| author | wenzelm | 
| Tue, 09 Jan 2024 22:40:38 +0100 | |
| changeset 79455 | d7f32f04bd13 | 
| parent 76381 | 2931d8331cc5 | 
| child 80754 | 701912f5645a | 
| permissions | -rw-r--r-- | 
| 17441 | 1 | (* Title: CTT/CTT.thy | 
| 0 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 3 | Copyright 1993 University of Cambridge | |
| 4 | *) | |
| 5 | ||
| 17441 | 6 | theory CTT | 
| 7 | imports Pure | |
| 8 | begin | |
| 9 | ||
| 65447 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 10 | section \<open>Constructive Type Theory: axiomatic basis\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 11 | |
| 69605 | 12 | ML_file \<open>~~/src/Provers/typedsimp.ML\<close> | 
| 39557 
fe5722fce758
renamed structure PureThy to Pure_Thy and moved most content to Global_Theory, to emphasize that this is global-only;
 wenzelm parents: 
35762diff
changeset | 13 | setup Pure_Thy.old_appl_syntax_setup | 
| 26956 
1309a6a0a29f
setup PureThy.old_appl_syntax_setup -- theory Pure provides regular application syntax by default;
 wenzelm parents: 
26391diff
changeset | 14 | |
| 17441 | 15 | typedecl i | 
| 16 | typedecl t | |
| 17 | typedecl o | |
| 0 | 18 | |
| 19 | consts | |
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 20 | \<comment> \<open>Judgments\<close> | 
| 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 21 |   Type      :: "t \<Rightarrow> prop"          ("(_ type)" [10] 5)
 | 
| 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 22 |   Eqtype    :: "[t,t]\<Rightarrow>prop"        ("(_ =/ _)" [10,10] 5)
 | 
| 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 23 |   Elem      :: "[i, t]\<Rightarrow>prop"       ("(_ /: _)" [10,10] 5)
 | 
| 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 24 |   Eqelem    :: "[i,i,t]\<Rightarrow>prop"      ("(_ =/ _ :/ _)" [10,10,10] 5)
 | 
| 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 25 |   Reduce    :: "[i,i]\<Rightarrow>prop"        ("Reduce[_,_]")
 | 
| 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 26 | \<comment> \<open>Types for truth values\<close> | 
| 17441 | 27 | F :: "t" | 
| 63505 | 28 | T :: "t" \<comment> \<open>\<open>F\<close> is empty, \<open>T\<close> contains one element\<close> | 
| 58977 | 29 | contr :: "i\<Rightarrow>i" | 
| 0 | 30 | tt :: "i" | 
| 63505 | 31 | \<comment> \<open>Natural numbers\<close> | 
| 0 | 32 | N :: "t" | 
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 33 |   Zero      :: "i"                  ("0")
 | 
| 58977 | 34 | succ :: "i\<Rightarrow>i" | 
| 35 | rec :: "[i, i, [i,i]\<Rightarrow>i] \<Rightarrow> i" | |
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 36 | \<comment> \<open>Binary sum\<close> | 
| 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 37 | Plus :: "[t,t]\<Rightarrow>t" (infixr "+" 40) | 
| 58977 | 38 | inl :: "i\<Rightarrow>i" | 
| 39 | inr :: "i\<Rightarrow>i" | |
| 60555 
51a6997b1384
support 'when' statement, which corresponds to 'presume';
 wenzelm parents: 
59780diff
changeset | 40 | "when" :: "[i, i\<Rightarrow>i, i\<Rightarrow>i]\<Rightarrow>i" | 
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 41 | \<comment> \<open>General sum and binary product\<close> | 
| 58977 | 42 | Sum :: "[t, i\<Rightarrow>t]\<Rightarrow>t" | 
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 43 |   pair      :: "[i,i]\<Rightarrow>i"           ("(1<_,/_>)")
 | 
| 58977 | 44 | fst :: "i\<Rightarrow>i" | 
| 45 | snd :: "i\<Rightarrow>i" | |
| 46 | split :: "[i, [i,i]\<Rightarrow>i] \<Rightarrow>i" | |
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 47 | \<comment> \<open>General product and function space\<close> | 
| 58977 | 48 | Prod :: "[t, i\<Rightarrow>t]\<Rightarrow>t" | 
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 49 | lambda :: "(i \<Rightarrow> i) \<Rightarrow> i" (binder "\<^bold>\<lambda>" 10) | 
| 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 50 | app :: "[i,i]\<Rightarrow>i" (infixl "`" 60) | 
| 63505 | 51 | \<comment> \<open>Equality type\<close> | 
| 58977 | 52 | Eq :: "[t,i,i]\<Rightarrow>t" | 
| 0 | 53 | eq :: "i" | 
| 14765 | 54 | |
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 55 | text \<open>Some inexplicable syntactic dependencies; in particular, "0" | 
| 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 56 | must be introduced after the judgment forms.\<close> | 
| 0 | 57 | |
| 14765 | 58 | syntax | 
| 61391 | 59 |   "_PROD"   :: "[idt,t,t]\<Rightarrow>t"       ("(3\<Prod>_:_./ _)" 10)
 | 
| 60 |   "_SUM"    :: "[idt,t,t]\<Rightarrow>t"       ("(3\<Sum>_:_./ _)" 10)
 | |
| 0 | 61 | translations | 
| 61391 | 62 | "\<Prod>x:A. B" \<rightleftharpoons> "CONST Prod(A, \<lambda>x. B)" | 
| 63 | "\<Sum>x:A. B" \<rightleftharpoons> "CONST Sum(A, \<lambda>x. B)" | |
| 19761 | 64 | |
| 63505 | 65 | abbreviation Arrow :: "[t,t]\<Rightarrow>t" (infixr "\<longrightarrow>" 30) | 
| 66 | where "A \<longrightarrow> B \<equiv> \<Prod>_:A. B" | |
| 67 | ||
| 68 | abbreviation Times :: "[t,t]\<Rightarrow>t" (infixr "\<times>" 50) | |
| 69 | where "A \<times> B \<equiv> \<Sum>_:A. B" | |
| 10467 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 paulson parents: 
3837diff
changeset | 70 | |
| 63505 | 71 | text \<open> | 
| 72 | Reduction: a weaker notion than equality; a hack for simplification. | |
| 73 | \<open>Reduce[a,b]\<close> means either that \<open>a = b : A\<close> for some \<open>A\<close> or else | |
| 74 | that \<open>a\<close> and \<open>b\<close> are textually identical. | |
| 0 | 75 | |
| 63505 | 76 | Does not verify \<open>a:A\<close>! Sound because only \<open>trans_red\<close> uses a \<open>Reduce\<close> | 
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 77 | premise. No new theorems can be proved about the standard judgments. | 
| 63505 | 78 | \<close> | 
| 79 | axiomatization | |
| 80 | where | |
| 51308 | 81 | refl_red: "\<And>a. Reduce[a,a]" and | 
| 58977 | 82 | red_if_equal: "\<And>a b A. a = b : A \<Longrightarrow> Reduce[a,b]" and | 
| 83 | trans_red: "\<And>a b c A. \<lbrakk>a = b : A; Reduce[b,c]\<rbrakk> \<Longrightarrow> a = c : A" and | |
| 0 | 84 | |
| 63505 | 85 | \<comment> \<open>Reflexivity\<close> | 
| 0 | 86 | |
| 58977 | 87 | refl_type: "\<And>A. A type \<Longrightarrow> A = A" and | 
| 88 | refl_elem: "\<And>a A. a : A \<Longrightarrow> a = a : A" and | |
| 0 | 89 | |
| 63505 | 90 | \<comment> \<open>Symmetry\<close> | 
| 0 | 91 | |
| 58977 | 92 | sym_type: "\<And>A B. A = B \<Longrightarrow> B = A" and | 
| 93 | sym_elem: "\<And>a b A. a = b : A \<Longrightarrow> b = a : A" and | |
| 0 | 94 | |
| 63505 | 95 | \<comment> \<open>Transitivity\<close> | 
| 0 | 96 | |
| 58977 | 97 | trans_type: "\<And>A B C. \<lbrakk>A = B; B = C\<rbrakk> \<Longrightarrow> A = C" and | 
| 98 | trans_elem: "\<And>a b c A. \<lbrakk>a = b : A; b = c : A\<rbrakk> \<Longrightarrow> a = c : A" and | |
| 0 | 99 | |
| 58977 | 100 | equal_types: "\<And>a A B. \<lbrakk>a : A; A = B\<rbrakk> \<Longrightarrow> a : B" and | 
| 101 | equal_typesL: "\<And>a b A B. \<lbrakk>a = b : A; A = B\<rbrakk> \<Longrightarrow> a = b : B" and | |
| 0 | 102 | |
| 63505 | 103 | \<comment> \<open>Substitution\<close> | 
| 0 | 104 | |
| 58977 | 105 | subst_type: "\<And>a A B. \<lbrakk>a : A; \<And>z. z:A \<Longrightarrow> B(z) type\<rbrakk> \<Longrightarrow> B(a) type" and | 
| 106 | subst_typeL: "\<And>a c A B D. \<lbrakk>a = c : A; \<And>z. z:A \<Longrightarrow> B(z) = D(z)\<rbrakk> \<Longrightarrow> B(a) = D(c)" and | |
| 0 | 107 | |
| 58977 | 108 | subst_elem: "\<And>a b A B. \<lbrakk>a : A; \<And>z. z:A \<Longrightarrow> b(z):B(z)\<rbrakk> \<Longrightarrow> b(a):B(a)" and | 
| 17441 | 109 | subst_elemL: | 
| 58977 | 110 | "\<And>a b c d A B. \<lbrakk>a = c : A; \<And>z. z:A \<Longrightarrow> b(z)=d(z) : B(z)\<rbrakk> \<Longrightarrow> b(a)=d(c) : B(a)" and | 
| 0 | 111 | |
| 112 | ||
| 63505 | 113 | \<comment> \<open>The type \<open>N\<close> -- natural numbers\<close> | 
| 0 | 114 | |
| 51308 | 115 | NF: "N type" and | 
| 116 | NI0: "0 : N" and | |
| 58977 | 117 | NI_succ: "\<And>a. a : N \<Longrightarrow> succ(a) : N" and | 
| 118 | NI_succL: "\<And>a b. a = b : N \<Longrightarrow> succ(a) = succ(b) : N" and | |
| 0 | 119 | |
| 17441 | 120 | NE: | 
| 58977 | 121 | "\<And>p a b C. \<lbrakk>p: N; a: C(0); \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v): C(succ(u))\<rbrakk> | 
| 122 | \<Longrightarrow> rec(p, a, \<lambda>u v. b(u,v)) : C(p)" and | |
| 0 | 123 | |
| 17441 | 124 | NEL: | 
| 58977 | 125 | "\<And>p q a b c d C. \<lbrakk>p = q : N; a = c : C(0); | 
| 126 | \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v) = d(u,v): C(succ(u))\<rbrakk> | |
| 127 | \<Longrightarrow> rec(p, a, \<lambda>u v. b(u,v)) = rec(q,c,d) : C(p)" and | |
| 0 | 128 | |
| 17441 | 129 | NC0: | 
| 58977 | 130 | "\<And>a b C. \<lbrakk>a: C(0); \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v): C(succ(u))\<rbrakk> | 
| 131 | \<Longrightarrow> rec(0, a, \<lambda>u v. b(u,v)) = a : C(0)" and | |
| 0 | 132 | |
| 17441 | 133 | NC_succ: | 
| 58977 | 134 | "\<And>p a b C. \<lbrakk>p: N; a: C(0); \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v): C(succ(u))\<rbrakk> \<Longrightarrow> | 
| 135 | rec(succ(p), a, \<lambda>u v. b(u,v)) = b(p, rec(p, a, \<lambda>u v. b(u,v))) : C(succ(p))" and | |
| 0 | 136 | |
| 63505 | 137 | \<comment> \<open>The fourth Peano axiom. See page 91 of Martin-Löf's book.\<close> | 
| 58977 | 138 | zero_ne_succ: "\<And>a. \<lbrakk>a: N; 0 = succ(a) : N\<rbrakk> \<Longrightarrow> 0: F" and | 
| 0 | 139 | |
| 140 | ||
| 63505 | 141 | \<comment> \<open>The Product of a family of types\<close> | 
| 0 | 142 | |
| 61391 | 143 | ProdF: "\<And>A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> B(x) type\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x) type" and | 
| 0 | 144 | |
| 17441 | 145 | ProdFL: | 
| 61391 | 146 | "\<And>A B C D. \<lbrakk>A = C; \<And>x. x:A \<Longrightarrow> B(x) = D(x)\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x) = \<Prod>x:C. D(x)" and | 
| 0 | 147 | |
| 17441 | 148 | ProdI: | 
| 61391 | 149 | "\<And>b A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> b(x):B(x)\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b(x) : \<Prod>x:A. B(x)" and | 
| 0 | 150 | |
| 58977 | 151 | ProdIL: "\<And>b c A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> b(x) = c(x) : B(x)\<rbrakk> \<Longrightarrow> | 
| 61391 | 152 | \<^bold>\<lambda>x. b(x) = \<^bold>\<lambda>x. c(x) : \<Prod>x:A. B(x)" and | 
| 0 | 153 | |
| 61391 | 154 | ProdE: "\<And>p a A B. \<lbrakk>p : \<Prod>x:A. B(x); a : A\<rbrakk> \<Longrightarrow> p`a : B(a)" and | 
| 155 | ProdEL: "\<And>p q a b A B. \<lbrakk>p = q: \<Prod>x:A. B(x); a = b : A\<rbrakk> \<Longrightarrow> p`a = q`b : B(a)" and | |
| 0 | 156 | |
| 61391 | 157 | ProdC: "\<And>a b A B. \<lbrakk>a : A; \<And>x. x:A \<Longrightarrow> b(x) : B(x)\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. b(x)) ` a = b(a) : B(a)" and | 
| 0 | 158 | |
| 61391 | 159 | ProdC2: "\<And>p A B. p : \<Prod>x:A. B(x) \<Longrightarrow> (\<^bold>\<lambda>x. p`x) = p : \<Prod>x:A. B(x)" and | 
| 0 | 160 | |
| 161 | ||
| 63505 | 162 | \<comment> \<open>The Sum of a family of types\<close> | 
| 0 | 163 | |
| 61391 | 164 | SumF: "\<And>A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> B(x) type\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x) type" and | 
| 165 | SumFL: "\<And>A B C D. \<lbrakk>A = C; \<And>x. x:A \<Longrightarrow> B(x) = D(x)\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x) = \<Sum>x:C. D(x)" and | |
| 0 | 166 | |
| 61391 | 167 | SumI: "\<And>a b A B. \<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> <a,b> : \<Sum>x:A. B(x)" and | 
| 168 | SumIL: "\<And>a b c d A B. \<lbrakk> a = c : A; b = d : B(a)\<rbrakk> \<Longrightarrow> <a,b> = <c,d> : \<Sum>x:A. B(x)" and | |
| 0 | 169 | |
| 61391 | 170 | SumE: "\<And>p c A B C. \<lbrakk>p: \<Sum>x:A. B(x); \<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> c(x,y): C(<x,y>)\<rbrakk> | 
| 58977 | 171 | \<Longrightarrow> split(p, \<lambda>x y. c(x,y)) : C(p)" and | 
| 0 | 172 | |
| 61391 | 173 | SumEL: "\<And>p q c d A B C. \<lbrakk>p = q : \<Sum>x:A. B(x); | 
| 58977 | 174 | \<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> c(x,y)=d(x,y): C(<x,y>)\<rbrakk> | 
| 175 | \<Longrightarrow> split(p, \<lambda>x y. c(x,y)) = split(q, \<lambda>x y. d(x,y)) : C(p)" and | |
| 0 | 176 | |
| 58977 | 177 | SumC: "\<And>a b c A B C. \<lbrakk>a: A; b: B(a); \<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> c(x,y): C(<x,y>)\<rbrakk> | 
| 178 | \<Longrightarrow> split(<a,b>, \<lambda>x y. c(x,y)) = c(a,b) : C(<a,b>)" and | |
| 0 | 179 | |
| 61391 | 180 | fst_def: "\<And>a. fst(a) \<equiv> split(a, \<lambda>x y. x)" and | 
| 181 | snd_def: "\<And>a. snd(a) \<equiv> split(a, \<lambda>x y. y)" and | |
| 0 | 182 | |
| 183 | ||
| 63505 | 184 | \<comment> \<open>The sum of two types\<close> | 
| 0 | 185 | |
| 58977 | 186 | PlusF: "\<And>A B. \<lbrakk>A type; B type\<rbrakk> \<Longrightarrow> A+B type" and | 
| 187 | PlusFL: "\<And>A B C D. \<lbrakk>A = C; B = D\<rbrakk> \<Longrightarrow> A+B = C+D" and | |
| 0 | 188 | |
| 58977 | 189 | PlusI_inl: "\<And>a A B. \<lbrakk>a : A; B type\<rbrakk> \<Longrightarrow> inl(a) : A+B" and | 
| 190 | PlusI_inlL: "\<And>a c A B. \<lbrakk>a = c : A; B type\<rbrakk> \<Longrightarrow> inl(a) = inl(c) : A+B" and | |
| 0 | 191 | |
| 58977 | 192 | PlusI_inr: "\<And>b A B. \<lbrakk>A type; b : B\<rbrakk> \<Longrightarrow> inr(b) : A+B" and | 
| 193 | PlusI_inrL: "\<And>b d A B. \<lbrakk>A type; b = d : B\<rbrakk> \<Longrightarrow> inr(b) = inr(d) : A+B" and | |
| 0 | 194 | |
| 17441 | 195 | PlusE: | 
| 58977 | 196 | "\<And>p c d A B C. \<lbrakk>p: A+B; | 
| 197 | \<And>x. x:A \<Longrightarrow> c(x): C(inl(x)); | |
| 198 | \<And>y. y:B \<Longrightarrow> d(y): C(inr(y)) \<rbrakk> \<Longrightarrow> when(p, \<lambda>x. c(x), \<lambda>y. d(y)) : C(p)" and | |
| 0 | 199 | |
| 17441 | 200 | PlusEL: | 
| 58977 | 201 | "\<And>p q c d e f A B C. \<lbrakk>p = q : A+B; | 
| 202 | \<And>x. x: A \<Longrightarrow> c(x) = e(x) : C(inl(x)); | |
| 203 | \<And>y. y: B \<Longrightarrow> d(y) = f(y) : C(inr(y))\<rbrakk> | |
| 204 | \<Longrightarrow> when(p, \<lambda>x. c(x), \<lambda>y. d(y)) = when(q, \<lambda>x. e(x), \<lambda>y. f(y)) : C(p)" and | |
| 0 | 205 | |
| 17441 | 206 | PlusC_inl: | 
| 64980 | 207 | "\<And>a c d A B C. \<lbrakk>a: A; | 
| 58977 | 208 | \<And>x. x:A \<Longrightarrow> c(x): C(inl(x)); | 
| 209 | \<And>y. y:B \<Longrightarrow> d(y): C(inr(y)) \<rbrakk> | |
| 210 | \<Longrightarrow> when(inl(a), \<lambda>x. c(x), \<lambda>y. d(y)) = c(a) : C(inl(a))" and | |
| 0 | 211 | |
| 17441 | 212 | PlusC_inr: | 
| 58977 | 213 | "\<And>b c d A B C. \<lbrakk>b: B; | 
| 214 | \<And>x. x:A \<Longrightarrow> c(x): C(inl(x)); | |
| 215 | \<And>y. y:B \<Longrightarrow> d(y): C(inr(y))\<rbrakk> | |
| 216 | \<Longrightarrow> when(inr(b), \<lambda>x. c(x), \<lambda>y. d(y)) = d(b) : C(inr(b))" and | |
| 0 | 217 | |
| 218 | ||
| 63505 | 219 | \<comment> \<open>The type \<open>Eq\<close>\<close> | 
| 0 | 220 | |
| 58977 | 221 | EqF: "\<And>a b A. \<lbrakk>A type; a : A; b : A\<rbrakk> \<Longrightarrow> Eq(A,a,b) type" and | 
| 222 | EqFL: "\<And>a b c d A B. \<lbrakk>A = B; a = c : A; b = d : A\<rbrakk> \<Longrightarrow> Eq(A,a,b) = Eq(B,c,d)" and | |
| 223 | EqI: "\<And>a b A. a = b : A \<Longrightarrow> eq : Eq(A,a,b)" and | |
| 224 | EqE: "\<And>p a b A. p : Eq(A,a,b) \<Longrightarrow> a = b : A" and | |
| 0 | 225 | |
| 63505 | 226 | \<comment> \<open>By equality of types, can prove \<open>C(p)\<close> from \<open>C(eq)\<close>, an elimination rule\<close> | 
| 58977 | 227 | EqC: "\<And>p a b A. p : Eq(A,a,b) \<Longrightarrow> p = eq : Eq(A,a,b)" and | 
| 0 | 228 | |
| 63505 | 229 | |
| 230 | \<comment> \<open>The type \<open>F\<close>\<close> | |
| 0 | 231 | |
| 51308 | 232 | FF: "F type" and | 
| 58977 | 233 | FE: "\<And>p C. \<lbrakk>p: F; C type\<rbrakk> \<Longrightarrow> contr(p) : C" and | 
| 234 | FEL: "\<And>p q C. \<lbrakk>p = q : F; C type\<rbrakk> \<Longrightarrow> contr(p) = contr(q) : C" and | |
| 0 | 235 | |
| 63505 | 236 | |
| 237 | \<comment> \<open>The type T\<close> | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67405diff
changeset | 238 | \<comment> \<open>Martin-Löf's book (page 68) discusses elimination and computation. | 
| 63505 | 239 | Elimination can be derived by computation and equality of types, | 
| 240 | but with an extra premise \<open>C(x)\<close> type \<open>x:T\<close>. | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67405diff
changeset | 241 | Also computation can be derived from elimination.\<close> | 
| 0 | 242 | |
| 51308 | 243 | TF: "T type" and | 
| 244 | TI: "tt : T" and | |
| 58977 | 245 | TE: "\<And>p c C. \<lbrakk>p : T; c : C(tt)\<rbrakk> \<Longrightarrow> c : C(p)" and | 
| 246 | TEL: "\<And>p q c d C. \<lbrakk>p = q : T; c = d : C(tt)\<rbrakk> \<Longrightarrow> c = d : C(p)" and | |
| 247 | TC: "\<And>p. p : T \<Longrightarrow> p = tt : T" | |
| 0 | 248 | |
| 19761 | 249 | |
| 250 | subsection "Tactics and derived rules for Constructive Type Theory" | |
| 251 | ||
| 63505 | 252 | text \<open>Formation rules.\<close> | 
| 19761 | 253 | lemmas form_rls = NF ProdF SumF PlusF EqF FF TF | 
| 254 | and formL_rls = ProdFL SumFL PlusFL EqFL | |
| 255 | ||
| 63505 | 256 | text \<open> | 
| 257 | Introduction rules. OMITTED: | |
| 258 | \<^item> \<open>EqI\<close>, because its premise is an \<open>eqelem\<close>, not an \<open>elem\<close>. | |
| 259 | \<close> | |
| 19761 | 260 | lemmas intr_rls = NI0 NI_succ ProdI SumI PlusI_inl PlusI_inr TI | 
| 261 | and intrL_rls = NI_succL ProdIL SumIL PlusI_inlL PlusI_inrL | |
| 262 | ||
| 63505 | 263 | text \<open> | 
| 264 | Elimination rules. OMITTED: | |
| 265 | \<^item> \<open>EqE\<close>, because its conclusion is an \<open>eqelem\<close>, not an \<open>elem\<close> | |
| 266 | \<^item> \<open>TE\<close>, because it does not involve a constructor. | |
| 267 | \<close> | |
| 19761 | 268 | lemmas elim_rls = NE ProdE SumE PlusE FE | 
| 269 | and elimL_rls = NEL ProdEL SumEL PlusEL FEL | |
| 270 | ||
| 63505 | 271 | text \<open>OMITTED: \<open>eqC\<close> are \<open>TC\<close> because they make rewriting loop: \<open>p = un = un = \<dots>\<close>\<close> | 
| 19761 | 272 | lemmas comp_rls = NC0 NC_succ ProdC SumC PlusC_inl PlusC_inr | 
| 273 | ||
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 274 | text \<open>Rules with conclusion \<open>a:A\<close>, an elem judgment.\<close> | 
| 19761 | 275 | lemmas element_rls = intr_rls elim_rls | 
| 276 | ||
| 63505 | 277 | text \<open>Definitions are (meta)equality axioms.\<close> | 
| 19761 | 278 | lemmas basic_defs = fst_def snd_def | 
| 279 | ||
| 63505 | 280 | text \<open>Compare with standard version: \<open>B\<close> is applied to UNSIMPLIFIED expression!\<close> | 
| 58977 | 281 | lemma SumIL2: "\<lbrakk>c = a : A; d = b : B(a)\<rbrakk> \<Longrightarrow> <c,d> = <a,b> : Sum(A,B)" | 
| 65338 | 282 | by (rule sym_elem) (rule SumIL; rule sym_elem) | 
| 19761 | 283 | |
| 284 | lemmas intrL2_rls = NI_succL ProdIL SumIL2 PlusI_inlL PlusI_inrL | |
| 285 | ||
| 63505 | 286 | text \<open> | 
| 287 | Exploit \<open>p:Prod(A,B)\<close> to create the assumption \<open>z:B(a)\<close>. | |
| 288 | A more natural form of product elimination. | |
| 289 | \<close> | |
| 19761 | 290 | lemma subst_prodE: | 
| 291 | assumes "p: Prod(A,B)" | |
| 292 | and "a: A" | |
| 58977 | 293 | and "\<And>z. z: B(a) \<Longrightarrow> c(z): C(z)" | 
| 19761 | 294 | shows "c(p`a): C(p`a)" | 
| 63505 | 295 | by (rule assms ProdE)+ | 
| 19761 | 296 | |
| 297 | ||
| 60770 | 298 | subsection \<open>Tactics for type checking\<close> | 
| 19761 | 299 | |
| 60770 | 300 | ML \<open> | 
| 19761 | 301 | local | 
| 302 | ||
| 74299 | 303 | fun is_rigid_elem \<^Const_>\<open>Elem for a _\<close> = not(is_Var (head_of a)) | 
| 304 | | is_rigid_elem \<^Const_>\<open>Eqelem for a _ _\<close> = not(is_Var (head_of a)) | |
| 305 | | is_rigid_elem \<^Const_>\<open>Type for a\<close> = not(is_Var (head_of a)) | |
| 19761 | 306 | | is_rigid_elem _ = false | 
| 307 | ||
| 308 | in | |
| 309 | ||
| 310 | (*Try solving a:A or a=b:A by assumption provided a is rigid!*) | |
| 63505 | 311 | fun test_assume_tac ctxt = SUBGOAL (fn (prem, i) => | 
| 312 | if is_rigid_elem (Logic.strip_assums_concl prem) | |
| 313 | then assume_tac ctxt i else no_tac) | |
| 19761 | 314 | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 315 | fun ASSUME ctxt tf i = test_assume_tac ctxt i ORELSE tf i | 
| 19761 | 316 | |
| 63505 | 317 | end | 
| 60770 | 318 | \<close> | 
| 19761 | 319 | |
| 63505 | 320 | text \<open> | 
| 321 | For simplification: type formation and checking, | |
| 322 | but no equalities between terms. | |
| 323 | \<close> | |
| 19761 | 324 | lemmas routine_rls = form_rls formL_rls refl_type element_rls | 
| 325 | ||
| 60770 | 326 | ML \<open> | 
| 59164 | 327 | fun routine_tac rls ctxt prems = | 
| 328 | ASSUME ctxt (filt_resolve_from_net_tac ctxt 4 (Tactic.build_net (prems @ rls))); | |
| 19761 | 329 | |
| 330 | (*Solve all subgoals "A type" using formation rules. *) | |
| 59164 | 331 | val form_net = Tactic.build_net @{thms form_rls};
 | 
| 332 | fun form_tac ctxt = | |
| 333 | REPEAT_FIRST (ASSUME ctxt (filt_resolve_from_net_tac ctxt 1 form_net)); | |
| 19761 | 334 | |
| 335 | (*Type checking: solve a:A (a rigid, A flexible) by intro and elim rules. *) | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 336 | fun typechk_tac ctxt thms = | 
| 59164 | 337 | let val tac = | 
| 338 | filt_resolve_from_net_tac ctxt 3 | |
| 339 |       (Tactic.build_net (thms @ @{thms form_rls} @ @{thms element_rls}))
 | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 340 | in REPEAT_FIRST (ASSUME ctxt tac) end | 
| 19761 | 341 | |
| 342 | (*Solve a:A (a flexible, A rigid) by introduction rules. | |
| 343 | Cannot use stringtrees (filt_resolve_tac) since | |
| 344 | goals like ?a:SUM(A,B) have a trivial head-string *) | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 345 | fun intr_tac ctxt thms = | 
| 59164 | 346 | let val tac = | 
| 347 | filt_resolve_from_net_tac ctxt 1 | |
| 348 |       (Tactic.build_net (thms @ @{thms form_rls} @ @{thms intr_rls}))
 | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 349 | in REPEAT_FIRST (ASSUME ctxt tac) end | 
| 19761 | 350 | |
| 351 | (*Equality proving: solve a=b:A (where a is rigid) by long rules. *) | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 352 | fun equal_tac ctxt thms = | 
| 59164 | 353 | REPEAT_FIRST | 
| 63505 | 354 | (ASSUME ctxt | 
| 355 | (filt_resolve_from_net_tac ctxt 3 | |
| 356 |         (Tactic.build_net (thms @ @{thms form_rls element_rls intrL_rls elimL_rls refl_elem}))))
 | |
| 60770 | 357 | \<close> | 
| 19761 | 358 | |
| 60770 | 359 | method_setup form = \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD (form_tac ctxt))\<close> | 
| 360 | method_setup typechk = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (typechk_tac ctxt ths))\<close> | |
| 361 | method_setup intr = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (intr_tac ctxt ths))\<close> | |
| 362 | method_setup equal = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (equal_tac ctxt ths))\<close> | |
| 19761 | 363 | |
| 364 | ||
| 60770 | 365 | subsection \<open>Simplification\<close> | 
| 19761 | 366 | |
| 63505 | 367 | text \<open>To simplify the type in a goal.\<close> | 
| 58977 | 368 | lemma replace_type: "\<lbrakk>B = A; a : A\<rbrakk> \<Longrightarrow> a : B" | 
| 63505 | 369 | apply (rule equal_types) | 
| 370 | apply (rule_tac [2] sym_type) | |
| 371 | apply assumption+ | |
| 372 | done | |
| 19761 | 373 | |
| 63505 | 374 | text \<open>Simplify the parameter of a unary type operator.\<close> | 
| 19761 | 375 | lemma subst_eqtyparg: | 
| 23467 | 376 | assumes 1: "a=c : A" | 
| 58977 | 377 | and 2: "\<And>z. z:A \<Longrightarrow> B(z) type" | 
| 63505 | 378 | shows "B(a) = B(c)" | 
| 379 | apply (rule subst_typeL) | |
| 380 | apply (rule_tac [2] refl_type) | |
| 381 | apply (rule 1) | |
| 382 | apply (erule 2) | |
| 383 | done | |
| 19761 | 384 | |
| 63505 | 385 | text \<open>Simplification rules for Constructive Type Theory.\<close> | 
| 19761 | 386 | lemmas reduction_rls = comp_rls [THEN trans_elem] | 
| 387 | ||
| 60770 | 388 | ML \<open> | 
| 19761 | 389 | (*Converts each goal "e : Eq(A,a,b)" into "a=b:A" for simplification. | 
| 390 | Uses other intro rules to avoid changing flexible goals.*) | |
| 59164 | 391 | val eqintr_net = Tactic.build_net @{thms EqI intr_rls}
 | 
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 392 | fun eqintr_tac ctxt = | 
| 59164 | 393 | REPEAT_FIRST (ASSUME ctxt (filt_resolve_from_net_tac ctxt 1 eqintr_net)) | 
| 19761 | 394 | |
| 395 | (** Tactics that instantiate CTT-rules. | |
| 396 | Vars in the given terms will be incremented! | |
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 397 | The (rtac EqE i) lets them apply to equality judgments. **) | 
| 19761 | 398 | |
| 27208 
5fe899199f85
proper context for tactics derived from res_inst_tac;
 wenzelm parents: 
26956diff
changeset | 399 | fun NE_tac ctxt sp i = | 
| 60754 | 400 |   TRY (resolve_tac ctxt @{thms EqE} i) THEN
 | 
| 59780 | 401 |   Rule_Insts.res_inst_tac ctxt [((("p", 0), Position.none), sp)] [] @{thm NE} i
 | 
| 19761 | 402 | |
| 27208 
5fe899199f85
proper context for tactics derived from res_inst_tac;
 wenzelm parents: 
26956diff
changeset | 403 | fun SumE_tac ctxt sp i = | 
| 60754 | 404 |   TRY (resolve_tac ctxt @{thms EqE} i) THEN
 | 
| 59780 | 405 |   Rule_Insts.res_inst_tac ctxt [((("p", 0), Position.none), sp)] [] @{thm SumE} i
 | 
| 19761 | 406 | |
| 27208 
5fe899199f85
proper context for tactics derived from res_inst_tac;
 wenzelm parents: 
26956diff
changeset | 407 | fun PlusE_tac ctxt sp i = | 
| 60754 | 408 |   TRY (resolve_tac ctxt @{thms EqE} i) THEN
 | 
| 59780 | 409 |   Rule_Insts.res_inst_tac ctxt [((("p", 0), Position.none), sp)] [] @{thm PlusE} i
 | 
| 19761 | 410 | |
| 411 | (** Predicate logic reasoning, WITH THINNING!! Procedures adapted from NJ. **) | |
| 412 | ||
| 413 | (*Finds f:Prod(A,B) and a:A in the assumptions, concludes there is z:B(a) *) | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 414 | fun add_mp_tac ctxt i = | 
| 60754 | 415 |   resolve_tac ctxt @{thms subst_prodE} i  THEN  assume_tac ctxt i  THEN  assume_tac ctxt i
 | 
| 19761 | 416 | |
| 61391 | 417 | (*Finds P\<longrightarrow>Q and P in the assumptions, replaces implication by Q *) | 
| 60754 | 418 | fun mp_tac ctxt i = eresolve_tac ctxt @{thms subst_prodE} i  THEN  assume_tac ctxt i
 | 
| 19761 | 419 | |
| 420 | (*"safe" when regarded as predicate calculus rules*) | |
| 421 | val safe_brls = sort (make_ord lessb) | |
| 27208 
5fe899199f85
proper context for tactics derived from res_inst_tac;
 wenzelm parents: 
26956diff
changeset | 422 |     [ (true, @{thm FE}), (true,asm_rl),
 | 
| 
5fe899199f85
proper context for tactics derived from res_inst_tac;
 wenzelm parents: 
26956diff
changeset | 423 |       (false, @{thm ProdI}), (true, @{thm SumE}), (true, @{thm PlusE}) ]
 | 
| 19761 | 424 | |
| 425 | val unsafe_brls = | |
| 27208 
5fe899199f85
proper context for tactics derived from res_inst_tac;
 wenzelm parents: 
26956diff
changeset | 426 |     [ (false, @{thm PlusI_inl}), (false, @{thm PlusI_inr}), (false, @{thm SumI}),
 | 
| 
5fe899199f85
proper context for tactics derived from res_inst_tac;
 wenzelm parents: 
26956diff
changeset | 427 |       (true, @{thm subst_prodE}) ]
 | 
| 19761 | 428 | |
| 429 | (*0 subgoals vs 1 or more*) | |
| 430 | val (safe0_brls, safep_brls) = | |
| 67405 
e9ab4ad7bd15
uniform use of Standard ML op-infix -- eliminated warnings;
 wenzelm parents: 
67399diff
changeset | 431 | List.partition (curry (op =) 0 o subgoals_of_brl) safe_brls | 
| 19761 | 432 | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 433 | fun safestep_tac ctxt thms i = | 
| 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 434 | form_tac ctxt ORELSE | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59164diff
changeset | 435 | resolve_tac ctxt thms i ORELSE | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59164diff
changeset | 436 | biresolve_tac ctxt safe0_brls i ORELSE mp_tac ctxt i ORELSE | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59164diff
changeset | 437 | DETERM (biresolve_tac ctxt safep_brls i) | 
| 19761 | 438 | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 439 | fun safe_tac ctxt thms i = DEPTH_SOLVE_1 (safestep_tac ctxt thms i) | 
| 19761 | 440 | |
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59164diff
changeset | 441 | fun step_tac ctxt thms = safestep_tac ctxt thms ORELSE' biresolve_tac ctxt unsafe_brls | 
| 19761 | 442 | |
| 443 | (*Fails unless it solves the goal!*) | |
| 58963 
26bf09b95dda
proper context for assume_tac (atac remains as fall-back without context);
 wenzelm parents: 
58889diff
changeset | 444 | fun pc_tac ctxt thms = DEPTH_SOLVE_1 o (step_tac ctxt thms) | 
| 60770 | 445 | \<close> | 
| 19761 | 446 | |
| 60770 | 447 | method_setup eqintr = \<open>Scan.succeed (SIMPLE_METHOD o eqintr_tac)\<close> | 
| 448 | method_setup NE = \<open> | |
| 74563 | 449 | Scan.lift Parse.embedded_inner_syntax >> (fn s => fn ctxt => SIMPLE_METHOD' (NE_tac ctxt s)) | 
| 60770 | 450 | \<close> | 
| 451 | method_setup pc = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD' (pc_tac ctxt ths))\<close> | |
| 452 | method_setup add_mp = \<open>Scan.succeed (SIMPLE_METHOD' o add_mp_tac)\<close> | |
| 58972 | 453 | |
| 69605 | 454 | ML_file \<open>rew.ML\<close> | 
| 60770 | 455 | method_setup rew = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (rew_tac ctxt ths))\<close> | 
| 456 | method_setup hyp_rew = \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (hyp_rew_tac ctxt ths))\<close> | |
| 58972 | 457 | |
| 19761 | 458 | |
| 60770 | 459 | subsection \<open>The elimination rules for fst/snd\<close> | 
| 19761 | 460 | |
| 58977 | 461 | lemma SumE_fst: "p : Sum(A,B) \<Longrightarrow> fst(p) : A" | 
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 462 | unfolding basic_defs | 
| 63505 | 463 | apply (erule SumE) | 
| 464 | apply assumption | |
| 465 | done | |
| 19761 | 466 | |
| 63505 | 467 | text \<open>The first premise must be \<open>p:Sum(A,B)\<close>!!.\<close> | 
| 19761 | 468 | lemma SumE_snd: | 
| 469 | assumes major: "p: Sum(A,B)" | |
| 470 | and "A type" | |
| 58977 | 471 | and "\<And>x. x:A \<Longrightarrow> B(x) type" | 
| 19761 | 472 | shows "snd(p) : B(fst(p))" | 
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 473 | unfolding basic_defs | 
| 19761 | 474 | apply (rule major [THEN SumE]) | 
| 475 | apply (rule SumC [THEN subst_eqtyparg, THEN replace_type]) | |
| 63505 | 476 | apply (typechk assms) | 
| 19761 | 477 | done | 
| 478 | ||
| 65447 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 479 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 480 | section \<open>The two-element type (booleans and conditionals)\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 481 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 482 | definition Bool :: "t" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 483 | where "Bool \<equiv> T+T" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 484 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 485 | definition true :: "i" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 486 | where "true \<equiv> inl(tt)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 487 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 488 | definition false :: "i" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 489 | where "false \<equiv> inr(tt)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 490 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 491 | definition cond :: "[i,i,i]\<Rightarrow>i" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 492 | where "cond(a,b,c) \<equiv> when(a, \<lambda>_. b, \<lambda>_. c)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 493 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 494 | lemmas bool_defs = Bool_def true_def false_def cond_def | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 495 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 496 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 497 | subsection \<open>Derivation of rules for the type \<open>Bool\<close>\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 498 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 499 | text \<open>Formation rule.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 500 | lemma boolF: "Bool type" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 501 | unfolding bool_defs by typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 502 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 503 | text \<open>Introduction rules for \<open>true\<close>, \<open>false\<close>.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 504 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 505 | lemma boolI_true: "true : Bool" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 506 | unfolding bool_defs by typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 507 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 508 | lemma boolI_false: "false : Bool" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 509 | unfolding bool_defs by typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 510 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 511 | text \<open>Elimination rule: typing of \<open>cond\<close>.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 512 | lemma boolE: "\<lbrakk>p:Bool; a : C(true); b : C(false)\<rbrakk> \<Longrightarrow> cond(p,a,b) : C(p)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 513 | unfolding bool_defs | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 514 | apply (typechk; erule TE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 515 | apply typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 516 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 517 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 518 | lemma boolEL: "\<lbrakk>p = q : Bool; a = c : C(true); b = d : C(false)\<rbrakk> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 519 | \<Longrightarrow> cond(p,a,b) = cond(q,c,d) : C(p)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 520 | unfolding bool_defs | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 521 | apply (rule PlusEL) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 522 | apply (erule asm_rl refl_elem [THEN TEL])+ | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 523 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 524 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 525 | text \<open>Computation rules for \<open>true\<close>, \<open>false\<close>.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 526 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 527 | lemma boolC_true: "\<lbrakk>a : C(true); b : C(false)\<rbrakk> \<Longrightarrow> cond(true,a,b) = a : C(true)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 528 | unfolding bool_defs | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 529 | apply (rule comp_rls) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 530 | apply typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 531 | apply (erule_tac [!] TE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 532 | apply typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 533 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 534 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 535 | lemma boolC_false: "\<lbrakk>a : C(true); b : C(false)\<rbrakk> \<Longrightarrow> cond(false,a,b) = b : C(false)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 536 | unfolding bool_defs | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 537 | apply (rule comp_rls) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 538 | apply typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 539 | apply (erule_tac [!] TE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 540 | apply typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 541 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 542 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 543 | section \<open>Elementary arithmetic\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 544 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 545 | subsection \<open>Arithmetic operators and their definitions\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 546 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 547 | definition add :: "[i,i]\<Rightarrow>i" (infixr "#+" 65) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 548 | where "a#+b \<equiv> rec(a, b, \<lambda>u v. succ(v))" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 549 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 550 | definition diff :: "[i,i]\<Rightarrow>i" (infixr "-" 65) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 551 | where "a-b \<equiv> rec(b, a, \<lambda>u v. rec(v, 0, \<lambda>x y. x))" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 552 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 553 | definition absdiff :: "[i,i]\<Rightarrow>i" (infixr "|-|" 65) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 554 | where "a|-|b \<equiv> (a-b) #+ (b-a)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 555 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 556 | definition mult :: "[i,i]\<Rightarrow>i" (infixr "#*" 70) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 557 | where "a#*b \<equiv> rec(a, 0, \<lambda>u v. b #+ v)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 558 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 559 | definition mod :: "[i,i]\<Rightarrow>i" (infixr "mod" 70) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 560 | where "a mod b \<equiv> rec(a, 0, \<lambda>u v. rec(succ(v) |-| b, 0, \<lambda>x y. succ(v)))" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 561 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 562 | definition div :: "[i,i]\<Rightarrow>i" (infixr "div" 70) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 563 | where "a div b \<equiv> rec(a, 0, \<lambda>u v. rec(succ(u) mod b, succ(v), \<lambda>x y. v))" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 564 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 565 | lemmas arith_defs = add_def diff_def absdiff_def mult_def mod_def div_def | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 566 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 567 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 568 | subsection \<open>Proofs about elementary arithmetic: addition, multiplication, etc.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 569 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 570 | subsubsection \<open>Addition\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 571 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 572 | text \<open>Typing of \<open>add\<close>: short and long versions.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 573 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 574 | lemma add_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #+ b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 575 | unfolding arith_defs by typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 576 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 577 | lemma add_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a #+ b = c #+ d : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 578 | unfolding arith_defs by equal | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 579 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 580 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 581 | text \<open>Computation for \<open>add\<close>: 0 and successor cases.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 582 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 583 | lemma addC0: "b:N \<Longrightarrow> 0 #+ b = b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 584 | unfolding arith_defs by rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 585 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 586 | lemma addC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) #+ b = succ(a #+ b) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 587 | unfolding arith_defs by rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 588 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 589 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 590 | subsubsection \<open>Multiplication\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 591 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 592 | text \<open>Typing of \<open>mult\<close>: short and long versions.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 593 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 594 | lemma mult_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 595 | unfolding arith_defs by (typechk add_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 596 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 597 | lemma mult_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a #* b = c #* d : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 598 | unfolding arith_defs by (equal add_typingL) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 599 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 600 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 601 | text \<open>Computation for \<open>mult\<close>: 0 and successor cases.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 602 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 603 | lemma multC0: "b:N \<Longrightarrow> 0 #* b = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 604 | unfolding arith_defs by rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 605 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 606 | lemma multC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) #* b = b #+ (a #* b) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 607 | unfolding arith_defs by rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 608 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 609 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 610 | subsubsection \<open>Difference\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 611 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 612 | text \<open>Typing of difference.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 613 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 614 | lemma diff_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a - b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 615 | unfolding arith_defs by typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 616 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 617 | lemma diff_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a - b = c - d : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 618 | unfolding arith_defs by equal | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 619 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 620 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 621 | text \<open>Computation for difference: 0 and successor cases.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 622 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 623 | lemma diffC0: "a:N \<Longrightarrow> a - 0 = a : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 624 | unfolding arith_defs by rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 625 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 626 | text \<open>Note: \<open>rec(a, 0, \<lambda>z w.z)\<close> is \<open>pred(a).\<close>\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 627 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 628 | lemma diff_0_eq_0: "b:N \<Longrightarrow> 0 - b = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 629 | unfolding arith_defs | 
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 630 | by (NE b) hyp_rew | 
| 65447 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 631 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 632 | text \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 633 | Essential to simplify FIRST!! (Else we get a critical pair) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 634 | \<open>succ(a) - succ(b)\<close> rewrites to \<open>pred(succ(a) - b)\<close>. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 635 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 636 | lemma diff_succ_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) - succ(b) = a - b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 637 | unfolding arith_defs | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 638 | apply hyp_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 639 | apply (NE b) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 640 | apply hyp_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 641 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 642 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 643 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 644 | subsection \<open>Simplification\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 645 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 646 | lemmas arith_typing_rls = add_typing mult_typing diff_typing | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 647 | and arith_congr_rls = add_typingL mult_typingL diff_typingL | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 648 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 649 | lemmas congr_rls = arith_congr_rls intrL2_rls elimL_rls | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 650 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 651 | lemmas arithC_rls = | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 652 | addC0 addC_succ | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 653 | multC0 multC_succ | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 654 | diffC0 diff_0_eq_0 diff_succ_succ | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 655 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 656 | ML \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 657 | structure Arith_simp = TSimpFun( | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 658 |     val refl = @{thm refl_elem}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 659 |     val sym = @{thm sym_elem}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 660 |     val trans = @{thm trans_elem}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 661 |     val refl_red = @{thm refl_red}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 662 |     val trans_red = @{thm trans_red}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 663 |     val red_if_equal = @{thm red_if_equal}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 664 |     val default_rls = @{thms arithC_rls comp_rls}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 665 |     val routine_tac = routine_tac @{thms arith_typing_rls routine_rls}
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 666 | ) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 667 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 668 | fun arith_rew_tac ctxt prems = | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 669 |     make_rew_tac ctxt (Arith_simp.norm_tac ctxt (@{thms congr_rls}, prems))
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 670 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 671 | fun hyp_arith_rew_tac ctxt prems = | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 672 | make_rew_tac ctxt | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 673 |       (Arith_simp.cond_norm_tac ctxt (prove_cond_tac ctxt, @{thms congr_rls}, prems))
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 674 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 675 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 676 | method_setup arith_rew = \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 677 | Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (arith_rew_tac ctxt ths)) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 678 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 679 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 680 | method_setup hyp_arith_rew = \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 681 | Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (hyp_arith_rew_tac ctxt ths)) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 682 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 683 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 684 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 685 | subsection \<open>Addition\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 686 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 687 | text \<open>Associative law for addition.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 688 | lemma add_assoc: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #+ b) #+ c = a #+ (b #+ c) : N" | 
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 689 | by (NE a) hyp_arith_rew | 
| 65447 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 690 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 691 | text \<open>Commutative law for addition. Can be proved using three inductions. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 692 | Must simplify after first induction! Orientation of rewrites is delicate.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 693 | lemma add_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #+ b = b #+ a : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 694 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 695 | apply hyp_arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 696 | apply (rule sym_elem) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 697 | prefer 2 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 698 | apply (NE b) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 699 | prefer 4 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 700 | apply (NE b) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 701 | apply hyp_arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 702 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 703 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 704 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 705 | subsection \<open>Multiplication\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 706 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 707 | text \<open>Right annihilation in product.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 708 | lemma mult_0_right: "a:N \<Longrightarrow> a #* 0 = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 709 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 710 | apply hyp_arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 711 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 712 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 713 | text \<open>Right successor law for multiplication.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 714 | lemma mult_succ_right: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* succ(b) = a #+ (a #* b) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 715 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 716 | apply (hyp_arith_rew add_assoc [THEN sym_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 717 | apply (assumption | rule add_commute mult_typingL add_typingL intrL_rls refl_elem)+ | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 718 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 719 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 720 | text \<open>Commutative law for multiplication.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 721 | lemma mult_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* b = b #* a : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 722 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 723 | apply (hyp_arith_rew mult_0_right mult_succ_right) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 724 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 725 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 726 | text \<open>Addition distributes over multiplication.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 727 | lemma add_mult_distrib: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #+ b) #* c = (a #* c) #+ (b #* c) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 728 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 729 | apply (hyp_arith_rew add_assoc [THEN sym_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 730 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 731 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 732 | text \<open>Associative law for multiplication.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 733 | lemma mult_assoc: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #* b) #* c = a #* (b #* c) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 734 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 735 | apply (hyp_arith_rew add_mult_distrib) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 736 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 737 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 738 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 739 | subsection \<open>Difference\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 740 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 741 | text \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 742 | Difference on natural numbers, without negative numbers | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 743 | \<^item> \<open>a - b = 0\<close> iff \<open>a \<le> b\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 744 | \<^item> \<open>a - b = succ(c)\<close> iff \<open>a > b\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 745 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 746 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 747 | lemma diff_self_eq_0: "a:N \<Longrightarrow> a - a = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 748 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 749 | apply hyp_arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 750 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 751 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 752 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 753 | lemma add_0_right: "\<lbrakk>c : N; 0 : N; c : N\<rbrakk> \<Longrightarrow> c #+ 0 = c : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 754 | by (rule addC0 [THEN [3] add_commute [THEN trans_elem]]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 755 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 756 | text \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 757 | Addition is the inverse of subtraction: if \<open>b \<le> x\<close> then \<open>b #+ (x - b) = x\<close>. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 758 | An example of induction over a quantified formula (a product). | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 759 | Uses rewriting with a quantified, implicative inductive hypothesis. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 760 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 761 | schematic_goal add_diff_inverse_lemma: | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 762 | "b:N \<Longrightarrow> ?a : \<Prod>x:N. Eq(N, b-x, 0) \<longrightarrow> Eq(N, b #+ (x-b), x)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 763 | apply (NE b) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 764 | \<comment> \<open>strip one "universal quantifier" but not the "implication"\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 765 | apply (rule_tac [3] intr_rls) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 766 | \<comment> \<open>case analysis on \<open>x\<close> in \<open>succ(u) \<le> x \<longrightarrow> succ(u) #+ (x - succ(u)) = x\<close>\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 767 | prefer 4 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 768 | apply (NE x) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 769 | apply assumption | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 770 | \<comment> \<open>Prepare for simplification of types -- the antecedent \<open>succ(u) \<le> x\<close>\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 771 | apply (rule_tac [2] replace_type) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 772 | apply (rule_tac [1] replace_type) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 773 | apply arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 774 | \<comment> \<open>Solves first 0 goal, simplifies others. Two sugbgoals remain. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 775 | Both follow by rewriting, (2) using quantified induction hyp.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 776 | apply intr \<comment> \<open>strips remaining \<open>\<Prod>\<close>s\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 777 | apply (hyp_arith_rew add_0_right) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 778 | apply assumption | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 779 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 780 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 781 | text \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 782 | Version of above with premise \<open>b - a = 0\<close> i.e. \<open>a \<ge> b\<close>. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 783 |   Using @{thm ProdE} does not work -- for \<open>?B(?a)\<close> is ambiguous.
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 784 |   Instead, @{thm add_diff_inverse_lemma} states the desired induction scheme;
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 785 |   the use of \<open>THEN\<close> below instantiates Vars in @{thm ProdE} automatically.
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 786 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 787 | lemma add_diff_inverse: "\<lbrakk>a:N; b:N; b - a = 0 : N\<rbrakk> \<Longrightarrow> b #+ (a-b) = a : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 788 | apply (rule EqE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 789 | apply (rule add_diff_inverse_lemma [THEN ProdE, THEN ProdE]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 790 | apply (assumption | rule EqI)+ | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 791 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 792 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 793 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 794 | subsection \<open>Absolute difference\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 795 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 796 | text \<open>Typing of absolute difference: short and long versions.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 797 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 798 | lemma absdiff_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a |-| b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 799 | unfolding arith_defs by typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 800 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 801 | lemma absdiff_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a |-| b = c |-| d : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 802 | unfolding arith_defs by equal | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 803 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 804 | lemma absdiff_self_eq_0: "a:N \<Longrightarrow> a |-| a = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 805 | unfolding absdiff_def by (arith_rew diff_self_eq_0) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 806 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 807 | lemma absdiffC0: "a:N \<Longrightarrow> 0 |-| a = a : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 808 | unfolding absdiff_def by hyp_arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 809 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 810 | lemma absdiff_succ_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) |-| succ(b) = a |-| b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 811 | unfolding absdiff_def by hyp_arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 812 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 813 | text \<open>Note how easy using commutative laws can be? ...not always...\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 814 | lemma absdiff_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a |-| b = b |-| a : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 815 | unfolding absdiff_def | 
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 816 | by (rule add_commute) (typechk diff_typing) | 
| 65447 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 817 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 818 | text \<open>If \<open>a + b = 0\<close> then \<open>a = 0\<close>. Surprisingly tedious.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 819 | schematic_goal add_eq0_lemma: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> ?c : Eq(N,a#+b,0) \<longrightarrow> Eq(N,a,0)" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 820 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 821 | apply (rule_tac [3] replace_type) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 822 | apply arith_rew | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 823 | apply intr \<comment> \<open>strips remaining \<open>\<Prod>\<close>s\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 824 | apply (rule_tac [2] zero_ne_succ [THEN FE]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 825 | apply (erule_tac [3] EqE [THEN sym_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 826 | apply (typechk add_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 827 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 828 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 829 | text \<open> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 830 | Version of above with the premise \<open>a + b = 0\<close>. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 831 |   Again, resolution instantiates variables in @{thm ProdE}.
 | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 832 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 833 | lemma add_eq0: "\<lbrakk>a:N; b:N; a #+ b = 0 : N\<rbrakk> \<Longrightarrow> a = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 834 | apply (rule EqE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 835 | apply (rule add_eq0_lemma [THEN ProdE]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 836 | apply (rule_tac [3] EqI) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 837 | apply typechk | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 838 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 839 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 840 | text \<open>Here is a lemma to infer \<open>a - b = 0\<close> and \<open>b - a = 0\<close> from \<open>a |-| b = 0\<close>, below.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 841 | schematic_goal absdiff_eq0_lem: | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 842 | "\<lbrakk>a:N; b:N; a |-| b = 0 : N\<rbrakk> \<Longrightarrow> ?a : Eq(N, a-b, 0) \<times> Eq(N, b-a, 0)" | 
| 76381 
2931d8331cc5
Beautification of some declarations
 paulson <lp15@cam.ac.uk> parents: 
74563diff
changeset | 843 | unfolding absdiff_def | 
| 65447 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 844 | apply intr | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 845 | apply eqintr | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 846 | apply (rule_tac [2] add_eq0) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 847 | apply (rule add_eq0) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 848 | apply (rule_tac [6] add_commute [THEN trans_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 849 | apply (typechk diff_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 850 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 851 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 852 | text \<open>If \<open>a |-| b = 0\<close> then \<open>a = b\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 853 | proof: \<open>a - b = 0\<close> and \<open>b - a = 0\<close>, so \<open>b = a + (b - a) = a + 0 = a\<close>. | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 854 | \<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 855 | lemma absdiff_eq0: "\<lbrakk>a |-| b = 0 : N; a:N; b:N\<rbrakk> \<Longrightarrow> a = b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 856 | apply (rule EqE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 857 | apply (rule absdiff_eq0_lem [THEN SumE]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 858 | apply eqintr | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 859 | apply (rule add_diff_inverse [THEN sym_elem, THEN trans_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 860 | apply (erule_tac [3] EqE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 861 | apply (hyp_arith_rew add_0_right) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 862 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 863 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 864 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 865 | subsection \<open>Remainder and Quotient\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 866 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 867 | text \<open>Typing of remainder: short and long versions.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 868 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 869 | lemma mod_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a mod b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 870 | unfolding mod_def by (typechk absdiff_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 871 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 872 | lemma mod_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a mod b = c mod d : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 873 | unfolding mod_def by (equal absdiff_typingL) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 874 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 875 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 876 | text \<open>Computation for \<open>mod\<close>: 0 and successor cases.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 877 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 878 | lemma modC0: "b:N \<Longrightarrow> 0 mod b = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 879 | unfolding mod_def by (rew absdiff_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 880 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 881 | lemma modC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 882 | succ(a) mod b = rec(succ(a mod b) |-| b, 0, \<lambda>x y. succ(a mod b)) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 883 | unfolding mod_def by (rew absdiff_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 884 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 885 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 886 | text \<open>Typing of quotient: short and long versions.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 887 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 888 | lemma div_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a div b : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 889 | unfolding div_def by (typechk absdiff_typing mod_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 890 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 891 | lemma div_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a div b = c div d : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 892 | unfolding div_def by (equal absdiff_typingL mod_typingL) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 893 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 894 | lemmas div_typing_rls = mod_typing div_typing absdiff_typing | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 895 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 896 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 897 | text \<open>Computation for quotient: 0 and successor cases.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 898 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 899 | lemma divC0: "b:N \<Longrightarrow> 0 div b = 0 : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 900 | unfolding div_def by (rew mod_typing absdiff_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 901 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 902 | lemma divC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 903 | succ(a) div b = rec(succ(a) mod b, succ(a div b), \<lambda>x y. a div b) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 904 | unfolding div_def by (rew mod_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 905 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 906 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 907 | text \<open>Version of above with same condition as the \<open>mod\<close> one.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 908 | lemma divC_succ2: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 909 | succ(a) div b =rec(succ(a mod b) |-| b, succ(a div b), \<lambda>x y. a div b) : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 910 | apply (rule divC_succ [THEN trans_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 911 | apply (rew div_typing_rls modC_succ) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 912 | apply (NE "succ (a mod b) |-|b") | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 913 | apply (rew mod_typing div_typing absdiff_typing) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 914 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 915 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 916 | text \<open>For case analysis on whether a number is 0 or a successor.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 917 | lemma iszero_decidable: "a:N \<Longrightarrow> rec(a, inl(eq), \<lambda>ka kb. inr(<ka, eq>)) : | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 918 | Eq(N,a,0) + (\<Sum>x:N. Eq(N,a, succ(x)))" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 919 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 920 | apply (rule_tac [3] PlusI_inr) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 921 | apply (rule_tac [2] PlusI_inl) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 922 | apply eqintr | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 923 | apply equal | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 924 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 925 | |
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 926 | text \<open>Main Result. Holds when \<open>b\<close> is 0 since \<open>a mod 0 = a\<close> and \<open>a div 0 = 0\<close>.\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 927 | lemma mod_div_equality: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a mod b #+ (a div b) #* b = a : N" | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 928 | apply (NE a) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 929 | apply (arith_rew div_typing_rls modC0 modC_succ divC0 divC_succ2) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 930 | apply (rule EqE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 931 | \<comment> \<open>case analysis on \<open>succ(u mod b) |-| b\<close>\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 932 | apply (rule_tac a1 = "succ (u mod b) |-| b" in iszero_decidable [THEN PlusE]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 933 | apply (erule_tac [3] SumE) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 934 | apply (hyp_arith_rew div_typing_rls modC0 modC_succ divC0 divC_succ2) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 935 | \<comment> \<open>Replace one occurrence of \<open>b\<close> by \<open>succ(u mod b)\<close>. Clumsy!\<close> | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 936 | apply (rule add_typingL [THEN trans_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 937 | apply (erule EqE [THEN absdiff_eq0, THEN sym_elem]) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 938 | apply (rule_tac [3] refl_elem) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 939 | apply (hyp_arith_rew div_typing_rls) | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 940 | done | 
| 
fae6051ec192
clarified main CTT.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
65338diff
changeset | 941 | |
| 19761 | 942 | end |