author | krauss |
Fri, 05 May 2006 17:17:21 +0200 | |
changeset 19564 | d3e2f532459a |
parent 19363 | 667b5ea637dd |
child 19656 | 09be06943252 |
permissions | -rw-r--r-- |
10358 | 1 |
(* Title: HOL/Relation.thy |
1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
2 |
ID: $Id$ |
1983 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
4 |
Copyright 1996 University of Cambridge |
|
1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
5 |
*) |
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
6 |
|
12905 | 7 |
header {* Relations *} |
8 |
||
15131 | 9 |
theory Relation |
15140 | 10 |
imports Product_Type |
15131 | 11 |
begin |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
12 |
|
12913 | 13 |
subsection {* Definitions *} |
14 |
||
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
15 |
constdefs |
10358 | 16 |
converse :: "('a * 'b) set => ('b * 'a) set" ("(_^-1)" [1000] 999) |
17 |
"r^-1 == {(y, x). (x, y) : r}" |
|
18 |
syntax (xsymbols) |
|
12905 | 19 |
converse :: "('a * 'b) set => ('b * 'a) set" ("(_\<inverse>)" [1000] 999) |
7912 | 20 |
|
10358 | 21 |
constdefs |
12487 | 22 |
rel_comp :: "[('b * 'c) set, ('a * 'b) set] => ('a * 'c) set" (infixr "O" 60) |
12913 | 23 |
"r O s == {(x,z). EX y. (x, y) : s & (y, z) : r}" |
24 |
||
11136 | 25 |
Image :: "[('a * 'b) set, 'a set] => 'b set" (infixl "``" 90) |
12913 | 26 |
"r `` s == {y. EX x:s. (x,y):r}" |
7912 | 27 |
|
12905 | 28 |
Id :: "('a * 'a) set" -- {* the identity relation *} |
12913 | 29 |
"Id == {p. EX x. p = (x,x)}" |
7912 | 30 |
|
12905 | 31 |
diag :: "'a set => ('a * 'a) set" -- {* diagonal: identity over a set *} |
13830 | 32 |
"diag A == \<Union>x\<in>A. {(x,x)}" |
12913 | 33 |
|
11136 | 34 |
Domain :: "('a * 'b) set => 'a set" |
12913 | 35 |
"Domain r == {x. EX y. (x,y):r}" |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
36 |
|
11136 | 37 |
Range :: "('a * 'b) set => 'b set" |
12913 | 38 |
"Range r == Domain(r^-1)" |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
39 |
|
11136 | 40 |
Field :: "('a * 'a) set => 'a set" |
13830 | 41 |
"Field r == Domain r \<union> Range r" |
10786 | 42 |
|
12905 | 43 |
refl :: "['a set, ('a * 'a) set] => bool" -- {* reflexivity over a set *} |
12913 | 44 |
"refl A r == r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)" |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
45 |
|
12905 | 46 |
sym :: "('a * 'a) set => bool" -- {* symmetry predicate *} |
12913 | 47 |
"sym r == ALL x y. (x,y): r --> (y,x): r" |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
48 |
|
12905 | 49 |
antisym:: "('a * 'a) set => bool" -- {* antisymmetry predicate *} |
12913 | 50 |
"antisym r == ALL x y. (x,y):r --> (y,x):r --> x=y" |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
51 |
|
12905 | 52 |
trans :: "('a * 'a) set => bool" -- {* transitivity predicate *} |
12913 | 53 |
"trans r == (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)" |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
54 |
|
11136 | 55 |
single_valued :: "('a * 'b) set => bool" |
12913 | 56 |
"single_valued r == ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z)" |
7014
11ee650edcd2
Added some definitions and theorems needed for the
berghofe
parents:
6806
diff
changeset
|
57 |
|
11136 | 58 |
inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" |
12913 | 59 |
"inv_image r f == {(x, y). (f x, f y) : r}" |
11136 | 60 |
|
19363 | 61 |
abbreviation |
12905 | 62 |
reflexive :: "('a * 'a) set => bool" -- {* reflexivity over a type *} |
19363 | 63 |
"reflexive == refl UNIV" |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
64 |
|
12905 | 65 |
|
12913 | 66 |
subsection {* The identity relation *} |
12905 | 67 |
|
68 |
lemma IdI [intro]: "(a, a) : Id" |
|
69 |
by (simp add: Id_def) |
|
70 |
||
71 |
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P" |
|
17589 | 72 |
by (unfold Id_def) (iprover elim: CollectE) |
12905 | 73 |
|
74 |
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)" |
|
75 |
by (unfold Id_def) blast |
|
76 |
||
77 |
lemma reflexive_Id: "reflexive Id" |
|
78 |
by (simp add: refl_def) |
|
79 |
||
80 |
lemma antisym_Id: "antisym Id" |
|
81 |
-- {* A strange result, since @{text Id} is also symmetric. *} |
|
82 |
by (simp add: antisym_def) |
|
83 |
||
19228 | 84 |
lemma sym_Id: "sym Id" |
85 |
by (simp add: sym_def) |
|
86 |
||
12905 | 87 |
lemma trans_Id: "trans Id" |
88 |
by (simp add: trans_def) |
|
89 |
||
90 |
||
12913 | 91 |
subsection {* Diagonal: identity over a set *} |
12905 | 92 |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
93 |
lemma diag_empty [simp]: "diag {} = {}" |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
94 |
by (simp add: diag_def) |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
95 |
|
12905 | 96 |
lemma diag_eqI: "a = b ==> a : A ==> (a, b) : diag A" |
97 |
by (simp add: diag_def) |
|
98 |
||
99 |
lemma diagI [intro!]: "a : A ==> (a, a) : diag A" |
|
100 |
by (rule diag_eqI) (rule refl) |
|
101 |
||
102 |
lemma diagE [elim!]: |
|
103 |
"c : diag A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P" |
|
12913 | 104 |
-- {* The general elimination rule. *} |
17589 | 105 |
by (unfold diag_def) (iprover elim!: UN_E singletonE) |
12905 | 106 |
|
107 |
lemma diag_iff: "((x, y) : diag A) = (x = y & x : A)" |
|
108 |
by blast |
|
109 |
||
12913 | 110 |
lemma diag_subset_Times: "diag A \<subseteq> A \<times> A" |
12905 | 111 |
by blast |
112 |
||
113 |
||
114 |
subsection {* Composition of two relations *} |
|
115 |
||
12913 | 116 |
lemma rel_compI [intro]: |
12905 | 117 |
"(a, b) : s ==> (b, c) : r ==> (a, c) : r O s" |
118 |
by (unfold rel_comp_def) blast |
|
119 |
||
12913 | 120 |
lemma rel_compE [elim!]: "xz : r O s ==> |
12905 | 121 |
(!!x y z. xz = (x, z) ==> (x, y) : s ==> (y, z) : r ==> P) ==> P" |
17589 | 122 |
by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE) |
12905 | 123 |
|
124 |
lemma rel_compEpair: |
|
125 |
"(a, c) : r O s ==> (!!y. (a, y) : s ==> (y, c) : r ==> P) ==> P" |
|
17589 | 126 |
by (iprover elim: rel_compE Pair_inject ssubst) |
12905 | 127 |
|
128 |
lemma R_O_Id [simp]: "R O Id = R" |
|
129 |
by fast |
|
130 |
||
131 |
lemma Id_O_R [simp]: "Id O R = R" |
|
132 |
by fast |
|
133 |
||
134 |
lemma O_assoc: "(R O S) O T = R O (S O T)" |
|
135 |
by blast |
|
136 |
||
12913 | 137 |
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r" |
12905 | 138 |
by (unfold trans_def) blast |
139 |
||
12913 | 140 |
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)" |
12905 | 141 |
by blast |
142 |
||
143 |
lemma rel_comp_subset_Sigma: |
|
12913 | 144 |
"s \<subseteq> A \<times> B ==> r \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C" |
12905 | 145 |
by blast |
146 |
||
12913 | 147 |
|
148 |
subsection {* Reflexivity *} |
|
149 |
||
150 |
lemma reflI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl A r" |
|
17589 | 151 |
by (unfold refl_def) (iprover intro!: ballI) |
12905 | 152 |
|
153 |
lemma reflD: "refl A r ==> a : A ==> (a, a) : r" |
|
154 |
by (unfold refl_def) blast |
|
155 |
||
19228 | 156 |
lemma reflD1: "refl A r ==> (x, y) : r ==> x : A" |
157 |
by (unfold refl_def) blast |
|
158 |
||
159 |
lemma reflD2: "refl A r ==> (x, y) : r ==> y : A" |
|
160 |
by (unfold refl_def) blast |
|
161 |
||
162 |
lemma refl_Int: "refl A r ==> refl B s ==> refl (A \<inter> B) (r \<inter> s)" |
|
163 |
by (unfold refl_def) blast |
|
164 |
||
165 |
lemma refl_Un: "refl A r ==> refl B s ==> refl (A \<union> B) (r \<union> s)" |
|
166 |
by (unfold refl_def) blast |
|
167 |
||
168 |
lemma refl_INTER: |
|
169 |
"ALL x:S. refl (A x) (r x) ==> refl (INTER S A) (INTER S r)" |
|
170 |
by (unfold refl_def) fast |
|
171 |
||
172 |
lemma refl_UNION: |
|
173 |
"ALL x:S. refl (A x) (r x) \<Longrightarrow> refl (UNION S A) (UNION S r)" |
|
174 |
by (unfold refl_def) blast |
|
175 |
||
176 |
lemma refl_diag: "refl A (diag A)" |
|
177 |
by (rule reflI [OF diag_subset_Times diagI]) |
|
178 |
||
12913 | 179 |
|
180 |
subsection {* Antisymmetry *} |
|
12905 | 181 |
|
182 |
lemma antisymI: |
|
183 |
"(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r" |
|
17589 | 184 |
by (unfold antisym_def) iprover |
12905 | 185 |
|
186 |
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b" |
|
17589 | 187 |
by (unfold antisym_def) iprover |
12905 | 188 |
|
19228 | 189 |
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r" |
190 |
by (unfold antisym_def) blast |
|
12913 | 191 |
|
19228 | 192 |
lemma antisym_empty [simp]: "antisym {}" |
193 |
by (unfold antisym_def) blast |
|
194 |
||
195 |
lemma antisym_diag [simp]: "antisym (diag A)" |
|
196 |
by (unfold antisym_def) blast |
|
197 |
||
198 |
||
199 |
subsection {* Symmetry *} |
|
200 |
||
201 |
lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r" |
|
202 |
by (unfold sym_def) iprover |
|
15177 | 203 |
|
204 |
lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r" |
|
205 |
by (unfold sym_def, blast) |
|
12905 | 206 |
|
19228 | 207 |
lemma sym_Int: "sym r ==> sym s ==> sym (r \<inter> s)" |
208 |
by (fast intro: symI dest: symD) |
|
209 |
||
210 |
lemma sym_Un: "sym r ==> sym s ==> sym (r \<union> s)" |
|
211 |
by (fast intro: symI dest: symD) |
|
212 |
||
213 |
lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)" |
|
214 |
by (fast intro: symI dest: symD) |
|
215 |
||
216 |
lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)" |
|
217 |
by (fast intro: symI dest: symD) |
|
218 |
||
219 |
lemma sym_diag [simp]: "sym (diag A)" |
|
220 |
by (rule symI) clarify |
|
221 |
||
222 |
||
223 |
subsection {* Transitivity *} |
|
224 |
||
12905 | 225 |
lemma transI: |
226 |
"(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r" |
|
17589 | 227 |
by (unfold trans_def) iprover |
12905 | 228 |
|
229 |
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r" |
|
17589 | 230 |
by (unfold trans_def) iprover |
12905 | 231 |
|
19228 | 232 |
lemma trans_Int: "trans r ==> trans s ==> trans (r \<inter> s)" |
233 |
by (fast intro: transI elim: transD) |
|
234 |
||
235 |
lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)" |
|
236 |
by (fast intro: transI elim: transD) |
|
237 |
||
238 |
lemma trans_diag [simp]: "trans (diag A)" |
|
239 |
by (fast intro: transI elim: transD) |
|
240 |
||
12905 | 241 |
|
12913 | 242 |
subsection {* Converse *} |
243 |
||
244 |
lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)" |
|
12905 | 245 |
by (simp add: converse_def) |
246 |
||
13343 | 247 |
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^-1" |
12905 | 248 |
by (simp add: converse_def) |
249 |
||
13343 | 250 |
lemma converseD[sym]: "(a,b) : r^-1 ==> (b, a) : r" |
12905 | 251 |
by (simp add: converse_def) |
252 |
||
253 |
lemma converseE [elim!]: |
|
254 |
"yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P" |
|
12913 | 255 |
-- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *} |
17589 | 256 |
by (unfold converse_def) (iprover elim!: CollectE splitE bexE) |
12905 | 257 |
|
258 |
lemma converse_converse [simp]: "(r^-1)^-1 = r" |
|
259 |
by (unfold converse_def) blast |
|
260 |
||
261 |
lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1" |
|
262 |
by blast |
|
263 |
||
19228 | 264 |
lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1" |
265 |
by blast |
|
266 |
||
267 |
lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1" |
|
268 |
by blast |
|
269 |
||
270 |
lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)" |
|
271 |
by fast |
|
272 |
||
273 |
lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)" |
|
274 |
by blast |
|
275 |
||
12905 | 276 |
lemma converse_Id [simp]: "Id^-1 = Id" |
277 |
by blast |
|
278 |
||
12913 | 279 |
lemma converse_diag [simp]: "(diag A)^-1 = diag A" |
12905 | 280 |
by blast |
281 |
||
19228 | 282 |
lemma refl_converse [simp]: "refl A (converse r) = refl A r" |
283 |
by (unfold refl_def) auto |
|
12905 | 284 |
|
19228 | 285 |
lemma sym_converse [simp]: "sym (converse r) = sym r" |
286 |
by (unfold sym_def) blast |
|
287 |
||
288 |
lemma antisym_converse [simp]: "antisym (converse r) = antisym r" |
|
12905 | 289 |
by (unfold antisym_def) blast |
290 |
||
19228 | 291 |
lemma trans_converse [simp]: "trans (converse r) = trans r" |
12905 | 292 |
by (unfold trans_def) blast |
293 |
||
19228 | 294 |
lemma sym_conv_converse_eq: "sym r = (r^-1 = r)" |
295 |
by (unfold sym_def) fast |
|
296 |
||
297 |
lemma sym_Un_converse: "sym (r \<union> r^-1)" |
|
298 |
by (unfold sym_def) blast |
|
299 |
||
300 |
lemma sym_Int_converse: "sym (r \<inter> r^-1)" |
|
301 |
by (unfold sym_def) blast |
|
302 |
||
12913 | 303 |
|
12905 | 304 |
subsection {* Domain *} |
305 |
||
306 |
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)" |
|
307 |
by (unfold Domain_def) blast |
|
308 |
||
309 |
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r" |
|
17589 | 310 |
by (iprover intro!: iffD2 [OF Domain_iff]) |
12905 | 311 |
|
312 |
lemma DomainE [elim!]: |
|
313 |
"a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P" |
|
17589 | 314 |
by (iprover dest!: iffD1 [OF Domain_iff]) |
12905 | 315 |
|
316 |
lemma Domain_empty [simp]: "Domain {} = {}" |
|
317 |
by blast |
|
318 |
||
319 |
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)" |
|
320 |
by blast |
|
321 |
||
322 |
lemma Domain_Id [simp]: "Domain Id = UNIV" |
|
323 |
by blast |
|
324 |
||
325 |
lemma Domain_diag [simp]: "Domain (diag A) = A" |
|
326 |
by blast |
|
327 |
||
13830 | 328 |
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)" |
12905 | 329 |
by blast |
330 |
||
13830 | 331 |
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)" |
12905 | 332 |
by blast |
333 |
||
12913 | 334 |
lemma Domain_Diff_subset: "Domain(A) - Domain(B) \<subseteq> Domain(A - B)" |
12905 | 335 |
by blast |
336 |
||
13830 | 337 |
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)" |
12905 | 338 |
by blast |
339 |
||
12913 | 340 |
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s" |
12905 | 341 |
by blast |
342 |
||
343 |
||
344 |
subsection {* Range *} |
|
345 |
||
346 |
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)" |
|
347 |
by (simp add: Domain_def Range_def) |
|
348 |
||
349 |
lemma RangeI [intro]: "(a, b) : r ==> b : Range r" |
|
17589 | 350 |
by (unfold Range_def) (iprover intro!: converseI DomainI) |
12905 | 351 |
|
352 |
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P" |
|
17589 | 353 |
by (unfold Range_def) (iprover elim!: DomainE dest!: converseD) |
12905 | 354 |
|
355 |
lemma Range_empty [simp]: "Range {} = {}" |
|
356 |
by blast |
|
357 |
||
358 |
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)" |
|
359 |
by blast |
|
360 |
||
361 |
lemma Range_Id [simp]: "Range Id = UNIV" |
|
362 |
by blast |
|
363 |
||
364 |
lemma Range_diag [simp]: "Range (diag A) = A" |
|
365 |
by auto |
|
366 |
||
13830 | 367 |
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)" |
12905 | 368 |
by blast |
369 |
||
13830 | 370 |
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)" |
12905 | 371 |
by blast |
372 |
||
12913 | 373 |
lemma Range_Diff_subset: "Range(A) - Range(B) \<subseteq> Range(A - B)" |
12905 | 374 |
by blast |
375 |
||
13830 | 376 |
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)" |
12905 | 377 |
by blast |
378 |
||
379 |
||
380 |
subsection {* Image of a set under a relation *} |
|
381 |
||
12913 | 382 |
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)" |
12905 | 383 |
by (simp add: Image_def) |
384 |
||
12913 | 385 |
lemma Image_singleton: "r``{a} = {b. (a, b) : r}" |
12905 | 386 |
by (simp add: Image_def) |
387 |
||
12913 | 388 |
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)" |
12905 | 389 |
by (rule Image_iff [THEN trans]) simp |
390 |
||
12913 | 391 |
lemma ImageI [intro]: "(a, b) : r ==> a : A ==> b : r``A" |
12905 | 392 |
by (unfold Image_def) blast |
393 |
||
394 |
lemma ImageE [elim!]: |
|
12913 | 395 |
"b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P" |
17589 | 396 |
by (unfold Image_def) (iprover elim!: CollectE bexE) |
12905 | 397 |
|
398 |
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A" |
|
399 |
-- {* This version's more effective when we already have the required @{text a} *} |
|
400 |
by blast |
|
401 |
||
402 |
lemma Image_empty [simp]: "R``{} = {}" |
|
403 |
by blast |
|
404 |
||
405 |
lemma Image_Id [simp]: "Id `` A = A" |
|
406 |
by blast |
|
407 |
||
13830 | 408 |
lemma Image_diag [simp]: "diag A `` B = A \<inter> B" |
409 |
by blast |
|
410 |
||
411 |
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B" |
|
12905 | 412 |
by blast |
413 |
||
13830 | 414 |
lemma Image_Int_eq: |
415 |
"single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B" |
|
416 |
by (simp add: single_valued_def, blast) |
|
12905 | 417 |
|
13830 | 418 |
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B" |
12905 | 419 |
by blast |
420 |
||
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
421 |
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A" |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
422 |
by blast |
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
423 |
|
12913 | 424 |
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B" |
17589 | 425 |
by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2) |
12905 | 426 |
|
13830 | 427 |
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})" |
12905 | 428 |
-- {* NOT suitable for rewriting *} |
429 |
by blast |
|
430 |
||
12913 | 431 |
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)" |
12905 | 432 |
by blast |
433 |
||
13830 | 434 |
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))" |
435 |
by blast |
|
436 |
||
437 |
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))" |
|
12905 | 438 |
by blast |
439 |
||
13830 | 440 |
text{*Converse inclusion requires some assumptions*} |
441 |
lemma Image_INT_eq: |
|
442 |
"[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)" |
|
443 |
apply (rule equalityI) |
|
444 |
apply (rule Image_INT_subset) |
|
445 |
apply (simp add: single_valued_def, blast) |
|
446 |
done |
|
12905 | 447 |
|
12913 | 448 |
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))" |
12905 | 449 |
by blast |
450 |
||
451 |
||
12913 | 452 |
subsection {* Single valued relations *} |
453 |
||
454 |
lemma single_valuedI: |
|
12905 | 455 |
"ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r" |
456 |
by (unfold single_valued_def) |
|
457 |
||
458 |
lemma single_valuedD: |
|
459 |
"single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z" |
|
460 |
by (simp add: single_valued_def) |
|
461 |
||
19228 | 462 |
lemma single_valued_rel_comp: |
463 |
"single_valued r ==> single_valued s ==> single_valued (r O s)" |
|
464 |
by (unfold single_valued_def) blast |
|
465 |
||
466 |
lemma single_valued_subset: |
|
467 |
"r \<subseteq> s ==> single_valued s ==> single_valued r" |
|
468 |
by (unfold single_valued_def) blast |
|
469 |
||
470 |
lemma single_valued_Id [simp]: "single_valued Id" |
|
471 |
by (unfold single_valued_def) blast |
|
472 |
||
473 |
lemma single_valued_diag [simp]: "single_valued (diag A)" |
|
474 |
by (unfold single_valued_def) blast |
|
475 |
||
12905 | 476 |
|
477 |
subsection {* Graphs given by @{text Collect} *} |
|
478 |
||
479 |
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}" |
|
480 |
by auto |
|
481 |
||
482 |
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}" |
|
483 |
by auto |
|
484 |
||
485 |
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}" |
|
486 |
by auto |
|
487 |
||
488 |
||
12913 | 489 |
subsection {* Inverse image *} |
12905 | 490 |
|
19228 | 491 |
lemma sym_inv_image: "sym r ==> sym (inv_image r f)" |
492 |
by (unfold sym_def inv_image_def) blast |
|
493 |
||
12913 | 494 |
lemma trans_inv_image: "trans r ==> trans (inv_image r f)" |
12905 | 495 |
apply (unfold trans_def inv_image_def) |
496 |
apply (simp (no_asm)) |
|
497 |
apply blast |
|
498 |
done |
|
499 |
||
1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
500 |
end |