src/HOL/Hyperreal/Transcendental.thy
author haftmann
Tue, 16 Oct 2007 23:12:45 +0200
changeset 25062 af5ef0d4d655
parent 23477 f4b83f03cac9
child 25153 af3c7e99fed0
permissions -rw-r--r--
global class syntax
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     1
(*  Title       : Transcendental.thy
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     2
    Author      : Jacques D. Fleuriot
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     3
    Copyright   : 1998,1999 University of Cambridge
13958
c1c67582c9b5 New material on integration, etc. Moving Hyperreal/ex
paulson
parents: 12196
diff changeset
     4
                  1999,2001 University of Edinburgh
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
     5
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     6
*)
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     7
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
     8
header{*Power Series, Transcendental Functions etc.*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
     9
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
    10
theory Transcendental
22654
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
    11
imports NthRoot Fact Series EvenOdd Deriv
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
    12
begin
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    13
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
    14
subsection{*Properties of Power Series*}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    15
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    16
lemma lemma_realpow_diff:
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    17
  fixes y :: "'a::recpower"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    18
  shows "p \<le> n \<Longrightarrow> y ^ (Suc n - p) = (y ^ (n - p)) * y"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    19
proof -
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    20
  assume "p \<le> n"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    21
  hence "Suc n - p = Suc (n - p)" by (rule Suc_diff_le)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    22
  thus ?thesis by (simp add: power_Suc power_commutes)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    23
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    24
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    25
lemma lemma_realpow_diff_sumr:
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    26
  fixes y :: "'a::{recpower,comm_semiring_0}" shows
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    27
     "(\<Sum>p=0..<Suc n. (x ^ p) * y ^ (Suc n - p)) =  
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    28
      y * (\<Sum>p=0..<Suc n. (x ^ p) * y ^ (n - p))"
19279
48b527d0331b Renamed setsum_mult to setsum_right_distrib.
ballarin
parents: 18585
diff changeset
    29
by (auto simp add: setsum_right_distrib lemma_realpow_diff mult_ac
16641
fce796ad9c2b Simplified some proofs (thanks to strong_setsum_cong).
berghofe
parents: 15561
diff changeset
    30
  simp del: setsum_op_ivl_Suc cong: strong_setsum_cong)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    31
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
    32
lemma lemma_realpow_diff_sumr2:
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    33
  fixes y :: "'a::{recpower,comm_ring}" shows
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
    34
     "x ^ (Suc n) - y ^ (Suc n) =  
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    35
      (x - y) * (\<Sum>p=0..<Suc n. (x ^ p) * y ^ (n - p))"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    36
apply (induct "n", simp add: power_Suc)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    37
apply (simp add: power_Suc del: setsum_op_ivl_Suc)
15561
045a07ac35a7 another reorganization of setsums and intervals
nipkow
parents: 15546
diff changeset
    38
apply (subst setsum_op_ivl_Suc)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    39
apply (subst lemma_realpow_diff_sumr)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    40
apply (simp add: right_distrib del: setsum_op_ivl_Suc)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    41
apply (subst mult_left_commute [where a="x - y"])
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    42
apply (erule subst)
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23441
diff changeset
    43
apply (simp add: power_Suc ring_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    44
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    45
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
    46
lemma lemma_realpow_rev_sumr:
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
    47
     "(\<Sum>p=0..<Suc n. (x ^ p) * (y ^ (n - p))) =  
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    48
      (\<Sum>p=0..<Suc n. (x ^ (n - p)) * (y ^ p))"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    49
apply (rule setsum_reindex_cong [where f="\<lambda>i. n - i"])
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    50
apply (rule inj_onI, simp)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    51
apply auto
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    52
apply (rule_tac x="n - x" in image_eqI, simp, simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    53
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    54
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    55
text{*Power series has a `circle` of convergence, i.e. if it sums for @{term
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    56
x}, then it sums absolutely for @{term z} with @{term "\<bar>z\<bar> < \<bar>x\<bar>"}.*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    57
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    58
lemma powser_insidea:
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    59
  fixes x z :: "'a::{real_normed_field,banach,recpower}"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    60
  assumes 1: "summable (\<lambda>n. f n * x ^ n)"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    61
  assumes 2: "norm z < norm x"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    62
  shows "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    63
proof -
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    64
  from 2 have x_neq_0: "x \<noteq> 0" by clarsimp
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    65
  from 1 have "(\<lambda>n. f n * x ^ n) ----> 0"
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    66
    by (rule summable_LIMSEQ_zero)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    67
  hence "convergent (\<lambda>n. f n * x ^ n)"
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    68
    by (rule convergentI)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    69
  hence "Cauchy (\<lambda>n. f n * x ^ n)"
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    70
    by (simp add: Cauchy_convergent_iff)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    71
  hence "Bseq (\<lambda>n. f n * x ^ n)"
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    72
    by (rule Cauchy_Bseq)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    73
  then obtain K where 3: "0 < K" and 4: "\<forall>n. norm (f n * x ^ n) \<le> K"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    74
    by (simp add: Bseq_def, safe)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    75
  have "\<exists>N. \<forall>n\<ge>N. norm (norm (f n * z ^ n)) \<le>
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    76
                   K * norm (z ^ n) * inverse (norm (x ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    77
  proof (intro exI allI impI)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    78
    fix n::nat assume "0 \<le> n"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    79
    have "norm (norm (f n * z ^ n)) * norm (x ^ n) =
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    80
          norm (f n * x ^ n) * norm (z ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    81
      by (simp add: norm_mult abs_mult)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    82
    also have "\<dots> \<le> K * norm (z ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    83
      by (simp only: mult_right_mono 4 norm_ge_zero)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    84
    also have "\<dots> = K * norm (z ^ n) * (inverse (norm (x ^ n)) * norm (x ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    85
      by (simp add: x_neq_0)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    86
    also have "\<dots> = K * norm (z ^ n) * inverse (norm (x ^ n)) * norm (x ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    87
      by (simp only: mult_assoc)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    88
    finally show "norm (norm (f n * z ^ n)) \<le>
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    89
                  K * norm (z ^ n) * inverse (norm (x ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    90
      by (simp add: mult_le_cancel_right x_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    91
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    92
  moreover have "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    93
  proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    94
    from 2 have "norm (norm (z * inverse x)) < 1"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    95
      using x_neq_0
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    96
      by (simp add: nonzero_norm_divide divide_inverse [symmetric])
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    97
    hence "summable (\<lambda>n. norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
    98
      by (rule summable_geometric)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    99
    hence "summable (\<lambda>n. K * norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   100
      by (rule summable_mult)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   101
    thus "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   102
      using x_neq_0
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   103
      by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   104
                    power_inverse norm_power mult_assoc)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   105
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   106
  ultimately show "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   107
    by (rule summable_comparison_test)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   108
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   109
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   110
lemma powser_inside:
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   111
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_field,banach,recpower}" shows
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   112
     "[| summable (%n. f(n) * (x ^ n)); norm z < norm x |]  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   113
      ==> summable (%n. f(n) * (z ^ n))"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   114
by (rule powser_insidea [THEN summable_norm_cancel])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   115
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   116
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   117
subsection{*Term-by-Term Differentiability of Power Series*}
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   118
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   119
definition
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   120
  diffs :: "(nat => 'a::ring_1) => nat => 'a" where
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   121
  "diffs c = (%n. of_nat (Suc n) * c(Suc n))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   122
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   123
text{*Lemma about distributing negation over it*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   124
lemma diffs_minus: "diffs (%n. - c n) = (%n. - diffs c n)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   125
by (simp add: diffs_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   126
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   127
text{*Show that we can shift the terms down one*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   128
lemma lemma_diffs:
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
   129
     "(\<Sum>n=0..<n. (diffs c)(n) * (x ^ n)) =  
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   130
      (\<Sum>n=0..<n. of_nat n * c(n) * (x ^ (n - Suc 0))) +  
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   131
      (of_nat n * c(n) * x ^ (n - Suc 0))"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15241
diff changeset
   132
apply (induct "n")
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   133
apply (auto simp add: mult_assoc add_assoc [symmetric] diffs_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   134
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   135
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   136
lemma lemma_diffs2:
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   137
     "(\<Sum>n=0..<n. of_nat n * c(n) * (x ^ (n - Suc 0))) =  
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
   138
      (\<Sum>n=0..<n. (diffs c)(n) * (x ^ n)) -  
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   139
      (of_nat n * c(n) * x ^ (n - Suc 0))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   140
by (auto simp add: lemma_diffs)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   141
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   142
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   143
lemma diffs_equiv:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   144
     "summable (%n. (diffs c)(n) * (x ^ n)) ==>  
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   145
      (%n. of_nat n * c(n) * (x ^ (n - Suc 0))) sums  
15546
5188ce7316b7 suminf -> \<Sum>
nipkow
parents: 15544
diff changeset
   146
         (\<Sum>n. (diffs c)(n) * (x ^ n))"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   147
apply (subgoal_tac " (%n. of_nat n * c (n) * (x ^ (n - Suc 0))) ----> 0")
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   148
apply (rule_tac [2] LIMSEQ_imp_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   149
apply (drule summable_sums) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   150
apply (auto simp add: sums_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   151
apply (drule_tac X="(\<lambda>n. \<Sum>n = 0..<n. diffs c n * x ^ n)" in LIMSEQ_diff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   152
apply (auto simp add: lemma_diffs2 [symmetric] diffs_def [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   153
apply (simp add: diffs_def summable_LIMSEQ_zero)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   154
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   155
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   156
lemma lemma_termdiff1:
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   157
  fixes z :: "'a :: {recpower,comm_ring}" shows
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
   158
  "(\<Sum>p=0..<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) =  
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   159
   (\<Sum>p=0..<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))"
16641
fce796ad9c2b Simplified some proofs (thanks to strong_setsum_cong).
berghofe
parents: 15561
diff changeset
   160
by (auto simp add: right_distrib diff_minus power_add [symmetric] mult_ac
fce796ad9c2b Simplified some proofs (thanks to strong_setsum_cong).
berghofe
parents: 15561
diff changeset
   161
  cong: strong_setsum_cong)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   162
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   163
lemma less_add_one: "m < n ==> (\<exists>d. n = m + d + Suc 0)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   164
by (simp add: less_iff_Suc_add)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   165
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   166
lemma sumdiff: "a + b - (c + d) = a - c + b - (d::real)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   167
by arith
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   168
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   169
lemma sumr_diff_mult_const2:
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   170
  "setsum f {0..<n} - of_nat n * (r::'a::ring_1) = (\<Sum>i = 0..<n. f i - r)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   171
by (simp add: setsum_subtractf)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   172
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   173
lemma lemma_termdiff2:
23112
2bc882fbe51c remove division_by_zero requirement from termdiffs lemmas; cleaned up some proofs
huffman
parents: 23097
diff changeset
   174
  fixes h :: "'a :: {recpower,field}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   175
  assumes h: "h \<noteq> 0" shows
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   176
  "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) =
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   177
   h * (\<Sum>p=0..< n - Suc 0. \<Sum>q=0..< n - Suc 0 - p.
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   178
        (z + h) ^ q * z ^ (n - 2 - q))" (is "?lhs = ?rhs")
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   179
apply (subgoal_tac "h * ?lhs = h * ?rhs", simp add: h)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   180
apply (simp add: right_diff_distrib diff_divide_distrib h)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   181
apply (simp add: mult_assoc [symmetric])
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   182
apply (cases "n", simp)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   183
apply (simp add: lemma_realpow_diff_sumr2 h
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   184
                 right_diff_distrib [symmetric] mult_assoc
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   185
            del: realpow_Suc setsum_op_ivl_Suc of_nat_Suc)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   186
apply (subst lemma_realpow_rev_sumr)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   187
apply (subst sumr_diff_mult_const2)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   188
apply simp
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   189
apply (simp only: lemma_termdiff1 setsum_right_distrib)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   190
apply (rule setsum_cong [OF refl])
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
   191
apply (simp add: diff_minus [symmetric] less_iff_Suc_add)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   192
apply (clarify)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   193
apply (simp add: setsum_right_distrib lemma_realpow_diff_sumr2 mult_ac
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   194
            del: setsum_op_ivl_Suc realpow_Suc)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   195
apply (subst mult_assoc [symmetric], subst power_add [symmetric])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   196
apply (simp add: mult_ac)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   197
done
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   198
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   199
lemma real_setsum_nat_ivl_bounded2:
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   200
  fixes K :: "'a::ordered_semidom"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   201
  assumes f: "\<And>p::nat. p < n \<Longrightarrow> f p \<le> K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   202
  assumes K: "0 \<le> K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   203
  shows "setsum f {0..<n-k} \<le> of_nat n * K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   204
apply (rule order_trans [OF setsum_mono])
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   205
apply (rule f, simp)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   206
apply (simp add: mult_right_mono K)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   207
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   208
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   209
lemma lemma_termdiff3:
23112
2bc882fbe51c remove division_by_zero requirement from termdiffs lemmas; cleaned up some proofs
huffman
parents: 23097
diff changeset
   210
  fixes h z :: "'a::{real_normed_field,recpower}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   211
  assumes 1: "h \<noteq> 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   212
  assumes 2: "norm z \<le> K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   213
  assumes 3: "norm (z + h) \<le> K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   214
  shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0))
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   215
          \<le> of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   216
proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   217
  have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) =
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   218
        norm (\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p.
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   219
          (z + h) ^ q * z ^ (n - 2 - q)) * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   220
    apply (subst lemma_termdiff2 [OF 1])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   221
    apply (subst norm_mult)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   222
    apply (rule mult_commute)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   223
    done
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   224
  also have "\<dots> \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   225
  proof (rule mult_right_mono [OF _ norm_ge_zero])
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   226
    from norm_ge_zero 2 have K: "0 \<le> K" by (rule order_trans)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   227
    have le_Kn: "\<And>i j n. i + j = n \<Longrightarrow> norm ((z + h) ^ i * z ^ j) \<le> K ^ n"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   228
      apply (erule subst)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   229
      apply (simp only: norm_mult norm_power power_add)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   230
      apply (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   231
      done
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   232
    show "norm (\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p.
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   233
              (z + h) ^ q * z ^ (n - 2 - q))
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   234
          \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   235
      apply (intro
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   236
         order_trans [OF norm_setsum]
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   237
         real_setsum_nat_ivl_bounded2
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   238
         mult_nonneg_nonneg
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   239
         zero_le_imp_of_nat
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   240
         zero_le_power K)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   241
      apply (rule le_Kn, simp)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   242
      done
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   243
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   244
  also have "\<dots> = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   245
    by (simp only: mult_assoc)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   246
  finally show ?thesis .
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   247
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   248
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   249
lemma lemma_termdiff4:
23112
2bc882fbe51c remove division_by_zero requirement from termdiffs lemmas; cleaned up some proofs
huffman
parents: 23097
diff changeset
   250
  fixes f :: "'a::{real_normed_field,recpower} \<Rightarrow>
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   251
              'b::real_normed_vector"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   252
  assumes k: "0 < (k::real)"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   253
  assumes le: "\<And>h. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (f h) \<le> K * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   254
  shows "f -- 0 --> 0"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   255
proof (simp add: LIM_def, safe)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   256
  fix r::real assume r: "0 < r"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   257
  have zero_le_K: "0 \<le> K"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   258
    apply (cut_tac k)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   259
    apply (cut_tac h="of_real (k/2)" in le, simp)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   260
    apply (simp del: of_real_divide)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   261
    apply (drule order_trans [OF norm_ge_zero])
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   262
    apply (simp add: zero_le_mult_iff)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   263
    done
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   264
  show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < s \<longrightarrow> norm (f x) < r)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   265
  proof (cases)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   266
    assume "K = 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   267
    with k r le have "0 < k \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < k \<longrightarrow> norm (f x) < r)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   268
      by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   269
    thus "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < s \<longrightarrow> norm (f x) < r)" ..
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   270
  next
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   271
    assume K_neq_zero: "K \<noteq> 0"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   272
    with zero_le_K have K: "0 < K" by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   273
    show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < s \<longrightarrow> norm (f x) < r)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   274
    proof (rule exI, safe)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   275
      from k r K show "0 < min k (r * inverse K / 2)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   276
        by (simp add: mult_pos_pos positive_imp_inverse_positive)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   277
    next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   278
      fix x::'a
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   279
      assume x1: "x \<noteq> 0" and x2: "norm x < min k (r * inverse K / 2)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   280
      from x2 have x3: "norm x < k" and x4: "norm x < r * inverse K / 2"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   281
        by simp_all
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   282
      from x1 x3 le have "norm (f x) \<le> K * norm x" by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   283
      also from x4 K have "K * norm x < K * (r * inverse K / 2)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   284
        by (rule mult_strict_left_mono)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   285
      also have "\<dots> = r / 2"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   286
        using K_neq_zero by simp
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   287
      also have "r / 2 < r"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   288
        using r by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   289
      finally show "norm (f x) < r" .
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   290
    qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   291
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   292
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   293
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   294
lemma lemma_termdiff5:
23112
2bc882fbe51c remove division_by_zero requirement from termdiffs lemmas; cleaned up some proofs
huffman
parents: 23097
diff changeset
   295
  fixes g :: "'a::{recpower,real_normed_field} \<Rightarrow>
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   296
              nat \<Rightarrow> 'b::banach"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   297
  assumes k: "0 < (k::real)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   298
  assumes f: "summable f"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   299
  assumes le: "\<And>h n. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (g h n) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   300
  shows "(\<lambda>h. suminf (g h)) -- 0 --> 0"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   301
proof (rule lemma_termdiff4 [OF k])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   302
  fix h::'a assume "h \<noteq> 0" and "norm h < k"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   303
  hence A: "\<forall>n. norm (g h n) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   304
    by (simp add: le)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   305
  hence "\<exists>N. \<forall>n\<ge>N. norm (norm (g h n)) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   306
    by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   307
  moreover from f have B: "summable (\<lambda>n. f n * norm h)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   308
    by (rule summable_mult2)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   309
  ultimately have C: "summable (\<lambda>n. norm (g h n))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   310
    by (rule summable_comparison_test)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   311
  hence "norm (suminf (g h)) \<le> (\<Sum>n. norm (g h n))"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   312
    by (rule summable_norm)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   313
  also from A C B have "(\<Sum>n. norm (g h n)) \<le> (\<Sum>n. f n * norm h)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   314
    by (rule summable_le)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   315
  also from f have "(\<Sum>n. f n * norm h) = suminf f * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   316
    by (rule suminf_mult2 [symmetric])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   317
  finally show "norm (suminf (g h)) \<le> suminf f * norm h" .
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   318
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   319
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   320
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   321
text{* FIXME: Long proofs*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   322
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   323
lemma termdiffs_aux:
23112
2bc882fbe51c remove division_by_zero requirement from termdiffs lemmas; cleaned up some proofs
huffman
parents: 23097
diff changeset
   324
  fixes x :: "'a::{recpower,real_normed_field,banach}"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   325
  assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   326
  assumes 2: "norm x < norm K"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   327
  shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   328
             - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   329
proof -
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   330
  from dense [OF 2]
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   331
  obtain r where r1: "norm x < r" and r2: "r < norm K" by fast
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   332
  from norm_ge_zero r1 have r: "0 < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   333
    by (rule order_le_less_trans)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   334
  hence r_neq_0: "r \<noteq> 0" by simp
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   335
  show ?thesis
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   336
  proof (rule lemma_termdiff5)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   337
    show "0 < r - norm x" using r1 by simp
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   338
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   339
    from r r2 have "norm (of_real r::'a) < norm K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   340
      by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   341
    with 1 have "summable (\<lambda>n. norm (diffs (diffs c) n * (of_real r ^ n)))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   342
      by (rule powser_insidea)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   343
    hence "summable (\<lambda>n. diffs (diffs (\<lambda>n. norm (c n))) n * r ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   344
      using r
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   345
      by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   346
    hence "summable (\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   347
      by (rule diffs_equiv [THEN sums_summable])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   348
    also have "(\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   349
      = (\<lambda>n. diffs (%m. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   350
      apply (rule ext)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   351
      apply (simp add: diffs_def)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   352
      apply (case_tac n, simp_all add: r_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   353
      done
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   354
    finally have "summable 
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   355
      (\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   356
      by (rule diffs_equiv [THEN sums_summable])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   357
    also have
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   358
      "(\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) *
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   359
           r ^ (n - Suc 0)) =
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   360
       (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   361
      apply (rule ext)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   362
      apply (case_tac "n", simp)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   363
      apply (case_tac "nat", simp)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   364
      apply (simp add: r_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   365
      done
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   366
    finally show
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   367
      "summable (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" .
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   368
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   369
    fix h::'a and n::nat
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   370
    assume h: "h \<noteq> 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   371
    assume "norm h < r - norm x"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   372
    hence "norm x + norm h < r" by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   373
    with norm_triangle_ineq have xh: "norm (x + h) < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   374
      by (rule order_le_less_trans)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   375
    show "norm (c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0)))
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   376
          \<le> norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   377
      apply (simp only: norm_mult mult_assoc)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   378
      apply (rule mult_left_mono [OF _ norm_ge_zero])
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   379
      apply (simp (no_asm) add: mult_assoc [symmetric])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   380
      apply (rule lemma_termdiff3)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   381
      apply (rule h)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   382
      apply (rule r1 [THEN order_less_imp_le])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   383
      apply (rule xh [THEN order_less_imp_le])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   384
      done
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   385
  qed
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   386
qed
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19765
diff changeset
   387
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   388
lemma termdiffs:
23112
2bc882fbe51c remove division_by_zero requirement from termdiffs lemmas; cleaned up some proofs
huffman
parents: 23097
diff changeset
   389
  fixes K x :: "'a::{recpower,real_normed_field,banach}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   390
  assumes 1: "summable (\<lambda>n. c n * K ^ n)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   391
  assumes 2: "summable (\<lambda>n. (diffs c) n * K ^ n)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   392
  assumes 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   393
  assumes 4: "norm x < norm K"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   394
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x ^ n) x :> (\<Sum>n. (diffs c) n * x ^ n)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   395
proof (simp add: deriv_def, rule LIM_zero_cancel)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   396
  show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x ^ n)) / h
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   397
            - suminf (\<lambda>n. diffs c n * x ^ n)) -- 0 --> 0"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   398
  proof (rule LIM_equal2)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   399
    show "0 < norm K - norm x" by (simp add: less_diff_eq 4)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   400
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   401
    fix h :: 'a
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   402
    assume "h \<noteq> 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   403
    assume "norm (h - 0) < norm K - norm x"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   404
    hence "norm x + norm h < norm K" by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   405
    hence 5: "norm (x + h) < norm K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   406
      by (rule norm_triangle_ineq [THEN order_le_less_trans])
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   407
    have A: "summable (\<lambda>n. c n * x ^ n)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   408
      by (rule powser_inside [OF 1 4])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   409
    have B: "summable (\<lambda>n. c n * (x + h) ^ n)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   410
      by (rule powser_inside [OF 1 5])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   411
    have C: "summable (\<lambda>n. diffs c n * x ^ n)"
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   412
      by (rule powser_inside [OF 2 4])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   413
    show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x ^ n)) / h
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   414
             - (\<Sum>n. diffs c n * x ^ n) = 
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   415
          (\<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0)))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   416
      apply (subst sums_unique [OF diffs_equiv [OF C]])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   417
      apply (subst suminf_diff [OF B A])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   418
      apply (subst suminf_divide [symmetric])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   419
      apply (rule summable_diff [OF B A])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   420
      apply (subst suminf_diff)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   421
      apply (rule summable_divide)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   422
      apply (rule summable_diff [OF B A])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   423
      apply (rule sums_summable [OF diffs_equiv [OF C]])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   424
      apply (rule_tac f="suminf" in arg_cong)
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   425
      apply (rule ext)
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23441
diff changeset
   426
      apply (simp add: ring_simps)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   427
      done
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   428
  next
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   429
    show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   430
               of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   431
        by (rule termdiffs_aux [OF 3 4])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   432
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   433
qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   434
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   435
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   436
subsection{*Exponential Function*}
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   437
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   438
definition
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   439
  exp :: "'a \<Rightarrow> 'a::{recpower,real_normed_field,banach}" where
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   440
  "exp x = (\<Sum>n. x ^ n /\<^sub>R real (fact n))"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   441
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   442
definition
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   443
  sin :: "real => real" where
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   444
  "sin x = (\<Sum>n. (if even(n) then 0 else
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   445
             (-1 ^ ((n - Suc 0) div 2))/(real (fact n))) * x ^ n)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   446
 
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   447
definition
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   448
  cos :: "real => real" where
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   449
  "cos x = (\<Sum>n. (if even(n) then (-1 ^ (n div 2))/(real (fact n)) 
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   450
                            else 0) * x ^ n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   451
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   452
lemma summable_exp_generic:
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   453
  fixes x :: "'a::{real_normed_algebra_1,recpower,banach}"
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   454
  defines S_def: "S \<equiv> \<lambda>n. x ^ n /\<^sub>R real (fact n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   455
  shows "summable S"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   456
proof -
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   457
  have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R real (Suc n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   458
    unfolding S_def by (simp add: power_Suc del: mult_Suc)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   459
  obtain r :: real where r0: "0 < r" and r1: "r < 1"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   460
    using dense [OF zero_less_one] by fast
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   461
  obtain N :: nat where N: "norm x < real N * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   462
    using reals_Archimedean3 [OF r0] by fast
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   463
  from r1 show ?thesis
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   464
  proof (rule ratio_test [rule_format])
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   465
    fix n :: nat
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   466
    assume n: "N \<le> n"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   467
    have "norm x \<le> real N * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   468
      using N by (rule order_less_imp_le)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   469
    also have "real N * r \<le> real (Suc n) * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   470
      using r0 n by (simp add: mult_right_mono)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   471
    finally have "norm x * norm (S n) \<le> real (Suc n) * r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   472
      using norm_ge_zero by (rule mult_right_mono)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   473
    hence "norm (x * S n) \<le> real (Suc n) * r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   474
      by (rule order_trans [OF norm_mult_ineq])
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   475
    hence "norm (x * S n) / real (Suc n) \<le> r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   476
      by (simp add: pos_divide_le_eq mult_ac)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   477
    thus "norm (S (Suc n)) \<le> r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   478
      by (simp add: S_Suc norm_scaleR inverse_eq_divide)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   479
  qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   480
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   481
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   482
lemma summable_norm_exp:
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   483
  fixes x :: "'a::{real_normed_algebra_1,recpower,banach}"
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   484
  shows "summable (\<lambda>n. norm (x ^ n /\<^sub>R real (fact n)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   485
proof (rule summable_norm_comparison_test [OF exI, rule_format])
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   486
  show "summable (\<lambda>n. norm x ^ n /\<^sub>R real (fact n))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   487
    by (rule summable_exp_generic)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   488
next
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   489
  fix n show "norm (x ^ n /\<^sub>R real (fact n)) \<le> norm x ^ n /\<^sub>R real (fact n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   490
    by (simp add: norm_scaleR norm_power_ineq)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   491
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   492
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   493
lemma summable_exp: "summable (%n. inverse (real (fact n)) * x ^ n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   494
by (insert summable_exp_generic [where x=x], simp)
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   495
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   496
lemma summable_sin: 
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   497
     "summable (%n.  
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   498
           (if even n then 0  
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   499
           else -1 ^ ((n - Suc 0) div 2)/(real (fact n))) *  
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   500
                x ^ n)"
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   501
apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test)
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   502
apply (rule_tac [2] summable_exp)
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   503
apply (rule_tac x = 0 in exI)
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   504
apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   505
done
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   506
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   507
lemma summable_cos: 
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   508
      "summable (%n.  
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   509
           (if even n then  
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   510
           -1 ^ (n div 2)/(real (fact n)) else 0) * x ^ n)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   511
apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test)
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   512
apply (rule_tac [2] summable_exp)
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   513
apply (rule_tac x = 0 in exI)
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   514
apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   515
done
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   516
23242
e1526d5fa80d remove simp attribute from lemma_STAR theorems
huffman
parents: 23241
diff changeset
   517
lemma lemma_STAR_sin:
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   518
     "(if even n then 0  
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   519
       else -1 ^ ((n - Suc 0) div 2)/(real (fact n))) * 0 ^ n = 0"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   520
by (induct "n", auto)
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   521
23242
e1526d5fa80d remove simp attribute from lemma_STAR theorems
huffman
parents: 23241
diff changeset
   522
lemma lemma_STAR_cos:
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   523
     "0 < n -->  
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   524
      -1 ^ (n div 2)/(real (fact n)) * 0 ^ n = 0"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   525
by (induct "n", auto)
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   526
23242
e1526d5fa80d remove simp attribute from lemma_STAR theorems
huffman
parents: 23241
diff changeset
   527
lemma lemma_STAR_cos1:
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   528
     "0 < n -->  
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   529
      (-1) ^ (n div 2)/(real (fact n)) * 0 ^ n = 0"
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   530
by (induct "n", auto)
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   531
23242
e1526d5fa80d remove simp attribute from lemma_STAR theorems
huffman
parents: 23241
diff changeset
   532
lemma lemma_STAR_cos2:
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   533
  "(\<Sum>n=1..<n. if even n then -1 ^ (n div 2)/(real (fact n)) *  0 ^ n 
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   534
                         else 0) = 0"
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   535
apply (induct "n")
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   536
apply (case_tac [2] "n", auto)
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   537
done
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   538
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   539
lemma exp_converges: "(\<lambda>n. x ^ n /\<^sub>R real (fact n)) sums exp x"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   540
unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   541
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   542
lemma sin_converges: 
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   543
      "(%n. (if even n then 0  
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   544
            else -1 ^ ((n - Suc 0) div 2)/(real (fact n))) *  
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   545
                 x ^ n) sums sin(x)"
23112
2bc882fbe51c remove division_by_zero requirement from termdiffs lemmas; cleaned up some proofs
huffman
parents: 23097
diff changeset
   546
unfolding sin_def by (rule summable_sin [THEN summable_sums])
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   547
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   548
lemma cos_converges: 
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   549
      "(%n. (if even n then  
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   550
           -1 ^ (n div 2)/(real (fact n))  
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   551
           else 0) * x ^ n) sums cos(x)"
23112
2bc882fbe51c remove division_by_zero requirement from termdiffs lemmas; cleaned up some proofs
huffman
parents: 23097
diff changeset
   552
unfolding cos_def by (rule summable_cos [THEN summable_sums])
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   553
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   554
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   555
subsection{*Formal Derivatives of Exp, Sin, and Cos Series*} 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   556
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   557
lemma exp_fdiffs: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   558
      "diffs (%n. inverse(real (fact n))) = (%n. inverse(real (fact n)))"
23431
25ca91279a9b change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
huffman
parents: 23413
diff changeset
   559
by (simp add: diffs_def mult_assoc [symmetric] real_of_nat_def of_nat_mult
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   560
         del: mult_Suc of_nat_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   561
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   562
lemma diffs_of_real: "diffs (\<lambda>n. of_real (f n)) = (\<lambda>n. of_real (diffs f n))"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   563
by (simp add: diffs_def)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   564
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   565
lemma sin_fdiffs: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   566
      "diffs(%n. if even n then 0  
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   567
           else -1 ^ ((n - Suc 0) div 2)/(real (fact n)))  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   568
       = (%n. if even n then  
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   569
                 -1 ^ (n div 2)/(real (fact n))  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   570
              else 0)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   571
by (auto intro!: ext 
23431
25ca91279a9b change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
huffman
parents: 23413
diff changeset
   572
         simp add: diffs_def divide_inverse real_of_nat_def of_nat_mult
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   573
         simp del: mult_Suc of_nat_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   574
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   575
lemma sin_fdiffs2: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   576
       "diffs(%n. if even n then 0  
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   577
           else -1 ^ ((n - Suc 0) div 2)/(real (fact n))) n  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   578
       = (if even n then  
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   579
                 -1 ^ (n div 2)/(real (fact n))  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   580
              else 0)"
23176
40a760921d94 simplify some proofs
huffman
parents: 23127
diff changeset
   581
by (simp only: sin_fdiffs)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   582
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   583
lemma cos_fdiffs: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   584
      "diffs(%n. if even n then  
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   585
                 -1 ^ (n div 2)/(real (fact n)) else 0)  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   586
       = (%n. - (if even n then 0  
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   587
           else -1 ^ ((n - Suc 0)div 2)/(real (fact n))))"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   588
by (auto intro!: ext 
23431
25ca91279a9b change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
huffman
parents: 23413
diff changeset
   589
         simp add: diffs_def divide_inverse odd_Suc_mult_two_ex real_of_nat_def of_nat_mult
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   590
         simp del: mult_Suc of_nat_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   591
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   592
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   593
lemma cos_fdiffs2: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   594
      "diffs(%n. if even n then  
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   595
                 -1 ^ (n div 2)/(real (fact n)) else 0) n 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   596
       = - (if even n then 0  
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   597
           else -1 ^ ((n - Suc 0)div 2)/(real (fact n)))"
23176
40a760921d94 simplify some proofs
huffman
parents: 23127
diff changeset
   598
by (simp only: cos_fdiffs)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   599
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   600
text{*Now at last we can get the derivatives of exp, sin and cos*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   601
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   602
lemma lemma_sin_minus:
15546
5188ce7316b7 suminf -> \<Sum>
nipkow
parents: 15544
diff changeset
   603
     "- sin x = (\<Sum>n. - ((if even n then 0 
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   604
                  else -1 ^ ((n - Suc 0) div 2)/(real (fact n))) * x ^ n))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   605
by (auto intro!: sums_unique sums_minus sin_converges)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   606
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   607
lemma lemma_exp_ext: "exp = (\<lambda>x. \<Sum>n. x ^ n /\<^sub>R real (fact n))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   608
by (auto intro!: ext simp add: exp_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   609
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   610
lemma DERIV_exp [simp]: "DERIV exp x :> exp(x)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   611
apply (simp add: exp_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   612
apply (subst lemma_exp_ext)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   613
apply (subgoal_tac "DERIV (\<lambda>u. \<Sum>n. of_real (inverse (real (fact n))) * u ^ n) x :> (\<Sum>n. diffs (\<lambda>n. of_real (inverse (real (fact n)))) n * x ^ n)")
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   614
apply (rule_tac [2] K = "of_real (1 + norm x)" in termdiffs)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   615
apply (simp_all only: diffs_of_real scaleR_conv_of_real exp_fdiffs)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   616
apply (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])+
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   617
apply (simp del: of_real_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   618
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   619
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   620
lemma lemma_sin_ext:
15546
5188ce7316b7 suminf -> \<Sum>
nipkow
parents: 15544
diff changeset
   621
     "sin = (%x. \<Sum>n. 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   622
                   (if even n then 0  
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   623
                       else -1 ^ ((n - Suc 0) div 2)/(real (fact n))) *  
15546
5188ce7316b7 suminf -> \<Sum>
nipkow
parents: 15544
diff changeset
   624
                   x ^ n)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   625
by (auto intro!: ext simp add: sin_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   626
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   627
lemma lemma_cos_ext:
15546
5188ce7316b7 suminf -> \<Sum>
nipkow
parents: 15544
diff changeset
   628
     "cos = (%x. \<Sum>n. 
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
   629
                   (if even n then -1 ^ (n div 2)/(real (fact n)) else 0) *
15546
5188ce7316b7 suminf -> \<Sum>
nipkow
parents: 15544
diff changeset
   630
                   x ^ n)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   631
by (auto intro!: ext simp add: cos_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   632
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   633
lemma DERIV_sin [simp]: "DERIV sin x :> cos(x)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   634
apply (simp add: cos_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   635
apply (subst lemma_sin_ext)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   636
apply (auto simp add: sin_fdiffs2 [symmetric])
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   637
apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs)
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19765
diff changeset
   638
apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   639
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   640
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   641
lemma DERIV_cos [simp]: "DERIV cos x :> -sin(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   642
apply (subst lemma_cos_ext)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   643
apply (auto simp add: lemma_sin_minus cos_fdiffs2 [symmetric] minus_mult_left)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   644
apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs)
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19765
diff changeset
   645
apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs diffs_minus)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   646
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   647
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   648
lemma isCont_exp [simp]: "isCont exp x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   649
by (rule DERIV_exp [THEN DERIV_isCont])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   650
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   651
lemma isCont_sin [simp]: "isCont sin x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   652
by (rule DERIV_sin [THEN DERIV_isCont])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   653
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   654
lemma isCont_cos [simp]: "isCont cos x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   655
by (rule DERIV_cos [THEN DERIV_isCont])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   656
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   657
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   658
subsection{*Properties of the Exponential Function*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   659
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   660
lemma powser_zero:
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   661
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_algebra_1,recpower}"
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   662
  shows "(\<Sum>n. f n * 0 ^ n) = f 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   663
proof -
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   664
  have "(\<Sum>n = 0..<1. f n * 0 ^ n) = (\<Sum>n. f n * 0 ^ n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   665
    by (rule sums_unique [OF series_zero], simp add: power_0_left)
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   666
  thus ?thesis by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   667
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   668
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   669
lemma exp_zero [simp]: "exp 0 = 1"
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   670
unfolding exp_def by (simp add: scaleR_conv_of_real powser_zero)
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
   671
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   672
lemma setsum_head2:
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   673
  "m \<le> n \<Longrightarrow> setsum f {m..n} = f m + setsum f {Suc m..n}"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   674
by (simp add: setsum_head atLeastSucAtMost_greaterThanAtMost)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   675
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   676
lemma setsum_cl_ivl_Suc2:
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   677
  "(\<Sum>i=m..Suc n. f i) = (if Suc n < m then 0 else f m + (\<Sum>i=m..n. f (Suc i)))"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   678
by (simp add: setsum_head2 setsum_shift_bounds_cl_Suc_ivl
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   679
         del: setsum_cl_ivl_Suc)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   680
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   681
lemma exp_series_add:
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   682
  fixes x y :: "'a::{real_field,recpower}"
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   683
  defines S_def: "S \<equiv> \<lambda>x n. x ^ n /\<^sub>R real (fact n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   684
  shows "S (x + y) n = (\<Sum>i=0..n. S x i * S y (n - i))"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   685
proof (induct n)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   686
  case 0
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   687
  show ?case
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   688
    unfolding S_def by simp
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   689
next
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   690
  case (Suc n)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   691
  have S_Suc: "\<And>x n. S x (Suc n) = (x * S x n) /\<^sub>R real (Suc n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   692
    unfolding S_def by (simp add: power_Suc del: mult_Suc)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   693
  hence times_S: "\<And>x n. x * S x n = real (Suc n) *\<^sub>R S x (Suc n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   694
    by simp
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   695
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   696
  have "real (Suc n) *\<^sub>R S (x + y) (Suc n) = (x + y) * S (x + y) n"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   697
    by (simp only: times_S)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   698
  also have "\<dots> = (x + y) * (\<Sum>i=0..n. S x i * S y (n-i))"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   699
    by (simp only: Suc)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   700
  also have "\<dots> = x * (\<Sum>i=0..n. S x i * S y (n-i))
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   701
                + y * (\<Sum>i=0..n. S x i * S y (n-i))"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   702
    by (rule left_distrib)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   703
  also have "\<dots> = (\<Sum>i=0..n. (x * S x i) * S y (n-i))
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   704
                + (\<Sum>i=0..n. S x i * (y * S y (n-i)))"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   705
    by (simp only: setsum_right_distrib mult_ac)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   706
  also have "\<dots> = (\<Sum>i=0..n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i)))
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   707
                + (\<Sum>i=0..n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   708
    by (simp add: times_S Suc_diff_le)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   709
  also have "(\<Sum>i=0..n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i))) =
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   710
             (\<Sum>i=0..Suc n. real i *\<^sub>R (S x i * S y (Suc n-i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   711
    by (subst setsum_cl_ivl_Suc2, simp)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   712
  also have "(\<Sum>i=0..n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) =
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   713
             (\<Sum>i=0..Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   714
    by (subst setsum_cl_ivl_Suc, simp)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   715
  also have "(\<Sum>i=0..Suc n. real i *\<^sub>R (S x i * S y (Suc n-i))) +
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   716
             (\<Sum>i=0..Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) =
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   717
             (\<Sum>i=0..Suc n. real (Suc n) *\<^sub>R (S x i * S y (Suc n-i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   718
    by (simp only: setsum_addf [symmetric] scaleR_left_distrib [symmetric]
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   719
              real_of_nat_add [symmetric], simp)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
   720
  also have "\<dots> = real (Suc n) *\<^sub>R (\<Sum>i=0..Suc n. S x i * S y (Suc n-i))"
23127
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23115
diff changeset
   721
    by (simp only: scaleR_right.setsum)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   722
  finally show
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   723
    "S (x + y) (Suc n) = (\<Sum>i=0..Suc n. S x i * S y (Suc n - i))"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   724
    by (simp add: scaleR_cancel_left del: setsum_cl_ivl_Suc)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   725
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   726
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   727
lemma exp_add: "exp (x + y) = exp x * exp y"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   728
unfolding exp_def
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   729
by (simp only: Cauchy_product summable_norm_exp exp_series_add)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   730
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
   731
lemma exp_of_real: "exp (of_real x) = of_real (exp x)"
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
   732
unfolding exp_def
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
   733
apply (subst of_real.suminf)
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
   734
apply (rule summable_exp_generic)
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
   735
apply (simp add: scaleR_conv_of_real)
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
   736
done
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
   737
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   738
lemma exp_ge_add_one_self_aux: "0 \<le> (x::real) ==> (1 + x) \<le> exp(x)"
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
   739
apply (drule order_le_imp_less_or_eq, auto)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   740
apply (simp add: exp_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   741
apply (rule real_le_trans)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   742
apply (rule_tac [2] n = 2 and f = "(%n. inverse (real (fact n)) * x ^ n)" in series_pos_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   743
apply (auto intro: summable_exp simp add: numeral_2_eq_2 zero_le_power zero_le_mult_iff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   744
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   745
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   746
lemma exp_gt_one [simp]: "0 < (x::real) ==> 1 < exp x"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   747
apply (rule order_less_le_trans)
17014
ad5ceb90877d renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
avigad
parents: 16924
diff changeset
   748
apply (rule_tac [2] exp_ge_add_one_self_aux, auto)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   749
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   750
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   751
lemma DERIV_exp_add_const: "DERIV (%x. exp (x + y)) x :> exp(x + y)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   752
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   753
  have "DERIV (exp \<circ> (\<lambda>x. x + y)) x :> exp (x + y) * (1+0)"
23069
cdfff0241c12 rename lemmas LIM_ident, isCont_ident, DERIV_ident
huffman
parents: 23066
diff changeset
   754
    by (fast intro: DERIV_chain DERIV_add DERIV_exp DERIV_ident DERIV_const) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   755
  thus ?thesis by (simp add: o_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   756
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   757
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   758
lemma DERIV_exp_minus [simp]: "DERIV (%x. exp (-x)) x :> - exp(-x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   759
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   760
  have "DERIV (exp \<circ> uminus) x :> exp (- x) * - 1"
23069
cdfff0241c12 rename lemmas LIM_ident, isCont_ident, DERIV_ident
huffman
parents: 23066
diff changeset
   761
    by (fast intro: DERIV_chain DERIV_minus DERIV_exp DERIV_ident)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   762
  thus ?thesis by (simp add: o_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   763
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   764
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   765
lemma DERIV_exp_exp_zero [simp]: "DERIV (%x. exp (x + y) * exp (- x)) x :> 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   766
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   767
  have "DERIV (\<lambda>x. exp (x + y) * exp (- x)) x
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   768
       :> exp (x + y) * exp (- x) + - exp (- x) * exp (x + y)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   769
    by (fast intro: DERIV_exp_add_const DERIV_exp_minus DERIV_mult) 
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   770
  thus ?thesis by (simp add: mult_commute)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   771
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   772
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   773
lemma exp_add_mult_minus [simp]: "exp(x + y)*exp(-x) = exp(y::real)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   774
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   775
  have "\<forall>x. DERIV (%x. exp (x + y) * exp (- x)) x :> 0" by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   776
  hence "exp (x + y) * exp (- x) = exp (0 + y) * exp (- 0)" 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   777
    by (rule DERIV_isconst_all) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   778
  thus ?thesis by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   779
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   780
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   781
lemma exp_mult_minus [simp]: "exp x * exp(-x) = 1"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   782
by (simp add: exp_add [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   783
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   784
lemma exp_mult_minus2 [simp]: "exp(-x)*exp(x) = 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   785
by (simp add: mult_commute)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   786
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   787
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   788
lemma exp_minus: "exp(-x) = inverse(exp(x))"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   789
by (auto intro: inverse_unique [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   790
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   791
text{*Proof: because every exponential can be seen as a square.*}
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   792
lemma exp_ge_zero [simp]: "0 \<le> exp (x::real)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   793
apply (rule_tac t = x in real_sum_of_halves [THEN subst])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   794
apply (subst exp_add, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   795
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   796
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   797
lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   798
apply (cut_tac x = x in exp_mult_minus2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   799
apply (auto simp del: exp_mult_minus2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   800
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   801
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   802
lemma exp_gt_zero [simp]: "0 < exp (x::real)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   803
by (simp add: order_less_le)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   804
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   805
lemma inv_exp_gt_zero [simp]: "0 < inverse(exp x::real)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   806
by (auto intro: positive_imp_inverse_positive)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   807
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   808
lemma abs_exp_cancel [simp]: "\<bar>exp x::real\<bar> = exp x"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   809
by auto
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   810
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   811
lemma exp_real_of_nat_mult: "exp(real n * x) = exp(x) ^ n"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15241
diff changeset
   812
apply (induct "n")
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   813
apply (auto simp add: real_of_nat_Suc right_distrib exp_add mult_commute)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   814
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   815
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   816
lemma exp_diff: "exp(x - y) = exp(x)/(exp y)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   817
apply (simp add: diff_minus divide_inverse)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   818
apply (simp (no_asm) add: exp_add exp_minus)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   819
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   820
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   821
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   822
lemma exp_less_mono:
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   823
  fixes x y :: real
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   824
  assumes xy: "x < y" shows "exp x < exp y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   825
proof -
23441
ee218296d635 avoid using implicit prems in assumption
huffman
parents: 23431
diff changeset
   826
  from xy have "1 < exp (y + - x)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   827
    by (rule real_less_sum_gt_zero [THEN exp_gt_one])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   828
  hence "exp x * inverse (exp x) < exp y * inverse (exp x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   829
    by (auto simp add: exp_add exp_minus)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   830
  thus ?thesis
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
   831
    by (simp add: divide_inverse [symmetric] pos_less_divide_eq
15228
4d332d10fa3d revised simprules for division
paulson
parents: 15140
diff changeset
   832
             del: divide_self_if)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   833
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   834
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   835
lemma exp_less_cancel: "exp (x::real) < exp y ==> x < y"
15228
4d332d10fa3d revised simprules for division
paulson
parents: 15140
diff changeset
   836
apply (simp add: linorder_not_le [symmetric]) 
4d332d10fa3d revised simprules for division
paulson
parents: 15140
diff changeset
   837
apply (auto simp add: order_le_less exp_less_mono) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   838
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   839
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   840
lemma exp_less_cancel_iff [iff]: "(exp(x::real) < exp(y)) = (x < y)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   841
by (auto intro: exp_less_mono exp_less_cancel)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   842
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   843
lemma exp_le_cancel_iff [iff]: "(exp(x::real) \<le> exp(y)) = (x \<le> y)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   844
by (auto simp add: linorder_not_less [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   845
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   846
lemma exp_inj_iff [iff]: "(exp (x::real) = exp y) = (x = y)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   847
by (simp add: order_eq_iff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   848
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   849
lemma lemma_exp_total: "1 \<le> y ==> \<exists>x. 0 \<le> x & x \<le> y - 1 & exp(x::real) = y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   850
apply (rule IVT)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   851
apply (auto intro: isCont_exp simp add: le_diff_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   852
apply (subgoal_tac "1 + (y - 1) \<le> exp (y - 1)") 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   853
apply simp 
17014
ad5ceb90877d renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
avigad
parents: 16924
diff changeset
   854
apply (rule exp_ge_add_one_self_aux, simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   855
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   856
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
   857
lemma exp_total: "0 < (y::real) ==> \<exists>x. exp x = y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   858
apply (rule_tac x = 1 and y = y in linorder_cases)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   859
apply (drule order_less_imp_le [THEN lemma_exp_total])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   860
apply (rule_tac [2] x = 0 in exI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   861
apply (frule_tac [3] real_inverse_gt_one)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   862
apply (drule_tac [4] order_less_imp_le [THEN lemma_exp_total], auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   863
apply (rule_tac x = "-x" in exI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   864
apply (simp add: exp_minus)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   865
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   866
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   867
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   868
subsection{*Properties of the Logarithmic Function*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   869
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   870
definition
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   871
  ln :: "real => real" where
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   872
  "ln x = (THE u. exp u = x)"
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   873
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   874
lemma ln_exp [simp]: "ln (exp x) = x"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   875
by (simp add: ln_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   876
22654
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
   877
lemma exp_ln [simp]: "0 < x \<Longrightarrow> exp (ln x) = x"
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
   878
by (auto dest: exp_total)
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
   879
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   880
lemma exp_ln_iff [simp]: "(exp (ln x) = x) = (0 < x)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   881
apply (auto dest: exp_total)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   882
apply (erule subst, simp) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   883
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   884
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   885
lemma ln_mult: "[| 0 < x; 0 < y |] ==> ln(x * y) = ln(x) + ln(y)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   886
apply (rule exp_inj_iff [THEN iffD1])
22654
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
   887
apply (simp add: exp_add exp_ln mult_pos_pos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   888
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   889
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   890
lemma ln_inj_iff[simp]: "[| 0 < x; 0 < y |] ==> (ln x = ln y) = (x = y)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   891
apply (simp only: exp_ln_iff [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   892
apply (erule subst)+
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   893
apply simp 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   894
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   895
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   896
lemma ln_one[simp]: "ln 1 = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   897
by (rule exp_inj_iff [THEN iffD1], auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   898
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   899
lemma ln_inverse: "0 < x ==> ln(inverse x) = - ln x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   900
apply (rule_tac a1 = "ln x" in add_left_cancel [THEN iffD1])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   901
apply (auto simp add: positive_imp_inverse_positive ln_mult [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   902
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   903
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   904
lemma ln_div: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   905
    "[|0 < x; 0 < y|] ==> ln(x/y) = ln x - ln y"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   906
apply (simp add: divide_inverse)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   907
apply (auto simp add: positive_imp_inverse_positive ln_mult ln_inverse)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   908
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   909
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   910
lemma ln_less_cancel_iff[simp]: "[| 0 < x; 0 < y|] ==> (ln x < ln y) = (x < y)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   911
apply (simp only: exp_ln_iff [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   912
apply (erule subst)+
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   913
apply simp 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   914
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   915
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   916
lemma ln_le_cancel_iff[simp]: "[| 0 < x; 0 < y|] ==> (ln x \<le> ln y) = (x \<le> y)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   917
by (auto simp add: linorder_not_less [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   918
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   919
lemma ln_realpow: "0 < x ==> ln(x ^ n) = real n * ln(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   920
by (auto dest!: exp_total simp add: exp_real_of_nat_mult [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   921
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   922
lemma ln_add_one_self_le_self [simp]: "0 \<le> x ==> ln(1 + x) \<le> x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   923
apply (rule ln_exp [THEN subst])
17014
ad5ceb90877d renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
avigad
parents: 16924
diff changeset
   924
apply (rule ln_le_cancel_iff [THEN iffD2]) 
ad5ceb90877d renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
avigad
parents: 16924
diff changeset
   925
apply (auto simp add: exp_ge_add_one_self_aux)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   926
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   927
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   928
lemma ln_less_self [simp]: "0 < x ==> ln x < x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   929
apply (rule order_less_le_trans)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   930
apply (rule_tac [2] ln_add_one_self_le_self)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   931
apply (rule ln_less_cancel_iff [THEN iffD2], auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   932
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   933
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   934
lemma ln_ge_zero [simp]:
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   935
  assumes x: "1 \<le> x" shows "0 \<le> ln x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   936
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   937
  have "0 < x" using x by arith
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   938
  hence "exp 0 \<le> exp (ln x)"
22915
bb8a928a6bfa fix proofs
huffman
parents: 22722
diff changeset
   939
    by (simp add: x)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   940
  thus ?thesis by (simp only: exp_le_cancel_iff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   941
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   942
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   943
lemma ln_ge_zero_imp_ge_one:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   944
  assumes ln: "0 \<le> ln x" 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   945
      and x:  "0 < x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   946
  shows "1 \<le> x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   947
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   948
  from ln have "ln 1 \<le> ln x" by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   949
  thus ?thesis by (simp add: x del: ln_one) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   950
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   951
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   952
lemma ln_ge_zero_iff [simp]: "0 < x ==> (0 \<le> ln x) = (1 \<le> x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   953
by (blast intro: ln_ge_zero ln_ge_zero_imp_ge_one)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   954
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   955
lemma ln_less_zero_iff [simp]: "0 < x ==> (ln x < 0) = (x < 1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   956
by (insert ln_ge_zero_iff [of x], arith)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   957
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   958
lemma ln_gt_zero:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   959
  assumes x: "1 < x" shows "0 < ln x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   960
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   961
  have "0 < x" using x by arith
22915
bb8a928a6bfa fix proofs
huffman
parents: 22722
diff changeset
   962
  hence "exp 0 < exp (ln x)" by (simp add: x)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   963
  thus ?thesis  by (simp only: exp_less_cancel_iff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   964
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   965
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   966
lemma ln_gt_zero_imp_gt_one:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   967
  assumes ln: "0 < ln x" 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   968
      and x:  "0 < x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   969
  shows "1 < x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   970
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   971
  from ln have "ln 1 < ln x" by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   972
  thus ?thesis by (simp add: x del: ln_one) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   973
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   974
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   975
lemma ln_gt_zero_iff [simp]: "0 < x ==> (0 < ln x) = (1 < x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   976
by (blast intro: ln_gt_zero ln_gt_zero_imp_gt_one)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   977
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   978
lemma ln_eq_zero_iff [simp]: "0 < x ==> (ln x = 0) = (x = 1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   979
by (insert ln_less_zero_iff [of x] ln_gt_zero_iff [of x], arith)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   980
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   981
lemma ln_less_zero: "[| 0 < x; x < 1 |] ==> ln x < 0"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   982
by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   983
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   984
lemma exp_ln_eq: "exp u = x ==> ln x = u"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   985
by auto
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   986
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   987
lemma isCont_ln: "0 < x \<Longrightarrow> isCont ln x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   988
apply (subgoal_tac "isCont ln (exp (ln x))", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   989
apply (rule isCont_inverse_function [where f=exp], simp_all)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   990
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   991
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   992
lemma DERIV_ln: "0 < x \<Longrightarrow> DERIV ln x :> inverse x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   993
apply (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   994
apply (erule lemma_DERIV_subst [OF DERIV_exp exp_ln])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   995
apply (simp_all add: abs_if isCont_ln)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   996
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
   997
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   998
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   999
subsection{*Basic Properties of the Trigonometric Functions*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1000
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1001
lemma sin_zero [simp]: "sin 0 = 0"
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1002
unfolding sin_def by (simp add: powser_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1003
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1004
lemma cos_zero [simp]: "cos 0 = 1"
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1005
unfolding cos_def by (simp add: powser_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1006
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1007
lemma DERIV_sin_sin_mult [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1008
     "DERIV (%x. sin(x)*sin(x)) x :> cos(x) * sin(x) + cos(x) * sin(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1009
by (rule DERIV_mult, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1010
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1011
lemma DERIV_sin_sin_mult2 [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1012
     "DERIV (%x. sin(x)*sin(x)) x :> 2 * cos(x) * sin(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1013
apply (cut_tac x = x in DERIV_sin_sin_mult)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1014
apply (auto simp add: mult_assoc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1015
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1016
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1017
lemma DERIV_sin_realpow2 [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1018
     "DERIV (%x. (sin x)\<twosuperior>) x :> cos(x) * sin(x) + cos(x) * sin(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1019
by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1020
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1021
lemma DERIV_sin_realpow2a [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1022
     "DERIV (%x. (sin x)\<twosuperior>) x :> 2 * cos(x) * sin(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1023
by (auto simp add: numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1024
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1025
lemma DERIV_cos_cos_mult [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1026
     "DERIV (%x. cos(x)*cos(x)) x :> -sin(x) * cos(x) + -sin(x) * cos(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1027
by (rule DERIV_mult, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1028
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1029
lemma DERIV_cos_cos_mult2 [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1030
     "DERIV (%x. cos(x)*cos(x)) x :> -2 * cos(x) * sin(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1031
apply (cut_tac x = x in DERIV_cos_cos_mult)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1032
apply (auto simp add: mult_ac)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1033
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1034
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1035
lemma DERIV_cos_realpow2 [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1036
     "DERIV (%x. (cos x)\<twosuperior>) x :> -sin(x) * cos(x) + -sin(x) * cos(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1037
by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1038
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1039
lemma DERIV_cos_realpow2a [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1040
     "DERIV (%x. (cos x)\<twosuperior>) x :> -2 * cos(x) * sin(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1041
by (auto simp add: numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1042
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1043
lemma lemma_DERIV_subst: "[| DERIV f x :> D; D = E |] ==> DERIV f x :> E"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1044
by auto
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1045
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1046
lemma DERIV_cos_realpow2b: "DERIV (%x. (cos x)\<twosuperior>) x :> -(2 * cos(x) * sin(x))"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1047
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1048
apply (rule DERIV_cos_realpow2a, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1049
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1050
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1051
(* most useful *)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1052
lemma DERIV_cos_cos_mult3 [simp]:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1053
     "DERIV (%x. cos(x)*cos(x)) x :> -(2 * cos(x) * sin(x))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1054
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1055
apply (rule DERIV_cos_cos_mult2, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1056
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1057
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1058
lemma DERIV_sin_circle_all: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1059
     "\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :>  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1060
             (2*cos(x)*sin(x) - 2*cos(x)*sin(x))"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1061
apply (simp only: diff_minus, safe)
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1062
apply (rule DERIV_add) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1063
apply (auto simp add: numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1064
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1065
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1066
lemma DERIV_sin_circle_all_zero [simp]:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1067
     "\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :> 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1068
by (cut_tac DERIV_sin_circle_all, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1069
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1070
lemma sin_cos_squared_add [simp]: "((sin x)\<twosuperior>) + ((cos x)\<twosuperior>) = 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1071
apply (cut_tac x = x and y = 0 in DERIV_sin_circle_all_zero [THEN DERIV_isconst_all])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1072
apply (auto simp add: numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1073
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1074
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1075
lemma sin_cos_squared_add2 [simp]: "((cos x)\<twosuperior>) + ((sin x)\<twosuperior>) = 1"
23286
huffman
parents: 23278
diff changeset
  1076
apply (subst add_commute)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1077
apply (simp (no_asm) del: realpow_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1078
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1079
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1080
lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1081
apply (cut_tac x = x in sin_cos_squared_add2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1082
apply (auto simp add: numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1083
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1084
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1085
lemma sin_squared_eq: "(sin x)\<twosuperior> = 1 - (cos x)\<twosuperior>"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1086
apply (rule_tac a1 = "(cos x)\<twosuperior>" in add_right_cancel [THEN iffD1])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1087
apply (simp del: realpow_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1088
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1089
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1090
lemma cos_squared_eq: "(cos x)\<twosuperior> = 1 - (sin x)\<twosuperior>"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1091
apply (rule_tac a1 = "(sin x)\<twosuperior>" in add_right_cancel [THEN iffD1])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1092
apply (simp del: realpow_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1093
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1094
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1095
lemma real_gt_one_ge_zero_add_less: "[| 1 < x; 0 \<le> y |] ==> 1 < x + (y::real)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1096
by arith
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1097
15081
32402f5624d1 abs notation
paulson
parents: 15079
diff changeset
  1098
lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1"
23097
f4779adcd1a2 simplify some proofs
huffman
parents: 23082
diff changeset
  1099
by (rule power2_le_imp_le, simp_all add: sin_squared_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1100
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1101
lemma sin_ge_minus_one [simp]: "-1 \<le> sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1102
apply (insert abs_sin_le_one [of x]) 
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  1103
apply (simp add: abs_le_iff del: abs_sin_le_one) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1104
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1105
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1106
lemma sin_le_one [simp]: "sin x \<le> 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1107
apply (insert abs_sin_le_one [of x]) 
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  1108
apply (simp add: abs_le_iff del: abs_sin_le_one) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1109
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1110
15081
32402f5624d1 abs notation
paulson
parents: 15079
diff changeset
  1111
lemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1"
23097
f4779adcd1a2 simplify some proofs
huffman
parents: 23082
diff changeset
  1112
by (rule power2_le_imp_le, simp_all add: cos_squared_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1113
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1114
lemma cos_ge_minus_one [simp]: "-1 \<le> cos x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1115
apply (insert abs_cos_le_one [of x]) 
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  1116
apply (simp add: abs_le_iff del: abs_cos_le_one) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1117
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1118
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1119
lemma cos_le_one [simp]: "cos x \<le> 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1120
apply (insert abs_cos_le_one [of x]) 
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  1121
apply (simp add: abs_le_iff del: abs_cos_le_one)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1122
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1123
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1124
lemma DERIV_fun_pow: "DERIV g x :> m ==>  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1125
      DERIV (%x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1126
apply (rule lemma_DERIV_subst)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1127
apply (rule_tac f = "(%x. x ^ n)" in DERIV_chain2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1128
apply (rule DERIV_pow, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1129
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1130
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1131
lemma DERIV_fun_exp:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1132
     "DERIV g x :> m ==> DERIV (%x. exp(g x)) x :> exp(g x) * m"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1133
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1134
apply (rule_tac f = exp in DERIV_chain2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1135
apply (rule DERIV_exp, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1136
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1137
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1138
lemma DERIV_fun_sin:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1139
     "DERIV g x :> m ==> DERIV (%x. sin(g x)) x :> cos(g x) * m"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1140
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1141
apply (rule_tac f = sin in DERIV_chain2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1142
apply (rule DERIV_sin, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1143
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1144
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1145
lemma DERIV_fun_cos:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1146
     "DERIV g x :> m ==> DERIV (%x. cos(g x)) x :> -sin(g x) * m"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1147
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1148
apply (rule_tac f = cos in DERIV_chain2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1149
apply (rule DERIV_cos, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1150
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1151
23069
cdfff0241c12 rename lemmas LIM_ident, isCont_ident, DERIV_ident
huffman
parents: 23066
diff changeset
  1152
lemmas DERIV_intros = DERIV_ident DERIV_const DERIV_cos DERIV_cmult 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1153
                    DERIV_sin  DERIV_exp  DERIV_inverse DERIV_pow 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1154
                    DERIV_add  DERIV_diff  DERIV_mult  DERIV_minus 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1155
                    DERIV_inverse_fun DERIV_quotient DERIV_fun_pow 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1156
                    DERIV_fun_exp DERIV_fun_sin DERIV_fun_cos 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1157
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1158
(* lemma *)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1159
lemma lemma_DERIV_sin_cos_add:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1160
     "\<forall>x.  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1161
         DERIV (%x. (sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 +  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1162
               (cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2) x :> 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1163
apply (safe, rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1164
apply (best intro!: DERIV_intros intro: DERIV_chain2) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1165
  --{*replaces the old @{text DERIV_tac}*}
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1166
apply (auto simp add: diff_minus left_distrib right_distrib mult_ac add_ac)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1167
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1168
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1169
lemma sin_cos_add [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1170
     "(sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 +  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1171
      (cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2 = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1172
apply (cut_tac y = 0 and x = x and y7 = y 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1173
       in lemma_DERIV_sin_cos_add [THEN DERIV_isconst_all])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1174
apply (auto simp add: numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1175
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1176
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1177
lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1178
apply (cut_tac x = x and y = y in sin_cos_add)
22969
bf523cac9a05 tuned proofs
huffman
parents: 22960
diff changeset
  1179
apply (simp del: sin_cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1180
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1181
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1182
lemma cos_add: "cos (x + y) = cos x * cos y - sin x * sin y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1183
apply (cut_tac x = x and y = y in sin_cos_add)
22969
bf523cac9a05 tuned proofs
huffman
parents: 22960
diff changeset
  1184
apply (simp del: sin_cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1185
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1186
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1187
lemma lemma_DERIV_sin_cos_minus:
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1188
    "\<forall>x. DERIV (%x. (sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2) x :> 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1189
apply (safe, rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1190
apply (best intro!: DERIV_intros intro: DERIV_chain2) 
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1191
apply (auto simp add: diff_minus left_distrib right_distrib mult_ac add_ac)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1192
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1193
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1194
lemma sin_cos_minus [simp]: 
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1195
    "(sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2 = 0"
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1196
apply (cut_tac y = 0 and x = x 
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1197
       in lemma_DERIV_sin_cos_minus [THEN DERIV_isconst_all])
22969
bf523cac9a05 tuned proofs
huffman
parents: 22960
diff changeset
  1198
apply simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1199
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1200
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1201
lemma sin_minus [simp]: "sin (-x) = -sin(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1202
apply (cut_tac x = x in sin_cos_minus)
22969
bf523cac9a05 tuned proofs
huffman
parents: 22960
diff changeset
  1203
apply (simp del: sin_cos_minus)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1204
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1205
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1206
lemma cos_minus [simp]: "cos (-x) = cos(x)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1207
apply (cut_tac x = x in sin_cos_minus)
22969
bf523cac9a05 tuned proofs
huffman
parents: 22960
diff changeset
  1208
apply (simp del: sin_cos_minus)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1209
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1210
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1211
lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y"
22969
bf523cac9a05 tuned proofs
huffman
parents: 22960
diff changeset
  1212
by (simp add: diff_minus sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1213
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1214
lemma sin_diff2: "sin (x - y) = cos y * sin x - sin y * cos x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1215
by (simp add: sin_diff mult_commute)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1216
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1217
lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y"
22969
bf523cac9a05 tuned proofs
huffman
parents: 22960
diff changeset
  1218
by (simp add: diff_minus cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1219
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1220
lemma cos_diff2: "cos (x - y) = cos y * cos x + sin y * sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1221
by (simp add: cos_diff mult_commute)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1222
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1223
lemma sin_double [simp]: "sin(2 * x) = 2* sin x * cos x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1224
by (cut_tac x = x and y = x in sin_add, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1225
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1226
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1227
lemma cos_double: "cos(2* x) = ((cos x)\<twosuperior>) - ((sin x)\<twosuperior>)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1228
apply (cut_tac x = x and y = x in cos_add)
22969
bf523cac9a05 tuned proofs
huffman
parents: 22960
diff changeset
  1229
apply (simp add: power2_eq_square)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1230
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1231
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1232
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1233
subsection{*The Constant Pi*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1234
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1235
definition
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1236
  pi :: "real" where
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1237
  "pi = 2 * (THE x. 0 \<le> (x::real) & x \<le> 2 & cos x = 0)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1238
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1239
text{*Show that there's a least positive @{term x} with @{term "cos(x) = 0"}; 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1240
   hence define pi.*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1241
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1242
lemma sin_paired:
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
  1243
     "(%n. -1 ^ n /(real (fact (2 * n + 1))) * x ^ (2 * n + 1)) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1244
      sums  sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1245
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1246
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2.
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1247
            (if even k then 0
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
  1248
             else -1 ^ ((k - Suc 0) div 2) / real (fact k)) *
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1249
            x ^ k) 
23176
40a760921d94 simplify some proofs
huffman
parents: 23127
diff changeset
  1250
	sums sin x"
40a760921d94 simplify some proofs
huffman
parents: 23127
diff changeset
  1251
    unfolding sin_def
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1252
    by (rule sin_converges [THEN sums_summable, THEN sums_group], simp) 
23176
40a760921d94 simplify some proofs
huffman
parents: 23127
diff changeset
  1253
  thus ?thesis by (simp add: mult_ac)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1254
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1255
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1256
lemma sin_gt_zero: "[|0 < x; x < 2 |] ==> 0 < sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1257
apply (subgoal_tac 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1258
       "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2.
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
  1259
              -1 ^ k / real (fact (2 * k + 1)) * x ^ (2 * k + 1)) 
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
  1260
     sums (\<Sum>n. -1 ^ n / real (fact (2 * n + 1)) * x ^ (2 * n + 1))")
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1261
 prefer 2
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1262
 apply (rule sin_paired [THEN sums_summable, THEN sums_group], simp) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1263
apply (rotate_tac 2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1264
apply (drule sin_paired [THEN sums_unique, THEN ssubst])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1265
apply (auto simp del: fact_Suc realpow_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1266
apply (frule sums_unique)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1267
apply (auto simp del: fact_Suc realpow_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1268
apply (rule_tac n1 = 0 in series_pos_less [THEN [2] order_le_less_trans])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1269
apply (auto simp del: fact_Suc realpow_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1270
apply (erule sums_summable)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1271
apply (case_tac "m=0")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1272
apply (simp (no_asm_simp))
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1273
apply (subgoal_tac "6 * (x * (x * x) / real (Suc (Suc (Suc (Suc (Suc (Suc 0))))))) < 6 * x") 
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1274
apply (simp only: mult_less_cancel_left, simp)  
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1275
apply (simp (no_asm_simp) add: numeral_2_eq_2 [symmetric] mult_assoc [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1276
apply (subgoal_tac "x*x < 2*3", simp) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1277
apply (rule mult_strict_mono)
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1278
apply (auto simp add: real_0_less_add_iff real_of_nat_Suc simp del: fact_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1279
apply (subst fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1280
apply (subst fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1281
apply (subst fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1282
apply (subst fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1283
apply (subst real_of_nat_mult)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1284
apply (subst real_of_nat_mult)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1285
apply (subst real_of_nat_mult)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1286
apply (subst real_of_nat_mult)
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1287
apply (simp (no_asm) add: divide_inverse del: fact_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1288
apply (auto simp add: mult_assoc [symmetric] simp del: fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1289
apply (rule_tac c="real (Suc (Suc (4*m)))" in mult_less_imp_less_right) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1290
apply (auto simp add: mult_assoc simp del: fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1291
apply (rule_tac c="real (Suc (Suc (Suc (4*m))))" in mult_less_imp_less_right) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1292
apply (auto simp add: mult_assoc mult_less_cancel_left simp del: fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1293
apply (subgoal_tac "x * (x * x ^ (4*m)) = (x ^ (4*m)) * (x * x)") 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1294
apply (erule ssubst)+
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1295
apply (auto simp del: fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1296
apply (subgoal_tac "0 < x ^ (4 * m) ")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1297
 prefer 2 apply (simp only: zero_less_power) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1298
apply (simp (no_asm_simp) add: mult_less_cancel_left)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1299
apply (rule mult_strict_mono)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1300
apply (simp_all (no_asm_simp))
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1301
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1302
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1303
lemma sin_gt_zero1: "[|0 < x; x < 2 |] ==> 0 < sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1304
by (auto intro: sin_gt_zero)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1305
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1306
lemma cos_double_less_one: "[| 0 < x; x < 2 |] ==> cos (2 * x) < 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1307
apply (cut_tac x = x in sin_gt_zero1)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1308
apply (auto simp add: cos_squared_eq cos_double)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1309
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1310
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1311
lemma cos_paired:
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
  1312
     "(%n. -1 ^ n /(real (fact (2 * n))) * x ^ (2 * n)) sums cos x"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1313
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1314
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2.
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
  1315
            (if even k then -1 ^ (k div 2) / real (fact k) else 0) *
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1316
            x ^ k) 
23176
40a760921d94 simplify some proofs
huffman
parents: 23127
diff changeset
  1317
        sums cos x"
40a760921d94 simplify some proofs
huffman
parents: 23127
diff changeset
  1318
    unfolding cos_def
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1319
    by (rule cos_converges [THEN sums_summable, THEN sums_group], simp) 
23176
40a760921d94 simplify some proofs
huffman
parents: 23127
diff changeset
  1320
  thus ?thesis by (simp add: mult_ac)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1321
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1322
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1323
declare zero_less_power [simp]
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1324
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1325
lemma fact_lemma: "real (n::nat) * 4 = real (4 * n)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1326
by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1327
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1328
lemma cos_two_less_zero [simp]: "cos (2) < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1329
apply (cut_tac x = 2 in cos_paired)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1330
apply (drule sums_minus)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1331
apply (rule neg_less_iff_less [THEN iffD1]) 
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1332
apply (frule sums_unique, auto)
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1333
apply (rule_tac y =
23177
3004310c95b1 replace (- 1) with -1
huffman
parents: 23176
diff changeset
  1334
 "\<Sum>n=0..< Suc(Suc(Suc 0)). - (-1 ^ n / (real(fact (2*n))) * 2 ^ (2*n))"
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15383
diff changeset
  1335
       in order_less_trans)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1336
apply (simp (no_asm) add: fact_num_eq_if realpow_num_eq_if del: fact_Suc realpow_Suc)
15561
045a07ac35a7 another reorganization of setsums and intervals
nipkow
parents: 15546
diff changeset
  1337
apply (simp (no_asm) add: mult_assoc del: setsum_op_ivl_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1338
apply (rule sumr_pos_lt_pair)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1339
apply (erule sums_summable, safe)
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1340
apply (simp (no_asm) add: divide_inverse real_0_less_add_iff mult_assoc [symmetric] 
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1341
            del: fact_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1342
apply (rule real_mult_inverse_cancel2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1343
apply (rule real_of_nat_fact_gt_zero)+
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1344
apply (simp (no_asm) add: mult_assoc [symmetric] del: fact_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1345
apply (subst fact_lemma) 
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15383
diff changeset
  1346
apply (subst fact_Suc [of "Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))"])
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15383
diff changeset
  1347
apply (simp only: real_of_nat_mult)
23007
e025695d9b0e use mult_strict_mono instead of real_mult_less_mono
huffman
parents: 22998
diff changeset
  1348
apply (rule mult_strict_mono, force)
e025695d9b0e use mult_strict_mono instead of real_mult_less_mono
huffman
parents: 22998
diff changeset
  1349
  apply (rule_tac [3] real_of_nat_fact_ge_zero)
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15383
diff changeset
  1350
 prefer 2 apply force
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1351
apply (rule real_of_nat_less_iff [THEN iffD2])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1352
apply (rule fact_less_mono, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1353
done
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1354
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1355
lemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1356
lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1357
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1358
lemma cos_is_zero: "EX! x. 0 \<le> x & x \<le> 2 & cos x = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1359
apply (subgoal_tac "\<exists>x. 0 \<le> x & x \<le> 2 & cos x = 0")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1360
apply (rule_tac [2] IVT2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1361
apply (auto intro: DERIV_isCont DERIV_cos)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1362
apply (cut_tac x = xa and y = y in linorder_less_linear)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1363
apply (rule ccontr)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1364
apply (subgoal_tac " (\<forall>x. cos differentiable x) & (\<forall>x. isCont cos x) ")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1365
apply (auto intro: DERIV_cos DERIV_isCont simp add: differentiable_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1366
apply (drule_tac f = cos in Rolle)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1367
apply (drule_tac [5] f = cos in Rolle)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1368
apply (auto dest!: DERIV_cos [THEN DERIV_unique] simp add: differentiable_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1369
apply (drule_tac y1 = xa in order_le_less_trans [THEN sin_gt_zero])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1370
apply (assumption, rule_tac y=y in order_less_le_trans, simp_all) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1371
apply (drule_tac y1 = y in order_le_less_trans [THEN sin_gt_zero], assumption, simp_all) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1372
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1373
    
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1374
lemma pi_half: "pi/2 = (THE x. 0 \<le> x & x \<le> 2 & cos x = 0)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1375
by (simp add: pi_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1376
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1377
lemma cos_pi_half [simp]: "cos (pi / 2) = 0"
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1378
by (simp add: pi_half cos_is_zero [THEN theI'])
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1379
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1380
lemma pi_half_gt_zero [simp]: "0 < pi / 2"
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1381
apply (rule order_le_neq_trans)
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1382
apply (simp add: pi_half cos_is_zero [THEN theI'])
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1383
apply (rule notI, drule arg_cong [where f=cos], simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1384
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1385
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1386
lemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1387
lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1388
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1389
lemma pi_half_less_two [simp]: "pi / 2 < 2"
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1390
apply (rule order_le_neq_trans)
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1391
apply (simp add: pi_half cos_is_zero [THEN theI'])
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1392
apply (rule notI, drule arg_cong [where f=cos], simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1393
done
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1394
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1395
lemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1396
lemmas pi_half_le_two [simp] =  pi_half_less_two [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1397
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1398
lemma pi_gt_zero [simp]: "0 < pi"
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1399
by (insert pi_half_gt_zero, simp)
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1400
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1401
lemma pi_ge_zero [simp]: "0 \<le> pi"
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1402
by (rule pi_gt_zero [THEN order_less_imp_le])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1403
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1404
lemma pi_neq_zero [simp]: "pi \<noteq> 0"
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  1405
by (rule pi_gt_zero [THEN less_imp_neq, THEN not_sym])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1406
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1407
lemma pi_not_less_zero [simp]: "\<not> pi < 0"
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1408
by (simp add: linorder_not_less)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1409
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1410
lemma minus_pi_half_less_zero [simp]: "-(pi/2) < 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1411
by auto
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1412
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1413
lemma sin_pi_half [simp]: "sin(pi/2) = 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1414
apply (cut_tac x = "pi/2" in sin_cos_squared_add2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1415
apply (cut_tac sin_gt_zero [OF pi_half_gt_zero pi_half_less_two])
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1416
apply (simp add: power2_eq_square)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1417
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1418
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1419
lemma cos_pi [simp]: "cos pi = -1"
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1420
by (cut_tac x = "pi/2" and y = "pi/2" in cos_add, simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1421
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1422
lemma sin_pi [simp]: "sin pi = 0"
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1423
by (cut_tac x = "pi/2" and y = "pi/2" in sin_add, simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1424
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1425
lemma sin_cos_eq: "sin x = cos (pi/2 - x)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1426
by (simp add: diff_minus cos_add)
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1427
declare sin_cos_eq [symmetric, simp]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1428
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1429
lemma minus_sin_cos_eq: "-sin x = cos (x + pi/2)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1430
by (simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1431
declare minus_sin_cos_eq [symmetric, simp]
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1432
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1433
lemma cos_sin_eq: "cos x = sin (pi/2 - x)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1434
by (simp add: diff_minus sin_add)
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  1435
declare cos_sin_eq [symmetric, simp]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1436
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1437
lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1438
by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1439
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1440
lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1441
by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1442
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1443
lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1444
by (simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1445
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1446
lemma sin_periodic [simp]: "sin (x + 2*pi) = sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1447
by (simp add: sin_add cos_double)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1448
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1449
lemma cos_periodic [simp]: "cos (x + 2*pi) = cos x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1450
by (simp add: cos_add cos_double)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1451
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1452
lemma cos_npi [simp]: "cos (real n * pi) = -1 ^ n"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15241
diff changeset
  1453
apply (induct "n")
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1454
apply (auto simp add: real_of_nat_Suc left_distrib)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1455
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1456
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1457
lemma cos_npi2 [simp]: "cos (pi * real n) = -1 ^ n"
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1458
proof -
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1459
  have "cos (pi * real n) = cos (real n * pi)" by (simp only: mult_commute)
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1460
  also have "... = -1 ^ n" by (rule cos_npi) 
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1461
  finally show ?thesis .
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1462
qed
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1463
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1464
lemma sin_npi [simp]: "sin (real (n::nat) * pi) = 0"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15241
diff changeset
  1465
apply (induct "n")
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1466
apply (auto simp add: real_of_nat_Suc left_distrib)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1467
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1468
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1469
lemma sin_npi2 [simp]: "sin (pi * real (n::nat)) = 0"
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  1470
by (simp add: mult_commute [of pi]) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1471
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1472
lemma cos_two_pi [simp]: "cos (2 * pi) = 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1473
by (simp add: cos_double)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1474
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1475
lemma sin_two_pi [simp]: "sin (2 * pi) = 0"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1476
by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1477
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1478
lemma sin_gt_zero2: "[| 0 < x; x < pi/2 |] ==> 0 < sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1479
apply (rule sin_gt_zero, assumption)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1480
apply (rule order_less_trans, assumption)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1481
apply (rule pi_half_less_two)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1482
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1483
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1484
lemma sin_less_zero: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1485
  assumes lb: "- pi/2 < x" and "x < 0" shows "sin x < 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1486
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1487
  have "0 < sin (- x)" using prems by (simp only: sin_gt_zero2) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1488
  thus ?thesis by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1489
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1490
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1491
lemma pi_less_4: "pi < 4"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1492
by (cut_tac pi_half_less_two, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1493
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1494
lemma cos_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < cos x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1495
apply (cut_tac pi_less_4)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1496
apply (cut_tac f = cos and a = 0 and b = x and y = 0 in IVT2_objl, safe, simp_all)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1497
apply (cut_tac cos_is_zero, safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1498
apply (rename_tac y z)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1499
apply (drule_tac x = y in spec)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1500
apply (drule_tac x = "pi/2" in spec, simp) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1501
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1502
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1503
lemma cos_gt_zero_pi: "[| -(pi/2) < x; x < pi/2 |] ==> 0 < cos x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1504
apply (rule_tac x = x and y = 0 in linorder_cases)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1505
apply (rule cos_minus [THEN subst])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1506
apply (rule cos_gt_zero)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1507
apply (auto intro: cos_gt_zero)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1508
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1509
 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1510
lemma cos_ge_zero: "[| -(pi/2) \<le> x; x \<le> pi/2 |] ==> 0 \<le> cos x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1511
apply (auto simp add: order_le_less cos_gt_zero_pi)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1512
apply (subgoal_tac "x = pi/2", auto) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1513
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1514
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1515
lemma sin_gt_zero_pi: "[| 0 < x; x < pi  |] ==> 0 < sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1516
apply (subst sin_cos_eq)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1517
apply (rotate_tac 1)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1518
apply (drule real_sum_of_halves [THEN ssubst])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1519
apply (auto intro!: cos_gt_zero_pi simp del: sin_cos_eq [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1520
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1521
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1522
lemma sin_ge_zero: "[| 0 \<le> x; x \<le> pi |] ==> 0 \<le> sin x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1523
by (auto simp add: order_le_less sin_gt_zero_pi)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1524
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1525
lemma cos_total: "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. 0 \<le> x & x \<le> pi & (cos x = y)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1526
apply (subgoal_tac "\<exists>x. 0 \<le> x & x \<le> pi & cos x = y")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1527
apply (rule_tac [2] IVT2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1528
apply (auto intro: order_less_imp_le DERIV_isCont DERIV_cos)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1529
apply (cut_tac x = xa and y = y in linorder_less_linear)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1530
apply (rule ccontr, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1531
apply (drule_tac f = cos in Rolle)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1532
apply (drule_tac [5] f = cos in Rolle)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1533
apply (auto intro: order_less_imp_le DERIV_isCont DERIV_cos
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1534
            dest!: DERIV_cos [THEN DERIV_unique] 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1535
            simp add: differentiable_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1536
apply (auto dest: sin_gt_zero_pi [OF order_le_less_trans order_less_le_trans])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1537
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1538
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1539
lemma sin_total:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1540
     "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. -(pi/2) \<le> x & x \<le> pi/2 & (sin x = y)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1541
apply (rule ccontr)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1542
apply (subgoal_tac "\<forall>x. (- (pi/2) \<le> x & x \<le> pi/2 & (sin x = y)) = (0 \<le> (x + pi/2) & (x + pi/2) \<le> pi & (cos (x + pi/2) = -y))")
18585
5d379fe2eb74 replaced swap by contrapos_np;
wenzelm
parents: 17318
diff changeset
  1543
apply (erule contrapos_np)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1544
apply (simp del: minus_sin_cos_eq [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1545
apply (cut_tac y="-y" in cos_total, simp) apply simp 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1546
apply (erule ex1E)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1547
apply (rule_tac a = "x - (pi/2)" in ex1I)
23286
huffman
parents: 23278
diff changeset
  1548
apply (simp (no_asm) add: add_assoc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1549
apply (rotate_tac 3)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1550
apply (drule_tac x = "xa + pi/2" in spec, safe, simp_all) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1551
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1552
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1553
lemma reals_Archimedean4:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1554
     "[| 0 < y; 0 \<le> x |] ==> \<exists>n. real n * y \<le> x & x < real (Suc n) * y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1555
apply (auto dest!: reals_Archimedean3)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1556
apply (drule_tac x = x in spec, clarify) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1557
apply (subgoal_tac "x < real(LEAST m::nat. x < real m * y) * y")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1558
 prefer 2 apply (erule LeastI) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1559
apply (case_tac "LEAST m::nat. x < real m * y", simp) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1560
apply (subgoal_tac "~ x < real nat * y")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1561
 prefer 2 apply (rule not_less_Least, simp, force)  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1562
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1563
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1564
(* Pre Isabelle99-2 proof was simpler- numerals arithmetic 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1565
   now causes some unwanted re-arrangements of literals!   *)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1566
lemma cos_zero_lemma:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1567
     "[| 0 \<le> x; cos x = 0 |] ==>  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1568
      \<exists>n::nat. ~even n & x = real n * (pi/2)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1569
apply (drule pi_gt_zero [THEN reals_Archimedean4], safe)
15086
e6a2a98d5ef5 removal of more iff-rules from RealDef.thy
paulson
parents: 15085
diff changeset
  1570
apply (subgoal_tac "0 \<le> x - real n * pi & 
e6a2a98d5ef5 removal of more iff-rules from RealDef.thy
paulson
parents: 15085
diff changeset
  1571
                    (x - real n * pi) \<le> pi & (cos (x - real n * pi) = 0) ")
e6a2a98d5ef5 removal of more iff-rules from RealDef.thy
paulson
parents: 15085
diff changeset
  1572
apply (auto simp add: compare_rls) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1573
  prefer 3 apply (simp add: cos_diff) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1574
 prefer 2 apply (simp add: real_of_nat_Suc left_distrib) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1575
apply (simp add: cos_diff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1576
apply (subgoal_tac "EX! x. 0 \<le> x & x \<le> pi & cos x = 0")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1577
apply (rule_tac [2] cos_total, safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1578
apply (drule_tac x = "x - real n * pi" in spec)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1579
apply (drule_tac x = "pi/2" in spec)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1580
apply (simp add: cos_diff)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1581
apply (rule_tac x = "Suc (2 * n)" in exI)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1582
apply (simp add: real_of_nat_Suc left_distrib, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1583
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1584
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1585
lemma sin_zero_lemma:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1586
     "[| 0 \<le> x; sin x = 0 |] ==>  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1587
      \<exists>n::nat. even n & x = real n * (pi/2)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1588
apply (subgoal_tac "\<exists>n::nat. ~ even n & x + pi/2 = real n * (pi/2) ")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1589
 apply (clarify, rule_tac x = "n - 1" in exI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1590
 apply (force simp add: odd_Suc_mult_two_ex real_of_nat_Suc left_distrib)
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1591
apply (rule cos_zero_lemma)
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  1592
apply (simp_all add: add_increasing)  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1593
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1594
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1595
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1596
lemma cos_zero_iff:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1597
     "(cos x = 0) =  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1598
      ((\<exists>n::nat. ~even n & (x = real n * (pi/2))) |    
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1599
       (\<exists>n::nat. ~even n & (x = -(real n * (pi/2)))))"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1600
apply (rule iffI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1601
apply (cut_tac linorder_linear [of 0 x], safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1602
apply (drule cos_zero_lemma, assumption+)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1603
apply (cut_tac x="-x" in cos_zero_lemma, simp, simp) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1604
apply (force simp add: minus_equation_iff [of x]) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1605
apply (auto simp only: odd_Suc_mult_two_ex real_of_nat_Suc left_distrib) 
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1606
apply (auto simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1607
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1608
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1609
(* ditto: but to a lesser extent *)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1610
lemma sin_zero_iff:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1611
     "(sin x = 0) =  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1612
      ((\<exists>n::nat. even n & (x = real n * (pi/2))) |    
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1613
       (\<exists>n::nat. even n & (x = -(real n * (pi/2)))))"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1614
apply (rule iffI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1615
apply (cut_tac linorder_linear [of 0 x], safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1616
apply (drule sin_zero_lemma, assumption+)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1617
apply (cut_tac x="-x" in sin_zero_lemma, simp, simp, safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1618
apply (force simp add: minus_equation_iff [of x]) 
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1619
apply (auto simp add: even_mult_two_ex)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1620
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1621
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1622
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1623
subsection{*Tangent*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1624
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1625
definition
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1626
  tan :: "real => real" where
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1627
  "tan x = (sin x)/(cos x)"
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1628
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1629
lemma tan_zero [simp]: "tan 0 = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1630
by (simp add: tan_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1631
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1632
lemma tan_pi [simp]: "tan pi = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1633
by (simp add: tan_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1634
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1635
lemma tan_npi [simp]: "tan (real (n::nat) * pi) = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1636
by (simp add: tan_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1637
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1638
lemma tan_minus [simp]: "tan (-x) = - tan x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1639
by (simp add: tan_def minus_mult_left)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1640
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1641
lemma tan_periodic [simp]: "tan (x + 2*pi) = tan x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1642
by (simp add: tan_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1643
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1644
lemma lemma_tan_add1: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1645
      "[| cos x \<noteq> 0; cos y \<noteq> 0 |]  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1646
        ==> 1 - tan(x)*tan(y) = cos (x + y)/(cos x * cos y)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1647
apply (simp add: tan_def divide_inverse)
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1648
apply (auto simp del: inverse_mult_distrib 
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1649
            simp add: inverse_mult_distrib [symmetric] mult_ac)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1650
apply (rule_tac c1 = "cos x * cos y" in real_mult_right_cancel [THEN subst])
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1651
apply (auto simp del: inverse_mult_distrib 
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1652
            simp add: mult_assoc left_diff_distrib cos_add)
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1653
done  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1654
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1655
lemma add_tan_eq: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1656
      "[| cos x \<noteq> 0; cos y \<noteq> 0 |]  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1657
       ==> tan x + tan y = sin(x + y)/(cos x * cos y)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1658
apply (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1659
apply (rule_tac c1 = "cos x * cos y" in real_mult_right_cancel [THEN subst])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1660
apply (auto simp add: mult_assoc left_distrib)
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  1661
apply (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1662
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1663
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1664
lemma tan_add:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1665
     "[| cos x \<noteq> 0; cos y \<noteq> 0; cos (x + y) \<noteq> 0 |]  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1666
      ==> tan(x + y) = (tan(x) + tan(y))/(1 - tan(x) * tan(y))"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1667
apply (simp (no_asm_simp) add: add_tan_eq lemma_tan_add1)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1668
apply (simp add: tan_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1669
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1670
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1671
lemma tan_double:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1672
     "[| cos x \<noteq> 0; cos (2 * x) \<noteq> 0 |]  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1673
      ==> tan (2 * x) = (2 * tan x)/(1 - (tan(x) ^ 2))"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1674
apply (insert tan_add [of x x]) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1675
apply (simp add: mult_2 [symmetric])  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1676
apply (auto simp add: numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1677
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1678
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1679
lemma tan_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < tan x"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1680
by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1681
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1682
lemma tan_less_zero: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1683
  assumes lb: "- pi/2 < x" and "x < 0" shows "tan x < 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1684
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1685
  have "0 < tan (- x)" using prems by (simp only: tan_gt_zero) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1686
  thus ?thesis by simp
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1687
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1688
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1689
lemma lemma_DERIV_tan:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1690
     "cos x \<noteq> 0 ==> DERIV (%x. sin(x)/cos(x)) x :> inverse((cos x)\<twosuperior>)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1691
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1692
apply (best intro!: DERIV_intros intro: DERIV_chain2) 
15079
2ef899e4526d conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents: 15077
diff changeset
  1693
apply (auto simp add: divide_inverse numeral_2_eq_2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1694
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1695
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1696
lemma DERIV_tan [simp]: "cos x \<noteq> 0 ==> DERIV tan x :> inverse((cos x)\<twosuperior>)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1697
by (auto dest: lemma_DERIV_tan simp add: tan_def [symmetric])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1698
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1699
lemma isCont_tan [simp]: "cos x \<noteq> 0 ==> isCont tan x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1700
by (rule DERIV_tan [THEN DERIV_isCont])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1701
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1702
lemma LIM_cos_div_sin [simp]: "(%x. cos(x)/sin(x)) -- pi/2 --> 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1703
apply (subgoal_tac "(\<lambda>x. cos x * inverse (sin x)) -- pi * inverse 2 --> 0*1")
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1704
apply (simp add: divide_inverse [symmetric])
22613
2f119f54d150 remove redundant lemmas
huffman
parents: 21404
diff changeset
  1705
apply (rule LIM_mult)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1706
apply (rule_tac [2] inverse_1 [THEN subst])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1707
apply (rule_tac [2] LIM_inverse)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1708
apply (simp_all add: divide_inverse [symmetric]) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1709
apply (simp_all only: isCont_def [symmetric] cos_pi_half [symmetric] sin_pi_half [symmetric]) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1710
apply (blast intro!: DERIV_isCont DERIV_sin DERIV_cos)+
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1711
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1712
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1713
lemma lemma_tan_total: "0 < y ==> \<exists>x. 0 < x & x < pi/2 & y < tan x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1714
apply (cut_tac LIM_cos_div_sin)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1715
apply (simp only: LIM_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1716
apply (drule_tac x = "inverse y" in spec, safe, force)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1717
apply (drule_tac ?d1.0 = s in pi_half_gt_zero [THEN [2] real_lbound_gt_zero], safe)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1718
apply (rule_tac x = "(pi/2) - e" in exI)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1719
apply (simp (no_asm_simp))
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1720
apply (drule_tac x = "(pi/2) - e" in spec)
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1721
apply (auto simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1722
apply (rule inverse_less_iff_less [THEN iffD1])
15079
2ef899e4526d conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents: 15077
diff changeset
  1723
apply (auto simp add: divide_inverse)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1724
apply (rule real_mult_order) 
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1725
apply (subgoal_tac [3] "0 < sin e & 0 < cos e")
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1726
apply (auto intro: cos_gt_zero sin_gt_zero2 simp add: mult_commute) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1727
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1728
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1729
lemma tan_total_pos: "0 \<le> y ==> \<exists>x. 0 \<le> x & x < pi/2 & tan x = y"
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  1730
apply (frule order_le_imp_less_or_eq, safe)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1731
 prefer 2 apply force
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1732
apply (drule lemma_tan_total, safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1733
apply (cut_tac f = tan and a = 0 and b = x and y = y in IVT_objl)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1734
apply (auto intro!: DERIV_tan [THEN DERIV_isCont])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1735
apply (drule_tac y = xa in order_le_imp_less_or_eq)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1736
apply (auto dest: cos_gt_zero)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1737
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1738
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1739
lemma lemma_tan_total1: "\<exists>x. -(pi/2) < x & x < (pi/2) & tan x = y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1740
apply (cut_tac linorder_linear [of 0 y], safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1741
apply (drule tan_total_pos)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1742
apply (cut_tac [2] y="-y" in tan_total_pos, safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1743
apply (rule_tac [3] x = "-x" in exI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1744
apply (auto intro!: exI)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1745
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1746
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1747
lemma tan_total: "EX! x. -(pi/2) < x & x < (pi/2) & tan x = y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1748
apply (cut_tac y = y in lemma_tan_total1, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1749
apply (cut_tac x = xa and y = y in linorder_less_linear, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1750
apply (subgoal_tac [2] "\<exists>z. y < z & z < xa & DERIV tan z :> 0")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1751
apply (subgoal_tac "\<exists>z. xa < z & z < y & DERIV tan z :> 0")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1752
apply (rule_tac [4] Rolle)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1753
apply (rule_tac [2] Rolle)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1754
apply (auto intro!: DERIV_tan DERIV_isCont exI 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1755
            simp add: differentiable_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1756
txt{*Now, simulate TRYALL*}
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1757
apply (rule_tac [!] DERIV_tan asm_rl)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1758
apply (auto dest!: DERIV_unique [OF _ DERIV_tan]
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  1759
	    simp add: cos_gt_zero_pi [THEN less_imp_neq, THEN not_sym]) 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1760
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1761
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1762
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1763
subsection {* Inverse Trigonometric Functions *}
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1764
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1765
definition
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1766
  arcsin :: "real => real" where
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1767
  "arcsin y = (THE x. -(pi/2) \<le> x & x \<le> pi/2 & sin x = y)"
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1768
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1769
definition
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1770
  arccos :: "real => real" where
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1771
  "arccos y = (THE x. 0 \<le> x & x \<le> pi & cos x = y)"
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1772
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1773
definition     
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1774
  arctan :: "real => real" where
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1775
  "arctan y = (THE x. -(pi/2) < x & x < pi/2 & tan x = y)"
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1776
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1777
lemma arcsin:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1778
     "[| -1 \<le> y; y \<le> 1 |]  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1779
      ==> -(pi/2) \<le> arcsin y &  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1780
           arcsin y \<le> pi/2 & sin(arcsin y) = y"
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1781
unfolding arcsin_def by (rule theI' [OF sin_total])
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1782
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1783
lemma arcsin_pi:
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1784
     "[| -1 \<le> y; y \<le> 1 |]  
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1785
      ==> -(pi/2) \<le> arcsin y & arcsin y \<le> pi & sin(arcsin y) = y"
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1786
apply (drule (1) arcsin)
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1787
apply (force intro: order_trans)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1788
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1789
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1790
lemma sin_arcsin [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> sin(arcsin y) = y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1791
by (blast dest: arcsin)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1792
      
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1793
lemma arcsin_bounded:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1794
     "[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y & arcsin y \<le> pi/2"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1795
by (blast dest: arcsin)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1796
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1797
lemma arcsin_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1798
by (blast dest: arcsin)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1799
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1800
lemma arcsin_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arcsin y \<le> pi/2"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1801
by (blast dest: arcsin)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1802
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1803
lemma arcsin_lt_bounded:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1804
     "[| -1 < y; y < 1 |] ==> -(pi/2) < arcsin y & arcsin y < pi/2"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1805
apply (frule order_less_imp_le)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1806
apply (frule_tac y = y in order_less_imp_le)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1807
apply (frule arcsin_bounded)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1808
apply (safe, simp)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1809
apply (drule_tac y = "arcsin y" in order_le_imp_less_or_eq)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1810
apply (drule_tac [2] y = "pi/2" in order_le_imp_less_or_eq, safe)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1811
apply (drule_tac [!] f = sin in arg_cong, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1812
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1813
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1814
lemma arcsin_sin: "[|-(pi/2) \<le> x; x \<le> pi/2 |] ==> arcsin(sin x) = x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1815
apply (unfold arcsin_def)
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1816
apply (rule the1_equality)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1817
apply (rule sin_total, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1818
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1819
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1820
lemma arccos:
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1821
     "[| -1 \<le> y; y \<le> 1 |]  
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1822
      ==> 0 \<le> arccos y & arccos y \<le> pi & cos(arccos y) = y"
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1823
unfolding arccos_def by (rule theI' [OF cos_total])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1824
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1825
lemma cos_arccos [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> cos(arccos y) = y"
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1826
by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1827
      
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1828
lemma arccos_bounded: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y & arccos y \<le> pi"
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1829
by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1830
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1831
lemma arccos_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y"
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1832
by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1833
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1834
lemma arccos_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arccos y \<le> pi"
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1835
by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1836
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1837
lemma arccos_lt_bounded:
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  1838
     "[| -1 < y; y < 1 |]  
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1839
      ==> 0 < arccos y & arccos y < pi"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1840
apply (frule order_less_imp_le)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1841
apply (frule_tac y = y in order_less_imp_le)
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1842
apply (frule arccos_bounded, auto)
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1843
apply (drule_tac y = "arccos y" in order_le_imp_less_or_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1844
apply (drule_tac [2] y = pi in order_le_imp_less_or_eq, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1845
apply (drule_tac [!] f = cos in arg_cong, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1846
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1847
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1848
lemma arccos_cos: "[|0 \<le> x; x \<le> pi |] ==> arccos(cos x) = x"
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1849
apply (simp add: arccos_def)
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1850
apply (auto intro!: the1_equality cos_total)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1851
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1852
22975
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1853
lemma arccos_cos2: "[|x \<le> 0; -pi \<le> x |] ==> arccos(cos x) = -x"
03085c441c14 spelling: rename arcos -> arccos
huffman
parents: 22969
diff changeset
  1854
apply (simp add: arccos_def)
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1855
apply (auto intro!: the1_equality cos_total)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1856
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1857
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1858
lemma cos_arcsin: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> cos (arcsin x) = sqrt (1 - x\<twosuperior>)"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1859
apply (subgoal_tac "x\<twosuperior> \<le> 1")
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1860
apply (rule power2_eq_imp_eq)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1861
apply (simp add: cos_squared_eq)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1862
apply (rule cos_ge_zero)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1863
apply (erule (1) arcsin_lbound)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1864
apply (erule (1) arcsin_ubound)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1865
apply simp
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1866
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> \<le> 1\<twosuperior>", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1867
apply (rule power_mono, simp, simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1868
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1869
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1870
lemma sin_arccos: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> sin (arccos x) = sqrt (1 - x\<twosuperior>)"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1871
apply (subgoal_tac "x\<twosuperior> \<le> 1")
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  1872
apply (rule power2_eq_imp_eq)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1873
apply (simp add: sin_squared_eq)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1874
apply (rule sin_ge_zero)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1875
apply (erule (1) arccos_lbound)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1876
apply (erule (1) arccos_ubound)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1877
apply simp
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1878
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> \<le> 1\<twosuperior>", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1879
apply (rule power_mono, simp, simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1880
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1881
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1882
lemma arctan [simp]:
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1883
     "- (pi/2) < arctan y  & arctan y < pi/2 & tan (arctan y) = y"
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1884
unfolding arctan_def by (rule theI' [OF tan_total])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1885
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1886
lemma tan_arctan: "tan(arctan y) = y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1887
by auto
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1888
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1889
lemma arctan_bounded: "- (pi/2) < arctan y  & arctan y < pi/2"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1890
by (auto simp only: arctan)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1891
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1892
lemma arctan_lbound: "- (pi/2) < arctan y"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1893
by auto
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1894
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1895
lemma arctan_ubound: "arctan y < pi/2"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1896
by (auto simp only: arctan)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1897
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1898
lemma arctan_tan: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1899
      "[|-(pi/2) < x; x < pi/2 |] ==> arctan(tan x) = x"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1900
apply (unfold arctan_def)
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  1901
apply (rule the1_equality)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1902
apply (rule tan_total, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1903
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1904
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1905
lemma arctan_zero_zero [simp]: "arctan 0 = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1906
by (insert arctan_tan [of 0], simp)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1907
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1908
lemma cos_arctan_not_zero [simp]: "cos(arctan x) \<noteq> 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1909
apply (auto simp add: cos_zero_iff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1910
apply (case_tac "n")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1911
apply (case_tac [3] "n")
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1912
apply (cut_tac [2] y = x in arctan_ubound)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1913
apply (cut_tac [4] y = x in arctan_lbound) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1914
apply (auto simp add: real_of_nat_Suc left_distrib mult_less_0_iff)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1915
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1916
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1917
lemma tan_sec: "cos x \<noteq> 0 ==> 1 + tan(x) ^ 2 = inverse(cos x) ^ 2"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1918
apply (rule power_inverse [THEN subst])
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1919
apply (rule_tac c1 = "(cos x)\<twosuperior>" in real_mult_right_cancel [THEN iffD1])
22960
114cf1906681 remove redundant lemmas
huffman
parents: 22956
diff changeset
  1920
apply (auto dest: field_power_not_zero
20516
2d2e1d323a05 realpow_divide -> power_divide
huffman
parents: 20432
diff changeset
  1921
        simp add: power_mult_distrib left_distrib power_divide tan_def 
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1922
                  mult_assoc power_inverse [symmetric] 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1923
        simp del: realpow_Suc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1924
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1925
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1926
lemma isCont_inverse_function2:
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1927
  fixes f g :: "real \<Rightarrow> real" shows
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1928
  "\<lbrakk>a < x; x < b;
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1929
    \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> g (f z) = z;
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1930
    \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> isCont f z\<rbrakk>
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1931
   \<Longrightarrow> isCont g (f x)"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1932
apply (rule isCont_inverse_function
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1933
       [where f=f and d="min (x - a) (b - x)"])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1934
apply (simp_all add: abs_le_iff)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1935
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1936
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1937
lemma isCont_arcsin: "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> isCont arcsin x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1938
apply (subgoal_tac "isCont arcsin (sin (arcsin x))", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1939
apply (rule isCont_inverse_function2 [where f=sin])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1940
apply (erule (1) arcsin_lt_bounded [THEN conjunct1])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1941
apply (erule (1) arcsin_lt_bounded [THEN conjunct2])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1942
apply (fast intro: arcsin_sin, simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1943
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1944
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1945
lemma isCont_arccos: "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> isCont arccos x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1946
apply (subgoal_tac "isCont arccos (cos (arccos x))", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1947
apply (rule isCont_inverse_function2 [where f=cos])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1948
apply (erule (1) arccos_lt_bounded [THEN conjunct1])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1949
apply (erule (1) arccos_lt_bounded [THEN conjunct2])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1950
apply (fast intro: arccos_cos, simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1951
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1952
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1953
lemma isCont_arctan: "isCont arctan x"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1954
apply (rule arctan_lbound [of x, THEN dense, THEN exE], clarify)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1955
apply (rule arctan_ubound [of x, THEN dense, THEN exE], clarify)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1956
apply (subgoal_tac "isCont arctan (tan (arctan x))", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1957
apply (erule (1) isCont_inverse_function2 [where f=tan])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1958
apply (clarify, rule arctan_tan)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1959
apply (erule (1) order_less_le_trans)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1960
apply (erule (1) order_le_less_trans)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1961
apply (clarify, rule isCont_tan)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1962
apply (rule less_imp_neq [symmetric])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1963
apply (rule cos_gt_zero_pi)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1964
apply (erule (1) order_less_le_trans)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1965
apply (erule (1) order_le_less_trans)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1966
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1967
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1968
lemma DERIV_arcsin:
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1969
  "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arcsin x :> inverse (sqrt (1 - x\<twosuperior>))"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1970
apply (rule DERIV_inverse_function [where f=sin and a="-1" and b="1"])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1971
apply (rule lemma_DERIV_subst [OF DERIV_sin])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1972
apply (simp add: cos_arcsin)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1973
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> < 1\<twosuperior>", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1974
apply (rule power_strict_mono, simp, simp, simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1975
apply assumption
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1976
apply assumption
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1977
apply simp
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1978
apply (erule (1) isCont_arcsin)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1979
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1980
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1981
lemma DERIV_arccos:
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1982
  "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arccos x :> inverse (- sqrt (1 - x\<twosuperior>))"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1983
apply (rule DERIV_inverse_function [where f=cos and a="-1" and b="1"])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1984
apply (rule lemma_DERIV_subst [OF DERIV_cos])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1985
apply (simp add: sin_arccos)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1986
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> < 1\<twosuperior>", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1987
apply (rule power_strict_mono, simp, simp, simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1988
apply assumption
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1989
apply assumption
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1990
apply simp
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1991
apply (erule (1) isCont_arccos)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1992
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1993
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1994
lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x\<twosuperior>)"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1995
apply (rule DERIV_inverse_function [where f=tan and a="x - 1" and b="x + 1"])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1996
apply (rule lemma_DERIV_subst [OF DERIV_tan])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1997
apply (rule cos_arctan_not_zero)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1998
apply (simp add: power_inverse tan_sec [symmetric])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1999
apply (subgoal_tac "0 < 1 + x\<twosuperior>", simp)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2000
apply (simp add: add_pos_nonneg)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2001
apply (simp, simp, simp, rule isCont_arctan)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2002
done
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2003
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2004
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  2005
subsection {* More Theorems about Sin and Cos *}
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  2006
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2007
lemma cos_45: "cos (pi / 4) = sqrt 2 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2008
proof -
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2009
  let ?c = "cos (pi / 4)" and ?s = "sin (pi / 4)"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2010
  have nonneg: "0 \<le> ?c"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2011
    by (rule cos_ge_zero, rule order_trans [where y=0], simp_all)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2012
  have "0 = cos (pi / 4 + pi / 4)"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2013
    by simp
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2014
  also have "cos (pi / 4 + pi / 4) = ?c\<twosuperior> - ?s\<twosuperior>"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2015
    by (simp only: cos_add power2_eq_square)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2016
  also have "\<dots> = 2 * ?c\<twosuperior> - 1"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2017
    by (simp add: sin_squared_eq)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2018
  finally have "?c\<twosuperior> = (sqrt 2 / 2)\<twosuperior>"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2019
    by (simp add: power_divide)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2020
  thus ?thesis
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2021
    using nonneg by (rule power2_eq_imp_eq) simp
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2022
qed
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2023
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2024
lemma cos_30: "cos (pi / 6) = sqrt 3 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2025
proof -
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2026
  let ?c = "cos (pi / 6)" and ?s = "sin (pi / 6)"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2027
  have pos_c: "0 < ?c"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2028
    by (rule cos_gt_zero, simp, simp)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2029
  have "0 = cos (pi / 6 + pi / 6 + pi / 6)"
23066
26a9157b620a new field_combine_numerals simproc, which uses fractions as coefficients
huffman
parents: 23053
diff changeset
  2030
    by simp
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2031
  also have "\<dots> = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2032
    by (simp only: cos_add sin_add)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2033
  also have "\<dots> = ?c * (?c\<twosuperior> - 3 * ?s\<twosuperior>)"
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23441
diff changeset
  2034
    by (simp add: ring_simps power2_eq_square)
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2035
  finally have "?c\<twosuperior> = (sqrt 3 / 2)\<twosuperior>"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2036
    using pos_c by (simp add: sin_squared_eq power_divide)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2037
  thus ?thesis
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2038
    using pos_c [THEN order_less_imp_le]
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2039
    by (rule power2_eq_imp_eq) simp
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2040
qed
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2041
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2042
lemma sin_45: "sin (pi / 4) = sqrt 2 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2043
proof -
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2044
  have "sin (pi / 4) = cos (pi / 2 - pi / 4)" by (rule sin_cos_eq)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2045
  also have "pi / 2 - pi / 4 = pi / 4" by simp
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2046
  also have "cos (pi / 4) = sqrt 2 / 2" by (rule cos_45)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2047
  finally show ?thesis .
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2048
qed
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2049
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2050
lemma sin_60: "sin (pi / 3) = sqrt 3 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2051
proof -
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2052
  have "sin (pi / 3) = cos (pi / 2 - pi / 3)" by (rule sin_cos_eq)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2053
  also have "pi / 2 - pi / 3 = pi / 6" by simp
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2054
  also have "cos (pi / 6) = sqrt 3 / 2" by (rule cos_30)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2055
  finally show ?thesis .
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2056
qed
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2057
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2058
lemma cos_60: "cos (pi / 3) = 1 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2059
apply (rule power2_eq_imp_eq)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2060
apply (simp add: cos_squared_eq sin_60 power_divide)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2061
apply (rule cos_ge_zero, rule order_trans [where y=0], simp_all)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2062
done
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2063
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2064
lemma sin_30: "sin (pi / 6) = 1 / 2"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2065
proof -
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2066
  have "sin (pi / 6) = cos (pi / 2 - pi / 6)" by (rule sin_cos_eq)
23066
26a9157b620a new field_combine_numerals simproc, which uses fractions as coefficients
huffman
parents: 23053
diff changeset
  2067
  also have "pi / 2 - pi / 6 = pi / 3" by simp
23052
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2068
  also have "cos (pi / 3) = 1 / 2" by (rule cos_60)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2069
  finally show ?thesis .
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2070
qed
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2071
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2072
lemma tan_30: "tan (pi / 6) = 1 / sqrt 3"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2073
unfolding tan_def by (simp add: sin_30 cos_30)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2074
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2075
lemma tan_45: "tan (pi / 4) = 1"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2076
unfolding tan_def by (simp add: sin_45 cos_45)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2077
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2078
lemma tan_60: "tan (pi / 3) = sqrt 3"
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2079
unfolding tan_def by (simp add: sin_60 cos_60)
0e36f0dbfa1c add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
huffman
parents: 23049
diff changeset
  2080
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  2081
text{*NEEDED??*}
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2082
lemma [simp]:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2083
     "sin (x + 1 / 2 * real (Suc m) * pi) =  
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2084
      cos (x + 1 / 2 * real  (m) * pi)"
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2085
by (simp only: cos_add sin_add real_of_nat_Suc left_distrib right_distrib, auto)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2086
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 15081
diff changeset
  2087
text{*NEEDED??*}
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2088
lemma [simp]:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2089
     "sin (x + real (Suc m) * pi / 2) =  
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2090
      cos (x + real (m) * pi / 2)"
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2091
by (simp only: cos_add sin_add real_of_nat_Suc add_divide_distrib left_distrib, auto)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2092
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2093
lemma DERIV_sin_add [simp]: "DERIV (%x. sin (x + k)) xa :> cos (xa + k)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2094
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2095
apply (rule_tac f = sin and g = "%x. x + k" in DERIV_chain2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2096
apply (best intro!: DERIV_intros intro: DERIV_chain2)+
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2097
apply (simp (no_asm))
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2098
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2099
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2100
lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi / 2) = (-1) ^ n"
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2101
proof -
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2102
  have "sin ((real n + 1/2) * pi) = cos (real n * pi)"
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2103
    by (auto simp add: right_distrib sin_add left_distrib mult_ac)
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2104
  thus ?thesis
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2105
    by (simp add: real_of_nat_Suc left_distrib add_divide_distrib 
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2106
                  mult_commute [of pi])
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  2107
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2108
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2109
lemma cos_2npi [simp]: "cos (2 * real (n::nat) * pi) = 1"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2110
by (simp add: cos_double mult_assoc power_add [symmetric] numeral_2_eq_2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2111
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2112
lemma cos_3over2_pi [simp]: "cos (3 / 2 * pi) = 0"
23066
26a9157b620a new field_combine_numerals simproc, which uses fractions as coefficients
huffman
parents: 23053
diff changeset
  2113
apply (subgoal_tac "cos (pi + pi/2) = 0", simp)
26a9157b620a new field_combine_numerals simproc, which uses fractions as coefficients
huffman
parents: 23053
diff changeset
  2114
apply (subst cos_add, simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2115
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2116
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2117
lemma sin_2npi [simp]: "sin (2 * real (n::nat) * pi) = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2118
by (auto simp add: mult_assoc)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2119
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2120
lemma sin_3over2_pi [simp]: "sin (3 / 2 * pi) = - 1"
23066
26a9157b620a new field_combine_numerals simproc, which uses fractions as coefficients
huffman
parents: 23053
diff changeset
  2121
apply (subgoal_tac "sin (pi + pi/2) = - 1", simp)
26a9157b620a new field_combine_numerals simproc, which uses fractions as coefficients
huffman
parents: 23053
diff changeset
  2122
apply (subst sin_add, simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2123
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2124
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2125
(*NEEDED??*)
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2126
lemma [simp]:
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2127
     "cos(x + 1 / 2 * real(Suc m) * pi) = -sin (x + 1 / 2 * real m * pi)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2128
apply (simp only: cos_add sin_add real_of_nat_Suc right_distrib left_distrib minus_mult_right, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2129
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2130
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2131
(*NEEDED??*)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2132
lemma [simp]: "cos (x + real(Suc m) * pi / 2) = -sin (x + real m * pi / 2)"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2133
by (simp only: cos_add sin_add real_of_nat_Suc left_distrib add_divide_distrib, auto)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2134
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2135
lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2136
by (simp only: cos_add sin_add real_of_nat_Suc left_distrib right_distrib add_divide_distrib, auto)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2137
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2138
lemma DERIV_cos_add [simp]: "DERIV (%x. cos (x + k)) xa :> - sin (xa + k)"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2139
apply (rule lemma_DERIV_subst)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2140
apply (rule_tac f = cos and g = "%x. x + k" in DERIV_chain2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2141
apply (best intro!: DERIV_intros intro: DERIV_chain2)+
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2142
apply (simp (no_asm))
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2143
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2144
15081
32402f5624d1 abs notation
paulson
parents: 15079
diff changeset
  2145
lemma sin_zero_abs_cos_one: "sin x = 0 ==> \<bar>cos x\<bar> = 1"
15539
333a88244569 comprehensive cleanup, replacing sumr by setsum
nipkow
parents: 15536
diff changeset
  2146
by (auto simp add: sin_zero_iff even_mult_two_ex)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2147
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  2148
lemma exp_eq_one_iff [simp]: "(exp (x::real) = 1) = (x = 0)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2149
apply auto
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2150
apply (drule_tac f = ln in arg_cong, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2151
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2152
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2153
lemma cos_one_sin_zero: "cos x = 1 ==> sin x = 0"
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2154
by (cut_tac x = x in sin_cos_squared_add3, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2155
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2156
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2157
subsection {* Existence of Polar Coordinates *}
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2158
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2159
lemma cos_x_y_le_one: "\<bar>x / sqrt (x\<twosuperior> + y\<twosuperior>)\<bar> \<le> 1"
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2160
apply (rule power2_le_imp_le [OF _ zero_le_one])
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2161
apply (simp add: abs_divide power_divide divide_le_eq not_sum_power2_lt_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2162
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2163
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2164
lemma cos_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> cos (arccos y) = y"
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2165
by (simp add: abs_le_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2166
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2167
lemma sin_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> sin (arccos y) = sqrt (1 - y\<twosuperior>)"
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2168
by (simp add: sin_arccos abs_le_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2169
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2170
lemmas cos_arccos_lemma1 = cos_arccos_abs [OF cos_x_y_le_one]
15228
4d332d10fa3d revised simprules for division
paulson
parents: 15140
diff changeset
  2171
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2172
lemmas sin_arccos_lemma1 = sin_arccos_abs [OF cos_x_y_le_one]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2173
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2174
lemma polar_ex1:
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2175
     "0 < y ==> \<exists>r a. x = r * cos a & y = r * sin a"
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2176
apply (rule_tac x = "sqrt (x\<twosuperior> + y\<twosuperior>)" in exI)
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2177
apply (rule_tac x = "arccos (x / sqrt (x\<twosuperior> + y\<twosuperior>))" in exI)
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2178
apply (simp add: cos_arccos_lemma1)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2179
apply (simp add: sin_arccos_lemma1)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2180
apply (simp add: power_divide)
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2181
apply (simp add: real_sqrt_mult [symmetric])
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  2182
apply (simp add: right_diff_distrib)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2183
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2184
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2185
lemma polar_ex2:
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2186
     "y < 0 ==> \<exists>r a. x = r * cos a & y = r * sin a"
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2187
apply (insert polar_ex1 [where x=x and y="-y"], simp, clarify)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2188
apply (rule_tac x = r in exI)
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2189
apply (rule_tac x = "-a" in exI, simp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2190
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2191
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2192
lemma polar_Ex: "\<exists>r a. x = r * cos a & y = r * sin a"
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2193
apply (rule_tac x=0 and y=y in linorder_cases)
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2194
apply (erule polar_ex1)
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2195
apply (rule_tac x=x in exI, rule_tac x=0 in exI, simp)
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  2196
apply (erule polar_ex2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2197
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2198
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2199
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  2200
subsection {* Theorems about Limits *}
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  2201
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2202
(* need to rename second isCont_inverse *)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2203
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2204
lemma isCont_inv_fun:
20561
6a6d8004322f generalize type of (NS)LIM to work on functions with vector space domain types
huffman
parents: 20552
diff changeset
  2205
  fixes f g :: "real \<Rightarrow> real"
6a6d8004322f generalize type of (NS)LIM to work on functions with vector space domain types
huffman
parents: 20552
diff changeset
  2206
  shows "[| 0 < d; \<forall>z. \<bar>z - x\<bar> \<le> d --> g(f(z)) = z;  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2207
         \<forall>z. \<bar>z - x\<bar> \<le> d --> isCont f z |]  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2208
      ==> isCont g (f x)"
22722
704de05715b4 lemma isCont_inv_fun is same as isCont_inverse_function
huffman
parents: 22721
diff changeset
  2209
by (rule isCont_inverse_function)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2210
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2211
lemma isCont_inv_fun_inv:
20552
2c31dd358c21 generalized types of many constants to work over arbitrary vector spaces;
huffman
parents: 20516
diff changeset
  2212
  fixes f g :: "real \<Rightarrow> real"
2c31dd358c21 generalized types of many constants to work over arbitrary vector spaces;
huffman
parents: 20516
diff changeset
  2213
  shows "[| 0 < d;  
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2214
         \<forall>z. \<bar>z - x\<bar> \<le> d --> g(f(z)) = z;  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2215
         \<forall>z. \<bar>z - x\<bar> \<le> d --> isCont f z |]  
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2216
       ==> \<exists>e. 0 < e &  
15081
32402f5624d1 abs notation
paulson
parents: 15079
diff changeset
  2217
             (\<forall>y. 0 < \<bar>y - f(x)\<bar> & \<bar>y - f(x)\<bar> < e --> f(g(y)) = y)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2218
apply (drule isCont_inj_range)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2219
prefer 2 apply (assumption, assumption, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2220
apply (rule_tac x = e in exI, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2221
apply (rotate_tac 2)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2222
apply (drule_tac x = y in spec, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2223
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2224
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2225
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2226
text{*Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110*}
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2227
lemma LIM_fun_gt_zero:
20552
2c31dd358c21 generalized types of many constants to work over arbitrary vector spaces;
huffman
parents: 20516
diff changeset
  2228
     "[| f -- c --> (l::real); 0 < l |]  
20561
6a6d8004322f generalize type of (NS)LIM to work on functions with vector space domain types
huffman
parents: 20552
diff changeset
  2229
         ==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> 0 < f x)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2230
apply (auto simp add: LIM_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2231
apply (drule_tac x = "l/2" in spec, safe, force)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2232
apply (rule_tac x = s in exI)
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  2233
apply (auto simp only: abs_less_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2234
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2235
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  2236
lemma LIM_fun_less_zero:
20552
2c31dd358c21 generalized types of many constants to work over arbitrary vector spaces;
huffman
parents: 20516
diff changeset
  2237
     "[| f -- c --> (l::real); l < 0 |]  
20561
6a6d8004322f generalize type of (NS)LIM to work on functions with vector space domain types
huffman
parents: 20552
diff changeset
  2238
      ==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> f x < 0)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2239
apply (auto simp add: LIM_def)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2240
apply (drule_tac x = "-l/2" in spec, safe, force)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2241
apply (rule_tac x = s in exI)
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22978
diff changeset
  2242
apply (auto simp only: abs_less_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2243
done
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2244
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2245
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2246
lemma LIM_fun_not_zero:
20552
2c31dd358c21 generalized types of many constants to work over arbitrary vector spaces;
huffman
parents: 20516
diff changeset
  2247
     "[| f -- c --> (l::real); l \<noteq> 0 |] 
20561
6a6d8004322f generalize type of (NS)LIM to work on functions with vector space domain types
huffman
parents: 20552
diff changeset
  2248
      ==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> f x \<noteq> 0)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2249
apply (cut_tac x = l and y = 0 in linorder_less_linear, auto)
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2250
apply (drule LIM_fun_less_zero)
15241
a3949068537e tweaks concerned with poly bug-fixing
paulson
parents: 15234
diff changeset
  2251
apply (drule_tac [3] LIM_fun_gt_zero)
a3949068537e tweaks concerned with poly bug-fixing
paulson
parents: 15234
diff changeset
  2252
apply force+
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  2253
done
20432
07ec57376051 lin_arith_prover: splitting reverted because of performance loss
webertj
parents: 20256
diff changeset
  2254
  
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
  2255
end