mult) | |
| 2976 | } | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2977 | qed simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2978 | |
| 53406 | 2979 | lemma infnorm_mul_lemma: "infnorm (a *\<^sub>R x) \<le> \<bar>a\<bar> * infnorm x" | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2980 | unfolding infnorm_mul .. | 
| 44133 | 2981 | |
| 2982 | lemma infnorm_pos_lt: "infnorm x > 0 \<longleftrightarrow> x \<noteq> 0" | |
| 2983 | using infnorm_pos_le[of x] infnorm_eq_0[of x] by arith | |
| 2984 | ||
| 60420 | 2985 | text \<open>Prove that it differs only up to a bound from Euclidean norm.\<close> | 
| 44133 | 2986 | |
| 2987 | lemma infnorm_le_norm: "infnorm x \<le> norm x" | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 2988 | by (simp add: Basis_le_norm infnorm_Max) | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 2989 | |
| 54776 
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
 immler parents: 
54703diff
changeset | 2990 | lemma (in euclidean_space) euclidean_inner: "inner x y = (\<Sum>b\<in>Basis. (x \<bullet> b) * (y \<bullet> b))" | 
| 57418 | 2991 | by (subst (1 2) euclidean_representation [symmetric]) | 
| 64267 | 2992 | (simp add: inner_sum_right inner_Basis ac_simps) | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
50105diff
changeset | 2993 | |
| 53716 | 2994 | lemma norm_le_infnorm: | 
| 2995 | fixes x :: "'a::euclidean_space" | |
| 2996 |   shows "norm x \<le> sqrt DIM('a) * infnorm x"
 | |
| 49522 | 2997 | proof - | 
| 44133 | 2998 |   let ?d = "DIM('a)"
 | 
| 53406 | 2999 | have "real ?d \<ge> 0" | 
| 3000 | by simp | |
| 53077 | 3001 | then have d2: "(sqrt (real ?d))\<^sup>2 = real ?d" | 
| 44133 | 3002 | by (auto intro: real_sqrt_pow2) | 
| 3003 | have th: "sqrt (real ?d) * infnorm x \<ge> 0" | |
| 3004 | by (simp add: zero_le_mult_iff infnorm_pos_le) | |
| 53077 | 3005 | have th1: "x \<bullet> x \<le> (sqrt (real ?d) * infnorm x)\<^sup>2" | 
| 44133 | 3006 | unfolding power_mult_distrib d2 | 
| 53716 | 3007 | apply (subst euclidean_inner) | 
| 44133 | 3008 | apply (subst power2_abs[symmetric]) | 
| 64267 | 3009 | apply (rule order_trans[OF sum_bounded_above[where K="\<bar>infnorm x\<bar>\<^sup>2"]]) | 
| 49663 | 3010 | apply (auto simp add: power2_eq_square[symmetric]) | 
| 44133 | 3011 | apply (subst power2_abs[symmetric]) | 
| 3012 | apply (rule power_mono) | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
50526diff
changeset | 3013 | apply (auto simp: infnorm_Max) | 
| 49522 | 3014 | done | 
| 44133 | 3015 | from real_le_lsqrt[OF inner_ge_zero th th1] | 
| 53406 | 3016 | show ?thesis | 
| 3017 | unfolding norm_eq_sqrt_inner id_def . | |
| 44133 | 3018 | qed | 
| 3019 | ||
| 44646 | 3020 | lemma tendsto_infnorm [tendsto_intros]: | 
| 61973 | 3021 | assumes "(f \<longlongrightarrow> a) F" | 
| 3022 | shows "((\<lambda>x. infnorm (f x)) \<longlongrightarrow> infnorm a) F" | |
| 44646 | 3023 | proof (rule tendsto_compose [OF LIM_I assms]) | 
| 53406 | 3024 | fix r :: real | 
| 3025 | assume "r > 0" | |
| 49522 | 3026 | then show "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (infnorm x - infnorm a) < r" | 
| 44646 | 3027 | by (metis real_norm_def le_less_trans real_abs_sub_infnorm infnorm_le_norm) | 
| 3028 | qed | |
| 3029 | ||
| 60420 | 3030 | text \<open>Equality in Cauchy-Schwarz and triangle inequalities.\<close> | 
| 44133 | 3031 | |
| 53406 | 3032 | lemma norm_cauchy_schwarz_eq: "x \<bullet> y = norm x * norm y \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x" | 
| 3033 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 49522 | 3034 | proof - | 
| 53406 | 3035 |   {
 | 
| 3036 | assume h: "x = 0" | |
| 3037 | then have ?thesis by simp | |
| 3038 | } | |
| 44133 | 3039 | moreover | 
| 53406 | 3040 |   {
 | 
| 3041 | assume h: "y = 0" | |
| 3042 | then have ?thesis by simp | |
| 3043 | } | |
| 44133 | 3044 | moreover | 
| 53406 | 3045 |   {
 | 
| 3046 | assume x: "x \<noteq> 0" and y: "y \<noteq> 0" | |
| 44133 | 3047 | from inner_eq_zero_iff[of "norm y *\<^sub>R x - norm x *\<^sub>R y"] | 
| 49522 | 3048 | have "?rhs \<longleftrightarrow> | 
| 3049 | (norm y * (norm y * norm x * norm x - norm x * (x \<bullet> y)) - | |
| 3050 | norm x * (norm y * (y \<bullet> x) - norm x * norm y * norm y) = 0)" | |
| 44133 | 3051 | using x y | 
| 3052 | unfolding inner_simps | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53939diff
changeset | 3053 | unfolding power2_norm_eq_inner[symmetric] power2_eq_square right_minus_eq | 
| 49522 | 3054 | apply (simp add: inner_commute) | 
| 3055 | apply (simp add: field_simps) | |
| 3056 | apply metis | |
| 3057 | done | |
| 44133 | 3058 | also have "\<dots> \<longleftrightarrow> (2 * norm x * norm y * (norm x * norm y - x \<bullet> y) = 0)" using x y | 
| 3059 | by (simp add: field_simps inner_commute) | |
| 3060 | also have "\<dots> \<longleftrightarrow> ?lhs" using x y | |
| 3061 | apply simp | |
| 49522 | 3062 | apply metis | 
| 3063 | done | |
| 53406 | 3064 | finally have ?thesis by blast | 
| 3065 | } | |
| 44133 | 3066 | ultimately show ?thesis by blast | 
| 3067 | qed | |
| 3068 | ||
| 3069 | lemma norm_cauchy_schwarz_abs_eq: | |
| 56444 | 3070 | "\<bar>x \<bullet> y\<bar> = norm x * norm y \<longleftrightarrow> | 
| 53716 | 3071 | norm x *\<^sub>R y = norm y *\<^sub>R x \<or> norm x *\<^sub>R y = - norm y *\<^sub>R x" | 
| 53406 | 3072 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 49522 | 3073 | proof - | 
| 56444 | 3074 | have th: "\<And>(x::real) a. a \<ge> 0 \<Longrightarrow> \<bar>x\<bar> = a \<longleftrightarrow> x = a \<or> x = - a" | 
| 53406 | 3075 | by arith | 
| 44133 | 3076 | have "?rhs \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x \<or> norm (- x) *\<^sub>R y = norm y *\<^sub>R (- x)" | 
| 3077 | by simp | |
| 53406 | 3078 | also have "\<dots> \<longleftrightarrow>(x \<bullet> y = norm x * norm y \<or> (- x) \<bullet> y = norm x * norm y)" | 
| 44133 | 3079 | unfolding norm_cauchy_schwarz_eq[symmetric] | 
| 3080 | unfolding norm_minus_cancel norm_scaleR .. | |
| 3081 | also have "\<dots> \<longleftrightarrow> ?lhs" | |
| 53406 | 3082 | unfolding th[OF mult_nonneg_nonneg, OF norm_ge_zero[of x] norm_ge_zero[of y]] inner_simps | 
| 3083 | by auto | |
| 44133 | 3084 | finally show ?thesis .. | 
| 3085 | qed | |
| 3086 | ||
| 3087 | lemma norm_triangle_eq: | |
| 3088 | fixes x y :: "'a::real_inner" | |
| 53406 | 3089 | shows "norm (x + y) = norm x + norm y \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x" | 
| 49522 | 3090 | proof - | 
| 53406 | 3091 |   {
 | 
| 3092 | assume x: "x = 0 \<or> y = 0" | |
| 3093 | then have ?thesis | |
| 3094 | by (cases "x = 0") simp_all | |
| 3095 | } | |
| 44133 | 3096 | moreover | 
| 53406 | 3097 |   {
 | 
| 3098 | assume x: "x \<noteq> 0" and y: "y \<noteq> 0" | |
| 49522 | 3099 | then have "norm x \<noteq> 0" "norm y \<noteq> 0" | 
| 44133 | 3100 | by simp_all | 
| 49522 | 3101 | then have n: "norm x > 0" "norm y > 0" | 
| 3102 | using norm_ge_zero[of x] norm_ge_zero[of y] by arith+ | |
| 53406 | 3103 | have th: "\<And>(a::real) b c. a + b + c \<noteq> 0 \<Longrightarrow> a = b + c \<longleftrightarrow> a\<^sup>2 = (b + c)\<^sup>2" | 
| 49522 | 3104 | by algebra | 
| 53077 | 3105 | have "norm (x + y) = norm x + norm y \<longleftrightarrow> (norm (x + y))\<^sup>2 = (norm x + norm y)\<^sup>2" | 
| 53406 | 3106 | apply (rule th) | 
| 3107 | using n norm_ge_zero[of "x + y"] | |
| 49522 | 3108 | apply arith | 
| 3109 | done | |
| 44133 | 3110 | also have "\<dots> \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x" | 
| 3111 | unfolding norm_cauchy_schwarz_eq[symmetric] | |
| 3112 | unfolding power2_norm_eq_inner inner_simps | |
| 3113 | by (simp add: power2_norm_eq_inner[symmetric] power2_eq_square inner_commute field_simps) | |
| 53406 | 3114 | finally have ?thesis . | 
| 3115 | } | |
| 44133 | 3116 | ultimately show ?thesis by blast | 
| 3117 | qed | |
| 3118 | ||
| 49522 | 3119 | |
| 60420 | 3120 | subsection \<open>Collinearity\<close> | 
| 44133 | 3121 | |
| 49522 | 3122 | definition collinear :: "'a::real_vector set \<Rightarrow> bool" | 
| 3123 | where "collinear S \<longleftrightarrow> (\<exists>u. \<forall>x \<in> S. \<forall> y \<in> S. \<exists>c. x - y = c *\<^sub>R u)" | |
| 44133 | 3124 | |
| 66287 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3125 | lemma collinear_alt: | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3126 | "collinear S \<longleftrightarrow> (\<exists>u v. \<forall>x \<in> S. \<exists>c. x = u + c *\<^sub>R v)" (is "?lhs = ?rhs") | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3127 | proof | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3128 | assume ?lhs | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3129 | then show ?rhs | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3130 | unfolding collinear_def by (metis Groups.add_ac(2) diff_add_cancel) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3131 | next | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3132 | assume ?rhs | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3133 | then obtain u v where *: "\<And>x. x \<in> S \<Longrightarrow> \<exists>c. x = u + c *\<^sub>R v" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3134 | by (auto simp: ) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3135 | have "\<exists>c. x - y = c *\<^sub>R v" if "x \<in> S" "y \<in> S" for x y | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3136 | by (metis *[OF \<open>x \<in> S\<close>] *[OF \<open>y \<in> S\<close>] scaleR_left.diff add_diff_cancel_left) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3137 | then show ?lhs | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3138 | using collinear_def by blast | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3139 | qed | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3140 | |
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3141 | lemma collinear: | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3142 |   fixes S :: "'a::{perfect_space,real_vector} set"
 | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3143 | shows "collinear S \<longleftrightarrow> (\<exists>u. u \<noteq> 0 \<and> (\<forall>x \<in> S. \<forall> y \<in> S. \<exists>c. x - y = c *\<^sub>R u))" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3144 | proof - | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3145 | have "\<exists>v. v \<noteq> 0 \<and> (\<forall>x\<in>S. \<forall>y\<in>S. \<exists>c. x - y = c *\<^sub>R v)" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3146 | if "\<forall>x\<in>S. \<forall>y\<in>S. \<exists>c. x - y = c *\<^sub>R u" "u=0" for u | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3147 | proof - | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3148 | have "\<forall>x\<in>S. \<forall>y\<in>S. x = y" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3149 | using that by auto | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3150 | moreover | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3151 | obtain v::'a where "v \<noteq> 0" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3152 | using UNIV_not_singleton [of 0] by auto | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3153 | ultimately have "\<forall>x\<in>S. \<forall>y\<in>S. \<exists>c. x - y = c *\<^sub>R v" | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3154 | by auto | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3155 | then show ?thesis | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3156 | using \<open>v \<noteq> 0\<close> by blast | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3157 | qed | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3158 | then show ?thesis | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3159 | apply (clarsimp simp: collinear_def) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3160 | by (metis real_vector.scale_zero_right vector_fraction_eq_iff) | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3161 | qed | 
| 
005a30862ed0
new material: Colinearity, convex sets, polytopes
 paulson <lp15@cam.ac.uk> parents: 
65680diff
changeset | 3162 | |
| 63881 
b746b19197bd
lots of new results about topology, affine dimension etc
 paulson <lp15@cam.ac.uk> parents: 
63680diff
changeset | 3163 | lemma collinear_subset: "\<lbrakk>collinear T; S \<subseteq> T\<rbrakk> \<Longrightarrow> collinear S" | 
| 
b746b19197bd
lots of new results about topology, affine dimension etc
 paulson <lp15@cam.ac.uk> parents: 
63680diff
changeset | 3164 | by (meson collinear_def subsetCE) | 
| 
b746b19197bd
lots of new results about topology, affine dimension etc
 paulson <lp15@cam.ac.uk> parents: 
63680diff
changeset | 3165 | |
| 60762 | 3166 | lemma collinear_empty [iff]: "collinear {}"
 | 
| 53406 | 3167 | by (simp add: collinear_def) | 
| 44133 | 3168 | |
| 60762 | 3169 | lemma collinear_sing [iff]: "collinear {x}"
 | 
| 44133 | 3170 | by (simp add: collinear_def) | 
| 3171 | ||
| 60762 | 3172 | lemma collinear_2 [iff]: "collinear {x, y}"
 | 
| 44133 | 3173 | apply (simp add: collinear_def) | 
| 3174 | apply (rule exI[where x="x - y"]) | |
| 3175 | apply auto | |
| 3176 | apply (rule exI[where x=1], simp) | |
| 3177 | apply (rule exI[where x="- 1"], simp) | |
| 3178 | done | |
| 3179 | ||
| 56444 | 3180 | lemma collinear_lemma: "collinear {0, x, y} \<longleftrightarrow> x = 0 \<or> y = 0 \<or> (\<exists>c. y = c *\<^sub>R x)"
 | 
| 53406 | 3181 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 49522 | 3182 | proof - | 
| 53406 | 3183 |   {
 | 
| 3184 | assume "x = 0 \<or> y = 0" | |
| 3185 | then have ?thesis | |
| 3186 | by (cases "x = 0") (simp_all add: collinear_2 insert_commute) | |
| 3187 | } | |
| 44133 | 3188 | moreover | 
| 53406 | 3189 |   {
 | 
| 3190 | assume x: "x \<noteq> 0" and y: "y \<noteq> 0" | |
| 3191 | have ?thesis | |
| 3192 | proof | |
| 3193 | assume h: "?lhs" | |
| 49522 | 3194 |       then obtain u where u: "\<forall> x\<in> {0,x,y}. \<forall>y\<in> {0,x,y}. \<exists>c. x - y = c *\<^sub>R u"
 | 
| 3195 | unfolding collinear_def by blast | |
| 44133 | 3196 | from u[rule_format, of x 0] u[rule_format, of y 0] | 
| 3197 | obtain cx and cy where | |
| 3198 | cx: "x = cx *\<^sub>R u" and cy: "y = cy *\<^sub>R u" | |
| 3199 | by auto | |
| 3200 | from cx x have cx0: "cx \<noteq> 0" by auto | |
| 3201 | from cy y have cy0: "cy \<noteq> 0" by auto | |
| 3202 | let ?d = "cy / cx" | |
| 3203 | from cx cy cx0 have "y = ?d *\<^sub>R x" | |
| 3204 | by simp | |
| 53406 | 3205 | then show ?rhs using x y by blast | 
| 3206 | next | |
| 3207 | assume h: "?rhs" | |
| 3208 | then obtain c where c: "y = c *\<^sub>R x" | |
| 3209 | using x y by blast | |
| 3210 | show ?lhs | |
| 3211 | unfolding collinear_def c | |
| 44133 | 3212 | apply (rule exI[where x=x]) | 
| 3213 | apply auto | |
| 3214 | apply (rule exI[where x="- 1"], simp) | |
| 3215 | apply (rule exI[where x= "-c"], simp) | |
| 3216 | apply (rule exI[where x=1], simp) | |
| 3217 | apply (rule exI[where x="1 - c"], simp add: scaleR_left_diff_distrib) | |
| 3218 | apply (rule exI[where x="c - 1"], simp add: scaleR_left_diff_distrib) | |
| 53406 | 3219 | done | 
| 3220 | qed | |
| 3221 | } | |
| 44133 | 3222 | ultimately show ?thesis by blast | 
| 3223 | qed | |
| 3224 | ||
| 56444 | 3225 | lemma norm_cauchy_schwarz_equal: "\<bar>x \<bullet> y\<bar> = norm x * norm y \<longleftrightarrow> collinear {0, x, y}"
 | 
| 49522 | 3226 | unfolding norm_cauchy_schwarz_abs_eq | 
| 63075 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 3227 | apply (cases "x=0", simp_all) | 
| 
60a42a4166af
lemmas about dimension, hyperplanes, span, etc.
 paulson <lp15@cam.ac.uk> parents: 
63072diff
changeset | 3228 | apply (cases "y=0", simp_all add: insert_commute) | 
| 49522 | 3229 | unfolding collinear_lemma | 
| 3230 | apply simp | |
| 3231 | apply (subgoal_tac "norm x \<noteq> 0") | |
| 3232 | apply (subgoal_tac "norm y \<noteq> 0") | |
| 3233 | apply (rule iffI) | |
| 3234 | apply (cases "norm x *\<^sub>R y = norm y *\<^sub>R x") | |
| 3235 | apply (rule exI[where x="(1/norm x) * norm y"]) | |
| 3236 | apply (drule sym) | |
| 3237 | unfolding scaleR_scaleR[symmetric] | |
| 3238 | apply (simp add: field_simps) | |
| 3239 | apply (rule exI[where x="(1/norm x) * - norm y"]) | |
| 3240 | apply clarify | |
| 3241 | apply (drule sym) | |
| 3242 | unfolding scaleR_scaleR[symmetric] | |
| 3243 | apply (simp add: field_simps) | |
| 3244 | apply (erule exE) | |
| 3245 | apply (erule ssubst) | |
| 3246 | unfolding scaleR_scaleR | |
| 3247 | unfolding norm_scaleR | |
| 3248 | apply (subgoal_tac "norm x * c = \<bar>c\<bar> * norm x \<or> norm x * c = - \<bar>c\<bar> * norm x") | |
| 55775 | 3249 | apply (auto simp add: field_simps) | 
| 49522 | 3250 | done | 
| 3251 | ||
| 54776 
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
 immler parents: 
54703diff
changeset | 3252 | end |