| author | wenzelm | 
| Thu, 01 Sep 2016 14:49:36 +0200 | |
| changeset 63745 | dde79b7faddf | 
| parent 63476 | ff1d86b07751 | 
| child 66251 | cd935b7cb3fb | 
| permissions | -rw-r--r-- | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 1 | (* Title: HOL/Library/Mapping.thy | 
| 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 2 | Author: Florian Haftmann and Ondrej Kuncar | 
| 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 3 | *) | 
| 29708 | 4 | |
| 60500 | 5 | section \<open>An abstract view on maps for code generation.\<close> | 
| 29708 | 6 | |
| 7 | theory Mapping | |
| 53013 
3fbcfa911863
remove unnecessary dependencies on Library/Quotient_*
 kuncar parents: 
51379diff
changeset | 8 | imports Main | 
| 29708 | 9 | begin | 
| 10 | ||
| 60500 | 11 | subsection \<open>Parametricity transfer rules\<close> | 
| 51379 | 12 | |
| 63462 | 13 | lemma map_of_foldr: "map_of xs = foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) xs Map.empty" (* FIXME move *) | 
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 14 | using map_add_map_of_foldr [of Map.empty] by auto | 
| 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 15 | |
| 63343 | 16 | context includes lifting_syntax | 
| 53013 
3fbcfa911863
remove unnecessary dependencies on Library/Quotient_*
 kuncar parents: 
51379diff
changeset | 17 | begin | 
| 56528 | 18 | |
| 63462 | 19 | lemma empty_parametric: "(A ===> rel_option B) Map.empty Map.empty" | 
| 56528 | 20 | by transfer_prover | 
| 51379 | 21 | |
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 22 | lemma lookup_parametric: "((A ===> B) ===> A ===> B) (\<lambda>m k. m k) (\<lambda>m k. m k)" | 
| 56528 | 23 | by transfer_prover | 
| 51379 | 24 | |
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 25 | lemma update_parametric: | 
| 51379 | 26 | assumes [transfer_rule]: "bi_unique A" | 
| 56528 | 27 | shows "(A ===> B ===> (A ===> rel_option B) ===> A ===> rel_option B) | 
| 28 | (\<lambda>k v m. m(k \<mapsto> v)) (\<lambda>k v m. m(k \<mapsto> v))" | |
| 29 | by transfer_prover | |
| 51379 | 30 | |
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 31 | lemma delete_parametric: | 
| 51379 | 32 | assumes [transfer_rule]: "bi_unique A" | 
| 63462 | 33 | shows "(A ===> (A ===> rel_option B) ===> A ===> rel_option B) | 
| 56528 | 34 | (\<lambda>k m. m(k := None)) (\<lambda>k m. m(k := None))" | 
| 35 | by transfer_prover | |
| 51379 | 36 | |
| 56528 | 37 | lemma is_none_parametric [transfer_rule]: | 
| 38 | "(rel_option A ===> HOL.eq) Option.is_none Option.is_none" | |
| 61068 | 39 | by (auto simp add: Option.is_none_def rel_fun_def rel_option_iff split: option.split) | 
| 51379 | 40 | |
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 41 | lemma dom_parametric: | 
| 51379 | 42 | assumes [transfer_rule]: "bi_total A" | 
| 63462 | 43 | shows "((A ===> rel_option B) ===> rel_set A) dom dom" | 
| 61068 | 44 | unfolding dom_def [abs_def] Option.is_none_def [symmetric] by transfer_prover | 
| 51379 | 45 | |
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 46 | lemma map_of_parametric [transfer_rule]: | 
| 51379 | 47 | assumes [transfer_rule]: "bi_unique R1" | 
| 55944 | 48 | shows "(list_all2 (rel_prod R1 R2) ===> R1 ===> rel_option R2) map_of map_of" | 
| 56528 | 49 | unfolding map_of_def by transfer_prover | 
| 51379 | 50 | |
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 51 | lemma map_entry_parametric [transfer_rule]: | 
| 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 52 | assumes [transfer_rule]: "bi_unique A" | 
| 63462 | 53 | shows "(A ===> (B ===> B) ===> (A ===> rel_option B) ===> A ===> rel_option B) | 
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 54 | (\<lambda>k f m. (case m k of None \<Rightarrow> m | 
| 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 55 | | Some v \<Rightarrow> m (k \<mapsto> (f v)))) (\<lambda>k f m. (case m k of None \<Rightarrow> m | 
| 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 56 | | Some v \<Rightarrow> m (k \<mapsto> (f v))))" | 
| 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 57 | by transfer_prover | 
| 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 58 | |
| 63462 | 59 | lemma tabulate_parametric: | 
| 51379 | 60 | assumes [transfer_rule]: "bi_unique A" | 
| 63462 | 61 | shows "(list_all2 A ===> (A ===> B) ===> A ===> rel_option B) | 
| 56528 | 62 | (\<lambda>ks f. (map_of (map (\<lambda>k. (k, f k)) ks))) (\<lambda>ks f. (map_of (map (\<lambda>k. (k, f k)) ks)))" | 
| 63 | by transfer_prover | |
| 51379 | 64 | |
| 63462 | 65 | lemma bulkload_parametric: | 
| 66 | "(list_all2 A ===> HOL.eq ===> rel_option A) | |
| 67 | (\<lambda>xs k. if k < length xs then Some (xs ! k) else None) | |
| 68 | (\<lambda>xs k. if k < length xs then Some (xs ! k) else None)" | |
| 56528 | 69 | proof | 
| 70 | fix xs ys | |
| 71 | assume "list_all2 A xs ys" | |
| 63462 | 72 | then show | 
| 73 | "(HOL.eq ===> rel_option A) | |
| 74 | (\<lambda>k. if k < length xs then Some (xs ! k) else None) | |
| 75 | (\<lambda>k. if k < length ys then Some (ys ! k) else None)" | |
| 56528 | 76 | apply induct | 
| 63476 | 77 | apply auto | 
| 56528 | 78 | unfolding rel_fun_def | 
| 63462 | 79 | apply clarsimp | 
| 80 | apply (case_tac xa) | |
| 63476 | 81 | apply (auto dest: list_all2_lengthD list_all2_nthD) | 
| 56528 | 82 | done | 
| 83 | qed | |
| 51379 | 84 | |
| 63462 | 85 | lemma map_parametric: | 
| 86 | "((A ===> B) ===> (C ===> D) ===> (B ===> rel_option C) ===> A ===> rel_option D) | |
| 56528 | 87 | (\<lambda>f g m. (map_option g \<circ> m \<circ> f)) (\<lambda>f g m. (map_option g \<circ> m \<circ> f))" | 
| 88 | by transfer_prover | |
| 63462 | 89 | |
| 90 | lemma combine_with_key_parametric: | |
| 91 | "((A ===> B ===> B ===> B) ===> (A ===> rel_option B) ===> (A ===> rel_option B) ===> | |
| 92 | (A ===> rel_option B)) (\<lambda>f m1 m2 x. combine_options (f x) (m1 x) (m2 x)) | |
| 93 | (\<lambda>f m1 m2 x. combine_options (f x) (m1 x) (m2 x))" | |
| 63194 | 94 | unfolding combine_options_def by transfer_prover | 
| 63462 | 95 | |
| 96 | lemma combine_parametric: | |
| 97 | "((B ===> B ===> B) ===> (A ===> rel_option B) ===> (A ===> rel_option B) ===> | |
| 98 | (A ===> rel_option B)) (\<lambda>f m1 m2 x. combine_options f (m1 x) (m2 x)) | |
| 99 | (\<lambda>f m1 m2 x. combine_options f (m1 x) (m2 x))" | |
| 63194 | 100 | unfolding combine_options_def by transfer_prover | 
| 51379 | 101 | |
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 102 | end | 
| 51379 | 103 | |
| 53013 
3fbcfa911863
remove unnecessary dependencies on Library/Quotient_*
 kuncar parents: 
51379diff
changeset | 104 | |
| 60500 | 105 | subsection \<open>Type definition and primitive operations\<close> | 
| 29708 | 106 | |
| 49834 | 107 | typedef ('a, 'b) mapping = "UNIV :: ('a \<rightharpoonup> 'b) set"
 | 
| 63462 | 108 | morphisms rep Mapping .. | 
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 109 | |
| 59485 | 110 | setup_lifting type_definition_mapping | 
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 111 | |
| 56528 | 112 | lift_definition empty :: "('a, 'b) mapping"
 | 
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 113 | is Map.empty parametric empty_parametric . | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 114 | |
| 56528 | 115 | lift_definition lookup :: "('a, 'b) mapping \<Rightarrow> 'a \<Rightarrow> 'b option"
 | 
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 116 | is "\<lambda>m k. m k" parametric lookup_parametric . | 
| 56528 | 117 | |
| 63194 | 118 | definition "lookup_default d m k = (case Mapping.lookup m k of None \<Rightarrow> d | Some v \<Rightarrow> v)" | 
| 119 | ||
| 59485 | 120 | declare [[code drop: Mapping.lookup]] | 
| 63462 | 121 | setup \<open>Code.add_eqn (Code.Equation, true) @{thm Mapping.lookup.abs_eq}\<close>  (* FIXME lifting *)
 | 
| 59485 | 122 | |
| 56528 | 123 | lift_definition update :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
 | 
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 124 | is "\<lambda>k v m. m(k \<mapsto> v)" parametric update_parametric . | 
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 125 | |
| 56528 | 126 | lift_definition delete :: "'a \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
 | 
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 127 | is "\<lambda>k m. m(k := None)" parametric delete_parametric . | 
| 39380 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 128 | |
| 63194 | 129 | lift_definition filter :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
 | 
| 63462 | 130 | is "\<lambda>P m k. case m k of None \<Rightarrow> None | Some v \<Rightarrow> if P k v then Some v else None" . | 
| 63194 | 131 | |
| 56528 | 132 | lift_definition keys :: "('a, 'b) mapping \<Rightarrow> 'a set"
 | 
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 133 | is dom parametric dom_parametric . | 
| 29708 | 134 | |
| 56528 | 135 | lift_definition tabulate :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping"
 | 
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 136 | is "\<lambda>ks f. (map_of (List.map (\<lambda>k. (k, f k)) ks))" parametric tabulate_parametric . | 
| 29708 | 137 | |
| 56528 | 138 | lift_definition bulkload :: "'a list \<Rightarrow> (nat, 'a) mapping" | 
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 139 | is "\<lambda>xs k. if k < length xs then Some (xs ! k) else None" parametric bulkload_parametric . | 
| 29708 | 140 | |
| 56528 | 141 | lift_definition map :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('c, 'd) mapping"
 | 
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 142 | is "\<lambda>f g m. (map_option g \<circ> m \<circ> f)" parametric map_parametric . | 
| 63462 | 143 | |
| 63194 | 144 | lift_definition map_values :: "('c \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> ('c, 'a) mapping \<Rightarrow> ('c, 'b) mapping"
 | 
| 63462 | 145 | is "\<lambda>f m x. map_option (f x) (m x)" . | 
| 63194 | 146 | |
| 63462 | 147 | lift_definition combine_with_key :: | 
| 63194 | 148 |   "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a,'b) mapping \<Rightarrow> ('a,'b) mapping \<Rightarrow> ('a,'b) mapping"
 | 
| 149 | is "\<lambda>f m1 m2 x. combine_options (f x) (m1 x) (m2 x)" parametric combine_with_key_parametric . | |
| 150 | ||
| 63462 | 151 | lift_definition combine :: | 
| 63194 | 152 |   "('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a,'b) mapping \<Rightarrow> ('a,'b) mapping \<Rightarrow> ('a,'b) mapping"
 | 
| 153 | is "\<lambda>f m1 m2 x. combine_options f (m1 x) (m2 x)" parametric combine_parametric . | |
| 154 | ||
| 63462 | 155 | definition "All_mapping m P \<longleftrightarrow> | 
| 156 | (\<forall>x. case Mapping.lookup m x of None \<Rightarrow> True | Some y \<Rightarrow> P x y)" | |
| 29708 | 157 | |
| 59485 | 158 | declare [[code drop: map]] | 
| 159 | ||
| 51161 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 haftmann parents: 
49975diff
changeset | 160 | |
| 60500 | 161 | subsection \<open>Functorial structure\<close> | 
| 40605 | 162 | |
| 55467 
a5c9002bc54d
renamed 'enriched_type' to more informative 'functor' (following the renaming of enriched type constructors to bounded natural functors)
 blanchet parents: 
55466diff
changeset | 163 | functor map: map | 
| 55466 | 164 | by (transfer, auto simp add: fun_eq_iff option.map_comp option.map_id)+ | 
| 40605 | 165 | |
| 51161 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 haftmann parents: 
49975diff
changeset | 166 | |
| 60500 | 167 | subsection \<open>Derived operations\<close> | 
| 29708 | 168 | |
| 61076 | 169 | definition ordered_keys :: "('a::linorder, 'b) mapping \<Rightarrow> 'a list"
 | 
| 63462 | 170 | where "ordered_keys m = (if finite (keys m) then sorted_list_of_set (keys m) else [])" | 
| 35194 | 171 | |
| 56528 | 172 | definition is_empty :: "('a, 'b) mapping \<Rightarrow> bool"
 | 
| 63462 | 173 |   where "is_empty m \<longleftrightarrow> keys m = {}"
 | 
| 35157 | 174 | |
| 56528 | 175 | definition size :: "('a, 'b) mapping \<Rightarrow> nat"
 | 
| 63462 | 176 | where "size m = (if finite (keys m) then card (keys m) else 0)" | 
| 35157 | 177 | |
| 56528 | 178 | definition replace :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
 | 
| 63462 | 179 | where "replace k v m = (if k \<in> keys m then update k v m else m)" | 
| 29814 | 180 | |
| 56528 | 181 | definition default :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
 | 
| 63462 | 182 | where "default k v m = (if k \<in> keys m then m else update k v m)" | 
| 37026 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 183 | |
| 60500 | 184 | text \<open>Manual derivation of transfer rule is non-trivial\<close> | 
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 185 | |
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 186 | lift_definition map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" is
 | 
| 63462 | 187 | "\<lambda>k f m. | 
| 188 | (case m k of | |
| 189 | None \<Rightarrow> m | |
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 190 | | Some v \<Rightarrow> m (k \<mapsto> (f v)))" parametric map_entry_parametric . | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 191 | |
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 192 | lemma map_entry_code [code]: | 
| 63462 | 193 | "map_entry k f m = | 
| 194 | (case lookup m k of | |
| 195 | None \<Rightarrow> m | |
| 49975 
faf4afed009f
transfer package: more flexible handling of equality relations using is_equality predicate
 huffman parents: 
49973diff
changeset | 196 | | Some v \<Rightarrow> update k (f v) m)" | 
| 
faf4afed009f
transfer package: more flexible handling of equality relations using is_equality predicate
 huffman parents: 
49973diff
changeset | 197 | by transfer rule | 
| 37026 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 198 | |
| 56528 | 199 | definition map_default :: "'a \<Rightarrow> 'b \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
 | 
| 63462 | 200 | where "map_default k v f m = map_entry k f (default k v m)" | 
| 37026 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 201 | |
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 202 | definition of_alist :: "('k \<times> 'v) list \<Rightarrow> ('k, 'v) mapping"
 | 
| 63462 | 203 | where "of_alist xs = foldr (\<lambda>(k, v) m. update k v m) xs empty" | 
| 51379 | 204 | |
| 51161 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 haftmann parents: 
49975diff
changeset | 205 | instantiation mapping :: (type, type) equal | 
| 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 haftmann parents: 
49975diff
changeset | 206 | begin | 
| 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 haftmann parents: 
49975diff
changeset | 207 | |
| 63462 | 208 | definition "HOL.equal m1 m2 \<longleftrightarrow> (\<forall>k. lookup m1 k = lookup m2 k)" | 
| 51161 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 haftmann parents: 
49975diff
changeset | 209 | |
| 60679 | 210 | instance | 
| 63462 | 211 | apply standard | 
| 212 | unfolding equal_mapping_def | |
| 213 | apply transfer | |
| 214 | apply auto | |
| 215 | done | |
| 51161 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 haftmann parents: 
49975diff
changeset | 216 | |
| 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 haftmann parents: 
49975diff
changeset | 217 | end | 
| 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 haftmann parents: 
49975diff
changeset | 218 | |
| 63343 | 219 | context includes lifting_syntax | 
| 53013 
3fbcfa911863
remove unnecessary dependencies on Library/Quotient_*
 kuncar parents: 
51379diff
changeset | 220 | begin | 
| 56528 | 221 | |
| 51161 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 haftmann parents: 
49975diff
changeset | 222 | lemma [transfer_rule]: | 
| 51379 | 223 | assumes [transfer_rule]: "bi_total A" | 
| 63462 | 224 | and [transfer_rule]: "bi_unique B" | 
| 56528 | 225 | shows "(pcr_mapping A B ===> pcr_mapping A B ===> op=) HOL.eq HOL.equal" | 
| 63462 | 226 | unfolding equal by transfer_prover | 
| 51161 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 haftmann parents: 
49975diff
changeset | 227 | |
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 228 | lemma of_alist_transfer [transfer_rule]: | 
| 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 229 | assumes [transfer_rule]: "bi_unique R1" | 
| 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 230 | shows "(list_all2 (rel_prod R1 R2) ===> pcr_mapping R1 R2) map_of of_alist" | 
| 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 231 | unfolding of_alist_def [abs_def] map_of_foldr [abs_def] by transfer_prover | 
| 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 232 | |
| 53013 
3fbcfa911863
remove unnecessary dependencies on Library/Quotient_*
 kuncar parents: 
51379diff
changeset | 233 | end | 
| 51161 
6ed12ae3b3e1
attempt to re-establish conventions which theories are loaded into the grand unified library theory;
 haftmann parents: 
49975diff
changeset | 234 | |
| 56528 | 235 | |
| 60500 | 236 | subsection \<open>Properties\<close> | 
| 29708 | 237 | |
| 63462 | 238 | lemma mapping_eqI: "(\<And>x. lookup m x = lookup m' x) \<Longrightarrow> m = m'" | 
| 63195 | 239 | by transfer (simp add: fun_eq_iff) | 
| 240 | ||
| 63462 | 241 | lemma mapping_eqI': | 
| 242 | assumes "\<And>x. x \<in> Mapping.keys m \<Longrightarrow> Mapping.lookup_default d m x = Mapping.lookup_default d m' x" | |
| 243 | and "Mapping.keys m = Mapping.keys m'" | |
| 244 | shows "m = m'" | |
| 63195 | 245 | proof (intro mapping_eqI) | 
| 63462 | 246 | show "Mapping.lookup m x = Mapping.lookup m' x" for x | 
| 63195 | 247 | proof (cases "Mapping.lookup m x") | 
| 248 | case None | |
| 63462 | 249 | then have "x \<notin> Mapping.keys m" | 
| 250 | by transfer (simp add: dom_def) | |
| 251 | then have "x \<notin> Mapping.keys m'" | |
| 252 | by (simp add: assms) | |
| 253 | then have "Mapping.lookup m' x = None" | |
| 254 | by transfer (simp add: dom_def) | |
| 255 | with None show ?thesis | |
| 256 | by simp | |
| 63195 | 257 | next | 
| 258 | case (Some y) | |
| 63462 | 259 | then have A: "x \<in> Mapping.keys m" | 
| 260 | by transfer (simp add: dom_def) | |
| 261 | then have "x \<in> Mapping.keys m'" | |
| 262 | by (simp add: assms) | |
| 263 | then have "\<exists>y'. Mapping.lookup m' x = Some y'" | |
| 264 | by transfer (simp add: dom_def) | |
| 265 | with Some assms(1)[OF A] show ?thesis | |
| 266 | by (auto simp add: lookup_default_def) | |
| 63195 | 267 | qed | 
| 268 | qed | |
| 269 | ||
| 63462 | 270 | lemma lookup_update: "lookup (update k v m) k = Some v" | 
| 49973 | 271 | by transfer simp | 
| 272 | ||
| 63462 | 273 | lemma lookup_update_neq: "k \<noteq> k' \<Longrightarrow> lookup (update k v m) k' = lookup m k'" | 
| 49973 | 274 | by transfer simp | 
| 275 | ||
| 63462 | 276 | lemma lookup_update': "Mapping.lookup (update k v m) k' = (if k = k' then Some v else lookup m k')" | 
| 63194 | 277 | by (auto simp: lookup_update lookup_update_neq) | 
| 278 | ||
| 63462 | 279 | lemma lookup_empty: "lookup empty k = None" | 
| 49973 | 280 | by transfer simp | 
| 281 | ||
| 63194 | 282 | lemma lookup_filter: | 
| 63462 | 283 | "lookup (filter P m) k = | 
| 284 | (case lookup m k of | |
| 285 | None \<Rightarrow> None | |
| 286 | | Some v \<Rightarrow> if P k v then Some v else None)" | |
| 63194 | 287 | by transfer simp_all | 
| 288 | ||
| 63462 | 289 | lemma lookup_map_values: "lookup (map_values f m) k = map_option (f k) (lookup m k)" | 
| 63194 | 290 | by transfer simp_all | 
| 291 | ||
| 292 | lemma lookup_default_empty: "lookup_default d empty k = d" | |
| 293 | by (simp add: lookup_default_def lookup_empty) | |
| 294 | ||
| 63462 | 295 | lemma lookup_default_update: "lookup_default d (update k v m) k = v" | 
| 63194 | 296 | by (simp add: lookup_default_def lookup_update) | 
| 297 | ||
| 298 | lemma lookup_default_update_neq: | |
| 63462 | 299 | "k \<noteq> k' \<Longrightarrow> lookup_default d (update k v m) k' = lookup_default d m k'" | 
| 63194 | 300 | by (simp add: lookup_default_def lookup_update_neq) | 
| 301 | ||
| 63462 | 302 | lemma lookup_default_update': | 
| 63194 | 303 | "lookup_default d (update k v m) k' = (if k = k' then v else lookup_default d m k')" | 
| 304 | by (auto simp: lookup_default_update lookup_default_update_neq) | |
| 305 | ||
| 306 | lemma lookup_default_filter: | |
| 63462 | 307 | "lookup_default d (filter P m) k = | 
| 63194 | 308 | (if P k (lookup_default d m k) then lookup_default d m k else d)" | 
| 309 | by (simp add: lookup_default_def lookup_filter split: option.splits) | |
| 310 | ||
| 311 | lemma lookup_default_map_values: | |
| 312 | "lookup_default (f k d) (map_values f m) k = f k (lookup_default d m k)" | |
| 63462 | 313 | by (simp add: lookup_default_def lookup_map_values split: option.splits) | 
| 63194 | 314 | |
| 315 | lemma lookup_combine_with_key: | |
| 63462 | 316 | "Mapping.lookup (combine_with_key f m1 m2) x = | 
| 317 | combine_options (f x) (Mapping.lookup m1 x) (Mapping.lookup m2 x)" | |
| 63194 | 318 | by transfer (auto split: option.splits) | 
| 63462 | 319 | |
| 63194 | 320 | lemma combine_altdef: "combine f m1 m2 = combine_with_key (\<lambda>_. f) m1 m2" | 
| 321 | by transfer' (rule refl) | |
| 322 | ||
| 323 | lemma lookup_combine: | |
| 63462 | 324 | "Mapping.lookup (combine f m1 m2) x = | 
| 63194 | 325 | combine_options f (Mapping.lookup m1 x) (Mapping.lookup m2 x)" | 
| 326 | by transfer (auto split: option.splits) | |
| 63462 | 327 | |
| 328 | lemma lookup_default_neutral_combine_with_key: | |
| 63194 | 329 | assumes "\<And>x. f k d x = x" "\<And>x. f k x d = x" | 
| 63462 | 330 | shows "Mapping.lookup_default d (combine_with_key f m1 m2) k = | 
| 331 | f k (Mapping.lookup_default d m1 k) (Mapping.lookup_default d m2 k)" | |
| 63194 | 332 | by (auto simp: lookup_default_def lookup_combine_with_key assms split: option.splits) | 
| 63462 | 333 | |
| 334 | lemma lookup_default_neutral_combine: | |
| 63194 | 335 | assumes "\<And>x. f d x = x" "\<And>x. f x d = x" | 
| 63462 | 336 | shows "Mapping.lookup_default d (combine f m1 m2) x = | 
| 337 | f (Mapping.lookup_default d m1 x) (Mapping.lookup_default d m2 x)" | |
| 63194 | 338 | by (auto simp: lookup_default_def lookup_combine assms split: option.splits) | 
| 339 | ||
| 63462 | 340 | lemma lookup_map_entry: "lookup (map_entry x f m) x = map_option f (lookup m x)" | 
| 63195 | 341 | by transfer (auto split: option.splits) | 
| 342 | ||
| 63462 | 343 | lemma lookup_map_entry_neq: "x \<noteq> y \<Longrightarrow> lookup (map_entry x f m) y = lookup m y" | 
| 63195 | 344 | by transfer (auto split: option.splits) | 
| 345 | ||
| 346 | lemma lookup_map_entry': | |
| 63462 | 347 | "lookup (map_entry x f m) y = | 
| 63195 | 348 | (if x = y then map_option f (lookup m y) else lookup m y)" | 
| 349 | by transfer (auto split: option.splits) | |
| 350 | ||
| 63462 | 351 | lemma lookup_default: "lookup (default x d m) x = Some (lookup_default d m x)" | 
| 352 | unfolding lookup_default_def default_def | |
| 353 | by transfer (auto split: option.splits) | |
| 354 | ||
| 355 | lemma lookup_default_neq: "x \<noteq> y \<Longrightarrow> lookup (default x d m) y = lookup m y" | |
| 356 | unfolding lookup_default_def default_def | |
| 357 | by transfer (auto split: option.splits) | |
| 63195 | 358 | |
| 359 | lemma lookup_default': | |
| 63462 | 360 | "lookup (default x d m) y = | 
| 361 | (if x = y then Some (lookup_default d m x) else lookup m y)" | |
| 63195 | 362 | unfolding lookup_default_def default_def | 
| 363 | by transfer (auto split: option.splits) | |
| 364 | ||
| 63462 | 365 | lemma lookup_map_default: "lookup (map_default x d f m) x = Some (f (lookup_default d m x))" | 
| 366 | unfolding lookup_default_def default_def | |
| 367 | by (simp add: map_default_def lookup_map_entry lookup_default lookup_default_def) | |
| 368 | ||
| 369 | lemma lookup_map_default_neq: "x \<noteq> y \<Longrightarrow> lookup (map_default x d f m) y = lookup m y" | |
| 370 | unfolding lookup_default_def default_def | |
| 371 | by (simp add: map_default_def lookup_map_entry_neq lookup_default_neq) | |
| 63195 | 372 | |
| 373 | lemma lookup_map_default': | |
| 63462 | 374 | "lookup (map_default x d f m) y = | 
| 375 | (if x = y then Some (f (lookup_default d m x)) else lookup m y)" | |
| 376 | unfolding lookup_default_def default_def | |
| 377 | by (simp add: map_default_def lookup_map_entry' lookup_default' lookup_default_def) | |
| 63195 | 378 | |
| 63462 | 379 | lemma lookup_tabulate: | 
| 63194 | 380 | assumes "distinct xs" | 
| 63462 | 381 | shows "Mapping.lookup (Mapping.tabulate xs f) x = (if x \<in> set xs then Some (f x) else None)" | 
| 63194 | 382 | using assms by transfer (auto simp: map_of_eq_None_iff o_def dest!: map_of_SomeD) | 
| 383 | ||
| 384 | lemma lookup_of_alist: "Mapping.lookup (Mapping.of_alist xs) k = map_of xs k" | |
| 385 | by transfer simp_all | |
| 386 | ||
| 63462 | 387 | lemma keys_is_none_rep [code_unfold]: "k \<in> keys m \<longleftrightarrow> \<not> (Option.is_none (lookup m k))" | 
| 61068 | 388 | by transfer (auto simp add: Option.is_none_def) | 
| 29708 | 389 | |
| 390 | lemma update_update: | |
| 391 | "update k v (update k w m) = update k v m" | |
| 392 | "k \<noteq> l \<Longrightarrow> update k v (update l w m) = update l w (update k v m)" | |
| 63462 | 393 | by (transfer; simp add: fun_upd_twist)+ | 
| 29708 | 394 | |
| 63462 | 395 | lemma update_delete [simp]: "update k v (delete k m) = update k v m" | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 396 | by transfer simp | 
| 29708 | 397 | |
| 398 | lemma delete_update: | |
| 399 | "delete k (update k v m) = delete k m" | |
| 400 | "k \<noteq> l \<Longrightarrow> delete k (update l v m) = update l v (delete k m)" | |
| 63462 | 401 | by (transfer; simp add: fun_upd_twist)+ | 
| 29708 | 402 | |
| 63462 | 403 | lemma delete_empty [simp]: "delete k empty = empty" | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 404 | by transfer simp | 
| 29708 | 405 | |
| 35157 | 406 | lemma replace_update: | 
| 37052 | 407 | "k \<notin> keys m \<Longrightarrow> replace k v m = m" | 
| 408 | "k \<in> keys m \<Longrightarrow> replace k v m = update k v m" | |
| 63462 | 409 | by (transfer; auto simp add: replace_def fun_upd_twist)+ | 
| 410 | ||
| 63194 | 411 | lemma map_values_update: "map_values f (update k v m) = update k (f k v) (map_values f m)" | 
| 412 | by transfer (simp_all add: fun_eq_iff) | |
| 63462 | 413 | |
| 414 | lemma size_mono: "finite (keys m') \<Longrightarrow> keys m \<subseteq> keys m' \<Longrightarrow> size m \<le> size m'" | |
| 63194 | 415 | unfolding size_def by (auto intro: card_mono) | 
| 29708 | 416 | |
| 63462 | 417 | lemma size_empty [simp]: "size empty = 0" | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 418 | unfolding size_def by transfer simp | 
| 29708 | 419 | |
| 420 | lemma size_update: | |
| 37052 | 421 | "finite (keys m) \<Longrightarrow> size (update k v m) = | 
| 422 | (if k \<in> keys m then size m else Suc (size m))" | |
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 423 | unfolding size_def by transfer (auto simp add: insert_dom) | 
| 29708 | 424 | |
| 63462 | 425 | lemma size_delete: "size (delete k m) = (if k \<in> keys m then size m - 1 else size m)" | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 426 | unfolding size_def by transfer simp | 
| 29708 | 427 | |
| 63462 | 428 | lemma size_tabulate [simp]: "size (tabulate ks f) = length (remdups ks)" | 
| 429 | unfolding size_def by transfer (auto simp add: map_of_map_restrict card_set comp_def) | |
| 29708 | 430 | |
| 63194 | 431 | lemma keys_filter: "keys (filter P m) \<subseteq> keys m" | 
| 432 | by transfer (auto split: option.splits) | |
| 433 | ||
| 434 | lemma size_filter: "finite (keys m) \<Longrightarrow> size (filter P m) \<le> size m" | |
| 435 | by (intro size_mono keys_filter) | |
| 436 | ||
| 63462 | 437 | lemma bulkload_tabulate: "bulkload xs = tabulate [0..<length xs] (nth xs)" | 
| 56528 | 438 | by transfer (auto simp add: map_of_map_restrict) | 
| 29826 | 439 | |
| 63462 | 440 | lemma is_empty_empty [simp]: "is_empty empty" | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 441 | unfolding is_empty_def by transfer simp | 
| 37052 | 442 | |
| 63462 | 443 | lemma is_empty_update [simp]: "\<not> is_empty (update k v m)" | 
| 444 | unfolding is_empty_def by transfer simp | |
| 445 | ||
| 446 | lemma is_empty_delete: "is_empty (delete k m) \<longleftrightarrow> is_empty m \<or> keys m = {k}"
 | |
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 447 | unfolding is_empty_def by transfer (auto simp del: dom_eq_empty_conv) | 
| 37052 | 448 | |
| 63462 | 449 | lemma is_empty_replace [simp]: "is_empty (replace k v m) \<longleftrightarrow> is_empty m" | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 450 | unfolding is_empty_def replace_def by transfer auto | 
| 37052 | 451 | |
| 63462 | 452 | lemma is_empty_default [simp]: "\<not> is_empty (default k v m)" | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 453 | unfolding is_empty_def default_def by transfer auto | 
| 37052 | 454 | |
| 63462 | 455 | lemma is_empty_map_entry [simp]: "is_empty (map_entry k f m) \<longleftrightarrow> is_empty m" | 
| 56528 | 456 | unfolding is_empty_def by transfer (auto split: option.split) | 
| 37052 | 457 | |
| 63462 | 458 | lemma is_empty_map_values [simp]: "is_empty (map_values f m) \<longleftrightarrow> is_empty m" | 
| 63194 | 459 | unfolding is_empty_def by transfer (auto simp: fun_eq_iff) | 
| 460 | ||
| 63462 | 461 | lemma is_empty_map_default [simp]: "\<not> is_empty (map_default k v f m)" | 
| 37052 | 462 | by (simp add: map_default_def) | 
| 463 | ||
| 63462 | 464 | lemma keys_dom_lookup: "keys m = dom (Mapping.lookup m)" | 
| 56545 | 465 | by transfer rule | 
| 466 | ||
| 63462 | 467 | lemma keys_empty [simp]: "keys empty = {}"
 | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 468 | by transfer simp | 
| 37052 | 469 | |
| 63462 | 470 | lemma keys_update [simp]: "keys (update k v m) = insert k (keys m)" | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 471 | by transfer simp | 
| 37052 | 472 | |
| 63462 | 473 | lemma keys_delete [simp]: "keys (delete k m) = keys m - {k}"
 | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 474 | by transfer simp | 
| 37052 | 475 | |
| 63462 | 476 | lemma keys_replace [simp]: "keys (replace k v m) = keys m" | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 477 | unfolding replace_def by transfer (simp add: insert_absorb) | 
| 37052 | 478 | |
| 63462 | 479 | lemma keys_default [simp]: "keys (default k v m) = insert k (keys m)" | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 480 | unfolding default_def by transfer (simp add: insert_absorb) | 
| 37052 | 481 | |
| 63462 | 482 | lemma keys_map_entry [simp]: "keys (map_entry k f m) = keys m" | 
| 56528 | 483 | by transfer (auto split: option.split) | 
| 37052 | 484 | |
| 63462 | 485 | lemma keys_map_default [simp]: "keys (map_default k v f m) = insert k (keys m)" | 
| 37052 | 486 | by (simp add: map_default_def) | 
| 487 | ||
| 63462 | 488 | lemma keys_map_values [simp]: "keys (map_values f m) = keys m" | 
| 63194 | 489 | by transfer (simp_all add: dom_def) | 
| 490 | ||
| 63462 | 491 | lemma keys_combine_with_key [simp]: | 
| 63194 | 492 | "Mapping.keys (combine_with_key f m1 m2) = Mapping.keys m1 \<union> Mapping.keys m2" | 
| 63462 | 493 | by transfer (auto simp: dom_def combine_options_def split: option.splits) | 
| 63194 | 494 | |
| 495 | lemma keys_combine [simp]: "Mapping.keys (combine f m1 m2) = Mapping.keys m1 \<union> Mapping.keys m2" | |
| 496 | by (simp add: combine_altdef) | |
| 497 | ||
| 63462 | 498 | lemma keys_tabulate [simp]: "keys (tabulate ks f) = set ks" | 
| 49929 
70300f1b6835
update RBT_Mapping, AList_Mapping and Mapping to use lifting/transfer
 kuncar parents: 
49834diff
changeset | 499 | by transfer (simp add: map_of_map_restrict o_def) | 
| 37026 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 500 | |
| 63194 | 501 | lemma keys_of_alist [simp]: "keys (of_alist xs) = set (List.map fst xs)" | 
| 502 | by transfer (simp_all add: dom_map_of_conv_image_fst) | |
| 503 | ||
| 63462 | 504 | lemma keys_bulkload [simp]: "keys (bulkload xs) = {0..<length xs}"
 | 
| 56528 | 505 | by (simp add: bulkload_tabulate) | 
| 37026 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 506 | |
| 63462 | 507 | lemma distinct_ordered_keys [simp]: "distinct (ordered_keys m)" | 
| 37052 | 508 | by (simp add: ordered_keys_def) | 
| 509 | ||
| 63462 | 510 | lemma ordered_keys_infinite [simp]: "\<not> finite (keys m) \<Longrightarrow> ordered_keys m = []" | 
| 37052 | 511 | by (simp add: ordered_keys_def) | 
| 512 | ||
| 63462 | 513 | lemma ordered_keys_empty [simp]: "ordered_keys empty = []" | 
| 37052 | 514 | by (simp add: ordered_keys_def) | 
| 515 | ||
| 516 | lemma ordered_keys_update [simp]: | |
| 517 | "k \<in> keys m \<Longrightarrow> ordered_keys (update k v m) = ordered_keys m" | |
| 63462 | 518 | "finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> | 
| 519 | ordered_keys (update k v m) = insort k (ordered_keys m)" | |
| 520 | by (simp_all add: ordered_keys_def) | |
| 521 | (auto simp only: sorted_list_of_set_insert [symmetric] insert_absorb) | |
| 37052 | 522 | |
| 63462 | 523 | lemma ordered_keys_delete [simp]: "ordered_keys (delete k m) = remove1 k (ordered_keys m)" | 
| 37052 | 524 | proof (cases "finite (keys m)") | 
| 63462 | 525 | case False | 
| 526 | then show ?thesis by simp | |
| 37052 | 527 | next | 
| 63462 | 528 | case fin: True | 
| 37052 | 529 | show ?thesis | 
| 530 | proof (cases "k \<in> keys m") | |
| 63462 | 531 | case False | 
| 532 | with fin have "k \<notin> set (sorted_list_of_set (keys m))" | |
| 533 | by simp | |
| 534 | with False show ?thesis | |
| 535 | by (simp add: ordered_keys_def remove1_idem) | |
| 37052 | 536 | next | 
| 63462 | 537 | case True | 
| 538 | with fin show ?thesis | |
| 539 | by (simp add: ordered_keys_def sorted_list_of_set_remove) | |
| 37052 | 540 | qed | 
| 541 | qed | |
| 542 | ||
| 63462 | 543 | lemma ordered_keys_replace [simp]: "ordered_keys (replace k v m) = ordered_keys m" | 
| 37052 | 544 | by (simp add: replace_def) | 
| 545 | ||
| 546 | lemma ordered_keys_default [simp]: | |
| 547 | "k \<in> keys m \<Longrightarrow> ordered_keys (default k v m) = ordered_keys m" | |
| 548 | "finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (default k v m) = insort k (ordered_keys m)" | |
| 549 | by (simp_all add: default_def) | |
| 550 | ||
| 63462 | 551 | lemma ordered_keys_map_entry [simp]: "ordered_keys (map_entry k f m) = ordered_keys m" | 
| 37052 | 552 | by (simp add: ordered_keys_def) | 
| 553 | ||
| 554 | lemma ordered_keys_map_default [simp]: | |
| 555 | "k \<in> keys m \<Longrightarrow> ordered_keys (map_default k v f m) = ordered_keys m" | |
| 556 | "finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (map_default k v f m) = insort k (ordered_keys m)" | |
| 557 | by (simp_all add: map_default_def) | |
| 558 | ||
| 63462 | 559 | lemma ordered_keys_tabulate [simp]: "ordered_keys (tabulate ks f) = sort (remdups ks)" | 
| 37052 | 560 | by (simp add: ordered_keys_def sorted_list_of_set_sort_remdups) | 
| 561 | ||
| 63462 | 562 | lemma ordered_keys_bulkload [simp]: "ordered_keys (bulkload ks) = [0..<length ks]" | 
| 37052 | 563 | by (simp add: ordered_keys_def) | 
| 36110 | 564 | |
| 63462 | 565 | lemma tabulate_fold: "tabulate xs f = fold (\<lambda>k m. update k (f k) m) xs empty" | 
| 56528 | 566 | proof transfer | 
| 567 | fix f :: "'a \<Rightarrow> 'b" and xs | |
| 56529 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 568 | have "map_of (List.map (\<lambda>k. (k, f k)) xs) = foldr (\<lambda>k m. m(k \<mapsto> f k)) xs Map.empty" | 
| 
aff193f53a64
restoring notion of primitive vs. derived operations in terms of generated code;
 haftmann parents: 
56528diff
changeset | 569 | by (simp add: foldr_map comp_def map_of_foldr) | 
| 56528 | 570 | also have "foldr (\<lambda>k m. m(k \<mapsto> f k)) xs = fold (\<lambda>k m. m(k \<mapsto> f k)) xs" | 
| 571 | by (rule foldr_fold) (simp add: fun_eq_iff) | |
| 572 | ultimately show "map_of (List.map (\<lambda>k. (k, f k)) xs) = fold (\<lambda>k m. m(k \<mapsto> f k)) xs Map.empty" | |
| 573 | by simp | |
| 574 | qed | |
| 575 | ||
| 63194 | 576 | lemma All_mapping_mono: | 
| 577 | "(\<And>k v. k \<in> keys m \<Longrightarrow> P k v \<Longrightarrow> Q k v) \<Longrightarrow> All_mapping m P \<Longrightarrow> All_mapping m Q" | |
| 578 | unfolding All_mapping_def by transfer (auto simp: All_mapping_def dom_def split: option.splits) | |
| 31459 | 579 | |
| 63194 | 580 | lemma All_mapping_empty [simp]: "All_mapping Mapping.empty P" | 
| 581 | by (auto simp: All_mapping_def lookup_empty) | |
| 63462 | 582 | |
| 583 | lemma All_mapping_update_iff: | |
| 63194 | 584 | "All_mapping (Mapping.update k v m) P \<longleftrightarrow> P k v \<and> All_mapping m (\<lambda>k' v'. k = k' \<or> P k' v')" | 
| 63462 | 585 | unfolding All_mapping_def | 
| 63194 | 586 | proof safe | 
| 587 | assume "\<forall>x. case Mapping.lookup (Mapping.update k v m) x of None \<Rightarrow> True | Some y \<Rightarrow> P x y" | |
| 63462 | 588 | then have *: "case Mapping.lookup (Mapping.update k v m) x of None \<Rightarrow> True | Some y \<Rightarrow> P x y" for x | 
| 63194 | 589 | by blast | 
| 63462 | 590 | from *[of k] show "P k v" | 
| 591 | by (simp add: lookup_update) | |
| 63194 | 592 | show "case Mapping.lookup m x of None \<Rightarrow> True | Some v' \<Rightarrow> k = x \<or> P x v'" for x | 
| 63462 | 593 | using *[of x] by (auto simp add: lookup_update' split: if_splits option.splits) | 
| 63194 | 594 | next | 
| 595 | assume "P k v" | |
| 596 | assume "\<forall>x. case Mapping.lookup m x of None \<Rightarrow> True | Some v' \<Rightarrow> k = x \<or> P x v'" | |
| 63462 | 597 | then have A: "case Mapping.lookup m x of None \<Rightarrow> True | Some v' \<Rightarrow> k = x \<or> P x v'" for x | 
| 598 | by blast | |
| 63194 | 599 | show "case Mapping.lookup (Mapping.update k v m) x of None \<Rightarrow> True | Some xa \<Rightarrow> P x xa" for x | 
| 600 | using \<open>P k v\<close> A[of x] by (auto simp: lookup_update' split: option.splits) | |
| 601 | qed | |
| 602 | ||
| 603 | lemma All_mapping_update: | |
| 604 | "P k v \<Longrightarrow> All_mapping m (\<lambda>k' v'. k = k' \<or> P k' v') \<Longrightarrow> All_mapping (Mapping.update k v m) P" | |
| 605 | by (simp add: All_mapping_update_iff) | |
| 606 | ||
| 63462 | 607 | lemma All_mapping_filter_iff: "All_mapping (filter P m) Q \<longleftrightarrow> All_mapping m (\<lambda>k v. P k v \<longrightarrow> Q k v)" | 
| 63194 | 608 | by (auto simp: All_mapping_def lookup_filter split: option.splits) | 
| 609 | ||
| 63462 | 610 | lemma All_mapping_filter: "All_mapping m Q \<Longrightarrow> All_mapping (filter P m) Q" | 
| 63194 | 611 | by (auto simp: All_mapping_filter_iff intro: All_mapping_mono) | 
| 31459 | 612 | |
| 63462 | 613 | lemma All_mapping_map_values: "All_mapping (map_values f m) P \<longleftrightarrow> All_mapping m (\<lambda>k v. P k (f k v))" | 
| 63194 | 614 | by (auto simp: All_mapping_def lookup_map_values split: option.splits) | 
| 615 | ||
| 63462 | 616 | lemma All_mapping_tabulate: "(\<forall>x\<in>set xs. P x (f x)) \<Longrightarrow> All_mapping (Mapping.tabulate xs f) P" | 
| 617 | unfolding All_mapping_def | |
| 618 | apply (intro allI) | |
| 619 | apply transfer | |
| 620 | apply (auto split: option.split dest!: map_of_SomeD) | |
| 621 | done | |
| 63194 | 622 | |
| 623 | lemma All_mapping_alist: | |
| 624 | "(\<And>k v. (k, v) \<in> set xs \<Longrightarrow> P k v) \<Longrightarrow> All_mapping (Mapping.of_alist xs) P" | |
| 625 | by (auto simp: All_mapping_def lookup_of_alist dest!: map_of_SomeD split: option.splits) | |
| 626 | ||
| 63462 | 627 | lemma combine_empty [simp]: "combine f Mapping.empty y = y" "combine f y Mapping.empty = y" | 
| 628 | by (transfer; force)+ | |
| 63194 | 629 | |
| 630 | lemma (in abel_semigroup) comm_monoid_set_combine: "comm_monoid_set (combine f) Mapping.empty" | |
| 631 | by standard (transfer fixing: f, simp add: combine_options_ac[of f] ac_simps)+ | |
| 632 | ||
| 633 | locale combine_mapping_abel_semigroup = abel_semigroup | |
| 634 | begin | |
| 635 | ||
| 636 | sublocale combine: comm_monoid_set "combine f" Mapping.empty | |
| 637 | by (rule comm_monoid_set_combine) | |
| 638 | ||
| 639 | lemma fold_combine_code: | |
| 640 | "combine.F g (set xs) = foldr (\<lambda>x. combine f (g x)) (remdups xs) Mapping.empty" | |
| 641 | proof - | |
| 642 | have "combine.F g (set xs) = foldr (\<lambda>x. combine f (g x)) xs Mapping.empty" | |
| 643 | if "distinct xs" for xs | |
| 644 | using that by (induction xs) simp_all | |
| 645 | from this[of "remdups xs"] show ?thesis by simp | |
| 646 | qed | |
| 63462 | 647 | |
| 648 | lemma keys_fold_combine: "finite A \<Longrightarrow> Mapping.keys (combine.F g A) = (\<Union>x\<in>A. Mapping.keys (g x))" | |
| 649 | by (induct A rule: finite_induct) simp_all | |
| 35157 | 650 | |
| 49975 
faf4afed009f
transfer package: more flexible handling of equality relations using is_equality predicate
 huffman parents: 
49973diff
changeset | 651 | end | 
| 59485 | 652 | |
| 63462 | 653 | |
| 63194 | 654 | subsection \<open>Code generator setup\<close> | 
| 655 | ||
| 656 | hide_const (open) empty is_empty rep lookup lookup_default filter update delete ordered_keys | |
| 657 | keys size replace default map_entry map_default tabulate bulkload map map_values combine of_alist | |
| 658 | ||
| 659 | end |