| author | bulwahn | 
| Sun, 01 Aug 2010 10:15:44 +0200 | |
| changeset 38119 | e00f970425e9 | 
| parent 37880 | 3b9ca8d2c5fb | 
| child 38715 | 6513ea67d95d | 
| permissions | -rw-r--r-- | 
| 13462 | 1 | (* Title: HOL/List.thy | 
| 2 | Author: Tobias Nipkow | |
| 923 | 3 | *) | 
| 4 | ||
| 13114 | 5 | header {* The datatype of finite lists *}
 | 
| 13122 | 6 | |
| 15131 | 7 | theory List | 
| 37457 | 8 | imports Plain Quotient Presburger Code_Numeral Sledgehammer Recdef | 
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 9 | uses ("Tools/list_code.ML")
 | 
| 15131 | 10 | begin | 
| 923 | 11 | |
| 13142 | 12 | datatype 'a list = | 
| 13366 | 13 |     Nil    ("[]")
 | 
| 14 | | Cons 'a "'a list" (infixr "#" 65) | |
| 923 | 15 | |
| 34941 | 16 | syntax | 
| 17 |   -- {* list Enumeration *}
 | |
| 35115 | 18 |   "_list" :: "args => 'a list"    ("[(_)]")
 | 
| 34941 | 19 | |
| 20 | translations | |
| 21 | "[x, xs]" == "x#[xs]" | |
| 22 | "[x]" == "x#[]" | |
| 23 | ||
| 35115 | 24 | |
| 25 | subsection {* Basic list processing functions *}
 | |
| 15302 | 26 | |
| 34941 | 27 | primrec | 
| 28 | hd :: "'a list \<Rightarrow> 'a" where | |
| 29 | "hd (x # xs) = x" | |
| 30 | ||
| 31 | primrec | |
| 32 | tl :: "'a list \<Rightarrow> 'a list" where | |
| 33 | "tl [] = []" | |
| 34 | | "tl (x # xs) = xs" | |
| 35 | ||
| 36 | primrec | |
| 37 | last :: "'a list \<Rightarrow> 'a" where | |
| 38 | "last (x # xs) = (if xs = [] then x else last xs)" | |
| 39 | ||
| 40 | primrec | |
| 41 | butlast :: "'a list \<Rightarrow> 'a list" where | |
| 42 | "butlast []= []" | |
| 43 | | "butlast (x # xs) = (if xs = [] then [] else x # butlast xs)" | |
| 44 | ||
| 45 | primrec | |
| 46 | set :: "'a list \<Rightarrow> 'a set" where | |
| 47 |     "set [] = {}"
 | |
| 48 | | "set (x # xs) = insert x (set xs)" | |
| 49 | ||
| 50 | primrec | |
| 51 |   map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list" where
 | |
| 52 | "map f [] = []" | |
| 53 | | "map f (x # xs) = f x # map f xs" | |
| 54 | ||
| 55 | primrec | |
| 56 | append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where | |
| 57 | append_Nil:"[] @ ys = ys" | |
| 58 | | append_Cons: "(x#xs) @ ys = x # xs @ ys" | |
| 59 | ||
| 60 | primrec | |
| 61 | rev :: "'a list \<Rightarrow> 'a list" where | |
| 62 | "rev [] = []" | |
| 63 | | "rev (x # xs) = rev xs @ [x]" | |
| 64 | ||
| 65 | primrec | |
| 66 |   filter:: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
 | |
| 67 | "filter P [] = []" | |
| 68 | | "filter P (x # xs) = (if P x then x # filter P xs else filter P xs)" | |
| 69 | ||
| 70 | syntax | |
| 71 |   -- {* Special syntax for filter *}
 | |
| 35115 | 72 |   "_filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_<-_./ _])")
 | 
| 34941 | 73 | |
| 74 | translations | |
| 75 | "[x<-xs . P]"== "CONST filter (%x. P) xs" | |
| 76 | ||
| 77 | syntax (xsymbols) | |
| 35115 | 78 |   "_filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
 | 
| 34941 | 79 | syntax (HTML output) | 
| 35115 | 80 |   "_filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
 | 
| 34941 | 81 | |
| 82 | primrec | |
| 83 |   foldl :: "('b \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b" where
 | |
| 84 | foldl_Nil: "foldl f a [] = a" | |
| 85 | | foldl_Cons: "foldl f a (x # xs) = foldl f (f a x) xs" | |
| 86 | ||
| 87 | primrec | |
| 88 |   foldr :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b" where
 | |
| 89 | "foldr f [] a = a" | |
| 90 | | "foldr f (x # xs) a = f x (foldr f xs a)" | |
| 91 | ||
| 92 | primrec | |
| 93 | concat:: "'a list list \<Rightarrow> 'a list" where | |
| 94 | "concat [] = []" | |
| 95 | | "concat (x # xs) = x @ concat xs" | |
| 96 | ||
| 97 | primrec (in monoid_add) | |
| 98 | listsum :: "'a list \<Rightarrow> 'a" where | |
| 99 | "listsum [] = 0" | |
| 100 | | "listsum (x # xs) = x + listsum xs" | |
| 101 | ||
| 102 | primrec | |
| 103 | drop:: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 104 | drop_Nil: "drop n [] = []" | |
| 105 | | drop_Cons: "drop n (x # xs) = (case n of 0 \<Rightarrow> x # xs | Suc m \<Rightarrow> drop m xs)" | |
| 106 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 107 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 108 | ||
| 109 | primrec | |
| 110 | take:: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 111 | take_Nil:"take n [] = []" | |
| 112 | | take_Cons: "take n (x # xs) = (case n of 0 \<Rightarrow> [] | Suc m \<Rightarrow> x # take m xs)" | |
| 113 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 114 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 115 | ||
| 116 | primrec | |
| 117 | nth :: "'a list => nat => 'a" (infixl "!" 100) where | |
| 118 | nth_Cons: "(x # xs) ! n = (case n of 0 \<Rightarrow> x | Suc k \<Rightarrow> xs ! k)" | |
| 119 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 120 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 121 | ||
| 122 | primrec | |
| 123 | list_update :: "'a list \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a list" where | |
| 124 | "list_update [] i v = []" | |
| 125 | | "list_update (x # xs) i v = (case i of 0 \<Rightarrow> v # xs | Suc j \<Rightarrow> x # list_update xs j v)" | |
| 923 | 126 | |
| 13146 | 127 | nonterminals lupdbinds lupdbind | 
| 5077 
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
 nipkow parents: 
4643diff
changeset | 128 | |
| 923 | 129 | syntax | 
| 13366 | 130 |   "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
 | 
| 131 |   "" :: "lupdbind => lupdbinds"    ("_")
 | |
| 132 |   "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
 | |
| 133 |   "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
 | |
| 5077 
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
 nipkow parents: 
4643diff
changeset | 134 | |
| 923 | 135 | translations | 
| 35115 | 136 | "_LUpdate xs (_lupdbinds b bs)" == "_LUpdate (_LUpdate xs b) bs" | 
| 34941 | 137 | "xs[i:=x]" == "CONST list_update xs i x" | 
| 138 | ||
| 139 | primrec | |
| 140 |   takeWhile :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
 | |
| 141 | "takeWhile P [] = []" | |
| 142 | | "takeWhile P (x # xs) = (if P x then x # takeWhile P xs else [])" | |
| 143 | ||
| 144 | primrec | |
| 145 |   dropWhile :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
 | |
| 146 | "dropWhile P [] = []" | |
| 147 | | "dropWhile P (x # xs) = (if P x then dropWhile P xs else x # xs)" | |
| 148 | ||
| 149 | primrec | |
| 150 |   zip :: "'a list \<Rightarrow> 'b list \<Rightarrow> ('a \<times> 'b) list" where
 | |
| 151 | "zip xs [] = []" | |
| 152 | | zip_Cons: "zip xs (y # ys) = (case xs of [] => [] | z # zs => (z, y) # zip zs ys)" | |
| 153 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 154 |        theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
 | |
| 155 | ||
| 156 | primrec | |
| 157 |   upt :: "nat \<Rightarrow> nat \<Rightarrow> nat list" ("(1[_..</_'])") where
 | |
| 158 | upt_0: "[i..<0] = []" | |
| 159 | | upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])" | |
| 160 | ||
| 161 | primrec | |
| 162 | distinct :: "'a list \<Rightarrow> bool" where | |
| 163 | "distinct [] \<longleftrightarrow> True" | |
| 164 | | "distinct (x # xs) \<longleftrightarrow> x \<notin> set xs \<and> distinct xs" | |
| 165 | ||
| 166 | primrec | |
| 167 | remdups :: "'a list \<Rightarrow> 'a list" where | |
| 168 | "remdups [] = []" | |
| 169 | | "remdups (x # xs) = (if x \<in> set xs then remdups xs else x # remdups xs)" | |
| 170 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 171 | definition | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 172 | insert :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 173 | "insert x xs = (if x \<in> set xs then xs else x # xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 174 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
36154diff
changeset | 175 | hide_const (open) insert | 
| 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
36154diff
changeset | 176 | hide_fact (open) insert_def | 
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 177 | |
| 34941 | 178 | primrec | 
| 179 | remove1 :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 180 | "remove1 x [] = []" | |
| 181 | | "remove1 x (y # xs) = (if x = y then xs else y # remove1 x xs)" | |
| 182 | ||
| 183 | primrec | |
| 184 | removeAll :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 185 | "removeAll x [] = []" | |
| 186 | | "removeAll x (y # xs) = (if x = y then removeAll x xs else y # removeAll x xs)" | |
| 187 | ||
| 188 | primrec | |
| 189 | replicate :: "nat \<Rightarrow> 'a \<Rightarrow> 'a list" where | |
| 190 | replicate_0: "replicate 0 x = []" | |
| 191 | | replicate_Suc: "replicate (Suc n) x = x # replicate n x" | |
| 3342 
ec3b55fcb165
New operator "lists" for formalizing sets of lists
 paulson parents: 
3320diff
changeset | 192 | |
| 13142 | 193 | text {*
 | 
| 14589 | 194 |   Function @{text size} is overloaded for all datatypes. Users may
 | 
| 13366 | 195 |   refer to the list version as @{text length}. *}
 | 
| 13142 | 196 | |
| 19363 | 197 | abbreviation | 
| 34941 | 198 | length :: "'a list \<Rightarrow> nat" where | 
| 199 | "length \<equiv> size" | |
| 15307 | 200 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 201 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 202 | rotate1 :: "'a list \<Rightarrow> 'a list" where | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 203 | "rotate1 xs = (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])" | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 204 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 205 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 206 | rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 30971 | 207 | "rotate n = rotate1 ^^ n" | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 208 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 209 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 210 |   list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool" where
 | 
| 37767 | 211 | "list_all2 P xs ys = | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 212 | (length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y))" | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 213 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 214 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 215 | sublist :: "'a list => nat set => 'a list" where | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21211diff
changeset | 216 | "sublist xs A = map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [0..<size xs]))" | 
| 17086 | 217 | |
| 218 | primrec | |
| 34941 | 219 | splice :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 220 | "splice [] ys = ys" | |
| 221 | | "splice (x # xs) ys = (if ys = [] then x # xs else x # hd ys # splice xs (tl ys))" | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 222 |     -- {*Warning: simpset does not contain the second eqn but a derived one. *}
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 223 | |
| 26771 | 224 | text{*
 | 
| 225 | \begin{figure}[htbp]
 | |
| 226 | \fbox{
 | |
| 227 | \begin{tabular}{l}
 | |
| 27381 | 228 | @{lemma "[a,b]@[c,d] = [a,b,c,d]" by simp}\\
 | 
| 229 | @{lemma "length [a,b,c] = 3" by simp}\\
 | |
| 230 | @{lemma "set [a,b,c] = {a,b,c}" by simp}\\
 | |
| 231 | @{lemma "map f [a,b,c] = [f a, f b, f c]" by simp}\\
 | |
| 232 | @{lemma "rev [a,b,c] = [c,b,a]" by simp}\\
 | |
| 233 | @{lemma "hd [a,b,c,d] = a" by simp}\\
 | |
| 234 | @{lemma "tl [a,b,c,d] = [b,c,d]" by simp}\\
 | |
| 235 | @{lemma "last [a,b,c,d] = d" by simp}\\
 | |
| 236 | @{lemma "butlast [a,b,c,d] = [a,b,c]" by simp}\\
 | |
| 237 | @{lemma[source] "filter (\<lambda>n::nat. n<2) [0,2,1] = [0,1]" by simp}\\
 | |
| 238 | @{lemma "concat [[a,b],[c,d,e],[],[f]] = [a,b,c,d,e,f]" by simp}\\
 | |
| 239 | @{lemma "foldl f x [a,b,c] = f (f (f x a) b) c" by simp}\\
 | |
| 240 | @{lemma "foldr f [a,b,c] x = f a (f b (f c x))" by simp}\\
 | |
| 241 | @{lemma "zip [a,b,c] [x,y,z] = [(a,x),(b,y),(c,z)]" by simp}\\
 | |
| 242 | @{lemma "zip [a,b] [x,y,z] = [(a,x),(b,y)]" by simp}\\
 | |
| 243 | @{lemma "splice [a,b,c] [x,y,z] = [a,x,b,y,c,z]" by simp}\\
 | |
| 244 | @{lemma "splice [a,b,c,d] [x,y] = [a,x,b,y,c,d]" by simp}\\
 | |
| 245 | @{lemma "take 2 [a,b,c,d] = [a,b]" by simp}\\
 | |
| 246 | @{lemma "take 6 [a,b,c,d] = [a,b,c,d]" by simp}\\
 | |
| 247 | @{lemma "drop 2 [a,b,c,d] = [c,d]" by simp}\\
 | |
| 248 | @{lemma "drop 6 [a,b,c,d] = []" by simp}\\
 | |
| 249 | @{lemma "takeWhile (%n::nat. n<3) [1,2,3,0] = [1,2]" by simp}\\
 | |
| 250 | @{lemma "dropWhile (%n::nat. n<3) [1,2,3,0] = [3,0]" by simp}\\
 | |
| 251 | @{lemma "distinct [2,0,1::nat]" by simp}\\
 | |
| 252 | @{lemma "remdups [2,0,2,1::nat,2] = [0,1,2]" by simp}\\
 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 253 | @{lemma "List.insert 2 [0::nat,1,2] = [0,1,2]" by (simp add: List.insert_def)}\\
 | 
| 35295 | 254 | @{lemma "List.insert 3 [0::nat,1,2] = [3,0,1,2]" by (simp add: List.insert_def)}\\
 | 
| 27381 | 255 | @{lemma "remove1 2 [2,0,2,1::nat,2] = [0,2,1,2]" by simp}\\
 | 
| 27693 | 256 | @{lemma "removeAll 2 [2,0,2,1::nat,2] = [0,1]" by simp}\\
 | 
| 27381 | 257 | @{lemma "nth [a,b,c,d] 2 = c" by simp}\\
 | 
| 258 | @{lemma "[a,b,c,d][2 := x] = [a,b,x,d]" by simp}\\
 | |
| 259 | @{lemma "sublist [a,b,c,d,e] {0,2,3} = [a,c,d]" by (simp add:sublist_def)}\\
 | |
| 260 | @{lemma "rotate1 [a,b,c,d] = [b,c,d,a]" by (simp add:rotate1_def)}\\
 | |
| 35216 | 261 | @{lemma "rotate 3 [a,b,c,d] = [d,a,b,c]" by (simp add:rotate1_def rotate_def nat_number')}\\
 | 
| 262 | @{lemma "replicate 4 a = [a,a,a,a]" by (simp add:nat_number')}\\
 | |
| 263 | @{lemma "[2..<5] = [2,3,4]" by (simp add:nat_number')}\\
 | |
| 27381 | 264 | @{lemma "listsum [1,2,3::nat] = 6" by simp}
 | 
| 26771 | 265 | \end{tabular}}
 | 
| 266 | \caption{Characteristic examples}
 | |
| 267 | \label{fig:Characteristic}
 | |
| 268 | \end{figure}
 | |
| 29927 | 269 | Figure~\ref{fig:Characteristic} shows characteristic examples
 | 
| 26771 | 270 | that should give an intuitive understanding of the above functions. | 
| 271 | *} | |
| 272 | ||
| 24616 | 273 | text{* The following simple sort functions are intended for proofs,
 | 
| 274 | not for efficient implementations. *} | |
| 275 | ||
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 276 | context linorder | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 277 | begin | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 278 | |
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 279 | fun sorted :: "'a list \<Rightarrow> bool" where | 
| 24697 | 280 | "sorted [] \<longleftrightarrow> True" | | 
| 281 | "sorted [x] \<longleftrightarrow> True" | | |
| 25062 | 282 | "sorted (x#y#zs) \<longleftrightarrow> x <= y \<and> sorted (y#zs)" | 
| 24697 | 283 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 284 | primrec insort_key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b \<Rightarrow> 'b list \<Rightarrow> 'b list" where
 | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 285 | "insort_key f x [] = [x]" | | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 286 | "insort_key f x (y#ys) = (if f x \<le> f y then (x#y#ys) else y#(insort_key f x ys))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 287 | |
| 35195 | 288 | definition sort_key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b list \<Rightarrow> 'b list" where
 | 
| 289 | "sort_key f xs = foldr (insort_key f) xs []" | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 290 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 291 | abbreviation "sort \<equiv> sort_key (\<lambda>x. x)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 292 | abbreviation "insort \<equiv> insort_key (\<lambda>x. x)" | 
| 24616 | 293 | |
| 35608 | 294 | definition insort_insert :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 295 | "insort_insert x xs = (if x \<in> set xs then xs else insort x xs)" | |
| 296 | ||
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 297 | end | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 298 | |
| 24616 | 299 | |
| 23388 | 300 | subsubsection {* List comprehension *}
 | 
| 23192 | 301 | |
| 24349 | 302 | text{* Input syntax for Haskell-like list comprehension notation.
 | 
| 303 | Typical example: @{text"[(x,y). x \<leftarrow> xs, y \<leftarrow> ys, x \<noteq> y]"},
 | |
| 304 | the list of all pairs of distinct elements from @{text xs} and @{text ys}.
 | |
| 305 | The syntax is as in Haskell, except that @{text"|"} becomes a dot
 | |
| 306 | (like in Isabelle's set comprehension): @{text"[e. x \<leftarrow> xs, \<dots>]"} rather than
 | |
| 307 | \verb![e| x <- xs, ...]!. | |
| 308 | ||
| 309 | The qualifiers after the dot are | |
| 310 | \begin{description}
 | |
| 311 | \item[generators] @{text"p \<leftarrow> xs"},
 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 312 |  where @{text p} is a pattern and @{text xs} an expression of list type, or
 | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 313 | \item[guards] @{text"b"}, where @{text b} is a boolean expression.
 | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 314 | %\item[local bindings] @ {text"let x = e"}.
 | 
| 24349 | 315 | \end{description}
 | 
| 23240 | 316 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 317 | Just like in Haskell, list comprehension is just a shorthand. To avoid | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 318 | misunderstandings, the translation into desugared form is not reversed | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 319 | upon output. Note that the translation of @{text"[e. x \<leftarrow> xs]"} is
 | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 320 | optmized to @{term"map (%x. e) xs"}.
 | 
| 23240 | 321 | |
| 24349 | 322 | It is easy to write short list comprehensions which stand for complex | 
| 323 | expressions. During proofs, they may become unreadable (and | |
| 324 | mangled). In such cases it can be advisable to introduce separate | |
| 325 | definitions for the list comprehensions in question. *} | |
| 326 | ||
| 23209 | 327 | (* | 
| 23240 | 328 | Proper theorem proving support would be nice. For example, if | 
| 23192 | 329 | @{text"set[f x y. x \<leftarrow> xs, y \<leftarrow> ys, P x y]"}
 | 
| 330 | produced something like | |
| 23209 | 331 | @{term"{z. EX x: set xs. EX y:set ys. P x y \<and> z = f x y}"}.
 | 
| 332 | *) | |
| 333 | ||
| 23240 | 334 | nonterminals lc_qual lc_quals | 
| 23192 | 335 | |
| 336 | syntax | |
| 23240 | 337 | "_listcompr" :: "'a \<Rightarrow> lc_qual \<Rightarrow> lc_quals \<Rightarrow> 'a list"  ("[_ . __")
 | 
| 24349 | 338 | "_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ <- _")
 | 
| 23240 | 339 | "_lc_test" :: "bool \<Rightarrow> lc_qual" ("_")
 | 
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 340 | (*"_lc_let" :: "letbinds => lc_qual"  ("let _")*)
 | 
| 23240 | 341 | "_lc_end" :: "lc_quals" ("]")
 | 
| 342 | "_lc_quals" :: "lc_qual \<Rightarrow> lc_quals \<Rightarrow> lc_quals" (", __")
 | |
| 24349 | 343 | "_lc_abs" :: "'a => 'b list => 'b list" | 
| 23192 | 344 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 345 | (* These are easier than ML code but cannot express the optimized | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 346 | translation of [e. p<-xs] | 
| 23192 | 347 | translations | 
| 24349 | 348 | "[e. p<-xs]" => "concat(map (_lc_abs p [e]) xs)" | 
| 23240 | 349 | "_listcompr e (_lc_gen p xs) (_lc_quals Q Qs)" | 
| 24349 | 350 | => "concat (map (_lc_abs p (_listcompr e Q Qs)) xs)" | 
| 23240 | 351 | "[e. P]" => "if P then [e] else []" | 
| 352 | "_listcompr e (_lc_test P) (_lc_quals Q Qs)" | |
| 353 | => "if P then (_listcompr e Q Qs) else []" | |
| 24349 | 354 | "_listcompr e (_lc_let b) (_lc_quals Q Qs)" | 
| 355 | => "_Let b (_listcompr e Q Qs)" | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 356 | *) | 
| 23240 | 357 | |
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 358 | syntax (xsymbols) | 
| 24349 | 359 | "_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
 | 
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 360 | syntax (HTML output) | 
| 24349 | 361 | "_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
 | 
| 362 | ||
| 363 | parse_translation (advanced) {*
 | |
| 364 | let | |
| 35256 | 365 |   val NilC = Syntax.const @{const_syntax Nil};
 | 
| 366 |   val ConsC = Syntax.const @{const_syntax Cons};
 | |
| 367 |   val mapC = Syntax.const @{const_syntax map};
 | |
| 368 |   val concatC = Syntax.const @{const_syntax concat};
 | |
| 369 |   val IfC = Syntax.const @{const_syntax If};
 | |
| 35115 | 370 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 371 | fun singl x = ConsC $ x $ NilC; | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 372 | |
| 35115 | 373 | fun pat_tr ctxt p e opti = (* %x. case x of p => e | _ => [] *) | 
| 24349 | 374 | let | 
| 29281 | 375 | val x = Free (Name.variant (fold Term.add_free_names [p, e] []) "x", dummyT); | 
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 376 | val e = if opti then singl e else e; | 
| 35115 | 377 |       val case1 = Syntax.const @{syntax_const "_case1"} $ p $ e;
 | 
| 35256 | 378 | val case2 = | 
| 379 |         Syntax.const @{syntax_const "_case1"} $
 | |
| 380 |           Syntax.const @{const_syntax dummy_pattern} $ NilC;
 | |
| 35115 | 381 |       val cs = Syntax.const @{syntax_const "_case2"} $ case1 $ case2;
 | 
| 382 | val ft = Datatype_Case.case_tr false Datatype.info_of_constr ctxt [x, cs]; | |
| 24349 | 383 | in lambda x ft end; | 
| 384 | ||
| 35256 | 385 | fun abs_tr ctxt (p as Free (s, T)) e opti = | 
| 35115 | 386 | let | 
| 387 | val thy = ProofContext.theory_of ctxt; | |
| 388 | val s' = Sign.intern_const thy s; | |
| 389 | in | |
| 390 | if Sign.declared_const thy s' | |
| 391 | then (pat_tr ctxt p e opti, false) | |
| 392 | else (lambda p e, true) | |
| 24349 | 393 | end | 
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 394 | | abs_tr ctxt p e opti = (pat_tr ctxt p e opti, false); | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 395 | |
| 35115 | 396 |   fun lc_tr ctxt [e, Const (@{syntax_const "_lc_test"}, _) $ b, qs] =
 | 
| 397 | let | |
| 398 | val res = | |
| 399 | (case qs of | |
| 400 |               Const (@{syntax_const "_lc_end"}, _) => singl e
 | |
| 401 |             | Const (@{syntax_const "_lc_quals"}, _) $ q $ qs => lc_tr ctxt [e, q, qs]);
 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 402 | in IfC $ b $ res $ NilC end | 
| 35115 | 403 | | lc_tr ctxt | 
| 404 |           [e, Const (@{syntax_const "_lc_gen"}, _) $ p $ es,
 | |
| 405 |             Const(@{syntax_const "_lc_end"}, _)] =
 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 406 | (case abs_tr ctxt p e true of | 
| 35115 | 407 | (f, true) => mapC $ f $ es | 
| 408 | | (f, false) => concatC $ (mapC $ f $ es)) | |
| 409 | | lc_tr ctxt | |
| 410 |           [e, Const (@{syntax_const "_lc_gen"}, _) $ p $ es,
 | |
| 411 |             Const (@{syntax_const "_lc_quals"}, _) $ q $ qs] =
 | |
| 412 | let val e' = lc_tr ctxt [e, q, qs]; | |
| 413 | in concatC $ (mapC $ (fst (abs_tr ctxt p e' false)) $ es) end; | |
| 414 | ||
| 415 | in [(@{syntax_const "_listcompr"}, lc_tr)] end
 | |
| 24349 | 416 | *} | 
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 417 | |
| 23240 | 418 | term "[(x,y,z). b]" | 
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 419 | term "[(x,y,z). x\<leftarrow>xs]" | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 420 | term "[e x y. x\<leftarrow>xs, y\<leftarrow>ys]" | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 421 | term "[(x,y,z). x<a, x>b]" | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 422 | term "[(x,y,z). x\<leftarrow>xs, x>b]" | 
| 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 423 | term "[(x,y,z). x<a, x\<leftarrow>xs]" | 
| 24349 | 424 | term "[(x,y). Cons True x \<leftarrow> xs]" | 
| 425 | term "[(x,y,z). Cons x [] \<leftarrow> xs]" | |
| 23240 | 426 | term "[(x,y,z). x<a, x>b, x=d]" | 
| 427 | term "[(x,y,z). x<a, x>b, y\<leftarrow>ys]" | |
| 428 | term "[(x,y,z). x<a, x\<leftarrow>xs,y>b]" | |
| 429 | term "[(x,y,z). x<a, x\<leftarrow>xs, y\<leftarrow>ys]" | |
| 430 | term "[(x,y,z). x\<leftarrow>xs, x>b, y<a]" | |
| 431 | term "[(x,y,z). x\<leftarrow>xs, x>b, y\<leftarrow>ys]" | |
| 432 | term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,y>x]" | |
| 433 | term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,z\<leftarrow>zs]" | |
| 35115 | 434 | (* | 
| 24349 | 435 | term "[(x,y). x\<leftarrow>xs, let xx = x+x, y\<leftarrow>ys, y \<noteq> xx]" | 
| 23192 | 436 | *) | 
| 437 | ||
| 35115 | 438 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 439 | subsubsection {* @{const Nil} and @{const Cons} *}
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 440 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 441 | lemma not_Cons_self [simp]: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 442 | "xs \<noteq> x # xs" | 
| 13145 | 443 | by (induct xs) auto | 
| 13114 | 444 | |
| 13142 | 445 | lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric] | 
| 13114 | 446 | |
| 13142 | 447 | lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)" | 
| 13145 | 448 | by (induct xs) auto | 
| 13114 | 449 | |
| 13142 | 450 | lemma length_induct: | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 451 | "(\<And>xs. \<forall>ys. length ys < length xs \<longrightarrow> P ys \<Longrightarrow> P xs) \<Longrightarrow> P xs" | 
| 17589 | 452 | by (rule measure_induct [of length]) iprover | 
| 13114 | 453 | |
| 37289 | 454 | lemma list_nonempty_induct [consumes 1, case_names single cons]: | 
| 455 | assumes "xs \<noteq> []" | |
| 456 | assumes single: "\<And>x. P [x]" | |
| 457 | assumes cons: "\<And>x xs. xs \<noteq> [] \<Longrightarrow> P xs \<Longrightarrow> P (x # xs)" | |
| 458 | shows "P xs" | |
| 459 | using `xs \<noteq> []` proof (induct xs) | |
| 460 | case Nil then show ?case by simp | |
| 461 | next | |
| 462 | case (Cons x xs) show ?case proof (cases xs) | |
| 463 | case Nil with single show ?thesis by simp | |
| 464 | next | |
| 465 | case Cons then have "xs \<noteq> []" by simp | |
| 466 | moreover with Cons.hyps have "P xs" . | |
| 467 | ultimately show ?thesis by (rule cons) | |
| 468 | qed | |
| 469 | qed | |
| 470 | ||
| 13114 | 471 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 472 | subsubsection {* @{const length} *}
 | 
| 13114 | 473 | |
| 13142 | 474 | text {*
 | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 475 |   Needs to come before @{text "@"} because of theorem @{text
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 476 | append_eq_append_conv}. | 
| 13142 | 477 | *} | 
| 13114 | 478 | |
| 13142 | 479 | lemma length_append [simp]: "length (xs @ ys) = length xs + length ys" | 
| 13145 | 480 | by (induct xs) auto | 
| 13114 | 481 | |
| 13142 | 482 | lemma length_map [simp]: "length (map f xs) = length xs" | 
| 13145 | 483 | by (induct xs) auto | 
| 13114 | 484 | |
| 13142 | 485 | lemma length_rev [simp]: "length (rev xs) = length xs" | 
| 13145 | 486 | by (induct xs) auto | 
| 13114 | 487 | |
| 13142 | 488 | lemma length_tl [simp]: "length (tl xs) = length xs - 1" | 
| 13145 | 489 | by (cases xs) auto | 
| 13114 | 490 | |
| 13142 | 491 | lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])" | 
| 13145 | 492 | by (induct xs) auto | 
| 13114 | 493 | |
| 13142 | 494 | lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])" | 
| 13145 | 495 | by (induct xs) auto | 
| 13114 | 496 | |
| 23479 | 497 | lemma length_pos_if_in_set: "x : set xs \<Longrightarrow> length xs > 0" | 
| 498 | by auto | |
| 499 | ||
| 13114 | 500 | lemma length_Suc_conv: | 
| 13145 | 501 | "(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)" | 
| 502 | by (induct xs) auto | |
| 13142 | 503 | |
| 14025 | 504 | lemma Suc_length_conv: | 
| 505 | "(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)" | |
| 14208 | 506 | apply (induct xs, simp, simp) | 
| 14025 | 507 | apply blast | 
| 508 | done | |
| 509 | ||
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 510 | lemma impossible_Cons: "length xs <= length ys ==> xs = x # ys = False" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 511 | by (induct xs) auto | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 512 | |
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 513 | lemma list_induct2 [consumes 1, case_names Nil Cons]: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 514 | "length xs = length ys \<Longrightarrow> P [] [] \<Longrightarrow> | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 515 | (\<And>x xs y ys. length xs = length ys \<Longrightarrow> P xs ys \<Longrightarrow> P (x#xs) (y#ys)) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 516 | \<Longrightarrow> P xs ys" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 517 | proof (induct xs arbitrary: ys) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 518 | case Nil then show ?case by simp | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 519 | next | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 520 | case (Cons x xs ys) then show ?case by (cases ys) simp_all | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 521 | qed | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 522 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 523 | lemma list_induct3 [consumes 2, case_names Nil Cons]: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 524 | "length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P [] [] [] \<Longrightarrow> | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 525 | (\<And>x xs y ys z zs. length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P xs ys zs \<Longrightarrow> P (x#xs) (y#ys) (z#zs)) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 526 | \<Longrightarrow> P xs ys zs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 527 | proof (induct xs arbitrary: ys zs) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 528 | case Nil then show ?case by simp | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 529 | next | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 530 | case (Cons x xs ys zs) then show ?case by (cases ys, simp_all) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 531 | (cases zs, simp_all) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 532 | qed | 
| 13114 | 533 | |
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 534 | lemma list_induct4 [consumes 3, case_names Nil Cons]: | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 535 | "length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> length zs = length ws \<Longrightarrow> | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 536 | P [] [] [] [] \<Longrightarrow> (\<And>x xs y ys z zs w ws. length xs = length ys \<Longrightarrow> | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 537 | length ys = length zs \<Longrightarrow> length zs = length ws \<Longrightarrow> P xs ys zs ws \<Longrightarrow> | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 538 | P (x#xs) (y#ys) (z#zs) (w#ws)) \<Longrightarrow> P xs ys zs ws" | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 539 | proof (induct xs arbitrary: ys zs ws) | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 540 | case Nil then show ?case by simp | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 541 | next | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 542 | case (Cons x xs ys zs ws) then show ?case by ((cases ys, simp_all), (cases zs,simp_all)) (cases ws, simp_all) | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 543 | qed | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35828diff
changeset | 544 | |
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 545 | lemma list_induct2': | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 546 | "\<lbrakk> P [] []; | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 547 | \<And>x xs. P (x#xs) []; | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 548 | \<And>y ys. P [] (y#ys); | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 549 | \<And>x xs y ys. P xs ys \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk> | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 550 | \<Longrightarrow> P xs ys" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 551 | by (induct xs arbitrary: ys) (case_tac x, auto)+ | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 552 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 553 | lemma neq_if_length_neq: "length xs \<noteq> length ys \<Longrightarrow> (xs = ys) == False" | 
| 24349 | 554 | by (rule Eq_FalseI) auto | 
| 24037 | 555 | |
| 556 | simproc_setup list_neq ("(xs::'a list) = ys") = {*
 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 557 | (* | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 558 | Reduces xs=ys to False if xs and ys cannot be of the same length. | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 559 | This is the case if the atomic sublists of one are a submultiset | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 560 | of those of the other list and there are fewer Cons's in one than the other. | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 561 | *) | 
| 24037 | 562 | |
| 563 | let | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 564 | |
| 29856 | 565 | fun len (Const(@{const_name Nil},_)) acc = acc
 | 
| 566 |   | len (Const(@{const_name Cons},_) $ _ $ xs) (ts,n) = len xs (ts,n+1)
 | |
| 567 |   | len (Const(@{const_name append},_) $ xs $ ys) acc = len xs (len ys acc)
 | |
| 568 |   | len (Const(@{const_name rev},_) $ xs) acc = len xs acc
 | |
| 569 |   | len (Const(@{const_name map},_) $ _ $ xs) acc = len xs acc
 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 570 | | len t (ts,n) = (t::ts,n); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 571 | |
| 24037 | 572 | fun list_neq _ ss ct = | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 573 | let | 
| 24037 | 574 | val (Const(_,eqT) $ lhs $ rhs) = Thm.term_of ct; | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 575 | val (ls,m) = len lhs ([],0) and (rs,n) = len rhs ([],0); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 576 | fun prove_neq() = | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 577 | let | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 578 | val Type(_,listT::_) = eqT; | 
| 22994 | 579 | val size = HOLogic.size_const listT; | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 580 | val eq_len = HOLogic.mk_eq (size $ lhs, size $ rhs); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 581 | val neq_len = HOLogic.mk_Trueprop (HOLogic.Not $ eq_len); | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 582 | val thm = Goal.prove (Simplifier.the_context ss) [] [] neq_len | 
| 22633 | 583 |           (K (simp_tac (Simplifier.inherit_context ss @{simpset}) 1));
 | 
| 584 |       in SOME (thm RS @{thm neq_if_length_neq}) end
 | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 585 | in | 
| 23214 | 586 | if m < n andalso submultiset (op aconv) (ls,rs) orelse | 
| 587 | n < m andalso submultiset (op aconv) (rs,ls) | |
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 588 | then prove_neq() else NONE | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 589 | end; | 
| 24037 | 590 | in list_neq end; | 
| 22143 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 591 | *} | 
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 592 | |
| 
cf58486ca11b
Added simproc list_neq (prompted by an application)
 nipkow parents: 
21911diff
changeset | 593 | |
| 15392 | 594 | subsubsection {* @{text "@"} -- append *}
 | 
| 13114 | 595 | |
| 13142 | 596 | lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)" | 
| 13145 | 597 | by (induct xs) auto | 
| 13114 | 598 | |
| 13142 | 599 | lemma append_Nil2 [simp]: "xs @ [] = xs" | 
| 13145 | 600 | by (induct xs) auto | 
| 3507 | 601 | |
| 13142 | 602 | lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])" | 
| 13145 | 603 | by (induct xs) auto | 
| 13114 | 604 | |
| 13142 | 605 | lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])" | 
| 13145 | 606 | by (induct xs) auto | 
| 13114 | 607 | |
| 13142 | 608 | lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])" | 
| 13145 | 609 | by (induct xs) auto | 
| 13114 | 610 | |
| 13142 | 611 | lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])" | 
| 13145 | 612 | by (induct xs) auto | 
| 13114 | 613 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 614 | lemma append_eq_append_conv [simp, no_atp]: | 
| 24526 | 615 | "length xs = length ys \<or> length us = length vs | 
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 616 | ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)" | 
| 24526 | 617 | apply (induct xs arbitrary: ys) | 
| 14208 | 618 | apply (case_tac ys, simp, force) | 
| 619 | apply (case_tac ys, force, simp) | |
| 13145 | 620 | done | 
| 13142 | 621 | |
| 24526 | 622 | lemma append_eq_append_conv2: "(xs @ ys = zs @ ts) = | 
| 623 | (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)" | |
| 624 | apply (induct xs arbitrary: ys zs ts) | |
| 14495 | 625 | apply fastsimp | 
| 626 | apply(case_tac zs) | |
| 627 | apply simp | |
| 628 | apply fastsimp | |
| 629 | done | |
| 630 | ||
| 34910 
b23bd3ee4813
same_append_eq / append_same_eq are now used for simplifying induction rules.
 berghofe parents: 
34064diff
changeset | 631 | lemma same_append_eq [iff, induct_simp]: "(xs @ ys = xs @ zs) = (ys = zs)" | 
| 13145 | 632 | by simp | 
| 13142 | 633 | |
| 634 | lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)" | |
| 13145 | 635 | by simp | 
| 13114 | 636 | |
| 34910 
b23bd3ee4813
same_append_eq / append_same_eq are now used for simplifying induction rules.
 berghofe parents: 
34064diff
changeset | 637 | lemma append_same_eq [iff, induct_simp]: "(ys @ xs = zs @ xs) = (ys = zs)" | 
| 13145 | 638 | by simp | 
| 13114 | 639 | |
| 13142 | 640 | lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])" | 
| 13145 | 641 | using append_same_eq [of _ _ "[]"] by auto | 
| 3507 | 642 | |
| 13142 | 643 | lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])" | 
| 13145 | 644 | using append_same_eq [of "[]"] by auto | 
| 13114 | 645 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 646 | lemma hd_Cons_tl [simp,no_atp]: "xs \<noteq> [] ==> hd xs # tl xs = xs" | 
| 13145 | 647 | by (induct xs) auto | 
| 13114 | 648 | |
| 13142 | 649 | lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)" | 
| 13145 | 650 | by (induct xs) auto | 
| 13114 | 651 | |
| 13142 | 652 | lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs" | 
| 13145 | 653 | by (simp add: hd_append split: list.split) | 
| 13114 | 654 | |
| 13142 | 655 | lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)" | 
| 13145 | 656 | by (simp split: list.split) | 
| 13114 | 657 | |
| 13142 | 658 | lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys" | 
| 13145 | 659 | by (simp add: tl_append split: list.split) | 
| 13114 | 660 | |
| 661 | ||
| 14300 | 662 | lemma Cons_eq_append_conv: "x#xs = ys@zs = | 
| 663 | (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))" | |
| 664 | by(cases ys) auto | |
| 665 | ||
| 15281 | 666 | lemma append_eq_Cons_conv: "(ys@zs = x#xs) = | 
| 667 | (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))" | |
| 668 | by(cases ys) auto | |
| 669 | ||
| 14300 | 670 | |
| 13142 | 671 | text {* Trivial rules for solving @{text "@"}-equations automatically. *}
 | 
| 13114 | 672 | |
| 673 | lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys" | |
| 13145 | 674 | by simp | 
| 13114 | 675 | |
| 13142 | 676 | lemma Cons_eq_appendI: | 
| 13145 | 677 | "[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs" | 
| 678 | by (drule sym) simp | |
| 13114 | 679 | |
| 13142 | 680 | lemma append_eq_appendI: | 
| 13145 | 681 | "[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us" | 
| 682 | by (drule sym) simp | |
| 13114 | 683 | |
| 684 | ||
| 13142 | 685 | text {*
 | 
| 13145 | 686 | Simplification procedure for all list equalities. | 
| 687 | Currently only tries to rearrange @{text "@"} to see if
 | |
| 688 | - both lists end in a singleton list, | |
| 689 | - or both lists end in the same list. | |
| 13142 | 690 | *} | 
| 691 | ||
| 26480 | 692 | ML {*
 | 
| 3507 | 693 | local | 
| 694 | ||
| 29856 | 695 | fun last (cons as Const(@{const_name Cons},_) $ _ $ xs) =
 | 
| 696 |   (case xs of Const(@{const_name Nil},_) => cons | _ => last xs)
 | |
| 697 |   | last (Const(@{const_name append},_) $ _ $ ys) = last ys
 | |
| 13462 | 698 | | last t = t; | 
| 13114 | 699 | |
| 29856 | 700 | fun list1 (Const(@{const_name Cons},_) $ _ $ Const(@{const_name Nil},_)) = true
 | 
| 13462 | 701 | | list1 _ = false; | 
| 13114 | 702 | |
| 29856 | 703 | fun butlast ((cons as Const(@{const_name Cons},_) $ x) $ xs) =
 | 
| 704 |   (case xs of Const(@{const_name Nil},_) => xs | _ => cons $ butlast xs)
 | |
| 705 |   | butlast ((app as Const(@{const_name append},_) $ xs) $ ys) = app $ butlast ys
 | |
| 706 |   | butlast xs = Const(@{const_name Nil},fastype_of xs);
 | |
| 13114 | 707 | |
| 22633 | 708 | val rearr_ss = HOL_basic_ss addsimps [@{thm append_assoc},
 | 
| 709 |   @{thm append_Nil}, @{thm append_Cons}];
 | |
| 16973 | 710 | |
| 20044 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 wenzelm parents: 
19890diff
changeset | 711 | fun list_eq ss (F as (eq as Const(_,eqT)) $ lhs $ rhs) = | 
| 13462 | 712 | let | 
| 713 | val lastl = last lhs and lastr = last rhs; | |
| 714 | fun rearr conv = | |
| 715 | let | |
| 716 | val lhs1 = butlast lhs and rhs1 = butlast rhs; | |
| 717 | val Type(_,listT::_) = eqT | |
| 718 | val appT = [listT,listT] ---> listT | |
| 29856 | 719 |         val app = Const(@{const_name append},appT)
 | 
| 13462 | 720 | val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr) | 
| 13480 
bb72bd43c6c3
use Tactic.prove instead of prove_goalw_cterm in internal proofs!
 wenzelm parents: 
13462diff
changeset | 721 | val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2)); | 
| 20044 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 wenzelm parents: 
19890diff
changeset | 722 | val thm = Goal.prove (Simplifier.the_context ss) [] [] eq | 
| 17877 
67d5ab1cb0d8
Simplifier.inherit_context instead of Simplifier.inherit_bounds;
 wenzelm parents: 
17830diff
changeset | 723 | (K (simp_tac (Simplifier.inherit_context ss rearr_ss) 1)); | 
| 15531 | 724 | in SOME ((conv RS (thm RS trans)) RS eq_reflection) end; | 
| 13114 | 725 | |
| 13462 | 726 | in | 
| 22633 | 727 |     if list1 lastl andalso list1 lastr then rearr @{thm append1_eq_conv}
 | 
| 728 |     else if lastl aconv lastr then rearr @{thm append_same_eq}
 | |
| 15531 | 729 | else NONE | 
| 13462 | 730 | end; | 
| 731 | ||
| 13114 | 732 | in | 
| 13462 | 733 | |
| 734 | val list_eq_simproc = | |
| 32010 | 735 |   Simplifier.simproc @{theory} "list_eq" ["(xs::'a list) = ys"] (K list_eq);
 | 
| 13462 | 736 | |
| 13114 | 737 | end; | 
| 738 | ||
| 739 | Addsimprocs [list_eq_simproc]; | |
| 740 | *} | |
| 741 | ||
| 742 | ||
| 15392 | 743 | subsubsection {* @{text map} *}
 | 
| 13114 | 744 | |
| 13142 | 745 | lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs" | 
| 13145 | 746 | by (induct xs) simp_all | 
| 13114 | 747 | |
| 13142 | 748 | lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)" | 
| 13145 | 749 | by (rule ext, induct_tac xs) auto | 
| 13114 | 750 | |
| 13142 | 751 | lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys" | 
| 13145 | 752 | by (induct xs) auto | 
| 13114 | 753 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 754 | lemma map_map [simp]: "map f (map g xs) = map (f \<circ> g) xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 755 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 756 | |
| 35208 | 757 | lemma map_comp_map[simp]: "((map f) o (map g)) = map(f o g)" | 
| 758 | apply(rule ext) | |
| 759 | apply(simp) | |
| 760 | done | |
| 761 | ||
| 13142 | 762 | lemma rev_map: "rev (map f xs) = map f (rev xs)" | 
| 13145 | 763 | by (induct xs) auto | 
| 13114 | 764 | |
| 13737 | 765 | lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)" | 
| 766 | by (induct xs) auto | |
| 767 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 768 | lemma map_cong [fundef_cong, recdef_cong]: | 
| 13145 | 769 | "xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys" | 
| 770 | -- {* a congruence rule for @{text map} *}
 | |
| 13737 | 771 | by simp | 
| 13114 | 772 | |
| 13142 | 773 | lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])" | 
| 13145 | 774 | by (cases xs) auto | 
| 13114 | 775 | |
| 13142 | 776 | lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])" | 
| 13145 | 777 | by (cases xs) auto | 
| 13114 | 778 | |
| 18447 | 779 | lemma map_eq_Cons_conv: | 
| 14025 | 780 | "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)" | 
| 13145 | 781 | by (cases xs) auto | 
| 13114 | 782 | |
| 18447 | 783 | lemma Cons_eq_map_conv: | 
| 14025 | 784 | "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)" | 
| 785 | by (cases ys) auto | |
| 786 | ||
| 18447 | 787 | lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1] | 
| 788 | lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1] | |
| 789 | declare map_eq_Cons_D [dest!] Cons_eq_map_D [dest!] | |
| 790 | ||
| 14111 | 791 | lemma ex_map_conv: | 
| 792 | "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)" | |
| 18447 | 793 | by(induct ys, auto simp add: Cons_eq_map_conv) | 
| 14111 | 794 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 795 | lemma map_eq_imp_length_eq: | 
| 35510 | 796 | assumes "map f xs = map g ys" | 
| 26734 | 797 | shows "length xs = length ys" | 
| 798 | using assms proof (induct ys arbitrary: xs) | |
| 799 | case Nil then show ?case by simp | |
| 800 | next | |
| 801 | case (Cons y ys) then obtain z zs where xs: "xs = z # zs" by auto | |
| 35510 | 802 | from Cons xs have "map f zs = map g ys" by simp | 
| 26734 | 803 | moreover with Cons have "length zs = length ys" by blast | 
| 804 | with xs show ?case by simp | |
| 805 | qed | |
| 806 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 807 | lemma map_inj_on: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 808 | "[| map f xs = map f ys; inj_on f (set xs Un set ys) |] | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 809 | ==> xs = ys" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 810 | apply(frule map_eq_imp_length_eq) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 811 | apply(rotate_tac -1) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 812 | apply(induct rule:list_induct2) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 813 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 814 | apply(simp) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 815 | apply (blast intro:sym) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 816 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 817 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 818 | lemma inj_on_map_eq_map: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 819 | "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 820 | by(blast dest:map_inj_on) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 821 | |
| 13114 | 822 | lemma map_injective: | 
| 24526 | 823 | "map f xs = map f ys ==> inj f ==> xs = ys" | 
| 824 | by (induct ys arbitrary: xs) (auto dest!:injD) | |
| 13114 | 825 | |
| 14339 | 826 | lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)" | 
| 827 | by(blast dest:map_injective) | |
| 828 | ||
| 13114 | 829 | lemma inj_mapI: "inj f ==> inj (map f)" | 
| 17589 | 830 | by (iprover dest: map_injective injD intro: inj_onI) | 
| 13114 | 831 | |
| 832 | lemma inj_mapD: "inj (map f) ==> inj f" | |
| 14208 | 833 | apply (unfold inj_on_def, clarify) | 
| 13145 | 834 | apply (erule_tac x = "[x]" in ballE) | 
| 14208 | 835 | apply (erule_tac x = "[y]" in ballE, simp, blast) | 
| 13145 | 836 | apply blast | 
| 837 | done | |
| 13114 | 838 | |
| 14339 | 839 | lemma inj_map[iff]: "inj (map f) = inj f" | 
| 13145 | 840 | by (blast dest: inj_mapD intro: inj_mapI) | 
| 13114 | 841 | |
| 15303 | 842 | lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A" | 
| 843 | apply(rule inj_onI) | |
| 844 | apply(erule map_inj_on) | |
| 845 | apply(blast intro:inj_onI dest:inj_onD) | |
| 846 | done | |
| 847 | ||
| 14343 | 848 | lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs" | 
| 849 | by (induct xs, auto) | |
| 13114 | 850 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 851 | lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 852 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 853 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 854 | lemma map_fst_zip[simp]: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 855 | "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 856 | by (induct rule:list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 857 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 858 | lemma map_snd_zip[simp]: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 859 | "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 860 | by (induct rule:list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 861 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 862 | |
| 15392 | 863 | subsubsection {* @{text rev} *}
 | 
| 13114 | 864 | |
| 13142 | 865 | lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs" | 
| 13145 | 866 | by (induct xs) auto | 
| 13114 | 867 | |
| 13142 | 868 | lemma rev_rev_ident [simp]: "rev (rev xs) = xs" | 
| 13145 | 869 | by (induct xs) auto | 
| 13114 | 870 | |
| 15870 | 871 | lemma rev_swap: "(rev xs = ys) = (xs = rev ys)" | 
| 872 | by auto | |
| 873 | ||
| 13142 | 874 | lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])" | 
| 13145 | 875 | by (induct xs) auto | 
| 13114 | 876 | |
| 13142 | 877 | lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])" | 
| 13145 | 878 | by (induct xs) auto | 
| 13114 | 879 | |
| 15870 | 880 | lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])" | 
| 881 | by (cases xs) auto | |
| 882 | ||
| 883 | lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])" | |
| 884 | by (cases xs) auto | |
| 885 | ||
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 886 | lemma rev_is_rev_conv [iff]: "(rev xs = rev ys) = (xs = ys)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 887 | apply (induct xs arbitrary: ys, force) | 
| 14208 | 888 | apply (case_tac ys, simp, force) | 
| 13145 | 889 | done | 
| 13114 | 890 | |
| 15439 | 891 | lemma inj_on_rev[iff]: "inj_on rev A" | 
| 892 | by(simp add:inj_on_def) | |
| 893 | ||
| 13366 | 894 | lemma rev_induct [case_names Nil snoc]: | 
| 895 | "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs" | |
| 15489 
d136af442665
Replaced application of subst by simplesubst in proof of rev_induct
 berghofe parents: 
15439diff
changeset | 896 | apply(simplesubst rev_rev_ident[symmetric]) | 
| 13145 | 897 | apply(rule_tac list = "rev xs" in list.induct, simp_all) | 
| 898 | done | |
| 13114 | 899 | |
| 13366 | 900 | lemma rev_exhaust [case_names Nil snoc]: | 
| 901 | "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P" | |
| 13145 | 902 | by (induct xs rule: rev_induct) auto | 
| 13114 | 903 | |
| 13366 | 904 | lemmas rev_cases = rev_exhaust | 
| 905 | ||
| 18423 | 906 | lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])" | 
| 907 | by(rule rev_cases[of xs]) auto | |
| 908 | ||
| 13114 | 909 | |
| 15392 | 910 | subsubsection {* @{text set} *}
 | 
| 13114 | 911 | |
| 13142 | 912 | lemma finite_set [iff]: "finite (set xs)" | 
| 13145 | 913 | by (induct xs) auto | 
| 13114 | 914 | |
| 13142 | 915 | lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)" | 
| 13145 | 916 | by (induct xs) auto | 
| 13114 | 917 | |
| 17830 | 918 | lemma hd_in_set[simp]: "xs \<noteq> [] \<Longrightarrow> hd xs : set xs" | 
| 919 | by(cases xs) auto | |
| 14099 | 920 | |
| 13142 | 921 | lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)" | 
| 13145 | 922 | by auto | 
| 13114 | 923 | |
| 14099 | 924 | lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" | 
| 925 | by auto | |
| 926 | ||
| 13142 | 927 | lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
 | 
| 13145 | 928 | by (induct xs) auto | 
| 13114 | 929 | |
| 15245 | 930 | lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
 | 
| 931 | by(induct xs) auto | |
| 932 | ||
| 13142 | 933 | lemma set_rev [simp]: "set (rev xs) = set xs" | 
| 13145 | 934 | by (induct xs) auto | 
| 13114 | 935 | |
| 13142 | 936 | lemma set_map [simp]: "set (map f xs) = f`(set xs)" | 
| 13145 | 937 | by (induct xs) auto | 
| 13114 | 938 | |
| 13142 | 939 | lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
 | 
| 13145 | 940 | by (induct xs) auto | 
| 13114 | 941 | |
| 32417 | 942 | lemma set_upt [simp]: "set[i..<j] = {i..<j}"
 | 
| 943 | by (induct j) (simp_all add: atLeastLessThanSuc) | |
| 13114 | 944 | |
| 13142 | 945 | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 946 | lemma split_list: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs" | 
| 18049 | 947 | proof (induct xs) | 
| 26073 | 948 | case Nil thus ?case by simp | 
| 949 | next | |
| 950 | case Cons thus ?case by (auto intro: Cons_eq_appendI) | |
| 951 | qed | |
| 952 | ||
| 26734 | 953 | lemma in_set_conv_decomp: "x \<in> set xs \<longleftrightarrow> (\<exists>ys zs. xs = ys @ x # zs)" | 
| 954 | by (auto elim: split_list) | |
| 26073 | 955 | |
| 956 | lemma split_list_first: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys" | |
| 957 | proof (induct xs) | |
| 958 | case Nil thus ?case by simp | |
| 18049 | 959 | next | 
| 960 | case (Cons a xs) | |
| 961 | show ?case | |
| 962 | proof cases | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 963 | assume "x = a" thus ?case using Cons by fastsimp | 
| 18049 | 964 | next | 
| 26073 | 965 | assume "x \<noteq> a" thus ?case using Cons by(fastsimp intro!: Cons_eq_appendI) | 
| 966 | qed | |
| 967 | qed | |
| 968 | ||
| 969 | lemma in_set_conv_decomp_first: | |
| 970 | "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys)" | |
| 26734 | 971 | by (auto dest!: split_list_first) | 
| 26073 | 972 | |
| 973 | lemma split_list_last: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs" | |
| 974 | proof (induct xs rule:rev_induct) | |
| 975 | case Nil thus ?case by simp | |
| 976 | next | |
| 977 | case (snoc a xs) | |
| 978 | show ?case | |
| 979 | proof cases | |
| 980 | assume "x = a" thus ?case using snoc by simp (metis ex_in_conv set_empty2) | |
| 981 | next | |
| 982 | assume "x \<noteq> a" thus ?case using snoc by fastsimp | |
| 18049 | 983 | qed | 
| 984 | qed | |
| 985 | ||
| 26073 | 986 | lemma in_set_conv_decomp_last: | 
| 987 | "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs)" | |
| 26734 | 988 | by (auto dest!: split_list_last) | 
| 26073 | 989 | |
| 990 | lemma split_list_prop: "\<exists>x \<in> set xs. P x \<Longrightarrow> \<exists>ys x zs. xs = ys @ x # zs & P x" | |
| 991 | proof (induct xs) | |
| 992 | case Nil thus ?case by simp | |
| 993 | next | |
| 994 | case Cons thus ?case | |
| 995 | by(simp add:Bex_def)(metis append_Cons append.simps(1)) | |
| 996 | qed | |
| 997 | ||
| 998 | lemma split_list_propE: | |
| 26734 | 999 | assumes "\<exists>x \<in> set xs. P x" | 
| 1000 | obtains ys x zs where "xs = ys @ x # zs" and "P x" | |
| 1001 | using split_list_prop [OF assms] by blast | |
| 26073 | 1002 | |
| 1003 | lemma split_list_first_prop: | |
| 1004 | "\<exists>x \<in> set xs. P x \<Longrightarrow> | |
| 1005 | \<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>y \<in> set ys. \<not> P y)" | |
| 26734 | 1006 | proof (induct xs) | 
| 26073 | 1007 | case Nil thus ?case by simp | 
| 1008 | next | |
| 1009 | case (Cons x xs) | |
| 1010 | show ?case | |
| 1011 | proof cases | |
| 1012 | assume "P x" | |
| 26734 | 1013 | thus ?thesis by simp | 
| 1014 | (metis Un_upper1 contra_subsetD in_set_conv_decomp_first self_append_conv2 set_append) | |
| 26073 | 1015 | next | 
| 1016 | assume "\<not> P x" | |
| 1017 | hence "\<exists>x\<in>set xs. P x" using Cons(2) by simp | |
| 1018 | thus ?thesis using `\<not> P x` Cons(1) by (metis append_Cons set_ConsD) | |
| 1019 | qed | |
| 1020 | qed | |
| 1021 | ||
| 1022 | lemma split_list_first_propE: | |
| 26734 | 1023 | assumes "\<exists>x \<in> set xs. P x" | 
| 1024 | obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\<forall>y \<in> set ys. \<not> P y" | |
| 1025 | using split_list_first_prop [OF assms] by blast | |
| 26073 | 1026 | |
| 1027 | lemma split_list_first_prop_iff: | |
| 1028 | "(\<exists>x \<in> set xs. P x) \<longleftrightarrow> | |
| 1029 | (\<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>y \<in> set ys. \<not> P y))" | |
| 26734 | 1030 | by (rule, erule split_list_first_prop) auto | 
| 26073 | 1031 | |
| 1032 | lemma split_list_last_prop: | |
| 1033 | "\<exists>x \<in> set xs. P x \<Longrightarrow> | |
| 1034 | \<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>z \<in> set zs. \<not> P z)" | |
| 1035 | proof(induct xs rule:rev_induct) | |
| 1036 | case Nil thus ?case by simp | |
| 1037 | next | |
| 1038 | case (snoc x xs) | |
| 1039 | show ?case | |
| 1040 | proof cases | |
| 1041 | assume "P x" thus ?thesis by (metis emptyE set_empty) | |
| 1042 | next | |
| 1043 | assume "\<not> P x" | |
| 1044 | hence "\<exists>x\<in>set xs. P x" using snoc(2) by simp | |
| 1045 | thus ?thesis using `\<not> P x` snoc(1) by fastsimp | |
| 1046 | qed | |
| 1047 | qed | |
| 1048 | ||
| 1049 | lemma split_list_last_propE: | |
| 26734 | 1050 | assumes "\<exists>x \<in> set xs. P x" | 
| 1051 | obtains ys x zs where "xs = ys @ x # zs" and "P x" and "\<forall>z \<in> set zs. \<not> P z" | |
| 1052 | using split_list_last_prop [OF assms] by blast | |
| 26073 | 1053 | |
| 1054 | lemma split_list_last_prop_iff: | |
| 1055 | "(\<exists>x \<in> set xs. P x) \<longleftrightarrow> | |
| 1056 | (\<exists>ys x zs. xs = ys@x#zs \<and> P x \<and> (\<forall>z \<in> set zs. \<not> P z))" | |
| 26734 | 1057 | by (metis split_list_last_prop [where P=P] in_set_conv_decomp) | 
| 26073 | 1058 | |
| 1059 | lemma finite_list: "finite A ==> EX xs. set xs = A" | |
| 26734 | 1060 | by (erule finite_induct) | 
| 1061 | (auto simp add: set.simps(2) [symmetric] simp del: set.simps(2)) | |
| 13508 | 1062 | |
| 14388 | 1063 | lemma card_length: "card (set xs) \<le> length xs" | 
| 1064 | by (induct xs) (auto simp add: card_insert_if) | |
| 13114 | 1065 | |
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1066 | lemma set_minus_filter_out: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1067 |   "set xs - {y} = set (filter (\<lambda>x. \<not> (x = y)) xs)"
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1068 | by (induct xs) auto | 
| 15168 | 1069 | |
| 35115 | 1070 | |
| 15392 | 1071 | subsubsection {* @{text filter} *}
 | 
| 13114 | 1072 | |
| 13142 | 1073 | lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys" | 
| 13145 | 1074 | by (induct xs) auto | 
| 13114 | 1075 | |
| 15305 | 1076 | lemma rev_filter: "rev (filter P xs) = filter P (rev xs)" | 
| 1077 | by (induct xs) simp_all | |
| 1078 | ||
| 13142 | 1079 | lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs" | 
| 13145 | 1080 | by (induct xs) auto | 
| 13114 | 1081 | |
| 16998 | 1082 | lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs" | 
| 1083 | by (induct xs) (auto simp add: le_SucI) | |
| 1084 | ||
| 18423 | 1085 | lemma sum_length_filter_compl: | 
| 1086 | "length(filter P xs) + length(filter (%x. ~P x) xs) = length xs" | |
| 1087 | by(induct xs) simp_all | |
| 1088 | ||
| 13142 | 1089 | lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs" | 
| 13145 | 1090 | by (induct xs) auto | 
| 13114 | 1091 | |
| 13142 | 1092 | lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []" | 
| 13145 | 1093 | by (induct xs) auto | 
| 13114 | 1094 | |
| 16998 | 1095 | lemma filter_empty_conv: "(filter P xs = []) = (\<forall>x\<in>set xs. \<not> P x)" | 
| 24349 | 1096 | by (induct xs) simp_all | 
| 16998 | 1097 | |
| 1098 | lemma filter_id_conv: "(filter P xs = xs) = (\<forall>x\<in>set xs. P x)" | |
| 1099 | apply (induct xs) | |
| 1100 | apply auto | |
| 1101 | apply(cut_tac P=P and xs=xs in length_filter_le) | |
| 1102 | apply simp | |
| 1103 | done | |
| 13114 | 1104 | |
| 16965 | 1105 | lemma filter_map: | 
| 1106 | "filter P (map f xs) = map f (filter (P o f) xs)" | |
| 1107 | by (induct xs) simp_all | |
| 1108 | ||
| 1109 | lemma length_filter_map[simp]: | |
| 1110 | "length (filter P (map f xs)) = length(filter (P o f) xs)" | |
| 1111 | by (simp add:filter_map) | |
| 1112 | ||
| 13142 | 1113 | lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs" | 
| 13145 | 1114 | by auto | 
| 13114 | 1115 | |
| 15246 | 1116 | lemma length_filter_less: | 
| 1117 | "\<lbrakk> x : set xs; ~ P x \<rbrakk> \<Longrightarrow> length(filter P xs) < length xs" | |
| 1118 | proof (induct xs) | |
| 1119 | case Nil thus ?case by simp | |
| 1120 | next | |
| 1121 | case (Cons x xs) thus ?case | |
| 1122 | apply (auto split:split_if_asm) | |
| 1123 | using length_filter_le[of P xs] apply arith | |
| 1124 | done | |
| 1125 | qed | |
| 13114 | 1126 | |
| 15281 | 1127 | lemma length_filter_conv_card: | 
| 1128 |  "length(filter p xs) = card{i. i < length xs & p(xs!i)}"
 | |
| 1129 | proof (induct xs) | |
| 1130 | case Nil thus ?case by simp | |
| 1131 | next | |
| 1132 | case (Cons x xs) | |
| 1133 |   let ?S = "{i. i < length xs & p(xs!i)}"
 | |
| 1134 | have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite) | |
| 1135 | show ?case (is "?l = card ?S'") | |
| 1136 | proof (cases) | |
| 1137 | assume "p x" | |
| 1138 | hence eq: "?S' = insert 0 (Suc ` ?S)" | |
| 25162 | 1139 | by(auto simp: image_def split:nat.split dest:gr0_implies_Suc) | 
| 15281 | 1140 | have "length (filter p (x # xs)) = Suc(card ?S)" | 
| 23388 | 1141 | using Cons `p x` by simp | 
| 15281 | 1142 | also have "\<dots> = Suc(card(Suc ` ?S))" using fin | 
| 1143 | by (simp add: card_image inj_Suc) | |
| 1144 | also have "\<dots> = card ?S'" using eq fin | |
| 1145 | by (simp add:card_insert_if) (simp add:image_def) | |
| 1146 | finally show ?thesis . | |
| 1147 | next | |
| 1148 | assume "\<not> p x" | |
| 1149 | hence eq: "?S' = Suc ` ?S" | |
| 25162 | 1150 | by(auto simp add: image_def split:nat.split elim:lessE) | 
| 15281 | 1151 | have "length (filter p (x # xs)) = card ?S" | 
| 23388 | 1152 | using Cons `\<not> p x` by simp | 
| 15281 | 1153 | also have "\<dots> = card(Suc ` ?S)" using fin | 
| 1154 | by (simp add: card_image inj_Suc) | |
| 1155 | also have "\<dots> = card ?S'" using eq fin | |
| 1156 | by (simp add:card_insert_if) | |
| 1157 | finally show ?thesis . | |
| 1158 | qed | |
| 1159 | qed | |
| 1160 | ||
| 17629 | 1161 | lemma Cons_eq_filterD: | 
| 1162 | "x#xs = filter P ys \<Longrightarrow> | |
| 1163 | \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs" | |
| 19585 | 1164 | (is "_ \<Longrightarrow> \<exists>us vs. ?P ys us vs") | 
| 17629 | 1165 | proof(induct ys) | 
| 1166 | case Nil thus ?case by simp | |
| 1167 | next | |
| 1168 | case (Cons y ys) | |
| 1169 | show ?case (is "\<exists>x. ?Q x") | |
| 1170 | proof cases | |
| 1171 | assume Py: "P y" | |
| 1172 | show ?thesis | |
| 1173 | proof cases | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1174 | assume "x = y" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1175 | with Py Cons.prems have "?Q []" by simp | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1176 | then show ?thesis .. | 
| 17629 | 1177 | next | 
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1178 | assume "x \<noteq> y" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1179 | with Py Cons.prems show ?thesis by simp | 
| 17629 | 1180 | qed | 
| 1181 | next | |
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1182 | assume "\<not> P y" | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1183 | with Cons obtain us vs where "?P (y#ys) (y#us) vs" by fastsimp | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1184 | then have "?Q (y#us)" by simp | 
| 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1185 | then show ?thesis .. | 
| 17629 | 1186 | qed | 
| 1187 | qed | |
| 1188 | ||
| 1189 | lemma filter_eq_ConsD: | |
| 1190 | "filter P ys = x#xs \<Longrightarrow> | |
| 1191 | \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs" | |
| 1192 | by(rule Cons_eq_filterD) simp | |
| 1193 | ||
| 1194 | lemma filter_eq_Cons_iff: | |
| 1195 | "(filter P ys = x#xs) = | |
| 1196 | (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)" | |
| 1197 | by(auto dest:filter_eq_ConsD) | |
| 1198 | ||
| 1199 | lemma Cons_eq_filter_iff: | |
| 1200 | "(x#xs = filter P ys) = | |
| 1201 | (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)" | |
| 1202 | by(auto dest:Cons_eq_filterD) | |
| 1203 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1204 | lemma filter_cong[fundef_cong, recdef_cong]: | 
| 17501 | 1205 | "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> P x = Q x) \<Longrightarrow> filter P xs = filter Q ys" | 
| 1206 | apply simp | |
| 1207 | apply(erule thin_rl) | |
| 1208 | by (induct ys) simp_all | |
| 1209 | ||
| 15281 | 1210 | |
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1211 | subsubsection {* List partitioning *}
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1212 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1213 | primrec partition :: "('a \<Rightarrow> bool) \<Rightarrow>'a list \<Rightarrow> 'a list \<times> 'a list" where
 | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1214 | "partition P [] = ([], [])" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1215 | | "partition P (x # xs) = | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1216 | (let (yes, no) = partition P xs | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1217 | in if P x then (x # yes, no) else (yes, x # no))" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1218 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1219 | lemma partition_filter1: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1220 | "fst (partition P xs) = filter P xs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1221 | by (induct xs) (auto simp add: Let_def split_def) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1222 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1223 | lemma partition_filter2: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1224 | "snd (partition P xs) = filter (Not o P) xs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1225 | by (induct xs) (auto simp add: Let_def split_def) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1226 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1227 | lemma partition_P: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1228 | assumes "partition P xs = (yes, no)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1229 | shows "(\<forall>p \<in> set yes. P p) \<and> (\<forall>p \<in> set no. \<not> P p)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1230 | proof - | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1231 | from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1232 | by simp_all | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1233 | then show ?thesis by (simp_all add: partition_filter1 partition_filter2) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1234 | qed | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1235 | |
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1236 | lemma partition_set: | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1237 | assumes "partition P xs = (yes, no)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1238 | shows "set yes \<union> set no = set xs" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1239 | proof - | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1240 | from assms have "yes = fst (partition P xs)" and "no = snd (partition P xs)" | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1241 | by simp_all | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1242 | then show ?thesis by (auto simp add: partition_filter1 partition_filter2) | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1243 | qed | 
| 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1244 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1245 | lemma partition_filter_conv[simp]: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1246 | "partition f xs = (filter f xs,filter (Not o f) xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1247 | unfolding partition_filter2[symmetric] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1248 | unfolding partition_filter1[symmetric] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1249 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1250 | declare partition.simps[simp del] | 
| 26442 
57fb6a8b099e
restructuring; explicit case names for rule list_induct2
 haftmann parents: 
26300diff
changeset | 1251 | |
| 35115 | 1252 | |
| 15392 | 1253 | subsubsection {* @{text concat} *}
 | 
| 13114 | 1254 | |
| 13142 | 1255 | lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys" | 
| 13145 | 1256 | by (induct xs) auto | 
| 13114 | 1257 | |
| 18447 | 1258 | lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])" | 
| 13145 | 1259 | by (induct xss) auto | 
| 13114 | 1260 | |
| 18447 | 1261 | lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])" | 
| 13145 | 1262 | by (induct xss) auto | 
| 13114 | 1263 | |
| 24308 | 1264 | lemma set_concat [simp]: "set (concat xs) = (UN x:set xs. set x)" | 
| 13145 | 1265 | by (induct xs) auto | 
| 13114 | 1266 | |
| 24476 
f7ad9fbbeeaa
turned list comprehension translations into ML to optimize base case
 nipkow parents: 
24471diff
changeset | 1267 | lemma concat_map_singleton[simp]: "concat(map (%x. [f x]) xs) = map f xs" | 
| 24349 | 1268 | by (induct xs) auto | 
| 1269 | ||
| 13142 | 1270 | lemma map_concat: "map f (concat xs) = concat (map (map f) xs)" | 
| 13145 | 1271 | by (induct xs) auto | 
| 13114 | 1272 | |
| 13142 | 1273 | lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)" | 
| 13145 | 1274 | by (induct xs) auto | 
| 13114 | 1275 | |
| 13142 | 1276 | lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))" | 
| 13145 | 1277 | by (induct xs) auto | 
| 13114 | 1278 | |
| 1279 | ||
| 15392 | 1280 | subsubsection {* @{text nth} *}
 | 
| 13114 | 1281 | |
| 29827 | 1282 | lemma nth_Cons_0 [simp, code]: "(x # xs)!0 = x" | 
| 13145 | 1283 | by auto | 
| 13114 | 1284 | |
| 29827 | 1285 | lemma nth_Cons_Suc [simp, code]: "(x # xs)!(Suc n) = xs!n" | 
| 13145 | 1286 | by auto | 
| 13114 | 1287 | |
| 13142 | 1288 | declare nth.simps [simp del] | 
| 13114 | 1289 | |
| 1290 | lemma nth_append: | |
| 24526 | 1291 | "(xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))" | 
| 1292 | apply (induct xs arbitrary: n, simp) | |
| 14208 | 1293 | apply (case_tac n, auto) | 
| 13145 | 1294 | done | 
| 13114 | 1295 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1296 | lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x" | 
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1297 | by (induct xs) auto | 
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1298 | |
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1299 | lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n" | 
| 25221 
5ded95dda5df
append/member: more light-weight way to declare authentic syntax;
 wenzelm parents: 
25215diff
changeset | 1300 | by (induct xs) auto | 
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1301 | |
| 24526 | 1302 | lemma nth_map [simp]: "n < length xs ==> (map f xs)!n = f(xs!n)" | 
| 1303 | apply (induct xs arbitrary: n, simp) | |
| 14208 | 1304 | apply (case_tac n, auto) | 
| 13145 | 1305 | done | 
| 13114 | 1306 | |
| 18423 | 1307 | lemma hd_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd xs = xs!0" | 
| 1308 | by(cases xs) simp_all | |
| 1309 | ||
| 18049 | 1310 | |
| 1311 | lemma list_eq_iff_nth_eq: | |
| 24526 | 1312 | "(xs = ys) = (length xs = length ys \<and> (ALL i<length xs. xs!i = ys!i))" | 
| 1313 | apply(induct xs arbitrary: ys) | |
| 24632 | 1314 | apply force | 
| 18049 | 1315 | apply(case_tac ys) | 
| 1316 | apply simp | |
| 1317 | apply(simp add:nth_Cons split:nat.split)apply blast | |
| 1318 | done | |
| 1319 | ||
| 13142 | 1320 | lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
 | 
| 15251 | 1321 | apply (induct xs, simp, simp) | 
| 13145 | 1322 | apply safe | 
| 24632 | 1323 | apply (metis nat_case_0 nth.simps zero_less_Suc) | 
| 1324 | apply (metis less_Suc_eq_0_disj nth_Cons_Suc) | |
| 14208 | 1325 | apply (case_tac i, simp) | 
| 24632 | 1326 | apply (metis diff_Suc_Suc nat_case_Suc nth.simps zero_less_diff) | 
| 13145 | 1327 | done | 
| 13114 | 1328 | |
| 17501 | 1329 | lemma in_set_conv_nth: "(x \<in> set xs) = (\<exists>i < length xs. xs!i = x)" | 
| 1330 | by(auto simp:set_conv_nth) | |
| 1331 | ||
| 13145 | 1332 | lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)" | 
| 1333 | by (auto simp add: set_conv_nth) | |
| 13114 | 1334 | |
| 13142 | 1335 | lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs" | 
| 13145 | 1336 | by (auto simp add: set_conv_nth) | 
| 13114 | 1337 | |
| 1338 | lemma all_nth_imp_all_set: | |
| 13145 | 1339 | "[| !i < length xs. P(xs!i); x : set xs|] ==> P x" | 
| 1340 | by (auto simp add: set_conv_nth) | |
| 13114 | 1341 | |
| 1342 | lemma all_set_conv_all_nth: | |
| 13145 | 1343 | "(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))" | 
| 1344 | by (auto simp add: set_conv_nth) | |
| 13114 | 1345 | |
| 25296 | 1346 | lemma rev_nth: | 
| 1347 | "n < size xs \<Longrightarrow> rev xs ! n = xs ! (length xs - Suc n)" | |
| 1348 | proof (induct xs arbitrary: n) | |
| 1349 | case Nil thus ?case by simp | |
| 1350 | next | |
| 1351 | case (Cons x xs) | |
| 1352 | hence n: "n < Suc (length xs)" by simp | |
| 1353 | moreover | |
| 1354 |   { assume "n < length xs"
 | |
| 1355 | with n obtain n' where "length xs - n = Suc n'" | |
| 1356 | by (cases "length xs - n", auto) | |
| 1357 | moreover | |
| 1358 | then have "length xs - Suc n = n'" by simp | |
| 1359 | ultimately | |
| 1360 | have "xs ! (length xs - Suc n) = (x # xs) ! (length xs - n)" by simp | |
| 1361 | } | |
| 1362 | ultimately | |
| 1363 | show ?case by (clarsimp simp add: Cons nth_append) | |
| 1364 | qed | |
| 13114 | 1365 | |
| 31159 | 1366 | lemma Skolem_list_nth: | 
| 1367 | "(ALL i<k. EX x. P i x) = (EX xs. size xs = k & (ALL i<k. P i (xs!i)))" | |
| 1368 | (is "_ = (EX xs. ?P k xs)") | |
| 1369 | proof(induct k) | |
| 1370 | case 0 show ?case by simp | |
| 1371 | next | |
| 1372 | case (Suc k) | |
| 1373 | show ?case (is "?L = ?R" is "_ = (EX xs. ?P' xs)") | |
| 1374 | proof | |
| 1375 | assume "?R" thus "?L" using Suc by auto | |
| 1376 | next | |
| 1377 | assume "?L" | |
| 1378 | with Suc obtain x xs where "?P k xs & P k x" by (metis less_Suc_eq) | |
| 1379 | hence "?P'(xs@[x])" by(simp add:nth_append less_Suc_eq) | |
| 1380 | thus "?R" .. | |
| 1381 | qed | |
| 1382 | qed | |
| 1383 | ||
| 1384 | ||
| 15392 | 1385 | subsubsection {* @{text list_update} *}
 | 
| 13114 | 1386 | |
| 24526 | 1387 | lemma length_list_update [simp]: "length(xs[i:=x]) = length xs" | 
| 1388 | by (induct xs arbitrary: i) (auto split: nat.split) | |
| 13114 | 1389 | |
| 1390 | lemma nth_list_update: | |
| 24526 | 1391 | "i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)" | 
| 1392 | by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split) | |
| 13114 | 1393 | |
| 13142 | 1394 | lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x" | 
| 13145 | 1395 | by (simp add: nth_list_update) | 
| 13114 | 1396 | |
| 24526 | 1397 | lemma nth_list_update_neq [simp]: "i \<noteq> j ==> xs[i:=x]!j = xs!j" | 
| 1398 | by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split) | |
| 13114 | 1399 | |
| 24526 | 1400 | lemma list_update_id[simp]: "xs[i := xs!i] = xs" | 
| 1401 | by (induct xs arbitrary: i) (simp_all split:nat.splits) | |
| 1402 | ||
| 1403 | lemma list_update_beyond[simp]: "length xs \<le> i \<Longrightarrow> xs[i:=x] = xs" | |
| 1404 | apply (induct xs arbitrary: i) | |
| 17501 | 1405 | apply simp | 
| 1406 | apply (case_tac i) | |
| 1407 | apply simp_all | |
| 1408 | done | |
| 1409 | ||
| 31077 | 1410 | lemma list_update_nonempty[simp]: "xs[k:=x] = [] \<longleftrightarrow> xs=[]" | 
| 1411 | by(metis length_0_conv length_list_update) | |
| 1412 | ||
| 13114 | 1413 | lemma list_update_same_conv: | 
| 24526 | 1414 | "i < length xs ==> (xs[i := x] = xs) = (xs!i = x)" | 
| 1415 | by (induct xs arbitrary: i) (auto split: nat.split) | |
| 13114 | 1416 | |
| 14187 | 1417 | lemma list_update_append1: | 
| 24526 | 1418 | "i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys" | 
| 1419 | apply (induct xs arbitrary: i, simp) | |
| 14187 | 1420 | apply(simp split:nat.split) | 
| 1421 | done | |
| 1422 | ||
| 15868 | 1423 | lemma list_update_append: | 
| 24526 | 1424 | "(xs @ ys) [n:= x] = | 
| 15868 | 1425 | (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))" | 
| 24526 | 1426 | by (induct xs arbitrary: n) (auto split:nat.splits) | 
| 15868 | 1427 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1428 | lemma list_update_length [simp]: | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1429 | "(xs @ x # ys)[length xs := y] = (xs @ y # ys)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1430 | by (induct xs, auto) | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1431 | |
| 31264 | 1432 | lemma map_update: "map f (xs[k:= y]) = (map f xs)[k := f y]" | 
| 1433 | by(induct xs arbitrary: k)(auto split:nat.splits) | |
| 1434 | ||
| 1435 | lemma rev_update: | |
| 1436 | "k < length xs \<Longrightarrow> rev (xs[k:= y]) = (rev xs)[length xs - k - 1 := y]" | |
| 1437 | by (induct xs arbitrary: k) (auto simp: list_update_append split:nat.splits) | |
| 1438 | ||
| 13114 | 1439 | lemma update_zip: | 
| 31080 | 1440 | "(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])" | 
| 24526 | 1441 | by (induct ys arbitrary: i xy xs) (auto, case_tac xs, auto split: nat.split) | 
| 1442 | ||
| 1443 | lemma set_update_subset_insert: "set(xs[i:=x]) <= insert x (set xs)" | |
| 1444 | by (induct xs arbitrary: i) (auto split: nat.split) | |
| 13114 | 1445 | |
| 1446 | lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A" | |
| 13145 | 1447 | by (blast dest!: set_update_subset_insert [THEN subsetD]) | 
| 13114 | 1448 | |
| 24526 | 1449 | lemma set_update_memI: "n < length xs \<Longrightarrow> x \<in> set (xs[n := x])" | 
| 1450 | by (induct xs arbitrary: n) (auto split:nat.splits) | |
| 15868 | 1451 | |
| 31077 | 1452 | lemma list_update_overwrite[simp]: | 
| 24796 | 1453 | "xs [i := x, i := y] = xs [i := y]" | 
| 31077 | 1454 | apply (induct xs arbitrary: i) apply simp | 
| 1455 | apply (case_tac i, simp_all) | |
| 24796 | 1456 | done | 
| 1457 | ||
| 1458 | lemma list_update_swap: | |
| 1459 | "i \<noteq> i' \<Longrightarrow> xs [i := x, i' := x'] = xs [i' := x', i := x]" | |
| 1460 | apply (induct xs arbitrary: i i') | |
| 1461 | apply simp | |
| 1462 | apply (case_tac i, case_tac i') | |
| 1463 | apply auto | |
| 1464 | apply (case_tac i') | |
| 1465 | apply auto | |
| 1466 | done | |
| 1467 | ||
| 29827 | 1468 | lemma list_update_code [code]: | 
| 1469 | "[][i := y] = []" | |
| 1470 | "(x # xs)[0 := y] = y # xs" | |
| 1471 | "(x # xs)[Suc i := y] = x # xs[i := y]" | |
| 1472 | by simp_all | |
| 1473 | ||
| 13114 | 1474 | |
| 15392 | 1475 | subsubsection {* @{text last} and @{text butlast} *}
 | 
| 13114 | 1476 | |
| 13142 | 1477 | lemma last_snoc [simp]: "last (xs @ [x]) = x" | 
| 13145 | 1478 | by (induct xs) auto | 
| 13114 | 1479 | |
| 13142 | 1480 | lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs" | 
| 13145 | 1481 | by (induct xs) auto | 
| 13114 | 1482 | |
| 14302 | 1483 | lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x" | 
| 1484 | by(simp add:last.simps) | |
| 1485 | ||
| 1486 | lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs" | |
| 1487 | by(simp add:last.simps) | |
| 1488 | ||
| 1489 | lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)" | |
| 1490 | by (induct xs) (auto) | |
| 1491 | ||
| 1492 | lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs" | |
| 1493 | by(simp add:last_append) | |
| 1494 | ||
| 1495 | lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys" | |
| 1496 | by(simp add:last_append) | |
| 1497 | ||
| 17762 | 1498 | lemma hd_rev: "xs \<noteq> [] \<Longrightarrow> hd(rev xs) = last xs" | 
| 1499 | by(rule rev_exhaust[of xs]) simp_all | |
| 1500 | ||
| 1501 | lemma last_rev: "xs \<noteq> [] \<Longrightarrow> last(rev xs) = hd xs" | |
| 1502 | by(cases xs) simp_all | |
| 1503 | ||
| 17765 | 1504 | lemma last_in_set[simp]: "as \<noteq> [] \<Longrightarrow> last as \<in> set as" | 
| 1505 | by (induct as) auto | |
| 17762 | 1506 | |
| 13142 | 1507 | lemma length_butlast [simp]: "length (butlast xs) = length xs - 1" | 
| 13145 | 1508 | by (induct xs rule: rev_induct) auto | 
| 13114 | 1509 | |
| 1510 | lemma butlast_append: | |
| 24526 | 1511 | "butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)" | 
| 1512 | by (induct xs arbitrary: ys) auto | |
| 13114 | 1513 | |
| 13142 | 1514 | lemma append_butlast_last_id [simp]: | 
| 13145 | 1515 | "xs \<noteq> [] ==> butlast xs @ [last xs] = xs" | 
| 1516 | by (induct xs) auto | |
| 13114 | 1517 | |
| 13142 | 1518 | lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs" | 
| 13145 | 1519 | by (induct xs) (auto split: split_if_asm) | 
| 13114 | 1520 | |
| 1521 | lemma in_set_butlast_appendI: | |
| 13145 | 1522 | "x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))" | 
| 1523 | by (auto dest: in_set_butlastD simp add: butlast_append) | |
| 13114 | 1524 | |
| 24526 | 1525 | lemma last_drop[simp]: "n < length xs \<Longrightarrow> last (drop n xs) = last xs" | 
| 1526 | apply (induct xs arbitrary: n) | |
| 17501 | 1527 | apply simp | 
| 1528 | apply (auto split:nat.split) | |
| 1529 | done | |
| 1530 | ||
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1531 | lemma last_conv_nth: "xs\<noteq>[] \<Longrightarrow> last xs = xs!(length xs - 1)" | 
| 17589 | 1532 | by(induct xs)(auto simp:neq_Nil_conv) | 
| 1533 | ||
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1534 | lemma butlast_conv_take: "butlast xs = take (length xs - 1) xs" | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1535 | by (induct xs, simp, case_tac xs, simp_all) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1536 | |
| 31077 | 1537 | lemma last_list_update: | 
| 1538 | "xs \<noteq> [] \<Longrightarrow> last(xs[k:=x]) = (if k = size xs - 1 then x else last xs)" | |
| 1539 | by (auto simp: last_conv_nth) | |
| 1540 | ||
| 1541 | lemma butlast_list_update: | |
| 1542 | "butlast(xs[k:=x]) = | |
| 1543 | (if k = size xs - 1 then butlast xs else (butlast xs)[k:=x])" | |
| 1544 | apply(cases xs rule:rev_cases) | |
| 1545 | apply simp | |
| 1546 | apply(simp add:list_update_append split:nat.splits) | |
| 1547 | done | |
| 1548 | ||
| 36851 | 1549 | lemma last_map: | 
| 1550 | "xs \<noteq> [] \<Longrightarrow> last (map f xs) = f (last xs)" | |
| 1551 | by (cases xs rule: rev_cases) simp_all | |
| 1552 | ||
| 1553 | lemma map_butlast: | |
| 1554 | "map f (butlast xs) = butlast (map f xs)" | |
| 1555 | by (induct xs) simp_all | |
| 1556 | ||
| 24796 | 1557 | |
| 15392 | 1558 | subsubsection {* @{text take} and @{text drop} *}
 | 
| 13114 | 1559 | |
| 13142 | 1560 | lemma take_0 [simp]: "take 0 xs = []" | 
| 13145 | 1561 | by (induct xs) auto | 
| 13114 | 1562 | |
| 13142 | 1563 | lemma drop_0 [simp]: "drop 0 xs = xs" | 
| 13145 | 1564 | by (induct xs) auto | 
| 13114 | 1565 | |
| 13142 | 1566 | lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs" | 
| 13145 | 1567 | by simp | 
| 13114 | 1568 | |
| 13142 | 1569 | lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs" | 
| 13145 | 1570 | by simp | 
| 13114 | 1571 | |
| 13142 | 1572 | declare take_Cons [simp del] and drop_Cons [simp del] | 
| 13114 | 1573 | |
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1574 | lemma take_1_Cons [simp]: "take 1 (x # xs) = [x]" | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1575 | unfolding One_nat_def by simp | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1576 | |
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1577 | lemma drop_1_Cons [simp]: "drop 1 (x # xs) = xs" | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1578 | unfolding One_nat_def by simp | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1579 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1580 | lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1581 | by(clarsimp simp add:neq_Nil_conv) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1582 | |
| 14187 | 1583 | lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)" | 
| 1584 | by(cases xs, simp_all) | |
| 1585 | ||
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1586 | lemma take_tl: "take n (tl xs) = tl (take (Suc n) xs)" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1587 | by (induct xs arbitrary: n) simp_all | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1588 | |
| 24526 | 1589 | lemma drop_tl: "drop n (tl xs) = tl(drop n xs)" | 
| 1590 | by(induct xs arbitrary: n, simp_all add:drop_Cons drop_Suc split:nat.split) | |
| 1591 | ||
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1592 | lemma tl_take: "tl (take n xs) = take (n - 1) (tl xs)" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1593 | by (cases n, simp, cases xs, auto) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1594 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1595 | lemma tl_drop: "tl (drop n xs) = drop n (tl xs)" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1596 | by (simp only: drop_tl) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1597 | |
| 24526 | 1598 | lemma nth_via_drop: "drop n xs = y#ys \<Longrightarrow> xs!n = y" | 
| 1599 | apply (induct xs arbitrary: n, simp) | |
| 14187 | 1600 | apply(simp add:drop_Cons nth_Cons split:nat.splits) | 
| 1601 | done | |
| 1602 | ||
| 13913 | 1603 | lemma take_Suc_conv_app_nth: | 
| 24526 | 1604 | "i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]" | 
| 1605 | apply (induct xs arbitrary: i, simp) | |
| 14208 | 1606 | apply (case_tac i, auto) | 
| 13913 | 1607 | done | 
| 1608 | ||
| 14591 | 1609 | lemma drop_Suc_conv_tl: | 
| 24526 | 1610 | "i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs" | 
| 1611 | apply (induct xs arbitrary: i, simp) | |
| 14591 | 1612 | apply (case_tac i, auto) | 
| 1613 | done | |
| 1614 | ||
| 24526 | 1615 | lemma length_take [simp]: "length (take n xs) = min (length xs) n" | 
| 1616 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1617 | ||
| 1618 | lemma length_drop [simp]: "length (drop n xs) = (length xs - n)" | |
| 1619 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1620 | ||
| 1621 | lemma take_all [simp]: "length xs <= n ==> take n xs = xs" | |
| 1622 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1623 | ||
| 1624 | lemma drop_all [simp]: "length xs <= n ==> drop n xs = []" | |
| 1625 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 13114 | 1626 | |
| 13142 | 1627 | lemma take_append [simp]: | 
| 24526 | 1628 | "take n (xs @ ys) = (take n xs @ take (n - length xs) ys)" | 
| 1629 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 13114 | 1630 | |
| 13142 | 1631 | lemma drop_append [simp]: | 
| 24526 | 1632 | "drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys" | 
| 1633 | by (induct n arbitrary: xs) (auto, case_tac xs, auto) | |
| 1634 | ||
| 1635 | lemma take_take [simp]: "take n (take m xs) = take (min n m) xs" | |
| 1636 | apply (induct m arbitrary: xs n, auto) | |
| 14208 | 1637 | apply (case_tac xs, auto) | 
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
15176diff
changeset | 1638 | apply (case_tac n, auto) | 
| 13145 | 1639 | done | 
| 13114 | 1640 | |
| 24526 | 1641 | lemma drop_drop [simp]: "drop n (drop m xs) = drop (n + m) xs" | 
| 1642 | apply (induct m arbitrary: xs, auto) | |
| 14208 | 1643 | apply (case_tac xs, auto) | 
| 13145 | 1644 | done | 
| 13114 | 1645 | |
| 24526 | 1646 | lemma take_drop: "take n (drop m xs) = drop m (take (n + m) xs)" | 
| 1647 | apply (induct m arbitrary: xs n, auto) | |
| 14208 | 1648 | apply (case_tac xs, auto) | 
| 13145 | 1649 | done | 
| 13114 | 1650 | |
| 24526 | 1651 | lemma drop_take: "drop n (take m xs) = take (m-n) (drop n xs)" | 
| 1652 | apply(induct xs arbitrary: m n) | |
| 14802 | 1653 | apply simp | 
| 1654 | apply(simp add: take_Cons drop_Cons split:nat.split) | |
| 1655 | done | |
| 1656 | ||
| 24526 | 1657 | lemma append_take_drop_id [simp]: "take n xs @ drop n xs = xs" | 
| 1658 | apply (induct n arbitrary: xs, auto) | |
| 14208 | 1659 | apply (case_tac xs, auto) | 
| 13145 | 1660 | done | 
| 13114 | 1661 | |
| 24526 | 1662 | lemma take_eq_Nil[simp]: "(take n xs = []) = (n = 0 \<or> xs = [])" | 
| 1663 | apply(induct xs arbitrary: n) | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1664 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1665 | apply(simp add:take_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1666 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1667 | |
| 24526 | 1668 | lemma drop_eq_Nil[simp]: "(drop n xs = []) = (length xs <= n)" | 
| 1669 | apply(induct xs arbitrary: n) | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1670 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1671 | apply(simp add:drop_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1672 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1673 | |
| 24526 | 1674 | lemma take_map: "take n (map f xs) = map f (take n xs)" | 
| 1675 | apply (induct n arbitrary: xs, auto) | |
| 14208 | 1676 | apply (case_tac xs, auto) | 
| 13145 | 1677 | done | 
| 13114 | 1678 | |
| 24526 | 1679 | lemma drop_map: "drop n (map f xs) = map f (drop n xs)" | 
| 1680 | apply (induct n arbitrary: xs, auto) | |
| 14208 | 1681 | apply (case_tac xs, auto) | 
| 13145 | 1682 | done | 
| 13114 | 1683 | |
| 24526 | 1684 | lemma rev_take: "rev (take i xs) = drop (length xs - i) (rev xs)" | 
| 1685 | apply (induct xs arbitrary: i, auto) | |
| 14208 | 1686 | apply (case_tac i, auto) | 
| 13145 | 1687 | done | 
| 13114 | 1688 | |
| 24526 | 1689 | lemma rev_drop: "rev (drop i xs) = take (length xs - i) (rev xs)" | 
| 1690 | apply (induct xs arbitrary: i, auto) | |
| 14208 | 1691 | apply (case_tac i, auto) | 
| 13145 | 1692 | done | 
| 13114 | 1693 | |
| 24526 | 1694 | lemma nth_take [simp]: "i < n ==> (take n xs)!i = xs!i" | 
| 1695 | apply (induct xs arbitrary: i n, auto) | |
| 14208 | 1696 | apply (case_tac n, blast) | 
| 1697 | apply (case_tac i, auto) | |
| 13145 | 1698 | done | 
| 13114 | 1699 | |
| 13142 | 1700 | lemma nth_drop [simp]: | 
| 24526 | 1701 | "n + i <= length xs ==> (drop n xs)!i = xs!(n + i)" | 
| 1702 | apply (induct n arbitrary: xs i, auto) | |
| 14208 | 1703 | apply (case_tac xs, auto) | 
| 13145 | 1704 | done | 
| 3507 | 1705 | |
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1706 | lemma butlast_take: | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1707 | "n <= length xs ==> butlast (take n xs) = take (n - 1) xs" | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1708 | by (simp add: butlast_conv_take min_max.inf_absorb1 min_max.inf_absorb2) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1709 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1710 | lemma butlast_drop: "butlast (drop n xs) = drop n (butlast xs)" | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1711 | by (simp add: butlast_conv_take drop_take add_ac) | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1712 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1713 | lemma take_butlast: "n < length xs ==> take n (butlast xs) = take n xs" | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1714 | by (simp add: butlast_conv_take min_max.inf_absorb1) | 
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1715 | |
| 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1716 | lemma drop_butlast: "drop n (butlast xs) = butlast (drop n xs)" | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 1717 | by (simp add: butlast_conv_take drop_take add_ac) | 
| 26584 
46f3b89b2445
move lemmas from Word/BinBoolList.thy to List.thy
 huffman parents: 
26480diff
changeset | 1718 | |
| 18423 | 1719 | lemma hd_drop_conv_nth: "\<lbrakk> xs \<noteq> []; n < length xs \<rbrakk> \<Longrightarrow> hd(drop n xs) = xs!n" | 
| 1720 | by(simp add: hd_conv_nth) | |
| 1721 | ||
| 35248 | 1722 | lemma set_take_subset_set_take: | 
| 1723 | "m <= n \<Longrightarrow> set(take m xs) <= set(take n xs)" | |
| 1724 | by(induct xs arbitrary: m n)(auto simp:take_Cons split:nat.split) | |
| 1725 | ||
| 24526 | 1726 | lemma set_take_subset: "set(take n xs) \<subseteq> set xs" | 
| 1727 | by(induct xs arbitrary: n)(auto simp:take_Cons split:nat.split) | |
| 1728 | ||
| 1729 | lemma set_drop_subset: "set(drop n xs) \<subseteq> set xs" | |
| 1730 | by(induct xs arbitrary: n)(auto simp:drop_Cons split:nat.split) | |
| 14025 | 1731 | |
| 35248 | 1732 | lemma set_drop_subset_set_drop: | 
| 1733 | "m >= n \<Longrightarrow> set(drop m xs) <= set(drop n xs)" | |
| 1734 | apply(induct xs arbitrary: m n) | |
| 1735 | apply(auto simp:drop_Cons split:nat.split) | |
| 1736 | apply (metis set_drop_subset subset_iff) | |
| 1737 | done | |
| 1738 | ||
| 14187 | 1739 | lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs" | 
| 1740 | using set_take_subset by fast | |
| 1741 | ||
| 1742 | lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs" | |
| 1743 | using set_drop_subset by fast | |
| 1744 | ||
| 13114 | 1745 | lemma append_eq_conv_conj: | 
| 24526 | 1746 | "(xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)" | 
| 1747 | apply (induct xs arbitrary: zs, simp, clarsimp) | |
| 14208 | 1748 | apply (case_tac zs, auto) | 
| 13145 | 1749 | done | 
| 13142 | 1750 | |
| 24526 | 1751 | lemma take_add: | 
| 1752 | "i+j \<le> length(xs) \<Longrightarrow> take (i+j) xs = take i xs @ take j (drop i xs)" | |
| 1753 | apply (induct xs arbitrary: i, auto) | |
| 1754 | apply (case_tac i, simp_all) | |
| 14050 | 1755 | done | 
| 1756 | ||
| 14300 | 1757 | lemma append_eq_append_conv_if: | 
| 24526 | 1758 | "(xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) = | 
| 14300 | 1759 | (if size xs\<^isub>1 \<le> size ys\<^isub>1 | 
| 1760 | then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2 | |
| 1761 | else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)" | |
| 24526 | 1762 | apply(induct xs\<^isub>1 arbitrary: ys\<^isub>1) | 
| 14300 | 1763 | apply simp | 
| 1764 | apply(case_tac ys\<^isub>1) | |
| 1765 | apply simp_all | |
| 1766 | done | |
| 1767 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1768 | lemma take_hd_drop: | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30008diff
changeset | 1769 | "n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (Suc n) xs" | 
| 24526 | 1770 | apply(induct xs arbitrary: n) | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1771 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1772 | apply(simp add:drop_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1773 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1774 | |
| 17501 | 1775 | lemma id_take_nth_drop: | 
| 1776 | "i < length xs \<Longrightarrow> xs = take i xs @ xs!i # drop (Suc i) xs" | |
| 1777 | proof - | |
| 1778 | assume si: "i < length xs" | |
| 1779 | hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto | |
| 1780 | moreover | |
| 1781 | from si have "take (Suc i) xs = take i xs @ [xs!i]" | |
| 1782 | apply (rule_tac take_Suc_conv_app_nth) by arith | |
| 1783 | ultimately show ?thesis by auto | |
| 1784 | qed | |
| 1785 | ||
| 1786 | lemma upd_conv_take_nth_drop: | |
| 1787 | "i < length xs \<Longrightarrow> xs[i:=a] = take i xs @ a # drop (Suc i) xs" | |
| 1788 | proof - | |
| 1789 | assume i: "i < length xs" | |
| 1790 | have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]" | |
| 1791 | by(rule arg_cong[OF id_take_nth_drop[OF i]]) | |
| 1792 | also have "\<dots> = take i xs @ a # drop (Suc i) xs" | |
| 1793 | using i by (simp add: list_update_append) | |
| 1794 | finally show ?thesis . | |
| 1795 | qed | |
| 1796 | ||
| 24796 | 1797 | lemma nth_drop': | 
| 1798 | "i < length xs \<Longrightarrow> xs ! i # drop (Suc i) xs = drop i xs" | |
| 1799 | apply (induct i arbitrary: xs) | |
| 1800 | apply (simp add: neq_Nil_conv) | |
| 1801 | apply (erule exE)+ | |
| 1802 | apply simp | |
| 1803 | apply (case_tac xs) | |
| 1804 | apply simp_all | |
| 1805 | done | |
| 1806 | ||
| 13114 | 1807 | |
| 15392 | 1808 | subsubsection {* @{text takeWhile} and @{text dropWhile} *}
 | 
| 13114 | 1809 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1810 | lemma length_takeWhile_le: "length (takeWhile P xs) \<le> length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1811 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1812 | |
| 13142 | 1813 | lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs" | 
| 13145 | 1814 | by (induct xs) auto | 
| 13114 | 1815 | |
| 13142 | 1816 | lemma takeWhile_append1 [simp]: | 
| 13145 | 1817 | "[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs" | 
| 1818 | by (induct xs) auto | |
| 13114 | 1819 | |
| 13142 | 1820 | lemma takeWhile_append2 [simp]: | 
| 13145 | 1821 | "(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys" | 
| 1822 | by (induct xs) auto | |
| 13114 | 1823 | |
| 13142 | 1824 | lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs" | 
| 13145 | 1825 | by (induct xs) auto | 
| 13114 | 1826 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1827 | lemma takeWhile_nth: "j < length (takeWhile P xs) \<Longrightarrow> takeWhile P xs ! j = xs ! j" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1828 | apply (subst (3) takeWhile_dropWhile_id[symmetric]) unfolding nth_append by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1829 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1830 | lemma dropWhile_nth: "j < length (dropWhile P xs) \<Longrightarrow> dropWhile P xs ! j = xs ! (j + length (takeWhile P xs))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1831 | apply (subst (3) takeWhile_dropWhile_id[symmetric]) unfolding nth_append by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1832 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1833 | lemma length_dropWhile_le: "length (dropWhile P xs) \<le> length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1834 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1835 | |
| 13142 | 1836 | lemma dropWhile_append1 [simp]: | 
| 13145 | 1837 | "[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys" | 
| 1838 | by (induct xs) auto | |
| 13114 | 1839 | |
| 13142 | 1840 | lemma dropWhile_append2 [simp]: | 
| 13145 | 1841 | "(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys" | 
| 1842 | by (induct xs) auto | |
| 13114 | 1843 | |
| 23971 
e6d505d5b03d
renamed lemma "set_take_whileD" to "set_takeWhileD"
 krauss parents: 
23740diff
changeset | 1844 | lemma set_takeWhileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x" | 
| 13145 | 1845 | by (induct xs) (auto split: split_if_asm) | 
| 13114 | 1846 | |
| 13913 | 1847 | lemma takeWhile_eq_all_conv[simp]: | 
| 1848 | "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)" | |
| 1849 | by(induct xs, auto) | |
| 1850 | ||
| 1851 | lemma dropWhile_eq_Nil_conv[simp]: | |
| 1852 | "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)" | |
| 1853 | by(induct xs, auto) | |
| 1854 | ||
| 1855 | lemma dropWhile_eq_Cons_conv: | |
| 1856 | "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)" | |
| 1857 | by(induct xs, auto) | |
| 1858 | ||
| 31077 | 1859 | lemma distinct_takeWhile[simp]: "distinct xs ==> distinct (takeWhile P xs)" | 
| 1860 | by (induct xs) (auto dest: set_takeWhileD) | |
| 1861 | ||
| 1862 | lemma distinct_dropWhile[simp]: "distinct xs ==> distinct (dropWhile P xs)" | |
| 1863 | by (induct xs) auto | |
| 1864 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1865 | lemma takeWhile_map: "takeWhile P (map f xs) = map f (takeWhile (P \<circ> f) xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1866 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1867 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1868 | lemma dropWhile_map: "dropWhile P (map f xs) = map f (dropWhile (P \<circ> f) xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1869 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1870 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1871 | lemma takeWhile_eq_take: "takeWhile P xs = take (length (takeWhile P xs)) xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1872 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1873 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1874 | lemma dropWhile_eq_drop: "dropWhile P xs = drop (length (takeWhile P xs)) xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1875 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1876 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1877 | lemma hd_dropWhile: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1878 | "dropWhile P xs \<noteq> [] \<Longrightarrow> \<not> P (hd (dropWhile P xs))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1879 | using assms by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1880 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1881 | lemma takeWhile_eq_filter: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1882 | assumes "\<And> x. x \<in> set (dropWhile P xs) \<Longrightarrow> \<not> P x" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1883 | shows "takeWhile P xs = filter P xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1884 | proof - | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1885 | have A: "filter P xs = filter P (takeWhile P xs @ dropWhile P xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1886 | by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1887 | have B: "filter P (dropWhile P xs) = []" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1888 | unfolding filter_empty_conv using assms by blast | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1889 | have "filter P xs = takeWhile P xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1890 | unfolding A filter_append B | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1891 | by (auto simp add: filter_id_conv dest: set_takeWhileD) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1892 | thus ?thesis .. | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1893 | qed | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1894 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1895 | lemma takeWhile_eq_take_P_nth: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1896 | "\<lbrakk> \<And> i. \<lbrakk> i < n ; i < length xs \<rbrakk> \<Longrightarrow> P (xs ! i) ; n < length xs \<Longrightarrow> \<not> P (xs ! n) \<rbrakk> \<Longrightarrow> | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1897 | takeWhile P xs = take n xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1898 | proof (induct xs arbitrary: n) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1899 | case (Cons x xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1900 | thus ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1901 | proof (cases n) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1902 | case (Suc n') note this[simp] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1903 | have "P x" using Cons.prems(1)[of 0] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1904 | moreover have "takeWhile P xs = take n' xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1905 | proof (rule Cons.hyps) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1906 | case goal1 thus "P (xs ! i)" using Cons.prems(1)[of "Suc i"] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1907 | next case goal2 thus ?case using Cons by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1908 | qed | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1909 | ultimately show ?thesis by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1910 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1911 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1912 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1913 | lemma nth_length_takeWhile: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1914 | "length (takeWhile P xs) < length xs \<Longrightarrow> \<not> P (xs ! length (takeWhile P xs))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1915 | by (induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1916 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1917 | lemma length_takeWhile_less_P_nth: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1918 | assumes all: "\<And> i. i < j \<Longrightarrow> P (xs ! i)" and "j \<le> length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1919 | shows "j \<le> length (takeWhile P xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1920 | proof (rule classical) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1921 | assume "\<not> ?thesis" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1922 | hence "length (takeWhile P xs) < length xs" using assms by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1923 | thus ?thesis using all `\<not> ?thesis` nth_length_takeWhile[of P xs] by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 1924 | qed | 
| 31077 | 1925 | |
| 17501 | 1926 | text{* The following two lemmmas could be generalized to an arbitrary
 | 
| 1927 | property. *} | |
| 1928 | ||
| 1929 | lemma takeWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow> | |
| 1930 | takeWhile (\<lambda>y. y \<noteq> x) (rev xs) = rev (tl (dropWhile (\<lambda>y. y \<noteq> x) xs))" | |
| 1931 | by(induct xs) (auto simp: takeWhile_tail[where l="[]"]) | |
| 1932 | ||
| 1933 | lemma dropWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow> | |
| 1934 | dropWhile (\<lambda>y. y \<noteq> x) (rev xs) = x # rev (takeWhile (\<lambda>y. y \<noteq> x) xs)" | |
| 1935 | apply(induct xs) | |
| 1936 | apply simp | |
| 1937 | apply auto | |
| 1938 | apply(subst dropWhile_append2) | |
| 1939 | apply auto | |
| 1940 | done | |
| 1941 | ||
| 18423 | 1942 | lemma takeWhile_not_last: | 
| 1943 | "\<lbrakk> xs \<noteq> []; distinct xs\<rbrakk> \<Longrightarrow> takeWhile (\<lambda>y. y \<noteq> last xs) xs = butlast xs" | |
| 1944 | apply(induct xs) | |
| 1945 | apply simp | |
| 1946 | apply(case_tac xs) | |
| 1947 | apply(auto) | |
| 1948 | done | |
| 1949 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1950 | lemma takeWhile_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1951 | "[| l = k; !!x. x : set l ==> P x = Q x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1952 | ==> takeWhile P l = takeWhile Q k" | 
| 24349 | 1953 | by (induct k arbitrary: l) (simp_all) | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1954 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1955 | lemma dropWhile_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1956 | "[| l = k; !!x. x : set l ==> P x = Q x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1957 | ==> dropWhile P l = dropWhile Q k" | 
| 24349 | 1958 | by (induct k arbitrary: l, simp_all) | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1959 | |
| 13114 | 1960 | |
| 15392 | 1961 | subsubsection {* @{text zip} *}
 | 
| 13114 | 1962 | |
| 13142 | 1963 | lemma zip_Nil [simp]: "zip [] ys = []" | 
| 13145 | 1964 | by (induct ys) auto | 
| 13114 | 1965 | |
| 13142 | 1966 | lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys" | 
| 13145 | 1967 | by simp | 
| 13114 | 1968 | |
| 13142 | 1969 | declare zip_Cons [simp del] | 
| 13114 | 1970 | |
| 36198 | 1971 | lemma [code]: | 
| 1972 | "zip [] ys = []" | |
| 1973 | "zip xs [] = []" | |
| 1974 | "zip (x # xs) (y # ys) = (x, y) # zip xs ys" | |
| 1975 | by (fact zip_Nil zip.simps(1) zip_Cons_Cons)+ | |
| 1976 | ||
| 15281 | 1977 | lemma zip_Cons1: | 
| 1978 | "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)" | |
| 1979 | by(auto split:list.split) | |
| 1980 | ||
| 13142 | 1981 | lemma length_zip [simp]: | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 1982 | "length (zip xs ys) = min (length xs) (length ys)" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 1983 | by (induct xs ys rule:list_induct2') auto | 
| 13114 | 1984 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1985 | lemma zip_obtain_same_length: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1986 | assumes "\<And>zs ws n. length zs = length ws \<Longrightarrow> n = min (length xs) (length ys) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1987 | \<Longrightarrow> zs = take n xs \<Longrightarrow> ws = take n ys \<Longrightarrow> P (zip zs ws)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1988 | shows "P (zip xs ys)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1989 | proof - | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1990 | let ?n = "min (length xs) (length ys)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1991 | have "P (zip (take ?n xs) (take ?n ys))" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1992 | by (rule assms) simp_all | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1993 | moreover have "zip xs ys = zip (take ?n xs) (take ?n ys)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1994 | proof (induct xs arbitrary: ys) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1995 | case Nil then show ?case by simp | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1996 | next | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1997 | case (Cons x xs) then show ?case by (cases ys) simp_all | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1998 | qed | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 1999 | ultimately show ?thesis by simp | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2000 | qed | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2001 | |
| 13114 | 2002 | lemma zip_append1: | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2003 | "zip (xs @ ys) zs = | 
| 13145 | 2004 | zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)" | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2005 | by (induct xs zs rule:list_induct2') auto | 
| 13114 | 2006 | |
| 2007 | lemma zip_append2: | |
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2008 | "zip xs (ys @ zs) = | 
| 13145 | 2009 | zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs" | 
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2010 | by (induct xs ys rule:list_induct2') auto | 
| 13114 | 2011 | |
| 13142 | 2012 | lemma zip_append [simp]: | 
| 2013 | "[| length xs = length us; length ys = length vs |] ==> | |
| 13145 | 2014 | zip (xs@ys) (us@vs) = zip xs us @ zip ys vs" | 
| 2015 | by (simp add: zip_append1) | |
| 13114 | 2016 | |
| 2017 | lemma zip_rev: | |
| 14247 | 2018 | "length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)" | 
| 2019 | by (induct rule:list_induct2, simp_all) | |
| 13114 | 2020 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2021 | lemma zip_map_map: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2022 | "zip (map f xs) (map g ys) = map (\<lambda> (x, y). (f x, g y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2023 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2024 | case (Cons x xs) note Cons_x_xs = Cons.hyps | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2025 | show ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2026 | proof (cases ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2027 | case (Cons y ys') | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2028 | show ?thesis unfolding Cons using Cons_x_xs by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2029 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2030 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2031 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2032 | lemma zip_map1: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2033 | "zip (map f xs) ys = map (\<lambda>(x, y). (f x, y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2034 | using zip_map_map[of f xs "\<lambda>x. x" ys] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2035 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2036 | lemma zip_map2: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2037 | "zip xs (map f ys) = map (\<lambda>(x, y). (x, f y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2038 | using zip_map_map[of "\<lambda>x. x" xs f ys] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2039 | |
| 23096 | 2040 | lemma map_zip_map: | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2041 | "map f (zip (map g xs) ys) = map (%(x,y). f(g x, y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2042 | unfolding zip_map1 by auto | 
| 23096 | 2043 | |
| 2044 | lemma map_zip_map2: | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2045 | "map f (zip xs (map g ys)) = map (%(x,y). f(x, g y)) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2046 | unfolding zip_map2 by auto | 
| 23096 | 2047 | |
| 31080 | 2048 | text{* Courtesy of Andreas Lochbihler: *}
 | 
| 2049 | lemma zip_same_conv_map: "zip xs xs = map (\<lambda>x. (x, x)) xs" | |
| 2050 | by(induct xs) auto | |
| 2051 | ||
| 13142 | 2052 | lemma nth_zip [simp]: | 
| 24526 | 2053 | "[| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)" | 
| 2054 | apply (induct ys arbitrary: i xs, simp) | |
| 13145 | 2055 | apply (case_tac xs) | 
| 2056 | apply (simp_all add: nth.simps split: nat.split) | |
| 2057 | done | |
| 13114 | 2058 | |
| 2059 | lemma set_zip: | |
| 13145 | 2060 | "set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
 | 
| 31080 | 2061 | by(simp add: set_conv_nth cong: rev_conj_cong) | 
| 13114 | 2062 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2063 | lemma zip_same: "((a,b) \<in> set (zip xs xs)) = (a \<in> set xs \<and> a = b)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2064 | by(induct xs) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2065 | |
| 13114 | 2066 | lemma zip_update: | 
| 31080 | 2067 | "zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]" | 
| 2068 | by(rule sym, simp add: update_zip) | |
| 13114 | 2069 | |
| 13142 | 2070 | lemma zip_replicate [simp]: | 
| 24526 | 2071 | "zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)" | 
| 2072 | apply (induct i arbitrary: j, auto) | |
| 14208 | 2073 | apply (case_tac j, auto) | 
| 13145 | 2074 | done | 
| 13114 | 2075 | |
| 19487 | 2076 | lemma take_zip: | 
| 24526 | 2077 | "take n (zip xs ys) = zip (take n xs) (take n ys)" | 
| 2078 | apply (induct n arbitrary: xs ys) | |
| 19487 | 2079 | apply simp | 
| 2080 | apply (case_tac xs, simp) | |
| 2081 | apply (case_tac ys, simp_all) | |
| 2082 | done | |
| 2083 | ||
| 2084 | lemma drop_zip: | |
| 24526 | 2085 | "drop n (zip xs ys) = zip (drop n xs) (drop n ys)" | 
| 2086 | apply (induct n arbitrary: xs ys) | |
| 19487 | 2087 | apply simp | 
| 2088 | apply (case_tac xs, simp) | |
| 2089 | apply (case_tac ys, simp_all) | |
| 2090 | done | |
| 2091 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2092 | lemma zip_takeWhile_fst: "zip (takeWhile P xs) ys = takeWhile (P \<circ> fst) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2093 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2094 | case (Cons x xs) thus ?case by (cases ys) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2095 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2096 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2097 | lemma zip_takeWhile_snd: "zip xs (takeWhile P ys) = takeWhile (P \<circ> snd) (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2098 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2099 | case (Cons x xs) thus ?case by (cases ys) auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2100 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2101 | |
| 22493 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2102 | lemma set_zip_leftD: | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2103 | "(x,y)\<in> set (zip xs ys) \<Longrightarrow> x \<in> set xs" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2104 | by (induct xs ys rule:list_induct2') auto | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2105 | |
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2106 | lemma set_zip_rightD: | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2107 | "(x,y)\<in> set (zip xs ys) \<Longrightarrow> y \<in> set ys" | 
| 
db930e490fe5
added another rule for simultaneous induction, and lemmas for zip
 krauss parents: 
22422diff
changeset | 2108 | by (induct xs ys rule:list_induct2') auto | 
| 13142 | 2109 | |
| 23983 | 2110 | lemma in_set_zipE: | 
| 2111 | "(x,y) : set(zip xs ys) \<Longrightarrow> (\<lbrakk> x : set xs; y : set ys \<rbrakk> \<Longrightarrow> R) \<Longrightarrow> R" | |
| 2112 | by(blast dest: set_zip_leftD set_zip_rightD) | |
| 2113 | ||
| 29829 | 2114 | lemma zip_map_fst_snd: | 
| 2115 | "zip (map fst zs) (map snd zs) = zs" | |
| 2116 | by (induct zs) simp_all | |
| 2117 | ||
| 2118 | lemma zip_eq_conv: | |
| 2119 | "length xs = length ys \<Longrightarrow> zip xs ys = zs \<longleftrightarrow> map fst zs = xs \<and> map snd zs = ys" | |
| 2120 | by (auto simp add: zip_map_fst_snd) | |
| 2121 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2122 | lemma distinct_zipI1: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2123 | "distinct xs \<Longrightarrow> distinct (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2124 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2125 | case (Cons x xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2126 | show ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2127 | proof (cases ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2128 | case (Cons y ys') | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2129 | have "(x, y) \<notin> set (zip xs ys')" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2130 | using Cons.prems by (auto simp: set_zip) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2131 | thus ?thesis | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2132 | unfolding Cons zip_Cons_Cons distinct.simps | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2133 | using Cons.hyps Cons.prems by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2134 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2135 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2136 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2137 | lemma distinct_zipI2: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2138 | "distinct xs \<Longrightarrow> distinct (zip xs ys)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2139 | proof (induct xs arbitrary: ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2140 | case (Cons x xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2141 | show ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2142 | proof (cases ys) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2143 | case (Cons y ys') | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2144 | have "(x, y) \<notin> set (zip xs ys')" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2145 | using Cons.prems by (auto simp: set_zip) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2146 | thus ?thesis | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2147 | unfolding Cons zip_Cons_Cons distinct.simps | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2148 | using Cons.hyps Cons.prems by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2149 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2150 | qed simp | 
| 29829 | 2151 | |
| 35115 | 2152 | |
| 15392 | 2153 | subsubsection {* @{text list_all2} *}
 | 
| 13114 | 2154 | |
| 14316 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 2155 | lemma list_all2_lengthD [intro?]: | 
| 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 2156 | "list_all2 P xs ys ==> length xs = length ys" | 
| 24349 | 2157 | by (simp add: list_all2_def) | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2158 | |
| 19787 | 2159 | lemma list_all2_Nil [iff, code]: "list_all2 P [] ys = (ys = [])" | 
| 24349 | 2160 | by (simp add: list_all2_def) | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2161 | |
| 19787 | 2162 | lemma list_all2_Nil2 [iff, code]: "list_all2 P xs [] = (xs = [])" | 
| 24349 | 2163 | by (simp add: list_all2_def) | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2164 | |
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2165 | lemma list_all2_Cons [iff, code]: | 
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2166 | "list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)" | 
| 24349 | 2167 | by (auto simp add: list_all2_def) | 
| 13114 | 2168 | |
| 2169 | lemma list_all2_Cons1: | |
| 13145 | 2170 | "list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)" | 
| 2171 | by (cases ys) auto | |
| 13114 | 2172 | |
| 2173 | lemma list_all2_Cons2: | |
| 13145 | 2174 | "list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)" | 
| 2175 | by (cases xs) auto | |
| 13114 | 2176 | |
| 13142 | 2177 | lemma list_all2_rev [iff]: | 
| 13145 | 2178 | "list_all2 P (rev xs) (rev ys) = list_all2 P xs ys" | 
| 2179 | by (simp add: list_all2_def zip_rev cong: conj_cong) | |
| 13114 | 2180 | |
| 13863 | 2181 | lemma list_all2_rev1: | 
| 2182 | "list_all2 P (rev xs) ys = list_all2 P xs (rev ys)" | |
| 2183 | by (subst list_all2_rev [symmetric]) simp | |
| 2184 | ||
| 13114 | 2185 | lemma list_all2_append1: | 
| 13145 | 2186 | "list_all2 P (xs @ ys) zs = | 
| 2187 | (EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and> | |
| 2188 | list_all2 P xs us \<and> list_all2 P ys vs)" | |
| 2189 | apply (simp add: list_all2_def zip_append1) | |
| 2190 | apply (rule iffI) | |
| 2191 | apply (rule_tac x = "take (length xs) zs" in exI) | |
| 2192 | apply (rule_tac x = "drop (length xs) zs" in exI) | |
| 14208 | 2193 | apply (force split: nat_diff_split simp add: min_def, clarify) | 
| 13145 | 2194 | apply (simp add: ball_Un) | 
| 2195 | done | |
| 13114 | 2196 | |
| 2197 | lemma list_all2_append2: | |
| 13145 | 2198 | "list_all2 P xs (ys @ zs) = | 
| 2199 | (EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and> | |
| 2200 | list_all2 P us ys \<and> list_all2 P vs zs)" | |
| 2201 | apply (simp add: list_all2_def zip_append2) | |
| 2202 | apply (rule iffI) | |
| 2203 | apply (rule_tac x = "take (length ys) xs" in exI) | |
| 2204 | apply (rule_tac x = "drop (length ys) xs" in exI) | |
| 14208 | 2205 | apply (force split: nat_diff_split simp add: min_def, clarify) | 
| 13145 | 2206 | apply (simp add: ball_Un) | 
| 2207 | done | |
| 13114 | 2208 | |
| 13863 | 2209 | lemma list_all2_append: | 
| 14247 | 2210 | "length xs = length ys \<Longrightarrow> | 
| 2211 | list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)" | |
| 2212 | by (induct rule:list_induct2, simp_all) | |
| 13863 | 2213 | |
| 2214 | lemma list_all2_appendI [intro?, trans]: | |
| 2215 | "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)" | |
| 24349 | 2216 | by (simp add: list_all2_append list_all2_lengthD) | 
| 13863 | 2217 | |
| 13114 | 2218 | lemma list_all2_conv_all_nth: | 
| 13145 | 2219 | "list_all2 P xs ys = | 
| 2220 | (length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))" | |
| 2221 | by (force simp add: list_all2_def set_zip) | |
| 13114 | 2222 | |
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2223 | lemma list_all2_trans: | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2224 | assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2225 | shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2226 | (is "!!bs cs. PROP ?Q as bs cs") | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2227 | proof (induct as) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2228 | fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2229 | show "!!cs. PROP ?Q (x # xs) bs cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2230 | proof (induct bs) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2231 | fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2232 | show "PROP ?Q (x # xs) (y # ys) cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2233 | by (induct cs) (auto intro: tr I1 I2) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2234 | qed simp | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2235 | qed simp | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2236 | |
| 13863 | 2237 | lemma list_all2_all_nthI [intro?]: | 
| 2238 | "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b" | |
| 24349 | 2239 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2240 | |
| 14395 | 2241 | lemma list_all2I: | 
| 2242 | "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b" | |
| 24349 | 2243 | by (simp add: list_all2_def) | 
| 14395 | 2244 | |
| 14328 | 2245 | lemma list_all2_nthD: | 
| 13863 | 2246 | "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)" | 
| 24349 | 2247 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2248 | |
| 14302 | 2249 | lemma list_all2_nthD2: | 
| 2250 | "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)" | |
| 24349 | 2251 | by (frule list_all2_lengthD) (auto intro: list_all2_nthD) | 
| 14302 | 2252 | |
| 13863 | 2253 | lemma list_all2_map1: | 
| 2254 | "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs" | |
| 24349 | 2255 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2256 | |
| 2257 | lemma list_all2_map2: | |
| 2258 | "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs" | |
| 24349 | 2259 | by (auto simp add: list_all2_conv_all_nth) | 
| 13863 | 2260 | |
| 14316 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 2261 | lemma list_all2_refl [intro?]: | 
| 13863 | 2262 | "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs" | 
| 24349 | 2263 | by (simp add: list_all2_conv_all_nth) | 
| 13863 | 2264 | |
| 2265 | lemma list_all2_update_cong: | |
| 2266 | "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])" | |
| 24349 | 2267 | by (simp add: list_all2_conv_all_nth nth_list_update) | 
| 13863 | 2268 | |
| 2269 | lemma list_all2_update_cong2: | |
| 2270 | "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])" | |
| 24349 | 2271 | by (simp add: list_all2_lengthD list_all2_update_cong) | 
| 13863 | 2272 | |
| 14302 | 2273 | lemma list_all2_takeI [simp,intro?]: | 
| 24526 | 2274 | "list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)" | 
| 2275 | apply (induct xs arbitrary: n ys) | |
| 2276 | apply simp | |
| 2277 | apply (clarsimp simp add: list_all2_Cons1) | |
| 2278 | apply (case_tac n) | |
| 2279 | apply auto | |
| 2280 | done | |
| 14302 | 2281 | |
| 2282 | lemma list_all2_dropI [simp,intro?]: | |
| 24526 | 2283 | "list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)" | 
| 2284 | apply (induct as arbitrary: n bs, simp) | |
| 2285 | apply (clarsimp simp add: list_all2_Cons1) | |
| 2286 | apply (case_tac n, simp, simp) | |
| 2287 | done | |
| 13863 | 2288 | |
| 14327 | 2289 | lemma list_all2_mono [intro?]: | 
| 24526 | 2290 | "list_all2 P xs ys \<Longrightarrow> (\<And>xs ys. P xs ys \<Longrightarrow> Q xs ys) \<Longrightarrow> list_all2 Q xs ys" | 
| 2291 | apply (induct xs arbitrary: ys, simp) | |
| 2292 | apply (case_tac ys, auto) | |
| 2293 | done | |
| 13863 | 2294 | |
| 22551 | 2295 | lemma list_all2_eq: | 
| 2296 | "xs = ys \<longleftrightarrow> list_all2 (op =) xs ys" | |
| 24349 | 2297 | by (induct xs ys rule: list_induct2') auto | 
| 22551 | 2298 | |
| 13142 | 2299 | |
| 15392 | 2300 | subsubsection {* @{text foldl} and @{text foldr} *}
 | 
| 13142 | 2301 | |
| 2302 | lemma foldl_append [simp]: | |
| 24526 | 2303 | "foldl f a (xs @ ys) = foldl f (foldl f a xs) ys" | 
| 2304 | by (induct xs arbitrary: a) auto | |
| 13142 | 2305 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2306 | lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2307 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2308 | |
| 23096 | 2309 | lemma foldr_map: "foldr g (map f xs) a = foldr (g o f) xs a" | 
| 2310 | by(induct xs) simp_all | |
| 2311 | ||
| 24449 | 2312 | text{* For efficient code generation: avoid intermediate list. *}
 | 
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31930diff
changeset | 2313 | lemma foldl_map[code_unfold]: | 
| 24449 | 2314 | "foldl g a (map f xs) = foldl (%a x. g a (f x)) a xs" | 
| 23096 | 2315 | by(induct xs arbitrary:a) simp_all | 
| 2316 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2317 | lemma foldl_apply: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2318 | assumes "\<And>x. x \<in> set xs \<Longrightarrow> f x \<circ> h = h \<circ> g x" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2319 | shows "foldl (\<lambda>s x. f x s) (h s) xs = h (foldl (\<lambda>s x. g x s) s xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2320 | by (rule sym, insert assms, induct xs arbitrary: s) (simp_all add: expand_fun_eq) | 
| 31930 | 2321 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 2322 | lemma foldl_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2323 | "[| a = b; l = k; !!a x. x : set l ==> f a x = g a x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2324 | ==> foldl f a l = foldl g b k" | 
| 24349 | 2325 | by (induct k arbitrary: a b l) simp_all | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2326 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 2327 | lemma foldr_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2328 | "[| a = b; l = k; !!a x. x : set l ==> f x a = g x a |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2329 | ==> foldr f l a = foldr g k b" | 
| 24349 | 2330 | by (induct k arbitrary: a b l) simp_all | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 2331 | |
| 35195 | 2332 | lemma foldl_fun_comm: | 
| 2333 | assumes "\<And>x y s. f (f s x) y = f (f s y) x" | |
| 2334 | shows "f (foldl f s xs) x = foldl f (f s x) xs" | |
| 2335 | by (induct xs arbitrary: s) | |
| 2336 | (simp_all add: assms) | |
| 2337 | ||
| 24449 | 2338 | lemma (in semigroup_add) foldl_assoc: | 
| 25062 | 2339 | shows "foldl op+ (x+y) zs = x + (foldl op+ y zs)" | 
| 24449 | 2340 | by (induct zs arbitrary: y) (simp_all add:add_assoc) | 
| 2341 | ||
| 2342 | lemma (in monoid_add) foldl_absorb0: | |
| 25062 | 2343 | shows "x + (foldl op+ 0 zs) = foldl op+ x zs" | 
| 24449 | 2344 | by (induct zs) (simp_all add:foldl_assoc) | 
| 2345 | ||
| 35195 | 2346 | lemma foldl_rev: | 
| 2347 | assumes "\<And>x y s. f (f s x) y = f (f s y) x" | |
| 2348 | shows "foldl f s (rev xs) = foldl f s xs" | |
| 2349 | proof (induct xs arbitrary: s) | |
| 2350 | case Nil then show ?case by simp | |
| 2351 | next | |
| 2352 | case (Cons x xs) with assms show ?case by (simp add: foldl_fun_comm) | |
| 2353 | qed | |
| 2354 | ||
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2355 | lemma rev_foldl_cons [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2356 | "rev xs = foldl (\<lambda>xs x. x # xs) [] xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2357 | proof (induct xs) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2358 | case Nil then show ?case by simp | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2359 | next | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2360 | case Cons | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2361 |   {
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2362 | fix x xs ys | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2363 | have "foldl (\<lambda>xs x. x # xs) ys xs @ [x] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2364 | = foldl (\<lambda>xs x. x # xs) (ys @ [x]) xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2365 | by (induct xs arbitrary: ys) auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2366 | } | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2367 | note aux = this | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2368 | show ?case by (induct xs) (auto simp add: Cons aux) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2369 | qed | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2370 | |
| 24449 | 2371 | |
| 23096 | 2372 | text{* The ``First Duality Theorem'' in Bird \& Wadler: *}
 | 
| 2373 | ||
| 2374 | lemma foldl_foldr1_lemma: | |
| 2375 | "foldl op + a xs = a + foldr op + xs (0\<Colon>'a::monoid_add)" | |
| 2376 | by (induct xs arbitrary: a) (auto simp:add_assoc) | |
| 2377 | ||
| 2378 | corollary foldl_foldr1: | |
| 2379 | "foldl op + 0 xs = foldr op + xs (0\<Colon>'a::monoid_add)" | |
| 2380 | by (simp add:foldl_foldr1_lemma) | |
| 2381 | ||
| 2382 | ||
| 2383 | text{* The ``Third Duality Theorem'' in Bird \& Wadler: *}
 | |
| 2384 | ||
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2385 | lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2386 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2387 | |
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2388 | lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2389 | by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"]) | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 2390 | |
| 25062 | 2391 | lemma (in ab_semigroup_add) foldr_conv_foldl: "foldr op + xs a = foldl op + a xs" | 
| 24471 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2392 | by (induct xs, auto simp add: foldl_assoc add_commute) | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2393 | |
| 13142 | 2394 | text {*
 | 
| 13145 | 2395 | Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
 | 
| 2396 | difficult to use because it requires an additional transitivity step. | |
| 13142 | 2397 | *} | 
| 2398 | ||
| 24526 | 2399 | lemma start_le_sum: "(m::nat) <= n ==> m <= foldl (op +) n ns" | 
| 2400 | by (induct ns arbitrary: n) auto | |
| 2401 | ||
| 2402 | lemma elem_le_sum: "(n::nat) : set ns ==> n <= foldl (op +) 0 ns" | |
| 13145 | 2403 | by (force intro: start_le_sum simp add: in_set_conv_decomp) | 
| 13142 | 2404 | |
| 2405 | lemma sum_eq_0_conv [iff]: | |
| 24526 | 2406 | "(foldl (op +) (m::nat) ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))" | 
| 2407 | by (induct ns arbitrary: m) auto | |
| 13114 | 2408 | |
| 24471 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2409 | lemma foldr_invariant: | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2410 | "\<lbrakk>Q x ; \<forall> x\<in> set xs. P x; \<forall> x y. P x \<and> Q y \<longrightarrow> Q (f x y) \<rbrakk> \<Longrightarrow> Q (foldr f xs x)" | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2411 | by (induct xs, simp_all) | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2412 | |
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2413 | lemma foldl_invariant: | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2414 | "\<lbrakk>Q x ; \<forall> x\<in> set xs. P x; \<forall> x y. P x \<and> Q y \<longrightarrow> Q (f y x) \<rbrakk> \<Longrightarrow> Q (foldl f x xs)" | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2415 | by (induct xs arbitrary: x, simp_all) | 
| 
d7cf53c1085f
removed unused theorems ; added lifting properties for foldr and foldl
 chaieb parents: 
24461diff
changeset | 2416 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2417 | lemma foldl_weak_invariant: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2418 | assumes "P s" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2419 | and "\<And>s x. x \<in> set xs \<Longrightarrow> P s \<Longrightarrow> P (f s x)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2420 | shows "P (foldl f s xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2421 | using assms by (induct xs arbitrary: s) simp_all | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2422 | |
| 31455 | 2423 | text {* @{const foldl} and @{const concat} *}
 | 
| 24449 | 2424 | |
| 2425 | lemma foldl_conv_concat: | |
| 29782 | 2426 | "foldl (op @) xs xss = xs @ concat xss" | 
| 2427 | proof (induct xss arbitrary: xs) | |
| 2428 | case Nil show ?case by simp | |
| 2429 | next | |
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35217diff
changeset | 2430 | interpret monoid_add "op @" "[]" proof qed simp_all | 
| 29782 | 2431 | case Cons then show ?case by (simp add: foldl_absorb0) | 
| 2432 | qed | |
| 2433 | ||
| 2434 | lemma concat_conv_foldl: "concat xss = foldl (op @) [] xss" | |
| 2435 | by (simp add: foldl_conv_concat) | |
| 2436 | ||
| 31455 | 2437 | text {* @{const Finite_Set.fold} and @{const foldl} *}
 | 
| 2438 | ||
| 35195 | 2439 | lemma (in fun_left_comm) fold_set_remdups: | 
| 2440 | "fold f y (set xs) = foldl (\<lambda>y x. f x y) y (remdups xs)" | |
| 2441 | by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm insert_absorb) | |
| 2442 | ||
| 31455 | 2443 | lemma (in fun_left_comm_idem) fold_set: | 
| 2444 | "fold f y (set xs) = foldl (\<lambda>y x. f x y) y xs" | |
| 2445 | by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm) | |
| 2446 | ||
| 32681 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2447 | lemma (in ab_semigroup_idem_mult) fold1_set: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2448 | assumes "xs \<noteq> []" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2449 | shows "fold1 times (set xs) = foldl times (hd xs) (tl xs)" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2450 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2451 | interpret fun_left_comm_idem times by (fact fun_left_comm_idem) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2452 | from assms obtain y ys where xs: "xs = y # ys" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2453 | by (cases xs) auto | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2454 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2455 |   proof (cases "set ys = {}")
 | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2456 | case True with xs show ?thesis by simp | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2457 | next | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2458 | case False | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2459 | then have "fold1 times (insert y (set ys)) = fold times y (set ys)" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2460 | by (simp only: finite_set fold1_eq_fold_idem) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2461 | with xs show ?thesis by (simp add: fold_set mult_commute) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2462 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2463 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2464 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2465 | lemma (in lattice) Inf_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2466 | "Inf_fin (set (x # xs)) = foldl inf x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2467 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2468 | interpret ab_semigroup_idem_mult "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2469 | by (fact ab_semigroup_idem_mult_inf) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2470 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2471 | by (simp add: Inf_fin_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2472 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2473 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2474 | lemma (in lattice) Sup_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2475 | "Sup_fin (set (x # xs)) = foldl sup x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2476 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2477 | interpret ab_semigroup_idem_mult "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2478 | by (fact ab_semigroup_idem_mult_sup) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2479 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2480 | by (simp add: Sup_fin_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2481 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2482 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2483 | lemma (in linorder) Min_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2484 | "Min (set (x # xs)) = foldl min x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2485 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2486 | interpret ab_semigroup_idem_mult "min :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2487 | by (fact ab_semigroup_idem_mult_min) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2488 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2489 | by (simp add: Min_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2490 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2491 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2492 | lemma (in linorder) Max_fin_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2493 | "Max (set (x # xs)) = foldl max x xs" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2494 | proof - | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2495 | interpret ab_semigroup_idem_mult "max :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2496 | by (fact ab_semigroup_idem_mult_max) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2497 | show ?thesis | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2498 | by (simp add: Max_def fold1_set del: set.simps) | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2499 | qed | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2500 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2501 | lemma (in complete_lattice) Inf_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2502 | "Inf (set xs) = foldl inf top xs" | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2503 | proof - | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2504 | interpret fun_left_comm_idem "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2505 | by (fact fun_left_comm_idem_inf) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2506 | show ?thesis by (simp add: Inf_fold_inf fold_set inf_commute) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2507 | qed | 
| 32681 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2508 | |
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2509 | lemma (in complete_lattice) Sup_set_fold [code_unfold]: | 
| 
adeac3cbb659
lemma relating fold1 and foldl; code_unfold rules for Inf_fin, Sup_fin, Min, Max, Inf, Sup
 haftmann parents: 
32422diff
changeset | 2510 | "Sup (set xs) = foldl sup bot xs" | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2511 | proof - | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2512 | interpret fun_left_comm_idem "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2513 | by (fact fun_left_comm_idem_sup) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2514 | show ?thesis by (simp add: Sup_fold_sup fold_set sup_commute) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2515 | qed | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2516 | |
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2517 | lemma (in complete_lattice) INFI_set_fold: | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2518 | "INFI (set xs) f = foldl (\<lambda>y x. inf (f x) y) top xs" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2519 | unfolding INFI_def set_map [symmetric] Inf_set_fold foldl_map | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2520 | by (simp add: inf_commute) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2521 | |
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2522 | lemma (in complete_lattice) SUPR_set_fold: | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2523 | "SUPR (set xs) f = foldl (\<lambda>y x. sup (f x) y) bot xs" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2524 | unfolding SUPR_def set_map [symmetric] Sup_set_fold foldl_map | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33972diff
changeset | 2525 | by (simp add: sup_commute) | 
| 31455 | 2526 | |
| 35115 | 2527 | |
| 24645 | 2528 | subsubsection {* @{text upt} *}
 | 
| 13114 | 2529 | |
| 17090 | 2530 | lemma upt_rec[code]: "[i..<j] = (if i<j then i#[Suc i..<j] else [])" | 
| 2531 | -- {* simp does not terminate! *}
 | |
| 13145 | 2532 | by (induct j) auto | 
| 13142 | 2533 | |
| 32005 | 2534 | lemmas upt_rec_number_of[simp] = upt_rec[of "number_of m" "number_of n", standard] | 
| 2535 | ||
| 15425 | 2536 | lemma upt_conv_Nil [simp]: "j <= i ==> [i..<j] = []" | 
| 13145 | 2537 | by (subst upt_rec) simp | 
| 13114 | 2538 | |
| 15425 | 2539 | lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j <= i)" | 
| 15281 | 2540 | by(induct j)simp_all | 
| 2541 | ||
| 2542 | lemma upt_eq_Cons_conv: | |
| 24526 | 2543 | "([i..<j] = x#xs) = (i < j & i = x & [i+1..<j] = xs)" | 
| 2544 | apply(induct j arbitrary: x xs) | |
| 15281 | 2545 | apply simp | 
| 2546 | apply(clarsimp simp add: append_eq_Cons_conv) | |
| 2547 | apply arith | |
| 2548 | done | |
| 2549 | ||
| 15425 | 2550 | lemma upt_Suc_append: "i <= j ==> [i..<(Suc j)] = [i..<j]@[j]" | 
| 13145 | 2551 | -- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
 | 
| 2552 | by simp | |
| 13114 | 2553 | |
| 15425 | 2554 | lemma upt_conv_Cons: "i < j ==> [i..<j] = i # [Suc i..<j]" | 
| 26734 | 2555 | by (simp add: upt_rec) | 
| 13114 | 2556 | |
| 15425 | 2557 | lemma upt_add_eq_append: "i<=j ==> [i..<j+k] = [i..<j]@[j..<j+k]" | 
| 13145 | 2558 | -- {* LOOPS as a simprule, since @{text "j <= j"}. *}
 | 
| 2559 | by (induct k) auto | |
| 13114 | 2560 | |
| 15425 | 2561 | lemma length_upt [simp]: "length [i..<j] = j - i" | 
| 13145 | 2562 | by (induct j) (auto simp add: Suc_diff_le) | 
| 13114 | 2563 | |
| 15425 | 2564 | lemma nth_upt [simp]: "i + k < j ==> [i..<j] ! k = i + k" | 
| 13145 | 2565 | apply (induct j) | 
| 2566 | apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split) | |
| 2567 | done | |
| 13114 | 2568 | |
| 17906 | 2569 | |
| 2570 | lemma hd_upt[simp]: "i < j \<Longrightarrow> hd[i..<j] = i" | |
| 2571 | by(simp add:upt_conv_Cons) | |
| 2572 | ||
| 2573 | lemma last_upt[simp]: "i < j \<Longrightarrow> last[i..<j] = j - 1" | |
| 2574 | apply(cases j) | |
| 2575 | apply simp | |
| 2576 | by(simp add:upt_Suc_append) | |
| 2577 | ||
| 24526 | 2578 | lemma take_upt [simp]: "i+m <= n ==> take m [i..<n] = [i..<i+m]" | 
| 2579 | apply (induct m arbitrary: i, simp) | |
| 13145 | 2580 | apply (subst upt_rec) | 
| 2581 | apply (rule sym) | |
| 2582 | apply (subst upt_rec) | |
| 2583 | apply (simp del: upt.simps) | |
| 2584 | done | |
| 3507 | 2585 | |
| 17501 | 2586 | lemma drop_upt[simp]: "drop m [i..<j] = [i+m..<j]" | 
| 2587 | apply(induct j) | |
| 2588 | apply auto | |
| 2589 | done | |
| 2590 | ||
| 24645 | 2591 | lemma map_Suc_upt: "map Suc [m..<n] = [Suc m..<Suc n]" | 
| 13145 | 2592 | by (induct n) auto | 
| 13114 | 2593 | |
| 24526 | 2594 | lemma nth_map_upt: "i < n-m ==> (map f [m..<n]) ! i = f(m+i)" | 
| 2595 | apply (induct n m arbitrary: i rule: diff_induct) | |
| 13145 | 2596 | prefer 3 apply (subst map_Suc_upt[symmetric]) | 
| 2597 | apply (auto simp add: less_diff_conv nth_upt) | |
| 2598 | done | |
| 13114 | 2599 | |
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2600 | lemma nth_take_lemma: | 
| 24526 | 2601 | "k <= length xs ==> k <= length ys ==> | 
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 2602 | (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys" | 
| 24526 | 2603 | apply (atomize, induct k arbitrary: xs ys) | 
| 14208 | 2604 | apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify) | 
| 13145 | 2605 | txt {* Both lists must be non-empty *}
 | 
| 14208 | 2606 | apply (case_tac xs, simp) | 
| 2607 | apply (case_tac ys, clarify) | |
| 13145 | 2608 | apply (simp (no_asm_use)) | 
| 2609 | apply clarify | |
| 2610 | txt {* prenexing's needed, not miniscoping *}
 | |
| 2611 | apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps) | |
| 2612 | apply blast | |
| 2613 | done | |
| 13114 | 2614 | |
| 2615 | lemma nth_equalityI: | |
| 2616 | "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys" | |
| 13145 | 2617 | apply (frule nth_take_lemma [OF le_refl eq_imp_le]) | 
| 2618 | apply (simp_all add: take_all) | |
| 2619 | done | |
| 13142 | 2620 | |
| 24796 | 2621 | lemma map_nth: | 
| 2622 | "map (\<lambda>i. xs ! i) [0..<length xs] = xs" | |
| 2623 | by (rule nth_equalityI, auto) | |
| 2624 | ||
| 13863 | 2625 | (* needs nth_equalityI *) | 
| 2626 | lemma list_all2_antisym: | |
| 2627 | "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> | |
| 2628 | \<Longrightarrow> xs = ys" | |
| 2629 | apply (simp add: list_all2_conv_all_nth) | |
| 14208 | 2630 | apply (rule nth_equalityI, blast, simp) | 
| 13863 | 2631 | done | 
| 2632 | ||
| 13142 | 2633 | lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys" | 
| 13145 | 2634 | -- {* The famous take-lemma. *}
 | 
| 2635 | apply (drule_tac x = "max (length xs) (length ys)" in spec) | |
| 2636 | apply (simp add: le_max_iff_disj take_all) | |
| 2637 | done | |
| 13142 | 2638 | |
| 2639 | ||
| 15302 | 2640 | lemma take_Cons': | 
| 2641 | "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)" | |
| 2642 | by (cases n) simp_all | |
| 2643 | ||
| 2644 | lemma drop_Cons': | |
| 2645 | "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)" | |
| 2646 | by (cases n) simp_all | |
| 2647 | ||
| 2648 | lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))" | |
| 2649 | by (cases n) simp_all | |
| 2650 | ||
| 18622 | 2651 | lemmas take_Cons_number_of = take_Cons'[of "number_of v",standard] | 
| 2652 | lemmas drop_Cons_number_of = drop_Cons'[of "number_of v",standard] | |
| 2653 | lemmas nth_Cons_number_of = nth_Cons'[of _ _ "number_of v",standard] | |
| 2654 | ||
| 2655 | declare take_Cons_number_of [simp] | |
| 2656 | drop_Cons_number_of [simp] | |
| 2657 | nth_Cons_number_of [simp] | |
| 15302 | 2658 | |
| 2659 | ||
| 32415 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2660 | subsubsection {* @{text upto}: interval-list on @{typ int} *}
 | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2661 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2662 | (* FIXME make upto tail recursive? *) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2663 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2664 | function upto :: "int \<Rightarrow> int \<Rightarrow> int list" ("(1[_../_])") where
 | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2665 | "upto i j = (if i \<le> j then i # [i+1..j] else [])" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2666 | by auto | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2667 | termination | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2668 | by(relation "measure(%(i::int,j). nat(j - i + 1))") auto | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2669 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2670 | declare upto.simps[code, simp del] | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2671 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2672 | lemmas upto_rec_number_of[simp] = | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2673 | upto.simps[of "number_of m" "number_of n", standard] | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2674 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2675 | lemma upto_empty[simp]: "j < i \<Longrightarrow> [i..j] = []" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2676 | by(simp add: upto.simps) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2677 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2678 | lemma set_upto[simp]: "set[i..j] = {i..j}"
 | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2679 | apply(induct i j rule:upto.induct) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2680 | apply(simp add: upto.simps simp_from_to) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2681 | done | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2682 | |
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2683 | |
| 15392 | 2684 | subsubsection {* @{text "distinct"} and @{text remdups} *}
 | 
| 13142 | 2685 | |
| 2686 | lemma distinct_append [simp]: | |
| 13145 | 2687 | "distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
 | 
| 2688 | by (induct xs) auto | |
| 13142 | 2689 | |
| 15305 | 2690 | lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs" | 
| 2691 | by(induct xs) auto | |
| 2692 | ||
| 13142 | 2693 | lemma set_remdups [simp]: "set (remdups xs) = set xs" | 
| 13145 | 2694 | by (induct xs) (auto simp add: insert_absorb) | 
| 13142 | 2695 | |
| 2696 | lemma distinct_remdups [iff]: "distinct (remdups xs)" | |
| 13145 | 2697 | by (induct xs) auto | 
| 13142 | 2698 | |
| 25287 | 2699 | lemma distinct_remdups_id: "distinct xs ==> remdups xs = xs" | 
| 2700 | by (induct xs, auto) | |
| 2701 | ||
| 26734 | 2702 | lemma remdups_id_iff_distinct [simp]: "remdups xs = xs \<longleftrightarrow> distinct xs" | 
| 2703 | by (metis distinct_remdups distinct_remdups_id) | |
| 25287 | 2704 | |
| 24566 | 2705 | lemma finite_distinct_list: "finite A \<Longrightarrow> EX xs. set xs = A & distinct xs" | 
| 24632 | 2706 | by (metis distinct_remdups finite_list set_remdups) | 
| 24566 | 2707 | |
| 15072 | 2708 | lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])" | 
| 24349 | 2709 | by (induct x, auto) | 
| 15072 | 2710 | |
| 2711 | lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])" | |
| 24349 | 2712 | by (induct x, auto) | 
| 15072 | 2713 | |
| 15245 | 2714 | lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs" | 
| 2715 | by (induct xs) auto | |
| 2716 | ||
| 2717 | lemma length_remdups_eq[iff]: | |
| 2718 | "(length (remdups xs) = length xs) = (remdups xs = xs)" | |
| 2719 | apply(induct xs) | |
| 2720 | apply auto | |
| 2721 | apply(subgoal_tac "length (remdups xs) <= length xs") | |
| 2722 | apply arith | |
| 2723 | apply(rule length_remdups_leq) | |
| 2724 | done | |
| 2725 | ||
| 33945 | 2726 | lemma remdups_filter: "remdups(filter P xs) = filter P (remdups xs)" | 
| 2727 | apply(induct xs) | |
| 2728 | apply auto | |
| 2729 | done | |
| 18490 | 2730 | |
| 2731 | lemma distinct_map: | |
| 2732 | "distinct(map f xs) = (distinct xs & inj_on f (set xs))" | |
| 2733 | by (induct xs) auto | |
| 2734 | ||
| 2735 | ||
| 13142 | 2736 | lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)" | 
| 13145 | 2737 | by (induct xs) auto | 
| 13114 | 2738 | |
| 17501 | 2739 | lemma distinct_upt[simp]: "distinct[i..<j]" | 
| 2740 | by (induct j) auto | |
| 2741 | ||
| 32415 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2742 | lemma distinct_upto[simp]: "distinct[i..j]" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2743 | apply(induct i j rule:upto.induct) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2744 | apply(subst upto.simps) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2745 | apply(simp) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2746 | done | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 2747 | |
| 24526 | 2748 | lemma distinct_take[simp]: "distinct xs \<Longrightarrow> distinct (take i xs)" | 
| 2749 | apply(induct xs arbitrary: i) | |
| 17501 | 2750 | apply simp | 
| 2751 | apply (case_tac i) | |
| 2752 | apply simp_all | |
| 2753 | apply(blast dest:in_set_takeD) | |
| 2754 | done | |
| 2755 | ||
| 24526 | 2756 | lemma distinct_drop[simp]: "distinct xs \<Longrightarrow> distinct (drop i xs)" | 
| 2757 | apply(induct xs arbitrary: i) | |
| 17501 | 2758 | apply simp | 
| 2759 | apply (case_tac i) | |
| 2760 | apply simp_all | |
| 2761 | done | |
| 2762 | ||
| 2763 | lemma distinct_list_update: | |
| 2764 | assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
 | |
| 2765 | shows "distinct (xs[i:=a])" | |
| 2766 | proof (cases "i < length xs") | |
| 2767 | case True | |
| 2768 |   with a have "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
 | |
| 2769 | apply (drule_tac id_take_nth_drop) by simp | |
| 2770 | with d True show ?thesis | |
| 2771 | apply (simp add: upd_conv_take_nth_drop) | |
| 2772 | apply (drule subst [OF id_take_nth_drop]) apply assumption | |
| 2773 | apply simp apply (cases "a = xs!i") apply simp by blast | |
| 2774 | next | |
| 2775 | case False with d show ?thesis by auto | |
| 2776 | qed | |
| 2777 | ||
| 31363 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2778 | lemma distinct_concat: | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2779 | assumes "distinct xs" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2780 | and "\<And> ys. ys \<in> set xs \<Longrightarrow> distinct ys" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2781 |   and "\<And> ys zs. \<lbrakk> ys \<in> set xs ; zs \<in> set xs ; ys \<noteq> zs \<rbrakk> \<Longrightarrow> set ys \<inter> set zs = {}"
 | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2782 | shows "distinct (concat xs)" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 2783 | using assms by (induct xs) auto | 
| 17501 | 2784 | |
| 2785 | text {* It is best to avoid this indexed version of distinct, but
 | |
| 2786 | sometimes it is useful. *} | |
| 2787 | ||
| 13142 | 2788 | lemma distinct_conv_nth: | 
| 17501 | 2789 | "distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j --> xs!i \<noteq> xs!j)" | 
| 15251 | 2790 | apply (induct xs, simp, simp) | 
| 14208 | 2791 | apply (rule iffI, clarsimp) | 
| 13145 | 2792 | apply (case_tac i) | 
| 14208 | 2793 | apply (case_tac j, simp) | 
| 13145 | 2794 | apply (simp add: set_conv_nth) | 
| 2795 | apply (case_tac j) | |
| 24648 | 2796 | apply (clarsimp simp add: set_conv_nth, simp) | 
| 13145 | 2797 | apply (rule conjI) | 
| 24648 | 2798 | (*TOO SLOW | 
| 24632 | 2799 | apply (metis Zero_neq_Suc gr0_conv_Suc in_set_conv_nth lessI less_trans_Suc nth_Cons' nth_Cons_Suc) | 
| 24648 | 2800 | *) | 
| 2801 | apply (clarsimp simp add: set_conv_nth) | |
| 2802 | apply (erule_tac x = 0 in allE, simp) | |
| 2803 | apply (erule_tac x = "Suc i" in allE, simp, clarsimp) | |
| 25130 | 2804 | (*TOO SLOW | 
| 24632 | 2805 | apply (metis Suc_Suc_eq lessI less_trans_Suc nth_Cons_Suc) | 
| 25130 | 2806 | *) | 
| 2807 | apply (erule_tac x = "Suc i" in allE, simp) | |
| 2808 | apply (erule_tac x = "Suc j" in allE, simp) | |
| 13145 | 2809 | done | 
| 13114 | 2810 | |
| 18490 | 2811 | lemma nth_eq_iff_index_eq: | 
| 2812 | "\<lbrakk> distinct xs; i < length xs; j < length xs \<rbrakk> \<Longrightarrow> (xs!i = xs!j) = (i = j)" | |
| 2813 | by(auto simp: distinct_conv_nth) | |
| 2814 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2815 | lemma distinct_card: "distinct xs ==> card (set xs) = size xs" | 
| 24349 | 2816 | by (induct xs) auto | 
| 14388 | 2817 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 2818 | lemma card_distinct: "card (set xs) = size xs ==> distinct xs" | 
| 14388 | 2819 | proof (induct xs) | 
| 2820 | case Nil thus ?case by simp | |
| 2821 | next | |
| 2822 | case (Cons x xs) | |
| 2823 | show ?case | |
| 2824 | proof (cases "x \<in> set xs") | |
| 2825 | case False with Cons show ?thesis by simp | |
| 2826 | next | |
| 2827 | case True with Cons.prems | |
| 2828 | have "card (set xs) = Suc (length xs)" | |
| 2829 | by (simp add: card_insert_if split: split_if_asm) | |
| 2830 | moreover have "card (set xs) \<le> length xs" by (rule card_length) | |
| 2831 | ultimately have False by simp | |
| 2832 | thus ?thesis .. | |
| 2833 | qed | |
| 2834 | qed | |
| 2835 | ||
| 25287 | 2836 | lemma not_distinct_decomp: "~ distinct ws ==> EX xs ys zs y. ws = xs@[y]@ys@[y]@zs" | 
| 2837 | apply (induct n == "length ws" arbitrary:ws) apply simp | |
| 2838 | apply(case_tac ws) apply simp | |
| 2839 | apply (simp split:split_if_asm) | |
| 2840 | apply (metis Cons_eq_appendI eq_Nil_appendI split_list) | |
| 2841 | done | |
| 18490 | 2842 | |
| 2843 | lemma length_remdups_concat: | |
| 2844 | "length(remdups(concat xss)) = card(\<Union>xs \<in> set xss. set xs)" | |
| 24308 | 2845 | by(simp add: set_concat distinct_card[symmetric]) | 
| 17906 | 2846 | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2847 | lemma length_remdups_card_conv: "length(remdups xs) = card(set xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2848 | proof - | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2849 | have xs: "concat[xs] = xs" by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2850 | from length_remdups_concat[of "[xs]"] show ?thesis unfolding xs by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 2851 | qed | 
| 17906 | 2852 | |
| 36275 | 2853 | lemma remdups_remdups: | 
| 2854 | "remdups (remdups xs) = remdups xs" | |
| 2855 | by (induct xs) simp_all | |
| 2856 | ||
| 36851 | 2857 | lemma distinct_butlast: | 
| 2858 | assumes "xs \<noteq> []" and "distinct xs" | |
| 2859 | shows "distinct (butlast xs)" | |
| 2860 | proof - | |
| 2861 | from `xs \<noteq> []` obtain ys y where "xs = ys @ [y]" by (cases xs rule: rev_cases) auto | |
| 2862 | with `distinct xs` show ?thesis by simp | |
| 2863 | qed | |
| 2864 | ||
| 35115 | 2865 | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2866 | subsubsection {* List summation: @{const listsum} and @{text"\<Sum>"}*}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2867 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2868 | lemma listsum_append [simp]: "listsum (xs @ ys) = listsum xs + listsum ys" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2869 | by (induct xs) (simp_all add:add_assoc) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2870 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2871 | lemma listsum_rev [simp]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2872 | fixes xs :: "'a\<Colon>comm_monoid_add list" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2873 | shows "listsum (rev xs) = listsum xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2874 | by (induct xs) (simp_all add:add_ac) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2875 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2876 | lemma listsum_map_remove1: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2877 | fixes f :: "'a \<Rightarrow> ('b::comm_monoid_add)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2878 | shows "x : set xs \<Longrightarrow> listsum(map f xs) = f x + listsum(map f (remove1 x xs))" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2879 | by (induct xs)(auto simp add:add_ac) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2880 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2881 | lemma list_size_conv_listsum: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2882 | "list_size f xs = listsum (map f xs) + size xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2883 | by(induct xs) auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2884 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2885 | lemma listsum_foldr: "listsum xs = foldr (op +) xs 0" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2886 | by (induct xs) auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2887 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2888 | lemma length_concat: "length (concat xss) = listsum (map length xss)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2889 | by (induct xss) simp_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2890 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2891 | lemma listsum_map_filter: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2892 | fixes f :: "'a \<Rightarrow> 'b \<Colon> comm_monoid_add" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2893 | assumes "\<And> x. \<lbrakk> x \<in> set xs ; \<not> P x \<rbrakk> \<Longrightarrow> f x = 0" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2894 | shows "listsum (map f (filter P xs)) = listsum (map f xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2895 | using assms by (induct xs) auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2896 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2897 | text{* For efficient code generation ---
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2898 |        @{const listsum} is not tail recursive but @{const foldl} is. *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2899 | lemma listsum[code_unfold]: "listsum xs = foldl (op +) 0 xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2900 | by(simp add:listsum_foldr foldl_foldr1) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2901 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2902 | lemma distinct_listsum_conv_Setsum: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2903 | "distinct xs \<Longrightarrow> listsum xs = Setsum(set xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2904 | by (induct xs) simp_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2905 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2906 | lemma listsum_eq_0_nat_iff_nat[simp]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2907 | "listsum ns = (0::nat) \<longleftrightarrow> (\<forall> n \<in> set ns. n = 0)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2908 | by(simp add: listsum) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2909 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2910 | lemma elem_le_listsum_nat: "k<size ns \<Longrightarrow> ns!k <= listsum(ns::nat list)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2911 | apply(induct ns arbitrary: k) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2912 | apply simp | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2913 | apply(fastsimp simp add:nth_Cons split: nat.split) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2914 | done | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2915 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2916 | lemma listsum_update_nat: "k<size ns \<Longrightarrow> | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2917 | listsum (ns[k := (n::nat)]) = listsum ns + n - ns!k" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2918 | apply(induct ns arbitrary:k) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2919 | apply (auto split:nat.split) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2920 | apply(drule elem_le_listsum_nat) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2921 | apply arith | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2922 | done | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2923 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2924 | text{* Some syntactic sugar for summing a function over a list: *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2925 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2926 | syntax | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2927 |   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3SUM _<-_. _)" [0, 51, 10] 10)
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2928 | syntax (xsymbols) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2929 |   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2930 | syntax (HTML output) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2931 |   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2932 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2933 | translations -- {* Beware of argument permutation! *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2934 | "SUM x<-xs. b" == "CONST listsum (CONST map (%x. b) xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2935 | "\<Sum>x\<leftarrow>xs. b" == "CONST listsum (CONST map (%x. b) xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2936 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2937 | lemma listsum_triv: "(\<Sum>x\<leftarrow>xs. r) = of_nat (length xs) * r" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2938 | by (induct xs) (simp_all add: left_distrib) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2939 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2940 | lemma listsum_0 [simp]: "(\<Sum>x\<leftarrow>xs. 0) = 0" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2941 | by (induct xs) (simp_all add: left_distrib) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2942 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2943 | text{* For non-Abelian groups @{text xs} needs to be reversed on one side: *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2944 | lemma uminus_listsum_map: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2945 | fixes f :: "'a \<Rightarrow> 'b\<Colon>ab_group_add" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2946 | shows "- listsum (map f xs) = (listsum (map (uminus o f) xs))" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2947 | by (induct xs) simp_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2948 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2949 | lemma listsum_addf: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2950 | fixes f g :: "'a \<Rightarrow> 'b::comm_monoid_add" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2951 | shows "(\<Sum>x\<leftarrow>xs. f x + g x) = listsum (map f xs) + listsum (map g xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2952 | by (induct xs) (simp_all add: algebra_simps) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2953 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2954 | lemma listsum_subtractf: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2955 | fixes f g :: "'a \<Rightarrow> 'b::ab_group_add" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2956 | shows "(\<Sum>x\<leftarrow>xs. f x - g x) = listsum (map f xs) - listsum (map g xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2957 | by (induct xs) simp_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2958 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2959 | lemma listsum_const_mult: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2960 | fixes f :: "'a \<Rightarrow> 'b::semiring_0" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2961 | shows "(\<Sum>x\<leftarrow>xs. c * f x) = c * (\<Sum>x\<leftarrow>xs. f x)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2962 | by (induct xs, simp_all add: algebra_simps) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2963 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2964 | lemma listsum_mult_const: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2965 | fixes f :: "'a \<Rightarrow> 'b::semiring_0" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2966 | shows "(\<Sum>x\<leftarrow>xs. f x * c) = (\<Sum>x\<leftarrow>xs. f x) * c" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2967 | by (induct xs, simp_all add: algebra_simps) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2968 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2969 | lemma listsum_abs: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2970 | fixes xs :: "'a::ordered_ab_group_add_abs list" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2971 | shows "\<bar>listsum xs\<bar> \<le> listsum (map abs xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2972 | by (induct xs, simp, simp add: order_trans [OF abs_triangle_ineq]) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2973 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2974 | lemma listsum_mono: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2975 |   fixes f g :: "'a \<Rightarrow> 'b::{comm_monoid_add, ordered_ab_semigroup_add}"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2976 | shows "(\<And>x. x \<in> set xs \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sum>x\<leftarrow>xs. f x) \<le> (\<Sum>x\<leftarrow>xs. g x)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2977 | by (induct xs, simp, simp add: add_mono) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2978 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2979 | lemma listsum_distinct_conv_setsum_set: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2980 | "distinct xs \<Longrightarrow> listsum (map f xs) = setsum f (set xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2981 | by (induct xs) simp_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2982 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2983 | lemma interv_listsum_conv_setsum_set_nat: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2984 | "listsum (map f [m..<n]) = setsum f (set [m..<n])" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2985 | by (simp add: listsum_distinct_conv_setsum_set) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2986 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2987 | lemma interv_listsum_conv_setsum_set_int: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2988 | "listsum (map f [k..l]) = setsum f (set [k..l])" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2989 | by (simp add: listsum_distinct_conv_setsum_set) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2990 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2991 | text {* General equivalence between @{const listsum} and @{const setsum} *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2992 | lemma listsum_setsum_nth: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2993 | "listsum xs = (\<Sum> i = 0 ..< length xs. xs ! i)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2994 | using interv_listsum_conv_setsum_set_nat [of "op ! xs" 0 "length xs"] by (simp add: map_nth) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2995 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 2996 | |
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2997 | subsubsection {* @{const insert} *}
 | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2998 | |
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 2999 | lemma in_set_insert [simp]: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3000 | "x \<in> set xs \<Longrightarrow> List.insert x xs = xs" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3001 | by (simp add: List.insert_def) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3002 | |
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3003 | lemma not_in_set_insert [simp]: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3004 | "x \<notin> set xs \<Longrightarrow> List.insert x xs = x # xs" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3005 | by (simp add: List.insert_def) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3006 | |
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3007 | lemma insert_Nil [simp]: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3008 | "List.insert x [] = [x]" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3009 | by simp | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3010 | |
| 35295 | 3011 | lemma set_insert [simp]: | 
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3012 | "set (List.insert x xs) = insert x (set xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3013 | by (auto simp add: List.insert_def) | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3014 | |
| 35295 | 3015 | lemma distinct_insert [simp]: | 
| 3016 | "distinct xs \<Longrightarrow> distinct (List.insert x xs)" | |
| 3017 | by (simp add: List.insert_def) | |
| 3018 | ||
| 36275 | 3019 | lemma insert_remdups: | 
| 3020 | "List.insert x (remdups xs) = remdups (List.insert x xs)" | |
| 3021 | by (simp add: List.insert_def) | |
| 3022 | ||
| 37107 | 3023 | lemma distinct_induct [consumes 1, case_names Nil insert]: | 
| 3024 | assumes "distinct xs" | |
| 3025 | assumes "P []" | |
| 3026 | assumes insert: "\<And>x xs. distinct xs \<Longrightarrow> x \<notin> set xs | |
| 3027 | \<Longrightarrow> P xs \<Longrightarrow> P (List.insert x xs)" | |
| 3028 | shows "P xs" | |
| 3029 | using `distinct xs` proof (induct xs) | |
| 3030 | case Nil from `P []` show ?case . | |
| 3031 | next | |
| 3032 | case (Cons x xs) | |
| 3033 | then have "distinct xs" and "x \<notin> set xs" and "P xs" by simp_all | |
| 3034 | with insert have "P (List.insert x xs)" . | |
| 3035 | with `x \<notin> set xs` show ?case by simp | |
| 3036 | qed | |
| 3037 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3038 | |
| 15392 | 3039 | subsubsection {* @{text remove1} *}
 | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3040 | |
| 18049 | 3041 | lemma remove1_append: | 
| 3042 | "remove1 x (xs @ ys) = | |
| 3043 | (if x \<in> set xs then remove1 x xs @ ys else xs @ remove1 x ys)" | |
| 3044 | by (induct xs) auto | |
| 3045 | ||
| 36903 | 3046 | lemma remove1_commute: "remove1 x (remove1 y zs) = remove1 y (remove1 x zs)" | 
| 3047 | by (induct zs) auto | |
| 3048 | ||
| 23479 | 3049 | lemma in_set_remove1[simp]: | 
| 3050 | "a \<noteq> b \<Longrightarrow> a : set(remove1 b xs) = (a : set xs)" | |
| 3051 | apply (induct xs) | |
| 3052 | apply auto | |
| 3053 | done | |
| 3054 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3055 | lemma set_remove1_subset: "set(remove1 x xs) <= set xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3056 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3057 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3058 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3059 | apply blast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3060 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3061 | |
| 17724 | 3062 | lemma set_remove1_eq [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
 | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3063 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3064 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3065 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3066 | apply blast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3067 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3068 | |
| 23479 | 3069 | lemma length_remove1: | 
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30079diff
changeset | 3070 | "length(remove1 x xs) = (if x : set xs then length xs - 1 else length xs)" | 
| 23479 | 3071 | apply (induct xs) | 
| 3072 | apply (auto dest!:length_pos_if_in_set) | |
| 3073 | done | |
| 3074 | ||
| 18049 | 3075 | lemma remove1_filter_not[simp]: | 
| 3076 | "\<not> P x \<Longrightarrow> remove1 x (filter P xs) = filter P xs" | |
| 3077 | by(induct xs) auto | |
| 3078 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3079 | lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3080 | apply(insert set_remove1_subset) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3081 | apply fast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3082 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3083 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3084 | lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3085 | by (induct xs) simp_all | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 3086 | |
| 36275 | 3087 | lemma remove1_remdups: | 
| 3088 | "distinct xs \<Longrightarrow> remove1 x (remdups xs) = remdups (remove1 x xs)" | |
| 3089 | by (induct xs) simp_all | |
| 3090 | ||
| 37107 | 3091 | lemma remove1_idem: | 
| 3092 | assumes "x \<notin> set xs" | |
| 3093 | shows "remove1 x xs = xs" | |
| 3094 | using assms by (induct xs) simp_all | |
| 3095 | ||
| 13114 | 3096 | |
| 27693 | 3097 | subsubsection {* @{text removeAll} *}
 | 
| 3098 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3099 | lemma removeAll_filter_not_eq: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3100 | "removeAll x = filter (\<lambda>y. x \<noteq> y)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3101 | proof | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3102 | fix xs | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3103 | show "removeAll x xs = filter (\<lambda>y. x \<noteq> y) xs" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3104 | by (induct xs) auto | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3105 | qed | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3106 | |
| 27693 | 3107 | lemma removeAll_append[simp]: | 
| 3108 | "removeAll x (xs @ ys) = removeAll x xs @ removeAll x ys" | |
| 3109 | by (induct xs) auto | |
| 3110 | ||
| 3111 | lemma set_removeAll[simp]: "set(removeAll x xs) = set xs - {x}"
 | |
| 3112 | by (induct xs) auto | |
| 3113 | ||
| 3114 | lemma removeAll_id[simp]: "x \<notin> set xs \<Longrightarrow> removeAll x xs = xs" | |
| 3115 | by (induct xs) auto | |
| 3116 | ||
| 3117 | (* Needs count:: 'a \<Rightarrow> a' list \<Rightarrow> nat | |
| 3118 | lemma length_removeAll: | |
| 3119 | "length(removeAll x xs) = length xs - count x xs" | |
| 3120 | *) | |
| 3121 | ||
| 3122 | lemma removeAll_filter_not[simp]: | |
| 3123 | "\<not> P x \<Longrightarrow> removeAll x (filter P xs) = filter P xs" | |
| 3124 | by(induct xs) auto | |
| 3125 | ||
| 34978 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3126 | lemma distinct_removeAll: | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3127 | "distinct xs \<Longrightarrow> distinct (removeAll x xs)" | 
| 
874150ddd50a
canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
 haftmann parents: 
34942diff
changeset | 3128 | by (simp add: removeAll_filter_not_eq) | 
| 27693 | 3129 | |
| 3130 | lemma distinct_remove1_removeAll: | |
| 3131 | "distinct xs ==> remove1 x xs = removeAll x xs" | |
| 3132 | by (induct xs) simp_all | |
| 3133 | ||
| 3134 | lemma map_removeAll_inj_on: "inj_on f (insert x (set xs)) \<Longrightarrow> | |
| 3135 | map f (removeAll x xs) = removeAll (f x) (map f xs)" | |
| 3136 | by (induct xs) (simp_all add:inj_on_def) | |
| 3137 | ||
| 3138 | lemma map_removeAll_inj: "inj f \<Longrightarrow> | |
| 3139 | map f (removeAll x xs) = removeAll (f x) (map f xs)" | |
| 3140 | by(metis map_removeAll_inj_on subset_inj_on subset_UNIV) | |
| 3141 | ||
| 3142 | ||
| 15392 | 3143 | subsubsection {* @{text replicate} *}
 | 
| 13114 | 3144 | |
| 13142 | 3145 | lemma length_replicate [simp]: "length (replicate n x) = n" | 
| 13145 | 3146 | by (induct n) auto | 
| 13124 | 3147 | |
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36275diff
changeset | 3148 | lemma Ex_list_of_length: "\<exists>xs. length xs = n" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36275diff
changeset | 3149 | by (rule exI[of _ "replicate n undefined"]) simp | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36275diff
changeset | 3150 | |
| 13142 | 3151 | lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)" | 
| 13145 | 3152 | by (induct n) auto | 
| 13114 | 3153 | |
| 31363 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3154 | lemma map_replicate_const: | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3155 | "map (\<lambda> x. k) lst = replicate (length lst) k" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3156 | by (induct lst) auto | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3157 | |
| 13114 | 3158 | lemma replicate_app_Cons_same: | 
| 13145 | 3159 | "(replicate n x) @ (x # xs) = x # replicate n x @ xs" | 
| 3160 | by (induct n) auto | |
| 13114 | 3161 | |
| 13142 | 3162 | lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x" | 
| 14208 | 3163 | apply (induct n, simp) | 
| 13145 | 3164 | apply (simp add: replicate_app_Cons_same) | 
| 3165 | done | |
| 13114 | 3166 | |
| 13142 | 3167 | lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x" | 
| 13145 | 3168 | by (induct n) auto | 
| 13114 | 3169 | |
| 16397 | 3170 | text{* Courtesy of Matthias Daum: *}
 | 
| 3171 | lemma append_replicate_commute: | |
| 3172 | "replicate n x @ replicate k x = replicate k x @ replicate n x" | |
| 3173 | apply (simp add: replicate_add [THEN sym]) | |
| 3174 | apply (simp add: add_commute) | |
| 3175 | done | |
| 3176 | ||
| 31080 | 3177 | text{* Courtesy of Andreas Lochbihler: *}
 | 
| 3178 | lemma filter_replicate: | |
| 3179 | "filter P (replicate n x) = (if P x then replicate n x else [])" | |
| 3180 | by(induct n) auto | |
| 3181 | ||
| 13142 | 3182 | lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x" | 
| 13145 | 3183 | by (induct n) auto | 
| 13114 | 3184 | |
| 13142 | 3185 | lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x" | 
| 13145 | 3186 | by (induct n) auto | 
| 13114 | 3187 | |
| 13142 | 3188 | lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x" | 
| 13145 | 3189 | by (atomize (full), induct n) auto | 
| 13114 | 3190 | |
| 24526 | 3191 | lemma nth_replicate[simp]: "i < n ==> (replicate n x)!i = x" | 
| 3192 | apply (induct n arbitrary: i, simp) | |
| 13145 | 3193 | apply (simp add: nth_Cons split: nat.split) | 
| 3194 | done | |
| 13114 | 3195 | |
| 16397 | 3196 | text{* Courtesy of Matthias Daum (2 lemmas): *}
 | 
| 3197 | lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x" | |
| 3198 | apply (case_tac "k \<le> i") | |
| 3199 | apply (simp add: min_def) | |
| 3200 | apply (drule not_leE) | |
| 3201 | apply (simp add: min_def) | |
| 3202 | apply (subgoal_tac "replicate k x = replicate i x @ replicate (k - i) x") | |
| 3203 | apply simp | |
| 3204 | apply (simp add: replicate_add [symmetric]) | |
| 3205 | done | |
| 3206 | ||
| 24526 | 3207 | lemma drop_replicate[simp]: "drop i (replicate k x) = replicate (k-i) x" | 
| 3208 | apply (induct k arbitrary: i) | |
| 16397 | 3209 | apply simp | 
| 3210 | apply clarsimp | |
| 3211 | apply (case_tac i) | |
| 3212 | apply simp | |
| 3213 | apply clarsimp | |
| 3214 | done | |
| 3215 | ||
| 3216 | ||
| 13142 | 3217 | lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
 | 
| 13145 | 3218 | by (induct n) auto | 
| 13114 | 3219 | |
| 13142 | 3220 | lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
 | 
| 13145 | 3221 | by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc) | 
| 13114 | 3222 | |
| 13142 | 3223 | lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
 | 
| 13145 | 3224 | by auto | 
| 13114 | 3225 | |
| 37456 | 3226 | lemma in_set_replicate[simp]: "(x : set (replicate n y)) = (x = y & n \<noteq> 0)" | 
| 3227 | by (simp add: set_replicate_conv_if) | |
| 3228 | ||
| 37454 | 3229 | lemma Ball_set_replicate[simp]: | 
| 3230 | "(ALL x : set(replicate n a). P x) = (P a | n=0)" | |
| 3231 | by(simp add: set_replicate_conv_if) | |
| 3232 | ||
| 3233 | lemma Bex_set_replicate[simp]: | |
| 3234 | "(EX x : set(replicate n a). P x) = (P a & n\<noteq>0)" | |
| 3235 | by(simp add: set_replicate_conv_if) | |
| 13114 | 3236 | |
| 24796 | 3237 | lemma replicate_append_same: | 
| 3238 | "replicate i x @ [x] = x # replicate i x" | |
| 3239 | by (induct i) simp_all | |
| 3240 | ||
| 3241 | lemma map_replicate_trivial: | |
| 3242 | "map (\<lambda>i. x) [0..<i] = replicate i x" | |
| 3243 | by (induct i) (simp_all add: replicate_append_same) | |
| 3244 | ||
| 31363 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3245 | lemma concat_replicate_trivial[simp]: | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3246 | "concat (replicate i []) = []" | 
| 
7493b571b37d
Added theorems about distinct & concat, map & replicate and concat & replicate
 hoelzl parents: 
31264diff
changeset | 3247 | by (induct i) (auto simp add: map_replicate_const) | 
| 13114 | 3248 | |
| 28642 | 3249 | lemma replicate_empty[simp]: "(replicate n x = []) \<longleftrightarrow> n=0" | 
| 3250 | by (induct n) auto | |
| 3251 | ||
| 3252 | lemma empty_replicate[simp]: "([] = replicate n x) \<longleftrightarrow> n=0" | |
| 3253 | by (induct n) auto | |
| 3254 | ||
| 3255 | lemma replicate_eq_replicate[simp]: | |
| 3256 | "(replicate m x = replicate n y) \<longleftrightarrow> (m=n & (m\<noteq>0 \<longrightarrow> x=y))" | |
| 3257 | apply(induct m arbitrary: n) | |
| 3258 | apply simp | |
| 3259 | apply(induct_tac n) | |
| 3260 | apply auto | |
| 3261 | done | |
| 3262 | ||
| 3263 | ||
| 15392 | 3264 | subsubsection{*@{text rotate1} and @{text rotate}*}
 | 
| 15302 | 3265 | |
| 3266 | lemma rotate_simps[simp]: "rotate1 [] = [] \<and> rotate1 (x#xs) = xs @ [x]" | |
| 3267 | by(simp add:rotate1_def) | |
| 3268 | ||
| 3269 | lemma rotate0[simp]: "rotate 0 = id" | |
| 3270 | by(simp add:rotate_def) | |
| 3271 | ||
| 3272 | lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)" | |
| 3273 | by(simp add:rotate_def) | |
| 3274 | ||
| 3275 | lemma rotate_add: | |
| 3276 | "rotate (m+n) = rotate m o rotate n" | |
| 3277 | by(simp add:rotate_def funpow_add) | |
| 3278 | ||
| 3279 | lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs" | |
| 3280 | by(simp add:rotate_add) | |
| 3281 | ||
| 18049 | 3282 | lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)" | 
| 3283 | by(simp add:rotate_def funpow_swap1) | |
| 3284 | ||
| 15302 | 3285 | lemma rotate1_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate1 xs = xs" | 
| 3286 | by(cases xs) simp_all | |
| 3287 | ||
| 3288 | lemma rotate_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate n xs = xs" | |
| 3289 | apply(induct n) | |
| 3290 | apply simp | |
| 3291 | apply (simp add:rotate_def) | |
| 13145 | 3292 | done | 
| 13114 | 3293 | |
| 15302 | 3294 | lemma rotate1_hd_tl: "xs \<noteq> [] \<Longrightarrow> rotate1 xs = tl xs @ [hd xs]" | 
| 3295 | by(simp add:rotate1_def split:list.split) | |
| 3296 | ||
| 3297 | lemma rotate_drop_take: | |
| 3298 | "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs" | |
| 3299 | apply(induct n) | |
| 3300 | apply simp | |
| 3301 | apply(simp add:rotate_def) | |
| 3302 | apply(cases "xs = []") | |
| 3303 | apply (simp) | |
| 3304 | apply(case_tac "n mod length xs = 0") | |
| 3305 | apply(simp add:mod_Suc) | |
| 3306 | apply(simp add: rotate1_hd_tl drop_Suc take_Suc) | |
| 3307 | apply(simp add:mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric] | |
| 3308 | take_hd_drop linorder_not_le) | |
| 13145 | 3309 | done | 
| 13114 | 3310 | |
| 15302 | 3311 | lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs" | 
| 3312 | by(simp add:rotate_drop_take) | |
| 3313 | ||
| 3314 | lemma rotate_id[simp]: "n mod length xs = 0 \<Longrightarrow> rotate n xs = xs" | |
| 3315 | by(simp add:rotate_drop_take) | |
| 3316 | ||
| 3317 | lemma length_rotate1[simp]: "length(rotate1 xs) = length xs" | |
| 3318 | by(simp add:rotate1_def split:list.split) | |
| 3319 | ||
| 24526 | 3320 | lemma length_rotate[simp]: "length(rotate n xs) = length xs" | 
| 3321 | by (induct n arbitrary: xs) (simp_all add:rotate_def) | |
| 15302 | 3322 | |
| 3323 | lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs" | |
| 3324 | by(simp add:rotate1_def split:list.split) blast | |
| 3325 | ||
| 3326 | lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs" | |
| 3327 | by (induct n) (simp_all add:rotate_def) | |
| 3328 | ||
| 3329 | lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)" | |
| 3330 | by(simp add:rotate_drop_take take_map drop_map) | |
| 3331 | ||
| 3332 | lemma set_rotate1[simp]: "set(rotate1 xs) = set xs" | |
| 3333 | by(simp add:rotate1_def split:list.split) | |
| 3334 | ||
| 3335 | lemma set_rotate[simp]: "set(rotate n xs) = set xs" | |
| 3336 | by (induct n) (simp_all add:rotate_def) | |
| 3337 | ||
| 3338 | lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])" | |
| 3339 | by(simp add:rotate1_def split:list.split) | |
| 3340 | ||
| 3341 | lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])" | |
| 3342 | by (induct n) (simp_all add:rotate_def) | |
| 13114 | 3343 | |
| 15439 | 3344 | lemma rotate_rev: | 
| 3345 | "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)" | |
| 3346 | apply(simp add:rotate_drop_take rev_drop rev_take) | |
| 3347 | apply(cases "length xs = 0") | |
| 3348 | apply simp | |
| 3349 | apply(cases "n mod length xs = 0") | |
| 3350 | apply simp | |
| 3351 | apply(simp add:rotate_drop_take rev_drop rev_take) | |
| 3352 | done | |
| 3353 | ||
| 18423 | 3354 | lemma hd_rotate_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd(rotate n xs) = xs!(n mod length xs)" | 
| 3355 | apply(simp add:rotate_drop_take hd_append hd_drop_conv_nth hd_conv_nth) | |
| 3356 | apply(subgoal_tac "length xs \<noteq> 0") | |
| 3357 | prefer 2 apply simp | |
| 3358 | using mod_less_divisor[of "length xs" n] by arith | |
| 3359 | ||
| 13114 | 3360 | |
| 15392 | 3361 | subsubsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
 | 
| 13114 | 3362 | |
| 13142 | 3363 | lemma sublist_empty [simp]: "sublist xs {} = []"
 | 
| 13145 | 3364 | by (auto simp add: sublist_def) | 
| 13114 | 3365 | |
| 13142 | 3366 | lemma sublist_nil [simp]: "sublist [] A = []" | 
| 13145 | 3367 | by (auto simp add: sublist_def) | 
| 13114 | 3368 | |
| 15281 | 3369 | lemma length_sublist: | 
| 3370 |   "length(sublist xs I) = card{i. i < length xs \<and> i : I}"
 | |
| 3371 | by(simp add: sublist_def length_filter_conv_card cong:conj_cong) | |
| 3372 | ||
| 3373 | lemma sublist_shift_lemma_Suc: | |
| 24526 | 3374 | "map fst (filter (%p. P(Suc(snd p))) (zip xs is)) = | 
| 3375 | map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))" | |
| 3376 | apply(induct xs arbitrary: "is") | |
| 15281 | 3377 | apply simp | 
| 3378 | apply (case_tac "is") | |
| 3379 | apply simp | |
| 3380 | apply simp | |
| 3381 | done | |
| 3382 | ||
| 13114 | 3383 | lemma sublist_shift_lemma: | 
| 23279 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 3384 | "map fst [p<-zip xs [i..<i + length xs] . snd p : A] = | 
| 
e39dd93161d9
tuned list comprehension, changed filter syntax from : to <-
 nipkow parents: 
23246diff
changeset | 3385 | map fst [p<-zip xs [0..<length xs] . snd p + i : A]" | 
| 13145 | 3386 | by (induct xs rule: rev_induct) (simp_all add: add_commute) | 
| 13114 | 3387 | |
| 3388 | lemma sublist_append: | |
| 15168 | 3389 |      "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
 | 
| 13145 | 3390 | apply (unfold sublist_def) | 
| 14208 | 3391 | apply (induct l' rule: rev_induct, simp) | 
| 13145 | 3392 | apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma) | 
| 3393 | apply (simp add: add_commute) | |
| 3394 | done | |
| 13114 | 3395 | |
| 3396 | lemma sublist_Cons: | |
| 13145 | 3397 | "sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
 | 
| 3398 | apply (induct l rule: rev_induct) | |
| 3399 | apply (simp add: sublist_def) | |
| 3400 | apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append) | |
| 3401 | done | |
| 13114 | 3402 | |
| 24526 | 3403 | lemma set_sublist: "set(sublist xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
 | 
| 3404 | apply(induct xs arbitrary: I) | |
| 25162 | 3405 | apply(auto simp: sublist_Cons nth_Cons split:nat.split dest!: gr0_implies_Suc) | 
| 15281 | 3406 | done | 
| 3407 | ||
| 3408 | lemma set_sublist_subset: "set(sublist xs I) \<subseteq> set xs" | |
| 3409 | by(auto simp add:set_sublist) | |
| 3410 | ||
| 3411 | lemma notin_set_sublistI[simp]: "x \<notin> set xs \<Longrightarrow> x \<notin> set(sublist xs I)" | |
| 3412 | by(auto simp add:set_sublist) | |
| 3413 | ||
| 3414 | lemma in_set_sublistD: "x \<in> set(sublist xs I) \<Longrightarrow> x \<in> set xs" | |
| 3415 | by(auto simp add:set_sublist) | |
| 3416 | ||
| 13142 | 3417 | lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])" | 
| 13145 | 3418 | by (simp add: sublist_Cons) | 
| 13114 | 3419 | |
| 15281 | 3420 | |
| 24526 | 3421 | lemma distinct_sublistI[simp]: "distinct xs \<Longrightarrow> distinct(sublist xs I)" | 
| 3422 | apply(induct xs arbitrary: I) | |
| 15281 | 3423 | apply simp | 
| 3424 | apply(auto simp add:sublist_Cons) | |
| 3425 | done | |
| 3426 | ||
| 3427 | ||
| 15045 | 3428 | lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
 | 
| 14208 | 3429 | apply (induct l rule: rev_induct, simp) | 
| 13145 | 3430 | apply (simp split: nat_diff_split add: sublist_append) | 
| 3431 | done | |
| 13114 | 3432 | |
| 24526 | 3433 | lemma filter_in_sublist: | 
| 3434 | "distinct xs \<Longrightarrow> filter (%x. x \<in> set(sublist xs s)) xs = sublist xs s" | |
| 3435 | proof (induct xs arbitrary: s) | |
| 17501 | 3436 | case Nil thus ?case by simp | 
| 3437 | next | |
| 3438 | case (Cons a xs) | |
| 3439 | moreover hence "!x. x: set xs \<longrightarrow> x \<noteq> a" by auto | |
| 3440 | ultimately show ?case by(simp add: sublist_Cons cong:filter_cong) | |
| 3441 | qed | |
| 3442 | ||
| 13114 | 3443 | |
| 19390 | 3444 | subsubsection {* @{const splice} *}
 | 
| 3445 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 3446 | lemma splice_Nil2 [simp, code]: | 
| 19390 | 3447 | "splice xs [] = xs" | 
| 3448 | by (cases xs) simp_all | |
| 3449 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 3450 | lemma splice_Cons_Cons [simp, code]: | 
| 19390 | 3451 | "splice (x#xs) (y#ys) = x # y # splice xs ys" | 
| 3452 | by simp | |
| 3453 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 3454 | declare splice.simps(2) [simp del, code del] | 
| 19390 | 3455 | |
| 24526 | 3456 | lemma length_splice[simp]: "length(splice xs ys) = length xs + length ys" | 
| 3457 | apply(induct xs arbitrary: ys) apply simp | |
| 22793 | 3458 | apply(case_tac ys) | 
| 3459 | apply auto | |
| 3460 | done | |
| 3461 | ||
| 35115 | 3462 | |
| 3463 | subsubsection {* Transpose *}
 | |
| 34933 | 3464 | |
| 3465 | function transpose where | |
| 3466 | "transpose [] = []" | | |
| 3467 | "transpose ([] # xss) = transpose xss" | | |
| 3468 | "transpose ((x#xs) # xss) = | |
| 3469 | (x # [h. (h#t) \<leftarrow> xss]) # transpose (xs # [t. (h#t) \<leftarrow> xss])" | |
| 3470 | by pat_completeness auto | |
| 3471 | ||
| 3472 | lemma transpose_aux_filter_head: | |
| 3473 | "concat (map (list_case [] (\<lambda>h t. [h])) xss) = | |
| 3474 | map (\<lambda>xs. hd xs) [ys\<leftarrow>xss . ys \<noteq> []]" | |
| 3475 | by (induct xss) (auto split: list.split) | |
| 3476 | ||
| 3477 | lemma transpose_aux_filter_tail: | |
| 3478 | "concat (map (list_case [] (\<lambda>h t. [t])) xss) = | |
| 3479 | map (\<lambda>xs. tl xs) [ys\<leftarrow>xss . ys \<noteq> []]" | |
| 3480 | by (induct xss) (auto split: list.split) | |
| 3481 | ||
| 3482 | lemma transpose_aux_max: | |
| 3483 | "max (Suc (length xs)) (foldr (\<lambda>xs. max (length xs)) xss 0) = | |
| 3484 | Suc (max (length xs) (foldr (\<lambda>x. max (length x - Suc 0)) [ys\<leftarrow>xss . ys\<noteq>[]] 0))" | |
| 3485 | (is "max _ ?foldB = Suc (max _ ?foldA)") | |
| 3486 | proof (cases "[ys\<leftarrow>xss . ys\<noteq>[]] = []") | |
| 3487 | case True | |
| 3488 | hence "foldr (\<lambda>xs. max (length xs)) xss 0 = 0" | |
| 3489 | proof (induct xss) | |
| 3490 | case (Cons x xs) | |
| 3491 | moreover hence "x = []" by (cases x) auto | |
| 3492 | ultimately show ?case by auto | |
| 3493 | qed simp | |
| 3494 | thus ?thesis using True by simp | |
| 3495 | next | |
| 3496 | case False | |
| 3497 | ||
| 3498 | have foldA: "?foldA = foldr (\<lambda>x. max (length x)) [ys\<leftarrow>xss . ys \<noteq> []] 0 - 1" | |
| 3499 | by (induct xss) auto | |
| 3500 | have foldB: "?foldB = foldr (\<lambda>x. max (length x)) [ys\<leftarrow>xss . ys \<noteq> []] 0" | |
| 3501 | by (induct xss) auto | |
| 3502 | ||
| 3503 | have "0 < ?foldB" | |
| 3504 | proof - | |
| 3505 | from False | |
| 3506 | obtain z zs where zs: "[ys\<leftarrow>xss . ys \<noteq> []] = z#zs" by (auto simp: neq_Nil_conv) | |
| 3507 | hence "z \<in> set ([ys\<leftarrow>xss . ys \<noteq> []])" by auto | |
| 3508 | hence "z \<noteq> []" by auto | |
| 3509 | thus ?thesis | |
| 3510 | unfolding foldB zs | |
| 3511 | by (auto simp: max_def intro: less_le_trans) | |
| 3512 | qed | |
| 3513 | thus ?thesis | |
| 3514 | unfolding foldA foldB max_Suc_Suc[symmetric] | |
| 3515 | by simp | |
| 3516 | qed | |
| 3517 | ||
| 3518 | termination transpose | |
| 3519 | by (relation "measure (\<lambda>xs. foldr (\<lambda>xs. max (length xs)) xs 0 + length xs)") | |
| 3520 | (auto simp: transpose_aux_filter_tail foldr_map comp_def transpose_aux_max less_Suc_eq_le) | |
| 3521 | ||
| 3522 | lemma transpose_empty: "(transpose xs = []) \<longleftrightarrow> (\<forall>x \<in> set xs. x = [])" | |
| 3523 | by (induct rule: transpose.induct) simp_all | |
| 3524 | ||
| 3525 | lemma length_transpose: | |
| 3526 | fixes xs :: "'a list list" | |
| 3527 | shows "length (transpose xs) = foldr (\<lambda>xs. max (length xs)) xs 0" | |
| 3528 | by (induct rule: transpose.induct) | |
| 3529 | (auto simp: transpose_aux_filter_tail foldr_map comp_def transpose_aux_max | |
| 3530 | max_Suc_Suc[symmetric] simp del: max_Suc_Suc) | |
| 3531 | ||
| 3532 | lemma nth_transpose: | |
| 3533 | fixes xs :: "'a list list" | |
| 3534 | assumes "i < length (transpose xs)" | |
| 3535 | shows "transpose xs ! i = map (\<lambda>xs. xs ! i) [ys \<leftarrow> xs. i < length ys]" | |
| 3536 | using assms proof (induct arbitrary: i rule: transpose.induct) | |
| 3537 | case (3 x xs xss) | |
| 3538 | def XS == "(x # xs) # xss" | |
| 3539 | hence [simp]: "XS \<noteq> []" by auto | |
| 3540 | thus ?case | |
| 3541 | proof (cases i) | |
| 3542 | case 0 | |
| 3543 | thus ?thesis by (simp add: transpose_aux_filter_head hd_conv_nth) | |
| 3544 | next | |
| 3545 | case (Suc j) | |
| 3546 | have *: "\<And>xss. xs # map tl xss = map tl ((x#xs)#xss)" by simp | |
| 3547 | have **: "\<And>xss. (x#xs) # filter (\<lambda>ys. ys \<noteq> []) xss = filter (\<lambda>ys. ys \<noteq> []) ((x#xs)#xss)" by simp | |
| 3548 |     { fix x have "Suc j < length x \<longleftrightarrow> x \<noteq> [] \<and> j < length x - Suc 0"
 | |
| 3549 | by (cases x) simp_all | |
| 3550 | } note *** = this | |
| 3551 | ||
| 3552 | have j_less: "j < length (transpose (xs # concat (map (list_case [] (\<lambda>h t. [t])) xss)))" | |
| 3553 | using "3.prems" by (simp add: transpose_aux_filter_tail length_transpose Suc) | |
| 3554 | ||
| 3555 | show ?thesis | |
| 3556 | unfolding transpose.simps `i = Suc j` nth_Cons_Suc "3.hyps"[OF j_less] | |
| 3557 | apply (auto simp: transpose_aux_filter_tail filter_map comp_def length_transpose * ** *** XS_def[symmetric]) | |
| 3558 | apply (rule_tac y=x in list.exhaust) | |
| 3559 | by auto | |
| 3560 | qed | |
| 3561 | qed simp_all | |
| 3562 | ||
| 3563 | lemma transpose_map_map: | |
| 3564 | "transpose (map (map f) xs) = map (map f) (transpose xs)" | |
| 3565 | proof (rule nth_equalityI, safe) | |
| 3566 | have [simp]: "length (transpose (map (map f) xs)) = length (transpose xs)" | |
| 3567 | by (simp add: length_transpose foldr_map comp_def) | |
| 3568 | show "length (transpose (map (map f) xs)) = length (map (map f) (transpose xs))" by simp | |
| 3569 | ||
| 3570 | fix i assume "i < length (transpose (map (map f) xs))" | |
| 3571 | thus "transpose (map (map f) xs) ! i = map (map f) (transpose xs) ! i" | |
| 3572 | by (simp add: nth_transpose filter_map comp_def) | |
| 3573 | qed | |
| 24616 | 3574 | |
| 35115 | 3575 | |
| 31557 | 3576 | subsubsection {* (In)finiteness *}
 | 
| 28642 | 3577 | |
| 3578 | lemma finite_maxlen: | |
| 3579 | "finite (M::'a list set) ==> EX n. ALL s:M. size s < n" | |
| 3580 | proof (induct rule: finite.induct) | |
| 3581 | case emptyI show ?case by simp | |
| 3582 | next | |
| 3583 | case (insertI M xs) | |
| 3584 | then obtain n where "\<forall>s\<in>M. length s < n" by blast | |
| 3585 | hence "ALL s:insert xs M. size s < max n (size xs) + 1" by auto | |
| 3586 | thus ?case .. | |
| 3587 | qed | |
| 3588 | ||
| 31557 | 3589 | lemma finite_lists_length_eq: | 
| 3590 | assumes "finite A" | |
| 3591 | shows "finite {xs. set xs \<subseteq> A \<and> length xs = n}" (is "finite (?S n)")
 | |
| 3592 | proof(induct n) | |
| 3593 | case 0 show ?case by simp | |
| 3594 | next | |
| 3595 | case (Suc n) | |
| 3596 | have "?S (Suc n) = (\<Union>x\<in>A. (\<lambda>xs. x#xs) ` ?S n)" | |
| 3597 | by (auto simp:length_Suc_conv) | |
| 3598 | then show ?case using `finite A` | |
| 3599 | by (auto intro: finite_imageI Suc) (* FIXME metis? *) | |
| 3600 | qed | |
| 3601 | ||
| 3602 | lemma finite_lists_length_le: | |
| 3603 |   assumes "finite A" shows "finite {xs. set xs \<subseteq> A \<and> length xs \<le> n}"
 | |
| 3604 | (is "finite ?S") | |
| 3605 | proof- | |
| 3606 |   have "?S = (\<Union>n\<in>{0..n}. {xs. set xs \<subseteq> A \<and> length xs = n})" by auto
 | |
| 3607 | thus ?thesis by (auto intro: finite_lists_length_eq[OF `finite A`]) | |
| 3608 | qed | |
| 3609 | ||
| 28642 | 3610 | lemma infinite_UNIV_listI: "~ finite(UNIV::'a list set)" | 
| 3611 | apply(rule notI) | |
| 3612 | apply(drule finite_maxlen) | |
| 3613 | apply (metis UNIV_I length_replicate less_not_refl) | |
| 3614 | done | |
| 3615 | ||
| 3616 | ||
| 35115 | 3617 | subsection {* Sorting *}
 | 
| 24616 | 3618 | |
| 24617 | 3619 | text{* Currently it is not shown that @{const sort} returns a
 | 
| 3620 | permutation of its input because the nicest proof is via multisets, | |
| 3621 | which are not yet available. Alternatively one could define a function | |
| 3622 | that counts the number of occurrences of an element in a list and use | |
| 3623 | that instead of multisets to state the correctness property. *} | |
| 3624 | ||
| 24616 | 3625 | context linorder | 
| 3626 | begin | |
| 3627 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3628 | lemma length_insert[simp] : "length (insort_key f x xs) = Suc (length xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3629 | by (induct xs, auto) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3630 | |
| 35195 | 3631 | lemma insort_left_comm: | 
| 3632 | "insort x (insort y xs) = insort y (insort x xs)" | |
| 3633 | by (induct xs) auto | |
| 3634 | ||
| 3635 | lemma fun_left_comm_insort: | |
| 3636 | "fun_left_comm insort" | |
| 3637 | proof | |
| 3638 | qed (fact insort_left_comm) | |
| 3639 | ||
| 3640 | lemma sort_key_simps [simp]: | |
| 3641 | "sort_key f [] = []" | |
| 3642 | "sort_key f (x#xs) = insort_key f x (sort_key f xs)" | |
| 3643 | by (simp_all add: sort_key_def) | |
| 3644 | ||
| 3645 | lemma sort_foldl_insort: | |
| 3646 | "sort xs = foldl (\<lambda>ys x. insort x ys) [] xs" | |
| 3647 | by (simp add: sort_key_def foldr_foldl foldl_rev insort_left_comm) | |
| 3648 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3649 | lemma length_sort[simp]: "length (sort_key f xs) = length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3650 | by (induct xs, auto) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3651 | |
| 25062 | 3652 | lemma sorted_Cons: "sorted (x#xs) = (sorted xs & (ALL y:set xs. x <= y))" | 
| 24616 | 3653 | apply(induct xs arbitrary: x) apply simp | 
| 3654 | by simp (blast intro: order_trans) | |
| 3655 | ||
| 3656 | lemma sorted_append: | |
| 25062 | 3657 | "sorted (xs@ys) = (sorted xs & sorted ys & (\<forall>x \<in> set xs. \<forall>y \<in> set ys. x\<le>y))" | 
| 24616 | 3658 | by (induct xs) (auto simp add:sorted_Cons) | 
| 3659 | ||
| 31201 | 3660 | lemma sorted_nth_mono: | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3661 | "sorted xs \<Longrightarrow> i \<le> j \<Longrightarrow> j < length xs \<Longrightarrow> xs!i \<le> xs!j" | 
| 31201 | 3662 | by (induct xs arbitrary: i j) (auto simp:nth_Cons' sorted_Cons) | 
| 3663 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3664 | lemma sorted_rev_nth_mono: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3665 | "sorted (rev xs) \<Longrightarrow> i \<le> j \<Longrightarrow> j < length xs \<Longrightarrow> xs!j \<le> xs!i" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3666 | using sorted_nth_mono[ of "rev xs" "length xs - j - 1" "length xs - i - 1"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3667 | rev_nth[of "length xs - i - 1" "xs"] rev_nth[of "length xs - j - 1" "xs"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3668 | by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3669 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3670 | lemma sorted_nth_monoI: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3671 | "(\<And> i j. \<lbrakk> i \<le> j ; j < length xs \<rbrakk> \<Longrightarrow> xs ! i \<le> xs ! j) \<Longrightarrow> sorted xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3672 | proof (induct xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3673 | case (Cons x xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3674 | have "sorted xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3675 | proof (rule Cons.hyps) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3676 | fix i j assume "i \<le> j" and "j < length xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3677 | with Cons.prems[of "Suc i" "Suc j"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3678 | show "xs ! i \<le> xs ! j" by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3679 | qed | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3680 | moreover | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3681 |   {
 | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3682 | fix y assume "y \<in> set xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3683 | then obtain j where "j < length xs" and "xs ! j = y" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3684 | unfolding in_set_conv_nth by blast | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3685 | with Cons.prems[of 0 "Suc j"] | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3686 | have "x \<le> y" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3687 | by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3688 | } | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3689 | ultimately | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3690 | show ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3691 | unfolding sorted_Cons by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3692 | qed simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3693 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3694 | lemma sorted_equals_nth_mono: | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3695 | "sorted xs = (\<forall>j < length xs. \<forall>i \<le> j. xs ! i \<le> xs ! j)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3696 | by (auto intro: sorted_nth_monoI sorted_nth_mono) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3697 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3698 | lemma set_insort: "set(insort_key f x xs) = insert x (set xs)" | 
| 24616 | 3699 | by (induct xs) auto | 
| 3700 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3701 | lemma set_sort[simp]: "set(sort_key f xs) = set xs" | 
| 24616 | 3702 | by (induct xs) (simp_all add:set_insort) | 
| 3703 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3704 | lemma distinct_insort: "distinct (insort_key f x xs) = (x \<notin> set xs \<and> distinct xs)" | 
| 24616 | 3705 | by(induct xs)(auto simp:set_insort) | 
| 3706 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3707 | lemma distinct_sort[simp]: "distinct (sort_key f xs) = distinct xs" | 
| 24616 | 3708 | by(induct xs)(simp_all add:distinct_insort set_sort) | 
| 3709 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3710 | lemma sorted_insort_key: "sorted (map f (insort_key f x xs)) = sorted (map f xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3711 | by(induct xs)(auto simp:sorted_Cons set_insort) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3712 | |
| 24616 | 3713 | lemma sorted_insort: "sorted (insort x xs) = sorted xs" | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3714 | using sorted_insort_key[where f="\<lambda>x. x"] by simp | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3715 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3716 | theorem sorted_sort_key[simp]: "sorted (map f (sort_key f xs))" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3717 | by(induct xs)(auto simp:sorted_insort_key) | 
| 24616 | 3718 | |
| 3719 | theorem sorted_sort[simp]: "sorted (sort xs)" | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3720 | by(induct xs)(auto simp:sorted_insort) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3721 | |
| 36851 | 3722 | lemma sorted_butlast: | 
| 3723 | assumes "xs \<noteq> []" and "sorted xs" | |
| 3724 | shows "sorted (butlast xs)" | |
| 3725 | proof - | |
| 3726 | from `xs \<noteq> []` obtain ys y where "xs = ys @ [y]" by (cases xs rule: rev_cases) auto | |
| 3727 | with `sorted xs` show ?thesis by (simp add: sorted_append) | |
| 3728 | qed | |
| 3729 | ||
| 3730 | lemma insort_not_Nil [simp]: | |
| 3731 | "insort_key f a xs \<noteq> []" | |
| 3732 | by (induct xs) simp_all | |
| 3733 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3734 | lemma insort_is_Cons: "\<forall>x\<in>set xs. f a \<le> f x \<Longrightarrow> insort_key f a xs = a # xs" | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3735 | by (cases xs) auto | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3736 | |
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3737 | lemma sorted_remove1: "sorted xs \<Longrightarrow> sorted (remove1 a xs)" | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3738 | by(induct xs)(auto simp add: sorted_Cons) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3739 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3740 | lemma insort_key_remove1: "\<lbrakk> a \<in> set xs; sorted (map f xs) ; inj_on f (set xs) \<rbrakk> | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3741 | \<Longrightarrow> insort_key f a (remove1 a xs) = xs" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3742 | proof (induct xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3743 | case (Cons x xs) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3744 | thus ?case | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3745 | proof (cases "x = a") | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3746 | case False | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3747 | hence "f x \<noteq> f a" using Cons.prems by auto | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3748 | hence "f x < f a" using Cons.prems by (auto simp: sorted_Cons) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3749 | thus ?thesis using Cons by (auto simp: sorted_Cons insort_is_Cons) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3750 | qed (auto simp: sorted_Cons insort_is_Cons) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3751 | qed simp | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3752 | |
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3753 | lemma insort_remove1: "\<lbrakk> a \<in> set xs; sorted xs \<rbrakk> \<Longrightarrow> insort a (remove1 a xs) = xs" | 
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3754 | using insort_key_remove1[where f="\<lambda>x. x"] by simp | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3755 | |
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3756 | lemma sorted_remdups[simp]: | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3757 | "sorted l \<Longrightarrow> sorted (remdups l)" | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3758 | by (induct l) (auto simp: sorted_Cons) | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26073diff
changeset | 3759 | |
| 24645 | 3760 | lemma sorted_distinct_set_unique: | 
| 3761 | assumes "sorted xs" "distinct xs" "sorted ys" "distinct ys" "set xs = set ys" | |
| 3762 | shows "xs = ys" | |
| 3763 | proof - | |
| 26734 | 3764 | from assms have 1: "length xs = length ys" by (auto dest!: distinct_card) | 
| 24645 | 3765 | from assms show ?thesis | 
| 3766 | proof(induct rule:list_induct2[OF 1]) | |
| 3767 | case 1 show ?case by simp | |
| 3768 | next | |
| 3769 | case 2 thus ?case by (simp add:sorted_Cons) | |
| 3770 | (metis Diff_insert_absorb antisym insertE insert_iff) | |
| 3771 | qed | |
| 3772 | qed | |
| 3773 | ||
| 35603 | 3774 | lemma map_sorted_distinct_set_unique: | 
| 3775 | assumes "inj_on f (set xs \<union> set ys)" | |
| 3776 | assumes "sorted (map f xs)" "distinct (map f xs)" | |
| 3777 | "sorted (map f ys)" "distinct (map f ys)" | |
| 3778 | assumes "set xs = set ys" | |
| 3779 | shows "xs = ys" | |
| 3780 | proof - | |
| 3781 | from assms have "map f xs = map f ys" | |
| 3782 | by (simp add: sorted_distinct_set_unique) | |
| 3783 | moreover with `inj_on f (set xs \<union> set ys)` show "xs = ys" | |
| 3784 | by (blast intro: map_inj_on) | |
| 3785 | qed | |
| 3786 | ||
| 24645 | 3787 | lemma finite_sorted_distinct_unique: | 
| 3788 | shows "finite A \<Longrightarrow> EX! xs. set xs = A & sorted xs & distinct xs" | |
| 3789 | apply(drule finite_distinct_list) | |
| 3790 | apply clarify | |
| 3791 | apply(rule_tac a="sort xs" in ex1I) | |
| 3792 | apply (auto simp: sorted_distinct_set_unique) | |
| 3793 | done | |
| 3794 | ||
| 29626 | 3795 | lemma sorted_take: | 
| 3796 | "sorted xs \<Longrightarrow> sorted (take n xs)" | |
| 3797 | proof (induct xs arbitrary: n rule: sorted.induct) | |
| 3798 | case 1 show ?case by simp | |
| 3799 | next | |
| 3800 | case 2 show ?case by (cases n) simp_all | |
| 3801 | next | |
| 3802 | case (3 x y xs) | |
| 3803 | then have "x \<le> y" by simp | |
| 3804 | show ?case proof (cases n) | |
| 3805 | case 0 then show ?thesis by simp | |
| 3806 | next | |
| 3807 | case (Suc m) | |
| 3808 | with 3 have "sorted (take m (y # xs))" by simp | |
| 3809 | with Suc `x \<le> y` show ?thesis by (cases m) simp_all | |
| 3810 | qed | |
| 3811 | qed | |
| 3812 | ||
| 3813 | lemma sorted_drop: | |
| 3814 | "sorted xs \<Longrightarrow> sorted (drop n xs)" | |
| 3815 | proof (induct xs arbitrary: n rule: sorted.induct) | |
| 3816 | case 1 show ?case by simp | |
| 3817 | next | |
| 3818 | case 2 show ?case by (cases n) simp_all | |
| 3819 | next | |
| 3820 | case 3 then show ?case by (cases n) simp_all | |
| 3821 | qed | |
| 3822 | ||
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3823 | lemma sorted_dropWhile: "sorted xs \<Longrightarrow> sorted (dropWhile P xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3824 | unfolding dropWhile_eq_drop by (rule sorted_drop) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3825 | |
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3826 | lemma sorted_takeWhile: "sorted xs \<Longrightarrow> sorted (takeWhile P xs)" | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33593diff
changeset | 3827 | apply (subst takeWhile_eq_take) by (rule sorted_take) | 
| 29626 | 3828 | |
| 34933 | 3829 | lemma sorted_filter: | 
| 3830 | "sorted (map f xs) \<Longrightarrow> sorted (map f (filter P xs))" | |
| 3831 | by (induct xs) (simp_all add: sorted_Cons) | |
| 3832 | ||
| 3833 | lemma foldr_max_sorted: | |
| 3834 | assumes "sorted (rev xs)" | |
| 3835 | shows "foldr max xs y = (if xs = [] then y else max (xs ! 0) y)" | |
| 3836 | using assms proof (induct xs) | |
| 3837 | case (Cons x xs) | |
| 3838 | moreover hence "sorted (rev xs)" using sorted_append by auto | |
| 3839 | ultimately show ?case | |
| 3840 | by (cases xs, auto simp add: sorted_append max_def) | |
| 3841 | qed simp | |
| 3842 | ||
| 3843 | lemma filter_equals_takeWhile_sorted_rev: | |
| 3844 | assumes sorted: "sorted (rev (map f xs))" | |
| 3845 | shows "[x \<leftarrow> xs. t < f x] = takeWhile (\<lambda> x. t < f x) xs" | |
| 3846 | (is "filter ?P xs = ?tW") | |
| 3847 | proof (rule takeWhile_eq_filter[symmetric]) | |
| 3848 | let "?dW" = "dropWhile ?P xs" | |
| 3849 | fix x assume "x \<in> set ?dW" | |
| 3850 | then obtain i where i: "i < length ?dW" and nth_i: "x = ?dW ! i" | |
| 3851 | unfolding in_set_conv_nth by auto | |
| 3852 | hence "length ?tW + i < length (?tW @ ?dW)" | |
| 3853 | unfolding length_append by simp | |
| 3854 | hence i': "length (map f ?tW) + i < length (map f xs)" by simp | |
| 3855 | have "(map f ?tW @ map f ?dW) ! (length (map f ?tW) + i) \<le> | |
| 3856 | (map f ?tW @ map f ?dW) ! (length (map f ?tW) + 0)" | |
| 3857 | using sorted_rev_nth_mono[OF sorted _ i', of "length ?tW"] | |
| 3858 | unfolding map_append[symmetric] by simp | |
| 3859 | hence "f x \<le> f (?dW ! 0)" | |
| 3860 | unfolding nth_append_length_plus nth_i | |
| 3861 | using i preorder_class.le_less_trans[OF le0 i] by simp | |
| 3862 | also have "... \<le> t" | |
| 3863 | using hd_dropWhile[of "?P" xs] le0[THEN preorder_class.le_less_trans, OF i] | |
| 3864 | using hd_conv_nth[of "?dW"] by simp | |
| 3865 | finally show "\<not> t < f x" by simp | |
| 3866 | qed | |
| 3867 | ||
| 35608 | 3868 | lemma set_insort_insert: | 
| 3869 | "set (insort_insert x xs) = insert x (set xs)" | |
| 3870 | by (auto simp add: insort_insert_def set_insort) | |
| 3871 | ||
| 3872 | lemma distinct_insort_insert: | |
| 3873 | assumes "distinct xs" | |
| 3874 | shows "distinct (insort_insert x xs)" | |
| 3875 | using assms by (induct xs) (auto simp add: insort_insert_def set_insort) | |
| 3876 | ||
| 3877 | lemma sorted_insort_insert: | |
| 3878 | assumes "sorted xs" | |
| 3879 | shows "sorted (insort_insert x xs)" | |
| 3880 | using assms by (simp add: insort_insert_def sorted_insort) | |
| 3881 | ||
| 37107 | 3882 | lemma filter_insort_key_triv: | 
| 3883 | "\<not> P x \<Longrightarrow> filter P (insort_key f x xs) = filter P xs" | |
| 3884 | by (induct xs) simp_all | |
| 3885 | ||
| 3886 | lemma filter_insort_key: | |
| 3887 | "sorted (map f xs) \<Longrightarrow> P x \<Longrightarrow> filter P (insort_key f x xs) = insort_key f x (filter P xs)" | |
| 3888 | using assms by (induct xs) | |
| 3889 | (auto simp add: sorted_Cons, subst insort_is_Cons, auto) | |
| 3890 | ||
| 3891 | lemma filter_sort_key: | |
| 3892 | "filter P (sort_key f xs) = sort_key f (filter P xs)" | |
| 3893 | by (induct xs) (simp_all add: filter_insort_key_triv filter_insort_key) | |
| 3894 | ||
| 3895 | lemma sorted_same [simp]: | |
| 3896 | "sorted [x\<leftarrow>xs. x = f xs]" | |
| 3897 | proof (induct xs arbitrary: f) | |
| 3898 | case Nil then show ?case by simp | |
| 3899 | next | |
| 3900 | case (Cons x xs) | |
| 3901 | then have "sorted [y\<leftarrow>xs . y = (\<lambda>xs. x) xs]" . | |
| 3902 | moreover from Cons have "sorted [y\<leftarrow>xs . y = (f \<circ> Cons x) xs]" . | |
| 3903 | ultimately show ?case by (simp_all add: sorted_Cons) | |
| 3904 | qed | |
| 3905 | ||
| 3906 | lemma remove1_insort [simp]: | |
| 3907 | "remove1 x (insort x xs) = xs" | |
| 3908 | by (induct xs) simp_all | |
| 3909 | ||
| 24616 | 3910 | end | 
| 3911 | ||
| 25277 | 3912 | lemma sorted_upt[simp]: "sorted[i..<j]" | 
| 3913 | by (induct j) (simp_all add:sorted_append) | |
| 3914 | ||
| 32415 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3915 | lemma sorted_upto[simp]: "sorted[i..j]" | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3916 | apply(induct i j rule:upto.induct) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3917 | apply(subst upto.simps) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3918 | apply(simp add:sorted_Cons) | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3919 | done | 
| 
1dddf2f64266
got rid of complicated class finite_intvl_succ and defined "upto" directly on int, the only instance of the class.
 nipkow parents: 
32078diff
changeset | 3920 | |
| 35115 | 3921 | |
| 3922 | subsubsection {* @{const transpose} on sorted lists *}
 | |
| 34933 | 3923 | |
| 3924 | lemma sorted_transpose[simp]: | |
| 3925 | shows "sorted (rev (map length (transpose xs)))" | |
| 3926 | by (auto simp: sorted_equals_nth_mono rev_nth nth_transpose | |
| 3927 | length_filter_conv_card intro: card_mono) | |
| 3928 | ||
| 3929 | lemma transpose_max_length: | |
| 3930 | "foldr (\<lambda>xs. max (length xs)) (transpose xs) 0 = length [x \<leftarrow> xs. x \<noteq> []]" | |
| 3931 | (is "?L = ?R") | |
| 3932 | proof (cases "transpose xs = []") | |
| 3933 | case False | |
| 3934 | have "?L = foldr max (map length (transpose xs)) 0" | |
| 3935 | by (simp add: foldr_map comp_def) | |
| 3936 | also have "... = length (transpose xs ! 0)" | |
| 3937 | using False sorted_transpose by (simp add: foldr_max_sorted) | |
| 3938 | finally show ?thesis | |
| 3939 | using False by (simp add: nth_transpose) | |
| 3940 | next | |
| 3941 | case True | |
| 3942 | hence "[x \<leftarrow> xs. x \<noteq> []] = []" | |
| 3943 | by (auto intro!: filter_False simp: transpose_empty) | |
| 3944 | thus ?thesis by (simp add: transpose_empty True) | |
| 3945 | qed | |
| 3946 | ||
| 3947 | lemma length_transpose_sorted: | |
| 3948 | fixes xs :: "'a list list" | |
| 3949 | assumes sorted: "sorted (rev (map length xs))" | |
| 3950 | shows "length (transpose xs) = (if xs = [] then 0 else length (xs ! 0))" | |
| 3951 | proof (cases "xs = []") | |
| 3952 | case False | |
| 3953 | thus ?thesis | |
| 3954 | using foldr_max_sorted[OF sorted] False | |
| 3955 | unfolding length_transpose foldr_map comp_def | |
| 3956 | by simp | |
| 3957 | qed simp | |
| 3958 | ||
| 3959 | lemma nth_nth_transpose_sorted[simp]: | |
| 3960 | fixes xs :: "'a list list" | |
| 3961 | assumes sorted: "sorted (rev (map length xs))" | |
| 3962 | and i: "i < length (transpose xs)" | |
| 3963 | and j: "j < length [ys \<leftarrow> xs. i < length ys]" | |
| 3964 | shows "transpose xs ! i ! j = xs ! j ! i" | |
| 3965 | using j filter_equals_takeWhile_sorted_rev[OF sorted, of i] | |
| 3966 | nth_transpose[OF i] nth_map[OF j] | |
| 3967 | by (simp add: takeWhile_nth) | |
| 3968 | ||
| 3969 | lemma transpose_column_length: | |
| 3970 | fixes xs :: "'a list list" | |
| 3971 | assumes sorted: "sorted (rev (map length xs))" and "i < length xs" | |
| 3972 | shows "length (filter (\<lambda>ys. i < length ys) (transpose xs)) = length (xs ! i)" | |
| 3973 | proof - | |
| 3974 | have "xs \<noteq> []" using `i < length xs` by auto | |
| 3975 | note filter_equals_takeWhile_sorted_rev[OF sorted, simp] | |
| 3976 |   { fix j assume "j \<le> i"
 | |
| 3977 | note sorted_rev_nth_mono[OF sorted, of j i, simplified, OF this `i < length xs`] | |
| 3978 | } note sortedE = this[consumes 1] | |
| 3979 | ||
| 3980 |   have "{j. j < length (transpose xs) \<and> i < length (transpose xs ! j)}
 | |
| 3981 |     = {..< length (xs ! i)}"
 | |
| 3982 | proof safe | |
| 3983 | fix j | |
| 3984 | assume "j < length (transpose xs)" and "i < length (transpose xs ! j)" | |
| 3985 | with this(2) nth_transpose[OF this(1)] | |
| 3986 | have "i < length (takeWhile (\<lambda>ys. j < length ys) xs)" by simp | |
| 3987 | from nth_mem[OF this] takeWhile_nth[OF this] | |
| 3988 | show "j < length (xs ! i)" by (auto dest: set_takeWhileD) | |
| 3989 | next | |
| 3990 | fix j assume "j < length (xs ! i)" | |
| 3991 | thus "j < length (transpose xs)" | |
| 3992 | using foldr_max_sorted[OF sorted] `xs \<noteq> []` sortedE[OF le0] | |
| 3993 | by (auto simp: length_transpose comp_def foldr_map) | |
| 3994 | ||
| 3995 | have "Suc i \<le> length (takeWhile (\<lambda>ys. j < length ys) xs)" | |
| 3996 | using `i < length xs` `j < length (xs ! i)` less_Suc_eq_le | |
| 3997 | by (auto intro!: length_takeWhile_less_P_nth dest!: sortedE) | |
| 3998 | with nth_transpose[OF `j < length (transpose xs)`] | |
| 3999 | show "i < length (transpose xs ! j)" by simp | |
| 4000 | qed | |
| 4001 | thus ?thesis by (simp add: length_filter_conv_card) | |
| 4002 | qed | |
| 4003 | ||
| 4004 | lemma transpose_column: | |
| 4005 | fixes xs :: "'a list list" | |
| 4006 | assumes sorted: "sorted (rev (map length xs))" and "i < length xs" | |
| 4007 | shows "map (\<lambda>ys. ys ! i) (filter (\<lambda>ys. i < length ys) (transpose xs)) | |
| 4008 | = xs ! i" (is "?R = _") | |
| 4009 | proof (rule nth_equalityI, safe) | |
| 4010 | show length: "length ?R = length (xs ! i)" | |
| 4011 | using transpose_column_length[OF assms] by simp | |
| 4012 | ||
| 4013 | fix j assume j: "j < length ?R" | |
| 4014 | note * = less_le_trans[OF this, unfolded length_map, OF length_filter_le] | |
| 4015 | from j have j_less: "j < length (xs ! i)" using length by simp | |
| 4016 | have i_less_tW: "Suc i \<le> length (takeWhile (\<lambda>ys. Suc j \<le> length ys) xs)" | |
| 4017 | proof (rule length_takeWhile_less_P_nth) | |
| 4018 | show "Suc i \<le> length xs" using `i < length xs` by simp | |
| 4019 | fix k assume "k < Suc i" | |
| 4020 | hence "k \<le> i" by auto | |
| 4021 | with sorted_rev_nth_mono[OF sorted this] `i < length xs` | |
| 4022 | have "length (xs ! i) \<le> length (xs ! k)" by simp | |
| 4023 | thus "Suc j \<le> length (xs ! k)" using j_less by simp | |
| 4024 | qed | |
| 4025 | have i_less_filter: "i < length [ys\<leftarrow>xs . j < length ys]" | |
| 4026 | unfolding filter_equals_takeWhile_sorted_rev[OF sorted, of j] | |
| 4027 | using i_less_tW by (simp_all add: Suc_le_eq) | |
| 4028 | from j show "?R ! j = xs ! i ! j" | |
| 4029 | unfolding filter_equals_takeWhile_sorted_rev[OF sorted_transpose, of i] | |
| 4030 | by (simp add: takeWhile_nth nth_nth_transpose_sorted[OF sorted * i_less_filter]) | |
| 4031 | qed | |
| 4032 | ||
| 4033 | lemma transpose_transpose: | |
| 4034 | fixes xs :: "'a list list" | |
| 4035 | assumes sorted: "sorted (rev (map length xs))" | |
| 4036 | shows "transpose (transpose xs) = takeWhile (\<lambda>x. x \<noteq> []) xs" (is "?L = ?R") | |
| 4037 | proof - | |
| 4038 | have len: "length ?L = length ?R" | |
| 4039 | unfolding length_transpose transpose_max_length | |
| 4040 | using filter_equals_takeWhile_sorted_rev[OF sorted, of 0] | |
| 4041 | by simp | |
| 4042 | ||
| 4043 |   { fix i assume "i < length ?R"
 | |
| 4044 | with less_le_trans[OF _ length_takeWhile_le[of _ xs]] | |
| 4045 | have "i < length xs" by simp | |
| 4046 | } note * = this | |
| 4047 | show ?thesis | |
| 4048 | by (rule nth_equalityI) | |
| 4049 | (simp_all add: len nth_transpose transpose_column[OF sorted] * takeWhile_nth) | |
| 4050 | qed | |
| 24616 | 4051 | |
| 34934 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4052 | theorem transpose_rectangle: | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4053 | assumes "xs = [] \<Longrightarrow> n = 0" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4054 | assumes rect: "\<And> i. i < length xs \<Longrightarrow> length (xs ! i) = n" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4055 | shows "transpose xs = map (\<lambda> i. map (\<lambda> j. xs ! j ! i) [0..<length xs]) [0..<n]" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4056 | (is "?trans = ?map") | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4057 | proof (rule nth_equalityI) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4058 | have "sorted (rev (map length xs))" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4059 | by (auto simp: rev_nth rect intro!: sorted_nth_monoI) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4060 | from foldr_max_sorted[OF this] assms | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4061 | show len: "length ?trans = length ?map" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4062 | by (simp_all add: length_transpose foldr_map comp_def) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4063 | moreover | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4064 |   { fix i assume "i < n" hence "[ys\<leftarrow>xs . i < length ys] = xs"
 | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4065 | using rect by (auto simp: in_set_conv_nth intro!: filter_True) } | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4066 | ultimately show "\<forall>i < length ?trans. ?trans ! i = ?map ! i" | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4067 | by (auto simp: nth_transpose intro: nth_equalityI) | 
| 
440605046777
Added transpose_rectangle, when the input list is rectangular.
 hoelzl parents: 
34933diff
changeset | 4068 | qed | 
| 24616 | 4069 | |
| 35115 | 4070 | |
| 25069 | 4071 | subsubsection {* @{text sorted_list_of_set} *}
 | 
| 4072 | ||
| 4073 | text{* This function maps (finite) linearly ordered sets to sorted
 | |
| 4074 | lists. Warning: in most cases it is not a good idea to convert from | |
| 4075 | sets to lists but one should convert in the other direction (via | |
| 4076 | @{const set}). *}
 | |
| 4077 | ||
| 4078 | context linorder | |
| 4079 | begin | |
| 4080 | ||
| 35195 | 4081 | definition sorted_list_of_set :: "'a set \<Rightarrow> 'a list" where | 
| 4082 | "sorted_list_of_set = Finite_Set.fold insort []" | |
| 4083 | ||
| 4084 | lemma sorted_list_of_set_empty [simp]: | |
| 4085 |   "sorted_list_of_set {} = []"
 | |
| 4086 | by (simp add: sorted_list_of_set_def) | |
| 4087 | ||
| 4088 | lemma sorted_list_of_set_insert [simp]: | |
| 4089 | assumes "finite A" | |
| 4090 |   shows "sorted_list_of_set (insert x A) = insort x (sorted_list_of_set (A - {x}))"
 | |
| 4091 | proof - | |
| 4092 | interpret fun_left_comm insort by (fact fun_left_comm_insort) | |
| 4093 | with assms show ?thesis by (simp add: sorted_list_of_set_def fold_insert_remove) | |
| 4094 | qed | |
| 4095 | ||
| 4096 | lemma sorted_list_of_set [simp]: | |
| 4097 | "finite A \<Longrightarrow> set (sorted_list_of_set A) = A \<and> sorted (sorted_list_of_set A) | |
| 4098 | \<and> distinct (sorted_list_of_set A)" | |
| 4099 | by (induct A rule: finite_induct) (simp_all add: set_insort sorted_insort distinct_insort) | |
| 4100 | ||
| 4101 | lemma sorted_list_of_set_sort_remdups: | |
| 4102 | "sorted_list_of_set (set xs) = sort (remdups xs)" | |
| 4103 | proof - | |
| 4104 | interpret fun_left_comm insort by (fact fun_left_comm_insort) | |
| 4105 | show ?thesis by (simp add: sort_foldl_insort sorted_list_of_set_def fold_set_remdups) | |
| 4106 | qed | |
| 25069 | 4107 | |
| 37107 | 4108 | lemma sorted_list_of_set_remove: | 
| 4109 | assumes "finite A" | |
| 4110 |   shows "sorted_list_of_set (A - {x}) = remove1 x (sorted_list_of_set A)"
 | |
| 4111 | proof (cases "x \<in> A") | |
| 4112 | case False with assms have "x \<notin> set (sorted_list_of_set A)" by simp | |
| 4113 | with False show ?thesis by (simp add: remove1_idem) | |
| 4114 | next | |
| 4115 | case True then obtain B where A: "A = insert x B" by (rule Set.set_insert) | |
| 4116 | with assms show ?thesis by simp | |
| 4117 | qed | |
| 4118 | ||
| 25069 | 4119 | end | 
| 4120 | ||
| 37107 | 4121 | lemma sorted_list_of_set_range [simp]: | 
| 4122 |   "sorted_list_of_set {m..<n} = [m..<n]"
 | |
| 4123 | by (rule sorted_distinct_set_unique) simp_all | |
| 4124 | ||
| 4125 | ||
| 35115 | 4126 | |
| 15392 | 4127 | subsubsection {* @{text lists}: the list-forming operator over sets *}
 | 
| 15302 | 4128 | |
| 23740 | 4129 | inductive_set | 
| 22262 | 4130 | lists :: "'a set => 'a list set" | 
| 23740 | 4131 | for A :: "'a set" | 
| 4132 | where | |
| 4133 | Nil [intro!]: "[]: lists A" | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4134 | | Cons [intro!,no_atp]: "[| a: A; l: lists A|] ==> a#l : lists A" | 
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4135 | |
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4136 | inductive_cases listsE [elim!,no_atp]: "x#l : lists A" | 
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4137 | inductive_cases listspE [elim!,no_atp]: "listsp A (x # l)" | 
| 23740 | 4138 | |
| 4139 | lemma listsp_mono [mono]: "A \<le> B ==> listsp A \<le> listsp B" | |
| 34064 
eee04bbbae7e
avoid dependency on implicit dest rule predicate1D in proofs
 haftmann parents: 
34007diff
changeset | 4140 | by (rule predicate1I, erule listsp.induct, (blast dest: predicate1D)+) | 
| 26795 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 4141 | |
| 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 4142 | lemmas lists_mono = listsp_mono [to_set pred_subset_eq] | 
| 22262 | 4143 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4144 | lemma listsp_infI: | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4145 | assumes l: "listsp A l" shows "listsp B l ==> listsp (inf A B) l" using l | 
| 24349 | 4146 | by induct blast+ | 
| 15302 | 4147 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4148 | lemmas lists_IntI = listsp_infI [to_set] | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4149 | |
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4150 | lemma listsp_inf_eq [simp]: "listsp (inf A B) = inf (listsp A) (listsp B)" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4151 | proof (rule mono_inf [where f=listsp, THEN order_antisym]) | 
| 22262 | 4152 | show "mono listsp" by (simp add: mono_def listsp_mono) | 
| 26795 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 4153 | show "inf (listsp A) (listsp B) \<le> listsp (inf A B)" by (blast intro!: listsp_infI predicate1I) | 
| 14388 | 4154 | qed | 
| 4155 | ||
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4156 | lemmas listsp_conj_eq [simp] = listsp_inf_eq [simplified inf_fun_eq inf_bool_eq] | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 4157 | |
| 26795 
a27607030a1c
- Explicitely applied predicate1I in a few proofs, because it is no longer
 berghofe parents: 
26771diff
changeset | 4158 | lemmas lists_Int_eq [simp] = listsp_inf_eq [to_set pred_equals_eq] | 
| 22262 | 4159 | |
| 4160 | lemma append_in_listsp_conv [iff]: | |
| 4161 | "(listsp A (xs @ ys)) = (listsp A xs \<and> listsp A ys)" | |
| 15302 | 4162 | by (induct xs) auto | 
| 4163 | ||
| 22262 | 4164 | lemmas append_in_lists_conv [iff] = append_in_listsp_conv [to_set] | 
| 4165 | ||
| 4166 | lemma in_listsp_conv_set: "(listsp A xs) = (\<forall>x \<in> set xs. A x)" | |
| 4167 | -- {* eliminate @{text listsp} in favour of @{text set} *}
 | |
| 15302 | 4168 | by (induct xs) auto | 
| 4169 | ||
| 22262 | 4170 | lemmas in_lists_conv_set = in_listsp_conv_set [to_set] | 
| 4171 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4172 | lemma in_listspD [dest!,no_atp]: "listsp A xs ==> \<forall>x\<in>set xs. A x" | 
| 22262 | 4173 | by (rule in_listsp_conv_set [THEN iffD1]) | 
| 4174 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4175 | lemmas in_listsD [dest!,no_atp] = in_listspD [to_set] | 
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4176 | |
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4177 | lemma in_listspI [intro!,no_atp]: "\<forall>x\<in>set xs. A x ==> listsp A xs" | 
| 22262 | 4178 | by (rule in_listsp_conv_set [THEN iffD2]) | 
| 4179 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35827diff
changeset | 4180 | lemmas in_listsI [intro!,no_atp] = in_listspI [to_set] | 
| 15302 | 4181 | |
| 4182 | lemma lists_UNIV [simp]: "lists UNIV = UNIV" | |
| 4183 | by auto | |
| 4184 | ||
| 17086 | 4185 | |
| 35115 | 4186 | subsubsection {* Inductive definition for membership *}
 | 
| 17086 | 4187 | |
| 23740 | 4188 | inductive ListMem :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 22262 | 4189 | where | 
| 4190 | elem: "ListMem x (x # xs)" | |
| 4191 | | insert: "ListMem x xs \<Longrightarrow> ListMem x (y # xs)" | |
| 4192 | ||
| 4193 | lemma ListMem_iff: "(ListMem x xs) = (x \<in> set xs)" | |
| 17086 | 4194 | apply (rule iffI) | 
| 4195 | apply (induct set: ListMem) | |
| 4196 | apply auto | |
| 4197 | apply (induct xs) | |
| 4198 | apply (auto intro: ListMem.intros) | |
| 4199 | done | |
| 4200 | ||
| 4201 | ||
| 35115 | 4202 | subsubsection {* Lists as Cartesian products *}
 | 
| 15302 | 4203 | |
| 4204 | text{*@{text"set_Cons A Xs"}: the set of lists with head drawn from
 | |
| 4205 | @{term A} and tail drawn from @{term Xs}.*}
 | |
| 4206 | ||
| 34941 | 4207 | definition | 
| 4208 | set_Cons :: "'a set \<Rightarrow> 'a list set \<Rightarrow> 'a list set" where | |
| 37767 | 4209 |   "set_Cons A XS = {z. \<exists>x xs. z = x # xs \<and> x \<in> A \<and> xs \<in> XS}"
 | 
| 15302 | 4210 | |
| 17724 | 4211 | lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A"
 | 
| 15302 | 4212 | by (auto simp add: set_Cons_def) | 
| 4213 | ||
| 4214 | text{*Yields the set of lists, all of the same length as the argument and
 | |
| 4215 | with elements drawn from the corresponding element of the argument.*} | |
| 4216 | ||
| 4217 | primrec | |
| 34941 | 4218 | listset :: "'a set list \<Rightarrow> 'a list set" where | 
| 4219 |      "listset [] = {[]}"
 | |
| 4220 | | "listset (A # As) = set_Cons A (listset As)" | |
| 15302 | 4221 | |
| 4222 | ||
| 35115 | 4223 | subsection {* Relations on Lists *}
 | 
| 15656 | 4224 | |
| 4225 | subsubsection {* Length Lexicographic Ordering *}
 | |
| 4226 | ||
| 4227 | text{*These orderings preserve well-foundedness: shorter lists 
 | |
| 4228 | precede longer lists. These ordering are not used in dictionaries.*} | |
| 34941 | 4229 | |
| 4230 | primrec -- {*The lexicographic ordering for lists of the specified length*}
 | |
| 4231 |   lexn :: "('a \<times> 'a) set \<Rightarrow> nat \<Rightarrow> ('a list \<times> 'a list) set" where
 | |
| 37767 | 4232 |     "lexn r 0 = {}"
 | 
| 4233 | | "lexn r (Suc n) = (prod_fun (%(x, xs). x#xs) (%(x, xs). x#xs) ` (r <*lex*> lexn r n)) Int | |
| 34941 | 4234 |       {(xs, ys). length xs = Suc n \<and> length ys = Suc n}"
 | 
| 4235 | ||
| 4236 | definition | |
| 4237 |   lex :: "('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set" where
 | |
| 37767 | 4238 |   "lex r = (\<Union>n. lexn r n)" -- {*Holds only between lists of the same length*}
 | 
| 34941 | 4239 | |
| 4240 | definition | |
| 4241 |   lenlex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set" where
 | |
| 37767 | 4242 | "lenlex r = inv_image (less_than <*lex*> lex r) (\<lambda>xs. (length xs, xs))" | 
| 34941 | 4243 |         -- {*Compares lists by their length and then lexicographically*}
 | 
| 15302 | 4244 | |
| 4245 | lemma wf_lexn: "wf r ==> wf (lexn r n)" | |
| 4246 | apply (induct n, simp, simp) | |
| 4247 | apply(rule wf_subset) | |
| 4248 | prefer 2 apply (rule Int_lower1) | |
| 4249 | apply(rule wf_prod_fun_image) | |
| 4250 | prefer 2 apply (rule inj_onI, auto) | |
| 4251 | done | |
| 4252 | ||
| 4253 | lemma lexn_length: | |
| 24526 | 4254 | "(xs, ys) : lexn r n ==> length xs = n \<and> length ys = n" | 
| 4255 | by (induct n arbitrary: xs ys) auto | |
| 15302 | 4256 | |
| 4257 | lemma wf_lex [intro!]: "wf r ==> wf (lex r)" | |
| 4258 | apply (unfold lex_def) | |
| 4259 | apply (rule wf_UN) | |
| 4260 | apply (blast intro: wf_lexn, clarify) | |
| 4261 | apply (rename_tac m n) | |
| 4262 | apply (subgoal_tac "m \<noteq> n") | |
| 4263 | prefer 2 apply blast | |
| 4264 | apply (blast dest: lexn_length not_sym) | |
| 4265 | done | |
| 4266 | ||
| 4267 | lemma lexn_conv: | |
| 15656 | 4268 | "lexn r n = | 
| 4269 |     {(xs,ys). length xs = n \<and> length ys = n \<and>
 | |
| 4270 | (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}" | |
| 18423 | 4271 | apply (induct n, simp) | 
| 15302 | 4272 | apply (simp add: image_Collect lex_prod_def, safe, blast) | 
| 4273 | apply (rule_tac x = "ab # xys" in exI, simp) | |
| 4274 | apply (case_tac xys, simp_all, blast) | |
| 4275 | done | |
| 4276 | ||
| 4277 | lemma lex_conv: | |
| 15656 | 4278 | "lex r = | 
| 4279 |     {(xs,ys). length xs = length ys \<and>
 | |
| 4280 | (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}" | |
| 15302 | 4281 | by (force simp add: lex_def lexn_conv) | 
| 4282 | ||
| 15693 | 4283 | lemma wf_lenlex [intro!]: "wf r ==> wf (lenlex r)" | 
| 4284 | by (unfold lenlex_def) blast | |
| 4285 | ||
| 4286 | lemma lenlex_conv: | |
| 4287 |     "lenlex r = {(xs,ys). length xs < length ys |
 | |
| 15656 | 4288 | length xs = length ys \<and> (xs, ys) : lex r}" | 
| 30198 | 4289 | by (simp add: lenlex_def Id_on_def lex_prod_def inv_image_def) | 
| 15302 | 4290 | |
| 4291 | lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r" | |
| 4292 | by (simp add: lex_conv) | |
| 4293 | ||
| 4294 | lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r" | |
| 4295 | by (simp add:lex_conv) | |
| 4296 | ||
| 18447 | 4297 | lemma Cons_in_lex [simp]: | 
| 15656 | 4298 | "((x # xs, y # ys) : lex r) = | 
| 4299 | ((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)" | |
| 15302 | 4300 | apply (simp add: lex_conv) | 
| 4301 | apply (rule iffI) | |
| 4302 | prefer 2 apply (blast intro: Cons_eq_appendI, clarify) | |
| 4303 | apply (case_tac xys, simp, simp) | |
| 4304 | apply blast | |
| 4305 | done | |
| 4306 | ||
| 4307 | ||
| 15656 | 4308 | subsubsection {* Lexicographic Ordering *}
 | 
| 4309 | ||
| 4310 | text {* Classical lexicographic ordering on lists, ie. "a" < "ab" < "b".
 | |
| 4311 |     This ordering does \emph{not} preserve well-foundedness.
 | |
| 17090 | 4312 | Author: N. Voelker, March 2005. *} | 
| 15656 | 4313 | |
| 34941 | 4314 | definition | 
| 4315 |   lexord :: "('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set" where
 | |
| 37767 | 4316 |   "lexord r = {(x,y ). \<exists> a v. y = x @ a # v \<or>
 | 
| 15656 | 4317 | (\<exists> u a b v w. (a,b) \<in> r \<and> x = u @ (a # v) \<and> y = u @ (b # w))}" | 
| 4318 | ||
| 4319 | lemma lexord_Nil_left[simp]: "([],y) \<in> lexord r = (\<exists> a x. y = a # x)" | |
| 24349 | 4320 | by (unfold lexord_def, induct_tac y, auto) | 
| 15656 | 4321 | |
| 4322 | lemma lexord_Nil_right[simp]: "(x,[]) \<notin> lexord r" | |
| 24349 | 4323 | by (unfold lexord_def, induct_tac x, auto) | 
| 15656 | 4324 | |
| 4325 | lemma lexord_cons_cons[simp]: | |
| 4326 | "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r | (a = b & (x,y)\<in> lexord r))" | |
| 4327 | apply (unfold lexord_def, safe, simp_all) | |
| 4328 | apply (case_tac u, simp, simp) | |
| 4329 | apply (case_tac u, simp, clarsimp, blast, blast, clarsimp) | |
| 4330 | apply (erule_tac x="b # u" in allE) | |
| 4331 | by force | |
| 4332 | ||
| 4333 | lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons | |
| 4334 | ||
| 4335 | lemma lexord_append_rightI: "\<exists> b z. y = b # z \<Longrightarrow> (x, x @ y) \<in> lexord r" | |
| 24349 | 4336 | by (induct_tac x, auto) | 
| 15656 | 4337 | |
| 4338 | lemma lexord_append_left_rightI: | |
| 4339 | "(a,b) \<in> r \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r" | |
| 24349 | 4340 | by (induct_tac u, auto) | 
| 15656 | 4341 | |
| 4342 | lemma lexord_append_leftI: " (u,v) \<in> lexord r \<Longrightarrow> (x @ u, x @ v) \<in> lexord r" | |
| 24349 | 4343 | by (induct x, auto) | 
| 15656 | 4344 | |
| 4345 | lemma lexord_append_leftD: | |
| 4346 | "\<lbrakk> (x @ u, x @ v) \<in> lexord r; (! a. (a,a) \<notin> r) \<rbrakk> \<Longrightarrow> (u,v) \<in> lexord r" | |
| 24349 | 4347 | by (erule rev_mp, induct_tac x, auto) | 
| 15656 | 4348 | |
| 4349 | lemma lexord_take_index_conv: | |
| 4350 | "((x,y) : lexord r) = | |
| 4351 | ((length x < length y \<and> take (length x) y = x) \<or> | |
| 4352 | (\<exists>i. i < min(length x)(length y) & take i x = take i y & (x!i,y!i) \<in> r))" | |
| 4353 | apply (unfold lexord_def Let_def, clarsimp) | |
| 4354 | apply (rule_tac f = "(% a b. a \<or> b)" in arg_cong2) | |
| 4355 | apply auto | |
| 4356 | apply (rule_tac x="hd (drop (length x) y)" in exI) | |
| 4357 | apply (rule_tac x="tl (drop (length x) y)" in exI) | |
| 4358 | apply (erule subst, simp add: min_def) | |
| 4359 | apply (rule_tac x ="length u" in exI, simp) | |
| 4360 | apply (rule_tac x ="take i x" in exI) | |
| 4361 | apply (rule_tac x ="x ! i" in exI) | |
| 4362 | apply (rule_tac x ="y ! i" in exI, safe) | |
| 4363 | apply (rule_tac x="drop (Suc i) x" in exI) | |
| 4364 | apply (drule sym, simp add: drop_Suc_conv_tl) | |
| 4365 | apply (rule_tac x="drop (Suc i) y" in exI) | |
| 4366 | by (simp add: drop_Suc_conv_tl) | |
| 4367 | ||
| 4368 | -- {* lexord is extension of partial ordering List.lex *} 
 | |
| 4369 | lemma lexord_lex: " (x,y) \<in> lex r = ((x,y) \<in> lexord r \<and> length x = length y)" | |
| 4370 | apply (rule_tac x = y in spec) | |
| 4371 | apply (induct_tac x, clarsimp) | |
| 4372 | by (clarify, case_tac x, simp, force) | |
| 4373 | ||
| 4374 | lemma lexord_irreflexive: "(! x. (x,x) \<notin> r) \<Longrightarrow> (y,y) \<notin> lexord r" | |
| 4375 | by (induct y, auto) | |
| 4376 | ||
| 4377 | lemma lexord_trans: | |
| 4378 | "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r \<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r" | |
| 4379 | apply (erule rev_mp)+ | |
| 4380 | apply (rule_tac x = x in spec) | |
| 4381 | apply (rule_tac x = z in spec) | |
| 4382 | apply ( induct_tac y, simp, clarify) | |
| 4383 | apply (case_tac xa, erule ssubst) | |
| 4384 |   apply (erule allE, erule allE) -- {* avoid simp recursion *} 
 | |
| 4385 | apply (case_tac x, simp, simp) | |
| 24632 | 4386 | apply (case_tac x, erule allE, erule allE, simp) | 
| 15656 | 4387 | apply (erule_tac x = listb in allE) | 
| 4388 | apply (erule_tac x = lista in allE, simp) | |
| 4389 | apply (unfold trans_def) | |
| 4390 | by blast | |
| 4391 | ||
| 4392 | lemma lexord_transI: "trans r \<Longrightarrow> trans (lexord r)" | |
| 24349 | 4393 | by (rule transI, drule lexord_trans, blast) | 
| 15656 | 4394 | |
| 4395 | lemma lexord_linear: "(! a b. (a,b)\<in> r | a = b | (b,a) \<in> r) \<Longrightarrow> (x,y) : lexord r | x = y | (y,x) : lexord r" | |
| 4396 | apply (rule_tac x = y in spec) | |
| 4397 | apply (induct_tac x, rule allI) | |
| 4398 | apply (case_tac x, simp, simp) | |
| 4399 | apply (rule allI, case_tac x, simp, simp) | |
| 4400 | by blast | |
| 4401 | ||
| 4402 | ||
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4403 | subsection {* Lexicographic combination of measure functions *}
 | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4404 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4405 | text {* These are useful for termination proofs *}
 | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4406 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4407 | definition | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4408 | "measures fs = inv_image (lex less_than) (%a. map (%f. f a) fs)" | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4409 | |
| 21106 
51599a81b308
Added "recdef_wf" and "simp" attribute to "wf_measures"
 krauss parents: 
21103diff
changeset | 4410 | lemma wf_measures[recdef_wf, simp]: "wf (measures fs)" | 
| 24349 | 4411 | unfolding measures_def | 
| 4412 | by blast | |
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4413 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4414 | lemma in_measures[simp]: | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4415 | "(x, y) \<in> measures [] = False" | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4416 | "(x, y) \<in> measures (f # fs) | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4417 | = (f x < f y \<or> (f x = f y \<and> (x, y) \<in> measures fs))" | 
| 24349 | 4418 | unfolding measures_def | 
| 4419 | by auto | |
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4420 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4421 | lemma measures_less: "f x < f y ==> (x, y) \<in> measures (f#fs)" | 
| 24349 | 4422 | by simp | 
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4423 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4424 | lemma measures_lesseq: "f x <= f y ==> (x, y) \<in> measures fs ==> (x, y) \<in> measures (f#fs)" | 
| 24349 | 4425 | by auto | 
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4426 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 4427 | |
| 35115 | 4428 | subsubsection {* Lifting a Relation on List Elements to the Lists *}
 | 
| 15302 | 4429 | |
| 23740 | 4430 | inductive_set | 
| 4431 |   listrel :: "('a * 'a)set => ('a list * 'a list)set"
 | |
| 4432 |   for r :: "('a * 'a)set"
 | |
| 22262 | 4433 | where | 
| 23740 | 4434 | Nil: "([],[]) \<in> listrel r" | 
| 4435 | | Cons: "[| (x,y) \<in> r; (xs,ys) \<in> listrel r |] ==> (x#xs, y#ys) \<in> listrel r" | |
| 4436 | ||
| 4437 | inductive_cases listrel_Nil1 [elim!]: "([],xs) \<in> listrel r" | |
| 4438 | inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \<in> listrel r" | |
| 4439 | inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \<in> listrel r" | |
| 4440 | inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \<in> listrel r" | |
| 15302 | 4441 | |
| 4442 | ||
| 4443 | lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s" | |
| 4444 | apply clarify | |
| 23740 | 4445 | apply (erule listrel.induct) | 
| 4446 | apply (blast intro: listrel.intros)+ | |
| 15302 | 4447 | done | 
| 4448 | ||
| 4449 | lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A" | |
| 4450 | apply clarify | |
| 23740 | 4451 | apply (erule listrel.induct, auto) | 
| 15302 | 4452 | done | 
| 4453 | ||
| 30198 | 4454 | lemma listrel_refl_on: "refl_on A r \<Longrightarrow> refl_on (lists A) (listrel r)" | 
| 4455 | apply (simp add: refl_on_def listrel_subset Ball_def) | |
| 15302 | 4456 | apply (rule allI) | 
| 4457 | apply (induct_tac x) | |
| 23740 | 4458 | apply (auto intro: listrel.intros) | 
| 15302 | 4459 | done | 
| 4460 | ||
| 4461 | lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" | |
| 4462 | apply (auto simp add: sym_def) | |
| 23740 | 4463 | apply (erule listrel.induct) | 
| 4464 | apply (blast intro: listrel.intros)+ | |
| 15302 | 4465 | done | 
| 4466 | ||
| 4467 | lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" | |
| 4468 | apply (simp add: trans_def) | |
| 4469 | apply (intro allI) | |
| 4470 | apply (rule impI) | |
| 23740 | 4471 | apply (erule listrel.induct) | 
| 4472 | apply (blast intro: listrel.intros)+ | |
| 15302 | 4473 | done | 
| 4474 | ||
| 4475 | theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)" | |
| 30198 | 4476 | by (simp add: equiv_def listrel_refl_on listrel_sym listrel_trans) | 
| 15302 | 4477 | |
| 4478 | lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
 | |
| 23740 | 4479 | by (blast intro: listrel.intros) | 
| 15302 | 4480 | |
| 4481 | lemma listrel_Cons: | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4482 |      "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4483 | by (auto simp add: set_Cons_def intro: listrel.intros) | 
| 15302 | 4484 | |
| 4485 | ||
| 26749 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4486 | subsection {* Size function *}
 | 
| 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4487 | |
| 26875 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4488 | lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (list_size f)" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4489 | by (rule is_measure_trivial) | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4490 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4491 | lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (option_size f)" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4492 | by (rule is_measure_trivial) | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4493 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4494 | lemma list_size_estimation[termination_simp]: | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4495 | "x \<in> set xs \<Longrightarrow> y < f x \<Longrightarrow> y < list_size f xs" | 
| 26749 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4496 | by (induct xs) auto | 
| 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4497 | |
| 26875 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4498 | lemma list_size_estimation'[termination_simp]: | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4499 | "x \<in> set xs \<Longrightarrow> y \<le> f x \<Longrightarrow> y \<le> list_size f xs" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4500 | by (induct xs) auto | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4501 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4502 | lemma list_size_map[simp]: "list_size f (map g xs) = list_size (f o g) xs" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4503 | by (induct xs) auto | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4504 | |
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4505 | lemma list_size_pointwise[termination_simp]: | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4506 | "(\<And>x. x \<in> set xs \<Longrightarrow> f x < g x) \<Longrightarrow> list_size f xs \<le> list_size g xs" | 
| 
e18574413bc4
Measure functions can now be declared via special rules, allowing for a
 krauss parents: 
26795diff
changeset | 4507 | by (induct xs) force+ | 
| 26749 
397a1aeede7d
* New attribute "termination_simp": Simp rules for termination proofs
 krauss parents: 
26734diff
changeset | 4508 | |
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4509 | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4510 | subsection {* Transfer *}
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4511 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4512 | definition | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4513 | embed_list :: "nat list \<Rightarrow> int list" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4514 | where | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4515 | "embed_list l = map int l" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4516 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4517 | definition | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4518 | nat_list :: "int list \<Rightarrow> bool" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4519 | where | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4520 | "nat_list l = nat_set (set l)" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4521 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4522 | definition | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4523 | return_list :: "int list \<Rightarrow> nat list" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4524 | where | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4525 | "return_list l = map nat l" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4526 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4527 | lemma transfer_nat_int_list_return_embed: "nat_list l \<longrightarrow> | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4528 | embed_list (return_list l) = l" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4529 | unfolding embed_list_def return_list_def nat_list_def nat_set_def | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4530 | apply (induct l) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4531 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4532 | done | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4533 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4534 | lemma transfer_nat_int_list_functions: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4535 | "l @ m = return_list (embed_list l @ embed_list m)" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4536 | "[] = return_list []" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4537 | unfolding return_list_def embed_list_def | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4538 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4539 | apply (induct l, auto) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4540 | apply (induct m, auto) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4541 | done | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4542 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4543 | (* | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4544 | lemma transfer_nat_int_fold1: "fold f l x = | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4545 | fold (%x. f (nat x)) (embed_list l) x"; | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4546 | *) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4547 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32960diff
changeset | 4548 | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4549 | subsection {* Code generation *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4550 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4551 | subsubsection {* Counterparts for set-related operations *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4552 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4553 | definition member :: "'a list \<Rightarrow> 'a \<Rightarrow> bool" where | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4554 | [code_post]: "member xs x \<longleftrightarrow> x \<in> set xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4555 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4556 | text {*
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4557 |   Only use @{text member} for generating executable code.  Otherwise use
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4558 |   @{prop "x \<in> set xs"} instead --- it is much easier to reason about.
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4559 | *} | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4560 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4561 | lemma member_set: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4562 | "member = set" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4563 | by (simp add: expand_fun_eq member_def mem_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4564 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4565 | lemma member_rec [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4566 | "member (x # xs) y \<longleftrightarrow> x = y \<or> member xs y" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4567 | "member [] y \<longleftrightarrow> False" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4568 | by (auto simp add: member_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4569 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4570 | lemma in_set_member [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4571 | "x \<in> set xs \<longleftrightarrow> member xs x" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4572 | by (simp add: member_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4573 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4574 | declare INFI_def [code_unfold] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4575 | declare SUPR_def [code_unfold] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4576 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4577 | declare set_map [symmetric, code_unfold] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4578 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4579 | definition list_all :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4580 | list_all_iff [code_post]: "list_all P xs \<longleftrightarrow> (\<forall>x \<in> set xs. P x)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4581 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4582 | definition list_ex :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4583 | list_ex_iff [code_post]: "list_ex P xs \<longleftrightarrow> (\<exists>x \<in> set xs. P x)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4584 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4585 | text {*
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4586 |   Usually you should prefer @{text "\<forall>x\<in>set xs"} and @{text "\<exists>x\<in>set xs"}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4587 |   over @{const list_all} and @{const list_ex} in specifications.
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4588 | *} | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4589 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4590 | lemma list_all_simps [simp, code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4591 | "list_all P (x # xs) \<longleftrightarrow> P x \<and> list_all P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4592 | "list_all P [] \<longleftrightarrow> True" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4593 | by (simp_all add: list_all_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4594 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4595 | lemma list_ex_simps [simp, code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4596 | "list_ex P (x # xs) \<longleftrightarrow> P x \<or> list_ex P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4597 | "list_ex P [] \<longleftrightarrow> False" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4598 | by (simp_all add: list_ex_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4599 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4600 | lemma Ball_set_list_all [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4601 | "Ball (set xs) P \<longleftrightarrow> list_all P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4602 | by (simp add: list_all_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4603 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4604 | lemma Bex_set_list_ex [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4605 | "Bex (set xs) P \<longleftrightarrow> list_ex P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4606 | by (simp add: list_ex_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4607 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4608 | lemma list_all_append [simp]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4609 | "list_all P (xs @ ys) \<longleftrightarrow> list_all P xs \<and> list_all P ys" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4610 | by (auto simp add: list_all_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4611 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4612 | lemma list_ex_append [simp]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4613 | "list_ex P (xs @ ys) \<longleftrightarrow> list_ex P xs \<or> list_ex P ys" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4614 | by (auto simp add: list_ex_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4615 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4616 | lemma list_all_rev [simp]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4617 | "list_all P (rev xs) \<longleftrightarrow> list_all P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4618 | by (simp add: list_all_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4619 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4620 | lemma list_ex_rev [simp]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4621 | "list_ex P (rev xs) \<longleftrightarrow> list_ex P xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4622 | by (simp add: list_ex_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4623 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4624 | lemma list_all_length: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4625 | "list_all P xs \<longleftrightarrow> (\<forall>n < length xs. P (xs ! n))" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4626 | by (auto simp add: list_all_iff set_conv_nth) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4627 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4628 | lemma list_ex_length: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4629 | "list_ex P xs \<longleftrightarrow> (\<exists>n < length xs. P (xs ! n))" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4630 | by (auto simp add: list_ex_iff set_conv_nth) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4631 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4632 | lemma list_all_cong [fundef_cong]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4633 | "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> f x = g x) \<Longrightarrow> list_all f xs = list_all g ys" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4634 | by (simp add: list_all_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4635 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4636 | lemma list_any_cong [fundef_cong]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4637 | "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> f x = g x) \<Longrightarrow> list_ex f xs = list_ex g ys" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4638 | by (simp add: list_ex_iff) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4639 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4640 | text {* Bounded quantification and summation over nats. *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4641 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4642 | lemma atMost_upto [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4643 |   "{..n} = set [0..<Suc n]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4644 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4645 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4646 | lemma atLeast_upt [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4647 |   "{..<n} = set [0..<n]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4648 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4649 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4650 | lemma greaterThanLessThan_upt [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4651 |   "{n<..<m} = set [Suc n..<m]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4652 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4653 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4654 | lemmas atLeastLessThan_upt [code_unfold] = set_upt [symmetric] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4655 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4656 | lemma greaterThanAtMost_upt [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4657 |   "{n<..m} = set [Suc n..<Suc m]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4658 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4659 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4660 | lemma atLeastAtMost_upt [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4661 |   "{n..m} = set [n..<Suc m]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4662 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4663 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4664 | lemma all_nat_less_eq [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4665 |   "(\<forall>m<n\<Colon>nat. P m) \<longleftrightarrow> (\<forall>m \<in> {0..<n}. P m)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4666 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4667 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4668 | lemma ex_nat_less_eq [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4669 |   "(\<exists>m<n\<Colon>nat. P m) \<longleftrightarrow> (\<exists>m \<in> {0..<n}. P m)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4670 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4671 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4672 | lemma all_nat_less [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4673 |   "(\<forall>m\<le>n\<Colon>nat. P m) \<longleftrightarrow> (\<forall>m \<in> {0..n}. P m)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4674 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4675 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4676 | lemma ex_nat_less [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4677 |   "(\<exists>m\<le>n\<Colon>nat. P m) \<longleftrightarrow> (\<exists>m \<in> {0..n}. P m)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4678 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4679 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4680 | lemma setsum_set_upt_conv_listsum_nat [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4681 | "setsum f (set [m..<n]) = listsum (map f [m..<n])" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4682 | by (simp add: interv_listsum_conv_setsum_set_nat) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4683 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4684 | text {* Summation over ints. *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4685 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4686 | lemma greaterThanLessThan_upto [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4687 |   "{i<..<j::int} = set [i+1..j - 1]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4688 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4689 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4690 | lemma atLeastLessThan_upto [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4691 |   "{i..<j::int} = set [i..j - 1]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4692 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4693 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4694 | lemma greaterThanAtMost_upto [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4695 |   "{i<..j::int} = set [i+1..j]"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4696 | by auto | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4697 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4698 | lemmas atLeastAtMost_upto [code_unfold] = set_upto [symmetric] | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4699 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4700 | lemma setsum_set_upto_conv_listsum_int [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4701 | "setsum f (set [i..j::int]) = listsum (map f [i..j])" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4702 | by (simp add: interv_listsum_conv_setsum_set_int) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4703 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4704 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4705 | subsubsection {* Optimizing by rewriting *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4706 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4707 | definition null :: "'a list \<Rightarrow> bool" where | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4708 | [code_post]: "null xs \<longleftrightarrow> xs = []" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4709 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4710 | text {*
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4711 |   Efficient emptyness check is implemented by @{const null}.
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4712 | *} | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4713 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4714 | lemma null_rec [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4715 | "null (x # xs) \<longleftrightarrow> False" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4716 | "null [] \<longleftrightarrow> True" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4717 | by (simp_all add: null_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4718 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4719 | lemma eq_Nil_null [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4720 | "xs = [] \<longleftrightarrow> null xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4721 | by (simp add: null_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4722 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4723 | lemma equal_Nil_null [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4724 | "eq_class.eq xs [] \<longleftrightarrow> null xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4725 | by (simp add: eq eq_Nil_null) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4726 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4727 | definition maps :: "('a \<Rightarrow> 'b list) \<Rightarrow> 'a list \<Rightarrow> 'b list" where
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4728 | [code_post]: "maps f xs = concat (map f xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4729 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4730 | definition map_filter :: "('a \<Rightarrow> 'b option) \<Rightarrow> 'a list \<Rightarrow> 'b list" where
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4731 | [code_post]: "map_filter f xs = map (the \<circ> f) (filter (\<lambda>x. f x \<noteq> None) xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4732 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4733 | text {*
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4734 |   Operations @{const maps} and @{const map_filter} avoid
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4735 | intermediate lists on execution -- do not use for proving. | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4736 | *} | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4737 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4738 | lemma maps_simps [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4739 | "maps f (x # xs) = f x @ maps f xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4740 | "maps f [] = []" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4741 | by (simp_all add: maps_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4742 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4743 | lemma map_filter_simps [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4744 | "map_filter f (x # xs) = (case f x of None \<Rightarrow> map_filter f xs | Some y \<Rightarrow> y # map_filter f xs)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4745 | "map_filter f [] = []" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4746 | by (simp_all add: map_filter_def split: option.split) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4747 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4748 | lemma concat_map_maps [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4749 | "concat (map f xs) = maps f xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4750 | by (simp add: maps_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4751 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4752 | lemma map_filter_map_filter [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4753 | "map f (filter P xs) = map_filter (\<lambda>x. if P x then Some (f x) else None) xs" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4754 | by (simp add: map_filter_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4755 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4756 | text {* Optimized code for @{text"\<forall>i\<in>{a..b::int}"} and @{text"\<forall>n:{a..<b::nat}"}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4757 | and similiarly for @{text"\<exists>"}. *}
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4758 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4759 | definition all_interval_nat :: "(nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4760 |   "all_interval_nat P i j \<longleftrightarrow> (\<forall>n \<in> {i..<j}. P n)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4761 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4762 | lemma [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4763 | "all_interval_nat P i j \<longleftrightarrow> i \<ge> j \<or> P i \<and> all_interval_nat P (Suc i) j" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4764 | proof - | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4765 |   have *: "\<And>n. P i \<Longrightarrow> \<forall>n\<in>{Suc i..<j}. P n \<Longrightarrow> i \<le> n \<Longrightarrow> n < j \<Longrightarrow> P n"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4766 | proof - | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4767 | fix n | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4768 |     assume "P i" "\<forall>n\<in>{Suc i..<j}. P n" "i \<le> n" "n < j"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4769 | then show "P n" by (cases "n = i") simp_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4770 | qed | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4771 | show ?thesis by (auto simp add: all_interval_nat_def intro: *) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4772 | qed | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4773 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4774 | lemma list_all_iff_all_interval_nat [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4775 | "list_all P [i..<j] \<longleftrightarrow> all_interval_nat P i j" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4776 | by (simp add: list_all_iff all_interval_nat_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4777 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4778 | lemma list_ex_iff_not_all_inverval_nat [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4779 | "list_ex P [i..<j] \<longleftrightarrow> \<not> (all_interval_nat (Not \<circ> P) i j)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4780 | by (simp add: list_ex_iff all_interval_nat_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4781 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4782 | definition all_interval_int :: "(int \<Rightarrow> bool) \<Rightarrow> int \<Rightarrow> int \<Rightarrow> bool" where | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4783 |   "all_interval_int P i j \<longleftrightarrow> (\<forall>k \<in> {i..j}. P k)"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4784 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4785 | lemma [code]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4786 | "all_interval_int P i j \<longleftrightarrow> i > j \<or> P i \<and> all_interval_int P (i + 1) j" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4787 | proof - | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4788 |   have *: "\<And>k. P i \<Longrightarrow> \<forall>k\<in>{i+1..j}. P k \<Longrightarrow> i \<le> k \<Longrightarrow> k \<le> j \<Longrightarrow> P k"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4789 | proof - | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4790 | fix k | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4791 |     assume "P i" "\<forall>k\<in>{i+1..j}. P k" "i \<le> k" "k \<le> j"
 | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4792 | then show "P k" by (cases "k = i") simp_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4793 | qed | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4794 | show ?thesis by (auto simp add: all_interval_int_def intro: *) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4795 | qed | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4796 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4797 | lemma list_all_iff_all_interval_int [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4798 | "list_all P [i..j] \<longleftrightarrow> all_interval_int P i j" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4799 | by (simp add: list_all_iff all_interval_int_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4800 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4801 | lemma list_ex_iff_not_all_inverval_int [code_unfold]: | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4802 | "list_ex P [i..j] \<longleftrightarrow> \<not> (all_interval_int (Not \<circ> P) i j)" | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4803 | by (simp add: list_ex_iff all_interval_int_def) | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4804 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4805 | hide_const (open) member null maps map_filter all_interval_nat all_interval_int | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4806 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4807 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4808 | subsubsection {* Pretty lists *}
 | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 4809 | |
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4810 | use "Tools/list_code.ML" | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4811 | |
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4812 | code_type list | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4813 | (SML "_ list") | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4814 | (OCaml "_ list") | 
| 34886 | 4815 | (Haskell "![(_)]") | 
| 4816 | (Scala "List[(_)]") | |
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4817 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4818 | code_const Nil | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4819 | (SML "[]") | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4820 | (OCaml "[]") | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4821 | (Haskell "[]") | 
| 37880 
3b9ca8d2c5fb
Scala: subtle difference in printing strings vs. complex mixfix syntax
 haftmann parents: 
37767diff
changeset | 4822 | (Scala "!Nil") | 
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4823 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4824 | code_instance list :: eq | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4825 | (Haskell -) | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4826 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4827 | code_const "eq_class.eq \<Colon> 'a\<Colon>eq list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4828 | (Haskell infixl 4 "==") | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4829 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4830 | code_reserved SML | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4831 | list | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4832 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4833 | code_reserved OCaml | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4834 | list | 
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4835 | |
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4836 | types_code | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4837 |   "list" ("_ list")
 | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4838 | attach (term_of) {*
 | 
| 21760 | 4839 | fun term_of_list f T = HOLogic.mk_list T o map f; | 
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4840 | *} | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4841 | attach (test) {*
 | 
| 25885 | 4842 | fun gen_list' aG aT i j = frequency | 
| 4843 | [(i, fn () => | |
| 4844 | let | |
| 4845 | val (x, t) = aG j; | |
| 4846 | val (xs, ts) = gen_list' aG aT (i-1) j | |
| 4847 | in (x :: xs, fn () => HOLogic.cons_const aT $ t () $ ts ()) end), | |
| 4848 | (1, fn () => ([], fn () => HOLogic.nil_const aT))] () | |
| 4849 | and gen_list aG aT i = gen_list' aG aT i i; | |
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 4850 | *} | 
| 31048 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4851 | |
| 
ac146fc38b51
refined HOL string theories and corresponding ML fragments
 haftmann parents: 
31022diff
changeset | 4852 | consts_code Cons ("(_ ::/ _)")
 | 
| 20588 | 4853 | |
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 4854 | setup {*
 | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 4855 | let | 
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4856 | fun list_codegen thy defs dep thyname b t gr = | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4857 | let | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4858 | val ts = HOLogic.dest_list t; | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4859 | val (_, gr') = Codegen.invoke_tycodegen thy defs dep thyname false | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4860 | (fastype_of t) gr; | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4861 | val (ps, gr'') = fold_map | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4862 | (Codegen.invoke_codegen thy defs dep thyname false) ts gr' | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4863 | in SOME (Pretty.list "[" "]" ps, gr'') end handle TERM _ => NONE; | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4864 | in | 
| 34886 | 4865 | fold (List_Code.add_literal_list) ["SML", "OCaml", "Haskell", "Scala"] | 
| 31055 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4866 | #> Codegen.add_codegen "list_codegen" list_codegen | 
| 
2cf6efca6c71
proper structures for list and string code generation stuff
 haftmann parents: 
31048diff
changeset | 4867 | end | 
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 4868 | *} | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 4869 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 4870 | |
| 37424 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4871 | subsubsection {* Use convenient predefined operations *}
 | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4872 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4873 | code_const "op @" | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4874 | (SML infixr 7 "@") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4875 | (OCaml infixr 6 "@") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4876 | (Haskell infixr 5 "++") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4877 | (Scala infixl 7 "++") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4878 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4879 | code_const map | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4880 | (Haskell "map") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4881 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4882 | code_const filter | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4883 | (Haskell "filter") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4884 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4885 | code_const concat | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4886 | (Haskell "concat") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4887 | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4888 | code_const List.maps | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4889 | (Haskell "concatMap") | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4890 | |
| 37424 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4891 | code_const rev | 
| 37451 | 4892 | (Haskell "reverse") | 
| 37424 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4893 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4894 | code_const zip | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4895 | (Haskell "zip") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4896 | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4897 | code_const List.null | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4898 | (Haskell "null") | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4899 | |
| 37424 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4900 | code_const takeWhile | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4901 | (Haskell "takeWhile") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4902 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4903 | code_const dropWhile | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4904 | (Haskell "dropWhile") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4905 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4906 | code_const hd | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4907 | (Haskell "head") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4908 | |
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4909 | code_const last | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4910 | (Haskell "last") | 
| 
ed431cc99f17
use various predefined Haskell operations when generating code
 haftmann parents: 
37408diff
changeset | 4911 | |
| 37605 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4912 | code_const list_all | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4913 | (Haskell "all") | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4914 | |
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4915 | code_const list_ex | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4916 | (Haskell "any") | 
| 
625bc011768a
put section on distinctness before listsum; refined code generation operations; dropped ancient infix mem
 haftmann parents: 
37465diff
changeset | 4917 | |
| 23388 | 4918 | end |