author | haftmann |
Wed, 09 Oct 2019 14:51:54 +0000 | |
changeset 70817 | dd675800469d |
parent 70356 | 4a327c061870 |
child 71043 | 2fab72ab919a |
permissions | -rw-r--r-- |
51523 | 1 |
(* Title: HOL/Real.thy |
2 |
Author: Jacques D. Fleuriot, University of Edinburgh, 1998 |
|
3 |
Author: Larry Paulson, University of Cambridge |
|
4 |
Author: Jeremy Avigad, Carnegie Mellon University |
|
5 |
Author: Florian Zuleger, Johannes Hoelzl, and Simon Funke, TU Muenchen |
|
6 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4 |
|
7 |
Construction of Cauchy Reals by Brian Huffman, 2010 |
|
8 |
*) |
|
9 |
||
60758 | 10 |
section \<open>Development of the Reals using Cauchy Sequences\<close> |
51523 | 11 |
|
12 |
theory Real |
|
63961
2fd9656c4c82
invoke argo as part of the tried automatic proof methods
boehmes
parents:
63960
diff
changeset
|
13 |
imports Rat |
51523 | 14 |
begin |
15 |
||
60758 | 16 |
text \<open> |
63680 | 17 |
This theory contains a formalization of the real numbers as equivalence |
18 |
classes of Cauchy sequences of rationals. See |
|
19 |
\<^file>\<open>~~/src/HOL/ex/Dedekind_Real.thy\<close> for an alternative construction using |
|
20 |
Dedekind cuts. |
|
60758 | 21 |
\<close> |
51523 | 22 |
|
63353 | 23 |
|
60758 | 24 |
subsection \<open>Preliminary lemmas\<close> |
51523 | 25 |
|
67226 | 26 |
text\<open>Useful in convergence arguments\<close> |
66793
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
27 |
lemma inverse_of_nat_le: |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
28 |
fixes n::nat shows "\<lbrakk>n \<le> m; n\<noteq>0\<rbrakk> \<Longrightarrow> 1 / of_nat m \<le> (1::'a::linordered_field) / of_nat n" |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
29 |
by (simp add: frac_le) |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
30 |
|
63494 | 31 |
lemma add_diff_add: "(a + c) - (b + d) = (a - b) + (c - d)" |
32 |
for a b c d :: "'a::ab_group_add" |
|
51523 | 33 |
by simp |
34 |
||
63494 | 35 |
lemma minus_diff_minus: "- a - - b = - (a - b)" |
36 |
for a b :: "'a::ab_group_add" |
|
51523 | 37 |
by simp |
38 |
||
63494 | 39 |
lemma mult_diff_mult: "(x * y - a * b) = x * (y - b) + (x - a) * b" |
40 |
for x y a b :: "'a::ring" |
|
51523 | 41 |
by (simp add: algebra_simps) |
42 |
||
43 |
lemma inverse_diff_inverse: |
|
44 |
fixes a b :: "'a::division_ring" |
|
45 |
assumes "a \<noteq> 0" and "b \<noteq> 0" |
|
46 |
shows "inverse a - inverse b = - (inverse a * (a - b) * inverse b)" |
|
47 |
using assms by (simp add: algebra_simps) |
|
48 |
||
49 |
lemma obtain_pos_sum: |
|
50 |
fixes r :: rat assumes r: "0 < r" |
|
51 |
obtains s t where "0 < s" and "0 < t" and "r = s + t" |
|
52 |
proof |
|
63353 | 53 |
from r show "0 < r/2" by simp |
54 |
from r show "0 < r/2" by simp |
|
55 |
show "r = r/2 + r/2" by simp |
|
51523 | 56 |
qed |
57 |
||
63353 | 58 |
|
60758 | 59 |
subsection \<open>Sequences that converge to zero\<close> |
51523 | 60 |
|
63353 | 61 |
definition vanishes :: "(nat \<Rightarrow> rat) \<Rightarrow> bool" |
62 |
where "vanishes X \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r)" |
|
51523 | 63 |
|
64 |
lemma vanishesI: "(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r) \<Longrightarrow> vanishes X" |
|
65 |
unfolding vanishes_def by simp |
|
66 |
||
63353 | 67 |
lemma vanishesD: "vanishes X \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r" |
51523 | 68 |
unfolding vanishes_def by simp |
69 |
||
70 |
lemma vanishes_const [simp]: "vanishes (\<lambda>n. c) \<longleftrightarrow> c = 0" |
|
68662 | 71 |
proof (cases "c = 0") |
72 |
case True |
|
73 |
then show ?thesis |
|
74 |
by (simp add: vanishesI) |
|
75 |
next |
|
76 |
case False |
|
77 |
then show ?thesis |
|
78 |
unfolding vanishes_def |
|
79 |
using zero_less_abs_iff by blast |
|
80 |
qed |
|
51523 | 81 |
|
82 |
lemma vanishes_minus: "vanishes X \<Longrightarrow> vanishes (\<lambda>n. - X n)" |
|
83 |
unfolding vanishes_def by simp |
|
84 |
||
85 |
lemma vanishes_add: |
|
63353 | 86 |
assumes X: "vanishes X" |
87 |
and Y: "vanishes Y" |
|
51523 | 88 |
shows "vanishes (\<lambda>n. X n + Y n)" |
89 |
proof (rule vanishesI) |
|
63353 | 90 |
fix r :: rat |
91 |
assume "0 < r" |
|
51523 | 92 |
then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" |
93 |
by (rule obtain_pos_sum) |
|
94 |
obtain i where i: "\<forall>n\<ge>i. \<bar>X n\<bar> < s" |
|
95 |
using vanishesD [OF X s] .. |
|
96 |
obtain j where j: "\<forall>n\<ge>j. \<bar>Y n\<bar> < t" |
|
97 |
using vanishesD [OF Y t] .. |
|
98 |
have "\<forall>n\<ge>max i j. \<bar>X n + Y n\<bar> < r" |
|
63353 | 99 |
proof clarsimp |
100 |
fix n |
|
101 |
assume n: "i \<le> n" "j \<le> n" |
|
63494 | 102 |
have "\<bar>X n + Y n\<bar> \<le> \<bar>X n\<bar> + \<bar>Y n\<bar>" |
103 |
by (rule abs_triangle_ineq) |
|
104 |
also have "\<dots> < s + t" |
|
105 |
by (simp add: add_strict_mono i j n) |
|
106 |
finally show "\<bar>X n + Y n\<bar> < r" |
|
107 |
by (simp only: r) |
|
51523 | 108 |
qed |
63353 | 109 |
then show "\<exists>k. \<forall>n\<ge>k. \<bar>X n + Y n\<bar> < r" .. |
51523 | 110 |
qed |
111 |
||
112 |
lemma vanishes_diff: |
|
63353 | 113 |
assumes "vanishes X" "vanishes Y" |
51523 | 114 |
shows "vanishes (\<lambda>n. X n - Y n)" |
63353 | 115 |
unfolding diff_conv_add_uminus by (intro vanishes_add vanishes_minus assms) |
51523 | 116 |
|
117 |
lemma vanishes_mult_bounded: |
|
118 |
assumes X: "\<exists>a>0. \<forall>n. \<bar>X n\<bar> < a" |
|
119 |
assumes Y: "vanishes (\<lambda>n. Y n)" |
|
120 |
shows "vanishes (\<lambda>n. X n * Y n)" |
|
121 |
proof (rule vanishesI) |
|
63353 | 122 |
fix r :: rat |
123 |
assume r: "0 < r" |
|
51523 | 124 |
obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a" |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
125 |
using X by blast |
51523 | 126 |
obtain b where b: "0 < b" "r = a * b" |
127 |
proof |
|
56541 | 128 |
show "0 < r / a" using r a by simp |
51523 | 129 |
show "r = a * (r / a)" using a by simp |
130 |
qed |
|
131 |
obtain k where k: "\<forall>n\<ge>k. \<bar>Y n\<bar> < b" |
|
132 |
using vanishesD [OF Y b(1)] .. |
|
133 |
have "\<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r" |
|
134 |
by (simp add: b(2) abs_mult mult_strict_mono' a k) |
|
63353 | 135 |
then show "\<exists>k. \<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r" .. |
51523 | 136 |
qed |
137 |
||
63353 | 138 |
|
60758 | 139 |
subsection \<open>Cauchy sequences\<close> |
51523 | 140 |
|
63353 | 141 |
definition cauchy :: "(nat \<Rightarrow> rat) \<Rightarrow> bool" |
142 |
where "cauchy X \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r)" |
|
51523 | 143 |
|
63353 | 144 |
lemma cauchyI: "(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r) \<Longrightarrow> cauchy X" |
51523 | 145 |
unfolding cauchy_def by simp |
146 |
||
63353 | 147 |
lemma cauchyD: "cauchy X \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r" |
51523 | 148 |
unfolding cauchy_def by simp |
149 |
||
150 |
lemma cauchy_const [simp]: "cauchy (\<lambda>n. x)" |
|
151 |
unfolding cauchy_def by simp |
|
152 |
||
153 |
lemma cauchy_add [simp]: |
|
154 |
assumes X: "cauchy X" and Y: "cauchy Y" |
|
155 |
shows "cauchy (\<lambda>n. X n + Y n)" |
|
156 |
proof (rule cauchyI) |
|
63353 | 157 |
fix r :: rat |
158 |
assume "0 < r" |
|
51523 | 159 |
then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" |
160 |
by (rule obtain_pos_sum) |
|
161 |
obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s" |
|
162 |
using cauchyD [OF X s] .. |
|
163 |
obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t" |
|
164 |
using cauchyD [OF Y t] .. |
|
165 |
have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r" |
|
63353 | 166 |
proof clarsimp |
167 |
fix m n |
|
168 |
assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n" |
|
51523 | 169 |
have "\<bar>(X m + Y m) - (X n + Y n)\<bar> \<le> \<bar>X m - X n\<bar> + \<bar>Y m - Y n\<bar>" |
170 |
unfolding add_diff_add by (rule abs_triangle_ineq) |
|
171 |
also have "\<dots> < s + t" |
|
63353 | 172 |
by (rule add_strict_mono) (simp_all add: i j *) |
173 |
finally show "\<bar>(X m + Y m) - (X n + Y n)\<bar> < r" by (simp only: r) |
|
51523 | 174 |
qed |
63353 | 175 |
then show "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r" .. |
51523 | 176 |
qed |
177 |
||
178 |
lemma cauchy_minus [simp]: |
|
179 |
assumes X: "cauchy X" |
|
180 |
shows "cauchy (\<lambda>n. - X n)" |
|
63353 | 181 |
using assms unfolding cauchy_def |
182 |
unfolding minus_diff_minus abs_minus_cancel . |
|
51523 | 183 |
|
184 |
lemma cauchy_diff [simp]: |
|
63353 | 185 |
assumes "cauchy X" "cauchy Y" |
51523 | 186 |
shows "cauchy (\<lambda>n. X n - Y n)" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53652
diff
changeset
|
187 |
using assms unfolding diff_conv_add_uminus by (simp del: add_uminus_conv_diff) |
51523 | 188 |
|
189 |
lemma cauchy_imp_bounded: |
|
63353 | 190 |
assumes "cauchy X" |
191 |
shows "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b" |
|
51523 | 192 |
proof - |
193 |
obtain k where k: "\<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < 1" |
|
194 |
using cauchyD [OF assms zero_less_one] .. |
|
195 |
show "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b" |
|
196 |
proof (intro exI conjI allI) |
|
197 |
have "0 \<le> \<bar>X 0\<bar>" by simp |
|
198 |
also have "\<bar>X 0\<bar> \<le> Max (abs ` X ` {..k})" by simp |
|
199 |
finally have "0 \<le> Max (abs ` X ` {..k})" . |
|
63353 | 200 |
then show "0 < Max (abs ` X ` {..k}) + 1" by simp |
51523 | 201 |
next |
202 |
fix n :: nat |
|
203 |
show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" |
|
204 |
proof (rule linorder_le_cases) |
|
205 |
assume "n \<le> k" |
|
63353 | 206 |
then have "\<bar>X n\<bar> \<le> Max (abs ` X ` {..k})" by simp |
207 |
then show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" by simp |
|
51523 | 208 |
next |
209 |
assume "k \<le> n" |
|
210 |
have "\<bar>X n\<bar> = \<bar>X k + (X n - X k)\<bar>" by simp |
|
211 |
also have "\<bar>X k + (X n - X k)\<bar> \<le> \<bar>X k\<bar> + \<bar>X n - X k\<bar>" |
|
212 |
by (rule abs_triangle_ineq) |
|
213 |
also have "\<dots> < Max (abs ` X ` {..k}) + 1" |
|
63353 | 214 |
by (rule add_le_less_mono) (simp_all add: k \<open>k \<le> n\<close>) |
51523 | 215 |
finally show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" . |
216 |
qed |
|
217 |
qed |
|
218 |
qed |
|
219 |
||
220 |
lemma cauchy_mult [simp]: |
|
221 |
assumes X: "cauchy X" and Y: "cauchy Y" |
|
222 |
shows "cauchy (\<lambda>n. X n * Y n)" |
|
223 |
proof (rule cauchyI) |
|
224 |
fix r :: rat assume "0 < r" |
|
225 |
then obtain u v where u: "0 < u" and v: "0 < v" and "r = u + v" |
|
226 |
by (rule obtain_pos_sum) |
|
227 |
obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a" |
|
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
228 |
using cauchy_imp_bounded [OF X] by blast |
51523 | 229 |
obtain b where b: "0 < b" "\<forall>n. \<bar>Y n\<bar> < b" |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
230 |
using cauchy_imp_bounded [OF Y] by blast |
51523 | 231 |
obtain s t where s: "0 < s" and t: "0 < t" and r: "r = a * t + s * b" |
232 |
proof |
|
56541 | 233 |
show "0 < v/b" using v b(1) by simp |
234 |
show "0 < u/a" using u a(1) by simp |
|
51523 | 235 |
show "r = a * (u/a) + (v/b) * b" |
60758 | 236 |
using a(1) b(1) \<open>r = u + v\<close> by simp |
51523 | 237 |
qed |
238 |
obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s" |
|
239 |
using cauchyD [OF X s] .. |
|
240 |
obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t" |
|
241 |
using cauchyD [OF Y t] .. |
|
242 |
have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>X m * Y m - X n * Y n\<bar> < r" |
|
63353 | 243 |
proof clarsimp |
244 |
fix m n |
|
245 |
assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n" |
|
51523 | 246 |
have "\<bar>X m * Y m - X n * Y n\<bar> = \<bar>X m * (Y m - Y n) + (X m - X n) * Y n\<bar>" |
247 |
unfolding mult_diff_mult .. |
|
248 |
also have "\<dots> \<le> \<bar>X m * (Y m - Y n)\<bar> + \<bar>(X m - X n) * Y n\<bar>" |
|
249 |
by (rule abs_triangle_ineq) |
|
250 |
also have "\<dots> = \<bar>X m\<bar> * \<bar>Y m - Y n\<bar> + \<bar>X m - X n\<bar> * \<bar>Y n\<bar>" |
|
251 |
unfolding abs_mult .. |
|
252 |
also have "\<dots> < a * t + s * b" |
|
253 |
by (simp_all add: add_strict_mono mult_strict_mono' a b i j *) |
|
63494 | 254 |
finally show "\<bar>X m * Y m - X n * Y n\<bar> < r" |
255 |
by (simp only: r) |
|
51523 | 256 |
qed |
63353 | 257 |
then show "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m * Y m - X n * Y n\<bar> < r" .. |
51523 | 258 |
qed |
259 |
||
260 |
lemma cauchy_not_vanishes_cases: |
|
261 |
assumes X: "cauchy X" |
|
262 |
assumes nz: "\<not> vanishes X" |
|
263 |
shows "\<exists>b>0. \<exists>k. (\<forall>n\<ge>k. b < - X n) \<or> (\<forall>n\<ge>k. b < X n)" |
|
264 |
proof - |
|
265 |
obtain r where "0 < r" and r: "\<forall>k. \<exists>n\<ge>k. r \<le> \<bar>X n\<bar>" |
|
266 |
using nz unfolding vanishes_def by (auto simp add: not_less) |
|
267 |
obtain s t where s: "0 < s" and t: "0 < t" and "r = s + t" |
|
60758 | 268 |
using \<open>0 < r\<close> by (rule obtain_pos_sum) |
51523 | 269 |
obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s" |
270 |
using cauchyD [OF X s] .. |
|
271 |
obtain k where "i \<le> k" and "r \<le> \<bar>X k\<bar>" |
|
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
272 |
using r by blast |
51523 | 273 |
have k: "\<forall>n\<ge>k. \<bar>X n - X k\<bar> < s" |
60758 | 274 |
using i \<open>i \<le> k\<close> by auto |
51523 | 275 |
have "X k \<le> - r \<or> r \<le> X k" |
60758 | 276 |
using \<open>r \<le> \<bar>X k\<bar>\<close> by auto |
63353 | 277 |
then have "(\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" |
60758 | 278 |
unfolding \<open>r = s + t\<close> using k by auto |
63353 | 279 |
then have "\<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" .. |
280 |
then show "\<exists>t>0. \<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" |
|
51523 | 281 |
using t by auto |
282 |
qed |
|
283 |
||
284 |
lemma cauchy_not_vanishes: |
|
285 |
assumes X: "cauchy X" |
|
63494 | 286 |
and nz: "\<not> vanishes X" |
51523 | 287 |
shows "\<exists>b>0. \<exists>k. \<forall>n\<ge>k. b < \<bar>X n\<bar>" |
63353 | 288 |
using cauchy_not_vanishes_cases [OF assms] |
68662 | 289 |
by (elim ex_forward conj_forward asm_rl) auto |
51523 | 290 |
|
291 |
lemma cauchy_inverse [simp]: |
|
292 |
assumes X: "cauchy X" |
|
63494 | 293 |
and nz: "\<not> vanishes X" |
51523 | 294 |
shows "cauchy (\<lambda>n. inverse (X n))" |
295 |
proof (rule cauchyI) |
|
63353 | 296 |
fix r :: rat |
297 |
assume "0 < r" |
|
51523 | 298 |
obtain b i where b: "0 < b" and i: "\<forall>n\<ge>i. b < \<bar>X n\<bar>" |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
299 |
using cauchy_not_vanishes [OF X nz] by blast |
51523 | 300 |
from b i have nz: "\<forall>n\<ge>i. X n \<noteq> 0" by auto |
301 |
obtain s where s: "0 < s" and r: "r = inverse b * s * inverse b" |
|
302 |
proof |
|
60758 | 303 |
show "0 < b * r * b" by (simp add: \<open>0 < r\<close> b) |
51523 | 304 |
show "r = inverse b * (b * r * b) * inverse b" |
305 |
using b by simp |
|
306 |
qed |
|
307 |
obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>X m - X n\<bar> < s" |
|
308 |
using cauchyD [OF X s] .. |
|
309 |
have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>inverse (X m) - inverse (X n)\<bar> < r" |
|
63353 | 310 |
proof clarsimp |
311 |
fix m n |
|
312 |
assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n" |
|
313 |
have "\<bar>inverse (X m) - inverse (X n)\<bar> = inverse \<bar>X m\<bar> * \<bar>X m - X n\<bar> * inverse \<bar>X n\<bar>" |
|
51523 | 314 |
by (simp add: inverse_diff_inverse nz * abs_mult) |
315 |
also have "\<dots> < inverse b * s * inverse b" |
|
63353 | 316 |
by (simp add: mult_strict_mono less_imp_inverse_less i j b * s) |
317 |
finally show "\<bar>inverse (X m) - inverse (X n)\<bar> < r" by (simp only: r) |
|
51523 | 318 |
qed |
63353 | 319 |
then show "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>inverse (X m) - inverse (X n)\<bar> < r" .. |
51523 | 320 |
qed |
321 |
||
322 |
lemma vanishes_diff_inverse: |
|
323 |
assumes X: "cauchy X" "\<not> vanishes X" |
|
63353 | 324 |
and Y: "cauchy Y" "\<not> vanishes Y" |
325 |
and XY: "vanishes (\<lambda>n. X n - Y n)" |
|
51523 | 326 |
shows "vanishes (\<lambda>n. inverse (X n) - inverse (Y n))" |
327 |
proof (rule vanishesI) |
|
63353 | 328 |
fix r :: rat |
329 |
assume r: "0 < r" |
|
51523 | 330 |
obtain a i where a: "0 < a" and i: "\<forall>n\<ge>i. a < \<bar>X n\<bar>" |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
331 |
using cauchy_not_vanishes [OF X] by blast |
51523 | 332 |
obtain b j where b: "0 < b" and j: "\<forall>n\<ge>j. b < \<bar>Y n\<bar>" |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
333 |
using cauchy_not_vanishes [OF Y] by blast |
51523 | 334 |
obtain s where s: "0 < s" and "inverse a * s * inverse b = r" |
335 |
proof |
|
63494 | 336 |
show "0 < a * r * b" |
337 |
using a r b by simp |
|
338 |
show "inverse a * (a * r * b) * inverse b = r" |
|
339 |
using a r b by simp |
|
51523 | 340 |
qed |
341 |
obtain k where k: "\<forall>n\<ge>k. \<bar>X n - Y n\<bar> < s" |
|
342 |
using vanishesD [OF XY s] .. |
|
343 |
have "\<forall>n\<ge>max (max i j) k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r" |
|
63353 | 344 |
proof clarsimp |
345 |
fix n |
|
346 |
assume n: "i \<le> n" "j \<le> n" "k \<le> n" |
|
347 |
with i j a b have "X n \<noteq> 0" and "Y n \<noteq> 0" |
|
348 |
by auto |
|
349 |
then have "\<bar>inverse (X n) - inverse (Y n)\<bar> = inverse \<bar>X n\<bar> * \<bar>X n - Y n\<bar> * inverse \<bar>Y n\<bar>" |
|
51523 | 350 |
by (simp add: inverse_diff_inverse abs_mult) |
351 |
also have "\<dots> < inverse a * s * inverse b" |
|
63353 | 352 |
by (intro mult_strict_mono' less_imp_inverse_less) (simp_all add: a b i j k n) |
60758 | 353 |
also note \<open>inverse a * s * inverse b = r\<close> |
51523 | 354 |
finally show "\<bar>inverse (X n) - inverse (Y n)\<bar> < r" . |
355 |
qed |
|
63353 | 356 |
then show "\<exists>k. \<forall>n\<ge>k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r" .. |
51523 | 357 |
qed |
358 |
||
63353 | 359 |
|
60758 | 360 |
subsection \<open>Equivalence relation on Cauchy sequences\<close> |
51523 | 361 |
|
362 |
definition realrel :: "(nat \<Rightarrow> rat) \<Rightarrow> (nat \<Rightarrow> rat) \<Rightarrow> bool" |
|
363 |
where "realrel = (\<lambda>X Y. cauchy X \<and> cauchy Y \<and> vanishes (\<lambda>n. X n - Y n))" |
|
364 |
||
63353 | 365 |
lemma realrelI [intro?]: "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> vanishes (\<lambda>n. X n - Y n) \<Longrightarrow> realrel X Y" |
366 |
by (simp add: realrel_def) |
|
51523 | 367 |
|
368 |
lemma realrel_refl: "cauchy X \<Longrightarrow> realrel X X" |
|
63353 | 369 |
by (simp add: realrel_def) |
51523 | 370 |
|
371 |
lemma symp_realrel: "symp realrel" |
|
68662 | 372 |
by (simp add: abs_minus_commute realrel_def symp_def vanishes_def) |
51523 | 373 |
|
374 |
lemma transp_realrel: "transp realrel" |
|
375 |
unfolding realrel_def |
|
68669 | 376 |
by (rule transpI) (force simp add: dest: vanishes_add) |
51523 | 377 |
|
378 |
lemma part_equivp_realrel: "part_equivp realrel" |
|
63353 | 379 |
by (blast intro: part_equivpI symp_realrel transp_realrel realrel_refl cauchy_const) |
380 |
||
51523 | 381 |
|
60758 | 382 |
subsection \<open>The field of real numbers\<close> |
51523 | 383 |
|
384 |
quotient_type real = "nat \<Rightarrow> rat" / partial: realrel |
|
385 |
morphisms rep_real Real |
|
386 |
by (rule part_equivp_realrel) |
|
387 |
||
388 |
lemma cr_real_eq: "pcr_real = (\<lambda>x y. cauchy x \<and> Real x = y)" |
|
389 |
unfolding real.pcr_cr_eq cr_real_def realrel_def by auto |
|
390 |
||
391 |
lemma Real_induct [induct type: real]: (* TODO: generate automatically *) |
|
63353 | 392 |
assumes "\<And>X. cauchy X \<Longrightarrow> P (Real X)" |
393 |
shows "P x" |
|
51523 | 394 |
proof (induct x) |
395 |
case (1 X) |
|
63353 | 396 |
then have "cauchy X" by (simp add: realrel_def) |
397 |
then show "P (Real X)" by (rule assms) |
|
51523 | 398 |
qed |
399 |
||
63353 | 400 |
lemma eq_Real: "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X = Real Y \<longleftrightarrow> vanishes (\<lambda>n. X n - Y n)" |
51523 | 401 |
using real.rel_eq_transfer |
55945 | 402 |
unfolding real.pcr_cr_eq cr_real_def rel_fun_def realrel_def by simp |
51523 | 403 |
|
51956
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
kuncar
parents:
51775
diff
changeset
|
404 |
lemma Domainp_pcr_real [transfer_domain_rule]: "Domainp pcr_real = cauchy" |
63353 | 405 |
by (simp add: real.domain_eq realrel_def) |
51523 | 406 |
|
59867
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
haftmann
parents:
59587
diff
changeset
|
407 |
instantiation real :: field |
51523 | 408 |
begin |
409 |
||
410 |
lift_definition zero_real :: "real" is "\<lambda>n. 0" |
|
411 |
by (simp add: realrel_refl) |
|
412 |
||
413 |
lift_definition one_real :: "real" is "\<lambda>n. 1" |
|
414 |
by (simp add: realrel_refl) |
|
415 |
||
416 |
lift_definition plus_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n + Y n" |
|
417 |
unfolding realrel_def add_diff_add |
|
418 |
by (simp only: cauchy_add vanishes_add simp_thms) |
|
419 |
||
420 |
lift_definition uminus_real :: "real \<Rightarrow> real" is "\<lambda>X n. - X n" |
|
421 |
unfolding realrel_def minus_diff_minus |
|
422 |
by (simp only: cauchy_minus vanishes_minus simp_thms) |
|
423 |
||
424 |
lift_definition times_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n * Y n" |
|
68662 | 425 |
proof - |
426 |
fix f1 f2 f3 f4 |
|
427 |
have "\<lbrakk>cauchy f1; cauchy f4; vanishes (\<lambda>n. f1 n - f2 n); vanishes (\<lambda>n. f3 n - f4 n)\<rbrakk> |
|
428 |
\<Longrightarrow> vanishes (\<lambda>n. f1 n * (f3 n - f4 n) + f4 n * (f1 n - f2 n))" |
|
429 |
by (simp add: vanishes_add vanishes_mult_bounded cauchy_imp_bounded) |
|
430 |
then show "\<lbrakk>realrel f1 f2; realrel f3 f4\<rbrakk> \<Longrightarrow> realrel (\<lambda>n. f1 n * f3 n) (\<lambda>n. f2 n * f4 n)" |
|
431 |
by (simp add: mult.commute realrel_def mult_diff_mult) |
|
432 |
qed |
|
51523 | 433 |
|
434 |
lift_definition inverse_real :: "real \<Rightarrow> real" |
|
435 |
is "\<lambda>X. if vanishes X then (\<lambda>n. 0) else (\<lambda>n. inverse (X n))" |
|
436 |
proof - |
|
63353 | 437 |
fix X Y |
438 |
assume "realrel X Y" |
|
439 |
then have X: "cauchy X" and Y: "cauchy Y" and XY: "vanishes (\<lambda>n. X n - Y n)" |
|
63494 | 440 |
by (simp_all add: realrel_def) |
51523 | 441 |
have "vanishes X \<longleftrightarrow> vanishes Y" |
442 |
proof |
|
443 |
assume "vanishes X" |
|
63494 | 444 |
from vanishes_diff [OF this XY] show "vanishes Y" |
445 |
by simp |
|
51523 | 446 |
next |
447 |
assume "vanishes Y" |
|
63494 | 448 |
from vanishes_add [OF this XY] show "vanishes X" |
449 |
by simp |
|
51523 | 450 |
qed |
63494 | 451 |
then show "?thesis X Y" |
452 |
by (simp add: vanishes_diff_inverse X Y XY realrel_def) |
|
51523 | 453 |
qed |
454 |
||
63353 | 455 |
definition "x - y = x + - y" for x y :: real |
51523 | 456 |
|
63353 | 457 |
definition "x div y = x * inverse y" for x y :: real |
458 |
||
459 |
lemma add_Real: "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X + Real Y = Real (\<lambda>n. X n + Y n)" |
|
460 |
using plus_real.transfer by (simp add: cr_real_eq rel_fun_def) |
|
51523 | 461 |
|
63353 | 462 |
lemma minus_Real: "cauchy X \<Longrightarrow> - Real X = Real (\<lambda>n. - X n)" |
463 |
using uminus_real.transfer by (simp add: cr_real_eq rel_fun_def) |
|
51523 | 464 |
|
63353 | 465 |
lemma diff_Real: "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X - Real Y = Real (\<lambda>n. X n - Y n)" |
466 |
by (simp add: minus_Real add_Real minus_real_def) |
|
51523 | 467 |
|
63353 | 468 |
lemma mult_Real: "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X * Real Y = Real (\<lambda>n. X n * Y n)" |
469 |
using times_real.transfer by (simp add: cr_real_eq rel_fun_def) |
|
51523 | 470 |
|
471 |
lemma inverse_Real: |
|
63353 | 472 |
"cauchy X \<Longrightarrow> inverse (Real X) = (if vanishes X then 0 else Real (\<lambda>n. inverse (X n)))" |
473 |
using inverse_real.transfer zero_real.transfer |
|
62390 | 474 |
unfolding cr_real_eq rel_fun_def by (simp split: if_split_asm, metis) |
51523 | 475 |
|
63353 | 476 |
instance |
477 |
proof |
|
51523 | 478 |
fix a b c :: real |
479 |
show "a + b = b + a" |
|
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
480 |
by transfer (simp add: ac_simps realrel_def) |
51523 | 481 |
show "(a + b) + c = a + (b + c)" |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
482 |
by transfer (simp add: ac_simps realrel_def) |
51523 | 483 |
show "0 + a = a" |
484 |
by transfer (simp add: realrel_def) |
|
485 |
show "- a + a = 0" |
|
486 |
by transfer (simp add: realrel_def) |
|
487 |
show "a - b = a + - b" |
|
488 |
by (rule minus_real_def) |
|
489 |
show "(a * b) * c = a * (b * c)" |
|
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
490 |
by transfer (simp add: ac_simps realrel_def) |
51523 | 491 |
show "a * b = b * a" |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
492 |
by transfer (simp add: ac_simps realrel_def) |
51523 | 493 |
show "1 * a = a" |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
494 |
by transfer (simp add: ac_simps realrel_def) |
51523 | 495 |
show "(a + b) * c = a * c + b * c" |
496 |
by transfer (simp add: distrib_right realrel_def) |
|
61076 | 497 |
show "(0::real) \<noteq> (1::real)" |
51523 | 498 |
by transfer (simp add: realrel_def) |
68662 | 499 |
have "vanishes (\<lambda>n. inverse (X n) * X n - 1)" if X: "cauchy X" "\<not> vanishes X" for X |
500 |
proof (rule vanishesI) |
|
501 |
fix r::rat |
|
502 |
assume "0 < r" |
|
503 |
obtain b k where "b>0" "\<forall>n\<ge>k. b < \<bar>X n\<bar>" |
|
504 |
using X cauchy_not_vanishes by blast |
|
505 |
then show "\<exists>k. \<forall>n\<ge>k. \<bar>inverse (X n) * X n - 1\<bar> < r" |
|
506 |
using \<open>0 < r\<close> by force |
|
507 |
qed |
|
508 |
then show "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1" |
|
509 |
by transfer (simp add: realrel_def) |
|
60429
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
haftmann
parents:
60352
diff
changeset
|
510 |
show "a div b = a * inverse b" |
51523 | 511 |
by (rule divide_real_def) |
512 |
show "inverse (0::real) = 0" |
|
513 |
by transfer (simp add: realrel_def) |
|
514 |
qed |
|
515 |
||
516 |
end |
|
517 |
||
63353 | 518 |
|
60758 | 519 |
subsection \<open>Positive reals\<close> |
51523 | 520 |
|
521 |
lift_definition positive :: "real \<Rightarrow> bool" |
|
522 |
is "\<lambda>X. \<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n" |
|
523 |
proof - |
|
63353 | 524 |
have 1: "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < Y n" |
525 |
if *: "realrel X Y" and **: "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n" for X Y |
|
526 |
proof - |
|
527 |
from * have XY: "vanishes (\<lambda>n. X n - Y n)" |
|
528 |
by (simp_all add: realrel_def) |
|
529 |
from ** obtain r i where "0 < r" and i: "\<forall>n\<ge>i. r < X n" |
|
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
530 |
by blast |
51523 | 531 |
obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" |
60758 | 532 |
using \<open>0 < r\<close> by (rule obtain_pos_sum) |
51523 | 533 |
obtain j where j: "\<forall>n\<ge>j. \<bar>X n - Y n\<bar> < s" |
534 |
using vanishesD [OF XY s] .. |
|
535 |
have "\<forall>n\<ge>max i j. t < Y n" |
|
63353 | 536 |
proof clarsimp |
537 |
fix n |
|
538 |
assume n: "i \<le> n" "j \<le> n" |
|
51523 | 539 |
have "\<bar>X n - Y n\<bar> < s" and "r < X n" |
540 |
using i j n by simp_all |
|
63353 | 541 |
then show "t < Y n" by (simp add: r) |
51523 | 542 |
qed |
63353 | 543 |
then show ?thesis using t by blast |
544 |
qed |
|
51523 | 545 |
fix X Y assume "realrel X Y" |
63353 | 546 |
then have "realrel X Y" and "realrel Y X" |
547 |
using symp_realrel by (auto simp: symp_def) |
|
548 |
then show "?thesis X Y" |
|
51523 | 549 |
by (safe elim!: 1) |
550 |
qed |
|
551 |
||
63353 | 552 |
lemma positive_Real: "cauchy X \<Longrightarrow> positive (Real X) \<longleftrightarrow> (\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n)" |
553 |
using positive.transfer by (simp add: cr_real_eq rel_fun_def) |
|
51523 | 554 |
|
555 |
lemma positive_zero: "\<not> positive 0" |
|
556 |
by transfer auto |
|
557 |
||
68669 | 558 |
lemma positive_add: |
559 |
assumes "positive x" "positive y" shows "positive (x + y)" |
|
560 |
proof - |
|
561 |
have *: "\<lbrakk>\<forall>n\<ge>i. a < x n; \<forall>n\<ge>j. b < y n; 0 < a; 0 < b; n \<ge> max i j\<rbrakk> |
|
562 |
\<Longrightarrow> a+b < x n + y n" for x y and a b::rat and i j n::nat |
|
563 |
by (simp add: add_strict_mono) |
|
564 |
show ?thesis |
|
565 |
using assms |
|
566 |
by transfer (blast intro: * pos_add_strict) |
|
567 |
qed |
|
51523 | 568 |
|
68669 | 569 |
lemma positive_mult: |
570 |
assumes "positive x" "positive y" shows "positive (x * y)" |
|
571 |
proof - |
|
572 |
have *: "\<lbrakk>\<forall>n\<ge>i. a < x n; \<forall>n\<ge>j. b < y n; 0 < a; 0 < b; n \<ge> max i j\<rbrakk> |
|
573 |
\<Longrightarrow> a*b < x n * y n" for x y and a b::rat and i j n::nat |
|
574 |
by (simp add: mult_strict_mono') |
|
575 |
show ?thesis |
|
576 |
using assms |
|
577 |
by transfer (blast intro: * mult_pos_pos) |
|
578 |
qed |
|
51523 | 579 |
|
63353 | 580 |
lemma positive_minus: "\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)" |
581 |
apply transfer |
|
582 |
apply (simp add: realrel_def) |
|
68669 | 583 |
apply (blast dest: cauchy_not_vanishes_cases) |
63353 | 584 |
done |
51523 | 585 |
|
59867
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
haftmann
parents:
59587
diff
changeset
|
586 |
instantiation real :: linordered_field |
51523 | 587 |
begin |
588 |
||
63353 | 589 |
definition "x < y \<longleftrightarrow> positive (y - x)" |
51523 | 590 |
|
63353 | 591 |
definition "x \<le> y \<longleftrightarrow> x < y \<or> x = y" for x y :: real |
51523 | 592 |
|
63353 | 593 |
definition "\<bar>a\<bar> = (if a < 0 then - a else a)" for a :: real |
51523 | 594 |
|
63353 | 595 |
definition "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" for a :: real |
51523 | 596 |
|
63353 | 597 |
instance |
598 |
proof |
|
51523 | 599 |
fix a b c :: real |
600 |
show "\<bar>a\<bar> = (if a < 0 then - a else a)" |
|
601 |
by (rule abs_real_def) |
|
602 |
show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a" |
|
68662 | 603 |
"a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" "a \<le> a" |
604 |
"a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b" |
|
605 |
"a \<le> b \<Longrightarrow> c + a \<le> c + b" |
|
51523 | 606 |
unfolding less_eq_real_def less_real_def |
68662 | 607 |
by (force simp add: positive_zero dest: positive_add)+ |
51523 | 608 |
show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" |
609 |
by (rule sgn_real_def) |
|
610 |
show "a \<le> b \<or> b \<le> a" |
|
63353 | 611 |
by (auto dest!: positive_minus simp: less_eq_real_def less_real_def) |
51523 | 612 |
show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" |
613 |
unfolding less_real_def |
|
68662 | 614 |
by (force simp add: algebra_simps dest: positive_mult) |
51523 | 615 |
qed |
616 |
||
617 |
end |
|
618 |
||
619 |
instantiation real :: distrib_lattice |
|
620 |
begin |
|
621 |
||
63353 | 622 |
definition "(inf :: real \<Rightarrow> real \<Rightarrow> real) = min" |
51523 | 623 |
|
63353 | 624 |
definition "(sup :: real \<Rightarrow> real \<Rightarrow> real) = max" |
51523 | 625 |
|
63494 | 626 |
instance |
627 |
by standard (auto simp add: inf_real_def sup_real_def max_min_distrib2) |
|
51523 | 628 |
|
629 |
end |
|
630 |
||
631 |
lemma of_nat_Real: "of_nat x = Real (\<lambda>n. of_nat x)" |
|
63353 | 632 |
by (induct x) (simp_all add: zero_real_def one_real_def add_Real) |
51523 | 633 |
|
634 |
lemma of_int_Real: "of_int x = Real (\<lambda>n. of_int x)" |
|
63353 | 635 |
by (cases x rule: int_diff_cases) (simp add: of_nat_Real diff_Real) |
51523 | 636 |
|
637 |
lemma of_rat_Real: "of_rat x = Real (\<lambda>n. x)" |
|
68662 | 638 |
proof (induct x) |
639 |
case (Fract a b) |
|
640 |
then show ?case |
|
63353 | 641 |
apply (simp add: Fract_of_int_quotient of_rat_divide) |
68662 | 642 |
apply (simp add: of_int_Real divide_inverse inverse_Real mult_Real) |
63353 | 643 |
done |
68662 | 644 |
qed |
51523 | 645 |
|
646 |
instance real :: archimedean_field |
|
647 |
proof |
|
63494 | 648 |
show "\<exists>z. x \<le> of_int z" for x :: real |
68662 | 649 |
proof (induct x) |
650 |
case (1 X) |
|
651 |
then obtain b where "0 < b" and b: "\<And>n. \<bar>X n\<bar> < b" |
|
652 |
by (blast dest: cauchy_imp_bounded) |
|
653 |
then have "Real X < of_int (\<lceil>b\<rceil> + 1)" |
|
654 |
using 1 |
|
655 |
apply (simp add: of_int_Real less_real_def diff_Real positive_Real) |
|
656 |
apply (rule_tac x=1 in exI) |
|
657 |
apply (simp add: algebra_simps) |
|
658 |
by (metis abs_ge_self le_less_trans le_of_int_ceiling less_le) |
|
659 |
then show ?case |
|
660 |
using less_eq_real_def by blast |
|
661 |
qed |
|
51523 | 662 |
qed |
663 |
||
664 |
instantiation real :: floor_ceiling |
|
665 |
begin |
|
666 |
||
63353 | 667 |
definition [code del]: "\<lfloor>x::real\<rfloor> = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))" |
51523 | 668 |
|
61942 | 669 |
instance |
670 |
proof |
|
63353 | 671 |
show "of_int \<lfloor>x\<rfloor> \<le> x \<and> x < of_int (\<lfloor>x\<rfloor> + 1)" for x :: real |
51523 | 672 |
unfolding floor_real_def using floor_exists1 by (rule theI') |
673 |
qed |
|
674 |
||
675 |
end |
|
676 |
||
63353 | 677 |
|
60758 | 678 |
subsection \<open>Completeness\<close> |
51523 | 679 |
|
68669 | 680 |
lemma not_positive_Real: |
681 |
assumes "cauchy X" shows "\<not> positive (Real X) \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> r)" (is "?lhs = ?rhs") |
|
682 |
unfolding positive_Real [OF assms] |
|
683 |
proof (intro iffI allI notI impI) |
|
684 |
show "\<exists>k. \<forall>n\<ge>k. X n \<le> r" if r: "\<not> (\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n)" and "0 < r" for r |
|
685 |
proof - |
|
686 |
obtain s t where "s > 0" "t > 0" "r = s+t" |
|
687 |
using \<open>r > 0\<close> obtain_pos_sum by blast |
|
688 |
obtain k where k: "\<And>m n. \<lbrakk>m\<ge>k; n\<ge>k\<rbrakk> \<Longrightarrow> \<bar>X m - X n\<bar> < t" |
|
689 |
using cauchyD [OF assms \<open>t > 0\<close>] by blast |
|
690 |
obtain n where "n \<ge> k" "X n \<le> s" |
|
691 |
by (meson r \<open>0 < s\<close> not_less) |
|
692 |
then have "X l \<le> r" if "l \<ge> n" for l |
|
693 |
using k [OF \<open>n \<ge> k\<close>, of l] that \<open>r = s+t\<close> by linarith |
|
694 |
then show ?thesis |
|
695 |
by blast |
|
696 |
qed |
|
697 |
qed (meson le_cases not_le) |
|
51523 | 698 |
|
699 |
lemma le_Real: |
|
63353 | 700 |
assumes "cauchy X" "cauchy Y" |
51523 | 701 |
shows "Real X \<le> Real Y = (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r)" |
63353 | 702 |
unfolding not_less [symmetric, where 'a=real] less_real_def |
703 |
apply (simp add: diff_Real not_positive_Real assms) |
|
704 |
apply (simp add: diff_le_eq ac_simps) |
|
705 |
done |
|
51523 | 706 |
|
707 |
lemma le_RealI: |
|
708 |
assumes Y: "cauchy Y" |
|
709 |
shows "\<forall>n. x \<le> of_rat (Y n) \<Longrightarrow> x \<le> Real Y" |
|
710 |
proof (induct x) |
|
63353 | 711 |
fix X |
712 |
assume X: "cauchy X" and "\<forall>n. Real X \<le> of_rat (Y n)" |
|
713 |
then have le: "\<And>m r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. X n \<le> Y m + r" |
|
51523 | 714 |
by (simp add: of_rat_Real le_Real) |
63353 | 715 |
then have "\<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r" if "0 < r" for r :: rat |
716 |
proof - |
|
717 |
from that obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" |
|
51523 | 718 |
by (rule obtain_pos_sum) |
719 |
obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>Y m - Y n\<bar> < s" |
|
720 |
using cauchyD [OF Y s] .. |
|
721 |
obtain j where j: "\<forall>n\<ge>j. X n \<le> Y i + t" |
|
722 |
using le [OF t] .. |
|
723 |
have "\<forall>n\<ge>max i j. X n \<le> Y n + r" |
|
63353 | 724 |
proof clarsimp |
725 |
fix n |
|
726 |
assume n: "i \<le> n" "j \<le> n" |
|
63494 | 727 |
have "X n \<le> Y i + t" |
728 |
using n j by simp |
|
729 |
moreover have "\<bar>Y i - Y n\<bar> < s" |
|
730 |
using n i by simp |
|
731 |
ultimately show "X n \<le> Y n + r" |
|
732 |
unfolding r by simp |
|
51523 | 733 |
qed |
63353 | 734 |
then show ?thesis .. |
735 |
qed |
|
736 |
then show "Real X \<le> Real Y" |
|
51523 | 737 |
by (simp add: of_rat_Real le_Real X Y) |
738 |
qed |
|
739 |
||
740 |
lemma Real_leI: |
|
741 |
assumes X: "cauchy X" |
|
742 |
assumes le: "\<forall>n. of_rat (X n) \<le> y" |
|
743 |
shows "Real X \<le> y" |
|
744 |
proof - |
|
745 |
have "- y \<le> - Real X" |
|
746 |
by (simp add: minus_Real X le_RealI of_rat_minus le) |
|
63353 | 747 |
then show ?thesis by simp |
51523 | 748 |
qed |
749 |
||
750 |
lemma less_RealD: |
|
63353 | 751 |
assumes "cauchy Y" |
51523 | 752 |
shows "x < Real Y \<Longrightarrow> \<exists>n. x < of_rat (Y n)" |
63353 | 753 |
apply (erule contrapos_pp) |
754 |
apply (simp add: not_less) |
|
755 |
apply (erule Real_leI [OF assms]) |
|
756 |
done |
|
51523 | 757 |
|
63353 | 758 |
lemma of_nat_less_two_power [simp]: "of_nat n < (2::'a::linordered_idom) ^ n" |
759 |
apply (induct n) |
|
63494 | 760 |
apply simp |
63353 | 761 |
apply (metis add_le_less_mono mult_2 of_nat_Suc one_le_numeral one_le_power power_Suc) |
762 |
done |
|
51523 | 763 |
|
764 |
lemma complete_real: |
|
765 |
fixes S :: "real set" |
|
766 |
assumes "\<exists>x. x \<in> S" and "\<exists>z. \<forall>x\<in>S. x \<le> z" |
|
767 |
shows "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)" |
|
768 |
proof - |
|
769 |
obtain x where x: "x \<in> S" using assms(1) .. |
|
770 |
obtain z where z: "\<forall>x\<in>S. x \<le> z" using assms(2) .. |
|
771 |
||
63040 | 772 |
define P where "P x \<longleftrightarrow> (\<forall>y\<in>S. y \<le> of_rat x)" for x |
51523 | 773 |
obtain a where a: "\<not> P a" |
774 |
proof |
|
61942 | 775 |
have "of_int \<lfloor>x - 1\<rfloor> \<le> x - 1" by (rule of_int_floor_le) |
51523 | 776 |
also have "x - 1 < x" by simp |
61942 | 777 |
finally have "of_int \<lfloor>x - 1\<rfloor> < x" . |
63353 | 778 |
then have "\<not> x \<le> of_int \<lfloor>x - 1\<rfloor>" by (simp only: not_le) |
61942 | 779 |
then show "\<not> P (of_int \<lfloor>x - 1\<rfloor>)" |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
780 |
unfolding P_def of_rat_of_int_eq using x by blast |
51523 | 781 |
qed |
782 |
obtain b where b: "P b" |
|
783 |
proof |
|
61942 | 784 |
show "P (of_int \<lceil>z\<rceil>)" |
51523 | 785 |
unfolding P_def of_rat_of_int_eq |
786 |
proof |
|
787 |
fix y assume "y \<in> S" |
|
63353 | 788 |
then have "y \<le> z" using z by simp |
61942 | 789 |
also have "z \<le> of_int \<lceil>z\<rceil>" by (rule le_of_int_ceiling) |
790 |
finally show "y \<le> of_int \<lceil>z\<rceil>" . |
|
51523 | 791 |
qed |
792 |
qed |
|
793 |
||
63040 | 794 |
define avg where "avg x y = x/2 + y/2" for x y :: rat |
795 |
define bisect where "bisect = (\<lambda>(x, y). if P (avg x y) then (x, avg x y) else (avg x y, y))" |
|
796 |
define A where "A n = fst ((bisect ^^ n) (a, b))" for n |
|
797 |
define B where "B n = snd ((bisect ^^ n) (a, b))" for n |
|
798 |
define C where "C n = avg (A n) (B n)" for n |
|
51523 | 799 |
have A_0 [simp]: "A 0 = a" unfolding A_def by simp |
800 |
have B_0 [simp]: "B 0 = b" unfolding B_def by simp |
|
801 |
have A_Suc [simp]: "\<And>n. A (Suc n) = (if P (C n) then A n else C n)" |
|
802 |
unfolding A_def B_def C_def bisect_def split_def by simp |
|
803 |
have B_Suc [simp]: "\<And>n. B (Suc n) = (if P (C n) then C n else B n)" |
|
804 |
unfolding A_def B_def C_def bisect_def split_def by simp |
|
805 |
||
63353 | 806 |
have width: "B n - A n = (b - a) / 2^n" for n |
68669 | 807 |
proof (induct n) |
808 |
case (Suc n) |
|
809 |
then show ?case |
|
810 |
by (simp add: C_def eq_divide_eq avg_def algebra_simps) |
|
811 |
qed simp |
|
812 |
have twos: "\<exists>n. y / 2 ^ n < r" if "0 < r" for y r :: rat |
|
813 |
proof - |
|
814 |
obtain n where "y / r < rat_of_nat n" |
|
815 |
using \<open>0 < r\<close> reals_Archimedean2 by blast |
|
816 |
then have "\<exists>n. y < r * 2 ^ n" |
|
817 |
by (metis divide_less_eq less_trans mult.commute of_nat_less_two_power that) |
|
818 |
then show ?thesis |
|
70817
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents:
70356
diff
changeset
|
819 |
by (simp add: field_split_simps) |
68669 | 820 |
qed |
63494 | 821 |
have PA: "\<not> P (A n)" for n |
822 |
by (induct n) (simp_all add: a) |
|
823 |
have PB: "P (B n)" for n |
|
824 |
by (induct n) (simp_all add: b) |
|
51523 | 825 |
have ab: "a < b" |
826 |
using a b unfolding P_def |
|
68669 | 827 |
by (meson leI less_le_trans of_rat_less) |
63494 | 828 |
have AB: "A n < B n" for n |
829 |
by (induct n) (simp_all add: ab C_def avg_def) |
|
68669 | 830 |
have "A i \<le> A j \<and> B j \<le> B i" if "i < j" for i j |
831 |
using that |
|
832 |
proof (induction rule: less_Suc_induct) |
|
833 |
case (1 i) |
|
834 |
then show ?case |
|
835 |
apply (clarsimp simp add: C_def avg_def add_divide_distrib [symmetric]) |
|
836 |
apply (rule AB [THEN less_imp_le]) |
|
837 |
done |
|
838 |
qed simp |
|
839 |
then have A_mono: "A i \<le> A j" and B_mono: "B j \<le> B i" if "i \<le> j" for i j |
|
840 |
by (metis eq_refl le_neq_implies_less that)+ |
|
841 |
have cauchy_lemma: "cauchy X" if *: "\<And>n i. i\<ge>n \<Longrightarrow> A n \<le> X i \<and> X i \<le> B n" for X |
|
842 |
proof (rule cauchyI) |
|
843 |
fix r::rat |
|
844 |
assume "0 < r" |
|
845 |
then obtain k where k: "(b - a) / 2 ^ k < r" |
|
846 |
using twos by blast |
|
847 |
have "\<bar>X m - X n\<bar> < r" if "m\<ge>k" "n\<ge>k" for m n |
|
848 |
proof - |
|
849 |
have "\<bar>X m - X n\<bar> \<le> B k - A k" |
|
850 |
by (simp add: * abs_rat_def diff_mono that) |
|
851 |
also have "... < r" |
|
852 |
by (simp add: k width) |
|
853 |
finally show ?thesis . |
|
854 |
qed |
|
855 |
then show "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r" |
|
856 |
by blast |
|
857 |
qed |
|
51523 | 858 |
have "cauchy A" |
68669 | 859 |
by (rule cauchy_lemma) (meson AB A_mono B_mono dual_order.strict_implies_order less_le_trans) |
51523 | 860 |
have "cauchy B" |
68669 | 861 |
by (rule cauchy_lemma) (meson AB A_mono B_mono dual_order.strict_implies_order le_less_trans) |
862 |
have "\<forall>x\<in>S. x \<le> Real B" |
|
51523 | 863 |
proof |
63353 | 864 |
fix x |
865 |
assume "x \<in> S" |
|
51523 | 866 |
then show "x \<le> Real B" |
60758 | 867 |
using PB [unfolded P_def] \<open>cauchy B\<close> |
51523 | 868 |
by (simp add: le_RealI) |
869 |
qed |
|
68669 | 870 |
moreover have "\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> Real A \<le> z" |
871 |
by (meson PA Real_leI P_def \<open>cauchy A\<close> le_cases order.trans) |
|
872 |
moreover have "vanishes (\<lambda>n. (b - a) / 2 ^ n)" |
|
51523 | 873 |
proof (rule vanishesI) |
63353 | 874 |
fix r :: rat |
875 |
assume "0 < r" |
|
51523 | 876 |
then obtain k where k: "\<bar>b - a\<bar> / 2 ^ k < r" |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
877 |
using twos by blast |
51523 | 878 |
have "\<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r" |
63353 | 879 |
proof clarify |
880 |
fix n |
|
881 |
assume n: "k \<le> n" |
|
51523 | 882 |
have "\<bar>(b - a) / 2 ^ n\<bar> = \<bar>b - a\<bar> / 2 ^ n" |
883 |
by simp |
|
884 |
also have "\<dots> \<le> \<bar>b - a\<bar> / 2 ^ k" |
|
56544 | 885 |
using n by (simp add: divide_left_mono) |
51523 | 886 |
also note k |
887 |
finally show "\<bar>(b - a) / 2 ^ n\<bar> < r" . |
|
888 |
qed |
|
63353 | 889 |
then show "\<exists>k. \<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r" .. |
51523 | 890 |
qed |
68669 | 891 |
then have "Real B = Real A" |
60758 | 892 |
by (simp add: eq_Real \<open>cauchy A\<close> \<open>cauchy B\<close> width) |
68669 | 893 |
ultimately show "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)" |
894 |
by force |
|
51523 | 895 |
qed |
896 |
||
51775
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents:
51773
diff
changeset
|
897 |
instantiation real :: linear_continuum |
51523 | 898 |
begin |
899 |
||
63353 | 900 |
subsection \<open>Supremum of a set of reals\<close> |
51523 | 901 |
|
54281 | 902 |
definition "Sup X = (LEAST z::real. \<forall>x\<in>X. x \<le> z)" |
63353 | 903 |
definition "Inf X = - Sup (uminus ` X)" for X :: "real set" |
51523 | 904 |
|
905 |
instance |
|
906 |
proof |
|
63494 | 907 |
show Sup_upper: "x \<le> Sup X" |
908 |
if "x \<in> X" "bdd_above X" |
|
909 |
for x :: real and X :: "real set" |
|
63353 | 910 |
proof - |
911 |
from that obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z" |
|
54258
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents:
54230
diff
changeset
|
912 |
using complete_real[of X] unfolding bdd_above_def by blast |
63494 | 913 |
then show ?thesis |
914 |
unfolding Sup_real_def by (rule LeastI2_order) (auto simp: that) |
|
63353 | 915 |
qed |
63494 | 916 |
show Sup_least: "Sup X \<le> z" |
917 |
if "X \<noteq> {}" and z: "\<And>x. x \<in> X \<Longrightarrow> x \<le> z" |
|
63353 | 918 |
for z :: real and X :: "real set" |
919 |
proof - |
|
920 |
from that obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z" |
|
921 |
using complete_real [of X] by blast |
|
51523 | 922 |
then have "Sup X = s" |
61284
2314c2f62eb1
real_of_nat_Suc is now a simprule
paulson <lp15@cam.ac.uk>
parents:
61204
diff
changeset
|
923 |
unfolding Sup_real_def by (best intro: Least_equality) |
63353 | 924 |
also from s z have "\<dots> \<le> z" |
51523 | 925 |
by blast |
63353 | 926 |
finally show ?thesis . |
927 |
qed |
|
63494 | 928 |
show "Inf X \<le> x" if "x \<in> X" "bdd_below X" |
929 |
for x :: real and X :: "real set" |
|
63353 | 930 |
using Sup_upper [of "-x" "uminus ` X"] by (auto simp: Inf_real_def that) |
63494 | 931 |
show "z \<le> Inf X" if "X \<noteq> {}" "\<And>x. x \<in> X \<Longrightarrow> z \<le> x" |
932 |
for z :: real and X :: "real set" |
|
63353 | 933 |
using Sup_least [of "uminus ` X" "- z"] by (force simp: Inf_real_def that) |
51775
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents:
51773
diff
changeset
|
934 |
show "\<exists>a b::real. a \<noteq> b" |
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents:
51773
diff
changeset
|
935 |
using zero_neq_one by blast |
51523 | 936 |
qed |
63353 | 937 |
|
51523 | 938 |
end |
939 |
||
63353 | 940 |
|
60758 | 941 |
subsection \<open>Hiding implementation details\<close> |
51523 | 942 |
|
943 |
hide_const (open) vanishes cauchy positive Real |
|
944 |
||
945 |
declare Real_induct [induct del] |
|
946 |
declare Abs_real_induct [induct del] |
|
947 |
declare Abs_real_cases [cases del] |
|
948 |
||
53652
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
kuncar
parents:
53374
diff
changeset
|
949 |
lifting_update real.lifting |
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
kuncar
parents:
53374
diff
changeset
|
950 |
lifting_forget real.lifting |
61284
2314c2f62eb1
real_of_nat_Suc is now a simprule
paulson <lp15@cam.ac.uk>
parents:
61204
diff
changeset
|
951 |
|
63353 | 952 |
|
953 |
subsection \<open>More Lemmas\<close> |
|
51523 | 954 |
|
60758 | 955 |
text \<open>BH: These lemmas should not be necessary; they should be |
63353 | 956 |
covered by existing simp rules and simplification procedures.\<close> |
51523 | 957 |
|
63494 | 958 |
lemma real_mult_less_iff1 [simp]: "0 < z \<Longrightarrow> x * z < y * z \<longleftrightarrow> x < y" |
959 |
for x y z :: real |
|
63353 | 960 |
by simp (* solved by linordered_ring_less_cancel_factor simproc *) |
51523 | 961 |
|
63494 | 962 |
lemma real_mult_le_cancel_iff1 [simp]: "0 < z \<Longrightarrow> x * z \<le> y * z \<longleftrightarrow> x \<le> y" |
963 |
for x y z :: real |
|
63353 | 964 |
by simp (* solved by linordered_ring_le_cancel_factor simproc *) |
51523 | 965 |
|
63494 | 966 |
lemma real_mult_le_cancel_iff2 [simp]: "0 < z \<Longrightarrow> z * x \<le> z * y \<longleftrightarrow> x \<le> y" |
967 |
for x y z :: real |
|
63353 | 968 |
by simp (* solved by linordered_ring_le_cancel_factor simproc *) |
51523 | 969 |
|
970 |
||
60758 | 971 |
subsection \<open>Embedding numbers into the Reals\<close> |
51523 | 972 |
|
63353 | 973 |
abbreviation real_of_nat :: "nat \<Rightarrow> real" |
974 |
where "real_of_nat \<equiv> of_nat" |
|
51523 | 975 |
|
63353 | 976 |
abbreviation real :: "nat \<Rightarrow> real" |
977 |
where "real \<equiv> of_nat" |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
978 |
|
63353 | 979 |
abbreviation real_of_int :: "int \<Rightarrow> real" |
980 |
where "real_of_int \<equiv> of_int" |
|
51523 | 981 |
|
63353 | 982 |
abbreviation real_of_rat :: "rat \<Rightarrow> real" |
983 |
where "real_of_rat \<equiv> of_rat" |
|
51523 | 984 |
|
985 |
declare [[coercion_enabled]] |
|
59000 | 986 |
|
987 |
declare [[coercion "of_nat :: nat \<Rightarrow> int"]] |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
988 |
declare [[coercion "of_nat :: nat \<Rightarrow> real"]] |
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
989 |
declare [[coercion "of_int :: int \<Rightarrow> real"]] |
59000 | 990 |
|
991 |
(* We do not add rat to the coerced types, this has often unpleasant side effects when writing |
|
992 |
inverse (Suc n) which sometimes gets two coercions: of_rat (inverse (of_nat (Suc n))) *) |
|
51523 | 993 |
|
994 |
declare [[coercion_map map]] |
|
59000 | 995 |
declare [[coercion_map "\<lambda>f g h x. g (h (f x))"]] |
996 |
declare [[coercion_map "\<lambda>f g (x,y). (f x, g y)"]] |
|
51523 | 997 |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
998 |
declare of_int_eq_0_iff [algebra, presburger] |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
999 |
declare of_int_eq_1_iff [algebra, presburger] |
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1000 |
declare of_int_eq_iff [algebra, presburger] |
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1001 |
declare of_int_less_0_iff [algebra, presburger] |
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1002 |
declare of_int_less_1_iff [algebra, presburger] |
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1003 |
declare of_int_less_iff [algebra, presburger] |
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1004 |
declare of_int_le_0_iff [algebra, presburger] |
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1005 |
declare of_int_le_1_iff [algebra, presburger] |
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1006 |
declare of_int_le_iff [algebra, presburger] |
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1007 |
declare of_int_0_less_iff [algebra, presburger] |
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1008 |
declare of_int_0_le_iff [algebra, presburger] |
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1009 |
declare of_int_1_less_iff [algebra, presburger] |
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1010 |
declare of_int_1_le_iff [algebra, presburger] |
51523 | 1011 |
|
63353 | 1012 |
lemma int_less_real_le: "n < m \<longleftrightarrow> real_of_int n + 1 \<le> real_of_int m" |
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1013 |
proof - |
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1014 |
have "(0::real) \<le> 1" |
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1015 |
by (metis less_eq_real_def zero_less_one) |
63353 | 1016 |
then show ?thesis |
61694
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents:
61649
diff
changeset
|
1017 |
by (metis floor_of_int less_floor_iff) |
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1018 |
qed |
51523 | 1019 |
|
63353 | 1020 |
lemma int_le_real_less: "n \<le> m \<longleftrightarrow> real_of_int n < real_of_int m + 1" |
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1021 |
by (meson int_less_real_le not_le) |
51523 | 1022 |
|
63353 | 1023 |
lemma real_of_int_div_aux: |
1024 |
"(real_of_int x) / (real_of_int d) = |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1025 |
real_of_int (x div d) + (real_of_int (x mod d)) / (real_of_int d)" |
51523 | 1026 |
proof - |
1027 |
have "x = (x div d) * d + x mod d" |
|
1028 |
by auto |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1029 |
then have "real_of_int x = real_of_int (x div d) * real_of_int d + real_of_int(x mod d)" |
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1030 |
by (metis of_int_add of_int_mult) |
63353 | 1031 |
then have "real_of_int x / real_of_int d = \<dots> / real_of_int d" |
51523 | 1032 |
by simp |
1033 |
then show ?thesis |
|
1034 |
by (auto simp add: add_divide_distrib algebra_simps) |
|
1035 |
qed |
|
1036 |
||
58834 | 1037 |
lemma real_of_int_div: |
63353 | 1038 |
"d dvd n \<Longrightarrow> real_of_int (n div d) = real_of_int n / real_of_int d" for d n :: int |
58834 | 1039 |
by (simp add: real_of_int_div_aux) |
51523 | 1040 |
|
63353 | 1041 |
lemma real_of_int_div2: "0 \<le> real_of_int n / real_of_int x - real_of_int (n div x)" |
68669 | 1042 |
proof (cases "x = 0") |
1043 |
case False |
|
1044 |
then show ?thesis |
|
1045 |
by (metis diff_ge_0_iff_ge floor_divide_of_int_eq of_int_floor_le) |
|
1046 |
qed simp |
|
51523 | 1047 |
|
63353 | 1048 |
lemma real_of_int_div3: "real_of_int n / real_of_int x - real_of_int (n div x) \<le> 1" |
51523 | 1049 |
apply (simp add: algebra_simps) |
68669 | 1050 |
by (metis add.commute floor_correct floor_divide_of_int_eq less_eq_real_def of_int_1 of_int_add) |
51523 | 1051 |
|
63353 | 1052 |
lemma real_of_int_div4: "real_of_int (n div x) \<le> real_of_int n / real_of_int x" |
1053 |
using real_of_int_div2 [of n x] by simp |
|
51523 | 1054 |
|
1055 |
||
63353 | 1056 |
subsection \<open>Embedding the Naturals into the Reals\<close> |
51523 | 1057 |
|
64267 | 1058 |
lemma real_of_card: "real (card A) = sum (\<lambda>x. 1) A" |
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1059 |
by simp |
51523 | 1060 |
|
63353 | 1061 |
lemma nat_less_real_le: "n < m \<longleftrightarrow> real n + 1 \<le> real m" |
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1062 |
by (metis discrete of_nat_1 of_nat_add of_nat_le_iff) |
51523 | 1063 |
|
63494 | 1064 |
lemma nat_le_real_less: "n \<le> m \<longleftrightarrow> real n < real m + 1" |
1065 |
for m n :: nat |
|
61284
2314c2f62eb1
real_of_nat_Suc is now a simprule
paulson <lp15@cam.ac.uk>
parents:
61204
diff
changeset
|
1066 |
by (meson nat_less_real_le not_le) |
51523 | 1067 |
|
63353 | 1068 |
lemma real_of_nat_div_aux: "real x / real d = real (x div d) + real (x mod d) / real d" |
51523 | 1069 |
proof - |
1070 |
have "x = (x div d) * d + x mod d" |
|
1071 |
by auto |
|
1072 |
then have "real x = real (x div d) * real d + real(x mod d)" |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1073 |
by (metis of_nat_add of_nat_mult) |
51523 | 1074 |
then have "real x / real d = \<dots> / real d" |
1075 |
by simp |
|
1076 |
then show ?thesis |
|
1077 |
by (auto simp add: add_divide_distrib algebra_simps) |
|
1078 |
qed |
|
1079 |
||
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1080 |
lemma real_of_nat_div: "d dvd n \<Longrightarrow> real(n div d) = real n / real d" |
63353 | 1081 |
by (subst real_of_nat_div_aux) (auto simp add: dvd_eq_mod_eq_0 [symmetric]) |
51523 | 1082 |
|
63353 | 1083 |
lemma real_of_nat_div2: "0 \<le> real n / real x - real (n div x)" for n x :: nat |
1084 |
apply (simp add: algebra_simps) |
|
68669 | 1085 |
by (metis floor_divide_of_nat_eq of_int_floor_le of_int_of_nat_eq) |
51523 | 1086 |
|
63353 | 1087 |
lemma real_of_nat_div3: "real n / real x - real (n div x) \<le> 1" for n x :: nat |
68669 | 1088 |
proof (cases "x = 0") |
1089 |
case False |
|
1090 |
then show ?thesis |
|
1091 |
by (metis of_int_of_nat_eq real_of_int_div3 zdiv_int) |
|
1092 |
qed auto |
|
51523 | 1093 |
|
63353 | 1094 |
lemma real_of_nat_div4: "real (n div x) \<le> real n / real x" for n x :: nat |
1095 |
using real_of_nat_div2 [of n x] by simp |
|
1096 |
||
51523 | 1097 |
|
60758 | 1098 |
subsection \<open>The Archimedean Property of the Reals\<close> |
51523 | 1099 |
|
62623
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
paulson <lp15@cam.ac.uk>
parents:
62398
diff
changeset
|
1100 |
lemma real_arch_inverse: "0 < e \<longleftrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)" |
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
paulson <lp15@cam.ac.uk>
parents:
62398
diff
changeset
|
1101 |
using reals_Archimedean[of e] less_trans[of 0 "1 / real n" e for n::nat] |
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
paulson <lp15@cam.ac.uk>
parents:
62398
diff
changeset
|
1102 |
by (auto simp add: field_simps cong: conj_cong simp del: of_nat_Suc) |
51523 | 1103 |
|
63494 | 1104 |
lemma reals_Archimedean3: "0 < x \<Longrightarrow> \<forall>y. \<exists>n. y < real n * x" |
1105 |
by (auto intro: ex_less_of_nat_mult) |
|
51523 | 1106 |
|
62397
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
paulson <lp15@cam.ac.uk>
parents:
62348
diff
changeset
|
1107 |
lemma real_archimedian_rdiv_eq_0: |
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
paulson <lp15@cam.ac.uk>
parents:
62348
diff
changeset
|
1108 |
assumes x0: "x \<ge> 0" |
63353 | 1109 |
and c: "c \<ge> 0" |
1110 |
and xc: "\<And>m::nat. m > 0 \<Longrightarrow> real m * x \<le> c" |
|
1111 |
shows "x = 0" |
|
1112 |
by (metis reals_Archimedean3 dual_order.order_iff_strict le0 le_less_trans not_le x0 xc) |
|
62397
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
paulson <lp15@cam.ac.uk>
parents:
62348
diff
changeset
|
1113 |
|
51523 | 1114 |
|
63353 | 1115 |
subsection \<open>Rationals\<close> |
51523 | 1116 |
|
68529 | 1117 |
lemma Rats_abs_iff[simp]: |
1118 |
"\<bar>(x::real)\<bar> \<in> \<rat> \<longleftrightarrow> x \<in> \<rat>" |
|
1119 |
by(simp add: abs_real_def split: if_splits) |
|
1120 |
||
63353 | 1121 |
lemma Rats_eq_int_div_int: "\<rat> = {real_of_int i / real_of_int j | i j. j \<noteq> 0}" (is "_ = ?S") |
51523 | 1122 |
proof |
1123 |
show "\<rat> \<subseteq> ?S" |
|
1124 |
proof |
|
63353 | 1125 |
fix x :: real |
1126 |
assume "x \<in> \<rat>" |
|
1127 |
then obtain r where "x = of_rat r" |
|
1128 |
unfolding Rats_def .. |
|
1129 |
have "of_rat r \<in> ?S" |
|
1130 |
by (cases r) (auto simp add: of_rat_rat) |
|
1131 |
then show "x \<in> ?S" |
|
1132 |
using \<open>x = of_rat r\<close> by simp |
|
51523 | 1133 |
qed |
1134 |
next |
|
1135 |
show "?S \<subseteq> \<rat>" |
|
63353 | 1136 |
proof (auto simp: Rats_def) |
1137 |
fix i j :: int |
|
1138 |
assume "j \<noteq> 0" |
|
1139 |
then have "real_of_int i / real_of_int j = of_rat (Fract i j)" |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1140 |
by (simp add: of_rat_rat) |
63353 | 1141 |
then show "real_of_int i / real_of_int j \<in> range of_rat" |
1142 |
by blast |
|
51523 | 1143 |
qed |
1144 |
qed |
|
1145 |
||
63353 | 1146 |
lemma Rats_eq_int_div_nat: "\<rat> = { real_of_int i / real n | i n. n \<noteq> 0}" |
1147 |
proof (auto simp: Rats_eq_int_div_int) |
|
1148 |
fix i j :: int |
|
1149 |
assume "j \<noteq> 0" |
|
1150 |
show "\<exists>(i'::int) (n::nat). real_of_int i / real_of_int j = real_of_int i' / real n \<and> 0 < n" |
|
1151 |
proof (cases "j > 0") |
|
1152 |
case True |
|
1153 |
then have "real_of_int i / real_of_int j = real_of_int i / real (nat j) \<and> 0 < nat j" |
|
1154 |
by simp |
|
1155 |
then show ?thesis by blast |
|
51523 | 1156 |
next |
63353 | 1157 |
case False |
1158 |
with \<open>j \<noteq> 0\<close> |
|
1159 |
have "real_of_int i / real_of_int j = real_of_int (- i) / real (nat (- j)) \<and> 0 < nat (- j)" |
|
1160 |
by simp |
|
1161 |
then show ?thesis by blast |
|
51523 | 1162 |
qed |
1163 |
next |
|
63353 | 1164 |
fix i :: int and n :: nat |
1165 |
assume "0 < n" |
|
1166 |
then have "real_of_int i / real n = real_of_int i / real_of_int(int n) \<and> int n \<noteq> 0" |
|
1167 |
by simp |
|
1168 |
then show "\<exists>i' j. real_of_int i / real n = real_of_int i' / real_of_int j \<and> j \<noteq> 0" |
|
1169 |
by blast |
|
51523 | 1170 |
qed |
1171 |
||
1172 |
lemma Rats_abs_nat_div_natE: |
|
1173 |
assumes "x \<in> \<rat>" |
|
67051 | 1174 |
obtains m n :: nat where "n \<noteq> 0" and "\<bar>x\<bar> = real m / real n" and "coprime m n" |
51523 | 1175 |
proof - |
63353 | 1176 |
from \<open>x \<in> \<rat>\<close> obtain i :: int and n :: nat where "n \<noteq> 0" and "x = real_of_int i / real n" |
1177 |
by (auto simp add: Rats_eq_int_div_nat) |
|
1178 |
then have "\<bar>x\<bar> = real (nat \<bar>i\<bar>) / real n" by simp |
|
51523 | 1179 |
then obtain m :: nat where x_rat: "\<bar>x\<bar> = real m / real n" by blast |
1180 |
let ?gcd = "gcd m n" |
|
63353 | 1181 |
from \<open>n \<noteq> 0\<close> have gcd: "?gcd \<noteq> 0" by simp |
51523 | 1182 |
let ?k = "m div ?gcd" |
1183 |
let ?l = "n div ?gcd" |
|
1184 |
let ?gcd' = "gcd ?k ?l" |
|
63353 | 1185 |
have "?gcd dvd m" .. |
1186 |
then have gcd_k: "?gcd * ?k = m" |
|
51523 | 1187 |
by (rule dvd_mult_div_cancel) |
63353 | 1188 |
have "?gcd dvd n" .. |
1189 |
then have gcd_l: "?gcd * ?l = n" |
|
51523 | 1190 |
by (rule dvd_mult_div_cancel) |
63353 | 1191 |
from \<open>n \<noteq> 0\<close> and gcd_l have "?gcd * ?l \<noteq> 0" by simp |
61284
2314c2f62eb1
real_of_nat_Suc is now a simprule
paulson <lp15@cam.ac.uk>
parents:
61204
diff
changeset
|
1192 |
then have "?l \<noteq> 0" by (blast dest!: mult_not_zero) |
51523 | 1193 |
moreover |
1194 |
have "\<bar>x\<bar> = real ?k / real ?l" |
|
1195 |
proof - |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1196 |
from gcd have "real ?k / real ?l = real (?gcd * ?k) / real (?gcd * ?l)" |
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1197 |
by (simp add: real_of_nat_div) |
51523 | 1198 |
also from gcd_k and gcd_l have "\<dots> = real m / real n" by simp |
1199 |
also from x_rat have "\<dots> = \<bar>x\<bar>" .. |
|
1200 |
finally show ?thesis .. |
|
1201 |
qed |
|
1202 |
moreover |
|
1203 |
have "?gcd' = 1" |
|
1204 |
proof - |
|
1205 |
have "?gcd * ?gcd' = gcd (?gcd * ?k) (?gcd * ?l)" |
|
1206 |
by (rule gcd_mult_distrib_nat) |
|
1207 |
with gcd_k gcd_l have "?gcd * ?gcd' = ?gcd" by simp |
|
1208 |
with gcd show ?thesis by auto |
|
1209 |
qed |
|
67051 | 1210 |
then have "coprime ?k ?l" |
1211 |
by (simp only: coprime_iff_gcd_eq_1) |
|
51523 | 1212 |
ultimately show ?thesis .. |
1213 |
qed |
|
1214 |
||
63353 | 1215 |
|
1216 |
subsection \<open>Density of the Rational Reals in the Reals\<close> |
|
51523 | 1217 |
|
63353 | 1218 |
text \<open> |
1219 |
This density proof is due to Stefan Richter and was ported by TN. The |
|
63494 | 1220 |
original source is \<^emph>\<open>Real Analysis\<close> by H.L. Royden. |
63353 | 1221 |
It employs the Archimedean property of the reals.\<close> |
51523 | 1222 |
|
1223 |
lemma Rats_dense_in_real: |
|
1224 |
fixes x :: real |
|
63353 | 1225 |
assumes "x < y" |
1226 |
shows "\<exists>r\<in>\<rat>. x < r \<and> r < y" |
|
51523 | 1227 |
proof - |
63353 | 1228 |
from \<open>x < y\<close> have "0 < y - x" by simp |
1229 |
with reals_Archimedean obtain q :: nat where q: "inverse (real q) < y - x" and "0 < q" |
|
1230 |
by blast |
|
63040 | 1231 |
define p where "p = \<lceil>y * real q\<rceil> - 1" |
1232 |
define r where "r = of_int p / real q" |
|
63494 | 1233 |
from q have "x < y - inverse (real q)" |
1234 |
by simp |
|
1235 |
also from \<open>0 < q\<close> have "y - inverse (real q) \<le> r" |
|
1236 |
by (simp add: r_def p_def le_divide_eq left_diff_distrib) |
|
51523 | 1237 |
finally have "x < r" . |
63494 | 1238 |
moreover from \<open>0 < q\<close> have "r < y" |
1239 |
by (simp add: r_def p_def divide_less_eq diff_less_eq less_ceiling_iff [symmetric]) |
|
1240 |
moreover have "r \<in> \<rat>" |
|
1241 |
by (simp add: r_def) |
|
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1242 |
ultimately show ?thesis by blast |
51523 | 1243 |
qed |
1244 |
||
57447
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57275
diff
changeset
|
1245 |
lemma of_rat_dense: |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57275
diff
changeset
|
1246 |
fixes x y :: real |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57275
diff
changeset
|
1247 |
assumes "x < y" |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57275
diff
changeset
|
1248 |
shows "\<exists>q :: rat. x < of_rat q \<and> of_rat q < y" |
63353 | 1249 |
using Rats_dense_in_real [OF \<open>x < y\<close>] |
1250 |
by (auto elim: Rats_cases) |
|
51523 | 1251 |
|
1252 |
||
63353 | 1253 |
subsection \<open>Numerals and Arithmetic\<close> |
51523 | 1254 |
|
60758 | 1255 |
declaration \<open> |
70356
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
haftmann
parents:
70270
diff
changeset
|
1256 |
K (Lin_Arith.add_inj_const (\<^const_name>\<open>of_nat\<close>, \<^typ>\<open>nat \<Rightarrow> real\<close>) |
69593 | 1257 |
#> Lin_Arith.add_inj_const (\<^const_name>\<open>of_int\<close>, \<^typ>\<open>int \<Rightarrow> real\<close>)) |
60758 | 1258 |
\<close> |
51523 | 1259 |
|
63353 | 1260 |
|
1261 |
subsection \<open>Simprules combining \<open>x + y\<close> and \<open>0\<close>\<close> (* FIXME ARE THEY NEEDED? *) |
|
51523 | 1262 |
|
63494 | 1263 |
lemma real_add_minus_iff [simp]: "x + - a = 0 \<longleftrightarrow> x = a" |
1264 |
for x a :: real |
|
63353 | 1265 |
by arith |
51523 | 1266 |
|
63494 | 1267 |
lemma real_add_less_0_iff: "x + y < 0 \<longleftrightarrow> y < - x" |
1268 |
for x y :: real |
|
63353 | 1269 |
by auto |
51523 | 1270 |
|
63494 | 1271 |
lemma real_0_less_add_iff: "0 < x + y \<longleftrightarrow> - x < y" |
1272 |
for x y :: real |
|
63353 | 1273 |
by auto |
51523 | 1274 |
|
63494 | 1275 |
lemma real_add_le_0_iff: "x + y \<le> 0 \<longleftrightarrow> y \<le> - x" |
1276 |
for x y :: real |
|
63353 | 1277 |
by auto |
51523 | 1278 |
|
63494 | 1279 |
lemma real_0_le_add_iff: "0 \<le> x + y \<longleftrightarrow> - x \<le> y" |
1280 |
for x y :: real |
|
63353 | 1281 |
by auto |
1282 |
||
51523 | 1283 |
|
60758 | 1284 |
subsection \<open>Lemmas about powers\<close> |
51523 | 1285 |
|
1286 |
lemma two_realpow_ge_one: "(1::real) \<le> 2 ^ n" |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1287 |
by simp |
51523 | 1288 |
|
63353 | 1289 |
(* FIXME: declare this [simp] for all types, or not at all *) |
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1290 |
declare sum_squares_eq_zero_iff [simp] sum_power2_eq_zero_iff [simp] |
51523 | 1291 |
|
63494 | 1292 |
lemma real_minus_mult_self_le [simp]: "- (u * u) \<le> x * x" |
1293 |
for u x :: real |
|
63353 | 1294 |
by (rule order_trans [where y = 0]) auto |
51523 | 1295 |
|
63494 | 1296 |
lemma realpow_square_minus_le [simp]: "- u\<^sup>2 \<le> x\<^sup>2" |
1297 |
for u x :: real |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1298 |
by (auto simp add: power2_eq_square) |
51523 | 1299 |
|
56889
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
hoelzl
parents:
56571
diff
changeset
|
1300 |
|
63353 | 1301 |
subsection \<open>Density of the Reals\<close> |
1302 |
||
68527
2f4e2aab190a
Generalising and renaming some basic results
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
1303 |
lemma field_lbound_gt_zero: "0 < d1 \<Longrightarrow> 0 < d2 \<Longrightarrow> \<exists>e. 0 < e \<and> e < d1 \<and> e < d2" |
2f4e2aab190a
Generalising and renaming some basic results
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
1304 |
for d1 d2 :: "'a::linordered_field" |
63353 | 1305 |
by (rule exI [where x = "min d1 d2 / 2"]) (simp add: min_def) |
51523 | 1306 |
|
68527
2f4e2aab190a
Generalising and renaming some basic results
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
1307 |
lemma field_less_half_sum: "x < y \<Longrightarrow> x < (x + y) / 2" |
2f4e2aab190a
Generalising and renaming some basic results
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
1308 |
for x y :: "'a::linordered_field" |
63353 | 1309 |
by auto |
1310 |
||
68527
2f4e2aab190a
Generalising and renaming some basic results
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
1311 |
lemma field_sum_of_halves: "x / 2 + x / 2 = x" |
2f4e2aab190a
Generalising and renaming some basic results
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
1312 |
for x :: "'a::linordered_field" |
63353 | 1313 |
by simp |
51523 | 1314 |
|
1315 |
||
63353 | 1316 |
subsection \<open>Floor and Ceiling Functions from the Reals to the Integers\<close> |
51523 | 1317 |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1318 |
(* FIXME: theorems for negative numerals. Many duplicates, e.g. from Archimedean_Field.thy. *) |
51523 | 1319 |
|
63494 | 1320 |
lemma real_of_nat_less_numeral_iff [simp]: "real n < numeral w \<longleftrightarrow> n < numeral w" |
1321 |
for n :: nat |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1322 |
by (metis of_nat_less_iff of_nat_numeral) |
56889
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
hoelzl
parents:
56571
diff
changeset
|
1323 |
|
63494 | 1324 |
lemma numeral_less_real_of_nat_iff [simp]: "numeral w < real n \<longleftrightarrow> numeral w < n" |
1325 |
for n :: nat |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1326 |
by (metis of_nat_less_iff of_nat_numeral) |
56889
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
hoelzl
parents:
56571
diff
changeset
|
1327 |
|
63494 | 1328 |
lemma numeral_le_real_of_nat_iff [simp]: "numeral n \<le> real m \<longleftrightarrow> numeral n \<le> m" |
1329 |
for m :: nat |
|
63353 | 1330 |
by (metis not_le real_of_nat_less_numeral_iff) |
59587
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
nipkow
parents:
59000
diff
changeset
|
1331 |
|
63353 | 1332 |
lemma of_int_floor_cancel [simp]: "of_int \<lfloor>x\<rfloor> = x \<longleftrightarrow> (\<exists>n::int. x = of_int n)" |
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1333 |
by (metis floor_of_int) |
51523 | 1334 |
|
63353 | 1335 |
lemma floor_eq: "real_of_int n < x \<Longrightarrow> x < real_of_int n + 1 \<Longrightarrow> \<lfloor>x\<rfloor> = n" |
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
57514
diff
changeset
|
1336 |
by linarith |
51523 | 1337 |
|
63353 | 1338 |
lemma floor_eq2: "real_of_int n \<le> x \<Longrightarrow> x < real_of_int n + 1 \<Longrightarrow> \<lfloor>x\<rfloor> = n" |
67051 | 1339 |
by (fact floor_unique) |
51523 | 1340 |
|
63353 | 1341 |
lemma floor_eq3: "real n < x \<Longrightarrow> x < real (Suc n) \<Longrightarrow> nat \<lfloor>x\<rfloor> = n" |
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
57514
diff
changeset
|
1342 |
by linarith |
51523 | 1343 |
|
63353 | 1344 |
lemma floor_eq4: "real n \<le> x \<Longrightarrow> x < real (Suc n) \<Longrightarrow> nat \<lfloor>x\<rfloor> = n" |
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
57514
diff
changeset
|
1345 |
by linarith |
51523 | 1346 |
|
61942 | 1347 |
lemma real_of_int_floor_ge_diff_one [simp]: "r - 1 \<le> real_of_int \<lfloor>r\<rfloor>" |
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
57514
diff
changeset
|
1348 |
by linarith |
51523 | 1349 |
|
61942 | 1350 |
lemma real_of_int_floor_gt_diff_one [simp]: "r - 1 < real_of_int \<lfloor>r\<rfloor>" |
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
57514
diff
changeset
|
1351 |
by linarith |
51523 | 1352 |
|
61942 | 1353 |
lemma real_of_int_floor_add_one_ge [simp]: "r \<le> real_of_int \<lfloor>r\<rfloor> + 1" |
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
57514
diff
changeset
|
1354 |
by linarith |
51523 | 1355 |
|
61942 | 1356 |
lemma real_of_int_floor_add_one_gt [simp]: "r < real_of_int \<lfloor>r\<rfloor> + 1" |
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
57514
diff
changeset
|
1357 |
by linarith |
51523 | 1358 |
|
63353 | 1359 |
lemma floor_divide_real_eq_div: |
1360 |
assumes "0 \<le> b" |
|
1361 |
shows "\<lfloor>a / real_of_int b\<rfloor> = \<lfloor>a\<rfloor> div b" |
|
1362 |
proof (cases "b = 0") |
|
1363 |
case True |
|
1364 |
then show ?thesis by simp |
|
1365 |
next |
|
1366 |
case False |
|
1367 |
with assms have b: "b > 0" by simp |
|
1368 |
have "j = i div b" |
|
1369 |
if "real_of_int i \<le> a" "a < 1 + real_of_int i" |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1370 |
"real_of_int j * real_of_int b \<le> a" "a < real_of_int b + real_of_int j * real_of_int b" |
63353 | 1371 |
for i j :: int |
1372 |
proof - |
|
1373 |
from that have "i < b + j * b" |
|
1374 |
by (metis le_less_trans of_int_add of_int_less_iff of_int_mult) |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1375 |
moreover have "j * b < 1 + i" |
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1376 |
proof - |
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1377 |
have "real_of_int (j * b) < real_of_int i + 1" |
61799 | 1378 |
using \<open>a < 1 + real_of_int i\<close> \<open>real_of_int j * real_of_int b \<le> a\<close> by force |
63597 | 1379 |
then show "j * b < 1 + i" by linarith |
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1380 |
qed |
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1381 |
ultimately have "(j - i div b) * b \<le> i mod b" "i mod b < ((j - i div b) + 1) * b" |
58788
d17b3844b726
generalize natfloor_div_nat, add floor variant: floor_divide_real_eq_div
hoelzl
parents:
58134
diff
changeset
|
1382 |
by (auto simp: field_simps) |
d17b3844b726
generalize natfloor_div_nat, add floor variant: floor_divide_real_eq_div
hoelzl
parents:
58134
diff
changeset
|
1383 |
then have "(j - i div b) * b < 1 * b" "0 * b < ((j - i div b) + 1) * b" |
63353 | 1384 |
using pos_mod_bound [OF b, of i] pos_mod_sign [OF b, of i] |
1385 |
by linarith+ |
|
63597 | 1386 |
then show ?thesis using b unfolding mult_less_cancel_right by auto |
63353 | 1387 |
qed |
63597 | 1388 |
with b show ?thesis by (auto split: floor_split simp: field_simps) |
63353 | 1389 |
qed |
58788
d17b3844b726
generalize natfloor_div_nat, add floor variant: floor_divide_real_eq_div
hoelzl
parents:
58134
diff
changeset
|
1390 |
|
63601 | 1391 |
lemma floor_one_divide_eq_div_numeral [simp]: |
1392 |
"\<lfloor>1 / numeral b::real\<rfloor> = 1 div numeral b" |
|
1393 |
by (metis floor_divide_of_int_eq of_int_1 of_int_numeral) |
|
1394 |
||
1395 |
lemma floor_minus_one_divide_eq_div_numeral [simp]: |
|
1396 |
"\<lfloor>- (1 / numeral b)::real\<rfloor> = - 1 div numeral b" |
|
1397 |
by (metis (mono_tags, hide_lams) div_minus_right minus_divide_right |
|
1398 |
floor_divide_of_int_eq of_int_neg_numeral of_int_1) |
|
1399 |
||
63597 | 1400 |
lemma floor_divide_eq_div_numeral [simp]: |
1401 |
"\<lfloor>numeral a / numeral b::real\<rfloor> = numeral a div numeral b" |
|
1402 |
by (metis floor_divide_of_int_eq of_int_numeral) |
|
58097
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58061
diff
changeset
|
1403 |
|
63353 | 1404 |
lemma floor_minus_divide_eq_div_numeral [simp]: |
1405 |
"\<lfloor>- (numeral a / numeral b)::real\<rfloor> = - numeral a div numeral b" |
|
63597 | 1406 |
by (metis divide_minus_left floor_divide_of_int_eq of_int_neg_numeral of_int_numeral) |
51523 | 1407 |
|
63353 | 1408 |
lemma of_int_ceiling_cancel [simp]: "of_int \<lceil>x\<rceil> = x \<longleftrightarrow> (\<exists>n::int. x = of_int n)" |
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1409 |
using ceiling_of_int by metis |
51523 | 1410 |
|
63353 | 1411 |
lemma ceiling_eq: "of_int n < x \<Longrightarrow> x \<le> of_int n + 1 \<Longrightarrow> \<lceil>x\<rceil> = n + 1" |
61694
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents:
61649
diff
changeset
|
1412 |
by (simp add: ceiling_unique) |
51523 | 1413 |
|
61942 | 1414 |
lemma of_int_ceiling_diff_one_le [simp]: "of_int \<lceil>r\<rceil> - 1 \<le> r" |
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
57514
diff
changeset
|
1415 |
by linarith |
51523 | 1416 |
|
61942 | 1417 |
lemma of_int_ceiling_le_add_one [simp]: "of_int \<lceil>r\<rceil> \<le> r + 1" |
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
57514
diff
changeset
|
1418 |
by linarith |
51523 | 1419 |
|
63353 | 1420 |
lemma ceiling_le: "x \<le> of_int a \<Longrightarrow> \<lceil>x\<rceil> \<le> a" |
61694
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents:
61649
diff
changeset
|
1421 |
by (simp add: ceiling_le_iff) |
51523 | 1422 |
|
61694
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents:
61649
diff
changeset
|
1423 |
lemma ceiling_divide_eq_div: "\<lceil>of_int a / of_int b\<rceil> = - (- a div b)" |
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1424 |
by (metis ceiling_def floor_divide_of_int_eq minus_divide_left of_int_minus) |
58097
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58061
diff
changeset
|
1425 |
|
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58061
diff
changeset
|
1426 |
lemma ceiling_divide_eq_div_numeral [simp]: |
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58061
diff
changeset
|
1427 |
"\<lceil>numeral a / numeral b :: real\<rceil> = - (- numeral a div numeral b)" |
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58061
diff
changeset
|
1428 |
using ceiling_divide_eq_div[of "numeral a" "numeral b"] by simp |
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58061
diff
changeset
|
1429 |
|
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58061
diff
changeset
|
1430 |
lemma ceiling_minus_divide_eq_div_numeral [simp]: |
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58061
diff
changeset
|
1431 |
"\<lceil>- (numeral a / numeral b :: real)\<rceil> = - (numeral a div numeral b)" |
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58061
diff
changeset
|
1432 |
using ceiling_divide_eq_div[of "- numeral a" "numeral b"] by simp |
51523 | 1433 |
|
63353 | 1434 |
text \<open> |
1435 |
The following lemmas are remnants of the erstwhile functions natfloor |
|
1436 |
and natceiling. |
|
1437 |
\<close> |
|
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
57514
diff
changeset
|
1438 |
|
63494 | 1439 |
lemma nat_floor_neg: "x \<le> 0 \<Longrightarrow> nat \<lfloor>x\<rfloor> = 0" |
1440 |
for x :: real |
|
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
57514
diff
changeset
|
1441 |
by linarith |
51523 | 1442 |
|
63353 | 1443 |
lemma le_nat_floor: "real x \<le> a \<Longrightarrow> x \<le> nat \<lfloor>a\<rfloor>" |
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
57514
diff
changeset
|
1444 |
by linarith |
51523 | 1445 |
|
61942 | 1446 |
lemma le_mult_nat_floor: "nat \<lfloor>a\<rfloor> * nat \<lfloor>b\<rfloor> \<le> nat \<lfloor>a * b\<rfloor>" |
63353 | 1447 |
by (cases "0 \<le> a \<and> 0 \<le> b") |
59587
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
nipkow
parents:
59000
diff
changeset
|
1448 |
(auto simp add: nat_mult_distrib[symmetric] nat_mono le_mult_floor) |
51523 | 1449 |
|
63353 | 1450 |
lemma nat_ceiling_le_eq [simp]: "nat \<lceil>x\<rceil> \<le> a \<longleftrightarrow> x \<le> real a" |
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
57514
diff
changeset
|
1451 |
by linarith |
51523 | 1452 |
|
63353 | 1453 |
lemma real_nat_ceiling_ge: "x \<le> real (nat \<lceil>x\<rceil>)" |
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
57514
diff
changeset
|
1454 |
by linarith |
51523 | 1455 |
|
63494 | 1456 |
lemma Rats_no_top_le: "\<exists>q \<in> \<rat>. x \<le> q" |
1457 |
for x :: real |
|
61942 | 1458 |
by (auto intro!: bexI[of _ "of_nat (nat \<lceil>x\<rceil>)"]) linarith |
57275
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents:
56889
diff
changeset
|
1459 |
|
63353 | 1460 |
lemma Rats_no_bot_less: "\<exists>q \<in> \<rat>. q < x" for x :: real |
68669 | 1461 |
by (auto intro!: bexI[of _ "of_int (\<lfloor>x\<rfloor> - 1)"]) linarith |
57447
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57275
diff
changeset
|
1462 |
|
63353 | 1463 |
|
60758 | 1464 |
subsection \<open>Exponentiation with floor\<close> |
51523 | 1465 |
|
1466 |
lemma floor_power: |
|
61942 | 1467 |
assumes "x = of_int \<lfloor>x\<rfloor>" |
1468 |
shows "\<lfloor>x ^ n\<rfloor> = \<lfloor>x\<rfloor> ^ n" |
|
51523 | 1469 |
proof - |
61942 | 1470 |
have "x ^ n = of_int (\<lfloor>x\<rfloor> ^ n)" |
51523 | 1471 |
using assms by (induct n arbitrary: x) simp_all |
62626
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
paulson <lp15@cam.ac.uk>
parents:
62623
diff
changeset
|
1472 |
then show ?thesis by (metis floor_of_int) |
51523 | 1473 |
qed |
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61284
diff
changeset
|
1474 |
|
63353 | 1475 |
lemma floor_numeral_power [simp]: "\<lfloor>numeral x ^ n\<rfloor> = numeral x ^ n" |
58983
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
immler
parents:
58889
diff
changeset
|
1476 |
by (metis floor_of_int of_int_numeral of_int_power) |
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
immler
parents:
58889
diff
changeset
|
1477 |
|
63353 | 1478 |
lemma ceiling_numeral_power [simp]: "\<lceil>numeral x ^ n\<rceil> = numeral x ^ n" |
58983
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
immler
parents:
58889
diff
changeset
|
1479 |
by (metis ceiling_of_int of_int_numeral of_int_power) |
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
immler
parents:
58889
diff
changeset
|
1480 |
|
63353 | 1481 |
|
60758 | 1482 |
subsection \<open>Implementation of rational real numbers\<close> |
51523 | 1483 |
|
60758 | 1484 |
text \<open>Formal constructor\<close> |
51523 | 1485 |
|
63353 | 1486 |
definition Ratreal :: "rat \<Rightarrow> real" |
66155
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
haftmann
parents:
65885
diff
changeset
|
1487 |
where [code_abbrev, simp]: "Ratreal = real_of_rat" |
51523 | 1488 |
|
1489 |
code_datatype Ratreal |
|
1490 |
||
1491 |
||
66155
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
haftmann
parents:
65885
diff
changeset
|
1492 |
text \<open>Quasi-Numerals\<close> |
51523 | 1493 |
|
66155
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
haftmann
parents:
65885
diff
changeset
|
1494 |
lemma [code_abbrev]: |
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
haftmann
parents:
65885
diff
changeset
|
1495 |
"real_of_rat (numeral k) = numeral k" |
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
haftmann
parents:
65885
diff
changeset
|
1496 |
"real_of_rat (- numeral k) = - numeral k" |
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
haftmann
parents:
65885
diff
changeset
|
1497 |
"real_of_rat (rat_of_int a) = real_of_int a" |
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
haftmann
parents:
65885
diff
changeset
|
1498 |
by simp_all |
51523 | 1499 |
|
1500 |
lemma [code_post]: |
|
66155
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
haftmann
parents:
65885
diff
changeset
|
1501 |
"real_of_rat 0 = 0" |
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
haftmann
parents:
65885
diff
changeset
|
1502 |
"real_of_rat 1 = 1" |
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
haftmann
parents:
65885
diff
changeset
|
1503 |
"real_of_rat (- 1) = - 1" |
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
haftmann
parents:
65885
diff
changeset
|
1504 |
"real_of_rat (1 / numeral k) = 1 / numeral k" |
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
haftmann
parents:
65885
diff
changeset
|
1505 |
"real_of_rat (numeral k / numeral l) = numeral k / numeral l" |
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
haftmann
parents:
65885
diff
changeset
|
1506 |
"real_of_rat (- (1 / numeral k)) = - (1 / numeral k)" |
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
haftmann
parents:
65885
diff
changeset
|
1507 |
"real_of_rat (- (numeral k / numeral l)) = - (numeral k / numeral l)" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54281
diff
changeset
|
1508 |
by (simp_all add: of_rat_divide of_rat_minus) |
51523 | 1509 |
|
60758 | 1510 |
text \<open>Operations\<close> |
51523 | 1511 |
|
63353 | 1512 |
lemma zero_real_code [code]: "0 = Ratreal 0" |
63494 | 1513 |
by simp |
51523 | 1514 |
|
63353 | 1515 |
lemma one_real_code [code]: "1 = Ratreal 1" |
63494 | 1516 |
by simp |
51523 | 1517 |
|
1518 |
instantiation real :: equal |
|
1519 |
begin |
|
1520 |
||
63353 | 1521 |
definition "HOL.equal x y \<longleftrightarrow> x - y = 0" for x :: real |
51523 | 1522 |
|
63353 | 1523 |
instance by standard (simp add: equal_real_def) |
51523 | 1524 |
|
63353 | 1525 |
lemma real_equal_code [code]: "HOL.equal (Ratreal x) (Ratreal y) \<longleftrightarrow> HOL.equal x y" |
51523 | 1526 |
by (simp add: equal_real_def equal) |
1527 |
||
63494 | 1528 |
lemma [code nbe]: "HOL.equal x x \<longleftrightarrow> True" |
1529 |
for x :: real |
|
51523 | 1530 |
by (rule equal_refl) |
1531 |
||
1532 |
end |
|
1533 |
||
1534 |
lemma real_less_eq_code [code]: "Ratreal x \<le> Ratreal y \<longleftrightarrow> x \<le> y" |
|
1535 |
by (simp add: of_rat_less_eq) |
|
1536 |
||
1537 |
lemma real_less_code [code]: "Ratreal x < Ratreal y \<longleftrightarrow> x < y" |
|
1538 |
by (simp add: of_rat_less) |
|
1539 |
||
1540 |
lemma real_plus_code [code]: "Ratreal x + Ratreal y = Ratreal (x + y)" |
|
1541 |
by (simp add: of_rat_add) |
|
1542 |
||
1543 |
lemma real_times_code [code]: "Ratreal x * Ratreal y = Ratreal (x * y)" |
|
1544 |
by (simp add: of_rat_mult) |
|
1545 |
||
1546 |
lemma real_uminus_code [code]: "- Ratreal x = Ratreal (- x)" |
|
1547 |
by (simp add: of_rat_minus) |
|
1548 |
||
1549 |
lemma real_minus_code [code]: "Ratreal x - Ratreal y = Ratreal (x - y)" |
|
1550 |
by (simp add: of_rat_diff) |
|
1551 |
||
1552 |
lemma real_inverse_code [code]: "inverse (Ratreal x) = Ratreal (inverse x)" |
|
1553 |
by (simp add: of_rat_inverse) |
|
61284
2314c2f62eb1
real_of_nat_Suc is now a simprule
paulson <lp15@cam.ac.uk>
parents:
61204
diff
changeset
|
1554 |
|
51523 | 1555 |
lemma real_divide_code [code]: "Ratreal x / Ratreal y = Ratreal (x / y)" |
1556 |
by (simp add: of_rat_divide) |
|
1557 |
||
61942 | 1558 |
lemma real_floor_code [code]: "\<lfloor>Ratreal x\<rfloor> = \<lfloor>x\<rfloor>" |
63353 | 1559 |
by (metis Ratreal_def floor_le_iff floor_unique le_floor_iff |
1560 |
of_int_floor_le of_rat_of_int_eq real_less_eq_code) |
|
51523 | 1561 |
|
1562 |
||
60758 | 1563 |
text \<open>Quickcheck\<close> |
51523 | 1564 |
|
1565 |
definition (in term_syntax) |
|
63353 | 1566 |
valterm_ratreal :: "rat \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> real \<times> (unit \<Rightarrow> Code_Evaluation.term)" |
1567 |
where [code_unfold]: "valterm_ratreal k = Code_Evaluation.valtermify Ratreal {\<cdot>} k" |
|
51523 | 1568 |
|
1569 |
notation fcomp (infixl "\<circ>>" 60) |
|
1570 |
notation scomp (infixl "\<circ>\<rightarrow>" 60) |
|
1571 |
||
1572 |
instantiation real :: random |
|
1573 |
begin |
|
1574 |
||
1575 |
definition |
|
1576 |
"Quickcheck_Random.random i = Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>r. Pair (valterm_ratreal r))" |
|
1577 |
||
1578 |
instance .. |
|
1579 |
||
1580 |
end |
|
1581 |
||
1582 |
no_notation fcomp (infixl "\<circ>>" 60) |
|
1583 |
no_notation scomp (infixl "\<circ>\<rightarrow>" 60) |
|
1584 |
||
1585 |
instantiation real :: exhaustive |
|
1586 |
begin |
|
1587 |
||
1588 |
definition |
|
63353 | 1589 |
"exhaustive_real f d = Quickcheck_Exhaustive.exhaustive (\<lambda>r. f (Ratreal r)) d" |
51523 | 1590 |
|
1591 |
instance .. |
|
1592 |
||
1593 |
end |
|
1594 |
||
1595 |
instantiation real :: full_exhaustive |
|
1596 |
begin |
|
1597 |
||
1598 |
definition |
|
63353 | 1599 |
"full_exhaustive_real f d = Quickcheck_Exhaustive.full_exhaustive (\<lambda>r. f (valterm_ratreal r)) d" |
51523 | 1600 |
|
1601 |
instance .. |
|
1602 |
||
1603 |
end |
|
1604 |
||
1605 |
instantiation real :: narrowing |
|
1606 |
begin |
|
1607 |
||
1608 |
definition |
|
63353 | 1609 |
"narrowing_real = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.cons Ratreal) narrowing" |
51523 | 1610 |
|
1611 |
instance .. |
|
1612 |
||
1613 |
end |
|
1614 |
||
1615 |
||
60758 | 1616 |
subsection \<open>Setup for Nitpick\<close> |
51523 | 1617 |
|
60758 | 1618 |
declaration \<open> |
69593 | 1619 |
Nitpick_HOL.register_frac_type \<^type_name>\<open>real\<close> |
1620 |
[(\<^const_name>\<open>zero_real_inst.zero_real\<close>, \<^const_name>\<open>Nitpick.zero_frac\<close>), |
|
1621 |
(\<^const_name>\<open>one_real_inst.one_real\<close>, \<^const_name>\<open>Nitpick.one_frac\<close>), |
|
1622 |
(\<^const_name>\<open>plus_real_inst.plus_real\<close>, \<^const_name>\<open>Nitpick.plus_frac\<close>), |
|
1623 |
(\<^const_name>\<open>times_real_inst.times_real\<close>, \<^const_name>\<open>Nitpick.times_frac\<close>), |
|
1624 |
(\<^const_name>\<open>uminus_real_inst.uminus_real\<close>, \<^const_name>\<open>Nitpick.uminus_frac\<close>), |
|
1625 |
(\<^const_name>\<open>inverse_real_inst.inverse_real\<close>, \<^const_name>\<open>Nitpick.inverse_frac\<close>), |
|
1626 |
(\<^const_name>\<open>ord_real_inst.less_real\<close>, \<^const_name>\<open>Nitpick.less_frac\<close>), |
|
1627 |
(\<^const_name>\<open>ord_real_inst.less_eq_real\<close>, \<^const_name>\<open>Nitpick.less_eq_frac\<close>)] |
|
60758 | 1628 |
\<close> |
51523 | 1629 |
|
1630 |
lemmas [nitpick_unfold] = inverse_real_inst.inverse_real one_real_inst.one_real |
|
63353 | 1631 |
ord_real_inst.less_real ord_real_inst.less_eq_real plus_real_inst.plus_real |
1632 |
times_real_inst.times_real uminus_real_inst.uminus_real |
|
1633 |
zero_real_inst.zero_real |
|
51523 | 1634 |
|
56078
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
blanchet
parents:
55945
diff
changeset
|
1635 |
|
60758 | 1636 |
subsection \<open>Setup for SMT\<close> |
56078
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
blanchet
parents:
55945
diff
changeset
|
1637 |
|
69605 | 1638 |
ML_file \<open>Tools/SMT/smt_real.ML\<close> |
1639 |
ML_file \<open>Tools/SMT/z3_real.ML\<close> |
|
56078
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
blanchet
parents:
55945
diff
changeset
|
1640 |
|
58061 | 1641 |
lemma [z3_rule]: |
63353 | 1642 |
"0 + x = x" |
56078
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
blanchet
parents:
55945
diff
changeset
|
1643 |
"x + 0 = x" |
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
blanchet
parents:
55945
diff
changeset
|
1644 |
"0 * x = 0" |
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
blanchet
parents:
55945
diff
changeset
|
1645 |
"1 * x = x" |
65885 | 1646 |
"-x = -1 * x" |
56078
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
blanchet
parents:
55945
diff
changeset
|
1647 |
"x + y = y + x" |
63353 | 1648 |
for x y :: real |
56078
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
blanchet
parents:
55945
diff
changeset
|
1649 |
by auto |
51523 | 1650 |
|
63960
3daf02070be5
new proof method "argo" for a combination of quantifier-free propositional logic with equality and linear real arithmetic
boehmes
parents:
63680
diff
changeset
|
1651 |
|
3daf02070be5
new proof method "argo" for a combination of quantifier-free propositional logic with equality and linear real arithmetic
boehmes
parents:
63680
diff
changeset
|
1652 |
subsection \<open>Setup for Argo\<close> |
3daf02070be5
new proof method "argo" for a combination of quantifier-free propositional logic with equality and linear real arithmetic
boehmes
parents:
63680
diff
changeset
|
1653 |
|
69605 | 1654 |
ML_file \<open>Tools/Argo/argo_real.ML\<close> |
63960
3daf02070be5
new proof method "argo" for a combination of quantifier-free propositional logic with equality and linear real arithmetic
boehmes
parents:
63680
diff
changeset
|
1655 |
|
51523 | 1656 |
end |