| author | paulson <lp15@cam.ac.uk> | 
| Tue, 23 Jul 2024 15:54:43 +0100 | |
| changeset 80612 | e65eed943bee | 
| parent 78669 | 18ea58bdcf77 | 
| child 80621 | 6c369fec315a | 
| permissions | -rw-r--r-- | 
| 51523 | 1  | 
(* Title: HOL/Real.thy  | 
2  | 
Author: Jacques D. Fleuriot, University of Edinburgh, 1998  | 
|
3  | 
Author: Larry Paulson, University of Cambridge  | 
|
4  | 
Author: Jeremy Avigad, Carnegie Mellon University  | 
|
5  | 
Author: Florian Zuleger, Johannes Hoelzl, and Simon Funke, TU Muenchen  | 
|
6  | 
Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4  | 
|
7  | 
Construction of Cauchy Reals by Brian Huffman, 2010  | 
|
8  | 
*)  | 
|
9  | 
||
| 60758 | 10  | 
section \<open>Development of the Reals using Cauchy Sequences\<close>  | 
| 51523 | 11  | 
|
12  | 
theory Real  | 
|
| 
63961
 
2fd9656c4c82
invoke argo as part of the tried automatic proof methods
 
boehmes 
parents: 
63960 
diff
changeset
 | 
13  | 
imports Rat  | 
| 51523 | 14  | 
begin  | 
15  | 
||
| 60758 | 16  | 
text \<open>  | 
| 63680 | 17  | 
This theory contains a formalization of the real numbers as equivalence  | 
| 75327 | 18  | 
classes of Cauchy sequences of rationals. See the AFP entry  | 
19  | 
  @{text Dedekind_Real} for an alternative construction using
 | 
|
| 63680 | 20  | 
Dedekind cuts.  | 
| 60758 | 21  | 
\<close>  | 
| 51523 | 22  | 
|
| 63353 | 23  | 
|
| 60758 | 24  | 
subsection \<open>Preliminary lemmas\<close>  | 
| 51523 | 25  | 
|
| 67226 | 26  | 
text\<open>Useful in convergence arguments\<close>  | 
| 
66793
 
deabce3ccf1f
new material about connectedness, etc.
 
paulson <lp15@cam.ac.uk> 
parents: 
66515 
diff
changeset
 | 
27  | 
lemma inverse_of_nat_le:  | 
| 
 
deabce3ccf1f
new material about connectedness, etc.
 
paulson <lp15@cam.ac.uk> 
parents: 
66515 
diff
changeset
 | 
28  | 
fixes n::nat shows "\<lbrakk>n \<le> m; n\<noteq>0\<rbrakk> \<Longrightarrow> 1 / of_nat m \<le> (1::'a::linordered_field) / of_nat n"  | 
| 
 
deabce3ccf1f
new material about connectedness, etc.
 
paulson <lp15@cam.ac.uk> 
parents: 
66515 
diff
changeset
 | 
29  | 
by (simp add: frac_le)  | 
| 
 
deabce3ccf1f
new material about connectedness, etc.
 
paulson <lp15@cam.ac.uk> 
parents: 
66515 
diff
changeset
 | 
30  | 
|
| 63494 | 31  | 
lemma add_diff_add: "(a + c) - (b + d) = (a - b) + (c - d)"  | 
32  | 
for a b c d :: "'a::ab_group_add"  | 
|
| 51523 | 33  | 
by simp  | 
34  | 
||
| 63494 | 35  | 
lemma minus_diff_minus: "- a - - b = - (a - b)"  | 
36  | 
for a b :: "'a::ab_group_add"  | 
|
| 51523 | 37  | 
by simp  | 
38  | 
||
| 63494 | 39  | 
lemma mult_diff_mult: "(x * y - a * b) = x * (y - b) + (x - a) * b"  | 
40  | 
for x y a b :: "'a::ring"  | 
|
| 51523 | 41  | 
by (simp add: algebra_simps)  | 
42  | 
||
43  | 
lemma inverse_diff_inverse:  | 
|
44  | 
fixes a b :: "'a::division_ring"  | 
|
45  | 
assumes "a \<noteq> 0" and "b \<noteq> 0"  | 
|
46  | 
shows "inverse a - inverse b = - (inverse a * (a - b) * inverse b)"  | 
|
47  | 
using assms by (simp add: algebra_simps)  | 
|
48  | 
||
49  | 
lemma obtain_pos_sum:  | 
|
50  | 
fixes r :: rat assumes r: "0 < r"  | 
|
51  | 
obtains s t where "0 < s" and "0 < t" and "r = s + t"  | 
|
52  | 
proof  | 
|
| 63353 | 53  | 
from r show "0 < r/2" by simp  | 
54  | 
from r show "0 < r/2" by simp  | 
|
55  | 
show "r = r/2 + r/2" by simp  | 
|
| 51523 | 56  | 
qed  | 
57  | 
||
| 63353 | 58  | 
|
| 60758 | 59  | 
subsection \<open>Sequences that converge to zero\<close>  | 
| 51523 | 60  | 
|
| 63353 | 61  | 
definition vanishes :: "(nat \<Rightarrow> rat) \<Rightarrow> bool"  | 
62  | 
where "vanishes X \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r)"  | 
|
| 51523 | 63  | 
|
64  | 
lemma vanishesI: "(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r) \<Longrightarrow> vanishes X"  | 
|
65  | 
unfolding vanishes_def by simp  | 
|
66  | 
||
| 63353 | 67  | 
lemma vanishesD: "vanishes X \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r"  | 
| 51523 | 68  | 
unfolding vanishes_def by simp  | 
69  | 
||
70  | 
lemma vanishes_const [simp]: "vanishes (\<lambda>n. c) \<longleftrightarrow> c = 0"  | 
|
| 68662 | 71  | 
proof (cases "c = 0")  | 
72  | 
case True  | 
|
73  | 
then show ?thesis  | 
|
74  | 
by (simp add: vanishesI)  | 
|
75  | 
next  | 
|
76  | 
case False  | 
|
77  | 
then show ?thesis  | 
|
78  | 
unfolding vanishes_def  | 
|
79  | 
using zero_less_abs_iff by blast  | 
|
80  | 
qed  | 
|
| 51523 | 81  | 
|
82  | 
lemma vanishes_minus: "vanishes X \<Longrightarrow> vanishes (\<lambda>n. - X n)"  | 
|
83  | 
unfolding vanishes_def by simp  | 
|
84  | 
||
85  | 
lemma vanishes_add:  | 
|
| 63353 | 86  | 
assumes X: "vanishes X"  | 
87  | 
and Y: "vanishes Y"  | 
|
| 51523 | 88  | 
shows "vanishes (\<lambda>n. X n + Y n)"  | 
89  | 
proof (rule vanishesI)  | 
|
| 63353 | 90  | 
fix r :: rat  | 
91  | 
assume "0 < r"  | 
|
| 51523 | 92  | 
then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"  | 
93  | 
by (rule obtain_pos_sum)  | 
|
94  | 
obtain i where i: "\<forall>n\<ge>i. \<bar>X n\<bar> < s"  | 
|
95  | 
using vanishesD [OF X s] ..  | 
|
96  | 
obtain j where j: "\<forall>n\<ge>j. \<bar>Y n\<bar> < t"  | 
|
97  | 
using vanishesD [OF Y t] ..  | 
|
98  | 
have "\<forall>n\<ge>max i j. \<bar>X n + Y n\<bar> < r"  | 
|
| 63353 | 99  | 
proof clarsimp  | 
100  | 
fix n  | 
|
101  | 
assume n: "i \<le> n" "j \<le> n"  | 
|
| 63494 | 102  | 
have "\<bar>X n + Y n\<bar> \<le> \<bar>X n\<bar> + \<bar>Y n\<bar>"  | 
103  | 
by (rule abs_triangle_ineq)  | 
|
104  | 
also have "\<dots> < s + t"  | 
|
105  | 
by (simp add: add_strict_mono i j n)  | 
|
106  | 
finally show "\<bar>X n + Y n\<bar> < r"  | 
|
107  | 
by (simp only: r)  | 
|
| 51523 | 108  | 
qed  | 
| 63353 | 109  | 
then show "\<exists>k. \<forall>n\<ge>k. \<bar>X n + Y n\<bar> < r" ..  | 
| 51523 | 110  | 
qed  | 
111  | 
||
112  | 
lemma vanishes_diff:  | 
|
| 63353 | 113  | 
assumes "vanishes X" "vanishes Y"  | 
| 51523 | 114  | 
shows "vanishes (\<lambda>n. X n - Y n)"  | 
| 63353 | 115  | 
unfolding diff_conv_add_uminus by (intro vanishes_add vanishes_minus assms)  | 
| 51523 | 116  | 
|
117  | 
lemma vanishes_mult_bounded:  | 
|
118  | 
assumes X: "\<exists>a>0. \<forall>n. \<bar>X n\<bar> < a"  | 
|
119  | 
assumes Y: "vanishes (\<lambda>n. Y n)"  | 
|
120  | 
shows "vanishes (\<lambda>n. X n * Y n)"  | 
|
121  | 
proof (rule vanishesI)  | 
|
| 63353 | 122  | 
fix r :: rat  | 
123  | 
assume r: "0 < r"  | 
|
| 51523 | 124  | 
obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a"  | 
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
125  | 
using X by blast  | 
| 51523 | 126  | 
obtain b where b: "0 < b" "r = a * b"  | 
127  | 
proof  | 
|
| 56541 | 128  | 
show "0 < r / a" using r a by simp  | 
| 51523 | 129  | 
show "r = a * (r / a)" using a by simp  | 
130  | 
qed  | 
|
131  | 
obtain k where k: "\<forall>n\<ge>k. \<bar>Y n\<bar> < b"  | 
|
132  | 
using vanishesD [OF Y b(1)] ..  | 
|
133  | 
have "\<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r"  | 
|
134  | 
by (simp add: b(2) abs_mult mult_strict_mono' a k)  | 
|
| 63353 | 135  | 
then show "\<exists>k. \<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r" ..  | 
| 51523 | 136  | 
qed  | 
137  | 
||
| 63353 | 138  | 
|
| 60758 | 139  | 
subsection \<open>Cauchy sequences\<close>  | 
| 51523 | 140  | 
|
| 63353 | 141  | 
definition cauchy :: "(nat \<Rightarrow> rat) \<Rightarrow> bool"  | 
142  | 
where "cauchy X \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r)"  | 
|
| 51523 | 143  | 
|
| 63353 | 144  | 
lemma cauchyI: "(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r) \<Longrightarrow> cauchy X"  | 
| 51523 | 145  | 
unfolding cauchy_def by simp  | 
146  | 
||
| 63353 | 147  | 
lemma cauchyD: "cauchy X \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r"  | 
| 51523 | 148  | 
unfolding cauchy_def by simp  | 
149  | 
||
150  | 
lemma cauchy_const [simp]: "cauchy (\<lambda>n. x)"  | 
|
151  | 
unfolding cauchy_def by simp  | 
|
152  | 
||
153  | 
lemma cauchy_add [simp]:  | 
|
154  | 
assumes X: "cauchy X" and Y: "cauchy Y"  | 
|
155  | 
shows "cauchy (\<lambda>n. X n + Y n)"  | 
|
156  | 
proof (rule cauchyI)  | 
|
| 63353 | 157  | 
fix r :: rat  | 
158  | 
assume "0 < r"  | 
|
| 51523 | 159  | 
then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"  | 
160  | 
by (rule obtain_pos_sum)  | 
|
161  | 
obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s"  | 
|
162  | 
using cauchyD [OF X s] ..  | 
|
163  | 
obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t"  | 
|
164  | 
using cauchyD [OF Y t] ..  | 
|
165  | 
have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r"  | 
|
| 63353 | 166  | 
proof clarsimp  | 
167  | 
fix m n  | 
|
168  | 
assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n"  | 
|
| 51523 | 169  | 
have "\<bar>(X m + Y m) - (X n + Y n)\<bar> \<le> \<bar>X m - X n\<bar> + \<bar>Y m - Y n\<bar>"  | 
170  | 
unfolding add_diff_add by (rule abs_triangle_ineq)  | 
|
171  | 
also have "\<dots> < s + t"  | 
|
| 63353 | 172  | 
by (rule add_strict_mono) (simp_all add: i j *)  | 
173  | 
finally show "\<bar>(X m + Y m) - (X n + Y n)\<bar> < r" by (simp only: r)  | 
|
| 51523 | 174  | 
qed  | 
| 63353 | 175  | 
then show "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r" ..  | 
| 51523 | 176  | 
qed  | 
177  | 
||
178  | 
lemma cauchy_minus [simp]:  | 
|
179  | 
assumes X: "cauchy X"  | 
|
180  | 
shows "cauchy (\<lambda>n. - X n)"  | 
|
| 63353 | 181  | 
using assms unfolding cauchy_def  | 
182  | 
unfolding minus_diff_minus abs_minus_cancel .  | 
|
| 51523 | 183  | 
|
184  | 
lemma cauchy_diff [simp]:  | 
|
| 63353 | 185  | 
assumes "cauchy X" "cauchy Y"  | 
| 51523 | 186  | 
shows "cauchy (\<lambda>n. X n - Y n)"  | 
| 
54230
 
b1d955791529
more simplification rules on unary and binary minus
 
haftmann 
parents: 
53652 
diff
changeset
 | 
187  | 
using assms unfolding diff_conv_add_uminus by (simp del: add_uminus_conv_diff)  | 
| 51523 | 188  | 
|
189  | 
lemma cauchy_imp_bounded:  | 
|
| 63353 | 190  | 
assumes "cauchy X"  | 
191  | 
shows "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b"  | 
|
| 51523 | 192  | 
proof -  | 
193  | 
obtain k where k: "\<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < 1"  | 
|
194  | 
using cauchyD [OF assms zero_less_one] ..  | 
|
195  | 
show "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b"  | 
|
196  | 
proof (intro exI conjI allI)  | 
|
197  | 
have "0 \<le> \<bar>X 0\<bar>" by simp  | 
|
198  | 
    also have "\<bar>X 0\<bar> \<le> Max (abs ` X ` {..k})" by simp
 | 
|
199  | 
    finally have "0 \<le> Max (abs ` X ` {..k})" .
 | 
|
| 63353 | 200  | 
    then show "0 < Max (abs ` X ` {..k}) + 1" by simp
 | 
| 51523 | 201  | 
next  | 
202  | 
fix n :: nat  | 
|
203  | 
    show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1"
 | 
|
204  | 
proof (rule linorder_le_cases)  | 
|
205  | 
assume "n \<le> k"  | 
|
| 63353 | 206  | 
      then have "\<bar>X n\<bar> \<le> Max (abs ` X ` {..k})" by simp
 | 
207  | 
      then show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" by simp
 | 
|
| 51523 | 208  | 
next  | 
209  | 
assume "k \<le> n"  | 
|
210  | 
have "\<bar>X n\<bar> = \<bar>X k + (X n - X k)\<bar>" by simp  | 
|
211  | 
also have "\<bar>X k + (X n - X k)\<bar> \<le> \<bar>X k\<bar> + \<bar>X n - X k\<bar>"  | 
|
212  | 
by (rule abs_triangle_ineq)  | 
|
213  | 
      also have "\<dots> < Max (abs ` X ` {..k}) + 1"
 | 
|
| 63353 | 214  | 
by (rule add_le_less_mono) (simp_all add: k \<open>k \<le> n\<close>)  | 
| 51523 | 215  | 
      finally show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" .
 | 
216  | 
qed  | 
|
217  | 
qed  | 
|
218  | 
qed  | 
|
219  | 
||
220  | 
lemma cauchy_mult [simp]:  | 
|
221  | 
assumes X: "cauchy X" and Y: "cauchy Y"  | 
|
222  | 
shows "cauchy (\<lambda>n. X n * Y n)"  | 
|
223  | 
proof (rule cauchyI)  | 
|
224  | 
fix r :: rat assume "0 < r"  | 
|
225  | 
then obtain u v where u: "0 < u" and v: "0 < v" and "r = u + v"  | 
|
226  | 
by (rule obtain_pos_sum)  | 
|
227  | 
obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a"  | 
|
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
228  | 
using cauchy_imp_bounded [OF X] by blast  | 
| 51523 | 229  | 
obtain b where b: "0 < b" "\<forall>n. \<bar>Y n\<bar> < b"  | 
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
230  | 
using cauchy_imp_bounded [OF Y] by blast  | 
| 51523 | 231  | 
obtain s t where s: "0 < s" and t: "0 < t" and r: "r = a * t + s * b"  | 
232  | 
proof  | 
|
| 56541 | 233  | 
show "0 < v/b" using v b(1) by simp  | 
234  | 
show "0 < u/a" using u a(1) by simp  | 
|
| 51523 | 235  | 
show "r = a * (u/a) + (v/b) * b"  | 
| 60758 | 236  | 
using a(1) b(1) \<open>r = u + v\<close> by simp  | 
| 51523 | 237  | 
qed  | 
238  | 
obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s"  | 
|
239  | 
using cauchyD [OF X s] ..  | 
|
240  | 
obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t"  | 
|
241  | 
using cauchyD [OF Y t] ..  | 
|
242  | 
have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>X m * Y m - X n * Y n\<bar> < r"  | 
|
| 63353 | 243  | 
proof clarsimp  | 
244  | 
fix m n  | 
|
245  | 
assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n"  | 
|
| 51523 | 246  | 
have "\<bar>X m * Y m - X n * Y n\<bar> = \<bar>X m * (Y m - Y n) + (X m - X n) * Y n\<bar>"  | 
247  | 
unfolding mult_diff_mult ..  | 
|
248  | 
also have "\<dots> \<le> \<bar>X m * (Y m - Y n)\<bar> + \<bar>(X m - X n) * Y n\<bar>"  | 
|
249  | 
by (rule abs_triangle_ineq)  | 
|
250  | 
also have "\<dots> = \<bar>X m\<bar> * \<bar>Y m - Y n\<bar> + \<bar>X m - X n\<bar> * \<bar>Y n\<bar>"  | 
|
251  | 
unfolding abs_mult ..  | 
|
252  | 
also have "\<dots> < a * t + s * b"  | 
|
253  | 
by (simp_all add: add_strict_mono mult_strict_mono' a b i j *)  | 
|
| 63494 | 254  | 
finally show "\<bar>X m * Y m - X n * Y n\<bar> < r"  | 
255  | 
by (simp only: r)  | 
|
| 51523 | 256  | 
qed  | 
| 63353 | 257  | 
then show "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m * Y m - X n * Y n\<bar> < r" ..  | 
| 51523 | 258  | 
qed  | 
259  | 
||
260  | 
lemma cauchy_not_vanishes_cases:  | 
|
261  | 
assumes X: "cauchy X"  | 
|
262  | 
assumes nz: "\<not> vanishes X"  | 
|
263  | 
shows "\<exists>b>0. \<exists>k. (\<forall>n\<ge>k. b < - X n) \<or> (\<forall>n\<ge>k. b < X n)"  | 
|
264  | 
proof -  | 
|
265  | 
obtain r where "0 < r" and r: "\<forall>k. \<exists>n\<ge>k. r \<le> \<bar>X n\<bar>"  | 
|
266  | 
using nz unfolding vanishes_def by (auto simp add: not_less)  | 
|
267  | 
obtain s t where s: "0 < s" and t: "0 < t" and "r = s + t"  | 
|
| 60758 | 268  | 
using \<open>0 < r\<close> by (rule obtain_pos_sum)  | 
| 51523 | 269  | 
obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s"  | 
270  | 
using cauchyD [OF X s] ..  | 
|
271  | 
obtain k where "i \<le> k" and "r \<le> \<bar>X k\<bar>"  | 
|
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
272  | 
using r by blast  | 
| 51523 | 273  | 
have k: "\<forall>n\<ge>k. \<bar>X n - X k\<bar> < s"  | 
| 60758 | 274  | 
using i \<open>i \<le> k\<close> by auto  | 
| 51523 | 275  | 
have "X k \<le> - r \<or> r \<le> X k"  | 
| 60758 | 276  | 
using \<open>r \<le> \<bar>X k\<bar>\<close> by auto  | 
| 63353 | 277  | 
then have "(\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)"  | 
| 60758 | 278  | 
unfolding \<open>r = s + t\<close> using k by auto  | 
| 63353 | 279  | 
then have "\<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" ..  | 
280  | 
then show "\<exists>t>0. \<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)"  | 
|
| 51523 | 281  | 
using t by auto  | 
282  | 
qed  | 
|
283  | 
||
284  | 
lemma cauchy_not_vanishes:  | 
|
285  | 
assumes X: "cauchy X"  | 
|
| 63494 | 286  | 
and nz: "\<not> vanishes X"  | 
| 51523 | 287  | 
shows "\<exists>b>0. \<exists>k. \<forall>n\<ge>k. b < \<bar>X n\<bar>"  | 
| 63353 | 288  | 
using cauchy_not_vanishes_cases [OF assms]  | 
| 68662 | 289  | 
by (elim ex_forward conj_forward asm_rl) auto  | 
| 51523 | 290  | 
|
291  | 
lemma cauchy_inverse [simp]:  | 
|
292  | 
assumes X: "cauchy X"  | 
|
| 63494 | 293  | 
and nz: "\<not> vanishes X"  | 
| 51523 | 294  | 
shows "cauchy (\<lambda>n. inverse (X n))"  | 
295  | 
proof (rule cauchyI)  | 
|
| 63353 | 296  | 
fix r :: rat  | 
297  | 
assume "0 < r"  | 
|
| 51523 | 298  | 
obtain b i where b: "0 < b" and i: "\<forall>n\<ge>i. b < \<bar>X n\<bar>"  | 
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
299  | 
using cauchy_not_vanishes [OF X nz] by blast  | 
| 51523 | 300  | 
from b i have nz: "\<forall>n\<ge>i. X n \<noteq> 0" by auto  | 
301  | 
obtain s where s: "0 < s" and r: "r = inverse b * s * inverse b"  | 
|
302  | 
proof  | 
|
| 60758 | 303  | 
show "0 < b * r * b" by (simp add: \<open>0 < r\<close> b)  | 
| 51523 | 304  | 
show "r = inverse b * (b * r * b) * inverse b"  | 
305  | 
using b by simp  | 
|
306  | 
qed  | 
|
307  | 
obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>X m - X n\<bar> < s"  | 
|
308  | 
using cauchyD [OF X s] ..  | 
|
309  | 
have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>inverse (X m) - inverse (X n)\<bar> < r"  | 
|
| 63353 | 310  | 
proof clarsimp  | 
311  | 
fix m n  | 
|
312  | 
assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n"  | 
|
313  | 
have "\<bar>inverse (X m) - inverse (X n)\<bar> = inverse \<bar>X m\<bar> * \<bar>X m - X n\<bar> * inverse \<bar>X n\<bar>"  | 
|
| 51523 | 314  | 
by (simp add: inverse_diff_inverse nz * abs_mult)  | 
315  | 
also have "\<dots> < inverse b * s * inverse b"  | 
|
| 63353 | 316  | 
by (simp add: mult_strict_mono less_imp_inverse_less i j b * s)  | 
317  | 
finally show "\<bar>inverse (X m) - inverse (X n)\<bar> < r" by (simp only: r)  | 
|
| 51523 | 318  | 
qed  | 
| 63353 | 319  | 
then show "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>inverse (X m) - inverse (X n)\<bar> < r" ..  | 
| 51523 | 320  | 
qed  | 
321  | 
||
322  | 
lemma vanishes_diff_inverse:  | 
|
323  | 
assumes X: "cauchy X" "\<not> vanishes X"  | 
|
| 63353 | 324  | 
and Y: "cauchy Y" "\<not> vanishes Y"  | 
325  | 
and XY: "vanishes (\<lambda>n. X n - Y n)"  | 
|
| 51523 | 326  | 
shows "vanishes (\<lambda>n. inverse (X n) - inverse (Y n))"  | 
327  | 
proof (rule vanishesI)  | 
|
| 63353 | 328  | 
fix r :: rat  | 
329  | 
assume r: "0 < r"  | 
|
| 51523 | 330  | 
obtain a i where a: "0 < a" and i: "\<forall>n\<ge>i. a < \<bar>X n\<bar>"  | 
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
331  | 
using cauchy_not_vanishes [OF X] by blast  | 
| 51523 | 332  | 
obtain b j where b: "0 < b" and j: "\<forall>n\<ge>j. b < \<bar>Y n\<bar>"  | 
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
333  | 
using cauchy_not_vanishes [OF Y] by blast  | 
| 51523 | 334  | 
obtain s where s: "0 < s" and "inverse a * s * inverse b = r"  | 
335  | 
proof  | 
|
| 63494 | 336  | 
show "0 < a * r * b"  | 
337  | 
using a r b by simp  | 
|
338  | 
show "inverse a * (a * r * b) * inverse b = r"  | 
|
339  | 
using a r b by simp  | 
|
| 51523 | 340  | 
qed  | 
341  | 
obtain k where k: "\<forall>n\<ge>k. \<bar>X n - Y n\<bar> < s"  | 
|
342  | 
using vanishesD [OF XY s] ..  | 
|
343  | 
have "\<forall>n\<ge>max (max i j) k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r"  | 
|
| 63353 | 344  | 
proof clarsimp  | 
345  | 
fix n  | 
|
346  | 
assume n: "i \<le> n" "j \<le> n" "k \<le> n"  | 
|
347  | 
with i j a b have "X n \<noteq> 0" and "Y n \<noteq> 0"  | 
|
348  | 
by auto  | 
|
349  | 
then have "\<bar>inverse (X n) - inverse (Y n)\<bar> = inverse \<bar>X n\<bar> * \<bar>X n - Y n\<bar> * inverse \<bar>Y n\<bar>"  | 
|
| 51523 | 350  | 
by (simp add: inverse_diff_inverse abs_mult)  | 
351  | 
also have "\<dots> < inverse a * s * inverse b"  | 
|
| 63353 | 352  | 
by (intro mult_strict_mono' less_imp_inverse_less) (simp_all add: a b i j k n)  | 
| 60758 | 353  | 
also note \<open>inverse a * s * inverse b = r\<close>  | 
| 51523 | 354  | 
finally show "\<bar>inverse (X n) - inverse (Y n)\<bar> < r" .  | 
355  | 
qed  | 
|
| 63353 | 356  | 
then show "\<exists>k. \<forall>n\<ge>k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r" ..  | 
| 51523 | 357  | 
qed  | 
358  | 
||
| 63353 | 359  | 
|
| 60758 | 360  | 
subsection \<open>Equivalence relation on Cauchy sequences\<close>  | 
| 51523 | 361  | 
|
362  | 
definition realrel :: "(nat \<Rightarrow> rat) \<Rightarrow> (nat \<Rightarrow> rat) \<Rightarrow> bool"  | 
|
363  | 
where "realrel = (\<lambda>X Y. cauchy X \<and> cauchy Y \<and> vanishes (\<lambda>n. X n - Y n))"  | 
|
364  | 
||
| 63353 | 365  | 
lemma realrelI [intro?]: "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> vanishes (\<lambda>n. X n - Y n) \<Longrightarrow> realrel X Y"  | 
366  | 
by (simp add: realrel_def)  | 
|
| 51523 | 367  | 
|
368  | 
lemma realrel_refl: "cauchy X \<Longrightarrow> realrel X X"  | 
|
| 63353 | 369  | 
by (simp add: realrel_def)  | 
| 51523 | 370  | 
|
371  | 
lemma symp_realrel: "symp realrel"  | 
|
| 68662 | 372  | 
by (simp add: abs_minus_commute realrel_def symp_def vanishes_def)  | 
| 51523 | 373  | 
|
374  | 
lemma transp_realrel: "transp realrel"  | 
|
375  | 
unfolding realrel_def  | 
|
| 68669 | 376  | 
by (rule transpI) (force simp add: dest: vanishes_add)  | 
| 51523 | 377  | 
|
378  | 
lemma part_equivp_realrel: "part_equivp realrel"  | 
|
| 63353 | 379  | 
by (blast intro: part_equivpI symp_realrel transp_realrel realrel_refl cauchy_const)  | 
380  | 
||
| 51523 | 381  | 
|
| 60758 | 382  | 
subsection \<open>The field of real numbers\<close>  | 
| 51523 | 383  | 
|
384  | 
quotient_type real = "nat \<Rightarrow> rat" / partial: realrel  | 
|
385  | 
morphisms rep_real Real  | 
|
386  | 
by (rule part_equivp_realrel)  | 
|
387  | 
||
388  | 
lemma cr_real_eq: "pcr_real = (\<lambda>x y. cauchy x \<and> Real x = y)"  | 
|
389  | 
unfolding real.pcr_cr_eq cr_real_def realrel_def by auto  | 
|
390  | 
||
391  | 
lemma Real_induct [induct type: real]: (* TODO: generate automatically *)  | 
|
| 63353 | 392  | 
assumes "\<And>X. cauchy X \<Longrightarrow> P (Real X)"  | 
393  | 
shows "P x"  | 
|
| 51523 | 394  | 
proof (induct x)  | 
395  | 
case (1 X)  | 
|
| 63353 | 396  | 
then have "cauchy X" by (simp add: realrel_def)  | 
397  | 
then show "P (Real X)" by (rule assms)  | 
|
| 51523 | 398  | 
qed  | 
399  | 
||
| 63353 | 400  | 
lemma eq_Real: "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X = Real Y \<longleftrightarrow> vanishes (\<lambda>n. X n - Y n)"  | 
| 51523 | 401  | 
using real.rel_eq_transfer  | 
| 55945 | 402  | 
unfolding real.pcr_cr_eq cr_real_def rel_fun_def realrel_def by simp  | 
| 51523 | 403  | 
|
| 
51956
 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 
kuncar 
parents: 
51775 
diff
changeset
 | 
404  | 
lemma Domainp_pcr_real [transfer_domain_rule]: "Domainp pcr_real = cauchy"  | 
| 63353 | 405  | 
by (simp add: real.domain_eq realrel_def)  | 
| 51523 | 406  | 
|
| 
59867
 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 
haftmann 
parents: 
59587 
diff
changeset
 | 
407  | 
instantiation real :: field  | 
| 51523 | 408  | 
begin  | 
409  | 
||
410  | 
lift_definition zero_real :: "real" is "\<lambda>n. 0"  | 
|
411  | 
by (simp add: realrel_refl)  | 
|
412  | 
||
413  | 
lift_definition one_real :: "real" is "\<lambda>n. 1"  | 
|
414  | 
by (simp add: realrel_refl)  | 
|
415  | 
||
416  | 
lift_definition plus_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n + Y n"  | 
|
417  | 
unfolding realrel_def add_diff_add  | 
|
418  | 
by (simp only: cauchy_add vanishes_add simp_thms)  | 
|
419  | 
||
420  | 
lift_definition uminus_real :: "real \<Rightarrow> real" is "\<lambda>X n. - X n"  | 
|
421  | 
unfolding realrel_def minus_diff_minus  | 
|
422  | 
by (simp only: cauchy_minus vanishes_minus simp_thms)  | 
|
423  | 
||
424  | 
lift_definition times_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n * Y n"  | 
|
| 68662 | 425  | 
proof -  | 
426  | 
fix f1 f2 f3 f4  | 
|
427  | 
have "\<lbrakk>cauchy f1; cauchy f4; vanishes (\<lambda>n. f1 n - f2 n); vanishes (\<lambda>n. f3 n - f4 n)\<rbrakk>  | 
|
428  | 
\<Longrightarrow> vanishes (\<lambda>n. f1 n * (f3 n - f4 n) + f4 n * (f1 n - f2 n))"  | 
|
429  | 
by (simp add: vanishes_add vanishes_mult_bounded cauchy_imp_bounded)  | 
|
430  | 
then show "\<lbrakk>realrel f1 f2; realrel f3 f4\<rbrakk> \<Longrightarrow> realrel (\<lambda>n. f1 n * f3 n) (\<lambda>n. f2 n * f4 n)"  | 
|
431  | 
by (simp add: mult.commute realrel_def mult_diff_mult)  | 
|
432  | 
qed  | 
|
| 51523 | 433  | 
|
434  | 
lift_definition inverse_real :: "real \<Rightarrow> real"  | 
|
435  | 
is "\<lambda>X. if vanishes X then (\<lambda>n. 0) else (\<lambda>n. inverse (X n))"  | 
|
436  | 
proof -  | 
|
| 63353 | 437  | 
fix X Y  | 
438  | 
assume "realrel X Y"  | 
|
439  | 
then have X: "cauchy X" and Y: "cauchy Y" and XY: "vanishes (\<lambda>n. X n - Y n)"  | 
|
| 63494 | 440  | 
by (simp_all add: realrel_def)  | 
| 51523 | 441  | 
have "vanishes X \<longleftrightarrow> vanishes Y"  | 
442  | 
proof  | 
|
443  | 
assume "vanishes X"  | 
|
| 63494 | 444  | 
from vanishes_diff [OF this XY] show "vanishes Y"  | 
445  | 
by simp  | 
|
| 51523 | 446  | 
next  | 
447  | 
assume "vanishes Y"  | 
|
| 63494 | 448  | 
from vanishes_add [OF this XY] show "vanishes X"  | 
449  | 
by simp  | 
|
| 51523 | 450  | 
qed  | 
| 63494 | 451  | 
then show "?thesis X Y"  | 
452  | 
by (simp add: vanishes_diff_inverse X Y XY realrel_def)  | 
|
| 51523 | 453  | 
qed  | 
454  | 
||
| 63353 | 455  | 
definition "x - y = x + - y" for x y :: real  | 
| 51523 | 456  | 
|
| 63353 | 457  | 
definition "x div y = x * inverse y" for x y :: real  | 
458  | 
||
459  | 
lemma add_Real: "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X + Real Y = Real (\<lambda>n. X n + Y n)"  | 
|
460  | 
using plus_real.transfer by (simp add: cr_real_eq rel_fun_def)  | 
|
| 51523 | 461  | 
|
| 63353 | 462  | 
lemma minus_Real: "cauchy X \<Longrightarrow> - Real X = Real (\<lambda>n. - X n)"  | 
463  | 
using uminus_real.transfer by (simp add: cr_real_eq rel_fun_def)  | 
|
| 51523 | 464  | 
|
| 63353 | 465  | 
lemma diff_Real: "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X - Real Y = Real (\<lambda>n. X n - Y n)"  | 
466  | 
by (simp add: minus_Real add_Real minus_real_def)  | 
|
| 51523 | 467  | 
|
| 63353 | 468  | 
lemma mult_Real: "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X * Real Y = Real (\<lambda>n. X n * Y n)"  | 
469  | 
using times_real.transfer by (simp add: cr_real_eq rel_fun_def)  | 
|
| 51523 | 470  | 
|
471  | 
lemma inverse_Real:  | 
|
| 63353 | 472  | 
"cauchy X \<Longrightarrow> inverse (Real X) = (if vanishes X then 0 else Real (\<lambda>n. inverse (X n)))"  | 
473  | 
using inverse_real.transfer zero_real.transfer  | 
|
| 62390 | 474  | 
unfolding cr_real_eq rel_fun_def by (simp split: if_split_asm, metis)  | 
| 51523 | 475  | 
|
| 63353 | 476  | 
instance  | 
477  | 
proof  | 
|
| 51523 | 478  | 
fix a b c :: real  | 
479  | 
show "a + b = b + a"  | 
|
| 
57514
 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 
haftmann 
parents: 
57512 
diff
changeset
 | 
480  | 
by transfer (simp add: ac_simps realrel_def)  | 
| 51523 | 481  | 
show "(a + b) + c = a + (b + c)"  | 
| 
57514
 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 
haftmann 
parents: 
57512 
diff
changeset
 | 
482  | 
by transfer (simp add: ac_simps realrel_def)  | 
| 51523 | 483  | 
show "0 + a = a"  | 
484  | 
by transfer (simp add: realrel_def)  | 
|
485  | 
show "- a + a = 0"  | 
|
486  | 
by transfer (simp add: realrel_def)  | 
|
487  | 
show "a - b = a + - b"  | 
|
488  | 
by (rule minus_real_def)  | 
|
489  | 
show "(a * b) * c = a * (b * c)"  | 
|
| 
57514
 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 
haftmann 
parents: 
57512 
diff
changeset
 | 
490  | 
by transfer (simp add: ac_simps realrel_def)  | 
| 51523 | 491  | 
show "a * b = b * a"  | 
| 
57514
 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 
haftmann 
parents: 
57512 
diff
changeset
 | 
492  | 
by transfer (simp add: ac_simps realrel_def)  | 
| 51523 | 493  | 
show "1 * a = a"  | 
| 
57514
 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 
haftmann 
parents: 
57512 
diff
changeset
 | 
494  | 
by transfer (simp add: ac_simps realrel_def)  | 
| 51523 | 495  | 
show "(a + b) * c = a * c + b * c"  | 
496  | 
by transfer (simp add: distrib_right realrel_def)  | 
|
| 61076 | 497  | 
show "(0::real) \<noteq> (1::real)"  | 
| 51523 | 498  | 
by transfer (simp add: realrel_def)  | 
| 68662 | 499  | 
have "vanishes (\<lambda>n. inverse (X n) * X n - 1)" if X: "cauchy X" "\<not> vanishes X" for X  | 
500  | 
proof (rule vanishesI)  | 
|
501  | 
fix r::rat  | 
|
502  | 
assume "0 < r"  | 
|
503  | 
obtain b k where "b>0" "\<forall>n\<ge>k. b < \<bar>X n\<bar>"  | 
|
504  | 
using X cauchy_not_vanishes by blast  | 
|
505  | 
then show "\<exists>k. \<forall>n\<ge>k. \<bar>inverse (X n) * X n - 1\<bar> < r"  | 
|
506  | 
using \<open>0 < r\<close> by force  | 
|
507  | 
qed  | 
|
508  | 
then show "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"  | 
|
509  | 
by transfer (simp add: realrel_def)  | 
|
| 
60429
 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 
haftmann 
parents: 
60352 
diff
changeset
 | 
510  | 
show "a div b = a * inverse b"  | 
| 51523 | 511  | 
by (rule divide_real_def)  | 
512  | 
show "inverse (0::real) = 0"  | 
|
513  | 
by transfer (simp add: realrel_def)  | 
|
514  | 
qed  | 
|
515  | 
||
516  | 
end  | 
|
517  | 
||
| 63353 | 518  | 
|
| 60758 | 519  | 
subsection \<open>Positive reals\<close>  | 
| 51523 | 520  | 
|
521  | 
lift_definition positive :: "real \<Rightarrow> bool"  | 
|
522  | 
is "\<lambda>X. \<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n"  | 
|
523  | 
proof -  | 
|
| 63353 | 524  | 
have 1: "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < Y n"  | 
525  | 
if *: "realrel X Y" and **: "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n" for X Y  | 
|
526  | 
proof -  | 
|
527  | 
from * have XY: "vanishes (\<lambda>n. X n - Y n)"  | 
|
528  | 
by (simp_all add: realrel_def)  | 
|
529  | 
from ** obtain r i where "0 < r" and i: "\<forall>n\<ge>i. r < X n"  | 
|
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
530  | 
by blast  | 
| 51523 | 531  | 
obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"  | 
| 60758 | 532  | 
using \<open>0 < r\<close> by (rule obtain_pos_sum)  | 
| 51523 | 533  | 
obtain j where j: "\<forall>n\<ge>j. \<bar>X n - Y n\<bar> < s"  | 
534  | 
using vanishesD [OF XY s] ..  | 
|
535  | 
have "\<forall>n\<ge>max i j. t < Y n"  | 
|
| 63353 | 536  | 
proof clarsimp  | 
537  | 
fix n  | 
|
538  | 
assume n: "i \<le> n" "j \<le> n"  | 
|
| 51523 | 539  | 
have "\<bar>X n - Y n\<bar> < s" and "r < X n"  | 
540  | 
using i j n by simp_all  | 
|
| 63353 | 541  | 
then show "t < Y n" by (simp add: r)  | 
| 51523 | 542  | 
qed  | 
| 63353 | 543  | 
then show ?thesis using t by blast  | 
544  | 
qed  | 
|
| 51523 | 545  | 
fix X Y assume "realrel X Y"  | 
| 63353 | 546  | 
then have "realrel X Y" and "realrel Y X"  | 
547  | 
using symp_realrel by (auto simp: symp_def)  | 
|
548  | 
then show "?thesis X Y"  | 
|
| 51523 | 549  | 
by (safe elim!: 1)  | 
550  | 
qed  | 
|
551  | 
||
| 63353 | 552  | 
lemma positive_Real: "cauchy X \<Longrightarrow> positive (Real X) \<longleftrightarrow> (\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n)"  | 
553  | 
using positive.transfer by (simp add: cr_real_eq rel_fun_def)  | 
|
| 51523 | 554  | 
|
555  | 
lemma positive_zero: "\<not> positive 0"  | 
|
556  | 
by transfer auto  | 
|
557  | 
||
| 68669 | 558  | 
lemma positive_add:  | 
559  | 
assumes "positive x" "positive y" shows "positive (x + y)"  | 
|
560  | 
proof -  | 
|
561  | 
have *: "\<lbrakk>\<forall>n\<ge>i. a < x n; \<forall>n\<ge>j. b < y n; 0 < a; 0 < b; n \<ge> max i j\<rbrakk>  | 
|
562  | 
\<Longrightarrow> a+b < x n + y n" for x y and a b::rat and i j n::nat  | 
|
563  | 
by (simp add: add_strict_mono)  | 
|
564  | 
show ?thesis  | 
|
565  | 
using assms  | 
|
566  | 
by transfer (blast intro: * pos_add_strict)  | 
|
567  | 
qed  | 
|
| 51523 | 568  | 
|
| 68669 | 569  | 
lemma positive_mult:  | 
570  | 
assumes "positive x" "positive y" shows "positive (x * y)"  | 
|
571  | 
proof -  | 
|
572  | 
have *: "\<lbrakk>\<forall>n\<ge>i. a < x n; \<forall>n\<ge>j. b < y n; 0 < a; 0 < b; n \<ge> max i j\<rbrakk>  | 
|
573  | 
\<Longrightarrow> a*b < x n * y n" for x y and a b::rat and i j n::nat  | 
|
574  | 
by (simp add: mult_strict_mono')  | 
|
575  | 
show ?thesis  | 
|
576  | 
using assms  | 
|
577  | 
by transfer (blast intro: * mult_pos_pos)  | 
|
578  | 
qed  | 
|
| 51523 | 579  | 
|
| 63353 | 580  | 
lemma positive_minus: "\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)"  | 
581  | 
apply transfer  | 
|
582  | 
apply (simp add: realrel_def)  | 
|
| 68669 | 583  | 
apply (blast dest: cauchy_not_vanishes_cases)  | 
| 63353 | 584  | 
done  | 
| 51523 | 585  | 
|
| 
59867
 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 
haftmann 
parents: 
59587 
diff
changeset
 | 
586  | 
instantiation real :: linordered_field  | 
| 51523 | 587  | 
begin  | 
588  | 
||
| 63353 | 589  | 
definition "x < y \<longleftrightarrow> positive (y - x)"  | 
| 51523 | 590  | 
|
| 63353 | 591  | 
definition "x \<le> y \<longleftrightarrow> x < y \<or> x = y" for x y :: real  | 
| 51523 | 592  | 
|
| 63353 | 593  | 
definition "\<bar>a\<bar> = (if a < 0 then - a else a)" for a :: real  | 
| 51523 | 594  | 
|
| 63353 | 595  | 
definition "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" for a :: real  | 
| 51523 | 596  | 
|
| 63353 | 597  | 
instance  | 
598  | 
proof  | 
|
| 51523 | 599  | 
fix a b c :: real  | 
600  | 
show "\<bar>a\<bar> = (if a < 0 then - a else a)"  | 
|
601  | 
by (rule abs_real_def)  | 
|
602  | 
show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a"  | 
|
| 68662 | 603  | 
"a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" "a \<le> a"  | 
604  | 
"a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b"  | 
|
605  | 
"a \<le> b \<Longrightarrow> c + a \<le> c + b"  | 
|
| 51523 | 606  | 
unfolding less_eq_real_def less_real_def  | 
| 68662 | 607  | 
by (force simp add: positive_zero dest: positive_add)+  | 
| 51523 | 608  | 
show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)"  | 
609  | 
by (rule sgn_real_def)  | 
|
610  | 
show "a \<le> b \<or> b \<le> a"  | 
|
| 63353 | 611  | 
by (auto dest!: positive_minus simp: less_eq_real_def less_real_def)  | 
| 51523 | 612  | 
show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"  | 
613  | 
unfolding less_real_def  | 
|
| 68662 | 614  | 
by (force simp add: algebra_simps dest: positive_mult)  | 
| 51523 | 615  | 
qed  | 
616  | 
||
617  | 
end  | 
|
618  | 
||
619  | 
instantiation real :: distrib_lattice  | 
|
620  | 
begin  | 
|
621  | 
||
| 63353 | 622  | 
definition "(inf :: real \<Rightarrow> real \<Rightarrow> real) = min"  | 
| 51523 | 623  | 
|
| 63353 | 624  | 
definition "(sup :: real \<Rightarrow> real \<Rightarrow> real) = max"  | 
| 51523 | 625  | 
|
| 63494 | 626  | 
instance  | 
627  | 
by standard (auto simp add: inf_real_def sup_real_def max_min_distrib2)  | 
|
| 51523 | 628  | 
|
629  | 
end  | 
|
630  | 
||
631  | 
lemma of_nat_Real: "of_nat x = Real (\<lambda>n. of_nat x)"  | 
|
| 63353 | 632  | 
by (induct x) (simp_all add: zero_real_def one_real_def add_Real)  | 
| 51523 | 633  | 
|
634  | 
lemma of_int_Real: "of_int x = Real (\<lambda>n. of_int x)"  | 
|
| 63353 | 635  | 
by (cases x rule: int_diff_cases) (simp add: of_nat_Real diff_Real)  | 
| 51523 | 636  | 
|
637  | 
lemma of_rat_Real: "of_rat x = Real (\<lambda>n. x)"  | 
|
| 68662 | 638  | 
proof (induct x)  | 
639  | 
case (Fract a b)  | 
|
640  | 
then show ?case  | 
|
| 63353 | 641  | 
apply (simp add: Fract_of_int_quotient of_rat_divide)  | 
| 68662 | 642  | 
apply (simp add: of_int_Real divide_inverse inverse_Real mult_Real)  | 
| 63353 | 643  | 
done  | 
| 68662 | 644  | 
qed  | 
| 51523 | 645  | 
|
646  | 
instance real :: archimedean_field  | 
|
647  | 
proof  | 
|
| 63494 | 648  | 
show "\<exists>z. x \<le> of_int z" for x :: real  | 
| 68662 | 649  | 
proof (induct x)  | 
650  | 
case (1 X)  | 
|
651  | 
then obtain b where "0 < b" and b: "\<And>n. \<bar>X n\<bar> < b"  | 
|
652  | 
by (blast dest: cauchy_imp_bounded)  | 
|
653  | 
then have "Real X < of_int (\<lceil>b\<rceil> + 1)"  | 
|
654  | 
using 1  | 
|
655  | 
apply (simp add: of_int_Real less_real_def diff_Real positive_Real)  | 
|
656  | 
apply (rule_tac x=1 in exI)  | 
|
657  | 
apply (simp add: algebra_simps)  | 
|
658  | 
by (metis abs_ge_self le_less_trans le_of_int_ceiling less_le)  | 
|
659  | 
then show ?case  | 
|
660  | 
using less_eq_real_def by blast  | 
|
661  | 
qed  | 
|
| 51523 | 662  | 
qed  | 
663  | 
||
664  | 
instantiation real :: floor_ceiling  | 
|
665  | 
begin  | 
|
666  | 
||
| 63353 | 667  | 
definition [code del]: "\<lfloor>x::real\<rfloor> = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))"  | 
| 51523 | 668  | 
|
| 61942 | 669  | 
instance  | 
670  | 
proof  | 
|
| 63353 | 671  | 
show "of_int \<lfloor>x\<rfloor> \<le> x \<and> x < of_int (\<lfloor>x\<rfloor> + 1)" for x :: real  | 
| 51523 | 672  | 
unfolding floor_real_def using floor_exists1 by (rule theI')  | 
673  | 
qed  | 
|
674  | 
||
675  | 
end  | 
|
676  | 
||
| 63353 | 677  | 
|
| 60758 | 678  | 
subsection \<open>Completeness\<close>  | 
| 51523 | 679  | 
|
| 68669 | 680  | 
lemma not_positive_Real:  | 
681  | 
assumes "cauchy X" shows "\<not> positive (Real X) \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> r)" (is "?lhs = ?rhs")  | 
|
682  | 
unfolding positive_Real [OF assms]  | 
|
683  | 
proof (intro iffI allI notI impI)  | 
|
684  | 
show "\<exists>k. \<forall>n\<ge>k. X n \<le> r" if r: "\<not> (\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n)" and "0 < r" for r  | 
|
685  | 
proof -  | 
|
686  | 
obtain s t where "s > 0" "t > 0" "r = s+t"  | 
|
687  | 
using \<open>r > 0\<close> obtain_pos_sum by blast  | 
|
688  | 
obtain k where k: "\<And>m n. \<lbrakk>m\<ge>k; n\<ge>k\<rbrakk> \<Longrightarrow> \<bar>X m - X n\<bar> < t"  | 
|
689  | 
using cauchyD [OF assms \<open>t > 0\<close>] by blast  | 
|
690  | 
obtain n where "n \<ge> k" "X n \<le> s"  | 
|
691  | 
by (meson r \<open>0 < s\<close> not_less)  | 
|
692  | 
then have "X l \<le> r" if "l \<ge> n" for l  | 
|
693  | 
using k [OF \<open>n \<ge> k\<close>, of l] that \<open>r = s+t\<close> by linarith  | 
|
694  | 
then show ?thesis  | 
|
695  | 
by blast  | 
|
696  | 
qed  | 
|
697  | 
qed (meson le_cases not_le)  | 
|
| 51523 | 698  | 
|
699  | 
lemma le_Real:  | 
|
| 63353 | 700  | 
assumes "cauchy X" "cauchy Y"  | 
| 51523 | 701  | 
shows "Real X \<le> Real Y = (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r)"  | 
| 63353 | 702  | 
unfolding not_less [symmetric, where 'a=real] less_real_def  | 
703  | 
apply (simp add: diff_Real not_positive_Real assms)  | 
|
704  | 
apply (simp add: diff_le_eq ac_simps)  | 
|
705  | 
done  | 
|
| 51523 | 706  | 
|
707  | 
lemma le_RealI:  | 
|
708  | 
assumes Y: "cauchy Y"  | 
|
709  | 
shows "\<forall>n. x \<le> of_rat (Y n) \<Longrightarrow> x \<le> Real Y"  | 
|
710  | 
proof (induct x)  | 
|
| 63353 | 711  | 
fix X  | 
712  | 
assume X: "cauchy X" and "\<forall>n. Real X \<le> of_rat (Y n)"  | 
|
713  | 
then have le: "\<And>m r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. X n \<le> Y m + r"  | 
|
| 51523 | 714  | 
by (simp add: of_rat_Real le_Real)  | 
| 63353 | 715  | 
then have "\<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r" if "0 < r" for r :: rat  | 
716  | 
proof -  | 
|
717  | 
from that obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"  | 
|
| 51523 | 718  | 
by (rule obtain_pos_sum)  | 
719  | 
obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>Y m - Y n\<bar> < s"  | 
|
720  | 
using cauchyD [OF Y s] ..  | 
|
721  | 
obtain j where j: "\<forall>n\<ge>j. X n \<le> Y i + t"  | 
|
722  | 
using le [OF t] ..  | 
|
723  | 
have "\<forall>n\<ge>max i j. X n \<le> Y n + r"  | 
|
| 63353 | 724  | 
proof clarsimp  | 
725  | 
fix n  | 
|
726  | 
assume n: "i \<le> n" "j \<le> n"  | 
|
| 63494 | 727  | 
have "X n \<le> Y i + t"  | 
728  | 
using n j by simp  | 
|
729  | 
moreover have "\<bar>Y i - Y n\<bar> < s"  | 
|
730  | 
using n i by simp  | 
|
731  | 
ultimately show "X n \<le> Y n + r"  | 
|
732  | 
unfolding r by simp  | 
|
| 51523 | 733  | 
qed  | 
| 63353 | 734  | 
then show ?thesis ..  | 
735  | 
qed  | 
|
736  | 
then show "Real X \<le> Real Y"  | 
|
| 51523 | 737  | 
by (simp add: of_rat_Real le_Real X Y)  | 
738  | 
qed  | 
|
739  | 
||
740  | 
lemma Real_leI:  | 
|
741  | 
assumes X: "cauchy X"  | 
|
742  | 
assumes le: "\<forall>n. of_rat (X n) \<le> y"  | 
|
743  | 
shows "Real X \<le> y"  | 
|
744  | 
proof -  | 
|
745  | 
have "- y \<le> - Real X"  | 
|
746  | 
by (simp add: minus_Real X le_RealI of_rat_minus le)  | 
|
| 63353 | 747  | 
then show ?thesis by simp  | 
| 51523 | 748  | 
qed  | 
749  | 
||
750  | 
lemma less_RealD:  | 
|
| 63353 | 751  | 
assumes "cauchy Y"  | 
| 51523 | 752  | 
shows "x < Real Y \<Longrightarrow> \<exists>n. x < of_rat (Y n)"  | 
| 
80612
 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 
paulson <lp15@cam.ac.uk> 
parents: 
78669 
diff
changeset
 | 
753  | 
by (meson Real_leI assms leD leI)  | 
| 51523 | 754  | 
|
| 63353 | 755  | 
lemma of_nat_less_two_power [simp]: "of_nat n < (2::'a::linordered_idom) ^ n"  | 
| 
80612
 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 
paulson <lp15@cam.ac.uk> 
parents: 
78669 
diff
changeset
 | 
756  | 
by auto  | 
| 51523 | 757  | 
|
758  | 
lemma complete_real:  | 
|
759  | 
fixes S :: "real set"  | 
|
760  | 
assumes "\<exists>x. x \<in> S" and "\<exists>z. \<forall>x\<in>S. x \<le> z"  | 
|
761  | 
shows "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)"  | 
|
762  | 
proof -  | 
|
763  | 
obtain x where x: "x \<in> S" using assms(1) ..  | 
|
764  | 
obtain z where z: "\<forall>x\<in>S. x \<le> z" using assms(2) ..  | 
|
765  | 
||
| 63040 | 766  | 
define P where "P x \<longleftrightarrow> (\<forall>y\<in>S. y \<le> of_rat x)" for x  | 
| 51523 | 767  | 
obtain a where a: "\<not> P a"  | 
768  | 
proof  | 
|
| 61942 | 769  | 
have "of_int \<lfloor>x - 1\<rfloor> \<le> x - 1" by (rule of_int_floor_le)  | 
| 51523 | 770  | 
also have "x - 1 < x" by simp  | 
| 61942 | 771  | 
finally have "of_int \<lfloor>x - 1\<rfloor> < x" .  | 
| 63353 | 772  | 
then have "\<not> x \<le> of_int \<lfloor>x - 1\<rfloor>" by (simp only: not_le)  | 
| 61942 | 773  | 
then show "\<not> P (of_int \<lfloor>x - 1\<rfloor>)"  | 
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
774  | 
unfolding P_def of_rat_of_int_eq using x by blast  | 
| 51523 | 775  | 
qed  | 
776  | 
obtain b where b: "P b"  | 
|
777  | 
proof  | 
|
| 61942 | 778  | 
show "P (of_int \<lceil>z\<rceil>)"  | 
| 51523 | 779  | 
unfolding P_def of_rat_of_int_eq  | 
780  | 
proof  | 
|
781  | 
fix y assume "y \<in> S"  | 
|
| 63353 | 782  | 
then have "y \<le> z" using z by simp  | 
| 61942 | 783  | 
also have "z \<le> of_int \<lceil>z\<rceil>" by (rule le_of_int_ceiling)  | 
784  | 
finally show "y \<le> of_int \<lceil>z\<rceil>" .  | 
|
| 51523 | 785  | 
qed  | 
786  | 
qed  | 
|
787  | 
||
| 63040 | 788  | 
define avg where "avg x y = x/2 + y/2" for x y :: rat  | 
789  | 
define bisect where "bisect = (\<lambda>(x, y). if P (avg x y) then (x, avg x y) else (avg x y, y))"  | 
|
790  | 
define A where "A n = fst ((bisect ^^ n) (a, b))" for n  | 
|
791  | 
define B where "B n = snd ((bisect ^^ n) (a, b))" for n  | 
|
792  | 
define C where "C n = avg (A n) (B n)" for n  | 
|
| 51523 | 793  | 
have A_0 [simp]: "A 0 = a" unfolding A_def by simp  | 
794  | 
have B_0 [simp]: "B 0 = b" unfolding B_def by simp  | 
|
795  | 
have A_Suc [simp]: "\<And>n. A (Suc n) = (if P (C n) then A n else C n)"  | 
|
796  | 
unfolding A_def B_def C_def bisect_def split_def by simp  | 
|
797  | 
have B_Suc [simp]: "\<And>n. B (Suc n) = (if P (C n) then C n else B n)"  | 
|
798  | 
unfolding A_def B_def C_def bisect_def split_def by simp  | 
|
799  | 
||
| 63353 | 800  | 
have width: "B n - A n = (b - a) / 2^n" for n  | 
| 68669 | 801  | 
proof (induct n)  | 
802  | 
case (Suc n)  | 
|
803  | 
then show ?case  | 
|
804  | 
by (simp add: C_def eq_divide_eq avg_def algebra_simps)  | 
|
805  | 
qed simp  | 
|
806  | 
have twos: "\<exists>n. y / 2 ^ n < r" if "0 < r" for y r :: rat  | 
|
807  | 
proof -  | 
|
808  | 
obtain n where "y / r < rat_of_nat n"  | 
|
809  | 
using \<open>0 < r\<close> reals_Archimedean2 by blast  | 
|
810  | 
then have "\<exists>n. y < r * 2 ^ n"  | 
|
811  | 
by (metis divide_less_eq less_trans mult.commute of_nat_less_two_power that)  | 
|
812  | 
then show ?thesis  | 
|
| 
70817
 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 
haftmann 
parents: 
70356 
diff
changeset
 | 
813  | 
by (simp add: field_split_simps)  | 
| 68669 | 814  | 
qed  | 
| 63494 | 815  | 
have PA: "\<not> P (A n)" for n  | 
816  | 
by (induct n) (simp_all add: a)  | 
|
817  | 
have PB: "P (B n)" for n  | 
|
818  | 
by (induct n) (simp_all add: b)  | 
|
| 51523 | 819  | 
have ab: "a < b"  | 
820  | 
using a b unfolding P_def  | 
|
| 68669 | 821  | 
by (meson leI less_le_trans of_rat_less)  | 
| 63494 | 822  | 
have AB: "A n < B n" for n  | 
823  | 
by (induct n) (simp_all add: ab C_def avg_def)  | 
|
| 68669 | 824  | 
have "A i \<le> A j \<and> B j \<le> B i" if "i < j" for i j  | 
825  | 
using that  | 
|
826  | 
proof (induction rule: less_Suc_induct)  | 
|
827  | 
case (1 i)  | 
|
828  | 
then show ?case  | 
|
829  | 
apply (clarsimp simp add: C_def avg_def add_divide_distrib [symmetric])  | 
|
830  | 
apply (rule AB [THEN less_imp_le])  | 
|
831  | 
done  | 
|
832  | 
qed simp  | 
|
833  | 
then have A_mono: "A i \<le> A j" and B_mono: "B j \<le> B i" if "i \<le> j" for i j  | 
|
834  | 
by (metis eq_refl le_neq_implies_less that)+  | 
|
835  | 
have cauchy_lemma: "cauchy X" if *: "\<And>n i. i\<ge>n \<Longrightarrow> A n \<le> X i \<and> X i \<le> B n" for X  | 
|
836  | 
proof (rule cauchyI)  | 
|
837  | 
fix r::rat  | 
|
838  | 
assume "0 < r"  | 
|
839  | 
then obtain k where k: "(b - a) / 2 ^ k < r"  | 
|
840  | 
using twos by blast  | 
|
841  | 
have "\<bar>X m - X n\<bar> < r" if "m\<ge>k" "n\<ge>k" for m n  | 
|
842  | 
proof -  | 
|
843  | 
have "\<bar>X m - X n\<bar> \<le> B k - A k"  | 
|
844  | 
by (simp add: * abs_rat_def diff_mono that)  | 
|
845  | 
also have "... < r"  | 
|
846  | 
by (simp add: k width)  | 
|
847  | 
finally show ?thesis .  | 
|
848  | 
qed  | 
|
849  | 
then show "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r"  | 
|
850  | 
by blast  | 
|
851  | 
qed  | 
|
| 51523 | 852  | 
have "cauchy A"  | 
| 68669 | 853  | 
by (rule cauchy_lemma) (meson AB A_mono B_mono dual_order.strict_implies_order less_le_trans)  | 
| 51523 | 854  | 
have "cauchy B"  | 
| 68669 | 855  | 
by (rule cauchy_lemma) (meson AB A_mono B_mono dual_order.strict_implies_order le_less_trans)  | 
856  | 
have "\<forall>x\<in>S. x \<le> Real B"  | 
|
| 51523 | 857  | 
proof  | 
| 63353 | 858  | 
fix x  | 
859  | 
assume "x \<in> S"  | 
|
| 51523 | 860  | 
then show "x \<le> Real B"  | 
| 60758 | 861  | 
using PB [unfolded P_def] \<open>cauchy B\<close>  | 
| 51523 | 862  | 
by (simp add: le_RealI)  | 
863  | 
qed  | 
|
| 68669 | 864  | 
moreover have "\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> Real A \<le> z"  | 
865  | 
by (meson PA Real_leI P_def \<open>cauchy A\<close> le_cases order.trans)  | 
|
866  | 
moreover have "vanishes (\<lambda>n. (b - a) / 2 ^ n)"  | 
|
| 51523 | 867  | 
proof (rule vanishesI)  | 
| 63353 | 868  | 
fix r :: rat  | 
869  | 
assume "0 < r"  | 
|
| 51523 | 870  | 
then obtain k where k: "\<bar>b - a\<bar> / 2 ^ k < r"  | 
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
871  | 
using twos by blast  | 
| 51523 | 872  | 
have "\<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r"  | 
| 63353 | 873  | 
proof clarify  | 
874  | 
fix n  | 
|
875  | 
assume n: "k \<le> n"  | 
|
| 51523 | 876  | 
have "\<bar>(b - a) / 2 ^ n\<bar> = \<bar>b - a\<bar> / 2 ^ n"  | 
877  | 
by simp  | 
|
878  | 
also have "\<dots> \<le> \<bar>b - a\<bar> / 2 ^ k"  | 
|
| 56544 | 879  | 
using n by (simp add: divide_left_mono)  | 
| 51523 | 880  | 
also note k  | 
881  | 
finally show "\<bar>(b - a) / 2 ^ n\<bar> < r" .  | 
|
882  | 
qed  | 
|
| 63353 | 883  | 
then show "\<exists>k. \<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r" ..  | 
| 51523 | 884  | 
qed  | 
| 68669 | 885  | 
then have "Real B = Real A"  | 
| 60758 | 886  | 
by (simp add: eq_Real \<open>cauchy A\<close> \<open>cauchy B\<close> width)  | 
| 68669 | 887  | 
ultimately show "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)"  | 
888  | 
by force  | 
|
| 51523 | 889  | 
qed  | 
890  | 
||
| 
51775
 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 
hoelzl 
parents: 
51773 
diff
changeset
 | 
891  | 
instantiation real :: linear_continuum  | 
| 51523 | 892  | 
begin  | 
893  | 
||
| 63353 | 894  | 
subsection \<open>Supremum of a set of reals\<close>  | 
| 51523 | 895  | 
|
| 54281 | 896  | 
definition "Sup X = (LEAST z::real. \<forall>x\<in>X. x \<le> z)"  | 
| 63353 | 897  | 
definition "Inf X = - Sup (uminus ` X)" for X :: "real set"  | 
| 51523 | 898  | 
|
899  | 
instance  | 
|
900  | 
proof  | 
|
| 63494 | 901  | 
show Sup_upper: "x \<le> Sup X"  | 
902  | 
if "x \<in> X" "bdd_above X"  | 
|
903  | 
for x :: real and X :: "real set"  | 
|
| 63353 | 904  | 
proof -  | 
905  | 
from that obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z"  | 
|
| 
54258
 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 
hoelzl 
parents: 
54230 
diff
changeset
 | 
906  | 
using complete_real[of X] unfolding bdd_above_def by blast  | 
| 63494 | 907  | 
then show ?thesis  | 
908  | 
unfolding Sup_real_def by (rule LeastI2_order) (auto simp: that)  | 
|
| 63353 | 909  | 
qed  | 
| 63494 | 910  | 
show Sup_least: "Sup X \<le> z"  | 
911  | 
    if "X \<noteq> {}" and z: "\<And>x. x \<in> X \<Longrightarrow> x \<le> z"
 | 
|
| 63353 | 912  | 
for z :: real and X :: "real set"  | 
913  | 
proof -  | 
|
914  | 
from that obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z"  | 
|
915  | 
using complete_real [of X] by blast  | 
|
| 51523 | 916  | 
then have "Sup X = s"  | 
| 
61284
 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 
paulson <lp15@cam.ac.uk> 
parents: 
61204 
diff
changeset
 | 
917  | 
unfolding Sup_real_def by (best intro: Least_equality)  | 
| 63353 | 918  | 
also from s z have "\<dots> \<le> z"  | 
| 51523 | 919  | 
by blast  | 
| 63353 | 920  | 
finally show ?thesis .  | 
921  | 
qed  | 
|
| 63494 | 922  | 
show "Inf X \<le> x" if "x \<in> X" "bdd_below X"  | 
923  | 
for x :: real and X :: "real set"  | 
|
| 63353 | 924  | 
using Sup_upper [of "-x" "uminus ` X"] by (auto simp: Inf_real_def that)  | 
| 63494 | 925  | 
  show "z \<le> Inf X" if "X \<noteq> {}" "\<And>x. x \<in> X \<Longrightarrow> z \<le> x"
 | 
926  | 
for z :: real and X :: "real set"  | 
|
| 63353 | 927  | 
using Sup_least [of "uminus ` X" "- z"] by (force simp: Inf_real_def that)  | 
| 
51775
 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 
hoelzl 
parents: 
51773 
diff
changeset
 | 
928  | 
show "\<exists>a b::real. a \<noteq> b"  | 
| 
 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 
hoelzl 
parents: 
51773 
diff
changeset
 | 
929  | 
using zero_neq_one by blast  | 
| 51523 | 930  | 
qed  | 
| 63353 | 931  | 
|
| 51523 | 932  | 
end  | 
933  | 
||
| 63353 | 934  | 
|
| 60758 | 935  | 
subsection \<open>Hiding implementation details\<close>  | 
| 51523 | 936  | 
|
937  | 
hide_const (open) vanishes cauchy positive Real  | 
|
938  | 
||
939  | 
declare Real_induct [induct del]  | 
|
940  | 
declare Abs_real_induct [induct del]  | 
|
941  | 
declare Abs_real_cases [cases del]  | 
|
942  | 
||
| 
53652
 
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
 
kuncar 
parents: 
53374 
diff
changeset
 | 
943  | 
lifting_update real.lifting  | 
| 
 
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
 
kuncar 
parents: 
53374 
diff
changeset
 | 
944  | 
lifting_forget real.lifting  | 
| 
61284
 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 
paulson <lp15@cam.ac.uk> 
parents: 
61204 
diff
changeset
 | 
945  | 
|
| 63353 | 946  | 
|
| 60758 | 947  | 
subsection \<open>Embedding numbers into the Reals\<close>  | 
| 51523 | 948  | 
|
| 63353 | 949  | 
abbreviation real_of_nat :: "nat \<Rightarrow> real"  | 
950  | 
where "real_of_nat \<equiv> of_nat"  | 
|
| 51523 | 951  | 
|
| 63353 | 952  | 
abbreviation real :: "nat \<Rightarrow> real"  | 
953  | 
where "real \<equiv> of_nat"  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
954  | 
|
| 63353 | 955  | 
abbreviation real_of_int :: "int \<Rightarrow> real"  | 
956  | 
where "real_of_int \<equiv> of_int"  | 
|
| 51523 | 957  | 
|
| 63353 | 958  | 
abbreviation real_of_rat :: "rat \<Rightarrow> real"  | 
959  | 
where "real_of_rat \<equiv> of_rat"  | 
|
| 51523 | 960  | 
|
961  | 
declare [[coercion_enabled]]  | 
|
| 59000 | 962  | 
|
963  | 
declare [[coercion "of_nat :: nat \<Rightarrow> int"]]  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
964  | 
declare [[coercion "of_nat :: nat \<Rightarrow> real"]]  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
965  | 
declare [[coercion "of_int :: int \<Rightarrow> real"]]  | 
| 59000 | 966  | 
|
967  | 
(* We do not add rat to the coerced types, this has often unpleasant side effects when writing  | 
|
968  | 
inverse (Suc n) which sometimes gets two coercions: of_rat (inverse (of_nat (Suc n))) *)  | 
|
| 51523 | 969  | 
|
970  | 
declare [[coercion_map map]]  | 
|
| 59000 | 971  | 
declare [[coercion_map "\<lambda>f g h x. g (h (f x))"]]  | 
972  | 
declare [[coercion_map "\<lambda>f g (x,y). (f x, g y)"]]  | 
|
| 51523 | 973  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
974  | 
declare of_int_eq_0_iff [algebra, presburger]  | 
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
975  | 
declare of_int_eq_1_iff [algebra, presburger]  | 
| 
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
976  | 
declare of_int_eq_iff [algebra, presburger]  | 
| 
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
977  | 
declare of_int_less_0_iff [algebra, presburger]  | 
| 
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
978  | 
declare of_int_less_1_iff [algebra, presburger]  | 
| 
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
979  | 
declare of_int_less_iff [algebra, presburger]  | 
| 
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
980  | 
declare of_int_le_0_iff [algebra, presburger]  | 
| 
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
981  | 
declare of_int_le_1_iff [algebra, presburger]  | 
| 
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
982  | 
declare of_int_le_iff [algebra, presburger]  | 
| 
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
983  | 
declare of_int_0_less_iff [algebra, presburger]  | 
| 
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
984  | 
declare of_int_0_le_iff [algebra, presburger]  | 
| 
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
985  | 
declare of_int_1_less_iff [algebra, presburger]  | 
| 
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
986  | 
declare of_int_1_le_iff [algebra, presburger]  | 
| 51523 | 987  | 
|
| 63353 | 988  | 
lemma int_less_real_le: "n < m \<longleftrightarrow> real_of_int n + 1 \<le> real_of_int m"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
989  | 
proof -  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
990  | 
have "(0::real) \<le> 1"  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
991  | 
by (metis less_eq_real_def zero_less_one)  | 
| 63353 | 992  | 
then show ?thesis  | 
| 
61694
 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 
paulson <lp15@cam.ac.uk> 
parents: 
61649 
diff
changeset
 | 
993  | 
by (metis floor_of_int less_floor_iff)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
994  | 
qed  | 
| 51523 | 995  | 
|
| 63353 | 996  | 
lemma int_le_real_less: "n \<le> m \<longleftrightarrow> real_of_int n < real_of_int m + 1"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
997  | 
by (meson int_less_real_le not_le)  | 
| 51523 | 998  | 
|
| 63353 | 999  | 
lemma real_of_int_div_aux:  | 
1000  | 
"(real_of_int x) / (real_of_int d) =  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1001  | 
real_of_int (x div d) + (real_of_int (x mod d)) / (real_of_int d)"  | 
| 51523 | 1002  | 
proof -  | 
1003  | 
have "x = (x div d) * d + x mod d"  | 
|
1004  | 
by auto  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1005  | 
then have "real_of_int x = real_of_int (x div d) * real_of_int d + real_of_int(x mod d)"  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1006  | 
by (metis of_int_add of_int_mult)  | 
| 63353 | 1007  | 
then have "real_of_int x / real_of_int d = \<dots> / real_of_int d"  | 
| 51523 | 1008  | 
by simp  | 
1009  | 
then show ?thesis  | 
|
1010  | 
by (auto simp add: add_divide_distrib algebra_simps)  | 
|
1011  | 
qed  | 
|
1012  | 
||
| 58834 | 1013  | 
lemma real_of_int_div:  | 
| 63353 | 1014  | 
"d dvd n \<Longrightarrow> real_of_int (n div d) = real_of_int n / real_of_int d" for d n :: int  | 
| 58834 | 1015  | 
by (simp add: real_of_int_div_aux)  | 
| 51523 | 1016  | 
|
| 63353 | 1017  | 
lemma real_of_int_div2: "0 \<le> real_of_int n / real_of_int x - real_of_int (n div x)"  | 
| 68669 | 1018  | 
proof (cases "x = 0")  | 
1019  | 
case False  | 
|
1020  | 
then show ?thesis  | 
|
1021  | 
by (metis diff_ge_0_iff_ge floor_divide_of_int_eq of_int_floor_le)  | 
|
1022  | 
qed simp  | 
|
| 51523 | 1023  | 
|
| 63353 | 1024  | 
lemma real_of_int_div3: "real_of_int n / real_of_int x - real_of_int (n div x) \<le> 1"  | 
| 51523 | 1025  | 
apply (simp add: algebra_simps)  | 
| 68669 | 1026  | 
by (metis add.commute floor_correct floor_divide_of_int_eq less_eq_real_def of_int_1 of_int_add)  | 
| 51523 | 1027  | 
|
| 63353 | 1028  | 
lemma real_of_int_div4: "real_of_int (n div x) \<le> real_of_int n / real_of_int x"  | 
1029  | 
using real_of_int_div2 [of n x] by simp  | 
|
| 51523 | 1030  | 
|
1031  | 
||
| 63353 | 1032  | 
subsection \<open>Embedding the Naturals into the Reals\<close>  | 
| 51523 | 1033  | 
|
| 64267 | 1034  | 
lemma real_of_card: "real (card A) = sum (\<lambda>x. 1) A"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1035  | 
by simp  | 
| 51523 | 1036  | 
|
| 63353 | 1037  | 
lemma nat_less_real_le: "n < m \<longleftrightarrow> real n + 1 \<le> real m"  | 
| 78669 | 1038  | 
proof -  | 
1039  | 
have \<open>n < m \<longleftrightarrow> Suc n \<le> m\<close>  | 
|
1040  | 
by (simp add: less_eq_Suc_le)  | 
|
1041  | 
also have \<open>\<dots> \<longleftrightarrow> real (Suc n) \<le> real m\<close>  | 
|
1042  | 
by (simp only: of_nat_le_iff)  | 
|
1043  | 
also have \<open>\<dots> \<longleftrightarrow> real n + 1 \<le> real m\<close>  | 
|
1044  | 
by (simp add: ac_simps)  | 
|
1045  | 
finally show ?thesis .  | 
|
1046  | 
qed  | 
|
| 51523 | 1047  | 
|
| 63494 | 1048  | 
lemma nat_le_real_less: "n \<le> m \<longleftrightarrow> real n < real m + 1"  | 
| 
61284
 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 
paulson <lp15@cam.ac.uk> 
parents: 
61204 
diff
changeset
 | 
1049  | 
by (meson nat_less_real_le not_le)  | 
| 51523 | 1050  | 
|
| 63353 | 1051  | 
lemma real_of_nat_div_aux: "real x / real d = real (x div d) + real (x mod d) / real d"  | 
| 51523 | 1052  | 
proof -  | 
1053  | 
have "x = (x div d) * d + x mod d"  | 
|
1054  | 
by auto  | 
|
1055  | 
then have "real x = real (x div d) * real d + real(x mod d)"  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1056  | 
by (metis of_nat_add of_nat_mult)  | 
| 51523 | 1057  | 
then have "real x / real d = \<dots> / real d"  | 
1058  | 
by simp  | 
|
1059  | 
then show ?thesis  | 
|
1060  | 
by (auto simp add: add_divide_distrib algebra_simps)  | 
|
1061  | 
qed  | 
|
1062  | 
||
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1063  | 
lemma real_of_nat_div: "d dvd n \<Longrightarrow> real(n div d) = real n / real d"  | 
| 63353 | 1064  | 
by (subst real_of_nat_div_aux) (auto simp add: dvd_eq_mod_eq_0 [symmetric])  | 
| 51523 | 1065  | 
|
| 63353 | 1066  | 
lemma real_of_nat_div2: "0 \<le> real n / real x - real (n div x)" for n x :: nat  | 
1067  | 
apply (simp add: algebra_simps)  | 
|
| 68669 | 1068  | 
by (metis floor_divide_of_nat_eq of_int_floor_le of_int_of_nat_eq)  | 
| 51523 | 1069  | 
|
| 63353 | 1070  | 
lemma real_of_nat_div3: "real n / real x - real (n div x) \<le> 1" for n x :: nat  | 
| 
77490
 
2c86ea8961b5
Some new lemmas. Some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75864 
diff
changeset
 | 
1071  | 
by (metis of_int_of_nat_eq real_of_int_div3 of_nat_div)  | 
| 51523 | 1072  | 
|
| 63353 | 1073  | 
lemma real_of_nat_div4: "real (n div x) \<le> real n / real x" for n x :: nat  | 
1074  | 
using real_of_nat_div2 [of n x] by simp  | 
|
1075  | 
||
| 
75864
 
3842556b757c
moved some material from Sum_of_Powers
 
paulson <lp15@cam.ac.uk> 
parents: 
75543 
diff
changeset
 | 
1076  | 
lemma real_binomial_eq_mult_binomial_Suc:  | 
| 
 
3842556b757c
moved some material from Sum_of_Powers
 
paulson <lp15@cam.ac.uk> 
parents: 
75543 
diff
changeset
 | 
1077  | 
assumes "k \<le> n"  | 
| 
 
3842556b757c
moved some material from Sum_of_Powers
 
paulson <lp15@cam.ac.uk> 
parents: 
75543 
diff
changeset
 | 
1078  | 
shows "real(n choose k) = (n + 1 - k) / (n + 1) * (Suc n choose k)"  | 
| 
 
3842556b757c
moved some material from Sum_of_Powers
 
paulson <lp15@cam.ac.uk> 
parents: 
75543 
diff
changeset
 | 
1079  | 
using assms  | 
| 
 
3842556b757c
moved some material from Sum_of_Powers
 
paulson <lp15@cam.ac.uk> 
parents: 
75543 
diff
changeset
 | 
1080  | 
by (simp add: of_nat_binomial_eq_mult_binomial_Suc [of k n] add.commute of_nat_diff)  | 
| 
 
3842556b757c
moved some material from Sum_of_Powers
 
paulson <lp15@cam.ac.uk> 
parents: 
75543 
diff
changeset
 | 
1081  | 
|
| 51523 | 1082  | 
|
| 60758 | 1083  | 
subsection \<open>The Archimedean Property of the Reals\<close>  | 
| 51523 | 1084  | 
|
| 
62623
 
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
 
paulson <lp15@cam.ac.uk> 
parents: 
62398 
diff
changeset
 | 
1085  | 
lemma real_arch_inverse: "0 < e \<longleftrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)"  | 
| 
 
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
 
paulson <lp15@cam.ac.uk> 
parents: 
62398 
diff
changeset
 | 
1086  | 
using reals_Archimedean[of e] less_trans[of 0 "1 / real n" e for n::nat]  | 
| 
 
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
 
paulson <lp15@cam.ac.uk> 
parents: 
62398 
diff
changeset
 | 
1087  | 
by (auto simp add: field_simps cong: conj_cong simp del: of_nat_Suc)  | 
| 51523 | 1088  | 
|
| 63494 | 1089  | 
lemma reals_Archimedean3: "0 < x \<Longrightarrow> \<forall>y. \<exists>n. y < real n * x"  | 
1090  | 
by (auto intro: ex_less_of_nat_mult)  | 
|
| 51523 | 1091  | 
|
| 
62397
 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 
paulson <lp15@cam.ac.uk> 
parents: 
62348 
diff
changeset
 | 
1092  | 
lemma real_archimedian_rdiv_eq_0:  | 
| 
 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 
paulson <lp15@cam.ac.uk> 
parents: 
62348 
diff
changeset
 | 
1093  | 
assumes x0: "x \<ge> 0"  | 
| 63353 | 1094  | 
and c: "c \<ge> 0"  | 
1095  | 
and xc: "\<And>m::nat. m > 0 \<Longrightarrow> real m * x \<le> c"  | 
|
1096  | 
shows "x = 0"  | 
|
1097  | 
by (metis reals_Archimedean3 dual_order.order_iff_strict le0 le_less_trans not_le x0 xc)  | 
|
| 
62397
 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 
paulson <lp15@cam.ac.uk> 
parents: 
62348 
diff
changeset
 | 
1098  | 
|
| 77934 | 1099  | 
lemma inverse_Suc: "inverse (Suc n) > 0"  | 
1100  | 
using of_nat_0_less_iff positive_imp_inverse_positive zero_less_Suc by blast  | 
|
1101  | 
||
1102  | 
lemma Archimedean_eventually_inverse:  | 
|
1103  | 
fixes \<epsilon>::real shows "(\<forall>\<^sub>F n in sequentially. inverse (real (Suc n)) < \<epsilon>) \<longleftrightarrow> 0 < \<epsilon>"  | 
|
1104  | 
(is "?lhs=?rhs")  | 
|
1105  | 
proof  | 
|
1106  | 
assume ?lhs  | 
|
1107  | 
then show ?rhs  | 
|
1108  | 
unfolding eventually_at_top_dense using inverse_Suc order_less_trans by blast  | 
|
1109  | 
next  | 
|
1110  | 
assume ?rhs  | 
|
1111  | 
then obtain N where "inverse (Suc N) < \<epsilon>"  | 
|
1112  | 
using reals_Archimedean by blast  | 
|
1113  | 
moreover have "inverse (Suc n) \<le> inverse (Suc N)" if "n \<ge> N" for n  | 
|
1114  | 
using inverse_Suc that by fastforce  | 
|
1115  | 
ultimately show ?lhs  | 
|
1116  | 
unfolding eventually_sequentially  | 
|
1117  | 
using order_le_less_trans by blast  | 
|
1118  | 
qed  | 
|
1119  | 
||
| 
78250
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1120  | 
(*HOL Light's FORALL_POS_MONO_1_EQ*)  | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1121  | 
text \<open>On the relationship between two different ways of converting to 0\<close>  | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1122  | 
lemma Inter_eq_Inter_inverse_Suc:  | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1123  | 
assumes "\<And>r' r. r' < r \<Longrightarrow> A r' \<subseteq> A r"  | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1124  | 
  shows "\<Inter> (A ` {0<..}) = (\<Inter>n. A(inverse(Suc n)))"
 | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1125  | 
proof  | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1126  | 
have "x \<in> A \<epsilon>"  | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1127  | 
if x: "\<forall>n. x \<in> A (inverse (Suc n))" and "\<epsilon>>0" for x and \<epsilon> :: real  | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1128  | 
proof -  | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1129  | 
obtain n where "inverse (Suc n) < \<epsilon>"  | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1130  | 
using \<open>\<epsilon>>0\<close> reals_Archimedean by blast  | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1131  | 
with assms x show ?thesis  | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1132  | 
by blast  | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1133  | 
qed  | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1134  | 
  then show "(\<Inter>n. A(inverse(Suc n))) \<subseteq> (\<Inter>\<epsilon>\<in>{0<..}. A \<epsilon>)"
 | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1135  | 
by auto  | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1136  | 
qed (use inverse_Suc in fastforce)  | 
| 
 
400aecdfd71f
Another tranche of HOL Light material on metric and topological spaces
 
paulson <lp15@cam.ac.uk> 
parents: 
77943 
diff
changeset
 | 
1137  | 
|
| 63353 | 1138  | 
subsection \<open>Rationals\<close>  | 
| 51523 | 1139  | 
|
| 68529 | 1140  | 
lemma Rats_abs_iff[simp]:  | 
1141  | 
"\<bar>(x::real)\<bar> \<in> \<rat> \<longleftrightarrow> x \<in> \<rat>"  | 
|
1142  | 
by(simp add: abs_real_def split: if_splits)  | 
|
1143  | 
||
| 63353 | 1144  | 
lemma Rats_eq_int_div_int: "\<rat> = {real_of_int i / real_of_int j | i j. j \<noteq> 0}"  (is "_ = ?S")
 | 
| 51523 | 1145  | 
proof  | 
1146  | 
show "\<rat> \<subseteq> ?S"  | 
|
1147  | 
proof  | 
|
| 63353 | 1148  | 
fix x :: real  | 
1149  | 
assume "x \<in> \<rat>"  | 
|
1150  | 
then obtain r where "x = of_rat r"  | 
|
1151  | 
unfolding Rats_def ..  | 
|
1152  | 
have "of_rat r \<in> ?S"  | 
|
1153  | 
by (cases r) (auto simp add: of_rat_rat)  | 
|
1154  | 
then show "x \<in> ?S"  | 
|
1155  | 
using \<open>x = of_rat r\<close> by simp  | 
|
| 51523 | 1156  | 
qed  | 
1157  | 
next  | 
|
1158  | 
show "?S \<subseteq> \<rat>"  | 
|
| 63353 | 1159  | 
proof (auto simp: Rats_def)  | 
1160  | 
fix i j :: int  | 
|
1161  | 
assume "j \<noteq> 0"  | 
|
1162  | 
then have "real_of_int i / real_of_int j = of_rat (Fract i j)"  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1163  | 
by (simp add: of_rat_rat)  | 
| 63353 | 1164  | 
then show "real_of_int i / real_of_int j \<in> range of_rat"  | 
1165  | 
by blast  | 
|
| 51523 | 1166  | 
qed  | 
1167  | 
qed  | 
|
1168  | 
||
| 63353 | 1169  | 
lemma Rats_eq_int_div_nat: "\<rat> = { real_of_int i / real n | i n. n \<noteq> 0}"
 | 
1170  | 
proof (auto simp: Rats_eq_int_div_int)  | 
|
1171  | 
fix i j :: int  | 
|
1172  | 
assume "j \<noteq> 0"  | 
|
1173  | 
show "\<exists>(i'::int) (n::nat). real_of_int i / real_of_int j = real_of_int i' / real n \<and> 0 < n"  | 
|
1174  | 
proof (cases "j > 0")  | 
|
1175  | 
case True  | 
|
1176  | 
then have "real_of_int i / real_of_int j = real_of_int i / real (nat j) \<and> 0 < nat j"  | 
|
1177  | 
by simp  | 
|
1178  | 
then show ?thesis by blast  | 
|
| 51523 | 1179  | 
next  | 
| 63353 | 1180  | 
case False  | 
1181  | 
with \<open>j \<noteq> 0\<close>  | 
|
1182  | 
have "real_of_int i / real_of_int j = real_of_int (- i) / real (nat (- j)) \<and> 0 < nat (- j)"  | 
|
1183  | 
by simp  | 
|
1184  | 
then show ?thesis by blast  | 
|
| 51523 | 1185  | 
qed  | 
1186  | 
next  | 
|
| 63353 | 1187  | 
fix i :: int and n :: nat  | 
1188  | 
assume "0 < n"  | 
|
1189  | 
then have "real_of_int i / real n = real_of_int i / real_of_int(int n) \<and> int n \<noteq> 0"  | 
|
1190  | 
by simp  | 
|
1191  | 
then show "\<exists>i' j. real_of_int i / real n = real_of_int i' / real_of_int j \<and> j \<noteq> 0"  | 
|
1192  | 
by blast  | 
|
| 51523 | 1193  | 
qed  | 
1194  | 
||
1195  | 
lemma Rats_abs_nat_div_natE:  | 
|
1196  | 
assumes "x \<in> \<rat>"  | 
|
| 67051 | 1197  | 
obtains m n :: nat where "n \<noteq> 0" and "\<bar>x\<bar> = real m / real n" and "coprime m n"  | 
| 51523 | 1198  | 
proof -  | 
| 63353 | 1199  | 
from \<open>x \<in> \<rat>\<close> obtain i :: int and n :: nat where "n \<noteq> 0" and "x = real_of_int i / real n"  | 
1200  | 
by (auto simp add: Rats_eq_int_div_nat)  | 
|
1201  | 
then have "\<bar>x\<bar> = real (nat \<bar>i\<bar>) / real n" by simp  | 
|
| 51523 | 1202  | 
then obtain m :: nat where x_rat: "\<bar>x\<bar> = real m / real n" by blast  | 
1203  | 
let ?gcd = "gcd m n"  | 
|
| 63353 | 1204  | 
from \<open>n \<noteq> 0\<close> have gcd: "?gcd \<noteq> 0" by simp  | 
| 51523 | 1205  | 
let ?k = "m div ?gcd"  | 
1206  | 
let ?l = "n div ?gcd"  | 
|
1207  | 
let ?gcd' = "gcd ?k ?l"  | 
|
| 63353 | 1208  | 
have "?gcd dvd m" ..  | 
1209  | 
then have gcd_k: "?gcd * ?k = m"  | 
|
| 51523 | 1210  | 
by (rule dvd_mult_div_cancel)  | 
| 63353 | 1211  | 
have "?gcd dvd n" ..  | 
1212  | 
then have gcd_l: "?gcd * ?l = n"  | 
|
| 51523 | 1213  | 
by (rule dvd_mult_div_cancel)  | 
| 63353 | 1214  | 
from \<open>n \<noteq> 0\<close> and gcd_l have "?gcd * ?l \<noteq> 0" by simp  | 
| 
61284
 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 
paulson <lp15@cam.ac.uk> 
parents: 
61204 
diff
changeset
 | 
1215  | 
then have "?l \<noteq> 0" by (blast dest!: mult_not_zero)  | 
| 51523 | 1216  | 
moreover  | 
1217  | 
have "\<bar>x\<bar> = real ?k / real ?l"  | 
|
1218  | 
proof -  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1219  | 
from gcd have "real ?k / real ?l = real (?gcd * ?k) / real (?gcd * ?l)"  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1220  | 
by (simp add: real_of_nat_div)  | 
| 51523 | 1221  | 
also from gcd_k and gcd_l have "\<dots> = real m / real n" by simp  | 
1222  | 
also from x_rat have "\<dots> = \<bar>x\<bar>" ..  | 
|
1223  | 
finally show ?thesis ..  | 
|
1224  | 
qed  | 
|
1225  | 
moreover  | 
|
1226  | 
have "?gcd' = 1"  | 
|
1227  | 
proof -  | 
|
1228  | 
have "?gcd * ?gcd' = gcd (?gcd * ?k) (?gcd * ?l)"  | 
|
1229  | 
by (rule gcd_mult_distrib_nat)  | 
|
1230  | 
with gcd_k gcd_l have "?gcd * ?gcd' = ?gcd" by simp  | 
|
1231  | 
with gcd show ?thesis by auto  | 
|
1232  | 
qed  | 
|
| 67051 | 1233  | 
then have "coprime ?k ?l"  | 
1234  | 
by (simp only: coprime_iff_gcd_eq_1)  | 
|
| 51523 | 1235  | 
ultimately show ?thesis ..  | 
1236  | 
qed  | 
|
1237  | 
||
| 63353 | 1238  | 
|
1239  | 
subsection \<open>Density of the Rational Reals in the Reals\<close>  | 
|
| 51523 | 1240  | 
|
| 63353 | 1241  | 
text \<open>  | 
1242  | 
This density proof is due to Stefan Richter and was ported by TN. The  | 
|
| 63494 | 1243  | 
original source is \<^emph>\<open>Real Analysis\<close> by H.L. Royden.  | 
| 63353 | 1244  | 
It employs the Archimedean property of the reals.\<close>  | 
| 51523 | 1245  | 
|
1246  | 
lemma Rats_dense_in_real:  | 
|
1247  | 
fixes x :: real  | 
|
| 63353 | 1248  | 
assumes "x < y"  | 
1249  | 
shows "\<exists>r\<in>\<rat>. x < r \<and> r < y"  | 
|
| 51523 | 1250  | 
proof -  | 
| 63353 | 1251  | 
from \<open>x < y\<close> have "0 < y - x" by simp  | 
1252  | 
with reals_Archimedean obtain q :: nat where q: "inverse (real q) < y - x" and "0 < q"  | 
|
1253  | 
by blast  | 
|
| 63040 | 1254  | 
define p where "p = \<lceil>y * real q\<rceil> - 1"  | 
1255  | 
define r where "r = of_int p / real q"  | 
|
| 63494 | 1256  | 
from q have "x < y - inverse (real q)"  | 
1257  | 
by simp  | 
|
1258  | 
also from \<open>0 < q\<close> have "y - inverse (real q) \<le> r"  | 
|
1259  | 
by (simp add: r_def p_def le_divide_eq left_diff_distrib)  | 
|
| 51523 | 1260  | 
finally have "x < r" .  | 
| 63494 | 1261  | 
moreover from \<open>0 < q\<close> have "r < y"  | 
1262  | 
by (simp add: r_def p_def divide_less_eq diff_less_eq less_ceiling_iff [symmetric])  | 
|
1263  | 
moreover have "r \<in> \<rat>"  | 
|
1264  | 
by (simp add: r_def)  | 
|
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
1265  | 
ultimately show ?thesis by blast  | 
| 51523 | 1266  | 
qed  | 
1267  | 
||
| 
57447
 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 
hoelzl 
parents: 
57275 
diff
changeset
 | 
1268  | 
lemma of_rat_dense:  | 
| 
 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 
hoelzl 
parents: 
57275 
diff
changeset
 | 
1269  | 
fixes x y :: real  | 
| 
 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 
hoelzl 
parents: 
57275 
diff
changeset
 | 
1270  | 
assumes "x < y"  | 
| 
 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 
hoelzl 
parents: 
57275 
diff
changeset
 | 
1271  | 
shows "\<exists>q :: rat. x < of_rat q \<and> of_rat q < y"  | 
| 63353 | 1272  | 
using Rats_dense_in_real [OF \<open>x < y\<close>]  | 
1273  | 
by (auto elim: Rats_cases)  | 
|
| 51523 | 1274  | 
|
1275  | 
||
| 63353 | 1276  | 
subsection \<open>Numerals and Arithmetic\<close>  | 
| 51523 | 1277  | 
|
| 60758 | 1278  | 
declaration \<open>  | 
| 
70356
 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 
haftmann 
parents: 
70270 
diff
changeset
 | 
1279  | 
K (Lin_Arith.add_inj_const (\<^const_name>\<open>of_nat\<close>, \<^typ>\<open>nat \<Rightarrow> real\<close>)  | 
| 69593 | 1280  | 
#> Lin_Arith.add_inj_const (\<^const_name>\<open>of_int\<close>, \<^typ>\<open>int \<Rightarrow> real\<close>))  | 
| 60758 | 1281  | 
\<close>  | 
| 51523 | 1282  | 
|
| 63353 | 1283  | 
|
1284  | 
subsection \<open>Simprules combining \<open>x + y\<close> and \<open>0\<close>\<close> (* FIXME ARE THEY NEEDED? *)  | 
|
| 51523 | 1285  | 
|
| 63494 | 1286  | 
lemma real_add_minus_iff [simp]: "x + - a = 0 \<longleftrightarrow> x = a"  | 
1287  | 
for x a :: real  | 
|
| 63353 | 1288  | 
by arith  | 
| 51523 | 1289  | 
|
| 63494 | 1290  | 
lemma real_add_less_0_iff: "x + y < 0 \<longleftrightarrow> y < - x"  | 
1291  | 
for x y :: real  | 
|
| 63353 | 1292  | 
by auto  | 
| 51523 | 1293  | 
|
| 63494 | 1294  | 
lemma real_0_less_add_iff: "0 < x + y \<longleftrightarrow> - x < y"  | 
1295  | 
for x y :: real  | 
|
| 63353 | 1296  | 
by auto  | 
| 51523 | 1297  | 
|
| 63494 | 1298  | 
lemma real_add_le_0_iff: "x + y \<le> 0 \<longleftrightarrow> y \<le> - x"  | 
1299  | 
for x y :: real  | 
|
| 63353 | 1300  | 
by auto  | 
| 51523 | 1301  | 
|
| 63494 | 1302  | 
lemma real_0_le_add_iff: "0 \<le> x + y \<longleftrightarrow> - x \<le> y"  | 
1303  | 
for x y :: real  | 
|
| 63353 | 1304  | 
by auto  | 
1305  | 
||
| 51523 | 1306  | 
|
| 60758 | 1307  | 
subsection \<open>Lemmas about powers\<close>  | 
| 51523 | 1308  | 
|
1309  | 
lemma two_realpow_ge_one: "(1::real) \<le> 2 ^ n"  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1310  | 
by simp  | 
| 51523 | 1311  | 
|
| 63353 | 1312  | 
(* FIXME: declare this [simp] for all types, or not at all *)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1313  | 
declare sum_squares_eq_zero_iff [simp] sum_power2_eq_zero_iff [simp]  | 
| 51523 | 1314  | 
|
| 63494 | 1315  | 
lemma real_minus_mult_self_le [simp]: "- (u * u) \<le> x * x"  | 
1316  | 
for u x :: real  | 
|
| 63353 | 1317  | 
by (rule order_trans [where y = 0]) auto  | 
| 51523 | 1318  | 
|
| 63494 | 1319  | 
lemma realpow_square_minus_le [simp]: "- u\<^sup>2 \<le> x\<^sup>2"  | 
1320  | 
for u x :: real  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1321  | 
by (auto simp add: power2_eq_square)  | 
| 51523 | 1322  | 
|
| 
56889
 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 
hoelzl 
parents: 
56571 
diff
changeset
 | 
1323  | 
|
| 63353 | 1324  | 
subsection \<open>Density of the Reals\<close>  | 
1325  | 
||
| 
68527
 
2f4e2aab190a
Generalising and renaming some basic results
 
paulson <lp15@cam.ac.uk> 
parents: 
68484 
diff
changeset
 | 
1326  | 
lemma field_lbound_gt_zero: "0 < d1 \<Longrightarrow> 0 < d2 \<Longrightarrow> \<exists>e. 0 < e \<and> e < d1 \<and> e < d2"  | 
| 
 
2f4e2aab190a
Generalising and renaming some basic results
 
paulson <lp15@cam.ac.uk> 
parents: 
68484 
diff
changeset
 | 
1327  | 
for d1 d2 :: "'a::linordered_field"  | 
| 63353 | 1328  | 
by (rule exI [where x = "min d1 d2 / 2"]) (simp add: min_def)  | 
| 51523 | 1329  | 
|
| 
68527
 
2f4e2aab190a
Generalising and renaming some basic results
 
paulson <lp15@cam.ac.uk> 
parents: 
68484 
diff
changeset
 | 
1330  | 
lemma field_less_half_sum: "x < y \<Longrightarrow> x < (x + y) / 2"  | 
| 
 
2f4e2aab190a
Generalising and renaming some basic results
 
paulson <lp15@cam.ac.uk> 
parents: 
68484 
diff
changeset
 | 
1331  | 
for x y :: "'a::linordered_field"  | 
| 63353 | 1332  | 
by auto  | 
1333  | 
||
| 
68527
 
2f4e2aab190a
Generalising and renaming some basic results
 
paulson <lp15@cam.ac.uk> 
parents: 
68484 
diff
changeset
 | 
1334  | 
lemma field_sum_of_halves: "x / 2 + x / 2 = x"  | 
| 
 
2f4e2aab190a
Generalising and renaming some basic results
 
paulson <lp15@cam.ac.uk> 
parents: 
68484 
diff
changeset
 | 
1335  | 
for x :: "'a::linordered_field"  | 
| 63353 | 1336  | 
by simp  | 
| 51523 | 1337  | 
|
1338  | 
||
| 71043 | 1339  | 
subsection \<open>Archimedean properties and useful consequences\<close>  | 
1340  | 
||
1341  | 
text\<open>Bernoulli's inequality\<close>  | 
|
1342  | 
proposition Bernoulli_inequality:  | 
|
1343  | 
fixes x :: real  | 
|
1344  | 
assumes "-1 \<le> x"  | 
|
1345  | 
shows "1 + n * x \<le> (1 + x) ^ n"  | 
|
1346  | 
proof (induct n)  | 
|
1347  | 
case 0  | 
|
1348  | 
then show ?case by simp  | 
|
1349  | 
next  | 
|
1350  | 
case (Suc n)  | 
|
1351  | 
have "1 + Suc n * x \<le> 1 + (Suc n)*x + n * x^2"  | 
|
1352  | 
by (simp add: algebra_simps)  | 
|
1353  | 
also have "... = (1 + x) * (1 + n*x)"  | 
|
1354  | 
by (auto simp: power2_eq_square algebra_simps)  | 
|
1355  | 
also have "... \<le> (1 + x) ^ Suc n"  | 
|
1356  | 
using Suc.hyps assms mult_left_mono by fastforce  | 
|
1357  | 
finally show ?case .  | 
|
1358  | 
qed  | 
|
1359  | 
||
1360  | 
corollary Bernoulli_inequality_even:  | 
|
1361  | 
fixes x :: real  | 
|
1362  | 
assumes "even n"  | 
|
1363  | 
shows "1 + n * x \<le> (1 + x) ^ n"  | 
|
1364  | 
proof (cases "-1 \<le> x \<or> n=0")  | 
|
1365  | 
case True  | 
|
1366  | 
then show ?thesis  | 
|
1367  | 
by (auto simp: Bernoulli_inequality)  | 
|
1368  | 
next  | 
|
1369  | 
case False  | 
|
1370  | 
then have "real n \<ge> 1"  | 
|
1371  | 
by simp  | 
|
1372  | 
with False have "n * x \<le> -1"  | 
|
1373  | 
by (metis linear minus_zero mult.commute mult.left_neutral mult_left_mono_neg neg_le_iff_le order_trans zero_le_one)  | 
|
1374  | 
then have "1 + n * x \<le> 0"  | 
|
1375  | 
by auto  | 
|
1376  | 
also have "... \<le> (1 + x) ^ n"  | 
|
1377  | 
using assms  | 
|
1378  | 
using zero_le_even_power by blast  | 
|
1379  | 
finally show ?thesis .  | 
|
1380  | 
qed  | 
|
1381  | 
||
1382  | 
corollary real_arch_pow:  | 
|
1383  | 
fixes x :: real  | 
|
1384  | 
assumes x: "1 < x"  | 
|
1385  | 
shows "\<exists>n. y < x^n"  | 
|
1386  | 
proof -  | 
|
1387  | 
from x have x0: "x - 1 > 0"  | 
|
1388  | 
by arith  | 
|
1389  | 
from reals_Archimedean3[OF x0, rule_format, of y]  | 
|
1390  | 
obtain n :: nat where n: "y < real n * (x - 1)" by metis  | 
|
1391  | 
from x0 have x00: "x- 1 \<ge> -1" by arith  | 
|
1392  | 
from Bernoulli_inequality[OF x00, of n] n  | 
|
1393  | 
have "y < x^n" by auto  | 
|
1394  | 
then show ?thesis by metis  | 
|
1395  | 
qed  | 
|
1396  | 
||
1397  | 
corollary real_arch_pow_inv:  | 
|
1398  | 
fixes x y :: real  | 
|
1399  | 
assumes y: "y > 0"  | 
|
1400  | 
and x1: "x < 1"  | 
|
1401  | 
shows "\<exists>n. x^n < y"  | 
|
1402  | 
proof (cases "x > 0")  | 
|
1403  | 
case True  | 
|
1404  | 
with x1 have ix: "1 < 1/x" by (simp add: field_simps)  | 
|
1405  | 
from real_arch_pow[OF ix, of "1/y"]  | 
|
1406  | 
obtain n where n: "1/y < (1/x)^n" by blast  | 
|
1407  | 
then show ?thesis using y \<open>x > 0\<close>  | 
|
1408  | 
by (auto simp add: field_simps)  | 
|
1409  | 
next  | 
|
1410  | 
case False  | 
|
1411  | 
with y x1 show ?thesis  | 
|
1412  | 
by (metis less_le_trans not_less power_one_right)  | 
|
1413  | 
qed  | 
|
1414  | 
||
1415  | 
lemma forall_pos_mono:  | 
|
1416  | 
"(\<And>d e::real. d < e \<Longrightarrow> P d \<Longrightarrow> P e) \<Longrightarrow>  | 
|
1417  | 
(\<And>n::nat. n \<noteq> 0 \<Longrightarrow> P (inverse (real n))) \<Longrightarrow> (\<And>e. 0 < e \<Longrightarrow> P e)"  | 
|
1418  | 
by (metis real_arch_inverse)  | 
|
1419  | 
||
1420  | 
lemma forall_pos_mono_1:  | 
|
1421  | 
"(\<And>d e::real. d < e \<Longrightarrow> P d \<Longrightarrow> P e) \<Longrightarrow>  | 
|
1422  | 
(\<And>n. P (inverse (real (Suc n)))) \<Longrightarrow> 0 < e \<Longrightarrow> P e"  | 
|
| 
77943
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1423  | 
using reals_Archimedean by blast  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1424  | 
|
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1425  | 
lemma Archimedean_eventually_pow:  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1426  | 
fixes x::real  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1427  | 
assumes "1 < x"  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1428  | 
shows "\<forall>\<^sub>F n in sequentially. b < x ^ n"  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1429  | 
proof -  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1430  | 
obtain N where "\<And>n. n\<ge>N \<Longrightarrow> b < x ^ n"  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1431  | 
by (metis assms le_less order_less_trans power_strict_increasing_iff real_arch_pow)  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1432  | 
then show ?thesis  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1433  | 
using eventually_sequentially by blast  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1434  | 
qed  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1435  | 
|
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1436  | 
lemma Archimedean_eventually_pow_inverse:  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1437  | 
fixes x::real  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1438  | 
assumes "\<bar>x\<bar> < 1" "\<epsilon> > 0"  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1439  | 
shows "\<forall>\<^sub>F n in sequentially. \<bar>x^n\<bar> < \<epsilon>"  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1440  | 
proof (cases "x = 0")  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1441  | 
case True  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1442  | 
then show ?thesis  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1443  | 
by (simp add: assms eventually_at_top_dense zero_power)  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1444  | 
next  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1445  | 
case False  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1446  | 
then have "\<forall>\<^sub>F n in sequentially. inverse \<epsilon> < inverse \<bar>x\<bar> ^ n"  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1447  | 
by (simp add: Archimedean_eventually_pow assms(1) one_less_inverse)  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1448  | 
then show ?thesis  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1449  | 
by eventually_elim (metis \<open>\<epsilon> > 0\<close> inverse_less_imp_less power_abs power_inverse)  | 
| 
 
ffdad62bc235
Importation of additional lemmas from metric.ml
 
paulson <lp15@cam.ac.uk> 
parents: 
77934 
diff
changeset
 | 
1450  | 
qed  | 
| 71043 | 1451  | 
|
1452  | 
||
| 63353 | 1453  | 
subsection \<open>Floor and Ceiling Functions from the Reals to the Integers\<close>  | 
| 51523 | 1454  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1455  | 
(* FIXME: theorems for negative numerals. Many duplicates, e.g. from Archimedean_Field.thy. *)  | 
| 51523 | 1456  | 
|
| 63494 | 1457  | 
lemma real_of_nat_less_numeral_iff [simp]: "real n < numeral w \<longleftrightarrow> n < numeral w"  | 
1458  | 
for n :: nat  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1459  | 
by (metis of_nat_less_iff of_nat_numeral)  | 
| 
56889
 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 
hoelzl 
parents: 
56571 
diff
changeset
 | 
1460  | 
|
| 63494 | 1461  | 
lemma numeral_less_real_of_nat_iff [simp]: "numeral w < real n \<longleftrightarrow> numeral w < n"  | 
1462  | 
for n :: nat  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1463  | 
by (metis of_nat_less_iff of_nat_numeral)  | 
| 
56889
 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 
hoelzl 
parents: 
56571 
diff
changeset
 | 
1464  | 
|
| 63494 | 1465  | 
lemma numeral_le_real_of_nat_iff [simp]: "numeral n \<le> real m \<longleftrightarrow> numeral n \<le> m"  | 
1466  | 
for m :: nat  | 
|
| 63353 | 1467  | 
by (metis not_le real_of_nat_less_numeral_iff)  | 
| 
59587
 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 
nipkow 
parents: 
59000 
diff
changeset
 | 
1468  | 
|
| 63353 | 1469  | 
lemma of_int_floor_cancel [simp]: "of_int \<lfloor>x\<rfloor> = x \<longleftrightarrow> (\<exists>n::int. x = of_int n)"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1470  | 
by (metis floor_of_int)  | 
| 51523 | 1471  | 
|
| 
75543
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1472  | 
lemma of_int_floor [simp]: "a \<in> \<int> \<Longrightarrow> of_int (floor a) = a"  | 
| 
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1473  | 
by (metis Ints_cases of_int_floor_cancel)  | 
| 
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1474  | 
|
| 
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1475  | 
lemma floor_frac [simp]: "\<lfloor>frac r\<rfloor> = 0"  | 
| 
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1476  | 
by (simp add: frac_def)  | 
| 
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1477  | 
|
| 
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1478  | 
lemma frac_1 [simp]: "frac 1 = 0"  | 
| 
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1479  | 
by (simp add: frac_def)  | 
| 
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1480  | 
|
| 
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1481  | 
lemma frac_in_Rats_iff [simp]:  | 
| 
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1482  | 
  fixes r::"'a::{floor_ceiling,field_char_0}"
 | 
| 
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1483  | 
shows "frac r \<in> \<rat> \<longleftrightarrow> r \<in> \<rat>"  | 
| 
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1484  | 
by (metis Rats_add Rats_diff Rats_of_int diff_add_cancel frac_def)  | 
| 
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1485  | 
|
| 63353 | 1486  | 
lemma floor_eq: "real_of_int n < x \<Longrightarrow> x < real_of_int n + 1 \<Longrightarrow> \<lfloor>x\<rfloor> = n"  | 
| 
58040
 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 
hoelzl 
parents: 
57514 
diff
changeset
 | 
1487  | 
by linarith  | 
| 51523 | 1488  | 
|
| 63353 | 1489  | 
lemma floor_eq2: "real_of_int n \<le> x \<Longrightarrow> x < real_of_int n + 1 \<Longrightarrow> \<lfloor>x\<rfloor> = n"  | 
| 67051 | 1490  | 
by (fact floor_unique)  | 
| 51523 | 1491  | 
|
| 63353 | 1492  | 
lemma floor_eq3: "real n < x \<Longrightarrow> x < real (Suc n) \<Longrightarrow> nat \<lfloor>x\<rfloor> = n"  | 
| 
58040
 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 
hoelzl 
parents: 
57514 
diff
changeset
 | 
1493  | 
by linarith  | 
| 51523 | 1494  | 
|
| 63353 | 1495  | 
lemma floor_eq4: "real n \<le> x \<Longrightarrow> x < real (Suc n) \<Longrightarrow> nat \<lfloor>x\<rfloor> = n"  | 
| 
58040
 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 
hoelzl 
parents: 
57514 
diff
changeset
 | 
1496  | 
by linarith  | 
| 51523 | 1497  | 
|
| 61942 | 1498  | 
lemma real_of_int_floor_ge_diff_one [simp]: "r - 1 \<le> real_of_int \<lfloor>r\<rfloor>"  | 
| 
58040
 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 
hoelzl 
parents: 
57514 
diff
changeset
 | 
1499  | 
by linarith  | 
| 51523 | 1500  | 
|
| 61942 | 1501  | 
lemma real_of_int_floor_gt_diff_one [simp]: "r - 1 < real_of_int \<lfloor>r\<rfloor>"  | 
| 
58040
 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 
hoelzl 
parents: 
57514 
diff
changeset
 | 
1502  | 
by linarith  | 
| 51523 | 1503  | 
|
| 61942 | 1504  | 
lemma real_of_int_floor_add_one_ge [simp]: "r \<le> real_of_int \<lfloor>r\<rfloor> + 1"  | 
| 
58040
 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 
hoelzl 
parents: 
57514 
diff
changeset
 | 
1505  | 
by linarith  | 
| 51523 | 1506  | 
|
| 61942 | 1507  | 
lemma real_of_int_floor_add_one_gt [simp]: "r < real_of_int \<lfloor>r\<rfloor> + 1"  | 
| 
58040
 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 
hoelzl 
parents: 
57514 
diff
changeset
 | 
1508  | 
by linarith  | 
| 51523 | 1509  | 
|
| 63353 | 1510  | 
lemma floor_divide_real_eq_div:  | 
1511  | 
assumes "0 \<le> b"  | 
|
1512  | 
shows "\<lfloor>a / real_of_int b\<rfloor> = \<lfloor>a\<rfloor> div b"  | 
|
1513  | 
proof (cases "b = 0")  | 
|
1514  | 
case True  | 
|
1515  | 
then show ?thesis by simp  | 
|
1516  | 
next  | 
|
1517  | 
case False  | 
|
1518  | 
with assms have b: "b > 0" by simp  | 
|
1519  | 
have "j = i div b"  | 
|
1520  | 
if "real_of_int i \<le> a" "a < 1 + real_of_int i"  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1521  | 
"real_of_int j * real_of_int b \<le> a" "a < real_of_int b + real_of_int j * real_of_int b"  | 
| 63353 | 1522  | 
for i j :: int  | 
1523  | 
proof -  | 
|
1524  | 
from that have "i < b + j * b"  | 
|
1525  | 
by (metis le_less_trans of_int_add of_int_less_iff of_int_mult)  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1526  | 
moreover have "j * b < 1 + i"  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1527  | 
proof -  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1528  | 
have "real_of_int (j * b) < real_of_int i + 1"  | 
| 61799 | 1529  | 
using \<open>a < 1 + real_of_int i\<close> \<open>real_of_int j * real_of_int b \<le> a\<close> by force  | 
| 63597 | 1530  | 
then show "j * b < 1 + i" by linarith  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1531  | 
qed  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1532  | 
ultimately have "(j - i div b) * b \<le> i mod b" "i mod b < ((j - i div b) + 1) * b"  | 
| 
58788
 
d17b3844b726
generalize natfloor_div_nat, add floor variant: floor_divide_real_eq_div
 
hoelzl 
parents: 
58134 
diff
changeset
 | 
1533  | 
by (auto simp: field_simps)  | 
| 
 
d17b3844b726
generalize natfloor_div_nat, add floor variant: floor_divide_real_eq_div
 
hoelzl 
parents: 
58134 
diff
changeset
 | 
1534  | 
then have "(j - i div b) * b < 1 * b" "0 * b < ((j - i div b) + 1) * b"  | 
| 63353 | 1535  | 
using pos_mod_bound [OF b, of i] pos_mod_sign [OF b, of i]  | 
1536  | 
by linarith+  | 
|
| 63597 | 1537  | 
then show ?thesis using b unfolding mult_less_cancel_right by auto  | 
| 63353 | 1538  | 
qed  | 
| 63597 | 1539  | 
with b show ?thesis by (auto split: floor_split simp: field_simps)  | 
| 63353 | 1540  | 
qed  | 
| 
58788
 
d17b3844b726
generalize natfloor_div_nat, add floor variant: floor_divide_real_eq_div
 
hoelzl 
parents: 
58134 
diff
changeset
 | 
1541  | 
|
| 63601 | 1542  | 
lemma floor_one_divide_eq_div_numeral [simp]:  | 
1543  | 
"\<lfloor>1 / numeral b::real\<rfloor> = 1 div numeral b"  | 
|
1544  | 
by (metis floor_divide_of_int_eq of_int_1 of_int_numeral)  | 
|
1545  | 
||
1546  | 
lemma floor_minus_one_divide_eq_div_numeral [simp]:  | 
|
1547  | 
"\<lfloor>- (1 / numeral b)::real\<rfloor> = - 1 div numeral b"  | 
|
| 
73932
 
fd21b4a93043
added opaque_combs and renamed hide_lams to opaque_lifting
 
desharna 
parents: 
72607 
diff
changeset
 | 
1548  | 
by (metis (mono_tags, opaque_lifting) div_minus_right minus_divide_right  | 
| 63601 | 1549  | 
floor_divide_of_int_eq of_int_neg_numeral of_int_1)  | 
1550  | 
||
| 63597 | 1551  | 
lemma floor_divide_eq_div_numeral [simp]:  | 
1552  | 
"\<lfloor>numeral a / numeral b::real\<rfloor> = numeral a div numeral b"  | 
|
1553  | 
by (metis floor_divide_of_int_eq of_int_numeral)  | 
|
| 
58097
 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 
hoelzl 
parents: 
58061 
diff
changeset
 | 
1554  | 
|
| 63353 | 1555  | 
lemma floor_minus_divide_eq_div_numeral [simp]:  | 
1556  | 
"\<lfloor>- (numeral a / numeral b)::real\<rfloor> = - numeral a div numeral b"  | 
|
| 63597 | 1557  | 
by (metis divide_minus_left floor_divide_of_int_eq of_int_neg_numeral of_int_numeral)  | 
| 51523 | 1558  | 
|
| 63353 | 1559  | 
lemma of_int_ceiling_cancel [simp]: "of_int \<lceil>x\<rceil> = x \<longleftrightarrow> (\<exists>n::int. x = of_int n)"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1560  | 
using ceiling_of_int by metis  | 
| 51523 | 1561  | 
|
| 
75543
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1562  | 
lemma of_int_ceiling [simp]: "a \<in> \<int> \<Longrightarrow> of_int (ceiling a) = a"  | 
| 
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1563  | 
by (metis Ints_cases of_int_ceiling_cancel)  | 
| 
 
1910054f8c39
some additional lemmas and a little tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
75327 
diff
changeset
 | 
1564  | 
|
| 63353 | 1565  | 
lemma ceiling_eq: "of_int n < x \<Longrightarrow> x \<le> of_int n + 1 \<Longrightarrow> \<lceil>x\<rceil> = n + 1"  | 
| 
61694
 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 
paulson <lp15@cam.ac.uk> 
parents: 
61649 
diff
changeset
 | 
1566  | 
by (simp add: ceiling_unique)  | 
| 51523 | 1567  | 
|
| 61942 | 1568  | 
lemma of_int_ceiling_diff_one_le [simp]: "of_int \<lceil>r\<rceil> - 1 \<le> r"  | 
| 
58040
 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 
hoelzl 
parents: 
57514 
diff
changeset
 | 
1569  | 
by linarith  | 
| 51523 | 1570  | 
|
| 61942 | 1571  | 
lemma of_int_ceiling_le_add_one [simp]: "of_int \<lceil>r\<rceil> \<le> r + 1"  | 
| 
58040
 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 
hoelzl 
parents: 
57514 
diff
changeset
 | 
1572  | 
by linarith  | 
| 51523 | 1573  | 
|
| 63353 | 1574  | 
lemma ceiling_le: "x \<le> of_int a \<Longrightarrow> \<lceil>x\<rceil> \<le> a"  | 
| 
61694
 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 
paulson <lp15@cam.ac.uk> 
parents: 
61649 
diff
changeset
 | 
1575  | 
by (simp add: ceiling_le_iff)  | 
| 51523 | 1576  | 
|
| 
61694
 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 
paulson <lp15@cam.ac.uk> 
parents: 
61649 
diff
changeset
 | 
1577  | 
lemma ceiling_divide_eq_div: "\<lceil>of_int a / of_int b\<rceil> = - (- a div b)"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1578  | 
by (metis ceiling_def floor_divide_of_int_eq minus_divide_left of_int_minus)  | 
| 
58097
 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 
hoelzl 
parents: 
58061 
diff
changeset
 | 
1579  | 
|
| 
 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 
hoelzl 
parents: 
58061 
diff
changeset
 | 
1580  | 
lemma ceiling_divide_eq_div_numeral [simp]:  | 
| 
 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 
hoelzl 
parents: 
58061 
diff
changeset
 | 
1581  | 
"\<lceil>numeral a / numeral b :: real\<rceil> = - (- numeral a div numeral b)"  | 
| 
 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 
hoelzl 
parents: 
58061 
diff
changeset
 | 
1582  | 
using ceiling_divide_eq_div[of "numeral a" "numeral b"] by simp  | 
| 
 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 
hoelzl 
parents: 
58061 
diff
changeset
 | 
1583  | 
|
| 
 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 
hoelzl 
parents: 
58061 
diff
changeset
 | 
1584  | 
lemma ceiling_minus_divide_eq_div_numeral [simp]:  | 
| 
 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 
hoelzl 
parents: 
58061 
diff
changeset
 | 
1585  | 
"\<lceil>- (numeral a / numeral b :: real)\<rceil> = - (numeral a div numeral b)"  | 
| 
 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 
hoelzl 
parents: 
58061 
diff
changeset
 | 
1586  | 
using ceiling_divide_eq_div[of "- numeral a" "numeral b"] by simp  | 
| 51523 | 1587  | 
|
| 63353 | 1588  | 
text \<open>  | 
1589  | 
The following lemmas are remnants of the erstwhile functions natfloor  | 
|
1590  | 
and natceiling.  | 
|
1591  | 
\<close>  | 
|
| 
58040
 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 
hoelzl 
parents: 
57514 
diff
changeset
 | 
1592  | 
|
| 63494 | 1593  | 
lemma nat_floor_neg: "x \<le> 0 \<Longrightarrow> nat \<lfloor>x\<rfloor> = 0"  | 
1594  | 
for x :: real  | 
|
| 
58040
 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 
hoelzl 
parents: 
57514 
diff
changeset
 | 
1595  | 
by linarith  | 
| 51523 | 1596  | 
|
| 63353 | 1597  | 
lemma le_nat_floor: "real x \<le> a \<Longrightarrow> x \<le> nat \<lfloor>a\<rfloor>"  | 
| 
58040
 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 
hoelzl 
parents: 
57514 
diff
changeset
 | 
1598  | 
by linarith  | 
| 51523 | 1599  | 
|
| 61942 | 1600  | 
lemma le_mult_nat_floor: "nat \<lfloor>a\<rfloor> * nat \<lfloor>b\<rfloor> \<le> nat \<lfloor>a * b\<rfloor>"  | 
| 63353 | 1601  | 
by (cases "0 \<le> a \<and> 0 \<le> b")  | 
| 
59587
 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 
nipkow 
parents: 
59000 
diff
changeset
 | 
1602  | 
(auto simp add: nat_mult_distrib[symmetric] nat_mono le_mult_floor)  | 
| 51523 | 1603  | 
|
| 63353 | 1604  | 
lemma nat_ceiling_le_eq [simp]: "nat \<lceil>x\<rceil> \<le> a \<longleftrightarrow> x \<le> real a"  | 
| 
58040
 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 
hoelzl 
parents: 
57514 
diff
changeset
 | 
1605  | 
by linarith  | 
| 51523 | 1606  | 
|
| 63353 | 1607  | 
lemma real_nat_ceiling_ge: "x \<le> real (nat \<lceil>x\<rceil>)"  | 
| 
58040
 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 
hoelzl 
parents: 
57514 
diff
changeset
 | 
1608  | 
by linarith  | 
| 51523 | 1609  | 
|
| 63494 | 1610  | 
lemma Rats_no_top_le: "\<exists>q \<in> \<rat>. x \<le> q"  | 
1611  | 
for x :: real  | 
|
| 61942 | 1612  | 
by (auto intro!: bexI[of _ "of_nat (nat \<lceil>x\<rceil>)"]) linarith  | 
| 
57275
 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 
hoelzl 
parents: 
56889 
diff
changeset
 | 
1613  | 
|
| 63353 | 1614  | 
lemma Rats_no_bot_less: "\<exists>q \<in> \<rat>. q < x" for x :: real  | 
| 68669 | 1615  | 
by (auto intro!: bexI[of _ "of_int (\<lfloor>x\<rfloor> - 1)"]) linarith  | 
| 
57447
 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 
hoelzl 
parents: 
57275 
diff
changeset
 | 
1616  | 
|
| 
80612
 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 
paulson <lp15@cam.ac.uk> 
parents: 
78669 
diff
changeset
 | 
1617  | 
lemma floor_ceiling_diff_le: "0 \<le> r \<Longrightarrow> nat\<lfloor>real k - r\<rfloor> \<le> k - nat\<lceil>r\<rceil>"  | 
| 
 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 
paulson <lp15@cam.ac.uk> 
parents: 
78669 
diff
changeset
 | 
1618  | 
by linarith  | 
| 
 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 
paulson <lp15@cam.ac.uk> 
parents: 
78669 
diff
changeset
 | 
1619  | 
|
| 
 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 
paulson <lp15@cam.ac.uk> 
parents: 
78669 
diff
changeset
 | 
1620  | 
lemma floor_ceiling_diff_le': "nat\<lfloor>r - real k\<rfloor> \<le> nat\<lceil>r\<rceil> - k"  | 
| 
 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 
paulson <lp15@cam.ac.uk> 
parents: 
78669 
diff
changeset
 | 
1621  | 
by linarith  | 
| 
 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 
paulson <lp15@cam.ac.uk> 
parents: 
78669 
diff
changeset
 | 
1622  | 
|
| 
 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 
paulson <lp15@cam.ac.uk> 
parents: 
78669 
diff
changeset
 | 
1623  | 
lemma ceiling_floor_diff_ge: "nat\<lceil>r - real k\<rceil> \<ge> nat\<lfloor>r\<rfloor> - k"  | 
| 
 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 
paulson <lp15@cam.ac.uk> 
parents: 
78669 
diff
changeset
 | 
1624  | 
by linarith  | 
| 
 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 
paulson <lp15@cam.ac.uk> 
parents: 
78669 
diff
changeset
 | 
1625  | 
|
| 
 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 
paulson <lp15@cam.ac.uk> 
parents: 
78669 
diff
changeset
 | 
1626  | 
lemma ceiling_floor_diff_ge': "r \<le> k \<Longrightarrow> nat\<lceil>r - real k\<rceil> \<le> k - nat\<lfloor>r\<rfloor>"  | 
| 
 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 
paulson <lp15@cam.ac.uk> 
parents: 
78669 
diff
changeset
 | 
1627  | 
by linarith  | 
| 
 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 
paulson <lp15@cam.ac.uk> 
parents: 
78669 
diff
changeset
 | 
1628  | 
|
| 63353 | 1629  | 
|
| 60758 | 1630  | 
subsection \<open>Exponentiation with floor\<close>  | 
| 51523 | 1631  | 
|
1632  | 
lemma floor_power:  | 
|
| 61942 | 1633  | 
assumes "x = of_int \<lfloor>x\<rfloor>"  | 
1634  | 
shows "\<lfloor>x ^ n\<rfloor> = \<lfloor>x\<rfloor> ^ n"  | 
|
| 51523 | 1635  | 
proof -  | 
| 61942 | 1636  | 
have "x ^ n = of_int (\<lfloor>x\<rfloor> ^ n)"  | 
| 51523 | 1637  | 
using assms by (induct n arbitrary: x) simp_all  | 
| 
62626
 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 
paulson <lp15@cam.ac.uk> 
parents: 
62623 
diff
changeset
 | 
1638  | 
then show ?thesis by (metis floor_of_int)  | 
| 51523 | 1639  | 
qed  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
1640  | 
|
| 63353 | 1641  | 
lemma floor_numeral_power [simp]: "\<lfloor>numeral x ^ n\<rfloor> = numeral x ^ n"  | 
| 
58983
 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 
immler 
parents: 
58889 
diff
changeset
 | 
1642  | 
by (metis floor_of_int of_int_numeral of_int_power)  | 
| 
 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 
immler 
parents: 
58889 
diff
changeset
 | 
1643  | 
|
| 63353 | 1644  | 
lemma ceiling_numeral_power [simp]: "\<lceil>numeral x ^ n\<rceil> = numeral x ^ n"  | 
| 
58983
 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 
immler 
parents: 
58889 
diff
changeset
 | 
1645  | 
by (metis ceiling_of_int of_int_numeral of_int_power)  | 
| 
 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 
immler 
parents: 
58889 
diff
changeset
 | 
1646  | 
|
| 63353 | 1647  | 
|
| 60758 | 1648  | 
subsection \<open>Implementation of rational real numbers\<close>  | 
| 51523 | 1649  | 
|
| 60758 | 1650  | 
text \<open>Formal constructor\<close>  | 
| 51523 | 1651  | 
|
| 63353 | 1652  | 
definition Ratreal :: "rat \<Rightarrow> real"  | 
| 
66155
 
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
 
haftmann 
parents: 
65885 
diff
changeset
 | 
1653  | 
where [code_abbrev, simp]: "Ratreal = real_of_rat"  | 
| 51523 | 1654  | 
|
1655  | 
code_datatype Ratreal  | 
|
1656  | 
||
1657  | 
||
| 
66155
 
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
 
haftmann 
parents: 
65885 
diff
changeset
 | 
1658  | 
text \<open>Quasi-Numerals\<close>  | 
| 51523 | 1659  | 
|
| 
66155
 
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
 
haftmann 
parents: 
65885 
diff
changeset
 | 
1660  | 
lemma [code_abbrev]:  | 
| 
 
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
 
haftmann 
parents: 
65885 
diff
changeset
 | 
1661  | 
"real_of_rat (numeral k) = numeral k"  | 
| 
 
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
 
haftmann 
parents: 
65885 
diff
changeset
 | 
1662  | 
"real_of_rat (- numeral k) = - numeral k"  | 
| 
 
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
 
haftmann 
parents: 
65885 
diff
changeset
 | 
1663  | 
"real_of_rat (rat_of_int a) = real_of_int a"  | 
| 
 
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
 
haftmann 
parents: 
65885 
diff
changeset
 | 
1664  | 
by simp_all  | 
| 51523 | 1665  | 
|
1666  | 
lemma [code_post]:  | 
|
| 
66155
 
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
 
haftmann 
parents: 
65885 
diff
changeset
 | 
1667  | 
"real_of_rat 0 = 0"  | 
| 
 
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
 
haftmann 
parents: 
65885 
diff
changeset
 | 
1668  | 
"real_of_rat 1 = 1"  | 
| 
 
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
 
haftmann 
parents: 
65885 
diff
changeset
 | 
1669  | 
"real_of_rat (- 1) = - 1"  | 
| 
 
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
 
haftmann 
parents: 
65885 
diff
changeset
 | 
1670  | 
"real_of_rat (1 / numeral k) = 1 / numeral k"  | 
| 
 
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
 
haftmann 
parents: 
65885 
diff
changeset
 | 
1671  | 
"real_of_rat (numeral k / numeral l) = numeral k / numeral l"  | 
| 
 
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
 
haftmann 
parents: 
65885 
diff
changeset
 | 
1672  | 
"real_of_rat (- (1 / numeral k)) = - (1 / numeral k)"  | 
| 
 
2463cba9f18f
stripped code pre/postprocessor setup for real from superfluous rules
 
haftmann 
parents: 
65885 
diff
changeset
 | 
1673  | 
"real_of_rat (- (numeral k / numeral l)) = - (numeral k / numeral l)"  | 
| 
54489
 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 
haftmann 
parents: 
54281 
diff
changeset
 | 
1674  | 
by (simp_all add: of_rat_divide of_rat_minus)  | 
| 51523 | 1675  | 
|
| 60758 | 1676  | 
text \<open>Operations\<close>  | 
| 51523 | 1677  | 
|
| 63353 | 1678  | 
lemma zero_real_code [code]: "0 = Ratreal 0"  | 
| 63494 | 1679  | 
by simp  | 
| 51523 | 1680  | 
|
| 63353 | 1681  | 
lemma one_real_code [code]: "1 = Ratreal 1"  | 
| 63494 | 1682  | 
by simp  | 
| 51523 | 1683  | 
|
1684  | 
instantiation real :: equal  | 
|
1685  | 
begin  | 
|
1686  | 
||
| 63353 | 1687  | 
definition "HOL.equal x y \<longleftrightarrow> x - y = 0" for x :: real  | 
| 51523 | 1688  | 
|
| 63353 | 1689  | 
instance by standard (simp add: equal_real_def)  | 
| 51523 | 1690  | 
|
| 63353 | 1691  | 
lemma real_equal_code [code]: "HOL.equal (Ratreal x) (Ratreal y) \<longleftrightarrow> HOL.equal x y"  | 
| 51523 | 1692  | 
by (simp add: equal_real_def equal)  | 
1693  | 
||
| 63494 | 1694  | 
lemma [code nbe]: "HOL.equal x x \<longleftrightarrow> True"  | 
1695  | 
for x :: real  | 
|
| 51523 | 1696  | 
by (rule equal_refl)  | 
1697  | 
||
1698  | 
end  | 
|
1699  | 
||
1700  | 
lemma real_less_eq_code [code]: "Ratreal x \<le> Ratreal y \<longleftrightarrow> x \<le> y"  | 
|
1701  | 
by (simp add: of_rat_less_eq)  | 
|
1702  | 
||
1703  | 
lemma real_less_code [code]: "Ratreal x < Ratreal y \<longleftrightarrow> x < y"  | 
|
1704  | 
by (simp add: of_rat_less)  | 
|
1705  | 
||
1706  | 
lemma real_plus_code [code]: "Ratreal x + Ratreal y = Ratreal (x + y)"  | 
|
1707  | 
by (simp add: of_rat_add)  | 
|
1708  | 
||
1709  | 
lemma real_times_code [code]: "Ratreal x * Ratreal y = Ratreal (x * y)"  | 
|
1710  | 
by (simp add: of_rat_mult)  | 
|
1711  | 
||
1712  | 
lemma real_uminus_code [code]: "- Ratreal x = Ratreal (- x)"  | 
|
1713  | 
by (simp add: of_rat_minus)  | 
|
1714  | 
||
1715  | 
lemma real_minus_code [code]: "Ratreal x - Ratreal y = Ratreal (x - y)"  | 
|
1716  | 
by (simp add: of_rat_diff)  | 
|
1717  | 
||
1718  | 
lemma real_inverse_code [code]: "inverse (Ratreal x) = Ratreal (inverse x)"  | 
|
1719  | 
by (simp add: of_rat_inverse)  | 
|
| 
61284
 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 
paulson <lp15@cam.ac.uk> 
parents: 
61204 
diff
changeset
 | 
1720  | 
|
| 51523 | 1721  | 
lemma real_divide_code [code]: "Ratreal x / Ratreal y = Ratreal (x / y)"  | 
1722  | 
by (simp add: of_rat_divide)  | 
|
1723  | 
||
| 61942 | 1724  | 
lemma real_floor_code [code]: "\<lfloor>Ratreal x\<rfloor> = \<lfloor>x\<rfloor>"  | 
| 63353 | 1725  | 
by (metis Ratreal_def floor_le_iff floor_unique le_floor_iff  | 
1726  | 
of_int_floor_le of_rat_of_int_eq real_less_eq_code)  | 
|
| 51523 | 1727  | 
|
1728  | 
||
| 60758 | 1729  | 
text \<open>Quickcheck\<close>  | 
| 51523 | 1730  | 
|
| 72607 | 1731  | 
context  | 
1732  | 
includes term_syntax  | 
|
1733  | 
begin  | 
|
1734  | 
||
1735  | 
definition  | 
|
| 63353 | 1736  | 
valterm_ratreal :: "rat \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> real \<times> (unit \<Rightarrow> Code_Evaluation.term)"  | 
1737  | 
  where [code_unfold]: "valterm_ratreal k = Code_Evaluation.valtermify Ratreal {\<cdot>} k"
 | 
|
| 51523 | 1738  | 
|
| 72607 | 1739  | 
end  | 
1740  | 
||
| 72581 | 1741  | 
instantiation real :: random  | 
1742  | 
begin  | 
|
| 51523 | 1743  | 
|
| 72581 | 1744  | 
context  | 
1745  | 
includes state_combinator_syntax  | 
|
| 51523 | 1746  | 
begin  | 
1747  | 
||
1748  | 
definition  | 
|
1749  | 
"Quickcheck_Random.random i = Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>r. Pair (valterm_ratreal r))"  | 
|
1750  | 
||
1751  | 
instance ..  | 
|
1752  | 
||
1753  | 
end  | 
|
1754  | 
||
| 72581 | 1755  | 
end  | 
| 51523 | 1756  | 
|
1757  | 
instantiation real :: exhaustive  | 
|
1758  | 
begin  | 
|
1759  | 
||
1760  | 
definition  | 
|
| 63353 | 1761  | 
"exhaustive_real f d = Quickcheck_Exhaustive.exhaustive (\<lambda>r. f (Ratreal r)) d"  | 
| 51523 | 1762  | 
|
1763  | 
instance ..  | 
|
1764  | 
||
1765  | 
end  | 
|
1766  | 
||
1767  | 
instantiation real :: full_exhaustive  | 
|
1768  | 
begin  | 
|
1769  | 
||
1770  | 
definition  | 
|
| 63353 | 1771  | 
"full_exhaustive_real f d = Quickcheck_Exhaustive.full_exhaustive (\<lambda>r. f (valterm_ratreal r)) d"  | 
| 51523 | 1772  | 
|
1773  | 
instance ..  | 
|
1774  | 
||
1775  | 
end  | 
|
1776  | 
||
1777  | 
instantiation real :: narrowing  | 
|
1778  | 
begin  | 
|
1779  | 
||
1780  | 
definition  | 
|
| 63353 | 1781  | 
"narrowing_real = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.cons Ratreal) narrowing"  | 
| 51523 | 1782  | 
|
1783  | 
instance ..  | 
|
1784  | 
||
1785  | 
end  | 
|
1786  | 
||
1787  | 
||
| 60758 | 1788  | 
subsection \<open>Setup for Nitpick\<close>  | 
| 51523 | 1789  | 
|
| 60758 | 1790  | 
declaration \<open>  | 
| 69593 | 1791  | 
Nitpick_HOL.register_frac_type \<^type_name>\<open>real\<close>  | 
1792  | 
[(\<^const_name>\<open>zero_real_inst.zero_real\<close>, \<^const_name>\<open>Nitpick.zero_frac\<close>),  | 
|
1793  | 
(\<^const_name>\<open>one_real_inst.one_real\<close>, \<^const_name>\<open>Nitpick.one_frac\<close>),  | 
|
1794  | 
(\<^const_name>\<open>plus_real_inst.plus_real\<close>, \<^const_name>\<open>Nitpick.plus_frac\<close>),  | 
|
1795  | 
(\<^const_name>\<open>times_real_inst.times_real\<close>, \<^const_name>\<open>Nitpick.times_frac\<close>),  | 
|
1796  | 
(\<^const_name>\<open>uminus_real_inst.uminus_real\<close>, \<^const_name>\<open>Nitpick.uminus_frac\<close>),  | 
|
1797  | 
(\<^const_name>\<open>inverse_real_inst.inverse_real\<close>, \<^const_name>\<open>Nitpick.inverse_frac\<close>),  | 
|
1798  | 
(\<^const_name>\<open>ord_real_inst.less_real\<close>, \<^const_name>\<open>Nitpick.less_frac\<close>),  | 
|
1799  | 
(\<^const_name>\<open>ord_real_inst.less_eq_real\<close>, \<^const_name>\<open>Nitpick.less_eq_frac\<close>)]  | 
|
| 60758 | 1800  | 
\<close>  | 
| 51523 | 1801  | 
|
1802  | 
lemmas [nitpick_unfold] = inverse_real_inst.inverse_real one_real_inst.one_real  | 
|
| 63353 | 1803  | 
ord_real_inst.less_real ord_real_inst.less_eq_real plus_real_inst.plus_real  | 
1804  | 
times_real_inst.times_real uminus_real_inst.uminus_real  | 
|
1805  | 
zero_real_inst.zero_real  | 
|
| 51523 | 1806  | 
|
| 
56078
 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 
blanchet 
parents: 
55945 
diff
changeset
 | 
1807  | 
|
| 60758 | 1808  | 
subsection \<open>Setup for SMT\<close>  | 
| 
56078
 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 
blanchet 
parents: 
55945 
diff
changeset
 | 
1809  | 
|
| 69605 | 1810  | 
ML_file \<open>Tools/SMT/smt_real.ML\<close>  | 
1811  | 
ML_file \<open>Tools/SMT/z3_real.ML\<close>  | 
|
| 
56078
 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 
blanchet 
parents: 
55945 
diff
changeset
 | 
1812  | 
|
| 58061 | 1813  | 
lemma [z3_rule]:  | 
| 63353 | 1814  | 
"0 + x = x"  | 
| 
56078
 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 
blanchet 
parents: 
55945 
diff
changeset
 | 
1815  | 
"x + 0 = x"  | 
| 
 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 
blanchet 
parents: 
55945 
diff
changeset
 | 
1816  | 
"0 * x = 0"  | 
| 
 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 
blanchet 
parents: 
55945 
diff
changeset
 | 
1817  | 
"1 * x = x"  | 
| 65885 | 1818  | 
"-x = -1 * x"  | 
| 
56078
 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 
blanchet 
parents: 
55945 
diff
changeset
 | 
1819  | 
"x + y = y + x"  | 
| 63353 | 1820  | 
for x y :: real  | 
| 
56078
 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 
blanchet 
parents: 
55945 
diff
changeset
 | 
1821  | 
by auto  | 
| 51523 | 1822  | 
|
| 
72458
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1823  | 
lemma [smt_arith_multiplication]:  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1824  | 
fixes A B :: real and p n :: real  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1825  | 
assumes "A \<le> B" "0 < n" "p > 0"  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1826  | 
shows "(A / n) * p \<le> (B / n) * p"  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1827  | 
using assms by (auto simp: field_simps)  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1828  | 
|
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1829  | 
lemma [smt_arith_multiplication]:  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1830  | 
fixes A B :: real and p n :: real  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1831  | 
assumes "A < B" "0 < n" "p > 0"  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1832  | 
shows "(A / n) * p < (B / n) * p"  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1833  | 
using assms by (auto simp: field_simps)  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1834  | 
|
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1835  | 
lemma [smt_arith_multiplication]:  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1836  | 
fixes A B :: real and p n :: int  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1837  | 
assumes "A \<le> B" "0 < n" "p > 0"  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1838  | 
shows "(A / n) * p \<le> (B / n) * p"  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1839  | 
using assms by (auto simp: field_simps)  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1840  | 
|
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1841  | 
lemma [smt_arith_multiplication]:  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1842  | 
fixes A B :: real and p n :: int  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1843  | 
assumes "A < B" "0 < n" "p > 0"  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1844  | 
shows "(A / n) * p < (B / n) * p"  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1845  | 
using assms by (auto simp: field_simps)  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1846  | 
|
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1847  | 
lemmas [smt_arith_multiplication] =  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1848  | 
verit_le_mono_div[THEN mult_left_mono, unfolded int_distrib, of _ _ \<open>nat (floor (_ :: real))\<close> \<open>nat (floor (_ :: real))\<close>]  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1849  | 
div_le_mono[THEN mult_left_mono, unfolded int_distrib, of _ _ \<open>nat (floor (_ :: real))\<close> \<open>nat (floor (_ :: real))\<close>]  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1850  | 
verit_le_mono_div_int[THEN mult_left_mono, unfolded int_distrib, of _ _ \<open>floor (_ :: real)\<close> \<open>floor (_ :: real)\<close>]  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1851  | 
zdiv_mono1[THEN mult_left_mono, unfolded int_distrib, of _ _ \<open>floor (_ :: real)\<close> \<open>floor (_ :: real)\<close>]  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1852  | 
arg_cong[of _ _ \<open>\<lambda>a :: real. a / real (n::nat) * real (p::nat)\<close> for n p :: nat, THEN sym]  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1853  | 
arg_cong[of _ _ \<open>\<lambda>a :: real. a / real_of_int n * real_of_int p\<close> for n p :: int, THEN sym]  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1854  | 
arg_cong[of _ _ \<open>\<lambda>a :: real. a / n * p\<close> for n p :: real, THEN sym]  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1855  | 
|
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1856  | 
lemmas [smt_arith_simplify] =  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1857  | 
floor_one floor_numeral div_by_1 times_divide_eq_right  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1858  | 
nonzero_mult_div_cancel_left division_ring_divide_zero div_0  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1859  | 
divide_minus_left zero_less_divide_iff  | 
| 
 
b44e894796d5
add reconstruction for the SMT solver veriT
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
71043 
diff
changeset
 | 
1860  | 
|
| 
63960
 
3daf02070be5
new proof method "argo" for a combination of quantifier-free propositional logic with equality and linear real arithmetic
 
boehmes 
parents: 
63680 
diff
changeset
 | 
1861  | 
|
| 
 
3daf02070be5
new proof method "argo" for a combination of quantifier-free propositional logic with equality and linear real arithmetic
 
boehmes 
parents: 
63680 
diff
changeset
 | 
1862  | 
subsection \<open>Setup for Argo\<close>  | 
| 
 
3daf02070be5
new proof method "argo" for a combination of quantifier-free propositional logic with equality and linear real arithmetic
 
boehmes 
parents: 
63680 
diff
changeset
 | 
1863  | 
|
| 69605 | 1864  | 
ML_file \<open>Tools/Argo/argo_real.ML\<close>  | 
| 
63960
 
3daf02070be5
new proof method "argo" for a combination of quantifier-free propositional logic with equality and linear real arithmetic
 
boehmes 
parents: 
63680 
diff
changeset
 | 
1865  | 
|
| 51523 | 1866  | 
end  |