src/HOL/Relation.thy
author wenzelm
Mon, 25 May 2020 22:37:14 +0200
changeset 71892 dff81ce866d4
parent 71827 5e315defb038
child 71935 82b00b8f1871
permissions -rw-r--r--
obsolete;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10358
ef2a753cda2a converse: syntax \<inverse>;
wenzelm
parents: 10212
diff changeset
     1
(*  Title:      HOL/Relation.thy
63612
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
     3
    Author:     Stefan Berghofer, TU Muenchen
1128
64b30e3cc6d4 Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff changeset
     4
*)
64b30e3cc6d4 Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff changeset
     5
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
     6
section \<open>Relations -- as sets of pairs, and binary predicates\<close>
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
     7
15131
c69542757a4d New theory header syntax.
nipkow
parents: 13830
diff changeset
     8
theory Relation
63612
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
     9
  imports Finite_Set
15131
c69542757a4d New theory header syntax.
nipkow
parents: 13830
diff changeset
    10
begin
5978
fa2c2dd74f8c moved diag (diagonal relation) from Univ to Relation
paulson
parents: 5608
diff changeset
    11
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    12
text \<open>A preliminary: classical rules for reasoning on predicates\<close>
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    13
46882
6242b4bc05bc tuned simpset
noschinl
parents: 46833
diff changeset
    14
declare predicate1I [Pure.intro!, intro!]
6242b4bc05bc tuned simpset
noschinl
parents: 46833
diff changeset
    15
declare predicate1D [Pure.dest, dest]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    16
declare predicate2I [Pure.intro!, intro!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    17
declare predicate2D [Pure.dest, dest]
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
    18
declare bot1E [elim!]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    19
declare bot2E [elim!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    20
declare top1I [intro!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    21
declare top2I [intro!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    22
declare inf1I [intro!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    23
declare inf2I [intro!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    24
declare inf1E [elim!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    25
declare inf2E [elim!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    26
declare sup1I1 [intro?]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    27
declare sup2I1 [intro?]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    28
declare sup1I2 [intro?]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    29
declare sup2I2 [intro?]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    30
declare sup1E [elim!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    31
declare sup2E [elim!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    32
declare sup1CI [intro!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    33
declare sup2CI [intro!]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    34
declare Inf1_I [intro!]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    35
declare INF1_I [intro!]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    36
declare Inf2_I [intro!]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    37
declare INF2_I [intro!]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    38
declare Inf1_D [elim]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    39
declare INF1_D [elim]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    40
declare Inf2_D [elim]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    41
declare INF2_D [elim]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    42
declare Inf1_E [elim]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    43
declare INF1_E [elim]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    44
declare Inf2_E [elim]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    45
declare INF2_E [elim]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    46
declare Sup1_I [intro]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    47
declare SUP1_I [intro]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    48
declare Sup2_I [intro]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    49
declare SUP2_I [intro]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    50
declare Sup1_E [elim!]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    51
declare SUP1_E [elim!]
56742
678a52e676b6 more complete classical rules for Inf and Sup, modelled after theiry counterparts on Inter and Union (and INF and SUP)
haftmann
parents: 56545
diff changeset
    52
declare Sup2_E [elim!]
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    53
declare SUP2_E [elim!]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    54
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
    55
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    56
subsection \<open>Fundamental\<close>
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    57
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    58
subsubsection \<open>Relations as sets of pairs\<close>
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    59
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
    60
type_synonym 'a rel = "('a \<times> 'a) set"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    61
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
    62
lemma subrelI: "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (x, y) \<in> s) \<Longrightarrow> r \<subseteq> s"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
    63
  \<comment> \<open>Version of @{thm [source] subsetI} for binary relations\<close>
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    64
  by auto
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    65
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
    66
lemma lfp_induct2:
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    67
  "(a, b) \<in> lfp f \<Longrightarrow> mono f \<Longrightarrow>
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    68
    (\<And>a b. (a, b) \<in> f (lfp f \<inter> {(x, y). P x y}) \<Longrightarrow> P a b) \<Longrightarrow> P a b"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
    69
  \<comment> \<open>Version of @{thm [source] lfp_induct} for binary relations\<close>
55414
eab03e9cee8a renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents: 55096
diff changeset
    70
  using lfp_induct_set [of "(a, b)" f "case_prod P"] by auto
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    71
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
    72
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
    73
subsubsection \<open>Conversions between set and predicate relations\<close>
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    74
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
    75
lemma pred_equals_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) = (\<lambda>x. x \<in> S) \<longleftrightarrow> R = S"
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    76
  by (simp add: set_eq_iff fun_eq_iff)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    77
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
    78
lemma pred_equals_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) = (\<lambda>x y. (x, y) \<in> S) \<longleftrightarrow> R = S"
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    79
  by (simp add: set_eq_iff fun_eq_iff)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    80
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
    81
lemma pred_subset_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<le> (\<lambda>x. x \<in> S) \<longleftrightarrow> R \<subseteq> S"
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    82
  by (simp add: subset_iff le_fun_def)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    83
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
    84
lemma pred_subset_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<le> (\<lambda>x y. (x, y) \<in> S) \<longleftrightarrow> R \<subseteq> S"
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    85
  by (simp add: subset_iff le_fun_def)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    86
46883
eec472dae593 tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents: 46882
diff changeset
    87
lemma bot_empty_eq [pred_set_conv]: "\<bottom> = (\<lambda>x. x \<in> {})"
46689
f559866a7aa2 marked candidates for rule declarations
haftmann
parents: 46664
diff changeset
    88
  by (auto simp add: fun_eq_iff)
f559866a7aa2 marked candidates for rule declarations
haftmann
parents: 46664
diff changeset
    89
46883
eec472dae593 tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents: 46882
diff changeset
    90
lemma bot_empty_eq2 [pred_set_conv]: "\<bottom> = (\<lambda>x y. (x, y) \<in> {})"
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    91
  by (auto simp add: fun_eq_iff)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    92
46883
eec472dae593 tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents: 46882
diff changeset
    93
lemma top_empty_eq [pred_set_conv]: "\<top> = (\<lambda>x. x \<in> UNIV)"
eec472dae593 tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents: 46882
diff changeset
    94
  by (auto simp add: fun_eq_iff)
46689
f559866a7aa2 marked candidates for rule declarations
haftmann
parents: 46664
diff changeset
    95
46883
eec472dae593 tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents: 46882
diff changeset
    96
lemma top_empty_eq2 [pred_set_conv]: "\<top> = (\<lambda>x y. (x, y) \<in> UNIV)"
eec472dae593 tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents: 46882
diff changeset
    97
  by (auto simp add: fun_eq_iff)
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    98
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
    99
lemma inf_Int_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<sqinter> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)"
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   100
  by (simp add: inf_fun_def)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   101
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   102
lemma inf_Int_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<sqinter> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<inter> S)"
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   103
  by (simp add: inf_fun_def)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   104
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   105
lemma sup_Un_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<squnion> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)"
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   106
  by (simp add: sup_fun_def)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   107
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   108
lemma sup_Un_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<squnion> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<union> S)"
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   109
  by (simp add: sup_fun_def)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   110
46981
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   111
lemma INF_INT_eq [pred_set_conv]: "(\<Sqinter>i\<in>S. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Inter>i\<in>S. r i))"
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   112
  by (simp add: fun_eq_iff)
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   113
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   114
lemma INF_INT_eq2 [pred_set_conv]: "(\<Sqinter>i\<in>S. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Inter>i\<in>S. r i))"
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   115
  by (simp add: fun_eq_iff)
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   116
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   117
lemma SUP_UN_eq [pred_set_conv]: "(\<Squnion>i\<in>S. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Union>i\<in>S. r i))"
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   118
  by (simp add: fun_eq_iff)
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   119
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   120
lemma SUP_UN_eq2 [pred_set_conv]: "(\<Squnion>i\<in>S. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Union>i\<in>S. r i))"
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   121
  by (simp add: fun_eq_iff)
d54cea5b64e4 generalized INF_INT_eq, SUP_UN_eq
haftmann
parents: 46884
diff changeset
   122
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   123
lemma Inf_INT_eq [pred_set_conv]: "\<Sqinter>S = (\<lambda>x. x \<in> (\<Inter>(Collect ` S)))"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   124
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   125
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   126
lemma INF_Int_eq [pred_set_conv]: "(\<Sqinter>i\<in>S. (\<lambda>x. x \<in> i)) = (\<lambda>x. x \<in> \<Inter>S)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   127
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   128
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   129
lemma Inf_INT_eq2 [pred_set_conv]: "\<Sqinter>S = (\<lambda>x y. (x, y) \<in> (\<Inter>(Collect ` case_prod ` S)))"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   130
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   131
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   132
lemma INF_Int_eq2 [pred_set_conv]: "(\<Sqinter>i\<in>S. (\<lambda>x y. (x, y) \<in> i)) = (\<lambda>x y. (x, y) \<in> \<Inter>S)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   133
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   134
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   135
lemma Sup_SUP_eq [pred_set_conv]: "\<Squnion>S = (\<lambda>x. x \<in> \<Union>(Collect ` S))"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   136
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   137
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   138
lemma SUP_Sup_eq [pred_set_conv]: "(\<Squnion>i\<in>S. (\<lambda>x. x \<in> i)) = (\<lambda>x. x \<in> \<Union>S)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   139
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   140
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   141
lemma Sup_SUP_eq2 [pred_set_conv]: "\<Squnion>S = (\<lambda>x y. (x, y) \<in> (\<Union>(Collect ` case_prod ` S)))"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   142
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   143
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   144
lemma SUP_Sup_eq2 [pred_set_conv]: "(\<Squnion>i\<in>S. (\<lambda>x y. (x, y) \<in> i)) = (\<lambda>x y. (x, y) \<in> \<Union>S)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   145
  by (simp add: fun_eq_iff)
46833
85619a872ab5 tuned syntax; more candidates
haftmann
parents: 46767
diff changeset
   146
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   147
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   148
subsection \<open>Properties of relations\<close>
5978
fa2c2dd74f8c moved diag (diagonal relation) from Univ to Relation
paulson
parents: 5608
diff changeset
   149
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   150
subsubsection \<open>Reflexivity\<close>
10786
04ee73606993 Field of a relation, and some Domain/Range rules
paulson
parents: 10358
diff changeset
   151
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   152
definition refl_on :: "'a set \<Rightarrow> 'a rel \<Rightarrow> bool"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   153
  where "refl_on A r \<longleftrightarrow> r \<subseteq> A \<times> A \<and> (\<forall>x\<in>A. (x, x) \<in> r)"
6806
43c081a0858d new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents: 5978
diff changeset
   154
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   155
abbreviation refl :: "'a rel \<Rightarrow> bool" \<comment> \<open>reflexivity over a type\<close>
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   156
  where "refl \<equiv> refl_on UNIV"
26297
74012d599204 added lemmas
nipkow
parents: 26271
diff changeset
   157
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   158
definition reflp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   159
  where "reflp r \<longleftrightarrow> (\<forall>x. r x x)"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   160
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   161
lemma reflp_refl_eq [pred_set_conv]: "reflp (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> refl r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   162
  by (simp add: refl_on_def reflp_def)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   163
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   164
lemma refl_onI [intro?]: "r \<subseteq> A \<times> A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> (x, x) \<in> r) \<Longrightarrow> refl_on A r"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   165
  unfolding refl_on_def by (iprover intro!: ballI)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   166
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   167
lemma refl_onD: "refl_on A r \<Longrightarrow> a \<in> A \<Longrightarrow> (a, a) \<in> r"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   168
  unfolding refl_on_def by blast
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   169
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   170
lemma refl_onD1: "refl_on A r \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> x \<in> A"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   171
  unfolding refl_on_def by blast
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   172
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   173
lemma refl_onD2: "refl_on A r \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> y \<in> A"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   174
  unfolding refl_on_def by blast
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   175
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   176
lemma reflpI [intro?]: "(\<And>x. r x x) \<Longrightarrow> reflp r"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   177
  by (auto intro: refl_onI simp add: reflp_def)
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   178
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   179
lemma reflpE:
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   180
  assumes "reflp r"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   181
  obtains "r x x"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   182
  using assms by (auto dest: refl_onD simp add: reflp_def)
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   183
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   184
lemma reflpD [dest?]:
47937
70375fa2679d generate abs_eq, use it as a code equation for total quotients; no_abs_code renamed to no_code; added no_code for quotient_type command
kuncar
parents: 47436
diff changeset
   185
  assumes "reflp r"
70375fa2679d generate abs_eq, use it as a code equation for total quotients; no_abs_code renamed to no_code; added no_code for quotient_type command
kuncar
parents: 47436
diff changeset
   186
  shows "r x x"
70375fa2679d generate abs_eq, use it as a code equation for total quotients; no_abs_code renamed to no_code; added no_code for quotient_type command
kuncar
parents: 47436
diff changeset
   187
  using assms by (auto elim: reflpE)
70375fa2679d generate abs_eq, use it as a code equation for total quotients; no_abs_code renamed to no_code; added no_code for quotient_type command
kuncar
parents: 47436
diff changeset
   188
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   189
lemma refl_on_Int: "refl_on A r \<Longrightarrow> refl_on B s \<Longrightarrow> refl_on (A \<inter> B) (r \<inter> s)"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   190
  unfolding refl_on_def by blast
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   191
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   192
lemma reflp_inf: "reflp r \<Longrightarrow> reflp s \<Longrightarrow> reflp (r \<sqinter> s)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   193
  by (auto intro: reflpI elim: reflpE)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   194
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   195
lemma refl_on_Un: "refl_on A r \<Longrightarrow> refl_on B s \<Longrightarrow> refl_on (A \<union> B) (r \<union> s)"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   196
  unfolding refl_on_def by blast
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   197
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   198
lemma reflp_sup: "reflp r \<Longrightarrow> reflp s \<Longrightarrow> reflp (r \<squnion> s)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   199
  by (auto intro: reflpI elim: reflpE)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   200
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   201
lemma refl_on_INTER: "\<forall>x\<in>S. refl_on (A x) (r x) \<Longrightarrow> refl_on (\<Inter>(A ` S)) (\<Inter>(r ` S))"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   202
  unfolding refl_on_def by fast
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   203
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   204
lemma refl_on_UNION: "\<forall>x\<in>S. refl_on (A x) (r x) \<Longrightarrow> refl_on (\<Union>(A ` S)) (\<Union>(r ` S))"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   205
  unfolding refl_on_def by blast
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   206
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   207
lemma refl_on_empty [simp]: "refl_on {} {}"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   208
  by (simp add: refl_on_def)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   209
63563
0bcd79da075b prefer [simp] over [iff] as [iff] break HOL-UNITY
Andreas Lochbihler
parents: 63561
diff changeset
   210
lemma refl_on_singleton [simp]: "refl_on {x} {(x, x)}"
63561
fba08009ff3e add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents: 63404
diff changeset
   211
by (blast intro: refl_onI)
fba08009ff3e add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents: 63404
diff changeset
   212
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   213
lemma refl_on_def' [nitpick_unfold, code]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   214
  "refl_on A r \<longleftrightarrow> (\<forall>(x, y) \<in> r. x \<in> A \<and> y \<in> A) \<and> (\<forall>x \<in> A. (x, x) \<in> r)"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   215
  by (auto intro: refl_onI dest: refl_onD refl_onD1 refl_onD2)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   216
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66441
diff changeset
   217
lemma reflp_equality [simp]: "reflp (=)"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   218
  by (simp add: reflp_def)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   219
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   220
lemma reflp_mono: "reflp R \<Longrightarrow> (\<And>x y. R x y \<longrightarrow> Q x y) \<Longrightarrow> reflp Q"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   221
  by (auto intro: reflpI dest: reflpD)
61630
608520e0e8e2 add various lemmas
Andreas Lochbihler
parents: 61424
diff changeset
   222
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   223
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   224
subsubsection \<open>Irreflexivity\<close>
6806
43c081a0858d new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents: 5978
diff changeset
   225
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   226
definition irrefl :: "'a rel \<Rightarrow> bool"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   227
  where "irrefl r \<longleftrightarrow> (\<forall>a. (a, a) \<notin> r)"
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   228
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   229
definition irreflp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   230
  where "irreflp R \<longleftrightarrow> (\<forall>a. \<not> R a a)"
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   231
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   232
lemma irreflp_irrefl_eq [pred_set_conv]: "irreflp (\<lambda>a b. (a, b) \<in> R) \<longleftrightarrow> irrefl R"
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   233
  by (simp add: irrefl_def irreflp_def)
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   234
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   235
lemma irreflI [intro?]: "(\<And>a. (a, a) \<notin> R) \<Longrightarrow> irrefl R"
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   236
  by (simp add: irrefl_def)
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   237
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   238
lemma irreflpI [intro?]: "(\<And>a. \<not> R a a) \<Longrightarrow> irreflp R"
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   239
  by (fact irreflI [to_pred])
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   240
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   241
lemma irrefl_distinct [code]: "irrefl r \<longleftrightarrow> (\<forall>(a, b) \<in> r. a \<noteq> b)"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   242
  by (auto simp add: irrefl_def)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   243
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   244
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   245
subsubsection \<open>Asymmetry\<close>
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   246
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   247
inductive asym :: "'a rel \<Rightarrow> bool"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   248
  where asymI: "irrefl R \<Longrightarrow> (\<And>a b. (a, b) \<in> R \<Longrightarrow> (b, a) \<notin> R) \<Longrightarrow> asym R"
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   249
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   250
inductive asymp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   251
  where asympI: "irreflp R \<Longrightarrow> (\<And>a b. R a b \<Longrightarrow> \<not> R b a) \<Longrightarrow> asymp R"
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   252
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   253
lemma asymp_asym_eq [pred_set_conv]: "asymp (\<lambda>a b. (a, b) \<in> R) \<longleftrightarrow> asym R"
56545
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   254
  by (auto intro!: asymI asympI elim: asym.cases asymp.cases simp add: irreflp_irrefl_eq)
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   255
8f1e7596deb7 more operations and lemmas
haftmann
parents: 56218
diff changeset
   256
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   257
subsubsection \<open>Symmetry\<close>
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   258
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   259
definition sym :: "'a rel \<Rightarrow> bool"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   260
  where "sym r \<longleftrightarrow> (\<forall>x y. (x, y) \<in> r \<longrightarrow> (y, x) \<in> r)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   261
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   262
definition symp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   263
  where "symp r \<longleftrightarrow> (\<forall>x y. r x y \<longrightarrow> r y x)"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   264
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   265
lemma symp_sym_eq [pred_set_conv]: "symp (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> sym r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   266
  by (simp add: sym_def symp_def)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   267
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   268
lemma symI [intro?]: "(\<And>a b. (a, b) \<in> r \<Longrightarrow> (b, a) \<in> r) \<Longrightarrow> sym r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   269
  by (unfold sym_def) iprover
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   270
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   271
lemma sympI [intro?]: "(\<And>a b. r a b \<Longrightarrow> r b a) \<Longrightarrow> symp r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   272
  by (fact symI [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   273
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   274
lemma symE:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   275
  assumes "sym r" and "(b, a) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   276
  obtains "(a, b) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   277
  using assms by (simp add: sym_def)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   278
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   279
lemma sympE:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   280
  assumes "symp r" and "r b a"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   281
  obtains "r a b"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   282
  using assms by (rule symE [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   283
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   284
lemma symD [dest?]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   285
  assumes "sym r" and "(b, a) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   286
  shows "(a, b) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   287
  using assms by (rule symE)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   288
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   289
lemma sympD [dest?]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   290
  assumes "symp r" and "r b a"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   291
  shows "r a b"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   292
  using assms by (rule symD [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   293
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   294
lemma sym_Int: "sym r \<Longrightarrow> sym s \<Longrightarrow> sym (r \<inter> s)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   295
  by (fast intro: symI elim: symE)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   296
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   297
lemma symp_inf: "symp r \<Longrightarrow> symp s \<Longrightarrow> symp (r \<sqinter> s)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   298
  by (fact sym_Int [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   299
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   300
lemma sym_Un: "sym r \<Longrightarrow> sym s \<Longrightarrow> sym (r \<union> s)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   301
  by (fast intro: symI elim: symE)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   302
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   303
lemma symp_sup: "symp r \<Longrightarrow> symp s \<Longrightarrow> symp (r \<squnion> s)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   304
  by (fact sym_Un [to_pred])
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   305
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   306
lemma sym_INTER: "\<forall>x\<in>S. sym (r x) \<Longrightarrow> sym (\<Inter>(r ` S))"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   307
  by (fast intro: symI elim: symE)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   308
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   309
lemma symp_INF: "\<forall>x\<in>S. symp (r x) \<Longrightarrow> symp (\<Sqinter>(r ` S))"
46982
144d94446378 spelt out missing colemmas
haftmann
parents: 46981
diff changeset
   310
  by (fact sym_INTER [to_pred])
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   311
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   312
lemma sym_UNION: "\<forall>x\<in>S. sym (r x) \<Longrightarrow> sym (\<Union>(r ` S))"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   313
  by (fast intro: symI elim: symE)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   314
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   315
lemma symp_SUP: "\<forall>x\<in>S. symp (r x) \<Longrightarrow> symp (\<Squnion>(r ` S))"
46982
144d94446378 spelt out missing colemmas
haftmann
parents: 46981
diff changeset
   316
  by (fact sym_UNION [to_pred])
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   317
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   318
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   319
subsubsection \<open>Antisymmetry\<close>
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   320
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   321
definition antisym :: "'a rel \<Rightarrow> bool"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   322
  where "antisym r \<longleftrightarrow> (\<forall>x y. (x, y) \<in> r \<longrightarrow> (y, x) \<in> r \<longrightarrow> x = y)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   323
64634
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   324
definition antisymp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   325
  where "antisymp r \<longleftrightarrow> (\<forall>x y. r x y \<longrightarrow> r y x \<longrightarrow> x = y)"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   326
64634
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   327
lemma antisymp_antisym_eq [pred_set_conv]: "antisymp (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> antisym r"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   328
  by (simp add: antisym_def antisymp_def)
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   329
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   330
lemma antisymI [intro?]:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   331
  "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (y, x) \<in> r \<Longrightarrow> x = y) \<Longrightarrow> antisym r"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   332
  unfolding antisym_def by iprover
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   333
64634
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   334
lemma antisympI [intro?]:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   335
  "(\<And>x y. r x y \<Longrightarrow> r y x \<Longrightarrow> x = y) \<Longrightarrow> antisymp r"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   336
  by (fact antisymI [to_pred])
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   337
    
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   338
lemma antisymD [dest?]:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   339
  "antisym r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> (b, a) \<in> r \<Longrightarrow> a = b"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   340
  unfolding antisym_def by iprover
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   341
64634
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   342
lemma antisympD [dest?]:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   343
  "antisymp r \<Longrightarrow> r a b \<Longrightarrow> r b a \<Longrightarrow> a = b"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   344
  by (fact antisymD [to_pred])
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   345
64634
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   346
lemma antisym_subset:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   347
  "r \<subseteq> s \<Longrightarrow> antisym s \<Longrightarrow> antisym r"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   348
  unfolding antisym_def by blast
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   349
64634
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   350
lemma antisymp_less_eq:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   351
  "r \<le> s \<Longrightarrow> antisymp s \<Longrightarrow> antisymp r"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   352
  by (fact antisym_subset [to_pred])
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   353
    
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   354
lemma antisym_empty [simp]:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   355
  "antisym {}"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   356
  unfolding antisym_def by blast
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   357
64634
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   358
lemma antisym_bot [simp]:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   359
  "antisymp \<bottom>"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   360
  by (fact antisym_empty [to_pred])
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   361
    
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   362
lemma antisymp_equality [simp]:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   363
  "antisymp HOL.eq"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   364
  by (auto intro: antisympI)
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   365
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   366
lemma antisym_singleton [simp]:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   367
  "antisym {x}"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   368
  by (blast intro: antisymI)
63561
fba08009ff3e add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents: 63404
diff changeset
   369
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   370
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   371
subsubsection \<open>Transitivity\<close>
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   372
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   373
definition trans :: "'a rel \<Rightarrow> bool"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   374
  where "trans r \<longleftrightarrow> (\<forall>x y z. (x, y) \<in> r \<longrightarrow> (y, z) \<in> r \<longrightarrow> (x, z) \<in> r)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   375
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   376
definition transp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   377
  where "transp r \<longleftrightarrow> (\<forall>x y z. r x y \<longrightarrow> r y z \<longrightarrow> r x z)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   378
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   379
lemma transp_trans_eq [pred_set_conv]: "transp (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> trans r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   380
  by (simp add: trans_def transp_def)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   381
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   382
lemma transI [intro?]: "(\<And>x y z. (x, y) \<in> r \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> (x, z) \<in> r) \<Longrightarrow> trans r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   383
  by (unfold trans_def) iprover
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   384
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   385
lemma transpI [intro?]: "(\<And>x y z. r x y \<Longrightarrow> r y z \<Longrightarrow> r x z) \<Longrightarrow> transp r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   386
  by (fact transI [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   387
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   388
lemma transE:
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   389
  assumes "trans r" and "(x, y) \<in> r" and "(y, z) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   390
  obtains "(x, z) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   391
  using assms by (unfold trans_def) iprover
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   392
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   393
lemma transpE:
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   394
  assumes "transp r" and "r x y" and "r y z"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   395
  obtains "r x z"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   396
  using assms by (rule transE [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   397
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   398
lemma transD [dest?]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   399
  assumes "trans r" and "(x, y) \<in> r" and "(y, z) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   400
  shows "(x, z) \<in> r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   401
  using assms by (rule transE)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   402
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   403
lemma transpD [dest?]:
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   404
  assumes "transp r" and "r x y" and "r y z"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   405
  shows "r x z"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   406
  using assms by (rule transD [to_pred])
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   407
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   408
lemma trans_Int: "trans r \<Longrightarrow> trans s \<Longrightarrow> trans (r \<inter> s)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   409
  by (fast intro: transI elim: transE)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   410
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   411
lemma transp_inf: "transp r \<Longrightarrow> transp s \<Longrightarrow> transp (r \<sqinter> s)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   412
  by (fact trans_Int [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   413
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   414
lemma trans_INTER: "\<forall>x\<in>S. trans (r x) \<Longrightarrow> trans (\<Inter>(r ` S))"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   415
  by (fast intro: transI elim: transD)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   416
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   417
lemma transp_INF: "\<forall>x\<in>S. transp (r x) \<Longrightarrow> transp (\<Sqinter>(r ` S))"
64584
142ac30b68fe added lemmas demanded by FIXMEs
haftmann
parents: 63612
diff changeset
   418
  by (fact trans_INTER [to_pred])
142ac30b68fe added lemmas demanded by FIXMEs
haftmann
parents: 63612
diff changeset
   419
    
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   420
lemma trans_join [code]: "trans r \<longleftrightarrow> (\<forall>(x, y1) \<in> r. \<forall>(y2, z) \<in> r. y1 = y2 \<longrightarrow> (x, z) \<in> r)"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   421
  by (auto simp add: trans_def)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   422
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   423
lemma transp_trans: "transp r \<longleftrightarrow> trans {(x, y). r x y}"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   424
  by (simp add: trans_def transp_def)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   425
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66441
diff changeset
   426
lemma transp_equality [simp]: "transp (=)"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   427
  by (auto intro: transpI)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   428
63563
0bcd79da075b prefer [simp] over [iff] as [iff] break HOL-UNITY
Andreas Lochbihler
parents: 63561
diff changeset
   429
lemma trans_empty [simp]: "trans {}"
63612
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
   430
  by (blast intro: transI)
63561
fba08009ff3e add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents: 63404
diff changeset
   431
63563
0bcd79da075b prefer [simp] over [iff] as [iff] break HOL-UNITY
Andreas Lochbihler
parents: 63561
diff changeset
   432
lemma transp_empty [simp]: "transp (\<lambda>x y. False)"
63612
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
   433
  using trans_empty[to_pred] by (simp add: bot_fun_def)
63561
fba08009ff3e add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents: 63404
diff changeset
   434
63563
0bcd79da075b prefer [simp] over [iff] as [iff] break HOL-UNITY
Andreas Lochbihler
parents: 63561
diff changeset
   435
lemma trans_singleton [simp]: "trans {(a, a)}"
63612
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
   436
  by (blast intro: transI)
63561
fba08009ff3e add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents: 63404
diff changeset
   437
63563
0bcd79da075b prefer [simp] over [iff] as [iff] break HOL-UNITY
Andreas Lochbihler
parents: 63561
diff changeset
   438
lemma transp_singleton [simp]: "transp (\<lambda>x y. x = a \<and> y = a)"
63612
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
   439
  by (simp add: transp_def)
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
   440
66441
b9468503742a more reorganization around sorted_wrt
nipkow
parents: 66434
diff changeset
   441
context preorder
b9468503742a more reorganization around sorted_wrt
nipkow
parents: 66434
diff changeset
   442
begin
66434
5d7e770c7d5d added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
nipkow
parents: 64634
diff changeset
   443
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66441
diff changeset
   444
lemma transp_le[simp]: "transp (\<le>)"
66441
b9468503742a more reorganization around sorted_wrt
nipkow
parents: 66434
diff changeset
   445
by(auto simp add: transp_def intro: order_trans)
66434
5d7e770c7d5d added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
nipkow
parents: 64634
diff changeset
   446
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66441
diff changeset
   447
lemma transp_less[simp]: "transp (<)"
66441
b9468503742a more reorganization around sorted_wrt
nipkow
parents: 66434
diff changeset
   448
by(auto simp add: transp_def intro: less_trans)
66434
5d7e770c7d5d added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
nipkow
parents: 64634
diff changeset
   449
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66441
diff changeset
   450
lemma transp_ge[simp]: "transp (\<ge>)"
66441
b9468503742a more reorganization around sorted_wrt
nipkow
parents: 66434
diff changeset
   451
by(auto simp add: transp_def intro: order_trans)
66434
5d7e770c7d5d added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
nipkow
parents: 64634
diff changeset
   452
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66441
diff changeset
   453
lemma transp_gr[simp]: "transp (>)"
66441
b9468503742a more reorganization around sorted_wrt
nipkow
parents: 66434
diff changeset
   454
by(auto simp add: transp_def intro: less_trans)
b9468503742a more reorganization around sorted_wrt
nipkow
parents: 66434
diff changeset
   455
b9468503742a more reorganization around sorted_wrt
nipkow
parents: 66434
diff changeset
   456
end
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   457
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   458
subsubsection \<open>Totality\<close>
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   459
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   460
definition total_on :: "'a set \<Rightarrow> 'a rel \<Rightarrow> bool"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   461
  where "total_on A r \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. x \<noteq> y \<longrightarrow> (x, y) \<in> r \<or> (y, x) \<in> r)"
29859
33bff35f1335 Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents: 29609
diff changeset
   462
63561
fba08009ff3e add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents: 63404
diff changeset
   463
lemma total_onI [intro?]:
fba08009ff3e add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents: 63404
diff changeset
   464
  "(\<And>x y. \<lbrakk>x \<in> A; y \<in> A; x \<noteq> y\<rbrakk> \<Longrightarrow> (x, y) \<in> r \<or> (y, x) \<in> r) \<Longrightarrow> total_on A r"
63612
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
   465
  unfolding total_on_def by blast
63561
fba08009ff3e add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents: 63404
diff changeset
   466
29859
33bff35f1335 Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents: 29609
diff changeset
   467
abbreviation "total \<equiv> total_on UNIV"
33bff35f1335 Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents: 29609
diff changeset
   468
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   469
lemma total_on_empty [simp]: "total_on {} r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   470
  by (simp add: total_on_def)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   471
63563
0bcd79da075b prefer [simp] over [iff] as [iff] break HOL-UNITY
Andreas Lochbihler
parents: 63561
diff changeset
   472
lemma total_on_singleton [simp]: "total_on {x} {(x, x)}"
63612
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
   473
  unfolding total_on_def by blast
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
   474
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   475
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   476
subsubsection \<open>Single valued relations\<close>
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   477
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   478
definition single_valued :: "('a \<times> 'b) set \<Rightarrow> bool"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   479
  where "single_valued r \<longleftrightarrow> (\<forall>x y. (x, y) \<in> r \<longrightarrow> (\<forall>z. (x, z) \<in> r \<longrightarrow> y = z))"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   480
64634
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   481
definition single_valuedp :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   482
  where "single_valuedp r \<longleftrightarrow> (\<forall>x y. r x y \<longrightarrow> (\<forall>z. r x z \<longrightarrow> y = z))"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   483
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   484
lemma single_valuedp_single_valued_eq [pred_set_conv]:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   485
  "single_valuedp (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> single_valued r"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   486
  by (simp add: single_valued_def single_valuedp_def)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   487
71827
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71404
diff changeset
   488
lemma single_valuedp_iff_Uniq:
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71404
diff changeset
   489
  "single_valuedp r \<longleftrightarrow> (\<forall>x. \<exists>\<^sub>\<le>\<^sub>1y. r x y)"
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71404
diff changeset
   490
  unfolding Uniq_def single_valuedp_def by auto
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71404
diff changeset
   491
64634
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   492
lemma single_valuedI:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   493
  "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (\<And>z. (x, z) \<in> r \<Longrightarrow> y = z)) \<Longrightarrow> single_valued r"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   494
  unfolding single_valued_def by blast
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   495
64634
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   496
lemma single_valuedpI:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   497
  "(\<And>x y. r x y \<Longrightarrow> (\<And>z. r x z \<Longrightarrow> y = z)) \<Longrightarrow> single_valuedp r"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   498
  by (fact single_valuedI [to_pred])
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   499
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   500
lemma single_valuedD:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   501
  "single_valued r \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (x, z) \<in> r \<Longrightarrow> y = z"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   502
  by (simp add: single_valued_def)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   503
64634
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   504
lemma single_valuedpD:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   505
  "single_valuedp r \<Longrightarrow> r x y \<Longrightarrow> r x z \<Longrightarrow> y = z"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   506
  by (fact single_valuedD [to_pred])
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   507
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   508
lemma single_valued_empty [simp]:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   509
  "single_valued {}"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   510
  by (simp add: single_valued_def)
52392
ee996ca08de3 added lemma
nipkow
parents: 50420
diff changeset
   511
64634
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   512
lemma single_valuedp_bot [simp]:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   513
  "single_valuedp \<bottom>"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   514
  by (fact single_valued_empty [to_pred])
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   515
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   516
lemma single_valued_subset:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   517
  "r \<subseteq> s \<Longrightarrow> single_valued s \<Longrightarrow> single_valued r"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   518
  unfolding single_valued_def by blast
11136
e34e7f6d9b57 moved inv_image to Relation
oheimb
parents: 10832
diff changeset
   519
64634
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   520
lemma single_valuedp_less_eq:
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   521
  "r \<le> s \<Longrightarrow> single_valuedp s \<Longrightarrow> single_valuedp r"
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   522
  by (fact single_valued_subset [to_pred])
5bd30359e46e proper logical constants
haftmann
parents: 64633
diff changeset
   523
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   524
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   525
subsection \<open>Relation operations\<close>
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   526
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   527
subsubsection \<open>The identity relation\<close>
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   528
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   529
definition Id :: "'a rel"
69905
06f204a2f3c2 dropped superfluous declaration attribute
haftmann
parents: 69593
diff changeset
   530
  where "Id = {p. \<exists>x. p = (x, x)}"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   531
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   532
lemma IdI [intro]: "(a, a) \<in> Id"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   533
  by (simp add: Id_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   534
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   535
lemma IdE [elim!]: "p \<in> Id \<Longrightarrow> (\<And>x. p = (x, x) \<Longrightarrow> P) \<Longrightarrow> P"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   536
  unfolding Id_def by (iprover elim: CollectE)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   537
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   538
lemma pair_in_Id_conv [iff]: "(a, b) \<in> Id \<longleftrightarrow> a = b"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   539
  unfolding Id_def by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   540
30198
922f944f03b2 name changes
nipkow
parents: 29859
diff changeset
   541
lemma refl_Id: "refl Id"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   542
  by (simp add: refl_on_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   543
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   544
lemma antisym_Id: "antisym Id"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   545
  \<comment> \<open>A strange result, since \<open>Id\<close> is also symmetric.\<close>
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   546
  by (simp add: antisym_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   547
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   548
lemma sym_Id: "sym Id"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   549
  by (simp add: sym_def)
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   550
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   551
lemma trans_Id: "trans Id"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   552
  by (simp add: trans_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   553
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   554
lemma single_valued_Id [simp]: "single_valued Id"
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   555
  by (unfold single_valued_def) blast
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   556
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   557
lemma irrefl_diff_Id [simp]: "irrefl (r - Id)"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   558
  by (simp add: irrefl_def)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   559
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   560
lemma trans_diff_Id: "trans r \<Longrightarrow> antisym r \<Longrightarrow> trans (r - Id)"
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   561
  unfolding antisym_def trans_def by blast
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   562
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   563
lemma total_on_diff_Id [simp]: "total_on A (r - Id) = total_on A r"
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   564
  by (simp add: total_on_def)
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   565
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   566
lemma Id_fstsnd_eq: "Id = {x. fst x = snd x}"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   567
  by force
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   568
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   569
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   570
subsubsection \<open>Diagonal: identity over a set\<close>
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   571
63612
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
   572
definition Id_on :: "'a set \<Rightarrow> 'a rel"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   573
  where "Id_on A = (\<Union>x\<in>A. {(x, x)})"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   574
30198
922f944f03b2 name changes
nipkow
parents: 29859
diff changeset
   575
lemma Id_on_empty [simp]: "Id_on {} = {}"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   576
  by (simp add: Id_on_def)
13812
91713a1915ee converting HOL/UNITY to use unconditional fairness
paulson
parents: 13639
diff changeset
   577
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   578
lemma Id_on_eqI: "a = b \<Longrightarrow> a \<in> A \<Longrightarrow> (a, b) \<in> Id_on A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   579
  by (simp add: Id_on_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   580
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   581
lemma Id_onI [intro!]: "a \<in> A \<Longrightarrow> (a, a) \<in> Id_on A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   582
  by (rule Id_on_eqI) (rule refl)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   583
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   584
lemma Id_onE [elim!]: "c \<in> Id_on A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> c = (x, x) \<Longrightarrow> P) \<Longrightarrow> P"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   585
  \<comment> \<open>The general elimination rule.\<close>
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   586
  unfolding Id_on_def by (iprover elim!: UN_E singletonE)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   587
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   588
lemma Id_on_iff: "(x, y) \<in> Id_on A \<longleftrightarrow> x = y \<and> x \<in> A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   589
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   590
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   591
lemma Id_on_def' [nitpick_unfold]: "Id_on {x. A x} = Collect (\<lambda>(x, y). x = y \<and> A x)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   592
  by auto
40923
be80c93ac0a2 adding a nice definition of Id_on for quickcheck and nitpick
bulwahn
parents: 36772
diff changeset
   593
30198
922f944f03b2 name changes
nipkow
parents: 29859
diff changeset
   594
lemma Id_on_subset_Times: "Id_on A \<subseteq> A \<times> A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   595
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   596
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   597
lemma refl_on_Id_on: "refl_on A (Id_on A)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   598
  by (rule refl_onI [OF Id_on_subset_Times Id_onI])
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   599
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   600
lemma antisym_Id_on [simp]: "antisym (Id_on A)"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   601
  unfolding antisym_def by blast
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   602
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   603
lemma sym_Id_on [simp]: "sym (Id_on A)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   604
  by (rule symI) clarify
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   605
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   606
lemma trans_Id_on [simp]: "trans (Id_on A)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   607
  by (fast intro: transI elim: transD)
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   608
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   609
lemma single_valued_Id_on [simp]: "single_valued (Id_on A)"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   610
  unfolding single_valued_def by blast
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   611
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   612
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   613
subsubsection \<open>Composition\<close>
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   614
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   615
inductive_set relcomp  :: "('a \<times> 'b) set \<Rightarrow> ('b \<times> 'c) set \<Rightarrow> ('a \<times> 'c) set"  (infixr "O" 75)
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   616
  for r :: "('a \<times> 'b) set" and s :: "('b \<times> 'c) set"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   617
  where relcompI [intro]: "(a, b) \<in> r \<Longrightarrow> (b, c) \<in> s \<Longrightarrow> (a, c) \<in> r O s"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   618
47434
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   619
notation relcompp (infixr "OO" 75)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   620
47434
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   621
lemmas relcomppI = relcompp.intros
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   622
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   623
text \<open>
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   624
  For historic reasons, the elimination rules are not wholly corresponding.
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   625
  Feel free to consolidate this.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   626
\<close>
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   627
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   628
inductive_cases relcompEpair: "(a, c) \<in> r O s"
47434
b75ce48a93ee dropped abbreviation "pred_comp"; introduced infix notation "P OO Q" for "relcompp P Q"
griff
parents: 47433
diff changeset
   629
inductive_cases relcomppE [elim!]: "(r OO s) a c"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   630
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   631
lemma relcompE [elim!]: "xz \<in> r O s \<Longrightarrow>
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   632
  (\<And>x y z. xz = (x, z) \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, z) \<in> s  \<Longrightarrow> P) \<Longrightarrow> P"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   633
  apply (cases xz)
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   634
  apply simp
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   635
  apply (erule relcompEpair)
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   636
  apply iprover
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   637
  done
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   638
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   639
lemma R_O_Id [simp]: "R O Id = R"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   640
  by fast
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   641
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   642
lemma Id_O_R [simp]: "Id O R = R"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   643
  by fast
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   644
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   645
lemma relcomp_empty1 [simp]: "{} O R = {}"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   646
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   647
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   648
lemma relcompp_bot1 [simp]: "\<bottom> OO R = \<bottom>"
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   649
  by (fact relcomp_empty1 [to_pred])
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   650
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   651
lemma relcomp_empty2 [simp]: "R O {} = {}"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   652
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   653
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   654
lemma relcompp_bot2 [simp]: "R OO \<bottom> = \<bottom>"
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   655
  by (fact relcomp_empty2 [to_pred])
23185
1fa87978cf27 Added simp-rules: "R O {} = {}" and "{} O R = {}"
krauss
parents: 22172
diff changeset
   656
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   657
lemma O_assoc: "(R O S) O T = R O (S O T)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   658
  by blast
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   659
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   660
lemma relcompp_assoc: "(r OO s) OO t = r OO (s OO t)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   661
  by (fact O_assoc [to_pred])
23185
1fa87978cf27 Added simp-rules: "R O {} = {}" and "{} O R = {}"
krauss
parents: 22172
diff changeset
   662
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   663
lemma trans_O_subset: "trans r \<Longrightarrow> r O r \<subseteq> r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   664
  by (unfold trans_def) blast
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   665
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   666
lemma transp_relcompp_less_eq: "transp r \<Longrightarrow> r OO r \<le> r "
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   667
  by (fact trans_O_subset [to_pred])
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   668
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   669
lemma relcomp_mono: "r' \<subseteq> r \<Longrightarrow> s' \<subseteq> s \<Longrightarrow> r' O s' \<subseteq> r O s"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   670
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   671
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   672
lemma relcompp_mono: "r' \<le> r \<Longrightarrow> s' \<le> s \<Longrightarrow> r' OO s' \<le> r OO s "
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   673
  by (fact relcomp_mono [to_pred])
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   674
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   675
lemma relcomp_subset_Sigma: "r \<subseteq> A \<times> B \<Longrightarrow> s \<subseteq> B \<times> C \<Longrightarrow> r O s \<subseteq> A \<times> C"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   676
  by blast
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   677
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   678
lemma relcomp_distrib [simp]: "R O (S \<union> T) = (R O S) \<union> (R O T)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   679
  by auto
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   680
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   681
lemma relcompp_distrib [simp]: "R OO (S \<squnion> T) = R OO S \<squnion> R OO T"
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   682
  by (fact relcomp_distrib [to_pred])
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   683
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   684
lemma relcomp_distrib2 [simp]: "(S \<union> T) O R = (S O R) \<union> (T O R)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   685
  by auto
28008
f945f8d9ad4d added distributivity of relation composition over union [simp]
krauss
parents: 26297
diff changeset
   686
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   687
lemma relcompp_distrib2 [simp]: "(S \<squnion> T) OO R = S OO R \<squnion> T OO R"
47433
07f4bf913230 renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents: 47087
diff changeset
   688
  by (fact relcomp_distrib2 [to_pred])
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   689
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   690
lemma relcomp_UNION_distrib: "s O \<Union>(r ` I) = (\<Union>i\<in>I. s O r i) "
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   691
  by auto
28008
f945f8d9ad4d added distributivity of relation composition over union [simp]
krauss
parents: 26297
diff changeset
   692
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   693
lemma relcompp_SUP_distrib: "s OO \<Squnion>(r ` I) = (\<Squnion>i\<in>I. s OO r i)"
64584
142ac30b68fe added lemmas demanded by FIXMEs
haftmann
parents: 63612
diff changeset
   694
  by (fact relcomp_UNION_distrib [to_pred])
142ac30b68fe added lemmas demanded by FIXMEs
haftmann
parents: 63612
diff changeset
   695
    
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   696
lemma relcomp_UNION_distrib2: "\<Union>(r ` I) O s = (\<Union>i\<in>I. r i O s) "
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   697
  by auto
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   698
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   699
lemma relcompp_SUP_distrib2: "\<Squnion>(r ` I) OO s = (\<Squnion>i\<in>I. r i OO s)"
64584
142ac30b68fe added lemmas demanded by FIXMEs
haftmann
parents: 63612
diff changeset
   700
  by (fact relcomp_UNION_distrib2 [to_pred])
142ac30b68fe added lemmas demanded by FIXMEs
haftmann
parents: 63612
diff changeset
   701
    
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   702
lemma single_valued_relcomp: "single_valued r \<Longrightarrow> single_valued s \<Longrightarrow> single_valued (r O s)"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   703
  unfolding single_valued_def by blast
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   704
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   705
lemma relcomp_unfold: "r O s = {(x, z). \<exists>y. (x, y) \<in> r \<and> (y, z) \<in> s}"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   706
  by (auto simp add: set_eq_iff)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   707
58195
1fee63e0377d added various facts
haftmann
parents: 57111
diff changeset
   708
lemma relcompp_apply: "(R OO S) a c \<longleftrightarrow> (\<exists>b. R a b \<and> S b c)"
1fee63e0377d added various facts
haftmann
parents: 57111
diff changeset
   709
  unfolding relcomp_unfold [to_pred] ..
1fee63e0377d added various facts
haftmann
parents: 57111
diff changeset
   710
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66441
diff changeset
   711
lemma eq_OO: "(=) OO R = R"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   712
  by blast
55083
0a689157e3ce move BNF_LFP up the dependency chain
blanchet
parents: 54611
diff changeset
   713
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66441
diff changeset
   714
lemma OO_eq: "R OO (=) = R"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   715
  by blast
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
   716
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
   717
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   718
subsubsection \<open>Converse\<close>
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   719
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   720
inductive_set converse :: "('a \<times> 'b) set \<Rightarrow> ('b \<times> 'a) set"  ("(_\<inverse>)" [1000] 999)
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   721
  for r :: "('a \<times> 'b) set"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   722
  where "(a, b) \<in> r \<Longrightarrow> (b, a) \<in> r\<inverse>"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   723
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   724
notation conversep  ("(_\<inverse>\<inverse>)" [1000] 1000)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   725
61955
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   726
notation (ASCII)
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   727
  converse  ("(_^-1)" [1000] 999) and
e96292f32c3c former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents: 61799
diff changeset
   728
  conversep ("(_^--1)" [1000] 1000)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   729
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   730
lemma converseI [sym]: "(a, b) \<in> r \<Longrightarrow> (b, a) \<in> r\<inverse>"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   731
  by (fact converse.intros)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   732
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   733
lemma conversepI (* CANDIDATE [sym] *): "r a b \<Longrightarrow> r\<inverse>\<inverse> b a"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   734
  by (fact conversep.intros)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   735
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   736
lemma converseD [sym]: "(a, b) \<in> r\<inverse> \<Longrightarrow> (b, a) \<in> r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   737
  by (erule converse.cases) iprover
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   738
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   739
lemma conversepD (* CANDIDATE [sym] *): "r\<inverse>\<inverse> b a \<Longrightarrow> r a b"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   740
  by (fact converseD [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   741
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   742
lemma converseE [elim!]: "yx \<in> r\<inverse> \<Longrightarrow> (\<And>x y. yx = (y, x) \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> P) \<Longrightarrow> P"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
   743
  \<comment> \<open>More general than \<open>converseD\<close>, as it ``splits'' the member of the relation.\<close>
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   744
  apply (cases yx)
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   745
  apply simp
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   746
  apply (erule converse.cases)
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   747
  apply iprover
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   748
  done
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   749
46882
6242b4bc05bc tuned simpset
noschinl
parents: 46833
diff changeset
   750
lemmas conversepE [elim!] = conversep.cases
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   751
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   752
lemma converse_iff [iff]: "(a, b) \<in> r\<inverse> \<longleftrightarrow> (b, a) \<in> r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   753
  by (auto intro: converseI)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   754
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   755
lemma conversep_iff [iff]: "r\<inverse>\<inverse> a b = r b a"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   756
  by (fact converse_iff [to_pred])
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   757
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   758
lemma converse_converse [simp]: "(r\<inverse>)\<inverse> = r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   759
  by (simp add: set_eq_iff)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   760
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   761
lemma conversep_conversep [simp]: "(r\<inverse>\<inverse>)\<inverse>\<inverse> = r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   762
  by (fact converse_converse [to_pred])
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   763
53680
c5096c22892b added lemmas and made concerse executable
nipkow
parents: 52749
diff changeset
   764
lemma converse_empty[simp]: "{}\<inverse> = {}"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   765
  by auto
53680
c5096c22892b added lemmas and made concerse executable
nipkow
parents: 52749
diff changeset
   766
c5096c22892b added lemmas and made concerse executable
nipkow
parents: 52749
diff changeset
   767
lemma converse_UNIV[simp]: "UNIV\<inverse> = UNIV"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   768
  by auto
53680
c5096c22892b added lemmas and made concerse executable
nipkow
parents: 52749
diff changeset
   769
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   770
lemma converse_relcomp: "(r O s)\<inverse> = s\<inverse> O r\<inverse>"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   771
  by blast
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   772
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   773
lemma converse_relcompp: "(r OO s)\<inverse>\<inverse> = s\<inverse>\<inverse> OO r\<inverse>\<inverse>"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   774
  by (iprover intro: order_antisym conversepI relcomppI elim: relcomppE dest: conversepD)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   775
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   776
lemma converse_Int: "(r \<inter> s)\<inverse> = r\<inverse> \<inter> s\<inverse>"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   777
  by blast
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   778
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   779
lemma converse_meet: "(r \<sqinter> s)\<inverse>\<inverse> = r\<inverse>\<inverse> \<sqinter> s\<inverse>\<inverse>"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   780
  by (simp add: inf_fun_def) (iprover intro: conversepI ext dest: conversepD)
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   781
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   782
lemma converse_Un: "(r \<union> s)\<inverse> = r\<inverse> \<union> s\<inverse>"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   783
  by blast
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   784
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   785
lemma converse_join: "(r \<squnion> s)\<inverse>\<inverse> = r\<inverse>\<inverse> \<squnion> s\<inverse>\<inverse>"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   786
  by (simp add: sup_fun_def) (iprover intro: conversepI ext dest: conversepD)
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   787
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   788
lemma converse_INTER: "(\<Inter>(r ` S))\<inverse> = (\<Inter>x\<in>S. (r x)\<inverse>)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   789
  by fast
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   790
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
   791
lemma converse_UNION: "(\<Union>(r ` S))\<inverse> = (\<Union>x\<in>S. (r x)\<inverse>)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   792
  by blast
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   793
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   794
lemma converse_mono[simp]: "r\<inverse> \<subseteq> s \<inverse> \<longleftrightarrow> r \<subseteq> s"
52749
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   795
  by auto
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   796
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   797
lemma conversep_mono[simp]: "r\<inverse>\<inverse> \<le> s \<inverse>\<inverse> \<longleftrightarrow> r \<le> s"
52749
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   798
  by (fact converse_mono[to_pred])
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   799
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   800
lemma converse_inject[simp]: "r\<inverse> = s \<inverse> \<longleftrightarrow> r = s"
52730
6bf02eb4ddf7 two useful relation theorems
traytel
parents: 52392
diff changeset
   801
  by auto
6bf02eb4ddf7 two useful relation theorems
traytel
parents: 52392
diff changeset
   802
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   803
lemma conversep_inject[simp]: "r\<inverse>\<inverse> = s \<inverse>\<inverse> \<longleftrightarrow> r = s"
52749
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   804
  by (fact converse_inject[to_pred])
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   805
63612
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
   806
lemma converse_subset_swap: "r \<subseteq> s \<inverse> \<longleftrightarrow> r \<inverse> \<subseteq> s"
52749
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   807
  by auto
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   808
63612
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
   809
lemma conversep_le_swap: "r \<le> s \<inverse>\<inverse> \<longleftrightarrow> r \<inverse>\<inverse> \<le> s"
52749
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
   810
  by (fact converse_subset_swap[to_pred])
52730
6bf02eb4ddf7 two useful relation theorems
traytel
parents: 52392
diff changeset
   811
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   812
lemma converse_Id [simp]: "Id\<inverse> = Id"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   813
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   814
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   815
lemma converse_Id_on [simp]: "(Id_on A)\<inverse> = Id_on A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   816
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   817
30198
922f944f03b2 name changes
nipkow
parents: 29859
diff changeset
   818
lemma refl_on_converse [simp]: "refl_on A (converse r) = refl_on A r"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   819
  by (auto simp: refl_on_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   820
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   821
lemma sym_converse [simp]: "sym (converse r) = sym r"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   822
  unfolding sym_def by blast
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   823
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   824
lemma antisym_converse [simp]: "antisym (converse r) = antisym r"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   825
  unfolding antisym_def by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   826
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   827
lemma trans_converse [simp]: "trans (converse r) = trans r"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   828
  unfolding trans_def by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   829
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   830
lemma sym_conv_converse_eq: "sym r \<longleftrightarrow> r\<inverse> = r"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   831
  unfolding sym_def by fast
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   832
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   833
lemma sym_Un_converse: "sym (r \<union> r\<inverse>)"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   834
  unfolding sym_def by blast
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   835
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   836
lemma sym_Int_converse: "sym (r \<inter> r\<inverse>)"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   837
  unfolding sym_def by blast
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
   838
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   839
lemma total_on_converse [simp]: "total_on A (r\<inverse>) = total_on A r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   840
  by (auto simp: total_on_def)
29859
33bff35f1335 Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents: 29609
diff changeset
   841
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   842
lemma finite_converse [iff]: "finite (r\<inverse>) = finite r"
68455
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   843
unfolding converse_def conversep_iff using [[simproc add: finite_Collect]]
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   844
by (auto elim: finite_imageD simp: inj_on_def)
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   845
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   846
lemma card_inverse[simp]: "card (R\<inverse>) = card R"
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   847
proof -
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   848
  have *: "\<And>R. prod.swap ` R = R\<inverse>" by auto
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   849
  {
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   850
    assume "\<not>finite R"
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   851
    hence ?thesis
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   852
      by auto
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   853
  } moreover {
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   854
    assume "finite R"
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   855
    with card_image_le[of R prod.swap] card_image_le[of "R\<inverse>" prod.swap]
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   856
    have ?thesis by (auto simp: *)
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   857
  } ultimately show ?thesis by blast
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
   858
qed  
12913
5ac498bffb6b fixed document;
wenzelm
parents: 12905
diff changeset
   859
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66441
diff changeset
   860
lemma conversep_noteq [simp]: "(\<noteq>)\<inverse>\<inverse> = (\<noteq>)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   861
  by (auto simp add: fun_eq_iff)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   862
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66441
diff changeset
   863
lemma conversep_eq [simp]: "(=)\<inverse>\<inverse> = (=)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   864
  by (auto simp add: fun_eq_iff)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   865
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   866
lemma converse_unfold [code]: "r\<inverse> = {(y, x). (x, y) \<in> r}"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   867
  by (simp add: set_eq_iff)
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   868
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   869
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
   870
subsubsection \<open>Domain, range and field\<close>
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   871
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   872
inductive_set Domain :: "('a \<times> 'b) set \<Rightarrow> 'a set" for r :: "('a \<times> 'b) set"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   873
  where DomainI [intro]: "(a, b) \<in> r \<Longrightarrow> a \<in> Domain r"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   874
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   875
lemmas DomainPI = Domainp.DomainI
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   876
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   877
inductive_cases DomainE [elim!]: "a \<in> Domain r"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   878
inductive_cases DomainpE [elim!]: "Domainp r a"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   879
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   880
inductive_set Range :: "('a \<times> 'b) set \<Rightarrow> 'b set" for r :: "('a \<times> 'b) set"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   881
  where RangeI [intro]: "(a, b) \<in> r \<Longrightarrow> b \<in> Range r"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   882
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   883
lemmas RangePI = Rangep.RangeI
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   884
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   885
inductive_cases RangeE [elim!]: "b \<in> Range r"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   886
inductive_cases RangepE [elim!]: "Rangep r b"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
   887
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   888
definition Field :: "'a rel \<Rightarrow> 'a set"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   889
  where "Field r = Domain r \<union> Range r"
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
   890
63561
fba08009ff3e add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents: 63404
diff changeset
   891
lemma FieldI1: "(i, j) \<in> R \<Longrightarrow> i \<in> Field R"
63612
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
   892
  unfolding Field_def by blast
63561
fba08009ff3e add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents: 63404
diff changeset
   893
fba08009ff3e add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents: 63404
diff changeset
   894
lemma FieldI2: "(i, j) \<in> R \<Longrightarrow> j \<in> Field R"
fba08009ff3e add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents: 63404
diff changeset
   895
  unfolding Field_def by auto
fba08009ff3e add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents: 63404
diff changeset
   896
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   897
lemma Domain_fst [code]: "Domain r = fst ` r"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   898
  by force
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   899
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   900
lemma Range_snd [code]: "Range r = snd ` r"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   901
  by force
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   902
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   903
lemma fst_eq_Domain: "fst ` R = Domain R"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   904
  by force
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   905
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   906
lemma snd_eq_Range: "snd ` R = Range R"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   907
  by force
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   908
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   909
lemma range_fst [simp]: "range fst = UNIV"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   910
  by (auto simp: fst_eq_Domain)
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   911
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   912
lemma range_snd [simp]: "range snd = UNIV"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   913
  by (auto simp: snd_eq_Range)
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61955
diff changeset
   914
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   915
lemma Domain_empty [simp]: "Domain {} = {}"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   916
  by auto
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   917
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   918
lemma Range_empty [simp]: "Range {} = {}"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   919
  by auto
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   920
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   921
lemma Field_empty [simp]: "Field {} = {}"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   922
  by (simp add: Field_def)
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   923
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   924
lemma Domain_empty_iff: "Domain r = {} \<longleftrightarrow> r = {}"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   925
  by auto
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   926
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   927
lemma Range_empty_iff: "Range r = {} \<longleftrightarrow> r = {}"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   928
  by auto
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   929
46882
6242b4bc05bc tuned simpset
noschinl
parents: 46833
diff changeset
   930
lemma Domain_insert [simp]: "Domain (insert (a, b) r) = insert a (Domain r)"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   931
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   932
46882
6242b4bc05bc tuned simpset
noschinl
parents: 46833
diff changeset
   933
lemma Range_insert [simp]: "Range (insert (a, b) r) = insert b (Range r)"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   934
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   935
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   936
lemma Field_insert [simp]: "Field (insert (a, b) r) = {a, b} \<union> Field r"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
   937
  by (auto simp add: Field_def)
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   938
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   939
lemma Domain_iff: "a \<in> Domain r \<longleftrightarrow> (\<exists>y. (a, y) \<in> r)"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   940
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   941
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   942
lemma Range_iff: "a \<in> Range r \<longleftrightarrow> (\<exists>y. (y, a) \<in> r)"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   943
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   944
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   945
lemma Domain_Id [simp]: "Domain Id = UNIV"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   946
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   947
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   948
lemma Range_Id [simp]: "Range Id = UNIV"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   949
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   950
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   951
lemma Domain_Id_on [simp]: "Domain (Id_on A) = A"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   952
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   953
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   954
lemma Range_Id_on [simp]: "Range (Id_on A) = A"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   955
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   956
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   957
lemma Domain_Un_eq: "Domain (A \<union> B) = Domain A \<union> Domain B"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   958
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   959
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   960
lemma Range_Un_eq: "Range (A \<union> B) = Range A \<union> Range B"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   961
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   962
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   963
lemma Field_Un [simp]: "Field (r \<union> s) = Field r \<union> Field s"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   964
  by (auto simp: Field_def)
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   965
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   966
lemma Domain_Int_subset: "Domain (A \<inter> B) \<subseteq> Domain A \<inter> Domain B"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   967
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   968
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   969
lemma Range_Int_subset: "Range (A \<inter> B) \<subseteq> Range A \<inter> Range B"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   970
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   971
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   972
lemma Domain_Diff_subset: "Domain A - Domain B \<subseteq> Domain (A - B)"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   973
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   974
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   975
lemma Range_Diff_subset: "Range A - Range B \<subseteq> Range (A - B)"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   976
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   977
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   978
lemma Domain_Union: "Domain (\<Union>S) = (\<Union>A\<in>S. Domain A)"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   979
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   980
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   981
lemma Range_Union: "Range (\<Union>S) = (\<Union>A\<in>S. Range A)"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   982
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   983
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   984
lemma Field_Union [simp]: "Field (\<Union>R) = \<Union>(Field ` R)"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   985
  by (auto simp: Field_def)
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   986
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   987
lemma Domain_converse [simp]: "Domain (r\<inverse>) = Range r"
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
   988
  by auto
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   989
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   990
lemma Range_converse [simp]: "Range (r\<inverse>) = Domain r"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   991
  by blast
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
   992
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   993
lemma Field_converse [simp]: "Field (r\<inverse>) = Field r"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   994
  by (auto simp: Field_def)
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   995
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   996
lemma Domain_Collect_case_prod [simp]: "Domain {(x, y). P x y} = {x. \<exists>y. P x y}"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   997
  by auto
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
   998
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
   999
lemma Range_Collect_case_prod [simp]: "Range {(x, y). P x y} = {y. \<exists>x. P x y}"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1000
  by auto
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1001
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1002
lemma finite_Domain: "finite r \<Longrightarrow> finite (Domain r)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
  1003
  by (induct set: finite) auto
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1004
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1005
lemma finite_Range: "finite r \<Longrightarrow> finite (Range r)"
46884
154dc6ec0041 tuned proofs
noschinl
parents: 46883
diff changeset
  1006
  by (induct set: finite) auto
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1007
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1008
lemma finite_Field: "finite r \<Longrightarrow> finite (Field r)"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1009
  by (simp add: Field_def finite_Domain finite_Range)
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1010
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1011
lemma Domain_mono: "r \<subseteq> s \<Longrightarrow> Domain r \<subseteq> Domain s"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1012
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1013
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1014
lemma Range_mono: "r \<subseteq> s \<Longrightarrow> Range r \<subseteq> Range s"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1015
  by blast
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1016
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1017
lemma mono_Field: "r \<subseteq> s \<Longrightarrow> Field r \<subseteq> Field s"
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1018
  by (auto simp: Field_def Domain_def Range_def)
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1019
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1020
lemma Domain_unfold: "Domain r = {x. \<exists>y. (x, y) \<in> r}"
46767
807a5d219c23 more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents: 46752
diff changeset
  1021
  by blast
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
  1022
63563
0bcd79da075b prefer [simp] over [iff] as [iff] break HOL-UNITY
Andreas Lochbihler
parents: 63561
diff changeset
  1023
lemma Field_square [simp]: "Field (x \<times> x) = x"
63612
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
  1024
  unfolding Field_def by blast
63561
fba08009ff3e add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents: 63404
diff changeset
  1025
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1026
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1027
subsubsection \<open>Image of a set under a relation\<close>
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1028
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1029
definition Image :: "('a \<times> 'b) set \<Rightarrow> 'a set \<Rightarrow> 'b set"  (infixr "``" 90)
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1030
  where "r `` s = {y. \<exists>x\<in>s. (x, y) \<in> r}"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
  1031
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1032
lemma Image_iff: "b \<in> r``A \<longleftrightarrow> (\<exists>x\<in>A. (x, b) \<in> r)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1033
  by (simp add: Image_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1034
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1035
lemma Image_singleton: "r``{a} = {b. (a, b) \<in> r}"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1036
  by (simp add: Image_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1037
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1038
lemma Image_singleton_iff [iff]: "b \<in> r``{a} \<longleftrightarrow> (a, b) \<in> r"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1039
  by (rule Image_iff [THEN trans]) simp
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1040
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1041
lemma ImageI [intro]: "(a, b) \<in> r \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> r``A"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1042
  unfolding Image_def by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1043
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1044
lemma ImageE [elim!]: "b \<in> r `` A \<Longrightarrow> (\<And>x. (x, b) \<in> r \<Longrightarrow> x \<in> A \<Longrightarrow> P) \<Longrightarrow> P"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1045
  unfolding Image_def by (iprover elim!: CollectE bexE)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1046
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1047
lemma rev_ImageI: "a \<in> A \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> b \<in> r `` A"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
  1048
  \<comment> \<open>This version's more effective when we already have the required \<open>a\<close>\<close>
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1049
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1050
68455
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
  1051
lemma Image_empty1 [simp]: "{} `` X = {}"
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
  1052
by auto
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
  1053
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
  1054
lemma Image_empty2 [simp]: "R``{} = {}"
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
  1055
by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1056
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1057
lemma Image_Id [simp]: "Id `` A = A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1058
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1059
30198
922f944f03b2 name changes
nipkow
parents: 29859
diff changeset
  1060
lemma Image_Id_on [simp]: "Id_on A `` B = A \<inter> B"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1061
  by blast
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1062
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1063
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1064
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1065
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1066
lemma Image_Int_eq: "single_valued (converse R) \<Longrightarrow> R `` (A \<inter> B) = R `` A \<inter> R `` B"
63612
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
  1067
  by (auto simp: single_valued_def)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1068
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1069
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1070
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1071
13812
91713a1915ee converting HOL/UNITY to use unconditional fairness
paulson
parents: 13639
diff changeset
  1072
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1073
  by blast
13812
91713a1915ee converting HOL/UNITY to use unconditional fairness
paulson
parents: 13639
diff changeset
  1074
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1075
lemma Image_subset: "r \<subseteq> A \<times> B \<Longrightarrow> r``C \<subseteq> B"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1076
  by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1077
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1078
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61630
diff changeset
  1079
  \<comment> \<open>NOT suitable for rewriting\<close>
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1080
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1081
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1082
lemma Image_mono: "r' \<subseteq> r \<Longrightarrow> A' \<subseteq> A \<Longrightarrow> (r' `` A') \<subseteq> (r `` A)"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1083
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1084
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
  1085
lemma Image_UN: "r `` (\<Union>(B ` A)) = (\<Union>x\<in>A. r `` (B x))"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1086
  by blast
13830
7f8c1b533e8b some x-symbols and some new lemmas
paulson
parents: 13812
diff changeset
  1087
54410
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1088
lemma UN_Image: "(\<Union>i\<in>I. X i) `` S = (\<Union>i\<in>I. X i `` S)"
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1089
  by auto
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1090
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
  1091
lemma Image_INT_subset: "(r `` (\<Inter>(B ` A))) \<subseteq> (\<Inter>x\<in>A. r `` (B x))"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1092
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1093
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1094
text \<open>Converse inclusion requires some assumptions\<close>
69275
9bbd5497befd clarified status of legacy input abbreviations
haftmann
parents: 68455
diff changeset
  1095
lemma Image_INT_eq: "single_valued (r\<inverse>) \<Longrightarrow> A \<noteq> {} \<Longrightarrow> r `` (\<Inter>(B ` A)) = (\<Inter>x\<in>A. r `` B x)"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1096
  apply (rule equalityI)
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1097
   apply (rule Image_INT_subset)
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1098
  apply (auto simp add: single_valued_def)
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1099
  apply blast
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1100
  done
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1101
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1102
lemma Image_subset_eq: "r``A \<subseteq> B \<longleftrightarrow> A \<subseteq> - ((r\<inverse>) `` (- B))"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1103
  by blast
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1104
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1105
lemma Image_Collect_case_prod [simp]: "{(x, y). P x y} `` A = {y. \<exists>x\<in>A. P x y}"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1106
  by auto
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1107
54410
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1108
lemma Sigma_Image: "(SIGMA x:A. B x) `` X = (\<Union>x\<in>X \<inter> A. B x)"
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1109
  by auto
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1110
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1111
lemma relcomp_Image: "(X O Y) `` Z = Y `` (X `` Z)"
0a578fb7fb73 countability of the image of a reflexive transitive closure
hoelzl
parents: 54147
diff changeset
  1112
  by auto
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1113
68455
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
  1114
lemma finite_Image[simp]: assumes "finite R" shows "finite (R `` A)"
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
  1115
by(rule finite_subset[OF _ finite_Range[OF assms]]) auto
b33803fcae2a moved lemmas from AFP
nipkow
parents: 67399
diff changeset
  1116
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1117
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1118
subsubsection \<open>Inverse image\<close>
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1119
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1120
definition inv_image :: "'b rel \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a rel"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1121
  where "inv_image r f = {(x, y). (f x, f y) \<in> r}"
46692
1f8b766224f6 tuned structure; dropped already existing syntax declarations
haftmann
parents: 46691
diff changeset
  1122
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1123
definition inv_imagep :: "('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1124
  where "inv_imagep r f = (\<lambda>x y. r (f x) (f y))"
46694
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
  1125
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
  1126
lemma [pred_set_conv]: "inv_imagep (\<lambda>x y. (x, y) \<in> r) f = (\<lambda>x y. (x, y) \<in> inv_image r f)"
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
  1127
  by (simp add: inv_image_def inv_imagep_def)
0988b22e2626 tuned structure
haftmann
parents: 46692
diff changeset
  1128
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1129
lemma sym_inv_image: "sym r \<Longrightarrow> sym (inv_image r f)"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1130
  unfolding sym_def inv_image_def by blast
19228
30fce6da8cbe added many simple lemmas
huffman
parents: 17589
diff changeset
  1131
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1132
lemma trans_inv_image: "trans r \<Longrightarrow> trans (inv_image r f)"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1133
  unfolding trans_def inv_image_def
71404
f2b783abfbe7 A few lemmas connected with orderings
paulson <lp15@cam.ac.uk>
parents: 69905
diff changeset
  1134
  by (simp (no_asm)) blast
f2b783abfbe7 A few lemmas connected with orderings
paulson <lp15@cam.ac.uk>
parents: 69905
diff changeset
  1135
f2b783abfbe7 A few lemmas connected with orderings
paulson <lp15@cam.ac.uk>
parents: 69905
diff changeset
  1136
lemma total_inv_image: "\<lbrakk>inj f; total r\<rbrakk> \<Longrightarrow> total (inv_image r f)"
f2b783abfbe7 A few lemmas connected with orderings
paulson <lp15@cam.ac.uk>
parents: 69905
diff changeset
  1137
  unfolding inv_image_def total_on_def by (auto simp: inj_eq)
12905
bbbae3f359e6 Converted to new theory format.
berghofe
parents: 12487
diff changeset
  1138
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1139
lemma in_inv_image[simp]: "(x, y) \<in> inv_image r f \<longleftrightarrow> (f x, f y) \<in> r"
71404
f2b783abfbe7 A few lemmas connected with orderings
paulson <lp15@cam.ac.uk>
parents: 69905
diff changeset
  1140
  by (auto simp: inv_image_def)
32463
3a0a65ca2261 moved lemma Wellfounded.in_inv_image to Relation.thy
krauss
parents: 32235
diff changeset
  1141
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1142
lemma converse_inv_image[simp]: "(inv_image R f)\<inverse> = inv_image (R\<inverse>) f"
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1143
  unfolding inv_image_def converse_unfold by auto
33218
ecb5cd453ef2 lemma converse_inv_image
krauss
parents: 32876
diff changeset
  1144
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1145
lemma in_inv_imagep [simp]: "inv_imagep r f x y = r (f x) (f y)"
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1146
  by (simp add: inv_imagep_def)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1147
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1148
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60057
diff changeset
  1149
subsubsection \<open>Powerset\<close>
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1150
46752
e9e7209eb375 more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents: 46696
diff changeset
  1151
definition Powp :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1152
  where "Powp A = (\<lambda>B. \<forall>x \<in> B. A x)"
46664
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1153
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1154
lemma Powp_Pow_eq [pred_set_conv]: "Powp (\<lambda>x. x \<in> A) = (\<lambda>x. x \<in> Pow A)"
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1155
  by (auto simp add: Powp_def fun_eq_iff)
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1156
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1157
lemmas Powp_mono [mono] = Pow_mono [to_pred]
1f6c140f9c72 moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents: 46638
diff changeset
  1158
63376
4c0cc2b356f0 default one-step rules for predicates on relations;
haftmann
parents: 62343
diff changeset
  1159
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69275
diff changeset
  1160
subsubsection \<open>Expressing relation operations via \<^const>\<open>Finite_Set.fold\<close>\<close>
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1161
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1162
lemma Id_on_fold:
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1163
  assumes "finite A"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1164
  shows "Id_on A = Finite_Set.fold (\<lambda>x. Set.insert (Pair x x)) {} A"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1165
proof -
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1166
  interpret comp_fun_commute "\<lambda>x. Set.insert (Pair x x)"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1167
    by standard auto
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1168
  from assms show ?thesis
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1169
    unfolding Id_on_def by (induct A) simp_all
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1170
qed
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1171
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1172
lemma comp_fun_commute_Image_fold:
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1173
  "comp_fun_commute (\<lambda>(x,y) A. if x \<in> S then Set.insert y A else A)"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1174
proof -
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1175
  interpret comp_fun_idem Set.insert
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1176
    by (fact comp_fun_idem_insert)
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1177
  show ?thesis
63612
7195acc2fe93 misc tuning and modernization;
wenzelm
parents: 63563
diff changeset
  1178
    by standard (auto simp: fun_eq_iff comp_fun_commute split: prod.split)
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1179
qed
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1180
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1181
lemma Image_fold:
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1182
  assumes "finite R"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1183
  shows "R `` S = Finite_Set.fold (\<lambda>(x,y) A. if x \<in> S then Set.insert y A else A) {} R"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1184
proof -
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1185
  interpret comp_fun_commute "(\<lambda>(x,y) A. if x \<in> S then Set.insert y A else A)"
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1186
    by (rule comp_fun_commute_Image_fold)
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1187
  have *: "\<And>x F. Set.insert x F `` S = (if fst x \<in> S then Set.insert (snd x) (F `` S) else (F `` S))"
52749
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
  1188
    by (force intro: rev_ImageI)
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1189
  show ?thesis
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1190
    using assms by (induct R) (auto simp: *)
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1191
qed
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1192
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1193
lemma insert_relcomp_union_fold:
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1194
  assumes "finite S"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1195
  shows "{x} O S \<union> X = Finite_Set.fold (\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A') X S"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1196
proof -
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1197
  interpret comp_fun_commute "\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A'"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1198
  proof -
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1199
    interpret comp_fun_idem Set.insert
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1200
      by (fact comp_fun_idem_insert)
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1201
    show "comp_fun_commute (\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A')"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1202
      by standard (auto simp add: fun_eq_iff split: prod.split)
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1203
  qed
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1204
  have *: "{x} O S = {(x', z). x' = fst x \<and> (snd x, z) \<in> S}"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1205
    by (auto simp: relcomp_unfold intro!: exI)
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1206
  show ?thesis
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1207
    unfolding * using \<open>finite S\<close> by (induct S) (auto split: prod.split)
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1208
qed
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1209
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1210
lemma insert_relcomp_fold:
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1211
  assumes "finite S"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1212
  shows "Set.insert x R O S =
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1213
    Finite_Set.fold (\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A') (R O S) S"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1214
proof -
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1215
  have "Set.insert x R O S = ({x} O S) \<union> (R O S)"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1216
    by auto
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1217
  then show ?thesis
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1218
    by (auto simp: insert_relcomp_union_fold [OF assms])
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1219
qed
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1220
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1221
lemma comp_fun_commute_relcomp_fold:
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1222
  assumes "finite S"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1223
  shows "comp_fun_commute (\<lambda>(x,y) A.
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1224
    Finite_Set.fold (\<lambda>(w,z) A'. if y = w then Set.insert (x,z) A' else A') A S)"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1225
proof -
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1226
  have *: "\<And>a b A.
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1227
    Finite_Set.fold (\<lambda>(w, z) A'. if b = w then Set.insert (a, z) A' else A') A S = {(a,b)} O S \<union> A"
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1228
    by (auto simp: insert_relcomp_union_fold[OF assms] cong: if_cong)
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1229
  show ?thesis
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1230
    by standard (auto simp: *)
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1231
qed
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1232
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1233
lemma relcomp_fold:
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1234
  assumes "finite R" "finite S"
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1235
  shows "R O S = Finite_Set.fold
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1236
    (\<lambda>(x,y) A. Finite_Set.fold (\<lambda>(w,z) A'. if y = w then Set.insert (x,z) A' else A') A S) {} R"
63404
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1237
  using assms
a95e7432d86c misc tuning and modernization;
wenzelm
parents: 63376
diff changeset
  1238
  by (induct R)
52749
ed416f4ac34e more converse(p) theorems; tuned proofs;
traytel
parents: 52730
diff changeset
  1239
    (auto simp: comp_fun_commute.fold_insert comp_fun_commute_relcomp_fold insert_relcomp_fold
48620
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1240
      cong: if_cong)
fc9be489e2fb more relation operations expressed by Finite_Set.fold
kuncar
parents: 48253
diff changeset
  1241
1128
64b30e3cc6d4 Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff changeset
  1242
end