src/HOL/Transcendental.thy
author blanchet
Wed, 28 May 2014 17:42:36 +0200
changeset 57108 dc0b4f50e288
parent 57025 e7fd64f82876
child 57129 7edb7550663e
permissions -rw-r--r--
more generous max number of suggestions, for more safety
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     1
(*  Title:      HOL/Transcendental.thy
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     2
    Author:     Jacques D. Fleuriot, University of Cambridge, University of Edinburgh
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     3
    Author:     Lawrence C Paulson
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
     4
    Author:     Jeremy Avigad
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     5
*)
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     6
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
     7
header{*Power Series, Transcendental Functions etc.*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
     8
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
     9
theory Transcendental
25600
73431bd8c4c4 joined EvenOdd theory with Parity
haftmann
parents: 25153
diff changeset
    10
imports Fact Series Deriv NthRoot
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
    11
begin
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    12
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    13
lemma root_test_convergence:
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    14
  fixes f :: "nat \<Rightarrow> 'a::banach"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    15
  assumes f: "(\<lambda>n. root n (norm (f n))) ----> x" -- "could be weakened to lim sup"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    16
  assumes "x < 1"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    17
  shows "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    18
proof -
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    19
  have "0 \<le> x"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    20
    by (rule LIMSEQ_le[OF tendsto_const f]) (auto intro!: exI[of _ 1])
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    21
  from `x < 1` obtain z where z: "x < z" "z < 1"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    22
    by (metis dense)
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    23
  from f `x < z`
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    24
  have "eventually (\<lambda>n. root n (norm (f n)) < z) sequentially"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    25
    by (rule order_tendstoD)
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    26
  then have "eventually (\<lambda>n. norm (f n) \<le> z^n) sequentially"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    27
    using eventually_ge_at_top
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    28
  proof eventually_elim
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    29
    fix n assume less: "root n (norm (f n)) < z" and n: "1 \<le> n"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    30
    from power_strict_mono[OF less, of n] n
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    31
    show "norm (f n) \<le> z ^ n"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    32
      by simp
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    33
  qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    34
  then show "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    35
    unfolding eventually_sequentially
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    36
    using z `0 \<le> x` by (auto intro!: summable_comparison_test[OF _  summable_geometric])
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    37
qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    38
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
    39
subsection {* Properties of Power Series *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    40
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    41
lemma lemma_realpow_diff:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
    42
  fixes y :: "'a::monoid_mult"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    43
  shows "p \<le> n \<Longrightarrow> y ^ (Suc n - p) = (y ^ (n - p)) * y"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    44
proof -
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    45
  assume "p \<le> n"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    46
  hence "Suc n - p = Suc (n - p)" by (rule Suc_diff_le)
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
    47
  thus ?thesis by (simp add: power_commutes)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    48
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    49
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
    50
lemma lemma_realpow_diff_sumr2:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
    51
  fixes y :: "'a::{comm_ring,monoid_mult}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
    52
  shows
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
    53
    "x ^ (Suc n) - y ^ (Suc n) =
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    54
      (x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    55
proof (induct n)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    56
  case (Suc n)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    57
  have "x ^ Suc (Suc n) - y ^ Suc (Suc n) = x * (x * x ^ n) - y * (y * y ^ n)"
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    58
    by simp
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    59
  also have "... = y * (x ^ (Suc n) - y ^ (Suc n)) + (x - y) * (x * x ^ n)"
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    60
    by (simp add: algebra_simps)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    61
  also have "... = y * ((x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x ^ n)"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    62
    by (simp only: Suc)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    63
  also have "... = (x - y) * (y * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x ^ n)"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    64
    by (simp only: mult_left_commute)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    65
  also have "... = (x - y) * (\<Sum>p<Suc (Suc n). x ^ p * y ^ (Suc n - p))"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    66
    by (simp add: field_simps Suc_diff_le setsum_left_distrib setsum_right_distrib)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
    67
  finally show ?case .
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    68
qed simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    69
55832
8dd16f8dfe99 repaired document;
wenzelm
parents: 55734
diff changeset
    70
corollary power_diff_sumr2: --{* @{text COMPLEX_POLYFUN} in HOL Light *}
55734
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55719
diff changeset
    71
  fixes x :: "'a::{comm_ring,monoid_mult}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    72
  shows   "x^n - y^n = (x - y) * (\<Sum>i<n. y^(n - Suc i) * x^i)"
55734
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55719
diff changeset
    73
using lemma_realpow_diff_sumr2[of x "n - 1" y]
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55719
diff changeset
    74
by (cases "n = 0") (simp_all add: field_simps)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55719
diff changeset
    75
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
    76
lemma lemma_realpow_rev_sumr:
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    77
   "(\<Sum>p<Suc n. (x ^ p) * (y ^ (n - p))) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    78
    (\<Sum>p<Suc n. (x ^ (n - p)) * (y ^ p))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
    79
  apply (rule setsum_reindex_cong [where f="\<lambda>i. n - i"])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    80
  apply (auto simp: image_iff Bex_def intro!: inj_onI)
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    81
  apply arith
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
    82
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    83
55719
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    84
lemma power_diff_1_eq:
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    85
  fixes x :: "'a::{comm_ring,monoid_mult}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    86
  shows "n \<noteq> 0 \<Longrightarrow> x^n - 1 = (x - 1) * (\<Sum>i<n. (x^i))"
55719
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    87
using lemma_realpow_diff_sumr2 [of x _ 1] 
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    88
  by (cases n) auto
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    89
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    90
lemma one_diff_power_eq':
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    91
  fixes x :: "'a::{comm_ring,monoid_mult}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    92
  shows "n \<noteq> 0 \<Longrightarrow> 1 - x^n = (1 - x) * (\<Sum>i<n. x^(n - Suc i))"
55719
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    93
using lemma_realpow_diff_sumr2 [of 1 _ x] 
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    94
  by (cases n) auto
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    95
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    96
lemma one_diff_power_eq:
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    97
  fixes x :: "'a::{comm_ring,monoid_mult}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
    98
  shows "n \<noteq> 0 \<Longrightarrow> 1 - x^n = (1 - x) * (\<Sum>i<n. x^i)"
55719
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
    99
by (metis one_diff_power_eq' [of n x] nat_diff_setsum_reindex)
cdddd073bff8 Lemmas about Reals, norm, etc., and cleaner variants of existing ones
paulson <lp15@cam.ac.uk>
parents: 55417
diff changeset
   100
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   101
text{*Power series has a `circle` of convergence, i.e. if it sums for @{term
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   102
  x}, then it sums absolutely for @{term z} with @{term "\<bar>z\<bar> < \<bar>x\<bar>"}.*}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   103
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   104
lemma powser_insidea:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   105
  fixes x z :: "'a::real_normed_div_algebra"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   106
  assumes 1: "summable (\<lambda>n. f n * x ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   107
    and 2: "norm z < norm x"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   108
  shows "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   109
proof -
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   110
  from 2 have x_neq_0: "x \<noteq> 0" by clarsimp
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   111
  from 1 have "(\<lambda>n. f n * x ^ n) ----> 0"
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   112
    by (rule summable_LIMSEQ_zero)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   113
  hence "convergent (\<lambda>n. f n * x ^ n)"
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   114
    by (rule convergentI)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   115
  hence "Cauchy (\<lambda>n. f n * x ^ n)"
44726
8478eab380e9 generalize some lemmas
huffman
parents: 44725
diff changeset
   116
    by (rule convergent_Cauchy)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   117
  hence "Bseq (\<lambda>n. f n * x ^ n)"
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   118
    by (rule Cauchy_Bseq)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   119
  then obtain K where 3: "0 < K" and 4: "\<forall>n. norm (f n * x ^ n) \<le> K"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   120
    by (simp add: Bseq_def, safe)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   121
  have "\<exists>N. \<forall>n\<ge>N. norm (norm (f n * z ^ n)) \<le>
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   122
                   K * norm (z ^ n) * inverse (norm (x ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   123
  proof (intro exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   124
    fix n::nat
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   125
    assume "0 \<le> n"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   126
    have "norm (norm (f n * z ^ n)) * norm (x ^ n) =
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   127
          norm (f n * x ^ n) * norm (z ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   128
      by (simp add: norm_mult abs_mult)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   129
    also have "\<dots> \<le> K * norm (z ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   130
      by (simp only: mult_right_mono 4 norm_ge_zero)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   131
    also have "\<dots> = K * norm (z ^ n) * (inverse (norm (x ^ n)) * norm (x ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   132
      by (simp add: x_neq_0)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   133
    also have "\<dots> = K * norm (z ^ n) * inverse (norm (x ^ n)) * norm (x ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   134
      by (simp only: mult_assoc)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   135
    finally show "norm (norm (f n * z ^ n)) \<le>
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   136
                  K * norm (z ^ n) * inverse (norm (x ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   137
      by (simp add: mult_le_cancel_right x_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   138
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   139
  moreover have "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   140
  proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   141
    from 2 have "norm (norm (z * inverse x)) < 1"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   142
      using x_neq_0
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   143
      by (simp add: norm_mult nonzero_norm_inverse divide_inverse [where 'a=real, symmetric])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   144
    hence "summable (\<lambda>n. norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   145
      by (rule summable_geometric)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   146
    hence "summable (\<lambda>n. K * norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   147
      by (rule summable_mult)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   148
    thus "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   149
      using x_neq_0
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   150
      by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   151
                    power_inverse norm_power mult_assoc)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   152
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   153
  ultimately show "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   154
    by (rule summable_comparison_test)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   155
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   156
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   157
lemma powser_inside:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   158
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   159
  shows
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   160
    "summable (\<lambda>n. f n * (x ^ n)) \<Longrightarrow> norm z < norm x \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   161
      summable (\<lambda>n. f n * (z ^ n))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   162
  by (rule powser_insidea [THEN summable_norm_cancel])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   163
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   164
lemma sum_split_even_odd:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   165
  fixes f :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   166
  shows
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   167
    "(\<Sum>i<2 * n. if even i then f i else g i) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   168
     (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1))"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   169
proof (induct n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   170
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   171
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   172
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   173
  case (Suc n)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   174
  have "(\<Sum>i<2 * Suc n. if even i then f i else g i) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   175
    (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1)) + (f (2 * n) + g (2 * n + 1))"
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
   176
    using Suc.hyps unfolding One_nat_def by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   177
  also have "\<dots> = (\<Sum>i<Suc n. f (2 * i)) + (\<Sum>i<Suc n. g (2 * i + 1))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   178
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   179
  finally show ?case .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   180
qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   181
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   182
lemma sums_if':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   183
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   184
  assumes "g sums x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   185
  shows "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   186
  unfolding sums_def
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   187
proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   188
  fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   189
  assume "0 < r"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   190
  from `g sums x`[unfolded sums_def, THEN LIMSEQ_D, OF this]
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   191
  obtain no where no_eq: "\<And> n. n \<ge> no \<Longrightarrow> (norm (setsum g {..<n} - x) < r)" by blast
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   192
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   193
  let ?SUM = "\<lambda> m. \<Sum>i<m. if even i then 0 else g ((i - 1) div 2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   194
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   195
    fix m
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   196
    assume "m \<ge> 2 * no"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   197
    hence "m div 2 \<ge> no" by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   198
    have sum_eq: "?SUM (2 * (m div 2)) = setsum g {..< m div 2}"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   199
      using sum_split_even_odd by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   200
    hence "(norm (?SUM (2 * (m div 2)) - x) < r)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   201
      using no_eq unfolding sum_eq using `m div 2 \<ge> no` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   202
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   203
    have "?SUM (2 * (m div 2)) = ?SUM m"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   204
    proof (cases "even m")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   205
      case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   206
      show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   207
        unfolding even_nat_div_two_times_two[OF True, unfolded numeral_2_eq_2[symmetric]] ..
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   208
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   209
      case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   210
      hence "even (Suc m)" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   211
      from even_nat_div_two_times_two[OF this, unfolded numeral_2_eq_2[symmetric]]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   212
        odd_nat_plus_one_div_two[OF False, unfolded numeral_2_eq_2[symmetric]]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   213
      have eq: "Suc (2 * (m div 2)) = m" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   214
      hence "even (2 * (m div 2))" using `odd m` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   215
      have "?SUM m = ?SUM (Suc (2 * (m div 2)))" unfolding eq ..
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   216
      also have "\<dots> = ?SUM (2 * (m div 2))" using `even (2 * (m div 2))` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   217
      finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   218
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   219
    ultimately have "(norm (?SUM m - x) < r)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   220
  }
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   221
  thus "\<exists> no. \<forall> m \<ge> no. norm (?SUM m - x) < r" by blast
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   222
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   223
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   224
lemma sums_if:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   225
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   226
  assumes "g sums x" and "f sums y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   227
  shows "(\<lambda> n. if even n then f (n div 2) else g ((n - 1) div 2)) sums (x + y)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   228
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   229
  let ?s = "\<lambda> n. if even n then 0 else f ((n - 1) div 2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   230
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   231
    fix B T E
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   232
    have "(if B then (0 :: real) else E) + (if B then T else 0) = (if B then T else E)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   233
      by (cases B) auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   234
  } note if_sum = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   235
  have g_sums: "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   236
    using sums_if'[OF `g sums x`] .
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   237
  {
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 38642
diff changeset
   238
    have if_eq: "\<And>B T E. (if \<not> B then T else E) = (if B then E else T)" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   239
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   240
    have "?s sums y" using sums_if'[OF `f sums y`] .
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   241
    from this[unfolded sums_def, THEN LIMSEQ_Suc]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   242
    have "(\<lambda> n. if even n then f (n div 2) else 0) sums y"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   243
      by (simp add: lessThan_Suc_eq_insert_0 image_iff setsum_reindex if_eq sums_def cong del: if_cong)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   244
  }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   245
  from sums_add[OF g_sums this] show ?thesis unfolding if_sum .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   246
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   247
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   248
subsection {* Alternating series test / Leibniz formula *}
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   249
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   250
lemma sums_alternating_upper_lower:
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   251
  fixes a :: "nat \<Rightarrow> real"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   252
  assumes mono: "\<And>n. a (Suc n) \<le> a n" and a_pos: "\<And>n. 0 \<le> a n" and "a ----> 0"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   253
  shows "\<exists>l. ((\<forall>n. (\<Sum>i<2*n. -1^i*a i) \<le> l) \<and> (\<lambda> n. \<Sum>i<2*n. -1^i*a i) ----> l) \<and>
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   254
             ((\<forall>n. l \<le> (\<Sum>i<2*n + 1. -1^i*a i)) \<and> (\<lambda> n. \<Sum>i<2*n + 1. -1^i*a i) ----> l)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   255
  (is "\<exists>l. ((\<forall>n. ?f n \<le> l) \<and> _) \<and> ((\<forall>n. l \<le> ?g n) \<and> _)")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   256
proof (rule nested_sequence_unique)
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
   257
  have fg_diff: "\<And>n. ?f n - ?g n = - a (2 * n)" unfolding One_nat_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   258
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   259
  show "\<forall>n. ?f n \<le> ?f (Suc n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   260
  proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   261
    fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   262
    show "?f n \<le> ?f (Suc n)" using mono[of "2*n"] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   263
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   264
  show "\<forall>n. ?g (Suc n) \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   265
  proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   266
    fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   267
    show "?g (Suc n) \<le> ?g n" using mono[of "Suc (2*n)"]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   268
      unfolding One_nat_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   269
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   270
  show "\<forall>n. ?f n \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   271
  proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   272
    fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   273
    show "?f n \<le> ?g n" using fg_diff a_pos
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   274
      unfolding One_nat_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   275
  qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   276
  show "(\<lambda>n. ?f n - ?g n) ----> 0" unfolding fg_diff
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   277
  proof (rule LIMSEQ_I)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   278
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   279
    assume "0 < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   280
    with `a ----> 0`[THEN LIMSEQ_D] obtain N where "\<And> n. n \<ge> N \<Longrightarrow> norm (a n - 0) < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   281
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   282
    hence "\<forall>n \<ge> N. norm (- a (2 * n) - 0) < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   283
    thus "\<exists>N. \<forall>n \<ge> N. norm (- a (2 * n) - 0) < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   284
  qed
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   285
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   286
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   287
lemma summable_Leibniz':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   288
  fixes a :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   289
  assumes a_zero: "a ----> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   290
    and a_pos: "\<And> n. 0 \<le> a n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   291
    and a_monotone: "\<And> n. a (Suc n) \<le> a n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   292
  shows summable: "summable (\<lambda> n. (-1)^n * a n)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   293
    and "\<And>n. (\<Sum>i<2*n. (-1)^i*a i) \<le> (\<Sum>i. (-1)^i*a i)"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   294
    and "(\<lambda>n. \<Sum>i<2*n. (-1)^i*a i) ----> (\<Sum>i. (-1)^i*a i)"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   295
    and "\<And>n. (\<Sum>i. (-1)^i*a i) \<le> (\<Sum>i<2*n+1. (-1)^i*a i)"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   296
    and "(\<lambda>n. \<Sum>i<2*n+1. (-1)^i*a i) ----> (\<Sum>i. (-1)^i*a i)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   297
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   298
  let ?S = "\<lambda>n. (-1)^n * a n"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   299
  let ?P = "\<lambda>n. \<Sum>i<n. ?S i"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   300
  let ?f = "\<lambda>n. ?P (2 * n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   301
  let ?g = "\<lambda>n. ?P (2 * n + 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   302
  obtain l :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   303
    where below_l: "\<forall> n. ?f n \<le> l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   304
      and "?f ----> l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   305
      and above_l: "\<forall> n. l \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   306
      and "?g ----> l"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   307
    using sums_alternating_upper_lower[OF a_monotone a_pos a_zero] by blast
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   308
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   309
  let ?Sa = "\<lambda>m. \<Sum>n<m. ?S n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   310
  have "?Sa ----> l"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   311
  proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   312
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   313
    assume "0 < r"
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   314
    with `?f ----> l`[THEN LIMSEQ_D]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   315
    obtain f_no where f: "\<And> n. n \<ge> f_no \<Longrightarrow> norm (?f n - l) < r" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   316
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   317
    from `0 < r` `?g ----> l`[THEN LIMSEQ_D]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   318
    obtain g_no where g: "\<And> n. n \<ge> g_no \<Longrightarrow> norm (?g n - l) < r" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   319
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   320
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   321
      fix n :: nat
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   322
      assume "n \<ge> (max (2 * f_no) (2 * g_no))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   323
      hence "n \<ge> 2 * f_no" and "n \<ge> 2 * g_no" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   324
      have "norm (?Sa n - l) < r"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   325
      proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   326
        case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   327
        from even_nat_div_two_times_two[OF this]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   328
        have n_eq: "2 * (n div 2) = n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   329
          unfolding numeral_2_eq_2[symmetric] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   330
        with `n \<ge> 2 * f_no` have "n div 2 \<ge> f_no"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   331
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   332
        from f[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   333
          unfolding n_eq atLeastLessThanSuc_atLeastAtMost .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   334
      next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   335
        case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   336
        hence "even (n - 1)" by simp
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   337
        from even_nat_div_two_times_two[OF this]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   338
        have n_eq: "2 * ((n - 1) div 2) = n - 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   339
          unfolding numeral_2_eq_2[symmetric] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   340
        hence range_eq: "n - 1 + 1 = n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   341
          using odd_pos[OF False] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   342
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   343
        from n_eq `n \<ge> 2 * g_no` have "(n - 1) div 2 \<ge> g_no"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   344
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   345
        from g[OF this] show ?thesis
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   346
          unfolding n_eq range_eq .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   347
      qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   348
    }
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   349
    thus "\<exists>no. \<forall>n \<ge> no. norm (?Sa n - l) < r" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   350
  qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   351
  hence sums_l: "(\<lambda>i. (-1)^i * a i) sums l"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   352
    unfolding sums_def .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   353
  thus "summable ?S" using summable_def by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   354
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   355
  have "l = suminf ?S" using sums_unique[OF sums_l] .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   356
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   357
  fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   358
  show "suminf ?S \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   359
    unfolding sums_unique[OF sums_l, symmetric] using above_l by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   360
  show "?f n \<le> suminf ?S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   361
    unfolding sums_unique[OF sums_l, symmetric] using below_l by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   362
  show "?g ----> suminf ?S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   363
    using `?g ----> l` `l = suminf ?S` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   364
  show "?f ----> suminf ?S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   365
    using `?f ----> l` `l = suminf ?S` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   366
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   367
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   368
theorem summable_Leibniz:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   369
  fixes a :: "nat \<Rightarrow> real"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   370
  assumes a_zero: "a ----> 0" and "monoseq a"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   371
  shows "summable (\<lambda> n. (-1)^n * a n)" (is "?summable")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   372
    and "0 < a 0 \<longrightarrow>
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   373
      (\<forall>n. (\<Sum>i. -1^i*a i) \<in> { \<Sum>i<2*n. -1^i * a i .. \<Sum>i<2*n+1. -1^i * a i})" (is "?pos")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   374
    and "a 0 < 0 \<longrightarrow>
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   375
      (\<forall>n. (\<Sum>i. -1^i*a i) \<in> { \<Sum>i<2*n+1. -1^i * a i .. \<Sum>i<2*n. -1^i * a i})" (is "?neg")
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   376
    and "(\<lambda>n. \<Sum>i<2*n. -1^i*a i) ----> (\<Sum>i. -1^i*a i)" (is "?f")
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   377
    and "(\<lambda>n. \<Sum>i<2*n+1. -1^i*a i) ----> (\<Sum>i. -1^i*a i)" (is "?g")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   378
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   379
  have "?summable \<and> ?pos \<and> ?neg \<and> ?f \<and> ?g"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   380
  proof (cases "(\<forall> n. 0 \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m)")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   381
    case True
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   382
    hence ord: "\<And>n m. m \<le> n \<Longrightarrow> a n \<le> a m" and ge0: "\<And> n. 0 \<le> a n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   383
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   384
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   385
      fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   386
      have "a (Suc n) \<le> a n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   387
        using ord[where n="Suc n" and m=n] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   388
    } note mono = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   389
    note leibniz = summable_Leibniz'[OF `a ----> 0` ge0]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   390
    from leibniz[OF mono]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   391
    show ?thesis using `0 \<le> a 0` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   392
  next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   393
    let ?a = "\<lambda> n. - a n"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   394
    case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   395
    with monoseq_le[OF `monoseq a` `a ----> 0`]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   396
    have "(\<forall> n. a n \<le> 0) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   397
    hence ord: "\<And>n m. m \<le> n \<Longrightarrow> ?a n \<le> ?a m" and ge0: "\<And> n. 0 \<le> ?a n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   398
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   399
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   400
      fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   401
      have "?a (Suc n) \<le> ?a n" using ord[where n="Suc n" and m=n]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   402
        by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   403
    } note monotone = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   404
    note leibniz =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   405
      summable_Leibniz'[OF _ ge0, of "\<lambda>x. x",
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   406
        OF tendsto_minus[OF `a ----> 0`, unfolded minus_zero] monotone]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   407
    have "summable (\<lambda> n. (-1)^n * ?a n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   408
      using leibniz(1) by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   409
    then obtain l where "(\<lambda> n. (-1)^n * ?a n) sums l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   410
      unfolding summable_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   411
    from this[THEN sums_minus] have "(\<lambda> n. (-1)^n * a n) sums -l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   412
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   413
    hence ?summable unfolding summable_def by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   414
    moreover
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   415
    have "\<And>a b :: real. \<bar>- a - - b\<bar> = \<bar>a - b\<bar>"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   416
      unfolding minus_diff_minus by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   417
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   418
    from suminf_minus[OF leibniz(1), unfolded mult_minus_right minus_minus]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   419
    have move_minus: "(\<Sum>n. - (-1 ^ n * a n)) = - (\<Sum>n. -1 ^ n * a n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   420
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   421
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   422
    have ?pos using `0 \<le> ?a 0` by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   423
    moreover have ?neg
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   424
      using leibniz(2,4)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   425
      unfolding mult_minus_right setsum_negf move_minus neg_le_iff_le
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   426
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   427
    moreover have ?f and ?g
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   428
      using leibniz(3,5)[unfolded mult_minus_right setsum_negf move_minus, THEN tendsto_minus_cancel]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   429
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   430
    ultimately show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   431
  qed
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
   432
  then show ?summable and ?pos and ?neg and ?f and ?g 
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   433
    by safe
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   434
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   435
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   436
subsection {* Term-by-Term Differentiability of Power Series *}
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   437
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   438
definition diffs :: "(nat \<Rightarrow> 'a::ring_1) \<Rightarrow> nat \<Rightarrow> 'a"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   439
  where "diffs c = (\<lambda>n. of_nat (Suc n) * c (Suc n))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   440
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   441
text{*Lemma about distributing negation over it*}
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   442
lemma diffs_minus: "diffs (\<lambda>n. - c n) = (\<lambda>n. - diffs c n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   443
  by (simp add: diffs_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   444
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   445
lemma sums_Suc_imp:
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   446
  "(f::nat \<Rightarrow> 'a::real_normed_vector) 0 = 0 \<Longrightarrow> (\<lambda>n. f (Suc n)) sums s \<Longrightarrow> (\<lambda>n. f n) sums s"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   447
  using sums_Suc_iff[of f] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   448
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   449
lemma diffs_equiv:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   450
  fixes x :: "'a::{real_normed_vector, ring_1}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   451
  shows "summable (\<lambda>n. diffs c n * x^n) \<Longrightarrow>
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   452
      (\<lambda>n. of_nat n * c n * x^(n - Suc 0)) sums (\<Sum>n. diffs c n * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   453
  unfolding diffs_def
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   454
  by (simp add: summable_sums sums_Suc_imp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   455
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   456
lemma lemma_termdiff1:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   457
  fixes z :: "'a :: {monoid_mult,comm_ring}" shows
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   458
  "(\<Sum>p<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   459
   (\<Sum>p<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   460
  by (auto simp add: algebra_simps power_add [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   461
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   462
lemma sumr_diff_mult_const2:
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   463
  "setsum f {..<n} - of_nat n * (r::'a::ring_1) = (\<Sum>i<n. f i - r)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   464
  by (simp add: setsum_subtractf)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   465
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   466
lemma lemma_termdiff2:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   467
  fixes h :: "'a :: {field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   468
  assumes h: "h \<noteq> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   469
  shows
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   470
    "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) =
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   471
     h * (\<Sum>p< n - Suc 0. \<Sum>q< n - Suc 0 - p.
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   472
          (z + h) ^ q * z ^ (n - 2 - q))" (is "?lhs = ?rhs")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   473
  apply (subgoal_tac "h * ?lhs = h * ?rhs", simp add: h)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   474
  apply (simp add: right_diff_distrib diff_divide_distrib h)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   475
  apply (simp add: mult_assoc [symmetric])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   476
  apply (cases "n", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   477
  apply (simp add: lemma_realpow_diff_sumr2 h
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   478
                   right_diff_distrib [symmetric] mult_assoc
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   479
              del: power_Suc setsum_lessThan_Suc of_nat_Suc)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   480
  apply (subst lemma_realpow_rev_sumr)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   481
  apply (subst sumr_diff_mult_const2)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   482
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   483
  apply (simp only: lemma_termdiff1 setsum_right_distrib)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   484
  apply (rule setsum_cong [OF refl])
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   485
  apply (simp add: less_iff_Suc_add)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   486
  apply (clarify)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   487
  apply (simp add: setsum_right_distrib lemma_realpow_diff_sumr2 mult_ac
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   488
              del: setsum_lessThan_Suc power_Suc)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   489
  apply (subst mult_assoc [symmetric], subst power_add [symmetric])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   490
  apply (simp add: mult_ac)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   491
  done
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   492
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   493
lemma real_setsum_nat_ivl_bounded2:
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34974
diff changeset
   494
  fixes K :: "'a::linordered_semidom"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   495
  assumes f: "\<And>p::nat. p < n \<Longrightarrow> f p \<le> K"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   496
    and K: "0 \<le> K"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   497
  shows "setsum f {..<n-k} \<le> of_nat n * K"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   498
  apply (rule order_trans [OF setsum_mono])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   499
  apply (rule f, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   500
  apply (simp add: mult_right_mono K)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   501
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   502
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   503
lemma lemma_termdiff3:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   504
  fixes h z :: "'a::{real_normed_field}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   505
  assumes 1: "h \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   506
    and 2: "norm z \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   507
    and 3: "norm (z + h) \<le> K"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   508
  shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0))
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   509
          \<le> of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   510
proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   511
  have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) =
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   512
        norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p.
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   513
          (z + h) ^ q * z ^ (n - 2 - q)) * norm h"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   514
    by (metis (lifting, no_types) lemma_termdiff2 [OF 1] mult_commute norm_mult)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   515
  also have "\<dots> \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   516
  proof (rule mult_right_mono [OF _ norm_ge_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   517
    from norm_ge_zero 2 have K: "0 \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   518
      by (rule order_trans)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   519
    have le_Kn: "\<And>i j n. i + j = n \<Longrightarrow> norm ((z + h) ^ i * z ^ j) \<le> K ^ n"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   520
      apply (erule subst)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   521
      apply (simp only: norm_mult norm_power power_add)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   522
      apply (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   523
      done
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   524
    show "norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q))
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   525
          \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   526
      apply (intro
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   527
         order_trans [OF norm_setsum]
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   528
         real_setsum_nat_ivl_bounded2
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   529
         mult_nonneg_nonneg
47489
04e7d09ade7a tuned some proofs;
huffman
parents: 47108
diff changeset
   530
         of_nat_0_le_iff
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   531
         zero_le_power K)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   532
      apply (rule le_Kn, simp)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   533
      done
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   534
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   535
  also have "\<dots> = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   536
    by (simp only: mult_assoc)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   537
  finally show ?thesis .
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   538
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   539
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   540
lemma lemma_termdiff4:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   541
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   542
  assumes k: "0 < (k::real)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   543
    and le: "\<And>h. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (f h) \<le> K * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   544
  shows "f -- 0 --> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   545
proof (rule tendsto_norm_zero_cancel)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   546
  show "(\<lambda>h. norm (f h)) -- 0 --> 0"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   547
  proof (rule real_tendsto_sandwich)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   548
    show "eventually (\<lambda>h. 0 \<le> norm (f h)) (at 0)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   549
      by simp
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   550
    show "eventually (\<lambda>h. norm (f h) \<le> K * norm h) (at 0)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   551
      using k by (auto simp add: eventually_at dist_norm le)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   552
    show "(\<lambda>h. 0) -- (0::'a) --> (0::real)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   553
      by (rule tendsto_const)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   554
    have "(\<lambda>h. K * norm h) -- (0::'a) --> K * norm (0::'a)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   555
      by (intro tendsto_intros)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   556
    then show "(\<lambda>h. K * norm h) -- (0::'a) --> 0"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   557
      by simp
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   558
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   559
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   560
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   561
lemma lemma_termdiff5:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   562
  fixes g :: "'a::real_normed_vector \<Rightarrow> nat \<Rightarrow> 'b::banach"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   563
  assumes k: "0 < (k::real)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   564
  assumes f: "summable f"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   565
  assumes le: "\<And>h n. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (g h n) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   566
  shows "(\<lambda>h. suminf (g h)) -- 0 --> 0"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   567
proof (rule lemma_termdiff4 [OF k])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   568
  fix h::'a
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   569
  assume "h \<noteq> 0" and "norm h < k"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   570
  hence A: "\<forall>n. norm (g h n) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   571
    by (simp add: le)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   572
  hence "\<exists>N. \<forall>n\<ge>N. norm (norm (g h n)) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   573
    by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   574
  moreover from f have B: "summable (\<lambda>n. f n * norm h)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   575
    by (rule summable_mult2)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   576
  ultimately have C: "summable (\<lambda>n. norm (g h n))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   577
    by (rule summable_comparison_test)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   578
  hence "norm (suminf (g h)) \<le> (\<Sum>n. norm (g h n))"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   579
    by (rule summable_norm)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   580
  also from A C B have "(\<Sum>n. norm (g h n)) \<le> (\<Sum>n. f n * norm h)"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
   581
    by (rule suminf_le)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   582
  also from f have "(\<Sum>n. f n * norm h) = suminf f * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   583
    by (rule suminf_mult2 [symmetric])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   584
  finally show "norm (suminf (g h)) \<le> suminf f * norm h" .
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   585
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   586
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   587
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   588
text{* FIXME: Long proofs*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   589
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   590
lemma termdiffs_aux:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   591
  fixes x :: "'a::{real_normed_field,banach}"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   592
  assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   593
    and 2: "norm x < norm K"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   594
  shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   595
             - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   596
proof -
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   597
  from dense [OF 2]
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   598
  obtain r where r1: "norm x < r" and r2: "r < norm K" by fast
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   599
  from norm_ge_zero r1 have r: "0 < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   600
    by (rule order_le_less_trans)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   601
  hence r_neq_0: "r \<noteq> 0" by simp
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   602
  show ?thesis
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   603
  proof (rule lemma_termdiff5)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   604
    show "0 < r - norm x" using r1 by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   605
    from r r2 have "norm (of_real r::'a) < norm K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   606
      by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   607
    with 1 have "summable (\<lambda>n. norm (diffs (diffs c) n * (of_real r ^ n)))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   608
      by (rule powser_insidea)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   609
    hence "summable (\<lambda>n. diffs (diffs (\<lambda>n. norm (c n))) n * r ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   610
      using r
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   611
      by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   612
    hence "summable (\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   613
      by (rule diffs_equiv [THEN sums_summable])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   614
    also have "(\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0)) =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   615
      (\<lambda>n. diffs (\<lambda>m. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   616
      apply (rule ext)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   617
      apply (simp add: diffs_def)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   618
      apply (case_tac n, simp_all add: r_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   619
      done
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   620
    finally have "summable
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   621
      (\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   622
      by (rule diffs_equiv [THEN sums_summable])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   623
    also have
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   624
      "(\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) *
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   625
           r ^ (n - Suc 0)) =
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   626
       (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   627
      apply (rule ext)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   628
      apply (case_tac "n", simp)
55417
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 54576
diff changeset
   629
      apply (rename_tac nat)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   630
      apply (case_tac "nat", simp)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   631
      apply (simp add: r_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   632
      done
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   633
    finally
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   634
    show "summable (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" .
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   635
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   636
    fix h::'a and n::nat
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   637
    assume h: "h \<noteq> 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   638
    assume "norm h < r - norm x"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   639
    hence "norm x + norm h < r" by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   640
    with norm_triangle_ineq have xh: "norm (x + h) < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   641
      by (rule order_le_less_trans)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   642
    show "norm (c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0)))
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   643
          \<le> norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   644
      apply (simp only: norm_mult mult_assoc)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   645
      apply (rule mult_left_mono [OF _ norm_ge_zero])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   646
      apply (simp add: mult_assoc [symmetric])
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   647
      apply (metis h lemma_termdiff3 less_eq_real_def r1 xh)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   648
      done
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   649
  qed
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   650
qed
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19765
diff changeset
   651
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   652
lemma termdiffs:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   653
  fixes K x :: "'a::{real_normed_field,banach}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   654
  assumes 1: "summable (\<lambda>n. c n * K ^ n)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   655
      and 2: "summable (\<lambda>n. (diffs c) n * K ^ n)"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   656
      and 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   657
      and 4: "norm x < norm K"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   658
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x ^ n) x :> (\<Sum>n. (diffs c) n * x ^ n)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   659
  unfolding DERIV_def
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   660
proof (rule LIM_zero_cancel)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   661
  show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x ^ n)) / h
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   662
            - suminf (\<lambda>n. diffs c n * x ^ n)) -- 0 --> 0"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   663
  proof (rule LIM_equal2)
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   664
    show "0 < norm K - norm x" using 4 by (simp add: less_diff_eq)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   665
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   666
    fix h :: 'a
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   667
    assume "norm (h - 0) < norm K - norm x"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   668
    hence "norm x + norm h < norm K" by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   669
    hence 5: "norm (x + h) < norm K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   670
      by (rule norm_triangle_ineq [THEN order_le_less_trans])
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   671
    have "summable (\<lambda>n. c n * x ^ n)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   672
      and "summable (\<lambda>n. c n * (x + h) ^ n)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   673
      and "summable (\<lambda>n. diffs c n * x ^ n)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   674
      using 1 2 4 5 by (auto elim: powser_inside)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   675
    then have "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x ^ n)) / h - (\<Sum>n. diffs c n * x ^ n) =
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   676
          (\<Sum>n. (c n * (x + h) ^ n - c n * x ^ n) / h - of_nat n * c n * x ^ (n - Suc 0))"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   677
      by (intro sums_unique sums_diff sums_divide diffs_equiv summable_sums)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   678
    then show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x ^ n)) / h - (\<Sum>n. diffs c n * x ^ n) =
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   679
          (\<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0)))"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   680
      by (simp add: algebra_simps)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   681
  next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   682
    show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   683
      by (rule termdiffs_aux [OF 3 4])
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   684
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   685
qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   686
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   687
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   688
subsection {* Derivability of power series *}
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   689
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   690
lemma DERIV_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   691
  fixes f :: "real \<Rightarrow> nat \<Rightarrow> real"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   692
  assumes DERIV_f: "\<And> n. DERIV (\<lambda> x. f x n) x0 :> (f' x0 n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   693
    and allf_summable: "\<And> x. x \<in> {a <..< b} \<Longrightarrow> summable (f x)" and x0_in_I: "x0 \<in> {a <..< b}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   694
    and "summable (f' x0)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   695
    and "summable L"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   696
    and L_def: "\<And>n x y. \<lbrakk> x \<in> { a <..< b} ; y \<in> { a <..< b} \<rbrakk> \<Longrightarrow> \<bar>f x n - f y n\<bar> \<le> L n * \<bar>x - y\<bar>"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   697
  shows "DERIV (\<lambda> x. suminf (f x)) x0 :> (suminf (f' x0))"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   698
  unfolding DERIV_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   699
proof (rule LIM_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   700
  fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   701
  assume "0 < r" hence "0 < r/3" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   702
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   703
  obtain N_L where N_L: "\<And> n. N_L \<le> n \<Longrightarrow> \<bar> \<Sum> i. L (i + n) \<bar> < r/3"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   704
    using suminf_exist_split[OF `0 < r/3` `summable L`] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   705
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   706
  obtain N_f' where N_f': "\<And> n. N_f' \<le> n \<Longrightarrow> \<bar> \<Sum> i. f' x0 (i + n) \<bar> < r/3"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   707
    using suminf_exist_split[OF `0 < r/3` `summable (f' x0)`] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   708
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   709
  let ?N = "Suc (max N_L N_f')"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   710
  have "\<bar> \<Sum> i. f' x0 (i + ?N) \<bar> < r/3" (is "?f'_part < r/3") and
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   711
    L_estimate: "\<bar> \<Sum> i. L (i + ?N) \<bar> < r/3" using N_L[of "?N"] and N_f' [of "?N"] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   712
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   713
  let ?diff = "\<lambda>i x. (f (x0 + x) i - f x0 i) / x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   714
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   715
  let ?r = "r / (3 * real ?N)"
56541
0e3abadbef39 made divide_pos_pos a simp rule
nipkow
parents: 56536
diff changeset
   716
  from `0 < r` have "0 < ?r" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   717
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   718
  let ?s = "\<lambda>n. SOME s. 0 < s \<and> (\<forall> x. x \<noteq> 0 \<and> \<bar> x \<bar> < s \<longrightarrow> \<bar> ?diff n x - f' x0 n \<bar> < ?r)"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   719
  def S' \<equiv> "Min (?s ` {..< ?N })"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   720
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   721
  have "0 < S'" unfolding S'_def
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   722
  proof (rule iffD2[OF Min_gr_iff])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   723
    show "\<forall>x \<in> (?s ` {..< ?N }). 0 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   724
    proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   725
      fix x
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   726
      assume "x \<in> ?s ` {..<?N}"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   727
      then obtain n where "x = ?s n" and "n \<in> {..<?N}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   728
        using image_iff[THEN iffD1] by blast
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   729
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF `0 < ?r`, unfolded real_norm_def]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   730
      obtain s where s_bound: "0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   731
        by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   732
      have "0 < ?s n" by (rule someI2[where a=s]) (auto simp add: s_bound)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   733
      thus "0 < x" unfolding `x = ?s n` .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   734
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   735
  qed auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   736
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   737
  def S \<equiv> "min (min (x0 - a) (b - x0)) S'"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   738
  hence "0 < S" and S_a: "S \<le> x0 - a" and S_b: "S \<le> b - x0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   739
    and "S \<le> S'" using x0_in_I and `0 < S'`
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   740
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   741
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   742
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   743
    fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   744
    assume "x \<noteq> 0" and "\<bar> x \<bar> < S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   745
    hence x_in_I: "x0 + x \<in> { a <..< b }"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   746
      using S_a S_b by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   747
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   748
    note diff_smbl = summable_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   749
    note div_smbl = summable_divide[OF diff_smbl]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   750
    note all_smbl = summable_diff[OF div_smbl `summable (f' x0)`]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   751
    note ign = summable_ignore_initial_segment[where k="?N"]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   752
    note diff_shft_smbl = summable_diff[OF ign[OF allf_summable[OF x_in_I]] ign[OF allf_summable[OF x0_in_I]]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   753
    note div_shft_smbl = summable_divide[OF diff_shft_smbl]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   754
    note all_shft_smbl = summable_diff[OF div_smbl ign[OF `summable (f' x0)`]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   755
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   756
    { fix n
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   757
      have "\<bar> ?diff (n + ?N) x \<bar> \<le> L (n + ?N) * \<bar> (x0 + x) - x0 \<bar> / \<bar> x \<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   758
        using divide_right_mono[OF L_def[OF x_in_I x0_in_I] abs_ge_zero]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   759
        unfolding abs_divide .
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   760
      hence "\<bar> (\<bar>?diff (n + ?N) x \<bar>) \<bar> \<le> L (n + ?N)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   761
        using `x \<noteq> 0` by auto }
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   762
    note 1 = this and 2 = summable_rabs_comparison_test[OF _ ign[OF `summable L`]]
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   763
    then have "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> (\<Sum> i. L (i + ?N))"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
   764
      by (metis (lifting) abs_idempotent order_trans[OF summable_rabs[OF 2] suminf_le[OF _ 2 ign[OF `summable L`]]])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   765
    then have "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> r / 3" (is "?L_part \<le> r/3")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   766
      using L_estimate by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   767
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   768
    have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n \<bar> \<le> (\<Sum>n<?N. \<bar>?diff n x - f' x0 n \<bar>)" ..
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   769
    also have "\<dots> < (\<Sum>n<?N. ?r)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   770
    proof (rule setsum_strict_mono)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   771
      fix n
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   772
      assume "n \<in> {..< ?N}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   773
      have "\<bar>x\<bar> < S" using `\<bar>x\<bar> < S` .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   774
      also have "S \<le> S'" using `S \<le> S'` .
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   775
      also have "S' \<le> ?s n" unfolding S'_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   776
      proof (rule Min_le_iff[THEN iffD2])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   777
        have "?s n \<in> (?s ` {..<?N}) \<and> ?s n \<le> ?s n"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   778
          using `n \<in> {..< ?N}` by auto
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   779
        thus "\<exists> a \<in> (?s ` {..<?N}). a \<le> ?s n" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   780
      qed auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   781
      finally have "\<bar>x\<bar> < ?s n" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   782
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   783
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF `0 < ?r`, unfolded real_norm_def diff_0_right, unfolded some_eq_ex[symmetric], THEN conjunct2]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   784
      have "\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < ?s n \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r" .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   785
      with `x \<noteq> 0` and `\<bar>x\<bar> < ?s n` show "\<bar>?diff n x - f' x0 n\<bar> < ?r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   786
        by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   787
    qed auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   788
    also have "\<dots> = of_nat (card {..<?N}) * ?r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   789
      by (rule setsum_constant)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   790
    also have "\<dots> = real ?N * ?r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   791
      unfolding real_eq_of_nat by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   792
    also have "\<dots> = r/3" by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   793
    finally have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n \<bar> < r / 3" (is "?diff_part < r / 3") .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   794
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   795
    from suminf_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   796
    have "\<bar>(suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0)\<bar> =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   797
        \<bar>\<Sum>n. ?diff n x - f' x0 n\<bar>"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   798
      unfolding suminf_diff[OF div_smbl `summable (f' x0)`, symmetric]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   799
      using suminf_divide[OF diff_smbl, symmetric] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   800
    also have "\<dots> \<le> ?diff_part + \<bar> (\<Sum>n. ?diff (n + ?N) x) - (\<Sum> n. f' x0 (n + ?N)) \<bar>"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   801
      unfolding suminf_split_initial_segment[OF all_smbl, where k="?N"]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   802
      unfolding suminf_diff[OF div_shft_smbl ign[OF `summable (f' x0)`]]
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   803
      apply (subst (5) add_commute)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   804
      by (rule abs_triangle_ineq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   805
    also have "\<dots> \<le> ?diff_part + ?L_part + ?f'_part"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   806
      using abs_triangle_ineq4 by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   807
    also have "\<dots> < r /3 + r/3 + r/3"
36842
99745a4b9cc9 fix some linarith_split_limit warnings
huffman
parents: 36824
diff changeset
   808
      using `?diff_part < r/3` `?L_part \<le> r/3` and `?f'_part < r/3`
99745a4b9cc9 fix some linarith_split_limit warnings
huffman
parents: 36824
diff changeset
   809
      by (rule add_strict_mono [OF add_less_le_mono])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   810
    finally have "\<bar>(suminf (f (x0 + x)) - suminf (f x0)) / x - suminf (f' x0)\<bar> < r"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   811
      by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   812
  }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   813
  thus "\<exists> s > 0. \<forall> x. x \<noteq> 0 \<and> norm (x - 0) < s \<longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   814
      norm (((\<Sum>n. f (x0 + x) n) - (\<Sum>n. f x0 n)) / x - (\<Sum>n. f' x0 n)) < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   815
    using `0 < S` unfolding real_norm_def diff_0_right by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   816
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   817
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   818
lemma DERIV_power_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   819
  fixes f :: "nat \<Rightarrow> real"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   820
  assumes converges: "\<And> x. x \<in> {-R <..< R} \<Longrightarrow> summable (\<lambda> n. f n * real (Suc n) * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   821
    and x0_in_I: "x0 \<in> {-R <..< R}" and "0 < R"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   822
  shows "DERIV (\<lambda> x. (\<Sum> n. f n * x^(Suc n))) x0 :> (\<Sum> n. f n * real (Suc n) * x0^n)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   823
  (is "DERIV (\<lambda> x. (suminf (?f x))) x0 :> (suminf (?f' x0))")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   824
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   825
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   826
    fix R'
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   827
    assume "0 < R'" and "R' < R" and "-R' < x0" and "x0 < R'"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   828
    hence "x0 \<in> {-R' <..< R'}" and "R' \<in> {-R <..< R}" and "x0 \<in> {-R <..< R}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   829
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   830
    have "DERIV (\<lambda> x. (suminf (?f x))) x0 :> (suminf (?f' x0))"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   831
    proof (rule DERIV_series')
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   832
      show "summable (\<lambda> n. \<bar>f n * real (Suc n) * R'^n\<bar>)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   833
      proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   834
        have "(R' + R) / 2 < R" and "0 < (R' + R) / 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   835
          using `0 < R'` `0 < R` `R' < R` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   836
        hence in_Rball: "(R' + R) / 2 \<in> {-R <..< R}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   837
          using `R' < R` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   838
        have "norm R' < norm ((R' + R) / 2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   839
          using `0 < R'` `0 < R` `R' < R` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   840
        from powser_insidea[OF converges[OF in_Rball] this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   841
          by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   842
      qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   843
      {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   844
        fix n x y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   845
        assume "x \<in> {-R' <..< R'}" and "y \<in> {-R' <..< R'}"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   846
        show "\<bar>?f x n - ?f y n\<bar> \<le> \<bar>f n * real (Suc n) * R'^n\<bar> * \<bar>x-y\<bar>"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   847
        proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   848
          have "\<bar>f n * x ^ (Suc n) - f n * y ^ (Suc n)\<bar> =
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   849
            (\<bar>f n\<bar> * \<bar>x-y\<bar>) * \<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   850
            unfolding right_diff_distrib[symmetric] lemma_realpow_diff_sumr2 abs_mult
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   851
            by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   852
          also have "\<dots> \<le> (\<bar>f n\<bar> * \<bar>x-y\<bar>) * (\<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   853
          proof (rule mult_left_mono)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   854
            have "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> (\<Sum>p<Suc n. \<bar>x ^ p * y ^ (n - p)\<bar>)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   855
              by (rule setsum_abs)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   856
            also have "\<dots> \<le> (\<Sum>p<Suc n. R' ^ n)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   857
            proof (rule setsum_mono)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   858
              fix p
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   859
              assume "p \<in> {..<Suc n}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   860
              hence "p \<le> n" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   861
              {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   862
                fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   863
                fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   864
                assume "x \<in> {-R'<..<R'}"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   865
                hence "\<bar>x\<bar> \<le> R'"  by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   866
                hence "\<bar>x^n\<bar> \<le> R'^n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   867
                  unfolding power_abs by (rule power_mono, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   868
              }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   869
              from mult_mono[OF this[OF `x \<in> {-R'<..<R'}`, of p] this[OF `y \<in> {-R'<..<R'}`, of "n-p"]] `0 < R'`
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   870
              have "\<bar>x^p * y^(n-p)\<bar> \<le> R'^p * R'^(n-p)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   871
                unfolding abs_mult by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   872
              thus "\<bar>x^p * y^(n-p)\<bar> \<le> R'^n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   873
                unfolding power_add[symmetric] using `p \<le> n` by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   874
            qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   875
            also have "\<dots> = real (Suc n) * R' ^ n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   876
              unfolding setsum_constant card_atLeastLessThan real_of_nat_def by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   877
            finally show "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> \<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   878
              unfolding abs_real_of_nat_cancel abs_of_nonneg[OF zero_le_power[OF less_imp_le[OF `0 < R'`]]] .
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   879
            show "0 \<le> \<bar>f n\<bar> * \<bar>x - y\<bar>"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   880
              unfolding abs_mult[symmetric] by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   881
          qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   882
          also have "\<dots> = \<bar>f n * real (Suc n) * R' ^ n\<bar> * \<bar>x - y\<bar>"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   883
            unfolding abs_mult mult_assoc[symmetric] by algebra
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   884
          finally show ?thesis .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   885
        qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   886
      }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   887
      {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   888
        fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   889
        show "DERIV (\<lambda> x. ?f x n) x0 :> (?f' x0 n)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   890
          by (auto intro!: derivative_eq_intros simp del: power_Suc simp: real_of_nat_def)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   891
      }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   892
      {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   893
        fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   894
        assume "x \<in> {-R' <..< R'}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   895
        hence "R' \<in> {-R <..< R}" and "norm x < norm R'"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   896
          using assms `R' < R` by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   897
        have "summable (\<lambda> n. f n * x^n)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   898
        proof (rule summable_comparison_test, intro exI allI impI)
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
   899
          fix n
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   900
          have le: "\<bar>f n\<bar> * 1 \<le> \<bar>f n\<bar> * real (Suc n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   901
            by (rule mult_left_mono) auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   902
          show "norm (f n * x ^ n) \<le> norm (f n * real (Suc n) * x ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   903
            unfolding real_norm_def abs_mult
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   904
            by (rule mult_right_mono) (auto simp add: le[unfolded mult_1_right])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   905
        qed (rule powser_insidea[OF converges[OF `R' \<in> {-R <..< R}`] `norm x < norm R'`])
36777
be5461582d0f avoid using real-specific versions of generic lemmas
huffman
parents: 36776
diff changeset
   906
        from this[THEN summable_mult2[where c=x], unfolded mult_assoc, unfolded mult_commute]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   907
        show "summable (?f x)" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   908
      }
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   909
      show "summable (?f' x0)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   910
        using converges[OF `x0 \<in> {-R <..< R}`] .
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   911
      show "x0 \<in> {-R' <..< R'}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   912
        using `x0 \<in> {-R' <..< R'}` .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   913
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   914
  } note for_subinterval = this
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   915
  let ?R = "(R + \<bar>x0\<bar>) / 2"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   916
  have "\<bar>x0\<bar> < ?R" using assms by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   917
  hence "- ?R < x0"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   918
  proof (cases "x0 < 0")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   919
    case True
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   920
    hence "- x0 < ?R" using `\<bar>x0\<bar> < ?R` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   921
    thus ?thesis unfolding neg_less_iff_less[symmetric, of "- x0"] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   922
  next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   923
    case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   924
    have "- ?R < 0" using assms by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   925
    also have "\<dots> \<le> x0" using False by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   926
    finally show ?thesis .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   927
  qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   928
  hence "0 < ?R" "?R < R" "- ?R < x0" and "x0 < ?R"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   929
    using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   930
  from for_subinterval[OF this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   931
  show ?thesis .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   932
qed
29695
171146a93106 Added real related theorems from Fact.thy
chaieb
parents: 29667
diff changeset
   933
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   934
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
   935
subsection {* Exponential Function *}
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   936
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   937
definition exp :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   938
  where "exp = (\<lambda>x. \<Sum>n. x ^ n /\<^sub>R real (fact n))"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   939
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   940
lemma summable_exp_generic:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   941
  fixes x :: "'a::{real_normed_algebra_1,banach}"
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   942
  defines S_def: "S \<equiv> \<lambda>n. x ^ n /\<^sub>R real (fact n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   943
  shows "summable S"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   944
proof -
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   945
  have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R real (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
   946
    unfolding S_def by (simp del: mult_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   947
  obtain r :: real where r0: "0 < r" and r1: "r < 1"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   948
    using dense [OF zero_less_one] by fast
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   949
  obtain N :: nat where N: "norm x < real N * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   950
    using reals_Archimedean3 [OF r0] by fast
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   951
  from r1 show ?thesis
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   952
  proof (rule summable_ratio_test [rule_format])
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   953
    fix n :: nat
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   954
    assume n: "N \<le> n"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   955
    have "norm x \<le> real N * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   956
      using N by (rule order_less_imp_le)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   957
    also have "real N * r \<le> real (Suc n) * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   958
      using r0 n by (simp add: mult_right_mono)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   959
    finally have "norm x * norm (S n) \<le> real (Suc n) * r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   960
      using norm_ge_zero by (rule mult_right_mono)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   961
    hence "norm (x * S n) \<le> real (Suc n) * r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   962
      by (rule order_trans [OF norm_mult_ineq])
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   963
    hence "norm (x * S n) / real (Suc n) \<le> r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   964
      by (simp add: pos_divide_le_eq mult_ac)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   965
    thus "norm (S (Suc n)) \<le> r * norm (S n)"
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
   966
      by (simp add: S_Suc inverse_eq_divide)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   967
  qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   968
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   969
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   970
lemma summable_norm_exp:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   971
  fixes x :: "'a::{real_normed_algebra_1,banach}"
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   972
  shows "summable (\<lambda>n. norm (x ^ n /\<^sub>R real (fact n)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   973
proof (rule summable_norm_comparison_test [OF exI, rule_format])
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   974
  show "summable (\<lambda>n. norm x ^ n /\<^sub>R real (fact n))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   975
    by (rule summable_exp_generic)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   976
  fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   977
  show "norm (x ^ n /\<^sub>R real (fact n)) \<le> norm x ^ n /\<^sub>R real (fact n)"
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
   978
    by (simp add: norm_power_ineq)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   979
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   980
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   981
lemma summable_exp: "summable (\<lambda>n. inverse (real (fact n)) * x ^ n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   982
  using summable_exp_generic [where x=x] by simp
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   983
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   984
lemma exp_converges: "(\<lambda>n. x ^ n /\<^sub>R real (fact n)) sums exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   985
  unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   986
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   987
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   988
lemma exp_fdiffs:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   989
      "diffs (\<lambda>n. inverse(real (fact n))) = (\<lambda>n. inverse(real (fact n)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   990
  by (simp add: diffs_def mult_assoc [symmetric] real_of_nat_def of_nat_mult
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   991
        del: mult_Suc of_nat_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   992
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   993
lemma diffs_of_real: "diffs (\<lambda>n. of_real (f n)) = (\<lambda>n. of_real (diffs f n))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   994
  by (simp add: diffs_def)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   995
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   996
lemma DERIV_exp [simp]: "DERIV exp x :> exp(x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   997
  unfolding exp_def scaleR_conv_of_real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   998
  apply (rule DERIV_cong)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   999
  apply (rule termdiffs [where K="of_real (1 + norm x)"])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1000
  apply (simp_all only: diffs_of_real scaleR_conv_of_real exp_fdiffs)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1001
  apply (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])+
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1002
  apply (simp del: of_real_add)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1003
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1004
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1005
declare DERIV_exp[THEN DERIV_chain2, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1006
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1007
lemma isCont_exp: "isCont exp x"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1008
  by (rule DERIV_exp [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1009
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1010
lemma isCont_exp' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. exp (f x)) a"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1011
  by (rule isCont_o2 [OF _ isCont_exp])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1012
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1013
lemma tendsto_exp [tendsto_intros]:
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1014
  "(f ---> a) F \<Longrightarrow> ((\<lambda>x. exp (f x)) ---> exp a) F"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1015
  by (rule isCont_tendsto_compose [OF isCont_exp])
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1016
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1017
lemma continuous_exp [continuous_intros]:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1018
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. exp (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1019
  unfolding continuous_def by (rule tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1020
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  1021
lemma continuous_on_exp [continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1022
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. exp (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1023
  unfolding continuous_on_def by (auto intro: tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1024
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1025
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1026
subsubsection {* Properties of the Exponential Function *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1027
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1028
lemma powser_zero:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
  1029
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_algebra_1}"
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1030
  shows "(\<Sum>n. f n * 0 ^ n) = f 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1031
proof -
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1032
  have "(\<Sum>n<1. f n * 0 ^ n) = (\<Sum>n. f n * 0 ^ n)"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1033
    by (subst suminf_finite[where N="{0}"]) (auto simp: power_0_left)
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  1034
  thus ?thesis unfolding One_nat_def by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1035
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1036
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1037
lemma exp_zero [simp]: "exp 0 = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1038
  unfolding exp_def by (simp add: scaleR_conv_of_real powser_zero)
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1039
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1040
lemma exp_series_add:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
  1041
  fixes x y :: "'a::{real_field}"
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1042
  defines S_def: "S \<equiv> \<lambda>x n. x ^ n /\<^sub>R real (fact n)"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1043
  shows "S (x + y) n = (\<Sum>i\<le>n. S x i * S y (n - i))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1044
proof (induct n)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1045
  case 0
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1046
  show ?case
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1047
    unfolding S_def by simp
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1048
next
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1049
  case (Suc n)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1050
  have S_Suc: "\<And>x n. S x (Suc n) = (x * S x n) /\<^sub>R real (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
  1051
    unfolding S_def by (simp del: mult_Suc)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1052
  hence times_S: "\<And>x n. x * S x n = real (Suc n) *\<^sub>R S x (Suc n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1053
    by simp
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1054
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1055
  have "real (Suc n) *\<^sub>R S (x + y) (Suc n) = (x + y) * S (x + y) n"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1056
    by (simp only: times_S)
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1057
  also have "\<dots> = (x + y) * (\<Sum>i\<le>n. S x i * S y (n-i))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1058
    by (simp only: Suc)
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1059
  also have "\<dots> = x * (\<Sum>i\<le>n. S x i * S y (n-i))
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1060
                + y * (\<Sum>i\<le>n. S x i * S y (n-i))"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  1061
    by (rule distrib_right)
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1062
  also have "\<dots> = (\<Sum>i\<le>n. (x * S x i) * S y (n-i))
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1063
                + (\<Sum>i\<le>n. S x i * (y * S y (n-i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1064
    by (simp only: setsum_right_distrib mult_ac)
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1065
  also have "\<dots> = (\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i)))
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1066
                + (\<Sum>i\<le>n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1067
    by (simp add: times_S Suc_diff_le)
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1068
  also have "(\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i))) =
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1069
             (\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n-i)))"
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1070
    by (subst setsum_atMost_Suc_shift) simp
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1071
  also have "(\<Sum>i\<le>n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) =
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1072
             (\<Sum>i\<le>Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))"
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1073
    by simp
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1074
  also have "(\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n-i))) +
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1075
             (\<Sum>i\<le>Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) =
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1076
             (\<Sum>i\<le>Suc n. real (Suc n) *\<^sub>R (S x i * S y (Suc n-i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1077
    by (simp only: setsum_addf [symmetric] scaleR_left_distrib [symmetric]
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1078
                   real_of_nat_add [symmetric]) simp
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1079
  also have "\<dots> = real (Suc n) *\<^sub>R (\<Sum>i\<le>Suc n. S x i * S y (Suc n-i))"
23127
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23115
diff changeset
  1080
    by (simp only: scaleR_right.setsum)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1081
  finally show
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1082
    "S (x + y) (Suc n) = (\<Sum>i\<le>Suc n. S x i * S y (Suc n - i))"
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1083
    by (simp del: setsum_cl_ivl_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1084
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1085
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1086
lemma exp_add: "exp (x + y) = exp x * exp y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1087
  unfolding exp_def
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1088
  by (simp only: Cauchy_product summable_norm_exp exp_series_add)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1089
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1090
lemma mult_exp_exp: "exp x * exp y = exp (x + y)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1091
  by (rule exp_add [symmetric])
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1092
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1093
lemma exp_of_real: "exp (of_real x) = of_real (exp x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1094
  unfolding exp_def
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1095
  apply (subst suminf_of_real)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1096
  apply (rule summable_exp_generic)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1097
  apply (simp add: scaleR_conv_of_real)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1098
  done
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1099
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1100
lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1101
proof
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1102
  have "exp x * exp (- x) = 1" by (simp add: mult_exp_exp)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1103
  also assume "exp x = 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1104
  finally show "False" by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1105
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1106
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1107
lemma exp_minus: "exp (- x) = inverse (exp x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1108
  by (rule inverse_unique [symmetric], simp add: mult_exp_exp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1109
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1110
lemma exp_diff: "exp (x - y) = exp x / exp y"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  1111
  using exp_add [of x "- y"] by (simp add: exp_minus divide_inverse)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1112
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1113
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1114
subsubsection {* Properties of the Exponential Function on Reals *}
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1115
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1116
text {* Comparisons of @{term "exp x"} with zero. *}
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1117
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1118
text{*Proof: because every exponential can be seen as a square.*}
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1119
lemma exp_ge_zero [simp]: "0 \<le> exp (x::real)"
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1120
proof -
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1121
  have "0 \<le> exp (x/2) * exp (x/2)" by simp
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1122
  thus ?thesis by (simp add: exp_add [symmetric])
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1123
qed
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1124
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1125
lemma exp_gt_zero [simp]: "0 < exp (x::real)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1126
  by (simp add: order_less_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1127
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1128
lemma not_exp_less_zero [simp]: "\<not> exp (x::real) < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1129
  by (simp add: not_less)
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1130
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1131
lemma not_exp_le_zero [simp]: "\<not> exp (x::real) \<le> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1132
  by (simp add: not_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1133
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1134
lemma abs_exp_cancel [simp]: "\<bar>exp x::real\<bar> = exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1135
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1136
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1137
lemma exp_real_of_nat_mult: "exp(real n * x) = exp(x) ^ n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1138
  by (induct n) (auto simp add: real_of_nat_Suc distrib_left exp_add mult_commute)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1139
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1140
text {* Strict monotonicity of exponential. *}
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1141
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1142
lemma exp_ge_add_one_self_aux: 
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1143
  assumes "0 \<le> (x::real)" shows "1+x \<le> exp(x)"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1144
using order_le_imp_less_or_eq [OF assms]
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1145
proof 
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1146
  assume "0 < x"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1147
  have "1+x \<le> (\<Sum>n<2. inverse (real (fact n)) * x ^ n)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1148
    by (auto simp add: numeral_2_eq_2)
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1149
  also have "... \<le> (\<Sum>n. inverse (real (fact n)) * x ^ n)"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1150
    apply (rule setsum_le_suminf [OF summable_exp])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1151
    using `0 < x`
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1152
    apply (auto  simp add:  zero_le_mult_iff)
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1153
    done
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1154
  finally show "1+x \<le> exp x" 
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1155
    by (simp add: exp_def)
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1156
next
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1157
  assume "0 = x"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1158
  then show "1 + x \<le> exp x"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1159
    by auto
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1160
qed
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1161
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1162
lemma exp_gt_one: "0 < (x::real) \<Longrightarrow> 1 < exp x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1163
proof -
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1164
  assume x: "0 < x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1165
  hence "1 < 1 + x" by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1166
  also from x have "1 + x \<le> exp x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1167
    by (simp add: exp_ge_add_one_self_aux)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1168
  finally show ?thesis .
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1169
qed
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1170
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1171
lemma exp_less_mono:
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1172
  fixes x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1173
  assumes "x < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1174
  shows "exp x < exp y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1175
proof -
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1176
  from `x < y` have "0 < y - x" by simp
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1177
  hence "1 < exp (y - x)" by (rule exp_gt_one)
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1178
  hence "1 < exp y / exp x" by (simp only: exp_diff)
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  1179
  thus "exp x < exp y" by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1180
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1181
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1182
lemma exp_less_cancel: "exp (x::real) < exp y \<Longrightarrow> x < y"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1183
  unfolding linorder_not_le [symmetric]
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1184
  by (auto simp add: order_le_less exp_less_mono)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1185
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1186
lemma exp_less_cancel_iff [iff]: "exp (x::real) < exp y \<longleftrightarrow> x < y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1187
  by (auto intro: exp_less_mono exp_less_cancel)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1188
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1189
lemma exp_le_cancel_iff [iff]: "exp (x::real) \<le> exp y \<longleftrightarrow> x \<le> y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1190
  by (auto simp add: linorder_not_less [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1191
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1192
lemma exp_inj_iff [iff]: "exp (x::real) = exp y \<longleftrightarrow> x = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1193
  by (simp add: order_eq_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1194
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1195
text {* Comparisons of @{term "exp x"} with one. *}
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1196
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1197
lemma one_less_exp_iff [simp]: "1 < exp (x::real) \<longleftrightarrow> 0 < x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1198
  using exp_less_cancel_iff [where x=0 and y=x] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1199
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1200
lemma exp_less_one_iff [simp]: "exp (x::real) < 1 \<longleftrightarrow> x < 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1201
  using exp_less_cancel_iff [where x=x and y=0] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1202
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1203
lemma one_le_exp_iff [simp]: "1 \<le> exp (x::real) \<longleftrightarrow> 0 \<le> x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1204
  using exp_le_cancel_iff [where x=0 and y=x] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1205
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1206
lemma exp_le_one_iff [simp]: "exp (x::real) \<le> 1 \<longleftrightarrow> x \<le> 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1207
  using exp_le_cancel_iff [where x=x and y=0] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1208
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1209
lemma exp_eq_one_iff [simp]: "exp (x::real) = 1 \<longleftrightarrow> x = 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1210
  using exp_inj_iff [where x=x and y=0] by simp
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1211
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1212
lemma lemma_exp_total: "1 \<le> y \<Longrightarrow> \<exists>x. 0 \<le> x & x \<le> y - 1 & exp(x::real) = y"
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1213
proof (rule IVT)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1214
  assume "1 \<le> y"
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1215
  hence "0 \<le> y - 1" by simp
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1216
  hence "1 + (y - 1) \<le> exp (y - 1)" by (rule exp_ge_add_one_self_aux)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1217
  thus "y \<le> exp (y - 1)" by simp
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1218
qed (simp_all add: le_diff_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1219
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1220
lemma exp_total: "0 < (y::real) \<Longrightarrow> \<exists>x. exp x = y"
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1221
proof (rule linorder_le_cases [of 1 y])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1222
  assume "1 \<le> y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1223
  thus "\<exists>x. exp x = y" by (fast dest: lemma_exp_total)
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1224
next
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1225
  assume "0 < y" and "y \<le> 1"
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1226
  hence "1 \<le> inverse y" by (simp add: one_le_inverse_iff)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1227
  then obtain x where "exp x = inverse y" by (fast dest: lemma_exp_total)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1228
  hence "exp (- x) = y" by (simp add: exp_minus)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1229
  thus "\<exists>x. exp x = y" ..
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1230
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1231
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1232
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  1233
subsection {* Natural Logarithm *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1234
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1235
definition ln :: "real \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1236
  where "ln x = (THE u. exp u = x)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1237
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1238
lemma ln_exp [simp]: "ln (exp x) = x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1239
  by (simp add: ln_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1240
22654
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
  1241
lemma exp_ln [simp]: "0 < x \<Longrightarrow> exp (ln x) = x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1242
  by (auto dest: exp_total)
22654
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
  1243
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1244
lemma exp_ln_iff [simp]: "exp (ln x) = x \<longleftrightarrow> 0 < x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1245
  by (metis exp_gt_zero exp_ln)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1246
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1247
lemma ln_unique: "exp y = x \<Longrightarrow> ln x = y"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1248
  by (erule subst, rule ln_exp)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1249
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1250
lemma ln_one [simp]: "ln 1 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1251
  by (rule ln_unique) simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1252
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1253
lemma ln_mult: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln (x * y) = ln x + ln y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1254
  by (rule ln_unique) (simp add: exp_add)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1255
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1256
lemma ln_inverse: "0 < x \<Longrightarrow> ln (inverse x) = - ln x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1257
  by (rule ln_unique) (simp add: exp_minus)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1258
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1259
lemma ln_div: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln (x / y) = ln x - ln y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1260
  by (rule ln_unique) (simp add: exp_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1261
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1262
lemma ln_realpow: "0 < x \<Longrightarrow> ln (x ^ n) = real n * ln x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1263
  by (rule ln_unique) (simp add: exp_real_of_nat_mult)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1264
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1265
lemma ln_less_cancel_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x < ln y \<longleftrightarrow> x < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1266
  by (subst exp_less_cancel_iff [symmetric]) simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1267
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1268
lemma ln_le_cancel_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x \<le> ln y \<longleftrightarrow> x \<le> y"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1269
  by (simp add: linorder_not_less [symmetric])
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1270
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1271
lemma ln_inj_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x = ln y \<longleftrightarrow> x = y"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1272
  by (simp add: order_eq_iff)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1273
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1274
lemma ln_add_one_self_le_self [simp]: "0 \<le> x \<Longrightarrow> ln (1 + x) \<le> x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1275
  apply (rule exp_le_cancel_iff [THEN iffD1])
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1276
  apply (simp add: exp_ge_add_one_self_aux)
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1277
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1278
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1279
lemma ln_less_self [simp]: "0 < x \<Longrightarrow> ln x < x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1280
  by (rule order_less_le_trans [where y="ln (1 + x)"]) simp_all
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1281
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1282
lemma ln_ge_zero [simp]: "1 \<le> x \<Longrightarrow> 0 \<le> ln x"
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1283
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1284
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1285
lemma ln_ge_zero_imp_ge_one: "0 \<le> ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1286
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1287
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1288
lemma ln_ge_zero_iff [simp]: "0 < x \<Longrightarrow> 0 \<le> ln x \<longleftrightarrow> 1 \<le> x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1289
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1290
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1291
lemma ln_less_zero_iff [simp]: "0 < x \<Longrightarrow> ln x < 0 \<longleftrightarrow> x < 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1292
  using ln_less_cancel_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1293
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1294
lemma ln_gt_zero: "1 < x \<Longrightarrow> 0 < ln x"
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1295
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1296
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1297
lemma ln_gt_zero_imp_gt_one: "0 < ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 < x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1298
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1299
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1300
lemma ln_gt_zero_iff [simp]: "0 < x \<Longrightarrow> 0 < ln x \<longleftrightarrow> 1 < x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1301
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1302
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1303
lemma ln_eq_zero_iff [simp]: "0 < x \<Longrightarrow> ln x = 0 \<longleftrightarrow> x = 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1304
  using ln_inj_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1305
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1306
lemma ln_less_zero: "0 < x \<Longrightarrow> x < 1 \<Longrightarrow> ln x < 0"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1307
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1308
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1309
lemma isCont_ln: "0 < x \<Longrightarrow> isCont ln x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1310
  apply (subgoal_tac "isCont ln (exp (ln x))", simp)
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1311
  apply (rule isCont_inverse_function [where f=exp], simp_all)
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1312
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1313
45915
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1314
lemma tendsto_ln [tendsto_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1315
  "(f ---> a) F \<Longrightarrow> 0 < a \<Longrightarrow> ((\<lambda>x. ln (f x)) ---> ln a) F"
45915
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1316
  by (rule isCont_tendsto_compose [OF isCont_ln])
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1317
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1318
lemma continuous_ln:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1319
  "continuous F f \<Longrightarrow> 0 < f (Lim F (\<lambda>x. x)) \<Longrightarrow> continuous F (\<lambda>x. ln (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1320
  unfolding continuous_def by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1321
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1322
lemma isCont_ln' [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1323
  "continuous (at x) f \<Longrightarrow> 0 < f x \<Longrightarrow> continuous (at x) (\<lambda>x. ln (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1324
  unfolding continuous_at by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1325
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1326
lemma continuous_within_ln [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1327
  "continuous (at x within s) f \<Longrightarrow> 0 < f x \<Longrightarrow> continuous (at x within s) (\<lambda>x. ln (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1328
  unfolding continuous_within by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1329
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  1330
lemma continuous_on_ln [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1331
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. 0 < f x) \<Longrightarrow> continuous_on s (\<lambda>x. ln (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1332
  unfolding continuous_on_def by (auto intro: tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1333
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1334
lemma DERIV_ln: "0 < x \<Longrightarrow> DERIV ln x :> inverse x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1335
  apply (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"])
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1336
  apply (auto intro: DERIV_cong [OF DERIV_exp exp_ln] isCont_ln)
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1337
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1338
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1339
lemma DERIV_ln_divide: "0 < x \<Longrightarrow> DERIV ln x :> 1 / x"
33667
958dc9f03611 A little rationalisation
paulson
parents: 33549
diff changeset
  1340
  by (rule DERIV_ln[THEN DERIV_cong], simp, simp add: divide_inverse)
958dc9f03611 A little rationalisation
paulson
parents: 33549
diff changeset
  1341
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1342
declare DERIV_ln_divide[THEN DERIV_chain2, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1343
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1344
lemma ln_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1345
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1346
  shows "ln x = (\<Sum> n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1347
  (is "ln x = suminf (?f (x - 1))")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1348
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1349
  let ?f' = "\<lambda>x n. (-1)^n * (x - 1)^n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1350
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1351
  have "ln x - suminf (?f (x - 1)) = ln 1 - suminf (?f (1 - 1))"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1352
  proof (rule DERIV_isconst3[where x=x])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1353
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1354
    assume "x \<in> {0 <..< 2}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1355
    hence "0 < x" and "x < 2" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1356
    have "norm (1 - x) < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1357
      using `0 < x` and `x < 2` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1358
    have "1 / x = 1 / (1 - (1 - x))" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1359
    also have "\<dots> = (\<Sum> n. (1 - x)^n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1360
      using geometric_sums[OF `norm (1 - x) < 1`] by (rule sums_unique)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1361
    also have "\<dots> = suminf (?f' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1362
      unfolding power_mult_distrib[symmetric]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1363
      by (rule arg_cong[where f=suminf], rule arg_cong[where f="op ^"], auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1364
    finally have "DERIV ln x :> suminf (?f' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1365
      using DERIV_ln[OF `0 < x`] unfolding divide_inverse by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1366
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1367
    have repos: "\<And> h x :: real. h - 1 + x = h + x - 1" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1368
    have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1369
      (\<Sum>n. (-1)^n * (1 / real (n + 1)) * real (Suc n) * (x - 1) ^ n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1370
    proof (rule DERIV_power_series')
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1371
      show "x - 1 \<in> {- 1<..<1}" and "(0 :: real) < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1372
        using `0 < x` `x < 2` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1373
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1374
      assume "x \<in> {- 1<..<1}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1375
      hence "norm (-x) < 1" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1376
      show "summable (\<lambda>n. -1 ^ n * (1 / real (n + 1)) * real (Suc n) * x ^ n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1377
        unfolding One_nat_def
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1378
        by (auto simp add: power_mult_distrib[symmetric] summable_geometric[OF `norm (-x) < 1`])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1379
    qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1380
    hence "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :> suminf (?f' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1381
      unfolding One_nat_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1382
    hence "DERIV (\<lambda>x. suminf (?f (x - 1))) x :> suminf (?f' x)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1383
      unfolding DERIV_def repos .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1384
    ultimately have "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> (suminf (?f' x) - suminf (?f' x))"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1385
      by (rule DERIV_diff)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1386
    thus "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> 0" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1387
  qed (auto simp add: assms)
44289
d81d09cdab9c optimize some proofs
huffman
parents: 44282
diff changeset
  1388
  thus ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1389
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1390
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1391
lemma exp_first_two_terms: "exp x = 1 + x + (\<Sum> n. inverse(fact (n+2)) * (x ^ (n+2)))"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1392
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1393
  have "exp x = suminf (\<lambda>n. inverse(fact n) * (x ^ n))"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1394
    by (simp add: exp_def)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1395
  also from summable_exp have "... = (\<Sum> n. inverse(fact(n+2)) * (x ^ (n+2))) + 
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1396
    (\<Sum> n::nat<2. inverse(fact n) * (x ^ n))" (is "_ = _ + ?a")
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1397
    by (rule suminf_split_initial_segment)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1398
  also have "?a = 1 + x"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1399
    by (simp add: numeral_2_eq_2)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1400
  finally show ?thesis
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1401
    by simp
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1402
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1403
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1404
lemma exp_bound: "0 <= (x::real) \<Longrightarrow> x <= 1 \<Longrightarrow> exp x <= 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1405
proof -
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1406
  assume a: "0 <= x"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1407
  assume b: "x <= 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1408
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1409
    fix n :: nat
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1410
    have "2 * 2 ^ n \<le> fact (n + 2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1411
      by (induct n) simp_all
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1412
    hence "real ((2::nat) * 2 ^ n) \<le> real (fact (n + 2))"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1413
      by (simp only: real_of_nat_le_iff)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1414
    hence "2 * 2 ^ n \<le> real (fact (n + 2))"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1415
      by simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1416
    hence "inverse (fact (n + 2)) \<le> inverse (2 * 2 ^ n)"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1417
      by (rule le_imp_inverse_le) simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1418
    hence "inverse (fact (n + 2)) \<le> 1/2 * (1/2)^n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1419
      by (simp add: power_inverse)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1420
    hence "inverse (fact (n + 2)) * (x^n * x\<^sup>2) \<le> 1/2 * (1/2)^n * (1 * x\<^sup>2)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1421
      by (rule mult_mono)
56536
aefb4a8da31f made mult_nonneg_nonneg a simp rule
nipkow
parents: 56483
diff changeset
  1422
        (rule mult_mono, simp_all add: power_le_one a b)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1423
    hence "inverse (fact (n + 2)) * x ^ (n + 2) \<le> (x\<^sup>2/2) * ((1/2)^n)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1424
      unfolding power_add by (simp add: mult_ac del: fact_Suc) }
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1425
  note aux1 = this
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1426
  have "(\<lambda>n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums (x\<^sup>2 / 2 * (1 / (1 - 1 / 2)))"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1427
    by (intro sums_mult geometric_sums, simp)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1428
  hence aux2: "(\<lambda>n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1429
    by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1430
  have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n+2))) <= x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1431
  proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1432
    have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n+2))) <=
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1433
        suminf (\<lambda>n. (x\<^sup>2/2) * ((1/2)^n))"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1434
      apply (rule suminf_le)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1435
      apply (rule allI, rule aux1)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1436
      apply (rule summable_exp [THEN summable_ignore_initial_segment])
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1437
      by (rule sums_summable, rule aux2)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1438
    also have "... = x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1439
      by (rule sums_unique [THEN sym], rule aux2)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1440
    finally show ?thesis .
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1441
  qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1442
  thus ?thesis unfolding exp_first_two_terms by auto
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1443
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1444
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1445
lemma ln_one_minus_pos_upper_bound: "0 <= x \<Longrightarrow> x < 1 \<Longrightarrow> ln (1 - x) <= - x"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1446
proof -
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1447
  assume a: "0 <= (x::real)" and b: "x < 1"
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1448
  have "(1 - x) * (1 + x + x\<^sup>2) = (1 - x^3)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1449
    by (simp add: algebra_simps power2_eq_square power3_eq_cube)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1450
  also have "... <= 1"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1451
    by (auto simp add: a)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1452
  finally have "(1 - x) * (1 + x + x\<^sup>2) <= 1" .
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1453
  moreover have c: "0 < 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1454
    by (simp add: add_pos_nonneg a)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1455
  ultimately have "1 - x <= 1 / (1 + x + x\<^sup>2)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1456
    by (elim mult_imp_le_div_pos)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1457
  also have "... <= 1 / exp x"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1458
    by (metis a abs_one b exp_bound exp_gt_zero frac_le less_eq_real_def real_sqrt_abs 
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1459
              real_sqrt_pow2_iff real_sqrt_power)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1460
  also have "... = exp (-x)"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1461
    by (auto simp add: exp_minus divide_inverse)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1462
  finally have "1 - x <= exp (- x)" .
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1463
  also have "1 - x = exp (ln (1 - x))"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1464
    by (metis b diff_0 exp_ln_iff less_iff_diff_less_0 minus_diff_eq)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1465
  finally have "exp (ln (1 - x)) <= exp (- x)" .
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1466
  thus ?thesis by (auto simp only: exp_le_cancel_iff)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1467
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1468
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1469
lemma exp_ge_add_one_self [simp]: "1 + (x::real) <= exp x"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1470
  apply (case_tac "0 <= x")
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1471
  apply (erule exp_ge_add_one_self_aux)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1472
  apply (case_tac "x <= -1")
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1473
  apply (subgoal_tac "1 + x <= 0")
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1474
  apply (erule order_trans)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1475
  apply simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1476
  apply simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1477
  apply (subgoal_tac "1 + x = exp(ln (1 + x))")
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1478
  apply (erule ssubst)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1479
  apply (subst exp_le_cancel_iff)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1480
  apply (subgoal_tac "ln (1 - (- x)) <= - (- x)")
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1481
  apply simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1482
  apply (rule ln_one_minus_pos_upper_bound)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1483
  apply auto
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1484
done
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1485
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1486
lemma ln_one_plus_pos_lower_bound: "0 <= x \<Longrightarrow> x <= 1 \<Longrightarrow> x - x\<^sup>2 <= ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1487
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1488
  assume a: "0 <= x" and b: "x <= 1"
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1489
  have "exp (x - x\<^sup>2) = exp x / exp (x\<^sup>2)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1490
    by (rule exp_diff)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1491
  also have "... <= (1 + x + x\<^sup>2) / exp (x \<^sup>2)"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1492
    by (metis a b divide_right_mono exp_bound exp_ge_zero)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1493
  also have "... <= (1 + x + x\<^sup>2) / (1 + x\<^sup>2)"
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56541
diff changeset
  1494
    by (simp add: a divide_left_mono add_pos_nonneg)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1495
  also from a have "... <= 1 + x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1496
    by (simp add: field_simps add_strict_increasing zero_le_mult_iff)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1497
  finally have "exp (x - x\<^sup>2) <= 1 + x" .
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1498
  also have "... = exp (ln (1 + x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1499
  proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1500
    from a have "0 < 1 + x" by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1501
    thus ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1502
      by (auto simp only: exp_ln_iff [THEN sym])
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1503
  qed
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1504
  finally have "exp (x - x\<^sup>2) <= exp (ln (1 + x))" .
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1505
  thus ?thesis
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1506
    by (metis exp_le_cancel_iff) 
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1507
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1508
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1509
lemma ln_one_minus_pos_lower_bound:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1510
  "0 <= x \<Longrightarrow> x <= (1 / 2) \<Longrightarrow> - x - 2 * x\<^sup>2 <= ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1511
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1512
  assume a: "0 <= x" and b: "x <= (1 / 2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1513
  from b have c: "x < 1" by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1514
  then have "ln (1 - x) = - ln (1 + x / (1 - x))"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1515
    apply (subst ln_inverse [symmetric])
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1516
    apply (simp add: field_simps)
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1517
    apply (rule arg_cong [where f=ln])
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1518
    apply (simp add: field_simps)
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1519
    done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1520
  also have "- (x / (1 - x)) <= ..."
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1521
  proof -
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1522
    have "ln (1 + x / (1 - x)) <= x / (1 - x)"
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  1523
      using a c by (intro ln_add_one_self_le_self) auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1524
    thus ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1525
      by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1526
  qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1527
  also have "- (x / (1 - x)) = -x / (1 - x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1528
    by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1529
  finally have d: "- x / (1 - x) <= ln (1 - x)" .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1530
  have "0 < 1 - x" using a b by simp
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1531
  hence e: "-x - 2 * x\<^sup>2 <= - x / (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1532
    using mult_right_le_one_le[of "x*x" "2*x"] a b
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1533
    by (simp add: field_simps power2_eq_square)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1534
  from e d show "- x - 2 * x\<^sup>2 <= ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1535
    by (rule order_trans)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1536
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1537
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1538
lemma ln_add_one_self_le_self2: "-1 < x \<Longrightarrow> ln(1 + x) <= x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1539
  apply (subgoal_tac "ln (1 + x) \<le> ln (exp x)", simp)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1540
  apply (subst ln_le_cancel_iff)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1541
  apply auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1542
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1543
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1544
lemma abs_ln_one_plus_x_minus_x_bound_nonneg:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1545
  "0 <= x \<Longrightarrow> x <= 1 \<Longrightarrow> abs(ln (1 + x) - x) <= x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1546
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1547
  assume x: "0 <= x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1548
  assume x1: "x <= 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1549
  from x have "ln (1 + x) <= x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1550
    by (rule ln_add_one_self_le_self)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1551
  then have "ln (1 + x) - x <= 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1552
    by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1553
  then have "abs(ln(1 + x) - x) = - (ln(1 + x) - x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1554
    by (rule abs_of_nonpos)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1555
  also have "... = x - ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1556
    by simp
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1557
  also have "... <= x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1558
  proof -
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1559
    from x x1 have "x - x\<^sup>2 <= ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1560
      by (intro ln_one_plus_pos_lower_bound)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1561
    thus ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1562
      by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1563
  qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1564
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1565
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1566
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1567
lemma abs_ln_one_plus_x_minus_x_bound_nonpos:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1568
  "-(1 / 2) <= x \<Longrightarrow> x <= 0 \<Longrightarrow> abs(ln (1 + x) - x) <= 2 * x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1569
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1570
  assume a: "-(1 / 2) <= x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1571
  assume b: "x <= 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1572
  have "abs(ln (1 + x) - x) = x - ln(1 - (-x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1573
    apply (subst abs_of_nonpos)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1574
    apply simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1575
    apply (rule ln_add_one_self_le_self2)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1576
    using a apply auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1577
    done
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1578
  also have "... <= 2 * x\<^sup>2"
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1579
    apply (subgoal_tac "- (-x) - 2 * (-x)\<^sup>2 <= ln (1 - (-x))")
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1580
    apply (simp add: algebra_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1581
    apply (rule ln_one_minus_pos_lower_bound)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1582
    using a b apply auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1583
    done
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1584
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1585
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1586
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1587
lemma abs_ln_one_plus_x_minus_x_bound:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1588
    "abs x <= 1 / 2 \<Longrightarrow> abs(ln (1 + x) - x) <= 2 * x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1589
  apply (case_tac "0 <= x")
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1590
  apply (rule order_trans)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1591
  apply (rule abs_ln_one_plus_x_minus_x_bound_nonneg)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1592
  apply auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1593
  apply (rule abs_ln_one_plus_x_minus_x_bound_nonpos)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1594
  apply auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1595
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1596
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1597
lemma ln_x_over_x_mono: "exp 1 <= x \<Longrightarrow> x <= y \<Longrightarrow> (ln y / y) <= (ln x / x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1598
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1599
  assume x: "exp 1 <= x" "x <= y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1600
  moreover have "0 < exp (1::real)" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1601
  ultimately have a: "0 < x" and b: "0 < y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1602
    by (fast intro: less_le_trans order_trans)+
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1603
  have "x * ln y - x * ln x = x * (ln y - ln x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1604
    by (simp add: algebra_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1605
  also have "... = x * ln(y / x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1606
    by (simp only: ln_div a b)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1607
  also have "y / x = (x + (y - x)) / x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1608
    by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1609
  also have "... = 1 + (y - x) / x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1610
    using x a by (simp add: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1611
  also have "x * ln(1 + (y - x) / x) <= x * ((y - x) / x)"
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  1612
    using x a 
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  1613
    by (intro mult_left_mono ln_add_one_self_le_self) simp_all
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1614
  also have "... = y - x" using a by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1615
  also have "... = (y - x) * ln (exp 1)" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1616
  also have "... <= (y - x) * ln x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1617
    apply (rule mult_left_mono)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1618
    apply (subst ln_le_cancel_iff)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1619
    apply fact
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1620
    apply (rule a)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1621
    apply (rule x)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1622
    using x apply simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1623
    done
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1624
  also have "... = y * ln x - x * ln x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1625
    by (rule left_diff_distrib)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1626
  finally have "x * ln y <= y * ln x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1627
    by arith
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1628
  then have "ln y <= (y * ln x) / x" using a by (simp add: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1629
  also have "... = y * (ln x / x)" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1630
  finally show ?thesis using b by (simp add: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1631
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1632
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1633
lemma ln_le_minus_one: "0 < x \<Longrightarrow> ln x \<le> x - 1"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1634
  using exp_ge_add_one_self[of "ln x"] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1635
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1636
lemma ln_eq_minus_one:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1637
  assumes "0 < x" "ln x = x - 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1638
  shows "x = 1"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1639
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1640
  let ?l = "\<lambda>y. ln y - y + 1"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1641
  have D: "\<And>x. 0 < x \<Longrightarrow> DERIV ?l x :> (1 / x - 1)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1642
    by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1643
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1644
  show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1645
  proof (cases rule: linorder_cases)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1646
    assume "x < 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1647
    from dense[OF `x < 1`] obtain a where "x < a" "a < 1" by blast
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1648
    from `x < a` have "?l x < ?l a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1649
    proof (rule DERIV_pos_imp_increasing, safe)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1650
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1651
      assume "x \<le> y" "y \<le> a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1652
      with `0 < x` `a < 1` have "0 < 1 / y - 1" "0 < y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1653
        by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1654
      with D show "\<exists>z. DERIV ?l y :> z \<and> 0 < z"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1655
        by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1656
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1657
    also have "\<dots> \<le> 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1658
      using ln_le_minus_one `0 < x` `x < a` by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1659
    finally show "x = 1" using assms by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1660
  next
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1661
    assume "1 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1662
    from dense[OF this] obtain a where "1 < a" "a < x" by blast
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1663
    from `a < x` have "?l x < ?l a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1664
    proof (rule DERIV_neg_imp_decreasing, safe)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1665
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1666
      assume "a \<le> y" "y \<le> x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1667
      with `1 < a` have "1 / y - 1 < 0" "0 < y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1668
        by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1669
      with D show "\<exists>z. DERIV ?l y :> z \<and> z < 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1670
        by blast
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1671
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1672
    also have "\<dots> \<le> 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1673
      using ln_le_minus_one `1 < a` by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1674
    finally show "x = 1" using assms by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1675
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1676
    assume "x = 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1677
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1678
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1679
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1680
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1681
lemma exp_at_bot: "(exp ---> (0::real)) at_bot"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1682
  unfolding tendsto_Zfun_iff
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1683
proof (rule ZfunI, simp add: eventually_at_bot_dense)
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1684
  fix r :: real assume "0 < r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1685
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1686
    fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1687
    assume "x < ln r"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1688
    then have "exp x < exp (ln r)"
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1689
      by simp
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1690
    with `0 < r` have "exp x < r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1691
      by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1692
  }
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1693
  then show "\<exists>k. \<forall>n<k. exp n < r" by auto
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1694
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1695
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1696
lemma exp_at_top: "LIM x at_top. exp x :: real :> at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  1697
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. True" and P="\<lambda>x. 0 < x" and g="ln"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  1698
     (auto intro: eventually_gt_at_top)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1699
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1700
lemma ln_at_0: "LIM x at_right 0. ln x :> at_bot"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  1701
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g="exp"])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51527
diff changeset
  1702
     (auto simp: eventually_at_filter)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1703
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1704
lemma ln_at_top: "LIM x at_top. ln x :> at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  1705
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g="exp"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  1706
     (auto intro: eventually_gt_at_top)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1707
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1708
lemma tendsto_power_div_exp_0: "((\<lambda>x. x ^ k / exp x) ---> (0::real)) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1709
proof (induct k)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1710
  case 0
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1711
  show "((\<lambda>x. x ^ 0 / exp x) ---> (0::real)) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1712
    by (simp add: inverse_eq_divide[symmetric])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1713
       (metis filterlim_compose[OF tendsto_inverse_0] exp_at_top filterlim_mono
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1714
              at_top_le_at_infinity order_refl)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1715
next
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1716
  case (Suc k)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1717
  show ?case
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1718
  proof (rule lhospital_at_top_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1719
    show "eventually (\<lambda>x. DERIV (\<lambda>x. x ^ Suc k) x :> (real (Suc k) * x^k)) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1720
      by eventually_elim (intro derivative_eq_intros, auto)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1721
    show "eventually (\<lambda>x. DERIV exp x :> exp x) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1722
      by eventually_elim auto
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1723
    show "eventually (\<lambda>x. exp x \<noteq> 0) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1724
      by auto
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1725
    from tendsto_mult[OF tendsto_const Suc, of "real (Suc k)"]
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1726
    show "((\<lambda>x. real (Suc k) * x ^ k / exp x) ---> 0) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1727
      by simp
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1728
  qed (rule exp_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1729
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1730
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1731
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1732
definition powr :: "[real,real] => real"  (infixr "powr" 80)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1733
  -- {*exponentation with real exponent*}
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1734
  where "x powr a = exp(a * ln x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1735
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1736
definition log :: "[real,real] => real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1737
  -- {*logarithm of @{term x} to base @{term a}*}
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1738
  where "log a x = ln x / ln a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1739
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1740
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1741
lemma tendsto_log [tendsto_intros]:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1742
  "\<lbrakk>(f ---> a) F; (g ---> b) F; 0 < a; a \<noteq> 1; 0 < b\<rbrakk> \<Longrightarrow> ((\<lambda>x. log (f x) (g x)) ---> log a b) F"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1743
  unfolding log_def by (intro tendsto_intros) auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1744
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1745
lemma continuous_log:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1746
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1747
    and "continuous F g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1748
    and "0 < f (Lim F (\<lambda>x. x))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1749
    and "f (Lim F (\<lambda>x. x)) \<noteq> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1750
    and "0 < g (Lim F (\<lambda>x. x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1751
  shows "continuous F (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1752
  using assms unfolding continuous_def by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1753
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1754
lemma continuous_at_within_log[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1755
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1756
    and "continuous (at a within s) g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1757
    and "0 < f a"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1758
    and "f a \<noteq> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1759
    and "0 < g a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1760
  shows "continuous (at a within s) (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1761
  using assms unfolding continuous_within by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1762
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1763
lemma isCont_log[continuous_intros, simp]:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1764
  assumes "isCont f a" "isCont g a" "0 < f a" "f a \<noteq> 1" "0 < g a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1765
  shows "isCont (\<lambda>x. log (f x) (g x)) a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1766
  using assms unfolding continuous_at by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1767
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  1768
lemma continuous_on_log[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1769
  assumes "continuous_on s f" "continuous_on s g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1770
    and "\<forall>x\<in>s. 0 < f x" "\<forall>x\<in>s. f x \<noteq> 1" "\<forall>x\<in>s. 0 < g x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1771
  shows "continuous_on s (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1772
  using assms unfolding continuous_on_def by (fast intro: tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1773
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1774
lemma powr_one_eq_one [simp]: "1 powr a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1775
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1776
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1777
lemma powr_zero_eq_one [simp]: "x powr 0 = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1778
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1779
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1780
lemma powr_one_gt_zero_iff [simp]: "(x powr 1 = x) = (0 < x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1781
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1782
declare powr_one_gt_zero_iff [THEN iffD2, simp]
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1783
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1784
lemma powr_mult: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> (x * y) powr a = (x powr a) * (y powr a)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1785
  by (simp add: powr_def exp_add [symmetric] ln_mult distrib_left)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1786
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1787
lemma powr_gt_zero [simp]: "0 < x powr a"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1788
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1789
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1790
lemma powr_ge_pzero [simp]: "0 <= x powr y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1791
  by (rule order_less_imp_le, rule powr_gt_zero)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1792
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1793
lemma powr_not_zero [simp]: "x powr a \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1794
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1795
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1796
lemma powr_divide: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> (x / y) powr a = (x powr a) / (y powr a)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1797
  apply (simp add: divide_inverse positive_imp_inverse_positive powr_mult)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1798
  apply (simp add: powr_def exp_minus [symmetric] exp_add [symmetric] ln_inverse)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1799
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1800
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1801
lemma powr_divide2: "x powr a / x powr b = x powr (a - b)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1802
  apply (simp add: powr_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1803
  apply (subst exp_diff [THEN sym])
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1804
  apply (simp add: left_diff_distrib)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1805
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1806
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1807
lemma powr_add: "x powr (a + b) = (x powr a) * (x powr b)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1808
  by (simp add: powr_def exp_add [symmetric] distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1809
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1810
lemma powr_mult_base: "0 < x \<Longrightarrow>x * x powr y = x powr (1 + y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1811
  using assms by (auto simp: powr_add)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1812
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1813
lemma powr_powr: "(x powr a) powr b = x powr (a * b)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1814
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1815
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1816
lemma powr_powr_swap: "(x powr a) powr b = (x powr b) powr a"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1817
  by (simp add: powr_powr mult_commute)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1818
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1819
lemma powr_minus: "x powr (-a) = inverse (x powr a)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1820
  by (simp add: powr_def exp_minus [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1821
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1822
lemma powr_minus_divide: "x powr (-a) = 1/(x powr a)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1823
  by (simp add: divide_inverse powr_minus)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1824
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1825
lemma powr_less_mono: "a < b \<Longrightarrow> 1 < x \<Longrightarrow> x powr a < x powr b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1826
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1827
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1828
lemma powr_less_cancel: "x powr a < x powr b \<Longrightarrow> 1 < x \<Longrightarrow> a < b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1829
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1830
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1831
lemma powr_less_cancel_iff [simp]: "1 < x \<Longrightarrow> (x powr a < x powr b) = (a < b)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1832
  by (blast intro: powr_less_cancel powr_less_mono)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1833
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1834
lemma powr_le_cancel_iff [simp]: "1 < x \<Longrightarrow> (x powr a \<le> x powr b) = (a \<le> b)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1835
  by (simp add: linorder_not_less [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1836
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1837
lemma log_ln: "ln x = log (exp(1)) x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1838
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1839
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1840
lemma DERIV_log:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1841
  assumes "x > 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1842
  shows "DERIV (\<lambda>y. log b y) x :> 1 / (ln b * x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1843
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1844
  def lb \<equiv> "1 / ln b"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1845
  moreover have "DERIV (\<lambda>y. lb * ln y) x :> lb / x"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1846
    using `x > 0` by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1847
  ultimately show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1848
    by (simp add: log_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1849
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1850
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1851
lemmas DERIV_log[THEN DERIV_chain2, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1852
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1853
lemma powr_log_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> a powr (log a x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1854
  by (simp add: powr_def log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1855
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1856
lemma log_powr_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a (a powr y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1857
  by (simp add: log_def powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1858
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1859
lemma log_mult:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1860
  "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1861
    log a (x * y) = log a x + log a y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1862
  by (simp add: log_def ln_mult divide_inverse distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1863
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1864
lemma log_eq_div_ln_mult_log:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1865
  "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1866
    log a x = (ln b/ln a) * log b x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1867
  by (simp add: log_def divide_inverse)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1868
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1869
text{*Base 10 logarithms*}
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1870
lemma log_base_10_eq1: "0 < x \<Longrightarrow> log 10 x = (ln (exp 1) / ln 10) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1871
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1872
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1873
lemma log_base_10_eq2: "0 < x \<Longrightarrow> log 10 x = (log 10 (exp 1)) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1874
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1875
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1876
lemma log_one [simp]: "log a 1 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1877
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1878
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1879
lemma log_eq_one [simp]: "[| 0 < a; a \<noteq> 1 |] ==> log a a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1880
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1881
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1882
lemma log_inverse: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log a (inverse x) = - log a x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1883
  apply (rule_tac a1 = "log a x" in add_left_cancel [THEN iffD1])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1884
  apply (simp add: log_mult [symmetric])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1885
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1886
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1887
lemma log_divide: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a (x/y) = log a x - log a y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1888
  by (simp add: log_mult divide_inverse log_inverse)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1889
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1890
lemma log_less_cancel_iff [simp]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1891
  "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a x < log a y \<longleftrightarrow> x < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1892
  apply safe
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1893
  apply (rule_tac [2] powr_less_cancel)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1894
  apply (drule_tac a = "log a x" in powr_less_mono, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1895
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1896
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1897
lemma log_inj:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1898
  assumes "1 < b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1899
  shows "inj_on (log b) {0 <..}"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1900
proof (rule inj_onI, simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1901
  fix x y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1902
  assume pos: "0 < x" "0 < y" and *: "log b x = log b y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1903
  show "x = y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1904
  proof (cases rule: linorder_cases)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1905
    assume "x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1906
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1907
  next
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1908
    assume "x < y" hence "log b x < log b y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1909
      using log_less_cancel_iff[OF `1 < b`] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1910
    then show ?thesis using * by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1911
  next
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1912
    assume "y < x" hence "log b y < log b x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1913
      using log_less_cancel_iff[OF `1 < b`] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1914
    then show ?thesis using * by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1915
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1916
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1917
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1918
lemma log_le_cancel_iff [simp]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1919
  "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> (log a x \<le> log a y) = (x \<le> y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1920
  by (simp add: linorder_not_less [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1921
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1922
lemma zero_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < log a x \<longleftrightarrow> 1 < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1923
  using log_less_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1924
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1925
lemma zero_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 \<le> log a x \<longleftrightarrow> 1 \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1926
  using log_le_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1927
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1928
lemma log_less_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 0 \<longleftrightarrow> x < 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1929
  using log_less_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1930
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1931
lemma log_le_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 0 \<longleftrightarrow> x \<le> 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1932
  using log_le_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1933
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1934
lemma one_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 < log a x \<longleftrightarrow> a < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1935
  using log_less_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1936
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1937
lemma one_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> log a x \<longleftrightarrow> a \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1938
  using log_le_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1939
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1940
lemma log_less_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 1 \<longleftrightarrow> x < a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1941
  using log_less_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1942
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1943
lemma log_le_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 1 \<longleftrightarrow> x \<le> a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1944
  using log_le_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1945
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1946
lemma powr_realpow: "0 < x ==> x powr (real n) = x^n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1947
  apply (induct n)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1948
  apply simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1949
  apply (subgoal_tac "real(Suc n) = real n + 1")
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1950
  apply (erule ssubst)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1951
  apply (subst powr_add, simp, simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1952
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1953
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  1954
lemma powr_realpow_numeral: "0 < x \<Longrightarrow> x powr (numeral n :: real) = x ^ (numeral n)"
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  1955
  unfolding real_of_nat_numeral [symmetric] by (rule powr_realpow)
52139
40fe6b80b481 add lemma
noschinl
parents: 51641
diff changeset
  1956
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1957
lemma powr_realpow2: "0 <= x ==> 0 < n ==> x^n = (if (x = 0) then 0 else x powr (real n))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1958
  apply (case_tac "x = 0", simp, simp)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1959
  apply (rule powr_realpow [THEN sym], simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1960
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1961
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1962
lemma powr_int:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1963
  assumes "x > 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1964
  shows "x powr i = (if i \<ge> 0 then x ^ nat i else 1 / x ^ nat (-i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1965
proof (cases "i < 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1966
  case True
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1967
  have r: "x powr i = 1 / x powr (-i)" by (simp add: powr_minus field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1968
  show ?thesis using `i < 0` `x > 0` by (simp add: r field_simps powr_realpow[symmetric])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1969
next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1970
  case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1971
  then show ?thesis by (simp add: assms powr_realpow[symmetric])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1972
qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1973
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  1974
lemma powr_one: "0 < x \<Longrightarrow> x powr 1 = x"
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  1975
  using powr_realpow [of x 1] by simp
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  1976
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  1977
lemma powr_numeral: "0 < x \<Longrightarrow> x powr numeral n = x ^ numeral n"
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  1978
  by (fact powr_realpow_numeral)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  1979
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  1980
lemma powr_neg_one: "0 < x \<Longrightarrow> x powr - 1 = 1 / x"
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  1981
  using powr_int [of x "- 1"] by simp
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  1982
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  1983
lemma powr_neg_numeral: "0 < x \<Longrightarrow> x powr - numeral n = 1 / x ^ numeral n"
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  1984
  using powr_int [of x "- numeral n"] by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1985
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1986
lemma root_powr_inverse: "0 < n \<Longrightarrow> 0 < x \<Longrightarrow> root n x = x powr (1/n)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1987
  by (rule real_root_pos_unique) (auto simp: powr_realpow[symmetric] powr_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1988
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  1989
lemma ln_powr: "ln (x powr y) = y * ln x"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  1990
  by (simp add: powr_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  1991
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  1992
lemma ln_root: "\<lbrakk> n > 0; b > 0 \<rbrakk> \<Longrightarrow> ln (root n b) =  ln b / n"
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  1993
by(simp add: root_powr_inverse ln_powr)
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  1994
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  1995
lemma log_root: "\<lbrakk> n > 0; a > 0 \<rbrakk> \<Longrightarrow> log b (root n a) =  log b a / n"
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  1996
by(simp add: log_def ln_root)
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  1997
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  1998
lemma log_powr: "log b (x powr y) = y * log b x"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  1999
  by (simp add: log_def ln_powr)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2000
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2001
lemma log_nat_power: "0 < x \<Longrightarrow> log b (x ^ n) = real n * log b x"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2002
  by (simp add: log_powr powr_realpow [symmetric])
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2003
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2004
lemma log_base_change: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log b x = log a x / log a b"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2005
  by (simp add: log_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2006
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2007
lemma log_base_pow: "0 < a \<Longrightarrow> log (a ^ n) x = log a x / n"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2008
  by (simp add: log_def ln_realpow)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2009
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2010
lemma log_base_powr: "log (a powr b) x = log a x / b"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2011
  by (simp add: log_def ln_powr)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2012
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2013
lemma log_base_root: "\<lbrakk> n > 0; b > 0 \<rbrakk> \<Longrightarrow> log (root n b) x = n * (log b x)"
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2014
by(simp add: log_def ln_root)
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2015
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2016
lemma ln_bound: "1 <= x ==> ln x <= x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2017
  apply (subgoal_tac "ln(1 + (x - 1)) <= x - 1")
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2018
  apply simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2019
  apply (rule ln_add_one_self_le_self, simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2020
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2021
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2022
lemma powr_mono: "a <= b ==> 1 <= x ==> x powr a <= x powr b"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2023
  apply (cases "x = 1", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2024
  apply (cases "a = b", simp)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2025
  apply (rule order_less_imp_le)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2026
  apply (rule powr_less_mono, auto)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2027
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2028
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2029
lemma ge_one_powr_ge_zero: "1 <= x ==> 0 <= a ==> 1 <= x powr a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2030
  apply (subst powr_zero_eq_one [THEN sym])
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2031
  apply (rule powr_mono, assumption+)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2032
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2033
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2034
lemma powr_less_mono2: "0 < a ==> 0 < x ==> x < y ==> x powr a < y powr a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2035
  apply (unfold powr_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2036
  apply (rule exp_less_mono)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2037
  apply (rule mult_strict_left_mono)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2038
  apply (subst ln_less_cancel_iff, assumption)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2039
  apply (rule order_less_trans)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2040
  prefer 2
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2041
  apply assumption+
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2042
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2043
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2044
lemma powr_less_mono2_neg: "a < 0 ==> 0 < x ==> x < y ==> y powr a < x powr a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2045
  apply (unfold powr_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2046
  apply (rule exp_less_mono)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2047
  apply (rule mult_strict_left_mono_neg)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2048
  apply (subst ln_less_cancel_iff)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2049
  apply assumption
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2050
  apply (rule order_less_trans)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2051
  prefer 2
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2052
  apply assumption+
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2053
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2054
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2055
lemma powr_mono2: "0 <= a ==> 0 < x ==> x <= y ==> x powr a <= y powr a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2056
  apply (case_tac "a = 0", simp)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2057
  apply (case_tac "x = y", simp)
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2058
  apply (metis less_eq_real_def powr_less_mono2)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2059
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2060
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2061
lemma powr_inj: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> a powr x = a powr y \<longleftrightarrow> x = y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2062
  unfolding powr_def exp_inj_iff by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2063
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2064
lemma ln_powr_bound: "1 <= x ==> 0 < a ==> ln x <= (x powr a) / a"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2065
  by (metis less_eq_real_def ln_less_self mult_imp_le_div_pos ln_powr mult_commute 
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2066
            order.strict_trans2 powr_gt_zero zero_less_one)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2067
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2068
lemma ln_powr_bound2:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2069
  assumes "1 < x" and "0 < a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2070
  shows "(ln x) powr a <= (a powr a) * x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2071
proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2072
  from assms have "ln x <= (x powr (1 / a)) / (1 / a)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2073
    by (metis less_eq_real_def ln_powr_bound zero_less_divide_1_iff)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2074
  also have "... = a * (x powr (1 / a))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2075
    by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2076
  finally have "(ln x) powr a <= (a * (x powr (1 / a))) powr a"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2077
    by (metis assms less_imp_le ln_gt_zero powr_mono2)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2078
  also have "... = (a powr a) * ((x powr (1 / a)) powr a)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2079
    by (metis assms(2) powr_mult powr_gt_zero)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2080
  also have "(x powr (1 / a)) powr a = x powr ((1 / a) * a)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2081
    by (rule powr_powr)
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2082
  also have "... = x" using assms
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2083
    by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2084
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2085
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2086
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2087
lemma tendsto_powr [tendsto_intros]:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2088
  "\<lbrakk>(f ---> a) F; (g ---> b) F; 0 < a\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x powr g x) ---> a powr b) F"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2089
  unfolding powr_def by (intro tendsto_intros)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2090
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2091
lemma continuous_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2092
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2093
    and "continuous F g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2094
    and "0 < f (Lim F (\<lambda>x. x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2095
  shows "continuous F (\<lambda>x. (f x) powr (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2096
  using assms unfolding continuous_def by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2097
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2098
lemma continuous_at_within_powr[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2099
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2100
    and "continuous (at a within s) g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2101
    and "0 < f a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2102
  shows "continuous (at a within s) (\<lambda>x. (f x) powr (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2103
  using assms unfolding continuous_within by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2104
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2105
lemma isCont_powr[continuous_intros, simp]:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2106
  assumes "isCont f a" "isCont g a" "0 < f a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2107
  shows "isCont (\<lambda>x. (f x) powr g x) a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2108
  using assms unfolding continuous_at by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2109
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2110
lemma continuous_on_powr[continuous_intros]:
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2111
  assumes "continuous_on s f" "continuous_on s g" and "\<forall>x\<in>s. 0 < f x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2112
  shows "continuous_on s (\<lambda>x. (f x) powr (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2113
  using assms unfolding continuous_on_def by (fast intro: tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2114
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2115
(* FIXME: generalize by replacing d by with g x and g ---> d? *)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2116
lemma tendsto_zero_powrI:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2117
  assumes "eventually (\<lambda>x. 0 < f x ) F" and "(f ---> 0) F"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2118
    and "0 < d"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2119
  shows "((\<lambda>x. f x powr d) ---> 0) F"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2120
proof (rule tendstoI)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2121
  fix e :: real assume "0 < e"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2122
  def Z \<equiv> "e powr (1 / d)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2123
  with `0 < e` have "0 < Z" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2124
  with assms have "eventually (\<lambda>x. 0 < f x \<and> dist (f x) 0 < Z) F"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2125
    by (intro eventually_conj tendstoD)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2126
  moreover
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2127
  from assms have "\<And>x. 0 < x \<and> dist x 0 < Z \<Longrightarrow> x powr d < Z powr d"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2128
    by (intro powr_less_mono2) (auto simp: dist_real_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2129
  with assms `0 < e` have "\<And>x. 0 < x \<and> dist x 0 < Z \<Longrightarrow> dist (x powr d) 0 < e"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2130
    unfolding dist_real_def Z_def by (auto simp: powr_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2131
  ultimately
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2132
  show "eventually (\<lambda>x. dist (f x powr d) 0 < e) F" by (rule eventually_elim1)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2133
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2134
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2135
lemma tendsto_neg_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2136
  assumes "s < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2137
    and "LIM x F. f x :> at_top"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2138
  shows "((\<lambda>x. f x powr s) ---> 0) F"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2139
proof (rule tendstoI)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2140
  fix e :: real assume "0 < e"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2141
  def Z \<equiv> "e powr (1 / s)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2142
  from assms have "eventually (\<lambda>x. Z < f x) F"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2143
    by (simp add: filterlim_at_top_dense)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2144
  moreover
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2145
  from assms have "\<And>x. Z < x \<Longrightarrow> x powr s < Z powr s"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2146
    by (auto simp: Z_def intro!: powr_less_mono2_neg)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2147
  with assms `0 < e` have "\<And>x. Z < x \<Longrightarrow> dist (x powr s) 0 < e"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2148
    by (simp add: powr_powr Z_def dist_real_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2149
  ultimately
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2150
  show "eventually (\<lambda>x. dist (f x powr s) 0 < e) F" by (rule eventually_elim1)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2151
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2152
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2153
subsection {* Sine and Cosine *}
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2154
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2155
definition sin_coeff :: "nat \<Rightarrow> real" where
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2156
  "sin_coeff = (\<lambda>n. if even n then 0 else -1 ^ ((n - Suc 0) div 2) / real (fact n))"
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2157
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2158
definition cos_coeff :: "nat \<Rightarrow> real" where
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2159
  "cos_coeff = (\<lambda>n. if even n then (-1 ^ (n div 2)) / real (fact n) else 0)"
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2160
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2161
definition sin :: "real \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2162
  where "sin = (\<lambda>x. \<Sum>n. sin_coeff n * x ^ n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2163
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2164
definition cos :: "real \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2165
  where "cos = (\<lambda>x. \<Sum>n. cos_coeff n * x ^ n)"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2166
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2167
lemma sin_coeff_0 [simp]: "sin_coeff 0 = 0"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2168
  unfolding sin_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2169
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2170
lemma cos_coeff_0 [simp]: "cos_coeff 0 = 1"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2171
  unfolding cos_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2172
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2173
lemma sin_coeff_Suc: "sin_coeff (Suc n) = cos_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2174
  unfolding cos_coeff_def sin_coeff_def
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2175
  by (simp del: mult_Suc)
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2176
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2177
lemma cos_coeff_Suc: "cos_coeff (Suc n) = - sin_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2178
  unfolding cos_coeff_def sin_coeff_def
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  2179
  by (simp del: mult_Suc, auto simp add: odd_Suc_mult_two_ex)
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2180
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2181
lemma summable_sin: "summable (\<lambda>n. sin_coeff n * x ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2182
  unfolding sin_coeff_def
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2183
  apply (rule summable_comparison_test [OF _ summable_exp [where x="\<bar>x\<bar>"]])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2184
  apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2185
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2186
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2187
lemma summable_cos: "summable (\<lambda>n. cos_coeff n * x ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2188
  unfolding cos_coeff_def
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2189
  apply (rule summable_comparison_test [OF _ summable_exp [where x="\<bar>x\<bar>"]])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2190
  apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2191
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2192
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2193
lemma sin_converges: "(\<lambda>n. sin_coeff n * x ^ n) sums sin(x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2194
  unfolding sin_def by (rule summable_sin [THEN summable_sums])
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2195
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2196
lemma cos_converges: "(\<lambda>n. cos_coeff n * x ^ n) sums cos(x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2197
  unfolding cos_def by (rule summable_cos [THEN summable_sums])
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2198
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2199
lemma diffs_sin_coeff: "diffs sin_coeff = cos_coeff"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2200
  by (simp add: diffs_def sin_coeff_Suc real_of_nat_def del: of_nat_Suc)
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2201
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2202
lemma diffs_cos_coeff: "diffs cos_coeff = (\<lambda>n. - sin_coeff n)"
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  2203
  by (simp add: diffs_def cos_coeff_Suc real_of_nat_def del: of_nat_Suc)
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2204
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2205
text{*Now at last we can get the derivatives of exp, sin and cos*}
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2206
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2207
lemma DERIV_sin [simp]: "DERIV sin x :> cos(x)"
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2208
  unfolding sin_def cos_def
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2209
  apply (rule DERIV_cong, rule termdiffs [where K="1 + \<bar>x\<bar>"])
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2210
  apply (simp_all add: diffs_sin_coeff diffs_cos_coeff
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2211
    summable_minus summable_sin summable_cos)
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2212
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2213
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2214
declare DERIV_sin[THEN DERIV_chain2, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2215
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2216
lemma DERIV_cos [simp]: "DERIV cos x :> -sin(x)"
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2217
  unfolding cos_def sin_def
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2218
  apply (rule DERIV_cong, rule termdiffs [where K="1 + \<bar>x\<bar>"])
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2219
  apply (simp_all add: diffs_sin_coeff diffs_cos_coeff diffs_minus
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2220
    summable_minus summable_sin summable_cos suminf_minus)
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2221
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2222
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2223
declare DERIV_cos[THEN DERIV_chain2, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2224
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2225
lemma isCont_sin: "isCont sin x"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2226
  by (rule DERIV_sin [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2227
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2228
lemma isCont_cos: "isCont cos x"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2229
  by (rule DERIV_cos [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2230
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2231
lemma isCont_sin' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. sin (f x)) a"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2232
  by (rule isCont_o2 [OF _ isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2233
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2234
lemma isCont_cos' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. cos (f x)) a"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2235
  by (rule isCont_o2 [OF _ isCont_cos])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2236
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2237
lemma tendsto_sin [tendsto_intros]:
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2238
  "(f ---> a) F \<Longrightarrow> ((\<lambda>x. sin (f x)) ---> sin a) F"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2239
  by (rule isCont_tendsto_compose [OF isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2240
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2241
lemma tendsto_cos [tendsto_intros]:
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2242
  "(f ---> a) F \<Longrightarrow> ((\<lambda>x. cos (f x)) ---> cos a) F"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2243
  by (rule isCont_tendsto_compose [OF isCont_cos])
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2244
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2245
lemma continuous_sin [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2246
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. sin (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2247
  unfolding continuous_def by (rule tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2248
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2249
lemma continuous_on_sin [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2250
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. sin (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2251
  unfolding continuous_on_def by (auto intro: tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2252
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2253
lemma continuous_cos [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2254
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. cos (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2255
  unfolding continuous_def by (rule tendsto_cos)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2256
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2257
lemma continuous_on_cos [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2258
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. cos (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2259
  unfolding continuous_on_def by (auto intro: tendsto_cos)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2260
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2261
subsection {* Properties of Sine and Cosine *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2262
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2263
lemma sin_zero [simp]: "sin 0 = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2264
  unfolding sin_def sin_coeff_def by (simp add: powser_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2265
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2266
lemma cos_zero [simp]: "cos 0 = 1"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2267
  unfolding cos_def cos_coeff_def by (simp add: powser_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2268
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2269
lemma sin_cos_squared_add [simp]: "(sin x)\<^sup>2 + (cos x)\<^sup>2 = 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2270
proof -
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2271
  have "\<forall>x. DERIV (\<lambda>x. (sin x)\<^sup>2 + (cos x)\<^sup>2) x :> 0"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2272
    by (auto intro!: derivative_eq_intros)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2273
  hence "(sin x)\<^sup>2 + (cos x)\<^sup>2 = (sin 0)\<^sup>2 + (cos 0)\<^sup>2"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2274
    by (rule DERIV_isconst_all)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2275
  thus "(sin x)\<^sup>2 + (cos x)\<^sup>2 = 1" by simp
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2276
qed
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2277
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2278
lemma sin_cos_squared_add2 [simp]: "(cos x)\<^sup>2 + (sin x)\<^sup>2 = 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2279
  by (subst add_commute, rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2280
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2281
lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2282
  using sin_cos_squared_add2 [unfolded power2_eq_square] .
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2283
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2284
lemma sin_squared_eq: "(sin x)\<^sup>2 = 1 - (cos x)\<^sup>2"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2285
  unfolding eq_diff_eq by (rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2286
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2287
lemma cos_squared_eq: "(cos x)\<^sup>2 = 1 - (sin x)\<^sup>2"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2288
  unfolding eq_diff_eq by (rule sin_cos_squared_add2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2289
15081
32402f5624d1 abs notation
paulson
parents: 15079
diff changeset
  2290
lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2291
  by (rule power2_le_imp_le, simp_all add: sin_squared_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2292
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2293
lemma sin_ge_minus_one [simp]: "-1 \<le> sin x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2294
  using abs_sin_le_one [of x] unfolding abs_le_iff by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2295
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2296
lemma sin_le_one [simp]: "sin x \<le> 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2297
  using abs_sin_le_one [of x] unfolding abs_le_iff by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2298
15081
32402f5624d1 abs notation
paulson
parents: 15079
diff changeset
  2299
lemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2300
  by (rule power2_le_imp_le, simp_all add: cos_squared_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2301
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2302
lemma cos_ge_minus_one [simp]: "-1 \<le> cos x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2303
  using abs_cos_le_one [of x] unfolding abs_le_iff by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2304
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2305
lemma cos_le_one [simp]: "cos x \<le> 1"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2306
  using abs_cos_le_one [of x] unfolding abs_le_iff by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2307
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2308
lemma DERIV_fun_pow: "DERIV g x :> m ==>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2309
      DERIV (\<lambda>x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2310
  by (auto intro!: derivative_eq_intros simp: real_of_nat_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2311
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2312
lemma DERIV_fun_exp:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2313
     "DERIV g x :> m ==> DERIV (\<lambda>x. exp(g x)) x :> exp(g x) * m"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2314
  by (auto intro!: derivative_intros)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2315
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2316
lemma DERIV_fun_sin:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2317
     "DERIV g x :> m ==> DERIV (\<lambda>x. sin(g x)) x :> cos(g x) * m"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2318
  by (auto intro!: derivative_intros)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2319
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2320
lemma DERIV_fun_cos:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2321
     "DERIV g x :> m ==> DERIV (\<lambda>x. cos(g x)) x :> -sin(g x) * m"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2322
  by (auto intro!: derivative_eq_intros simp: real_of_nat_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2323
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2324
lemma sin_cos_add_lemma:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2325
  "(sin (x + y) - (sin x * cos y + cos x * sin y))\<^sup>2 +
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2326
    (cos (x + y) - (cos x * cos y - sin x * sin y))\<^sup>2 = 0"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2327
  (is "?f x = 0")
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2328
proof -
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2329
  have "\<forall>x. DERIV (\<lambda>x. ?f x) x :> 0"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2330
    by (auto intro!: derivative_eq_intros simp add: algebra_simps)
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2331
  hence "?f x = ?f 0"
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2332
    by (rule DERIV_isconst_all)
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2333
  thus ?thesis by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2334
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2335
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2336
lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2337
  using sin_cos_add_lemma unfolding realpow_two_sum_zero_iff by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2338
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2339
lemma cos_add: "cos (x + y) = cos x * cos y - sin x * sin y"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2340
  using sin_cos_add_lemma unfolding realpow_two_sum_zero_iff by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2341
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2342
lemma sin_cos_minus_lemma:
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2343
  "(sin(-x) + sin(x))\<^sup>2 + (cos(-x) - cos(x))\<^sup>2 = 0" (is "?f x = 0")
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2344
proof -
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2345
  have "\<forall>x. DERIV (\<lambda>x. ?f x) x :> 0"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2346
    by (auto intro!: derivative_eq_intros simp add: algebra_simps)
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2347
  hence "?f x = ?f 0"
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2348
    by (rule DERIV_isconst_all)
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2349
  thus ?thesis by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2350
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2351
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2352
lemma sin_minus [simp]: "sin (-x) = -sin(x)"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2353
  using sin_cos_minus_lemma [where x=x] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2354
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2355
lemma cos_minus [simp]: "cos (-x) = cos(x)"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2356
  using sin_cos_minus_lemma [where x=x] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2357
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2358
lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  2359
  using sin_add [of x "- y"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2360
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2361
lemma sin_diff2: "sin (x - y) = cos y * sin x - sin y * cos x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2362
  by (simp add: sin_diff mult_commute)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2363
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2364
lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  2365
  using cos_add [of x "- y"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2366
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2367
lemma cos_diff2: "cos (x - y) = cos y * cos x + sin y * sin x"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  2368
  by (simp add: cos_diff mult_commute)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2369
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2370
lemma sin_double [simp]: "sin(2 * x) = 2* sin x * cos x"
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  2371
  using sin_add [where x=x and y=x] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2372
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2373
lemma cos_double: "cos(2* x) = ((cos x)\<^sup>2) - ((sin x)\<^sup>2)"
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  2374
  using cos_add [where x=x and y=x]
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  2375
  by (simp add: power2_eq_square)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2376
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2377
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2378
subsection {* The Constant Pi *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2379
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2380
definition pi :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2381
  where "pi = 2 * (THE x. 0 \<le> (x::real) & x \<le> 2 & cos x = 0)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  2382
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2383
text{*Show that there's a least positive @{term x} with @{term "cos(x) = 0"};
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2384
   hence define pi.*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2385
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2386
lemma sin_paired:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2387
  "(\<lambda>n. -1 ^ n /(real (fact (2 * n + 1))) * x ^ (2 * n + 1)) sums  sin x"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2388
proof -
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2389
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. sin_coeff k * x ^ k) sums sin x"
44727
d45acd50a894 modify lemma sums_group, and shorten proofs that use it
huffman
parents: 44726
diff changeset
  2390
    by (rule sin_converges [THEN sums_group], simp)
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2391
  thus ?thesis unfolding One_nat_def sin_coeff_def by (simp add: mult_ac)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2392
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2393
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2394
lemma sin_gt_zero:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2395
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2396
  shows "0 < sin x"
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2397
proof -
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2398
  let ?f = "\<lambda>n. \<Sum>k = n*2..<n*2+2. -1 ^ k / real (fact (2*k+1)) * x^(2*k+1)"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2399
  have pos: "\<forall>n. 0 < ?f n"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2400
  proof
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2401
    fix n :: nat
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2402
    let ?k2 = "real (Suc (Suc (4 * n)))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2403
    let ?k3 = "real (Suc (Suc (Suc (4 * n))))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2404
    have "x * x < ?k2 * ?k3"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2405
      using assms by (intro mult_strict_mono', simp_all)
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2406
    hence "x * x * x * x ^ (n * 4) < ?k2 * ?k3 * x * x ^ (n * 4)"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2407
      by (intro mult_strict_right_mono zero_less_power `0 < x`)
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2408
    thus "0 < ?f n"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2409
      by (simp del: mult_Suc,
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56541
diff changeset
  2410
        simp add: less_divide_eq field_simps del: mult_Suc)
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2411
  qed
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2412
  have sums: "?f sums sin x"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2413
    by (rule sin_paired [THEN sums_group], simp)
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2414
  show "0 < sin x"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2415
    unfolding sums_unique [OF sums]
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2416
    using sums_summable [OF sums] pos
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  2417
    by (rule suminf_pos)
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  2418
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2419
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2420
lemma cos_double_less_one: "0 < x \<Longrightarrow> x < 2 \<Longrightarrow> cos (2 * x) < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2421
  using sin_gt_zero [where x = x] by (auto simp add: cos_squared_eq cos_double)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2422
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2423
lemma cos_paired: "(\<lambda>n. -1 ^ n /(real (fact (2 * n))) * x ^ (2 * n)) sums cos x"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2424
proof -
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2425
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. cos_coeff k * x ^ k) sums cos x"
44727
d45acd50a894 modify lemma sums_group, and shorten proofs that use it
huffman
parents: 44726
diff changeset
  2426
    by (rule cos_converges [THEN sums_group], simp)
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2427
  thus ?thesis unfolding cos_coeff_def by (simp add: mult_ac)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2428
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2429
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2430
lemmas realpow_num_eq_if = power_eq_if
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2431
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2432
lemma sumr_pos_lt_pair:
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2433
  fixes f :: "nat \<Rightarrow> real"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2434
  shows "\<lbrakk>summable f;
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2435
        \<And>d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc(Suc 0) * d) + 1))\<rbrakk>
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2436
      \<Longrightarrow> setsum f {..<k} < suminf f"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2437
unfolding One_nat_def
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2438
apply (subst suminf_split_initial_segment [where k="k"])
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2439
apply assumption
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2440
apply simp
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2441
apply (drule_tac k="k" in summable_ignore_initial_segment)
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2442
apply (drule_tac k="Suc (Suc 0)" in sums_group [OF summable_sums], simp)
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2443
apply simp
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2444
apply (frule sums_unique)
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2445
apply (drule sums_summable)
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2446
apply simp
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  2447
apply (erule suminf_pos)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2448
apply (simp add: add_ac)
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2449
done
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2450
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2451
lemma cos_two_less_zero [simp]:
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2452
  "cos 2 < 0"
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2453
proof -
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2454
  note fact_Suc [simp del]
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2455
  from cos_paired
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2456
  have "(\<lambda>n. - (-1 ^ n / real (fact (2 * n)) * 2 ^ (2 * n))) sums - cos 2"
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2457
    by (rule sums_minus)
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2458
  then have *: "(\<lambda>n. - (-1 ^ n * 2 ^ (2 * n) / real (fact (2 * n)))) sums - cos 2"
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2459
    by simp
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2460
  then have **: "summable (\<lambda>n. - (-1 ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2461
    by (rule sums_summable)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2462
  have "0 < (\<Sum>n<Suc (Suc (Suc 0)). - (-1 ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2463
    by (simp add: fact_num_eq_if_nat realpow_num_eq_if)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  2464
  moreover have "(\<Sum>n<Suc (Suc (Suc 0)). - (-1 ^ n  * 2 ^ (2 * n) / real (fact (2 * n))))
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2465
    < (\<Sum>n. - (-1 ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2466
  proof -
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2467
    { fix d
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2468
      have "4 * real (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2469
       < real (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))) *
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2470
           fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))))"
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2471
        by (simp only: real_of_nat_mult) (auto intro!: mult_strict_mono fact_less_mono_nat)
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2472
      then have "4 * real (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2473
        < real (fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))))"
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2474
        by (simp only: fact_Suc [of "Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))"])
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2475
      then have "4 * inverse (real (fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))))))
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2476
        < inverse (real (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))))"
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2477
        by (simp add: inverse_eq_divide less_divide_eq)
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2478
    }
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2479
    note *** = this
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  2480
    have [simp]: "\<And>x y::real. 0 < x - y \<longleftrightarrow> y < x" by arith
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2481
    from ** show ?thesis by (rule sumr_pos_lt_pair)
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  2482
      (simp add: divide_inverse mult_assoc [symmetric] ***)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2483
  qed
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2484
  ultimately have "0 < (\<Sum>n. - (-1 ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2485
    by (rule order_less_trans)
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2486
  moreover from * have "- cos 2 = (\<Sum>n. - (-1 ^ n * 2 ^ (2 * n) / real (fact (2 * n))))"
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2487
    by (rule sums_unique)
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2488
  ultimately have "0 < - cos 2" by simp
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2489
  then show ?thesis by simp
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  2490
qed
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2491
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2492
lemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2493
lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2494
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2495
lemma cos_is_zero: "EX! x. 0 \<le> x & x \<le> 2 \<and> cos x = 0"
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2496
proof (rule ex_ex1I)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2497
  show "\<exists>x. 0 \<le> x & x \<le> 2 & cos x = 0"
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2498
    by (rule IVT2, simp_all)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2499
next
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2500
  fix x y
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2501
  assume x: "0 \<le> x \<and> x \<le> 2 \<and> cos x = 0"
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2502
  assume y: "0 \<le> y \<and> y \<le> 2 \<and> cos y = 0"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  2503
  have [simp]: "\<forall>x. cos differentiable (at x)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  2504
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2505
  from x y show "x = y"
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2506
    apply (cut_tac less_linear [of x y], auto)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2507
    apply (drule_tac f = cos in Rolle)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2508
    apply (drule_tac [5] f = cos in Rolle)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2509
    apply (auto dest!: DERIV_cos [THEN DERIV_unique])
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2510
    apply (metis order_less_le_trans less_le sin_gt_zero)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2511
    apply (metis order_less_le_trans less_le sin_gt_zero)
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2512
    done
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  2513
qed
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  2514
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2515
lemma pi_half: "pi/2 = (THE x. 0 \<le> x & x \<le> 2 & cos x = 0)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2516
  by (simp add: pi_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2517
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2518
lemma cos_pi_half [simp]: "cos (pi / 2) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2519
  by (simp add: pi_half cos_is_zero [THEN theI'])
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2520
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2521
lemma pi_half_gt_zero [simp]: "0 < pi / 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2522
  apply (rule order_le_neq_trans)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2523
  apply (simp add: pi_half cos_is_zero [THEN theI'])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2524
  apply (metis cos_pi_half cos_zero zero_neq_one)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2525
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2526
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2527
lemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2528
lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2529
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2530
lemma pi_half_less_two [simp]: "pi / 2 < 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2531
  apply (rule order_le_neq_trans)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2532
  apply (simp add: pi_half cos_is_zero [THEN theI'])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2533
  apply (metis cos_pi_half cos_two_neq_zero)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2534
  done
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2535
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2536
lemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2537
lemmas pi_half_le_two [simp] =  pi_half_less_two [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2538
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2539
lemma pi_gt_zero [simp]: "0 < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2540
  using pi_half_gt_zero by simp
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2541
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2542
lemma pi_ge_zero [simp]: "0 \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2543
  by (rule pi_gt_zero [THEN order_less_imp_le])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2544
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2545
lemma pi_neq_zero [simp]: "pi \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2546
  by (rule pi_gt_zero [THEN less_imp_neq, symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2547
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  2548
lemma pi_not_less_zero [simp]: "\<not> pi < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2549
  by (simp add: linorder_not_less)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2550
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  2551
lemma minus_pi_half_less_zero: "-(pi/2) < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2552
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2553
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2554
lemma m2pi_less_pi: "- (2 * pi) < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2555
  by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2556
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2557
lemma sin_pi_half [simp]: "sin(pi/2) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2558
  using sin_cos_squared_add2 [where x = "pi/2"]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2559
  using sin_gt_zero [OF pi_half_gt_zero pi_half_less_two]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2560
  by (simp add: power2_eq_1_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2561
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2562
lemma cos_pi [simp]: "cos pi = -1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2563
  using cos_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2564
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2565
lemma sin_pi [simp]: "sin pi = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2566
  using sin_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2567
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2568
lemma sin_cos_eq: "sin x = cos (pi/2 - x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2569
  by (simp add: cos_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2570
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2571
lemma minus_sin_cos_eq: "-sin x = cos (x + pi/2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2572
  by (simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2573
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2574
lemma cos_sin_eq: "cos x = sin (pi/2 - x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2575
  by (simp add: sin_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2576
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2577
lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2578
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2579
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2580
lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2581
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2582
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2583
lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2584
  by (simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2585
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2586
lemma sin_periodic [simp]: "sin (x + 2*pi) = sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2587
  by (simp add: sin_add cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2588
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2589
lemma cos_periodic [simp]: "cos (x + 2*pi) = cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2590
  by (simp add: cos_add cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2591
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2592
lemma cos_npi [simp]: "cos (real n * pi) = -1 ^ n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2593
  by (induct n) (auto simp add: real_of_nat_Suc distrib_right)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2594
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2595
lemma cos_npi2 [simp]: "cos (pi * real n) = -1 ^ n"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2596
  by (metis cos_npi mult_commute)
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2597
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2598
lemma sin_npi [simp]: "sin (real (n::nat) * pi) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2599
  by (induct n) (auto simp add: real_of_nat_Suc distrib_right)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2600
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2601
lemma sin_npi2 [simp]: "sin (pi * real (n::nat)) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2602
  by (simp add: mult_commute [of pi])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2603
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2604
lemma cos_two_pi [simp]: "cos (2 * pi) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2605
  by (simp add: cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2606
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2607
lemma sin_two_pi [simp]: "sin (2 * pi) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2608
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2609
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2610
lemma sin_gt_zero2: "[| 0 < x; x < pi/2 |] ==> 0 < sin x"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2611
  by (metis sin_gt_zero order_less_trans pi_half_less_two)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2612
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2613
lemma sin_less_zero:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2614
  assumes "- pi/2 < x" and "x < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2615
  shows "sin x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2616
proof -
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2617
  have "0 < sin (- x)" using assms by (simp only: sin_gt_zero2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2618
  thus ?thesis by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2619
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2620
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2621
lemma pi_less_4: "pi < 4"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2622
  using pi_half_less_two by auto
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2623
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2624
lemma cos_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2625
  apply (cut_tac pi_less_4)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2626
  apply (cut_tac f = cos and a = 0 and b = x and y = 0 in IVT2_objl, safe, simp_all)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2627
  apply (cut_tac cos_is_zero, safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2628
  apply (rename_tac y z)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2629
  apply (drule_tac x = y in spec)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2630
  apply (drule_tac x = "pi/2" in spec, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2631
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2632
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2633
lemma cos_gt_zero_pi: "[| -(pi/2) < x; x < pi/2 |] ==> 0 < cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2634
  apply (rule_tac x = x and y = 0 in linorder_cases)
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2635
  apply (metis cos_gt_zero cos_minus minus_less_iff neg_0_less_iff_less)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2636
  apply (auto intro: cos_gt_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2637
  done
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2638
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2639
lemma cos_ge_zero: "[| -(pi/2) \<le> x; x \<le> pi/2 |] ==> 0 \<le> cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2640
  apply (auto simp add: order_le_less cos_gt_zero_pi)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2641
  apply (subgoal_tac "x = pi/2", auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2642
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2643
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2644
lemma sin_gt_zero_pi: "[| 0 < x; x < pi  |] ==> 0 < sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2645
  by (simp add: sin_cos_eq cos_gt_zero_pi)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2646
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2647
lemma pi_ge_two: "2 \<le> pi"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2648
proof (rule ccontr)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2649
  assume "\<not> 2 \<le> pi" hence "pi < 2" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2650
  have "\<exists>y > pi. y < 2 \<and> y < 2 * pi"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2651
  proof (cases "2 < 2 * pi")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2652
    case True with dense[OF `pi < 2`] show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2653
  next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2654
    case False have "pi < 2 * pi" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2655
    from dense[OF this] and False show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2656
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2657
  then obtain y where "pi < y" and "y < 2" and "y < 2 * pi" by blast
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2658
  hence "0 < sin y" using sin_gt_zero by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2659
  moreover
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2660
  have "sin y < 0" using sin_gt_zero_pi[of "y - pi"] `pi < y` and `y < 2 * pi` sin_periodic_pi[of "y - pi"] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2661
  ultimately show False by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2662
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2663
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2664
lemma sin_ge_zero: "[| 0 \<le> x; x \<le> pi |] ==> 0 \<le> sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2665
  by (auto simp add: order_le_less sin_gt_zero_pi)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2666
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2667
text {* FIXME: This proof is almost identical to lemma @{text cos_is_zero}.
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2668
  It should be possible to factor out some of the common parts. *}
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2669
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2670
lemma cos_total: "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. 0 \<le> x & x \<le> pi & (cos x = y)"
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2671
proof (rule ex_ex1I)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2672
  assume y: "-1 \<le> y" "y \<le> 1"
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2673
  show "\<exists>x. 0 \<le> x & x \<le> pi & cos x = y"
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2674
    by (rule IVT2, simp_all add: y)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2675
next
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2676
  fix a b
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2677
  assume a: "0 \<le> a \<and> a \<le> pi \<and> cos a = y"
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2678
  assume b: "0 \<le> b \<and> b \<le> pi \<and> cos b = y"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  2679
  have [simp]: "\<forall>x. cos differentiable (at x)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  2680
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2681
  from a b show "a = b"
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2682
    apply (cut_tac less_linear [of a b], auto)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2683
    apply (drule_tac f = cos in Rolle)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2684
    apply (drule_tac [5] f = cos in Rolle)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2685
    apply (auto dest!: DERIV_cos [THEN DERIV_unique])
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2686
    apply (metis order_less_le_trans less_le sin_gt_zero_pi)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2687
    apply (metis order_less_le_trans less_le sin_gt_zero_pi)
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2688
    done
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  2689
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2690
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2691
lemma sin_total:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2692
     "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. -(pi/2) \<le> x & x \<le> pi/2 & (sin x = y)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2693
apply (rule ccontr)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2694
apply (subgoal_tac "\<forall>x. (- (pi/2) \<le> x & x \<le> pi/2 & (sin x = y)) = (0 \<le> (x + pi/2) & (x + pi/2) \<le> pi & (cos (x + pi/2) = -y))")
18585
5d379fe2eb74 replaced swap by contrapos_np;
wenzelm
parents: 17318
diff changeset
  2695
apply (erule contrapos_np)
45309
5885ec8eb6b0 removed ad-hoc simp rules sin_cos_eq[symmetric], minus_sin_cos_eq[symmetric], cos_sin_eq[symmetric]
huffman
parents: 45308
diff changeset
  2696
apply simp
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2697
apply (cut_tac y="-y" in cos_total, simp) apply simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2698
apply (erule ex1E)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2699
apply (rule_tac a = "x - (pi/2)" in ex1I)
23286
huffman
parents: 23278
diff changeset
  2700
apply (simp (no_asm) add: add_assoc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2701
apply (rotate_tac 3)
45309
5885ec8eb6b0 removed ad-hoc simp rules sin_cos_eq[symmetric], minus_sin_cos_eq[symmetric], cos_sin_eq[symmetric]
huffman
parents: 45308
diff changeset
  2702
apply (drule_tac x = "xa + pi/2" in spec, safe, simp_all add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2703
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2704
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2705
lemma reals_Archimedean4:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2706
     "[| 0 < y; 0 \<le> x |] ==> \<exists>n. real n * y \<le> x & x < real (Suc n) * y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2707
apply (auto dest!: reals_Archimedean3)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2708
apply (drule_tac x = x in spec, clarify)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2709
apply (subgoal_tac "x < real(LEAST m::nat. x < real m * y) * y")
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2710
 prefer 2 apply (erule LeastI)
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2711
apply (case_tac "LEAST m::nat. x < real m * y", simp)
55417
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 54576
diff changeset
  2712
apply (rename_tac m)
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 54576
diff changeset
  2713
apply (subgoal_tac "~ x < real m * y")
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2714
 prefer 2 apply (rule not_less_Least, simp, force)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2715
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2716
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2717
(* Pre Isabelle99-2 proof was simpler- numerals arithmetic
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2718
   now causes some unwanted re-arrangements of literals!   *)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2719
lemma cos_zero_lemma:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2720
     "[| 0 \<le> x; cos x = 0 |] ==>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2721
      \<exists>n::nat. ~even n & x = real n * (pi/2)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2722
apply (drule pi_gt_zero [THEN reals_Archimedean4], safe)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2723
apply (subgoal_tac "0 \<le> x - real n * pi &
15086
e6a2a98d5ef5 removal of more iff-rules from RealDef.thy
paulson
parents: 15085
diff changeset
  2724
                    (x - real n * pi) \<le> pi & (cos (x - real n * pi) = 0) ")
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29171
diff changeset
  2725
apply (auto simp add: algebra_simps real_of_nat_Suc)
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29171
diff changeset
  2726
 prefer 2 apply (simp add: cos_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2727
apply (simp add: cos_diff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2728
apply (subgoal_tac "EX! x. 0 \<le> x & x \<le> pi & cos x = 0")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2729
apply (rule_tac [2] cos_total, safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2730
apply (drule_tac x = "x - real n * pi" in spec)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2731
apply (drule_tac x = "pi/2" in spec)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2732
apply (simp add: cos_diff)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2733
apply (rule_tac x = "Suc (2 * n)" in exI)
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29171
diff changeset
  2734
apply (simp add: real_of_nat_Suc algebra_simps, auto)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2735
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2736
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2737
lemma sin_zero_lemma:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2738
     "[| 0 \<le> x; sin x = 0 |] ==>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2739
      \<exists>n::nat. even n & x = real n * (pi/2)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2740
apply (subgoal_tac "\<exists>n::nat. ~ even n & x + pi/2 = real n * (pi/2) ")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2741
 apply (clarify, rule_tac x = "n - 1" in exI)
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  2742
 apply (force simp add: odd_Suc_mult_two_ex real_of_nat_Suc distrib_right)
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  2743
apply (rule cos_zero_lemma)
45309
5885ec8eb6b0 removed ad-hoc simp rules sin_cos_eq[symmetric], minus_sin_cos_eq[symmetric], cos_sin_eq[symmetric]
huffman
parents: 45308
diff changeset
  2744
apply (simp_all add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2745
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2746
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2747
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2748
lemma cos_zero_iff:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2749
     "(cos x = 0) =
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2750
      ((\<exists>n::nat. ~even n & (x = real n * (pi/2))) |
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2751
       (\<exists>n::nat. ~even n & (x = -(real n * (pi/2)))))"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2752
apply (rule iffI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2753
apply (cut_tac linorder_linear [of 0 x], safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2754
apply (drule cos_zero_lemma, assumption+)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2755
apply (cut_tac x="-x" in cos_zero_lemma, simp, simp)
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2756
apply (force simp add: minus_equation_iff [of x])
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  2757
apply (auto simp only: odd_Suc_mult_two_ex real_of_nat_Suc distrib_right)
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  2758
apply (auto simp add: cos_diff cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2759
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2760
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2761
(* ditto: but to a lesser extent *)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2762
lemma sin_zero_iff:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2763
     "(sin x = 0) =
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2764
      ((\<exists>n::nat. even n & (x = real n * (pi/2))) |
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2765
       (\<exists>n::nat. even n & (x = -(real n * (pi/2)))))"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2766
apply (rule iffI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2767
apply (cut_tac linorder_linear [of 0 x], safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2768
apply (drule sin_zero_lemma, assumption+)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2769
apply (cut_tac x="-x" in sin_zero_lemma, simp, simp, safe)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2770
apply (force simp add: minus_equation_iff [of x])
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  2771
apply (auto simp add: even_mult_two_ex)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2772
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2773
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2774
lemma cos_monotone_0_pi:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2775
  assumes "0 \<le> y" and "y < x" and "x \<le> pi"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2776
  shows "cos x < cos y"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2777
proof -
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  2778
  have "- (x - y) < 0" using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2779
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2780
  from MVT2[OF `y < x` DERIV_cos[THEN impI, THEN allI]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2781
  obtain z where "y < z" and "z < x" and cos_diff: "cos x - cos y = (x - y) * - sin z"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2782
    by auto
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  2783
  hence "0 < z" and "z < pi" using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2784
  hence "0 < sin z" using sin_gt_zero_pi by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2785
  hence "cos x - cos y < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2786
    unfolding cos_diff minus_mult_commute[symmetric]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2787
    using `- (x - y) < 0` by (rule mult_pos_neg2)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2788
  thus ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2789
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2790
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2791
lemma cos_monotone_0_pi':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2792
  assumes "0 \<le> y" and "y \<le> x" and "x \<le> pi"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2793
  shows "cos x \<le> cos y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2794
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2795
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2796
  show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2797
    using cos_monotone_0_pi[OF `0 \<le> y` True `x \<le> pi`] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2798
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2799
  case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2800
  hence "y = x" using `y \<le> x` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2801
  thus ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2802
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2803
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2804
lemma cos_monotone_minus_pi_0:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2805
  assumes "-pi \<le> y" and "y < x" and "x \<le> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2806
  shows "cos y < cos x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2807
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2808
  have "0 \<le> -x" and "-x < -y" and "-y \<le> pi"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2809
    using assms by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2810
  from cos_monotone_0_pi[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2811
    unfolding cos_minus .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2812
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2813
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2814
lemma cos_monotone_minus_pi_0':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2815
  assumes "-pi \<le> y" and "y \<le> x" and "x \<le> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2816
  shows "cos y \<le> cos x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2817
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2818
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2819
  show ?thesis using cos_monotone_minus_pi_0[OF `-pi \<le> y` True `x \<le> 0`]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2820
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2821
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2822
  case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2823
  hence "y = x" using `y \<le> x` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2824
  thus ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2825
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2826
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2827
lemma sin_monotone_2pi':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2828
  assumes "- (pi / 2) \<le> y" and "y \<le> x" and "x \<le> pi / 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2829
  shows "sin y \<le> sin x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2830
proof -
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  2831
  have "0 \<le> y + pi / 2" and "y + pi / 2 \<le> x + pi / 2" and "x + pi /2 \<le> pi"
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  2832
    using pi_ge_two and assms by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2833
  from cos_monotone_0_pi'[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2834
    unfolding minus_sin_cos_eq[symmetric] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2835
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2836
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2837
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2838
subsection {* Tangent *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2839
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2840
definition tan :: "real \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2841
  where "tan = (\<lambda>x. sin x / cos x)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  2842
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2843
lemma tan_zero [simp]: "tan 0 = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2844
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2845
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2846
lemma tan_pi [simp]: "tan pi = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2847
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2848
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2849
lemma tan_npi [simp]: "tan (real (n::nat) * pi) = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2850
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2851
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2852
lemma tan_minus [simp]: "tan (-x) = - tan x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2853
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2854
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2855
lemma tan_periodic [simp]: "tan (x + 2*pi) = tan x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2856
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2857
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2858
lemma lemma_tan_add1:
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2859
  "\<lbrakk>cos x \<noteq> 0; cos y \<noteq> 0\<rbrakk> \<Longrightarrow> 1 - tan x * tan y = cos (x + y)/(cos x * cos y)"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2860
  by (simp add: tan_def cos_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2861
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2862
lemma add_tan_eq:
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2863
  "\<lbrakk>cos x \<noteq> 0; cos y \<noteq> 0\<rbrakk> \<Longrightarrow> tan x + tan y = sin(x + y)/(cos x * cos y)"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2864
  by (simp add: tan_def sin_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2865
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2866
lemma tan_add:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2867
     "[| cos x \<noteq> 0; cos y \<noteq> 0; cos (x + y) \<noteq> 0 |]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2868
      ==> tan(x + y) = (tan(x) + tan(y))/(1 - tan(x) * tan(y))"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2869
  by (simp add: add_tan_eq lemma_tan_add1, simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2870
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2871
lemma tan_double:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2872
     "[| cos x \<noteq> 0; cos (2 * x) \<noteq> 0 |]
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  2873
      ==> tan (2 * x) = (2 * tan x) / (1 - (tan x)\<^sup>2)"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2874
  using tan_add [of x x] by (simp add: power2_eq_square)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2875
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2876
lemma tan_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < tan x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2877
  by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2878
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2879
lemma tan_less_zero:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2880
  assumes lb: "- pi/2 < x" and "x < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2881
  shows "tan x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2882
proof -
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2883
  have "0 < tan (- x)" using assms by (simp only: tan_gt_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2884
  thus ?thesis by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2885
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2886
44756
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  2887
lemma tan_half: "tan x = sin (2 * x) / (cos (2 * x) + 1)"
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  2888
  unfolding tan_def sin_double cos_double sin_squared_eq
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  2889
  by (simp add: power2_eq_square)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2890
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2891
lemma DERIV_tan [simp]: "cos x \<noteq> 0 \<Longrightarrow> DERIV tan x :> inverse ((cos x)\<^sup>2)"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2892
  unfolding tan_def
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2893
  by (auto intro!: derivative_eq_intros, simp add: divide_inverse power2_eq_square)
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2894
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2895
lemma isCont_tan: "cos x \<noteq> 0 \<Longrightarrow> isCont tan x"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2896
  by (rule DERIV_tan [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2897
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2898
lemma isCont_tan' [simp]:
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2899
  "\<lbrakk>isCont f a; cos (f a) \<noteq> 0\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. tan (f x)) a"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2900
  by (rule isCont_o2 [OF _ isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2901
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2902
lemma tendsto_tan [tendsto_intros]:
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2903
  "\<lbrakk>(f ---> a) F; cos a \<noteq> 0\<rbrakk> \<Longrightarrow> ((\<lambda>x. tan (f x)) ---> tan a) F"
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2904
  by (rule isCont_tendsto_compose [OF isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2905
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2906
lemma continuous_tan:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2907
  "continuous F f \<Longrightarrow> cos (f (Lim F (\<lambda>x. x))) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. tan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2908
  unfolding continuous_def by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2909
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2910
lemma isCont_tan'' [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2911
  "continuous (at x) f \<Longrightarrow> cos (f x) \<noteq> 0 \<Longrightarrow> continuous (at x) (\<lambda>x. tan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2912
  unfolding continuous_at by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2913
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2914
lemma continuous_within_tan [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2915
  "continuous (at x within s) f \<Longrightarrow> cos (f x) \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. tan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2916
  unfolding continuous_within by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2917
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2918
lemma continuous_on_tan [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2919
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. cos (f x) \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. tan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2920
  unfolding continuous_on_def by (auto intro: tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  2921
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2922
lemma LIM_cos_div_sin: "(\<lambda>x. cos(x)/sin(x)) -- pi/2 --> 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2923
  by (rule LIM_cong_limit, (rule tendsto_intros)+, simp_all)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2924
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2925
lemma lemma_tan_total: "0 < y ==> \<exists>x. 0 < x & x < pi/2 & y < tan x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2926
  apply (cut_tac LIM_cos_div_sin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2927
  apply (simp only: LIM_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2928
  apply (drule_tac x = "inverse y" in spec, safe, force)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2929
  apply (drule_tac ?d1.0 = s in pi_half_gt_zero [THEN [2] real_lbound_gt_zero], safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2930
  apply (rule_tac x = "(pi/2) - e" in exI)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2931
  apply (simp (no_asm_simp))
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2932
  apply (drule_tac x = "(pi/2) - e" in spec)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2933
  apply (auto simp add: tan_def sin_diff cos_diff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2934
  apply (rule inverse_less_iff_less [THEN iffD1])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2935
  apply (auto simp add: divide_inverse)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2936
  apply (rule mult_pos_pos)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2937
  apply (subgoal_tac [3] "0 < sin e & 0 < cos e")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2938
  apply (auto intro: cos_gt_zero sin_gt_zero2 simp add: mult_commute)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2939
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2940
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2941
lemma tan_total_pos: "0 \<le> y ==> \<exists>x. 0 \<le> x & x < pi/2 & tan x = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2942
  apply (frule order_le_imp_less_or_eq, safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2943
   prefer 2 apply force
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2944
  apply (drule lemma_tan_total, safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2945
  apply (cut_tac f = tan and a = 0 and b = x and y = y in IVT_objl)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2946
  apply (auto intro!: DERIV_tan [THEN DERIV_isCont])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2947
  apply (drule_tac y = xa in order_le_imp_less_or_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2948
  apply (auto dest: cos_gt_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2949
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2950
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2951
lemma lemma_tan_total1: "\<exists>x. -(pi/2) < x & x < (pi/2) & tan x = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2952
  apply (cut_tac linorder_linear [of 0 y], safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2953
  apply (drule tan_total_pos)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2954
  apply (cut_tac [2] y="-y" in tan_total_pos, safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2955
  apply (rule_tac [3] x = "-x" in exI)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2956
  apply (auto del: exI intro!: exI)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2957
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2958
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2959
lemma tan_total: "EX! x. -(pi/2) < x & x < (pi/2) & tan x = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2960
  apply (cut_tac y = y in lemma_tan_total1, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2961
  apply (cut_tac x = xa and y = y in linorder_less_linear, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2962
  apply (subgoal_tac [2] "\<exists>z. y < z & z < xa & DERIV tan z :> 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2963
  apply (subgoal_tac "\<exists>z. xa < z & z < y & DERIV tan z :> 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2964
  apply (rule_tac [4] Rolle)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2965
  apply (rule_tac [2] Rolle)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2966
  apply (auto del: exI intro!: DERIV_tan DERIV_isCont exI
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  2967
              simp add: real_differentiable_def)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2968
  txt{*Now, simulate TRYALL*}
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2969
  apply (rule_tac [!] DERIV_tan asm_rl)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2970
  apply (auto dest!: DERIV_unique [OF _ DERIV_tan]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2971
              simp add: cos_gt_zero_pi [THEN less_imp_neq, THEN not_sym])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2972
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2973
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2974
lemma tan_monotone:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2975
  assumes "- (pi / 2) < y" and "y < x" and "x < pi / 2"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2976
  shows "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2977
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2978
  have "\<forall>x'. y \<le> x' \<and> x' \<le> x \<longrightarrow> DERIV tan x' :> inverse ((cos x')\<^sup>2)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2979
  proof (rule allI, rule impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2980
    fix x' :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2981
    assume "y \<le> x' \<and> x' \<le> x"
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  2982
    hence "-(pi/2) < x'" and "x' < pi/2" using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2983
    from cos_gt_zero_pi[OF this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2984
    have "cos x' \<noteq> 0" by auto
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  2985
    thus "DERIV tan x' :> inverse ((cos x')\<^sup>2)" by (rule DERIV_tan)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2986
  qed
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  2987
  from MVT2[OF `y < x` this]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2988
  obtain z where "y < z" and "z < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2989
    and tan_diff: "tan x - tan y = (x - y) * inverse ((cos z)\<^sup>2)" by auto
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  2990
  hence "- (pi / 2) < z" and "z < pi / 2" using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2991
  hence "0 < cos z" using cos_gt_zero_pi by auto
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2992
  hence inv_pos: "0 < inverse ((cos z)\<^sup>2)" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2993
  have "0 < x - y" using `y < x` by auto
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56541
diff changeset
  2994
  with inv_pos have "0 < tan x - tan y" unfolding tan_diff by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2995
  thus ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2996
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  2997
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2998
lemma tan_monotone':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2999
  assumes "- (pi / 2) < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3000
    and "y < pi / 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3001
    and "- (pi / 2) < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3002
    and "x < pi / 2"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3003
  shows "(y < x) = (tan y < tan x)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3004
proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3005
  assume "y < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3006
  thus "tan y < tan x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3007
    using tan_monotone and `- (pi / 2) < y` and `x < pi / 2` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3008
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3009
  assume "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3010
  show "y < x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3011
  proof (rule ccontr)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3012
    assume "\<not> y < x" hence "x \<le> y" by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3013
    hence "tan x \<le> tan y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3014
    proof (cases "x = y")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3015
      case True thus ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3016
    next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3017
      case False hence "x < y" using `x \<le> y` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3018
      from tan_monotone[OF `- (pi/2) < x` this `y < pi / 2`] show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3019
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3020
    thus False using `tan y < tan x` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3021
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3022
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3023
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3024
lemma tan_inverse: "1 / (tan y) = tan (pi / 2 - y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3025
  unfolding tan_def sin_cos_eq[of y] cos_sin_eq[of y] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3026
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3027
lemma tan_periodic_pi[simp]: "tan (x + pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3028
  by (simp add: tan_def)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3029
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3030
lemma tan_periodic_nat[simp]:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3031
  fixes n :: nat
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3032
  shows "tan (x + real n * pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3033
proof (induct n arbitrary: x)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3034
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3035
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3036
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3037
  case (Suc n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3038
  have split_pi_off: "x + real (Suc n) * pi = (x + real n * pi) + pi"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3039
    unfolding Suc_eq_plus1 real_of_nat_add real_of_one distrib_right by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3040
  show ?case unfolding split_pi_off using Suc by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3041
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3042
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3043
lemma tan_periodic_int[simp]: fixes i :: int shows "tan (x + real i * pi) = tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3044
proof (cases "0 \<le> i")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3045
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3046
  hence i_nat: "real i = real (nat i)" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3047
  show ?thesis unfolding i_nat by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3048
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3049
  case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3050
  hence i_nat: "real i = - real (nat (-i))" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3051
  have "tan x = tan (x + real i * pi - real i * pi)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3052
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3053
  also have "\<dots> = tan (x + real i * pi)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3054
    unfolding i_nat mult_minus_left diff_minus_eq_add by (rule tan_periodic_nat)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3055
  finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3056
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3057
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46240
diff changeset
  3058
lemma tan_periodic_n[simp]: "tan (x + numeral n * pi) = tan x"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46240
diff changeset
  3059
  using tan_periodic_int[of _ "numeral n" ] unfolding real_numeral .
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  3060
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  3061
subsection {* Inverse Trigonometric Functions *}
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  3062
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3063
definition arcsin :: "real => real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3064
  where "arcsin y = (THE x. -(pi/2) \<le> x & x \<le> pi/2 & sin x = y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3065
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3066
definition arccos :: "real => real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3067
  where "arccos y = (THE x. 0 \<le> x & x \<le> pi & cos x = y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3068
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3069
definition arctan :: "real => real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3070
  where "arctan y = (THE x. -(pi/2) < x & x < pi/2 & tan x = y)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  3071
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  3072
lemma arcsin:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3073
  "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3074
    -(pi/2) \<le> arcsin y & arcsin y \<le> pi/2 & sin(arcsin y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3075
  unfolding arcsin_def by (rule theI' [OF sin_total])
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  3076
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  3077
lemma arcsin_pi:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3078
  "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> -(pi/2) \<le> arcsin y & arcsin y \<le> pi & sin(arcsin y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3079
  apply (drule (1) arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3080
  apply (force intro: order_trans)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3081
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3082
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3083
lemma sin_arcsin [simp]: "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> sin(arcsin y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3084
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3085
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3086
lemma arcsin_bounded: "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> -(pi/2) \<le> arcsin y & arcsin y \<le> pi/2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3087
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3088
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3089
lemma arcsin_lbound: "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> -(pi/2) \<le> arcsin y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3090
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3091
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3092
lemma arcsin_ubound: "-1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin y \<le> pi/2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3093
  by (blast dest: arcsin)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3094
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3095
lemma arcsin_lt_bounded:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3096
     "[| -1 < y; y < 1 |] ==> -(pi/2) < arcsin y & arcsin y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3097
  apply (frule order_less_imp_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3098
  apply (frule_tac y = y in order_less_imp_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3099
  apply (frule arcsin_bounded)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3100
  apply (safe, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3101
  apply (drule_tac y = "arcsin y" in order_le_imp_less_or_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3102
  apply (drule_tac [2] y = "pi/2" in order_le_imp_less_or_eq, safe)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3103
  apply (drule_tac [!] f = sin in arg_cong, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3104
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3105
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3106
lemma arcsin_sin: "[|-(pi/2) \<le> x; x \<le> pi/2 |] ==> arcsin(sin x) = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3107
  apply (unfold arcsin_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3108
  apply (rule the1_equality)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3109
  apply (rule sin_total, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3110
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3111
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3112
lemma arccos:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3113
     "[| -1 \<le> y; y \<le> 1 |]
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3114
      ==> 0 \<le> arccos y & arccos y \<le> pi & cos(arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3115
  unfolding arccos_def by (rule theI' [OF cos_total])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3116
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3117
lemma cos_arccos [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> cos(arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3118
  by (blast dest: arccos)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3119
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3120
lemma arccos_bounded: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y & arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3121
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3122
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3123
lemma arccos_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3124
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3125
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3126
lemma arccos_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3127
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3128
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3129
lemma arccos_lt_bounded:
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3130
     "[| -1 < y; y < 1 |]
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3131
      ==> 0 < arccos y & arccos y < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3132
  apply (frule order_less_imp_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3133
  apply (frule_tac y = y in order_less_imp_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3134
  apply (frule arccos_bounded, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3135
  apply (drule_tac y = "arccos y" in order_le_imp_less_or_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3136
  apply (drule_tac [2] y = pi in order_le_imp_less_or_eq, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3137
  apply (drule_tac [!] f = cos in arg_cong, auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3138
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3139
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3140
lemma arccos_cos: "[|0 \<le> x; x \<le> pi |] ==> arccos(cos x) = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3141
  apply (simp add: arccos_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3142
  apply (auto intro!: the1_equality cos_total)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3143
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3144
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  3145
lemma arccos_cos2: "[|x \<le> 0; -pi \<le> x |] ==> arccos(cos x) = -x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3146
  apply (simp add: arccos_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3147
  apply (auto intro!: the1_equality cos_total)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3148
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3149
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3150
lemma cos_arcsin: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> cos (arcsin x) = sqrt (1 - x\<^sup>2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3151
  apply (subgoal_tac "x\<^sup>2 \<le> 1")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3152
  apply (rule power2_eq_imp_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3153
  apply (simp add: cos_squared_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3154
  apply (rule cos_ge_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3155
  apply (erule (1) arcsin_lbound)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3156
  apply (erule (1) arcsin_ubound)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3157
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3158
  apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 \<le> 1\<^sup>2", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3159
  apply (rule power_mono, simp, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3160
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3161
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3162
lemma sin_arccos: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> sin (arccos x) = sqrt (1 - x\<^sup>2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3163
  apply (subgoal_tac "x\<^sup>2 \<le> 1")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3164
  apply (rule power2_eq_imp_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3165
  apply (simp add: sin_squared_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3166
  apply (rule sin_ge_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3167
  apply (erule (1) arccos_lbound)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3168
  apply (erule (1) arccos_ubound)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3169
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3170
  apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 \<le> 1\<^sup>2", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3171
  apply (rule power_mono, simp, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3172
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3173
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3174
lemma arctan [simp]: "- (pi/2) < arctan y  & arctan y < pi/2 & tan (arctan y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3175
  unfolding arctan_def by (rule theI' [OF tan_total])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3176
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3177
lemma tan_arctan: "tan (arctan y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3178
  by auto
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3179
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3180
lemma arctan_bounded: "- (pi/2) < arctan y  & arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3181
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3182
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3183
lemma arctan_lbound: "- (pi/2) < arctan y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3184
  by auto
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3185
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3186
lemma arctan_ubound: "arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3187
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3188
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3189
lemma arctan_unique:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3190
  assumes "-(pi/2) < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3191
    and "x < pi/2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3192
    and "tan x = y"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3193
  shows "arctan y = x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3194
  using assms arctan [of y] tan_total [of y] by (fast elim: ex1E)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3195
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3196
lemma arctan_tan: "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> arctan (tan x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3197
  by (rule arctan_unique) simp_all
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3198
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3199
lemma arctan_zero_zero [simp]: "arctan 0 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3200
  by (rule arctan_unique) simp_all
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3201
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3202
lemma arctan_minus: "arctan (- x) = - arctan x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3203
  apply (rule arctan_unique)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3204
  apply (simp only: neg_less_iff_less arctan_ubound)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3205
  apply (metis minus_less_iff arctan_lbound)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3206
  apply simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3207
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3208
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3209
lemma cos_arctan_not_zero [simp]: "cos (arctan x) \<noteq> 0"
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3210
  by (intro less_imp_neq [symmetric] cos_gt_zero_pi
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3211
    arctan_lbound arctan_ubound)
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3212
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3213
lemma cos_arctan: "cos (arctan x) = 1 / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3214
proof (rule power2_eq_imp_eq)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3215
  have "0 < 1 + x\<^sup>2" by (simp add: add_pos_nonneg)
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3216
  show "0 \<le> 1 / sqrt (1 + x\<^sup>2)" by simp
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3217
  show "0 \<le> cos (arctan x)"
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3218
    by (intro less_imp_le cos_gt_zero_pi arctan_lbound arctan_ubound)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3219
  have "(cos (arctan x))\<^sup>2 * (1 + (tan (arctan x))\<^sup>2) = 1"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  3220
    unfolding tan_def by (simp add: distrib_left power_divide)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3221
  thus "(cos (arctan x))\<^sup>2 = (1 / sqrt (1 + x\<^sup>2))\<^sup>2"
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3222
    using `0 < 1 + x\<^sup>2` by (simp add: power_divide eq_divide_eq)
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3223
qed
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3224
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3225
lemma sin_arctan: "sin (arctan x) = x / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3226
  using add_pos_nonneg [OF zero_less_one zero_le_power2 [of x]]
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3227
  using tan_arctan [of x] unfolding tan_def cos_arctan
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  3228
  by (simp add: eq_divide_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3229
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  3230
lemma tan_sec: "cos x \<noteq> 0 ==> 1 + (tan x)\<^sup>2 = (inverse (cos x))\<^sup>2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3231
  apply (rule power_inverse [THEN subst])
56217
dc429a5b13c4 Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents: 56213
diff changeset
  3232
  apply (rule_tac c1 = "(cos x)\<^sup>2" in mult_right_cancel [THEN iffD1])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3233
  apply (auto dest: field_power_not_zero
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3234
          simp add: power_mult_distrib distrib_right power_divide tan_def
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3235
                    mult_assoc power_inverse [symmetric])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3236
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3237
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3238
lemma arctan_less_iff: "arctan x < arctan y \<longleftrightarrow> x < y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3239
  by (metis tan_monotone' arctan_lbound arctan_ubound tan_arctan)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3240
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3241
lemma arctan_le_iff: "arctan x \<le> arctan y \<longleftrightarrow> x \<le> y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3242
  by (simp only: not_less [symmetric] arctan_less_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3243
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3244
lemma arctan_eq_iff: "arctan x = arctan y \<longleftrightarrow> x = y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3245
  by (simp only: eq_iff [where 'a=real] arctan_le_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3246
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3247
lemma zero_less_arctan_iff [simp]: "0 < arctan x \<longleftrightarrow> 0 < x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3248
  using arctan_less_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3249
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3250
lemma arctan_less_zero_iff [simp]: "arctan x < 0 \<longleftrightarrow> x < 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3251
  using arctan_less_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3252
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3253
lemma zero_le_arctan_iff [simp]: "0 \<le> arctan x \<longleftrightarrow> 0 \<le> x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3254
  using arctan_le_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3255
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3256
lemma arctan_le_zero_iff [simp]: "arctan x \<le> 0 \<longleftrightarrow> x \<le> 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3257
  using arctan_le_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3258
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3259
lemma arctan_eq_zero_iff [simp]: "arctan x = 0 \<longleftrightarrow> x = 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3260
  using arctan_eq_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3261
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3262
lemma continuous_on_arcsin': "continuous_on {-1 .. 1} arcsin"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3263
proof -
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3264
  have "continuous_on (sin ` {- pi / 2 .. pi / 2}) arcsin"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  3265
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arcsin_sin)
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3266
  also have "sin ` {- pi / 2 .. pi / 2} = {-1 .. 1}"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3267
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3268
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3269
    assume "x \<in> {-1..1}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3270
    then show "x \<in> sin ` {- pi / 2..pi / 2}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3271
      using arcsin_lbound arcsin_ubound
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  3272
      by (intro image_eqI[where x="arcsin x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3273
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3274
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3275
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3276
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  3277
lemma continuous_on_arcsin [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3278
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arcsin (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3279
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arcsin']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3280
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3281
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3282
lemma isCont_arcsin: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arcsin x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3283
  using continuous_on_arcsin'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3284
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3285
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3286
lemma continuous_on_arccos': "continuous_on {-1 .. 1} arccos"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3287
proof -
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3288
  have "continuous_on (cos ` {0 .. pi}) arccos"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  3289
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arccos_cos)
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3290
  also have "cos ` {0 .. pi} = {-1 .. 1}"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3291
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3292
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3293
    assume "x \<in> {-1..1}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3294
    then show "x \<in> cos ` {0..pi}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3295
      using arccos_lbound arccos_ubound
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3296
      by (intro image_eqI[where x="arccos x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3297
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3298
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3299
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3300
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  3301
lemma continuous_on_arccos [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3302
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arccos (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3303
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arccos']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3304
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3305
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3306
lemma isCont_arccos: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arccos x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3307
  using continuous_on_arccos'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  3308
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3309
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3310
lemma isCont_arctan: "isCont arctan x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3311
  apply (rule arctan_lbound [of x, THEN dense, THEN exE], clarify)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3312
  apply (rule arctan_ubound [of x, THEN dense, THEN exE], clarify)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3313
  apply (subgoal_tac "isCont arctan (tan (arctan x))", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3314
  apply (erule (1) isCont_inverse_function2 [where f=tan])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3315
  apply (metis arctan_tan order_le_less_trans order_less_le_trans)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3316
  apply (metis cos_gt_zero_pi isCont_tan order_less_le_trans less_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3317
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3318
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3319
lemma tendsto_arctan [tendsto_intros]: "(f ---> x) F \<Longrightarrow> ((\<lambda>x. arctan (f x)) ---> arctan x) F"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3320
  by (rule isCont_tendsto_compose [OF isCont_arctan])
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3321
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3322
lemma continuous_arctan [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. arctan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3323
  unfolding continuous_def by (rule tendsto_arctan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3324
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  3325
lemma continuous_on_arctan [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. arctan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3326
  unfolding continuous_on_def by (auto intro: tendsto_arctan)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3327
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3328
lemma DERIV_arcsin:
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3329
  "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arcsin x :> inverse (sqrt (1 - x\<^sup>2))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3330
  apply (rule DERIV_inverse_function [where f=sin and a="-1" and b="1"])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3331
  apply (rule DERIV_cong [OF DERIV_sin])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3332
  apply (simp add: cos_arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3333
  apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 < 1\<^sup>2", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3334
  apply (rule power_strict_mono, simp, simp, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3335
  apply assumption
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3336
  apply assumption
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3337
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3338
  apply (erule (1) isCont_arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3339
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3340
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3341
lemma DERIV_arccos:
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3342
  "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arccos x :> inverse (- sqrt (1 - x\<^sup>2))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3343
  apply (rule DERIV_inverse_function [where f=cos and a="-1" and b="1"])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3344
  apply (rule DERIV_cong [OF DERIV_cos])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3345
  apply (simp add: sin_arccos)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3346
  apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 < 1\<^sup>2", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3347
  apply (rule power_strict_mono, simp, simp, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3348
  apply assumption
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3349
  apply assumption
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3350
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3351
  apply (erule (1) isCont_arccos)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3352
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3353
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3354
lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x\<^sup>2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3355
  apply (rule DERIV_inverse_function [where f=tan and a="x - 1" and b="x + 1"])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3356
  apply (rule DERIV_cong [OF DERIV_tan])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3357
  apply (rule cos_arctan_not_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3358
  apply (simp add: power_inverse tan_sec [symmetric])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3359
  apply (subgoal_tac "0 < 1 + x\<^sup>2", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3360
  apply (simp add: add_pos_nonneg)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3361
  apply (simp, simp, simp, rule isCont_arctan)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3362
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  3363
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  3364
declare
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3365
  DERIV_arcsin[THEN DERIV_chain2, derivative_intros]
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3366
  DERIV_arccos[THEN DERIV_chain2, derivative_intros]
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3367
  DERIV_arctan[THEN DERIV_chain2, derivative_intros]
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  3368
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3369
lemma filterlim_tan_at_right: "filterlim tan at_bot (at_right (- pi/2))"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3370
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  3371
     (auto simp: le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3372
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3373
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3374
lemma filterlim_tan_at_left: "filterlim tan at_top (at_left (pi/2))"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3375
  by (rule filterlim_at_top_at_left[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  3376
     (auto simp: le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3377
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3378
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3379
lemma tendsto_arctan_at_top: "(arctan ---> (pi/2)) at_top"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3380
proof (rule tendstoI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3381
  fix e :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3382
  assume "0 < e"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3383
  def y \<equiv> "pi/2 - min (pi/2) e"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3384
  then have y: "0 \<le> y" "y < pi/2" "pi/2 \<le> e + y"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3385
    using `0 < e` by auto
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3386
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3387
  show "eventually (\<lambda>x. dist (arctan x) (pi / 2) < e) at_top"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3388
  proof (intro eventually_at_top_dense[THEN iffD2] exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3389
    fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3390
    assume "tan y < x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3391
    then have "arctan (tan y) < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3392
      by (simp add: arctan_less_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3393
    with y have "y < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3394
      by (subst (asm) arctan_tan) simp_all
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3395
    with arctan_ubound[of x, arith] y `0 < e`
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3396
    show "dist (arctan x) (pi / 2) < e"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3397
      by (simp add: dist_real_def)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3398
  qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3399
qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3400
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3401
lemma tendsto_arctan_at_bot: "(arctan ---> - (pi/2)) at_bot"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3402
  unfolding filterlim_at_bot_mirror arctan_minus
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3403
  by (intro tendsto_minus tendsto_arctan_at_top)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3404
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  3405
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  3406
subsection {* More Theorems about Sin and Cos *}
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  3407
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3408
lemma cos_45: "cos (pi / 4) = sqrt 2 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3409
proof -
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3410
  let ?c = "cos (pi / 4)" and ?s = "sin (pi / 4)"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3411
  have nonneg: "0 \<le> ?c"
45308
2e84e5f0463b extend cancellation simproc patterns to cover terms like '- (2 * pi) < pi'
huffman
parents: 44756
diff changeset
  3412
    by (simp add: cos_ge_zero)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3413
  have "0 = cos (pi / 4 + pi / 4)"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3414
    by simp
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3415
  also have "cos (pi / 4 + pi / 4) = ?c\<^sup>2 - ?s\<^sup>2"
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3416
    by (simp only: cos_add power2_eq_square)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3417
  also have "\<dots> = 2 * ?c\<^sup>2 - 1"
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3418
    by (simp add: sin_squared_eq)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3419
  finally have "?c\<^sup>2 = (sqrt 2 / 2)\<^sup>2"
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3420
    by (simp add: power_divide)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3421
  thus ?thesis
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3422
    using nonneg by (rule power2_eq_imp_eq) simp
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3423
qed
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3424
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3425
lemma cos_30: "cos (pi / 6) = sqrt 3 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3426
proof -
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3427
  let ?c = "cos (pi / 6)" and ?s = "sin (pi / 6)"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3428
  have pos_c: "0 < ?c"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3429
    by (rule cos_gt_zero, simp, simp)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3430
  have "0 = cos (pi / 6 + pi / 6 + pi / 6)"
23066
26a9157b620a new field_combine_numerals simproc, which uses fractions as coefficients
huffman
parents: 23053
diff changeset
  3431
    by simp
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3432
  also have "\<dots> = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3433
    by (simp only: cos_add sin_add)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3434
  also have "\<dots> = ?c * (?c\<^sup>2 - 3 * ?s\<^sup>2)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29171
diff changeset
  3435
    by (simp add: algebra_simps power2_eq_square)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  3436
  finally have "?c\<^sup>2 = (sqrt 3 / 2)\<^sup>2"
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3437
    using pos_c by (simp add: sin_squared_eq power_divide)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3438
  thus ?thesis
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3439
    using pos_c [THEN order_less_imp_le]
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3440
    by (rule power2_eq_imp_eq) simp
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3441
qed
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3442
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3443
lemma sin_45: "sin (pi / 4) = sqrt 2 / 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3444
  by (simp add: sin_cos_eq cos_45)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3445
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3446
lemma sin_60: "sin (pi / 3) = sqrt 3 / 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3447
  by (simp add: sin_cos_eq cos_30)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3448
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3449
lemma cos_60: "cos (pi / 3) = 1 / 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3450
  apply (rule power2_eq_imp_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3451
  apply (simp add: cos_squared_eq sin_60 power_divide)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3452
  apply (rule cos_ge_zero, rule order_trans [where y=0], simp_all)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3453
  done
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3454
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3455
lemma sin_30: "sin (pi / 6) = 1 / 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3456
  by (simp add: sin_cos_eq cos_60)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3457
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3458
lemma tan_30: "tan (pi / 6) = 1 / sqrt 3"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3459
  unfolding tan_def by (simp add: sin_30 cos_30)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3460
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3461
lemma tan_45: "tan (pi / 4) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3462
  unfolding tan_def by (simp add: sin_45 cos_45)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3463
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3464
lemma tan_60: "tan (pi / 3) = sqrt 3"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3465
  unfolding tan_def by (simp add: sin_60 cos_60)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  3466
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3467
lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi / 2) = (-1) ^ n"
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3468
proof -
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3469
  have "sin ((real n + 1/2) * pi) = cos (real n * pi)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29171
diff changeset
  3470
    by (auto simp add: algebra_simps sin_add)
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3471
  thus ?thesis
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  3472
    by (simp add: real_of_nat_Suc distrib_right add_divide_distrib
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3473
                  mult_commute [of pi])
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3474
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3475
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3476
lemma cos_2npi [simp]: "cos (2 * real (n::nat) * pi) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3477
  by (simp add: cos_double mult_assoc power_add [symmetric] numeral_2_eq_2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3478
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3479
lemma cos_3over2_pi [simp]: "cos (3 / 2 * pi) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3480
  apply (subgoal_tac "cos (pi + pi/2) = 0", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3481
  apply (subst cos_add, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3482
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3483
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3484
lemma sin_2npi [simp]: "sin (2 * real (n::nat) * pi) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3485
  by (auto simp add: mult_assoc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3486
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3487
lemma sin_3over2_pi [simp]: "sin (3 / 2 * pi) = - 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3488
  apply (subgoal_tac "sin (pi + pi/2) = - 1", simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3489
  apply (subst sin_add, simp)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3490
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3491
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3492
lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3493
  apply (simp only: cos_add sin_add real_of_nat_Suc distrib_right distrib_left add_divide_distrib)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3494
  apply auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3495
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3496
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3497
lemma DERIV_cos_add [simp]: "DERIV (\<lambda>x. cos (x + k)) xa :> - sin (xa + k)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3498
  by (auto intro!: derivative_eq_intros)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3499
15081
32402f5624d1 abs notation
paulson
parents: 15079
diff changeset
  3500
lemma sin_zero_abs_cos_one: "sin x = 0 ==> \<bar>cos x\<bar> = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3501
  by (auto simp add: sin_zero_iff even_mult_two_ex)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3502
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3503
lemma cos_one_sin_zero: "cos x = 1 ==> sin x = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3504
  using sin_cos_squared_add3 [where x = x] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3505
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3506
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3507
subsection {* Machins formula *}
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3508
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3509
lemma arctan_one: "arctan 1 = pi / 4"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3510
  by (rule arctan_unique, simp_all add: tan_45 m2pi_less_pi)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3511
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3512
lemma tan_total_pi4:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3513
  assumes "\<bar>x\<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3514
  shows "\<exists>z. - (pi / 4) < z \<and> z < pi / 4 \<and> tan z = x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3515
proof
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3516
  show "- (pi / 4) < arctan x \<and> arctan x < pi / 4 \<and> tan (arctan x) = x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3517
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3518
    unfolding arctan_less_iff using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3519
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3520
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3521
lemma arctan_add:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3522
  assumes "\<bar>x\<bar> \<le> 1" and "\<bar>y\<bar> < 1"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3523
  shows "arctan x + arctan y = arctan ((x + y) / (1 - x * y))"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3524
proof (rule arctan_unique [symmetric])
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3525
  have "- (pi / 4) \<le> arctan x" and "- (pi / 4) < arctan y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3526
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3527
    unfolding arctan_le_iff arctan_less_iff using assms by auto
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3528
  from add_le_less_mono [OF this]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3529
  show 1: "- (pi / 2) < arctan x + arctan y" by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3530
  have "arctan x \<le> pi / 4" and "arctan y < pi / 4"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3531
    unfolding arctan_one [symmetric]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3532
    unfolding arctan_le_iff arctan_less_iff using assms by auto
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3533
  from add_le_less_mono [OF this]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3534
  show 2: "arctan x + arctan y < pi / 2" by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3535
  show "tan (arctan x + arctan y) = (x + y) / (1 - x * y)"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3536
    using cos_gt_zero_pi [OF 1 2] by (simp add: tan_add)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3537
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3538
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3539
theorem machin: "pi / 4 = 4 * arctan (1/5) - arctan (1 / 239)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3540
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3541
  have "\<bar>1 / 5\<bar> < (1 :: real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3542
  from arctan_add[OF less_imp_le[OF this] this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3543
  have "2 * arctan (1 / 5) = arctan (5 / 12)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3544
  moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3545
  have "\<bar>5 / 12\<bar> < (1 :: real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3546
  from arctan_add[OF less_imp_le[OF this] this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3547
  have "2 * arctan (5 / 12) = arctan (120 / 119)" by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3548
  moreover
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3549
  have "\<bar>1\<bar> \<le> (1::real)" and "\<bar>1 / 239\<bar> < (1::real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3550
  from arctan_add[OF this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3551
  have "arctan 1 + arctan (1 / 239) = arctan (120 / 119)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3552
  ultimately have "arctan 1 + arctan (1 / 239) = 4 * arctan (1 / 5)" by auto
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3553
  thus ?thesis unfolding arctan_one by algebra
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3554
qed
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3555
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3556
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3557
subsection {* Introducing the arcus tangens power series *}
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3558
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3559
lemma monoseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3560
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3561
  assumes "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3562
  shows "monoseq (\<lambda> n. 1 / real (n*2+1) * x^(n*2+1))" (is "monoseq ?a")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3563
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3564
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3565
  thus ?thesis unfolding monoseq_def One_nat_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3566
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3567
  case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3568
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x" using assms by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3569
  show "monoseq ?a"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3570
  proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3571
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3572
      fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3573
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3574
      assume "0 \<le> x" and "x \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3575
      have "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<le>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3576
        1 / real (Suc (n * 2)) * x ^ Suc (n * 2)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3577
      proof (rule mult_mono)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3578
        show "1 / real (Suc (Suc n * 2)) \<le> 1 / real (Suc (n * 2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3579
          by (rule frac_le) simp_all
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3580
        show "0 \<le> 1 / real (Suc (n * 2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3581
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3582
        show "x ^ Suc (Suc n * 2) \<le> x ^ Suc (n * 2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3583
          by (rule power_decreasing) (simp_all add: `0 \<le> x` `x \<le> 1`)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3584
        show "0 \<le> x ^ Suc (Suc n * 2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3585
          by (rule zero_le_power) (simp add: `0 \<le> x`)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3586
      qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3587
    } note mono = this
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3588
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3589
    show ?thesis
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3590
    proof (cases "0 \<le> x")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3591
      case True from mono[OF this `x \<le> 1`, THEN allI]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3592
      show ?thesis unfolding Suc_eq_plus1[symmetric]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3593
        by (rule mono_SucI2)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3594
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3595
      case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3596
      hence "0 \<le> -x" and "-x \<le> 1" using `-1 \<le> x` by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3597
      from mono[OF this]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3598
      have "\<And>n. 1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<ge>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3599
        1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" using `0 \<le> -x` by auto
31790
05c92381363c corrected and unified thm names
nipkow
parents: 31338
diff changeset
  3600
      thus ?thesis unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI1[OF allI])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3601
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3602
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3603
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3604
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3605
lemma zeroseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3606
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3607
  assumes "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3608
  shows "(\<lambda> n. 1 / real (n*2+1) * x^(n*2+1)) ----> 0" (is "?a ----> 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3609
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3610
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3611
  thus ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3612
    unfolding One_nat_def by (auto simp add: tendsto_const)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3613
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3614
  case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3615
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x" using assms by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3616
  show "?a ----> 0"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3617
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3618
    case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3619
    hence "norm x < 1" by auto
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  3620
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_power_zero[OF `norm x < 1`, THEN LIMSEQ_Suc]]
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  3621
    have "(\<lambda>n. 1 / real (n + 1) * x ^ (n + 1)) ----> 0"
31790
05c92381363c corrected and unified thm names
nipkow
parents: 31338
diff changeset
  3622
      unfolding inverse_eq_divide Suc_eq_plus1 by simp
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  3623
    then show ?thesis using pos2 by (rule LIMSEQ_linear)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3624
  next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3625
    case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3626
    hence "x = -1 \<or> x = 1" using `\<bar>x\<bar> \<le> 1` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3627
    hence n_eq: "\<And> n. x ^ (n * 2 + 1) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3628
      unfolding One_nat_def by auto
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  3629
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat[THEN LIMSEQ_linear, OF pos2, unfolded inverse_eq_divide] tendsto_const[of x]]
31790
05c92381363c corrected and unified thm names
nipkow
parents: 31338
diff changeset
  3630
    show ?thesis unfolding n_eq Suc_eq_plus1 by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3631
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3632
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3633
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3634
lemma summable_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3635
  fixes x :: real and n :: nat
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3636
  assumes "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3637
  shows "summable (\<lambda> k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3638
  (is "summable (?c x)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3639
  by (rule summable_Leibniz(1), rule zeroseq_arctan_series[OF assms], rule monoseq_arctan_series[OF assms])
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3640
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3641
lemma less_one_imp_sqr_less_one:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3642
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3643
  assumes "\<bar>x\<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3644
  shows "x\<^sup>2 < 1"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3645
proof -
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  3646
  have "\<bar>x\<^sup>2\<bar> < 1"
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  3647
    by (metis abs_power2 assms pos2 power2_abs power_0 power_strict_decreasing zero_eq_power2 zero_less_abs_iff) 
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3648
  thus ?thesis using zero_le_power2 by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3649
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3650
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3651
lemma DERIV_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3652
  assumes "\<bar> x \<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3653
  shows "DERIV (\<lambda> x'. \<Sum> k. (-1)^k * (1 / real (k*2+1) * x' ^ (k*2+1))) x :> (\<Sum> k. (-1)^k * x^(k*2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3654
  (is "DERIV ?arctan _ :> ?Int")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3655
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3656
  let ?f = "\<lambda>n. if even n then (-1)^(n div 2) * 1 / real (Suc n) else 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3657
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3658
  have n_even: "\<And>n :: nat. even n \<Longrightarrow> 2 * (n div 2) = n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3659
    by presburger
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3660
  then have if_eq: "\<And>n x'. ?f n * real (Suc n) * x'^n =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3661
    (if even n then (-1)^(n div 2) * x'^(2 * (n div 2)) else 0)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3662
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3663
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3664
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3665
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3666
    assume "\<bar>x\<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3667
    hence "x\<^sup>2 < 1" by (rule less_one_imp_sqr_less_one)
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  3668
    have "summable (\<lambda> n. -1 ^ n * (x\<^sup>2) ^n)"
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  3669
      by (rule summable_Leibniz(1), auto intro!: LIMSEQ_realpow_zero monoseq_realpow `x\<^sup>2 < 1` order_less_imp_le[OF `x\<^sup>2 < 1`])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3670
    hence "summable (\<lambda> n. -1 ^ n * x^(2*n))" unfolding power_mult .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3671
  } note summable_Integral = this
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3672
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3673
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3674
    fix f :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3675
    have "\<And>x. f sums x = (\<lambda> n. if even n then f (n div 2) else 0) sums x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3676
    proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3677
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3678
      assume "f sums x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3679
      from sums_if[OF sums_zero this]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3680
      show "(\<lambda>n. if even n then f (n div 2) else 0) sums x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3681
        by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3682
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3683
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3684
      assume "(\<lambda> n. if even n then f (n div 2) else 0) sums x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3685
      from LIMSEQ_linear[OF this[unfolded sums_def] pos2, unfolded sum_split_even_odd[unfolded mult_commute]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3686
      show "f sums x" unfolding sums_def by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3687
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3688
    hence "op sums f = op sums (\<lambda> n. if even n then f (n div 2) else 0)" ..
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3689
  } note sums_even = this
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3690
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3691
  have Int_eq: "(\<Sum>n. ?f n * real (Suc n) * x^n) = ?Int"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3692
    unfolding if_eq mult_commute[of _ 2] suminf_def sums_even[of "\<lambda> n. -1 ^ n * x ^ (2 * n)", symmetric]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3693
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3694
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3695
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3696
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3697
    have if_eq': "\<And>n. (if even n then -1 ^ (n div 2) * 1 / real (Suc n) else 0) * x ^ Suc n =
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3698
      (if even n then -1 ^ (n div 2) * (1 / real (Suc (2 * (n div 2))) * x ^ Suc (2 * (n div 2))) else 0)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3699
      using n_even by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3700
    have idx_eq: "\<And>n. n * 2 + 1 = Suc (2 * n)" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3701
    have "(\<Sum>n. ?f n * x^(Suc n)) = ?arctan x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3702
      unfolding if_eq' idx_eq suminf_def sums_even[of "\<lambda> n. -1 ^ n * (1 / real (Suc (2 * n)) * x ^ Suc (2 * n))", symmetric]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3703
      by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3704
  } note arctan_eq = this
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3705
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3706
  have "DERIV (\<lambda> x. \<Sum> n. ?f n * x^(Suc n)) x :> (\<Sum> n. ?f n * real (Suc n) * x^n)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3707
  proof (rule DERIV_power_series')
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3708
    show "x \<in> {- 1 <..< 1}" using `\<bar> x \<bar> < 1` by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3709
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3710
      fix x' :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3711
      assume x'_bounds: "x' \<in> {- 1 <..< 1}"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3712
      hence "\<bar>x'\<bar> < 1" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3713
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3714
      let ?S = "\<Sum> n. (-1)^n * x'^(2 * n)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3715
      show "summable (\<lambda> n. ?f n * real (Suc n) * x'^n)" unfolding if_eq
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3716
        by (rule sums_summable[where l="0 + ?S"], rule sums_if, rule sums_zero, rule summable_sums, rule summable_Integral[OF `\<bar>x'\<bar> < 1`])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3717
    }
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3718
  qed auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3719
  thus ?thesis unfolding Int_eq arctan_eq .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3720
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3721
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3722
lemma arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3723
  assumes "\<bar> x \<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3724
  shows "arctan x = (\<Sum>k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3725
  (is "_ = suminf (\<lambda> n. ?c x n)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3726
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3727
  let ?c' = "\<lambda>x n. (-1)^n * x^(n*2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3728
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3729
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3730
    fix r x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3731
    assume "0 < r" and "r < 1" and "\<bar> x \<bar> < r"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3732
    have "\<bar>x\<bar> < 1" using `r < 1` and `\<bar>x\<bar> < r` by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3733
    from DERIV_arctan_series[OF this] have "DERIV (\<lambda> x. suminf (?c x)) x :> (suminf (?c' x))" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3734
  } note DERIV_arctan_suminf = this
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3735
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3736
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3737
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3738
    assume "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3739
    note summable_Leibniz[OF zeroseq_arctan_series[OF this] monoseq_arctan_series[OF this]]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3740
  } note arctan_series_borders = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3741
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3742
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3743
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3744
    assume "\<bar>x\<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3745
    have "arctan x = (\<Sum>k. ?c x k)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3746
    proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3747
      obtain r where "\<bar>x\<bar> < r" and "r < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3748
        using dense[OF `\<bar>x\<bar> < 1`] by blast
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3749
      hence "0 < r" and "-r < x" and "x < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3750
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3751
      have suminf_eq_arctan_bounded: "\<And>x a b. \<lbrakk> -r < a ; b < r ; a < b ; a \<le> x ; x \<le> b \<rbrakk> \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3752
        suminf (?c x) - arctan x = suminf (?c a) - arctan a"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3753
      proof -
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3754
        fix x a b
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3755
        assume "-r < a" and "b < r" and "a < b" and "a \<le> x" and "x \<le> b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3756
        hence "\<bar>x\<bar> < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3757
        show "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3758
        proof (rule DERIV_isconst2[of "a" "b"])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3759
          show "a < b" and "a \<le> x" and "x \<le> b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3760
            using `a < b` `a \<le> x` `x \<le> b` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3761
          have "\<forall>x. -r < x \<and> x < r \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3762
          proof (rule allI, rule impI)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3763
            fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3764
            assume "-r < x \<and> x < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3765
            hence "\<bar>x\<bar> < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3766
            hence "\<bar>x\<bar> < 1" using `r < 1` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3767
            have "\<bar> - (x\<^sup>2) \<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3768
              using less_one_imp_sqr_less_one[OF `\<bar>x\<bar> < 1`] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3769
            hence "(\<lambda> n. (- (x\<^sup>2)) ^ n) sums (1 / (1 - (- (x\<^sup>2))))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3770
              unfolding real_norm_def[symmetric] by (rule geometric_sums)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3771
            hence "(?c' x) sums (1 / (1 - (- (x\<^sup>2))))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3772
              unfolding power_mult_distrib[symmetric] power_mult nat_mult_commute[of _ 2] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3773
            hence suminf_c'_eq_geom: "inverse (1 + x\<^sup>2) = suminf (?c' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3774
              using sums_unique unfolding inverse_eq_divide by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3775
            have "DERIV (\<lambda> x. suminf (?c x)) x :> (inverse (1 + x\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3776
              unfolding suminf_c'_eq_geom
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3777
              by (rule DERIV_arctan_suminf[OF `0 < r` `r < 1` `\<bar>x\<bar> < r`])
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56217
diff changeset
  3778
            from DERIV_diff [OF this DERIV_arctan]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3779
            show "DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  3780
              by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3781
          qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3782
          hence DERIV_in_rball: "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3783
            using `-r < a` `b < r` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3784
          thus "\<forall> y. a < y \<and> y < b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3785
            using `\<bar>x\<bar> < r` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3786
          show "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> isCont (\<lambda> x. suminf (?c x) - arctan x) y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3787
            using DERIV_in_rball DERIV_isCont by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3788
        qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3789
      qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3790
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3791
      have suminf_arctan_zero: "suminf (?c 0) - arctan 0 = 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3792
        unfolding Suc_eq_plus1[symmetric] power_Suc2 mult_zero_right arctan_zero_zero suminf_zero
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3793
        by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3794
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3795
      have "suminf (?c x) - arctan x = 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3796
      proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3797
        case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3798
        thus ?thesis using suminf_arctan_zero by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3799
      next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3800
        case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3801
        hence "0 < \<bar>x\<bar>" and "- \<bar>x\<bar> < \<bar>x\<bar>" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3802
        have "suminf (?c (-\<bar>x\<bar>)) - arctan (-\<bar>x\<bar>) = suminf (?c 0) - arctan 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3803
          by (rule suminf_eq_arctan_bounded[where x="0" and a="-\<bar>x\<bar>" and b="\<bar>x\<bar>", symmetric])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3804
            (simp_all only: `\<bar>x\<bar> < r` `-\<bar>x\<bar> < \<bar>x\<bar>` neg_less_iff_less)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3805
        moreover
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3806
        have "suminf (?c x) - arctan x = suminf (?c (-\<bar>x\<bar>)) - arctan (-\<bar>x\<bar>)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3807
          by (rule suminf_eq_arctan_bounded[where x="x" and a="-\<bar>x\<bar>" and b="\<bar>x\<bar>"])
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  3808
             (simp_all only: `\<bar>x\<bar> < r` `-\<bar>x\<bar> < \<bar>x\<bar>` neg_less_iff_less)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3809
        ultimately
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3810
        show ?thesis using suminf_arctan_zero by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3811
      qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3812
      thus ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3813
    qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3814
  } note when_less_one = this
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3815
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3816
  show "arctan x = suminf (\<lambda> n. ?c x n)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3817
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3818
    case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3819
    thus ?thesis by (rule when_less_one)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3820
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3821
    case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3822
    hence "\<bar>x\<bar> = 1" using `\<bar>x\<bar> \<le> 1` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3823
    let ?a = "\<lambda>x n. \<bar>1 / real (n*2+1) * x^(n*2+1)\<bar>"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3824
    let ?diff = "\<lambda> x n. \<bar> arctan x - (\<Sum> i<n. ?c x i)\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3825
    {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3826
      fix n :: nat
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3827
      have "0 < (1 :: real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3828
      moreover
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3829
      {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3830
        fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3831
        assume "0 < x" and "x < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3832
        hence "\<bar>x\<bar> \<le> 1" and "\<bar>x\<bar> < 1" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3833
        from `0 < x` have "0 < 1 / real (0 * 2 + (1::nat)) * x ^ (0 * 2 + 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3834
          by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3835
        note bounds = mp[OF arctan_series_borders(2)[OF `\<bar>x\<bar> \<le> 1`] this, unfolded when_less_one[OF `\<bar>x\<bar> < 1`, symmetric], THEN spec]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3836
        have "0 < 1 / real (n*2+1) * x^(n*2+1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3837
          by (rule mult_pos_pos, auto simp only: zero_less_power[OF `0 < x`], auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3838
        hence a_pos: "?a x n = 1 / real (n*2+1) * x^(n*2+1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3839
          by (rule abs_of_pos)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3840
        have "?diff x n \<le> ?a x n"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3841
        proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3842
          case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3843
          hence sgn_pos: "(-1)^n = (1::real)" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3844
          from `even n` obtain m where "2 * m = n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3845
            unfolding even_mult_two_ex by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3846
          from bounds[of m, unfolded this atLeastAtMost_iff]
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3847
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n + 1. (?c x i)) - (\<Sum>i<n. (?c x i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3848
            by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3849
          also have "\<dots> = ?c x n" unfolding One_nat_def by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3850
          also have "\<dots> = ?a x n" unfolding sgn_pos a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3851
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3852
        next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3853
          case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3854
          hence sgn_neg: "(-1)^n = (-1::real)" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3855
          from `odd n` obtain m where m_def: "2 * m + 1 = n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3856
            unfolding odd_Suc_mult_two_ex by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3857
          hence m_plus: "2 * (m + 1) = n + 1" by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3858
          from bounds[of "m + 1", unfolded this atLeastAtMost_iff, THEN conjunct1] bounds[of m, unfolded m_def atLeastAtMost_iff, THEN conjunct2]
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3859
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n. (?c x i)) - (\<Sum>i<n+1. (?c x i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3860
            by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3861
          also have "\<dots> = - ?c x n" unfolding One_nat_def by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3862
          also have "\<dots> = ?a x n" unfolding sgn_neg a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3863
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  3864
        qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3865
        hence "0 \<le> ?a x n - ?diff x n" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3866
      }
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3867
      hence "\<forall> x \<in> { 0 <..< 1 }. 0 \<le> ?a x n - ?diff x n" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3868
      moreover have "\<And>x. isCont (\<lambda> x. ?a x n - ?diff x n) x"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  3869
        unfolding diff_conv_add_uminus divide_inverse
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3870
        by (auto intro!: isCont_add isCont_rabs isCont_ident isCont_minus isCont_arctan
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  3871
          isCont_inverse isCont_mult isCont_power isCont_const isCont_setsum
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  3872
          simp del: add_uminus_conv_diff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3873
      ultimately have "0 \<le> ?a 1 n - ?diff 1 n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3874
        by (rule LIM_less_bound)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3875
      hence "?diff 1 n \<le> ?a 1 n" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3876
    }
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  3877
    have "?a 1 ----> 0"
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  3878
      unfolding tendsto_rabs_zero_iff power_one divide_inverse One_nat_def
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  3879
      by (auto intro!: tendsto_mult LIMSEQ_linear LIMSEQ_inverse_real_of_nat)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3880
    have "?diff 1 ----> 0"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3881
    proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3882
      fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3883
      assume "0 < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3884
      obtain N :: nat where N_I: "\<And>n. N \<le> n \<Longrightarrow> ?a 1 n < r"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3885
        using LIMSEQ_D[OF `?a 1 ----> 0` `0 < r`] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3886
      {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3887
        fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3888
        assume "N \<le> n" from `?diff 1 n \<le> ?a 1 n` N_I[OF this]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3889
        have "norm (?diff 1 n - 0) < r" by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3890
      }
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3891
      thus "\<exists> N. \<forall> n \<ge> N. norm (?diff 1 n - 0) < r" by blast
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3892
    qed
44710
9caf6883f1f4 remove redundant lemmas about LIMSEQ
huffman
parents: 44568
diff changeset
  3893
    from this [unfolded tendsto_rabs_zero_iff, THEN tendsto_add [OF _ tendsto_const], of "- arctan 1", THEN tendsto_minus]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3894
    have "(?c 1) sums (arctan 1)" unfolding sums_def by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3895
    hence "arctan 1 = (\<Sum> i. ?c 1 i)" by (rule sums_unique)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3896
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3897
    show ?thesis
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3898
    proof (cases "x = 1")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3899
      case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3900
      then show ?thesis by (simp add: `arctan 1 = (\<Sum> i. ?c 1 i)`)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3901
    next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3902
      case False
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3903
      hence "x = -1" using `\<bar>x\<bar> = 1` by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3904
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3905
      have "- (pi / 2) < 0" using pi_gt_zero by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3906
      have "- (2 * pi) < 0" using pi_gt_zero by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3907
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3908
      have c_minus_minus: "\<And>i. ?c (- 1) i = - ?c 1 i"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3909
        unfolding One_nat_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3910
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3911
      have "arctan (- 1) = arctan (tan (-(pi / 4)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3912
        unfolding tan_45 tan_minus ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3913
      also have "\<dots> = - (pi / 4)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3914
        by (rule arctan_tan, auto simp add: order_less_trans[OF `- (pi / 2) < 0` pi_gt_zero])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3915
      also have "\<dots> = - (arctan (tan (pi / 4)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3916
        unfolding neg_equal_iff_equal by (rule arctan_tan[symmetric], auto simp add: order_less_trans[OF `- (2 * pi) < 0` pi_gt_zero])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3917
      also have "\<dots> = - (arctan 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3918
        unfolding tan_45 ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3919
      also have "\<dots> = - (\<Sum> i. ?c 1 i)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3920
        using `arctan 1 = (\<Sum> i. ?c 1 i)` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3921
      also have "\<dots> = (\<Sum> i. ?c (- 1) i)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3922
        using suminf_minus[OF sums_summable[OF `(?c 1) sums (arctan 1)`]]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3923
        unfolding c_minus_minus by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3924
      finally show ?thesis using `x = -1` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3925
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3926
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3927
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3928
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3929
lemma arctan_half:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3930
  fixes x :: real
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  3931
  shows "arctan x = 2 * arctan (x / (1 + sqrt(1 + x\<^sup>2)))"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3932
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3933
  obtain y where low: "- (pi / 2) < y" and high: "y < pi / 2" and y_eq: "tan y = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3934
    using tan_total by blast
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3935
  hence low2: "- (pi / 2) < y / 2" and high2: "y / 2 < pi / 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3936
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3937
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3938
  have "0 < cos y" using cos_gt_zero_pi[OF low high] .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3939
  hence "cos y \<noteq> 0" and cos_sqrt: "sqrt ((cos y)\<^sup>2) = cos y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3940
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3941
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3942
  have "1 + (tan y)\<^sup>2 = 1 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3943
    unfolding tan_def power_divide ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3944
  also have "\<dots> = (cos y)\<^sup>2 / (cos y)\<^sup>2 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3945
    using `cos y \<noteq> 0` by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3946
  also have "\<dots> = 1 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3947
    unfolding add_divide_distrib[symmetric] sin_cos_squared_add2 ..
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  3948
  finally have "1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3949
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3950
  have "sin y / (cos y + 1) = tan y / ((cos y + 1) / cos y)"
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  3951
    unfolding tan_def using `cos y \<noteq> 0` by (simp add: field_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3952
  also have "\<dots> = tan y / (1 + 1 / cos y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3953
    using `cos y \<noteq> 0` unfolding add_divide_distrib by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3954
  also have "\<dots> = tan y / (1 + 1 / sqrt ((cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3955
    unfolding cos_sqrt ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3956
  also have "\<dots> = tan y / (1 + sqrt (1 / (cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3957
    unfolding real_sqrt_divide by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3958
  finally have eq: "sin y / (cos y + 1) = tan y / (1 + sqrt(1 + (tan y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3959
    unfolding `1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2` .
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3960
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3961
  have "arctan x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3962
    using arctan_tan low high y_eq by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3963
  also have "\<dots> = 2 * (arctan (tan (y/2)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3964
    using arctan_tan[OF low2 high2] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3965
  also have "\<dots> = 2 * (arctan (sin y / (cos y + 1)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3966
    unfolding tan_half by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3967
  finally show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3968
    unfolding eq `tan y = x` .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3969
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3970
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3971
lemma arctan_monotone: "x < y \<Longrightarrow> arctan x < arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3972
  by (simp only: arctan_less_iff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3973
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3974
lemma arctan_monotone': "x \<le> y \<Longrightarrow> arctan x \<le> arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3975
  by (simp only: arctan_le_iff)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3976
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3977
lemma arctan_inverse:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3978
  assumes "x \<noteq> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3979
  shows "arctan (1 / x) = sgn x * pi / 2 - arctan x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3980
proof (rule arctan_unique)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3981
  show "- (pi / 2) < sgn x * pi / 2 - arctan x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3982
    using arctan_bounded [of x] assms
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3983
    unfolding sgn_real_def
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3984
    apply (auto simp add: algebra_simps)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3985
    apply (drule zero_less_arctan_iff [THEN iffD2])
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3986
    apply arith
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3987
    done
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3988
  show "sgn x * pi / 2 - arctan x < pi / 2"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3989
    using arctan_bounded [of "- x"] assms
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3990
    unfolding sgn_real_def arctan_minus
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  3991
    by (auto simp add: algebra_simps)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3992
  show "tan (sgn x * pi / 2 - arctan x) = 1 / x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3993
    unfolding tan_inverse [of "arctan x", unfolded tan_arctan]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  3994
    unfolding sgn_real_def
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  3995
    by (simp add: tan_def cos_arctan sin_arctan sin_diff cos_diff)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3996
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3997
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3998
theorem pi_series: "pi / 4 = (\<Sum> k. (-1)^k * 1 / real (k*2+1))" (is "_ = ?SUM")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3999
proof -
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4000
  have "pi / 4 = arctan 1" using arctan_one by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4001
  also have "\<dots> = ?SUM" using arctan_series[of 1] by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4002
  finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4003
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4004
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4005
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  4006
subsection {* Existence of Polar Coordinates *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4007
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4008
lemma cos_x_y_le_one: "\<bar>x / sqrt (x\<^sup>2 + y\<^sup>2)\<bar> \<le> 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4009
  apply (rule power2_le_imp_le [OF _ zero_le_one])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4010
  apply (simp add: power_divide divide_le_eq not_sum_power2_lt_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4011
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4012
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  4013
lemma cos_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> cos (arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4014
  by (simp add: abs_le_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4015
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4016
lemma sin_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> sin (arccos y) = sqrt (1 - y\<^sup>2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4017
  by (simp add: sin_arccos abs_le_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4018
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  4019
lemmas cos_arccos_lemma1 = cos_arccos_abs [OF cos_x_y_le_one]
15228
4d332d10fa3d revised simprules for division
paulson
parents: 15140
diff changeset
  4020
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4021
lemmas sin_arccos_lemma1 = sin_arccos_abs [OF cos_x_y_le_one]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4022
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4023
lemma polar_Ex: "\<exists>r a. x = r * cos a & y = r * sin a"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4024
proof -
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4025
  have polar_ex1: "\<And>y. 0 < y \<Longrightarrow> \<exists>r a. x = r * cos a & y = r * sin a"
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4026
    apply (rule_tac x = "sqrt (x\<^sup>2 + y\<^sup>2)" in exI)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4027
    apply (rule_tac x = "arccos (x / sqrt (x\<^sup>2 + y\<^sup>2))" in exI)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4028
    apply (simp add: cos_arccos_lemma1 sin_arccos_lemma1 power_divide
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4029
                     real_sqrt_mult [symmetric] right_diff_distrib)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4030
    done
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4031
  show ?thesis
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4032
  proof (cases "0::real" y rule: linorder_cases)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4033
    case less 
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4034
      then show ?thesis by (rule polar_ex1)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4035
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4036
    case equal
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4037
      then show ?thesis
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4038
        by (force simp add: intro!: cos_zero sin_zero)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4039
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4040
    case greater
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4041
      then show ?thesis 
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4042
     using polar_ex1 [where y="-y"]
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4043
    by auto (metis cos_minus minus_minus minus_mult_right sin_minus)
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4044
  qed
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  4045
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4046
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  4047
end