| author | wenzelm | 
| Tue, 31 Jul 2007 00:56:31 +0200 | |
| changeset 24077 | e7ba448bc571 | 
| parent 23949 | 06a988643235 | 
| child 24163 | 9e6a2a7da86a | 
| permissions | -rw-r--r-- | 
| 12396 | 1 | (* Title: HOL/Finite_Set.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 4 | with contributions by Jeremy Avigad | 
| 12396 | 5 | *) | 
| 6 | ||
| 7 | header {* Finite sets *}
 | |
| 8 | ||
| 15131 | 9 | theory Finite_Set | 
| 23878 | 10 | imports IntDef Divides | 
| 15131 | 11 | begin | 
| 12396 | 12 | |
| 15392 | 13 | subsection {* Definition and basic properties *}
 | 
| 12396 | 14 | |
| 23736 | 15 | inductive finite :: "'a set => bool" | 
| 22262 | 16 | where | 
| 17 |     emptyI [simp, intro!]: "finite {}"
 | |
| 18 | | insertI [simp, intro!]: "finite A ==> finite (insert a A)" | |
| 12396 | 19 | |
| 13737 | 20 | lemma ex_new_if_finite: -- "does not depend on def of finite at all" | 
| 14661 | 21 | assumes "\<not> finite (UNIV :: 'a set)" and "finite A" | 
| 22 | shows "\<exists>a::'a. a \<notin> A" | |
| 23 | proof - | |
| 24 | from prems have "A \<noteq> UNIV" by blast | |
| 25 | thus ?thesis by blast | |
| 26 | qed | |
| 12396 | 27 | |
| 22262 | 28 | lemma finite_induct [case_names empty insert, induct set: finite]: | 
| 12396 | 29 | "finite F ==> | 
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 30 |     P {} ==> (!!x F. finite F ==> x \<notin> F ==> P F ==> P (insert x F)) ==> P F"
 | 
| 12396 | 31 |   -- {* Discharging @{text "x \<notin> F"} entails extra work. *}
 | 
| 32 | proof - | |
| 13421 | 33 |   assume "P {}" and
 | 
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 34 | insert: "!!x F. finite F ==> x \<notin> F ==> P F ==> P (insert x F)" | 
| 12396 | 35 | assume "finite F" | 
| 36 | thus "P F" | |
| 37 | proof induct | |
| 23389 | 38 |     show "P {}" by fact
 | 
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 39 | fix x F assume F: "finite F" and P: "P F" | 
| 12396 | 40 | show "P (insert x F)" | 
| 41 | proof cases | |
| 42 | assume "x \<in> F" | |
| 43 | hence "insert x F = F" by (rule insert_absorb) | |
| 44 | with P show ?thesis by (simp only:) | |
| 45 | next | |
| 46 | assume "x \<notin> F" | |
| 47 | from F this P show ?thesis by (rule insert) | |
| 48 | qed | |
| 49 | qed | |
| 50 | qed | |
| 51 | ||
| 15484 | 52 | lemma finite_ne_induct[case_names singleton insert, consumes 2]: | 
| 53 | assumes fin: "finite F" shows "F \<noteq> {} \<Longrightarrow>
 | |
| 54 |  \<lbrakk> \<And>x. P{x};
 | |
| 55 |    \<And>x F. \<lbrakk> finite F; F \<noteq> {}; x \<notin> F; P F \<rbrakk> \<Longrightarrow> P (insert x F) \<rbrakk>
 | |
| 56 | \<Longrightarrow> P F" | |
| 57 | using fin | |
| 58 | proof induct | |
| 59 | case empty thus ?case by simp | |
| 60 | next | |
| 61 | case (insert x F) | |
| 62 | show ?case | |
| 63 | proof cases | |
| 23389 | 64 |     assume "F = {}"
 | 
| 65 |     thus ?thesis using `P {x}` by simp
 | |
| 15484 | 66 | next | 
| 23389 | 67 |     assume "F \<noteq> {}"
 | 
| 68 | thus ?thesis using insert by blast | |
| 15484 | 69 | qed | 
| 70 | qed | |
| 71 | ||
| 12396 | 72 | lemma finite_subset_induct [consumes 2, case_names empty insert]: | 
| 23389 | 73 | assumes "finite F" and "F \<subseteq> A" | 
| 74 |     and empty: "P {}"
 | |
| 75 | and insert: "!!a F. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)" | |
| 76 | shows "P F" | |
| 12396 | 77 | proof - | 
| 23389 | 78 | from `finite F` and `F \<subseteq> A` | 
| 79 | show ?thesis | |
| 12396 | 80 | proof induct | 
| 23389 | 81 |     show "P {}" by fact
 | 
| 82 | next | |
| 83 | fix x F | |
| 84 | assume "finite F" and "x \<notin> F" and | |
| 85 | P: "F \<subseteq> A ==> P F" and i: "insert x F \<subseteq> A" | |
| 12396 | 86 | show "P (insert x F)" | 
| 87 | proof (rule insert) | |
| 88 | from i show "x \<in> A" by blast | |
| 89 | from i have "F \<subseteq> A" by blast | |
| 90 | with P show "P F" . | |
| 23389 | 91 | show "finite F" by fact | 
| 92 | show "x \<notin> F" by fact | |
| 12396 | 93 | qed | 
| 94 | qed | |
| 95 | qed | |
| 96 | ||
| 23878 | 97 | |
| 15392 | 98 | text{* Finite sets are the images of initial segments of natural numbers: *}
 | 
| 99 | ||
| 15510 | 100 | lemma finite_imp_nat_seg_image_inj_on: | 
| 101 | assumes fin: "finite A" | |
| 102 |   shows "\<exists> (n::nat) f. A = f ` {i. i<n} & inj_on f {i. i<n}"
 | |
| 15392 | 103 | using fin | 
| 104 | proof induct | |
| 105 | case empty | |
| 15510 | 106 | show ?case | 
| 107 |   proof show "\<exists>f. {} = f ` {i::nat. i < 0} & inj_on f {i. i<0}" by simp 
 | |
| 108 | qed | |
| 15392 | 109 | next | 
| 110 | case (insert a A) | |
| 23389 | 111 | have notinA: "a \<notin> A" by fact | 
| 15510 | 112 | from insert.hyps obtain n f | 
| 113 |     where "A = f ` {i::nat. i < n}" "inj_on f {i. i < n}" by blast
 | |
| 114 |   hence "insert a A = f(n:=a) ` {i. i < Suc n}"
 | |
| 115 |         "inj_on (f(n:=a)) {i. i < Suc n}" using notinA
 | |
| 116 | by (auto simp add: image_def Ball_def inj_on_def less_Suc_eq) | |
| 15392 | 117 | thus ?case by blast | 
| 118 | qed | |
| 119 | ||
| 120 | lemma nat_seg_image_imp_finite: | |
| 121 |   "!!f A. A = f ` {i::nat. i<n} \<Longrightarrow> finite A"
 | |
| 122 | proof (induct n) | |
| 123 | case 0 thus ?case by simp | |
| 124 | next | |
| 125 | case (Suc n) | |
| 126 |   let ?B = "f ` {i. i < n}"
 | |
| 127 | have finB: "finite ?B" by(rule Suc.hyps[OF refl]) | |
| 128 | show ?case | |
| 129 | proof cases | |
| 130 | assume "\<exists>k<n. f n = f k" | |
| 131 | hence "A = ?B" using Suc.prems by(auto simp:less_Suc_eq) | |
| 132 | thus ?thesis using finB by simp | |
| 133 | next | |
| 134 | assume "\<not>(\<exists> k<n. f n = f k)" | |
| 135 | hence "A = insert (f n) ?B" using Suc.prems by(auto simp:less_Suc_eq) | |
| 136 | thus ?thesis using finB by simp | |
| 137 | qed | |
| 138 | qed | |
| 139 | ||
| 140 | lemma finite_conv_nat_seg_image: | |
| 141 |   "finite A = (\<exists> (n::nat) f. A = f ` {i::nat. i<n})"
 | |
| 15510 | 142 | by(blast intro: nat_seg_image_imp_finite dest: finite_imp_nat_seg_image_inj_on) | 
| 15392 | 143 | |
| 144 | subsubsection{* Finiteness and set theoretic constructions *}
 | |
| 145 | ||
| 12396 | 146 | lemma finite_UnI: "finite F ==> finite G ==> finite (F Un G)" | 
| 147 |   -- {* The union of two finite sets is finite. *}
 | |
| 22262 | 148 | by (induct set: finite) simp_all | 
| 12396 | 149 | |
| 150 | lemma finite_subset: "A \<subseteq> B ==> finite B ==> finite A" | |
| 151 |   -- {* Every subset of a finite set is finite. *}
 | |
| 152 | proof - | |
| 153 | assume "finite B" | |
| 154 | thus "!!A. A \<subseteq> B ==> finite A" | |
| 155 | proof induct | |
| 156 | case empty | |
| 157 | thus ?case by simp | |
| 158 | next | |
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 159 | case (insert x F A) | 
| 23389 | 160 |     have A: "A \<subseteq> insert x F" and r: "A - {x} \<subseteq> F ==> finite (A - {x})" by fact+
 | 
| 12396 | 161 | show "finite A" | 
| 162 | proof cases | |
| 163 | assume x: "x \<in> A" | |
| 164 |       with A have "A - {x} \<subseteq> F" by (simp add: subset_insert_iff)
 | |
| 165 |       with r have "finite (A - {x})" .
 | |
| 166 |       hence "finite (insert x (A - {x}))" ..
 | |
| 23389 | 167 |       also have "insert x (A - {x}) = A" using x by (rule insert_Diff)
 | 
| 12396 | 168 | finally show ?thesis . | 
| 169 | next | |
| 23389 | 170 | show "A \<subseteq> F ==> ?thesis" by fact | 
| 12396 | 171 | assume "x \<notin> A" | 
| 172 | with A show "A \<subseteq> F" by (simp add: subset_insert_iff) | |
| 173 | qed | |
| 174 | qed | |
| 175 | qed | |
| 176 | ||
| 18423 | 177 | lemma finite_Collect_subset[simp]: "finite A \<Longrightarrow> finite{x \<in> A. P x}"
 | 
| 17761 | 178 | using finite_subset[of "{x \<in> A. P x}" "A"] by blast
 | 
| 179 | ||
| 12396 | 180 | lemma finite_Un [iff]: "finite (F Un G) = (finite F & finite G)" | 
| 181 | by (blast intro: finite_subset [of _ "X Un Y", standard] finite_UnI) | |
| 182 | ||
| 183 | lemma finite_Int [simp, intro]: "finite F | finite G ==> finite (F Int G)" | |
| 184 |   -- {* The converse obviously fails. *}
 | |
| 185 | by (blast intro: finite_subset) | |
| 186 | ||
| 187 | lemma finite_insert [simp]: "finite (insert a A) = finite A" | |
| 188 | apply (subst insert_is_Un) | |
| 14208 | 189 | apply (simp only: finite_Un, blast) | 
| 12396 | 190 | done | 
| 191 | ||
| 15281 | 192 | lemma finite_Union[simp, intro]: | 
| 193 | "\<lbrakk> finite A; !!M. M \<in> A \<Longrightarrow> finite M \<rbrakk> \<Longrightarrow> finite(\<Union>A)" | |
| 194 | by (induct rule:finite_induct) simp_all | |
| 195 | ||
| 12396 | 196 | lemma finite_empty_induct: | 
| 23389 | 197 | assumes "finite A" | 
| 198 | and "P A" | |
| 199 |     and "!!a A. finite A ==> a:A ==> P A ==> P (A - {a})"
 | |
| 200 |   shows "P {}"
 | |
| 12396 | 201 | proof - | 
| 202 | have "P (A - A)" | |
| 203 | proof - | |
| 23389 | 204 |     {
 | 
| 205 | fix c b :: "'a set" | |
| 206 | assume c: "finite c" and b: "finite b" | |
| 207 | 	and P1: "P b" and P2: "!!x y. finite y ==> x \<in> y ==> P y ==> P (y - {x})"
 | |
| 208 | have "c \<subseteq> b ==> P (b - c)" | |
| 209 | using c | |
| 210 | proof induct | |
| 211 | case empty | |
| 212 | from P1 show ?case by simp | |
| 213 | next | |
| 214 | case (insert x F) | |
| 215 | 	have "P (b - F - {x})"
 | |
| 216 | proof (rule P2) | |
| 217 | from _ b show "finite (b - F)" by (rule finite_subset) blast | |
| 218 | from insert show "x \<in> b - F" by simp | |
| 219 | from insert show "P (b - F)" by simp | |
| 220 | qed | |
| 221 | 	also have "b - F - {x} = b - insert x F" by (rule Diff_insert [symmetric])
 | |
| 222 | finally show ?case . | |
| 12396 | 223 | qed | 
| 23389 | 224 | } | 
| 225 | then show ?thesis by this (simp_all add: assms) | |
| 12396 | 226 | qed | 
| 23389 | 227 | then show ?thesis by simp | 
| 12396 | 228 | qed | 
| 229 | ||
| 230 | lemma finite_Diff [simp]: "finite B ==> finite (B - Ba)" | |
| 231 | by (rule Diff_subset [THEN finite_subset]) | |
| 232 | ||
| 233 | lemma finite_Diff_insert [iff]: "finite (A - insert a B) = finite (A - B)" | |
| 234 | apply (subst Diff_insert) | |
| 235 | apply (case_tac "a : A - B") | |
| 236 | apply (rule finite_insert [symmetric, THEN trans]) | |
| 14208 | 237 | apply (subst insert_Diff, simp_all) | 
| 12396 | 238 | done | 
| 239 | ||
| 19870 | 240 | lemma finite_Diff_singleton [simp]: "finite (A - {a}) = finite A"
 | 
| 241 | by simp | |
| 242 | ||
| 12396 | 243 | |
| 15392 | 244 | text {* Image and Inverse Image over Finite Sets *}
 | 
| 13825 | 245 | |
| 246 | lemma finite_imageI[simp]: "finite F ==> finite (h ` F)" | |
| 247 |   -- {* The image of a finite set is finite. *}
 | |
| 22262 | 248 | by (induct set: finite) simp_all | 
| 13825 | 249 | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 250 | lemma finite_surj: "finite A ==> B <= f ` A ==> finite B" | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 251 | apply (frule finite_imageI) | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 252 | apply (erule finite_subset, assumption) | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 253 | done | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 254 | |
| 13825 | 255 | lemma finite_range_imageI: | 
| 256 | "finite (range g) ==> finite (range (%x. f (g x)))" | |
| 14208 | 257 | apply (drule finite_imageI, simp) | 
| 13825 | 258 | done | 
| 259 | ||
| 12396 | 260 | lemma finite_imageD: "finite (f`A) ==> inj_on f A ==> finite A" | 
| 261 | proof - | |
| 262 |   have aux: "!!A. finite (A - {}) = finite A" by simp
 | |
| 263 | fix B :: "'a set" | |
| 264 | assume "finite B" | |
| 265 | thus "!!A. f`A = B ==> inj_on f A ==> finite A" | |
| 266 | apply induct | |
| 267 | apply simp | |
| 268 |     apply (subgoal_tac "EX y:A. f y = x & F = f ` (A - {y})")
 | |
| 269 | apply clarify | |
| 270 | apply (simp (no_asm_use) add: inj_on_def) | |
| 14208 | 271 | apply (blast dest!: aux [THEN iffD1], atomize) | 
| 12396 | 272 | apply (erule_tac V = "ALL A. ?PP (A)" in thin_rl) | 
| 14208 | 273 | apply (frule subsetD [OF equalityD2 insertI1], clarify) | 
| 12396 | 274 | apply (rule_tac x = xa in bexI) | 
| 275 | apply (simp_all add: inj_on_image_set_diff) | |
| 276 | done | |
| 277 | qed (rule refl) | |
| 278 | ||
| 279 | ||
| 13825 | 280 | lemma inj_vimage_singleton: "inj f ==> f-`{a} \<subseteq> {THE x. f x = a}"
 | 
| 281 |   -- {* The inverse image of a singleton under an injective function
 | |
| 282 | is included in a singleton. *} | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 283 | apply (auto simp add: inj_on_def) | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 284 | apply (blast intro: the_equality [symmetric]) | 
| 13825 | 285 | done | 
| 286 | ||
| 287 | lemma finite_vimageI: "[|finite F; inj h|] ==> finite (h -` F)" | |
| 288 |   -- {* The inverse image of a finite set under an injective function
 | |
| 289 | is finite. *} | |
| 22262 | 290 | apply (induct set: finite) | 
| 21575 | 291 | apply simp_all | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 292 | apply (subst vimage_insert) | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 293 | apply (simp add: finite_Un finite_subset [OF inj_vimage_singleton]) | 
| 13825 | 294 | done | 
| 295 | ||
| 296 | ||
| 15392 | 297 | text {* The finite UNION of finite sets *}
 | 
| 12396 | 298 | |
| 299 | lemma finite_UN_I: "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (UN a:A. B a)" | |
| 22262 | 300 | by (induct set: finite) simp_all | 
| 12396 | 301 | |
| 302 | text {*
 | |
| 303 | Strengthen RHS to | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 304 |   @{prop "((ALL x:A. finite (B x)) & finite {x. x:A & B x \<noteq> {}})"}?
 | 
| 12396 | 305 | |
| 306 | We'd need to prove | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 307 |   @{prop "finite C ==> ALL A B. (UNION A B) <= C --> finite {x. x:A & B x \<noteq> {}}"}
 | 
| 12396 | 308 | by induction. *} | 
| 309 | ||
| 310 | lemma finite_UN [simp]: "finite A ==> finite (UNION A B) = (ALL x:A. finite (B x))" | |
| 311 | by (blast intro: finite_UN_I finite_subset) | |
| 312 | ||
| 313 | ||
| 17022 | 314 | lemma finite_Plus: "[| finite A; finite B |] ==> finite (A <+> B)" | 
| 315 | by (simp add: Plus_def) | |
| 316 | ||
| 15392 | 317 | text {* Sigma of finite sets *}
 | 
| 12396 | 318 | |
| 319 | lemma finite_SigmaI [simp]: | |
| 320 | "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (SIGMA a:A. B a)" | |
| 321 | by (unfold Sigma_def) (blast intro!: finite_UN_I) | |
| 322 | ||
| 15402 | 323 | lemma finite_cartesian_product: "[| finite A; finite B |] ==> | 
| 324 | finite (A <*> B)" | |
| 325 | by (rule finite_SigmaI) | |
| 326 | ||
| 12396 | 327 | lemma finite_Prod_UNIV: | 
| 328 |     "finite (UNIV::'a set) ==> finite (UNIV::'b set) ==> finite (UNIV::('a * 'b) set)"
 | |
| 329 |   apply (subgoal_tac "(UNIV:: ('a * 'b) set) = Sigma UNIV (%x. UNIV)")
 | |
| 330 | apply (erule ssubst) | |
| 14208 | 331 | apply (erule finite_SigmaI, auto) | 
| 12396 | 332 | done | 
| 333 | ||
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 334 | lemma finite_cartesian_productD1: | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 335 |      "[| finite (A <*> B); B \<noteq> {} |] ==> finite A"
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 336 | apply (auto simp add: finite_conv_nat_seg_image) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 337 | apply (drule_tac x=n in spec) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 338 | apply (drule_tac x="fst o f" in spec) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 339 | apply (auto simp add: o_def) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 340 | prefer 2 apply (force dest!: equalityD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 341 | apply (drule equalityD1) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 342 | apply (rename_tac y x) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 343 | apply (subgoal_tac "\<exists>k. k<n & f k = (x,y)") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 344 | prefer 2 apply force | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 345 | apply clarify | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 346 | apply (rule_tac x=k in image_eqI, auto) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 347 | done | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 348 | |
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 349 | lemma finite_cartesian_productD2: | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 350 |      "[| finite (A <*> B); A \<noteq> {} |] ==> finite B"
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 351 | apply (auto simp add: finite_conv_nat_seg_image) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 352 | apply (drule_tac x=n in spec) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 353 | apply (drule_tac x="snd o f" in spec) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 354 | apply (auto simp add: o_def) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 355 | prefer 2 apply (force dest!: equalityD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 356 | apply (drule equalityD1) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 357 | apply (rename_tac x y) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 358 | apply (subgoal_tac "\<exists>k. k<n & f k = (x,y)") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 359 | prefer 2 apply force | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 360 | apply clarify | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 361 | apply (rule_tac x=k in image_eqI, auto) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 362 | done | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 363 | |
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 364 | |
| 15392 | 365 | text {* The powerset of a finite set *}
 | 
| 12396 | 366 | |
| 367 | lemma finite_Pow_iff [iff]: "finite (Pow A) = finite A" | |
| 368 | proof | |
| 369 | assume "finite (Pow A)" | |
| 370 |   with _ have "finite ((%x. {x}) ` A)" by (rule finite_subset) blast
 | |
| 371 | thus "finite A" by (rule finite_imageD [unfolded inj_on_def]) simp | |
| 372 | next | |
| 373 | assume "finite A" | |
| 374 | thus "finite (Pow A)" | |
| 375 | by induct (simp_all add: finite_UnI finite_imageI Pow_insert) | |
| 376 | qed | |
| 377 | ||
| 15392 | 378 | |
| 379 | lemma finite_UnionD: "finite(\<Union>A) \<Longrightarrow> finite A" | |
| 380 | by(blast intro: finite_subset[OF subset_Pow_Union]) | |
| 381 | ||
| 382 | ||
| 12396 | 383 | lemma finite_converse [iff]: "finite (r^-1) = finite r" | 
| 384 | apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r") | |
| 385 | apply simp | |
| 386 | apply (rule iffI) | |
| 387 | apply (erule finite_imageD [unfolded inj_on_def]) | |
| 388 | apply (simp split add: split_split) | |
| 389 | apply (erule finite_imageI) | |
| 14208 | 390 | apply (simp add: converse_def image_def, auto) | 
| 12396 | 391 | apply (rule bexI) | 
| 392 | prefer 2 apply assumption | |
| 393 | apply simp | |
| 394 | done | |
| 395 | ||
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 396 | |
| 15392 | 397 | text {* \paragraph{Finiteness of transitive closure} (Thanks to Sidi
 | 
| 398 | Ehmety) *} | |
| 12396 | 399 | |
| 400 | lemma finite_Field: "finite r ==> finite (Field r)" | |
| 401 |   -- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *}
 | |
| 22262 | 402 | apply (induct set: finite) | 
| 12396 | 403 | apply (auto simp add: Field_def Domain_insert Range_insert) | 
| 404 | done | |
| 405 | ||
| 406 | lemma trancl_subset_Field2: "r^+ <= Field r \<times> Field r" | |
| 407 | apply clarify | |
| 408 | apply (erule trancl_induct) | |
| 409 | apply (auto simp add: Field_def) | |
| 410 | done | |
| 411 | ||
| 412 | lemma finite_trancl: "finite (r^+) = finite r" | |
| 413 | apply auto | |
| 414 | prefer 2 | |
| 415 | apply (rule trancl_subset_Field2 [THEN finite_subset]) | |
| 416 | apply (rule finite_SigmaI) | |
| 417 | prefer 3 | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
13595diff
changeset | 418 | apply (blast intro: r_into_trancl' finite_subset) | 
| 12396 | 419 | apply (auto simp add: finite_Field) | 
| 420 | done | |
| 421 | ||
| 422 | ||
| 15392 | 423 | subsection {* A fold functional for finite sets *}
 | 
| 424 | ||
| 425 | text {* The intended behaviour is
 | |
| 15480 | 426 | @{text "fold f g z {x\<^isub>1, ..., x\<^isub>n} = f (g x\<^isub>1) (\<dots> (f (g x\<^isub>n) z)\<dots>)"}
 | 
| 15392 | 427 | if @{text f} is associative-commutative. For an application of @{text fold}
 | 
| 428 | se the definitions of sums and products over finite sets. | |
| 429 | *} | |
| 430 | ||
| 23736 | 431 | inductive | 
| 22262 | 432 |   foldSet :: "('a => 'a => 'a) => ('b => 'a) => 'a => 'b set => 'a => bool"
 | 
| 433 | for f :: "'a => 'a => 'a" | |
| 434 | and g :: "'b => 'a" | |
| 435 | and z :: 'a | |
| 436 | where | |
| 437 |   emptyI [intro]: "foldSet f g z {} z"
 | |
| 438 | | insertI [intro]: | |
| 439 | "\<lbrakk> x \<notin> A; foldSet f g z A y \<rbrakk> | |
| 440 | \<Longrightarrow> foldSet f g z (insert x A) (f (g x) y)" | |
| 441 | ||
| 23736 | 442 | inductive_cases empty_foldSetE [elim!]: "foldSet f g z {} x"
 | 
| 15392 | 443 | |
| 444 | constdefs | |
| 21733 | 445 |   fold :: "('a => 'a => 'a) => ('b => 'a) => 'a => 'b set => 'a"
 | 
| 22262 | 446 | "fold f g z A == THE x. foldSet f g z A x" | 
| 15392 | 447 | |
| 15498 | 448 | text{*A tempting alternative for the definiens is
 | 
| 22262 | 449 | @{term "if finite A then THE x. foldSet f g e A x else e"}.
 | 
| 15498 | 450 | It allows the removal of finiteness assumptions from the theorems | 
| 451 | @{text fold_commute}, @{text fold_reindex} and @{text fold_distrib}.
 | |
| 452 | The proofs become ugly, with @{text rule_format}. It is not worth the effort.*}
 | |
| 453 | ||
| 454 | ||
| 15392 | 455 | lemma Diff1_foldSet: | 
| 22262 | 456 |   "foldSet f g z (A - {x}) y ==> x: A ==> foldSet f g z A (f (g x) y)"
 | 
| 15392 | 457 | by (erule insert_Diff [THEN subst], rule foldSet.intros, auto) | 
| 458 | ||
| 22262 | 459 | lemma foldSet_imp_finite: "foldSet f g z A x==> finite A" | 
| 15392 | 460 | by (induct set: foldSet) auto | 
| 461 | ||
| 22262 | 462 | lemma finite_imp_foldSet: "finite A ==> EX x. foldSet f g z A x" | 
| 463 | by (induct set: finite) auto | |
| 15392 | 464 | |
| 465 | ||
| 466 | subsubsection {* Commutative monoids *}
 | |
| 15480 | 467 | |
| 22917 | 468 | (*FIXME integrate with Orderings.thy/OrderedGroup.thy*) | 
| 15392 | 469 | locale ACf = | 
| 470 | fixes f :: "'a => 'a => 'a" (infixl "\<cdot>" 70) | |
| 471 | assumes commute: "x \<cdot> y = y \<cdot> x" | |
| 472 | and assoc: "(x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)" | |
| 22917 | 473 | begin | 
| 474 | ||
| 475 | lemma left_commute: "x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)" | |
| 15392 | 476 | proof - | 
| 477 | have "x \<cdot> (y \<cdot> z) = (y \<cdot> z) \<cdot> x" by (simp only: commute) | |
| 478 | also have "... = y \<cdot> (z \<cdot> x)" by (simp only: assoc) | |
| 479 | also have "z \<cdot> x = x \<cdot> z" by (simp only: commute) | |
| 480 | finally show ?thesis . | |
| 481 | qed | |
| 482 | ||
| 22917 | 483 | lemmas AC = assoc commute left_commute | 
| 484 | ||
| 485 | end | |
| 486 | ||
| 487 | locale ACe = ACf + | |
| 488 | fixes e :: 'a | |
| 489 | assumes ident [simp]: "x \<cdot> e = x" | |
| 490 | begin | |
| 491 | ||
| 492 | lemma left_ident [simp]: "e \<cdot> x = x" | |
| 15392 | 493 | proof - | 
| 494 | have "x \<cdot> e = x" by (rule ident) | |
| 495 | thus ?thesis by (subst commute) | |
| 496 | qed | |
| 497 | ||
| 22917 | 498 | end | 
| 499 | ||
| 500 | locale ACIf = ACf + | |
| 501 | assumes idem: "x \<cdot> x = x" | |
| 502 | begin | |
| 503 | ||
| 504 | lemma idem2: "x \<cdot> (x \<cdot> y) = x \<cdot> y" | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 505 | proof - | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 506 | have "x \<cdot> (x \<cdot> y) = (x \<cdot> x) \<cdot> y" by(simp add:assoc) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 507 | also have "\<dots> = x \<cdot> y" by(simp add:idem) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 508 | finally show ?thesis . | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 509 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 510 | |
| 22917 | 511 | lemmas ACI = AC idem idem2 | 
| 512 | ||
| 513 | end | |
| 514 | ||
| 15402 | 515 | |
| 15392 | 516 | subsubsection{*From @{term foldSet} to @{term fold}*}
 | 
| 517 | ||
| 15510 | 518 | lemma image_less_Suc: "h ` {i. i < Suc m} = insert (h m) (h ` {i. i < m})"
 | 
| 19868 | 519 | by (auto simp add: less_Suc_eq) | 
| 15510 | 520 | |
| 521 | lemma insert_image_inj_on_eq: | |
| 522 |      "[|insert (h m) A = h ` {i. i < Suc m}; h m \<notin> A; 
 | |
| 523 |         inj_on h {i. i < Suc m}|] 
 | |
| 524 |       ==> A = h ` {i. i < m}"
 | |
| 525 | apply (auto simp add: image_less_Suc inj_on_def) | |
| 526 | apply (blast intro: less_trans) | |
| 527 | done | |
| 528 | ||
| 529 | lemma insert_inj_onE: | |
| 530 |   assumes aA: "insert a A = h`{i::nat. i<n}" and anot: "a \<notin> A" 
 | |
| 531 |       and inj_on: "inj_on h {i::nat. i<n}"
 | |
| 532 |   shows "\<exists>hm m. inj_on hm {i::nat. i<m} & A = hm ` {i. i<m} & m < n"
 | |
| 533 | proof (cases n) | |
| 534 | case 0 thus ?thesis using aA by auto | |
| 535 | next | |
| 536 | case (Suc m) | |
| 23389 | 537 | have nSuc: "n = Suc m" by fact | 
| 15510 | 538 | have mlessn: "m<n" by (simp add: nSuc) | 
| 15532 | 539 | from aA obtain k where hkeq: "h k = a" and klessn: "k<n" by (blast elim!: equalityE) | 
| 15520 | 540 | let ?hm = "swap k m h" | 
| 541 |   have inj_hm: "inj_on ?hm {i. i < n}" using klessn mlessn 
 | |
| 542 | by (simp add: inj_on_swap_iff inj_on) | |
| 15510 | 543 | show ?thesis | 
| 15520 | 544 | proof (intro exI conjI) | 
| 545 |     show "inj_on ?hm {i. i < m}" using inj_hm
 | |
| 15510 | 546 | by (auto simp add: nSuc less_Suc_eq intro: subset_inj_on) | 
| 15520 | 547 | show "m<n" by (rule mlessn) | 
| 548 |     show "A = ?hm ` {i. i < m}" 
 | |
| 549 | proof (rule insert_image_inj_on_eq) | |
| 550 |       show "inj_on (swap k m h) {i. i < Suc m}" using inj_hm nSuc by simp
 | |
| 551 | show "?hm m \<notin> A" by (simp add: swap_def hkeq anot) | |
| 552 |       show "insert (?hm m) A = ?hm ` {i. i < Suc m}"
 | |
| 553 | using aA hkeq nSuc klessn | |
| 554 | by (auto simp add: swap_def image_less_Suc fun_upd_image | |
| 555 | less_Suc_eq inj_on_image_set_diff [OF inj_on]) | |
| 15479 | 556 | qed | 
| 557 | qed | |
| 558 | qed | |
| 559 | ||
| 15392 | 560 | lemma (in ACf) foldSet_determ_aux: | 
| 15510 | 561 |   "!!A x x' h. \<lbrakk> A = h`{i::nat. i<n}; inj_on h {i. i<n}; 
 | 
| 22262 | 562 | foldSet f g z A x; foldSet f g z A x' \<rbrakk> | 
| 15392 | 563 | \<Longrightarrow> x' = x" | 
| 15510 | 564 | proof (induct n rule: less_induct) | 
| 565 | case (less n) | |
| 566 | have IH: "!!m h A x x'. | |
| 567 |                \<lbrakk>m<n; A = h ` {i. i<m}; inj_on h {i. i<m}; 
 | |
| 23389 | 568 | foldSet f g z A x; foldSet f g z A x'\<rbrakk> \<Longrightarrow> x' = x" by fact | 
| 22262 | 569 | have Afoldx: "foldSet f g z A x" and Afoldx': "foldSet f g z A x'" | 
| 23389 | 570 |      and A: "A = h`{i. i<n}" and injh: "inj_on h {i. i<n}" by fact+
 | 
| 15510 | 571 | show ?case | 
| 572 | proof (rule foldSet.cases [OF Afoldx]) | |
| 22262 | 573 |       assume "A = {}" and "x = z"
 | 
| 15510 | 574 | with Afoldx' show "x' = x" by blast | 
| 15392 | 575 | next | 
| 15510 | 576 | fix B b u | 
| 22262 | 577 | assume AbB: "A = insert b B" and x: "x = g b \<cdot> u" | 
| 578 | and notinB: "b \<notin> B" and Bu: "foldSet f g z B u" | |
| 15510 | 579 | show "x'=x" | 
| 580 | proof (rule foldSet.cases [OF Afoldx']) | |
| 22262 | 581 |         assume "A = {}" and "x' = z"
 | 
| 15510 | 582 | with AbB show "x' = x" by blast | 
| 15392 | 583 | next | 
| 15510 | 584 | fix C c v | 
| 22262 | 585 | assume AcC: "A = insert c C" and x': "x' = g c \<cdot> v" | 
| 586 | and notinC: "c \<notin> C" and Cv: "foldSet f g z C v" | |
| 15510 | 587 | 	from A AbB have Beq: "insert b B = h`{i. i<n}" by simp
 | 
| 588 | from insert_inj_onE [OF Beq notinB injh] | |
| 589 |         obtain hB mB where inj_onB: "inj_on hB {i. i < mB}" 
 | |
| 590 |                      and Beq: "B = hB ` {i. i < mB}"
 | |
| 591 | and lessB: "mB < n" by auto | |
| 592 | 	from A AcC have Ceq: "insert c C = h`{i. i<n}" by simp
 | |
| 593 | from insert_inj_onE [OF Ceq notinC injh] | |
| 594 |         obtain hC mC where inj_onC: "inj_on hC {i. i < mC}"
 | |
| 595 |                        and Ceq: "C = hC ` {i. i < mC}"
 | |
| 596 | and lessC: "mC < n" by auto | |
| 597 | show "x'=x" | |
| 15392 | 598 | proof cases | 
| 15510 | 599 | assume "b=c" | 
| 600 | then moreover have "B = C" using AbB AcC notinB notinC by auto | |
| 601 | ultimately show ?thesis using Bu Cv x x' IH[OF lessC Ceq inj_onC] | |
| 602 | by auto | |
| 15392 | 603 | next | 
| 604 | assume diff: "b \<noteq> c" | |
| 605 | 	  let ?D = "B - {c}"
 | |
| 606 | have B: "B = insert c ?D" and C: "C = insert b ?D" | |
| 15510 | 607 | using AbB AcC notinB notinC diff by(blast elim!:equalityE)+ | 
| 15402 | 608 | have "finite A" by(rule foldSet_imp_finite[OF Afoldx]) | 
| 15510 | 609 | with AbB have "finite ?D" by simp | 
| 22262 | 610 | then obtain d where Dfoldd: "foldSet f g z ?D d" | 
| 17589 | 611 | using finite_imp_foldSet by iprover | 
| 15506 | 612 | moreover have cinB: "c \<in> B" using B by auto | 
| 22262 | 613 | ultimately have "foldSet f g z B (g c \<cdot> d)" | 
| 15392 | 614 | by(rule Diff1_foldSet) | 
| 15510 | 615 | hence "g c \<cdot> d = u" by (rule IH [OF lessB Beq inj_onB Bu]) | 
| 616 | moreover have "g b \<cdot> d = v" | |
| 617 | proof (rule IH[OF lessC Ceq inj_onC Cv]) | |
| 22262 | 618 | show "foldSet f g z C (g b \<cdot> d)" using C notinB Dfoldd | 
| 15392 | 619 | by fastsimp | 
| 620 | qed | |
| 15510 | 621 | ultimately show ?thesis using x x' by (auto simp: AC) | 
| 15392 | 622 | qed | 
| 623 | qed | |
| 624 | qed | |
| 625 | qed | |
| 626 | ||
| 627 | ||
| 628 | lemma (in ACf) foldSet_determ: | |
| 22262 | 629 | "foldSet f g z A x ==> foldSet f g z A y ==> y = x" | 
| 15510 | 630 | apply (frule foldSet_imp_finite [THEN finite_imp_nat_seg_image_inj_on]) | 
| 631 | apply (blast intro: foldSet_determ_aux [rule_format]) | |
| 15392 | 632 | done | 
| 633 | ||
| 22262 | 634 | lemma (in ACf) fold_equality: "foldSet f g z A y ==> fold f g z A = y" | 
| 15392 | 635 | by (unfold fold_def) (blast intro: foldSet_determ) | 
| 636 | ||
| 637 | text{* The base case for @{text fold}: *}
 | |
| 638 | ||
| 15480 | 639 | lemma fold_empty [simp]: "fold f g z {} = z"
 | 
| 15392 | 640 | by (unfold fold_def) blast | 
| 641 | ||
| 642 | lemma (in ACf) fold_insert_aux: "x \<notin> A ==> | |
| 22262 | 643 | (foldSet f g z (insert x A) v) = | 
| 644 | (EX y. foldSet f g z A y & v = f (g x) y)" | |
| 15392 | 645 | apply auto | 
| 646 | apply (rule_tac A1 = A and f1 = f in finite_imp_foldSet [THEN exE]) | |
| 647 | apply (fastsimp dest: foldSet_imp_finite) | |
| 648 | apply (blast intro: foldSet_determ) | |
| 649 | done | |
| 650 | ||
| 651 | text{* The recursion equation for @{text fold}: *}
 | |
| 652 | ||
| 653 | lemma (in ACf) fold_insert[simp]: | |
| 15480 | 654 | "finite A ==> x \<notin> A ==> fold f g z (insert x A) = f (g x) (fold f g z A)" | 
| 15392 | 655 | apply (unfold fold_def) | 
| 656 | apply (simp add: fold_insert_aux) | |
| 657 | apply (rule the_equality) | |
| 658 | apply (auto intro: finite_imp_foldSet | |
| 659 | cong add: conj_cong simp add: fold_def [symmetric] fold_equality) | |
| 660 | done | |
| 661 | ||
| 15535 | 662 | lemma (in ACf) fold_rec: | 
| 663 | assumes fin: "finite A" and a: "a:A" | |
| 664 | shows "fold f g z A = f (g a) (fold f g z (A - {a}))"
 | |
| 665 | proof- | |
| 666 |   have A: "A = insert a (A - {a})" using a by blast
 | |
| 667 |   hence "fold f g z A = fold f g z (insert a (A - {a}))" by simp
 | |
| 668 |   also have "\<dots> = f (g a) (fold f g z (A - {a}))"
 | |
| 669 | by(rule fold_insert) (simp add:fin)+ | |
| 670 | finally show ?thesis . | |
| 671 | qed | |
| 672 | ||
| 15392 | 673 | |
| 15480 | 674 | text{* A simplified version for idempotent functions: *}
 | 
| 675 | ||
| 15509 | 676 | lemma (in ACIf) fold_insert_idem: | 
| 15480 | 677 | assumes finA: "finite A" | 
| 15508 | 678 | shows "fold f g z (insert a A) = g a \<cdot> fold f g z A" | 
| 15480 | 679 | proof cases | 
| 680 | assume "a \<in> A" | |
| 681 | then obtain B where A: "A = insert a B" and disj: "a \<notin> B" | |
| 682 | by(blast dest: mk_disjoint_insert) | |
| 683 | show ?thesis | |
| 684 | proof - | |
| 685 | from finA A have finB: "finite B" by(blast intro: finite_subset) | |
| 686 | have "fold f g z (insert a A) = fold f g z (insert a B)" using A by simp | |
| 687 | also have "\<dots> = (g a) \<cdot> (fold f g z B)" | |
| 15506 | 688 | using finB disj by simp | 
| 15480 | 689 | also have "\<dots> = g a \<cdot> fold f g z A" | 
| 690 | using A finB disj by(simp add:idem assoc[symmetric]) | |
| 691 | finally show ?thesis . | |
| 692 | qed | |
| 693 | next | |
| 694 | assume "a \<notin> A" | |
| 695 | with finA show ?thesis by simp | |
| 696 | qed | |
| 697 | ||
| 15484 | 698 | lemma (in ACIf) foldI_conv_id: | 
| 699 | "finite A \<Longrightarrow> fold f g z A = fold f id z (g ` A)" | |
| 15509 | 700 | by(erule finite_induct)(simp_all add: fold_insert_idem del: fold_insert) | 
| 15484 | 701 | |
| 15392 | 702 | subsubsection{*Lemmas about @{text fold}*}
 | 
| 703 | ||
| 704 | lemma (in ACf) fold_commute: | |
| 15487 | 705 | "finite A ==> (!!z. f x (fold f g z A) = fold f g (f x z) A)" | 
| 22262 | 706 | apply (induct set: finite) | 
| 21575 | 707 | apply simp | 
| 15487 | 708 | apply (simp add: left_commute [of x]) | 
| 15392 | 709 | done | 
| 710 | ||
| 711 | lemma (in ACf) fold_nest_Un_Int: | |
| 712 | "finite A ==> finite B | |
| 15480 | 713 | ==> fold f g (fold f g z B) A = fold f g (fold f g z (A Int B)) (A Un B)" | 
| 22262 | 714 | apply (induct set: finite) | 
| 21575 | 715 | apply simp | 
| 15392 | 716 | apply (simp add: fold_commute Int_insert_left insert_absorb) | 
| 717 | done | |
| 718 | ||
| 719 | lemma (in ACf) fold_nest_Un_disjoint: | |
| 720 |   "finite A ==> finite B ==> A Int B = {}
 | |
| 15480 | 721 | ==> fold f g z (A Un B) = fold f g (fold f g z B) A" | 
| 15392 | 722 | by (simp add: fold_nest_Un_Int) | 
| 723 | ||
| 724 | lemma (in ACf) fold_reindex: | |
| 15487 | 725 | assumes fin: "finite A" | 
| 726 | shows "inj_on h A \<Longrightarrow> fold f g z (h ` A) = fold f (g \<circ> h) z A" | |
| 15506 | 727 | using fin apply induct | 
| 15392 | 728 | apply simp | 
| 729 | apply simp | |
| 730 | done | |
| 731 | ||
| 732 | lemma (in ACe) fold_Un_Int: | |
| 733 | "finite A ==> finite B ==> | |
| 734 | fold f g e A \<cdot> fold f g e B = | |
| 735 | fold f g e (A Un B) \<cdot> fold f g e (A Int B)" | |
| 22262 | 736 | apply (induct set: finite, simp) | 
| 15392 | 737 | apply (simp add: AC insert_absorb Int_insert_left) | 
| 738 | done | |
| 739 | ||
| 740 | corollary (in ACe) fold_Un_disjoint: | |
| 741 |   "finite A ==> finite B ==> A Int B = {} ==>
 | |
| 742 | fold f g e (A Un B) = fold f g e A \<cdot> fold f g e B" | |
| 743 | by (simp add: fold_Un_Int) | |
| 744 | ||
| 745 | lemma (in ACe) fold_UN_disjoint: | |
| 746 | "\<lbrakk> finite I; ALL i:I. finite (A i); | |
| 747 |      ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {} \<rbrakk>
 | |
| 748 | \<Longrightarrow> fold f g e (UNION I A) = | |
| 749 | fold f (%i. fold f g e (A i)) e I" | |
| 22262 | 750 | apply (induct set: finite, simp, atomize) | 
| 15392 | 751 | apply (subgoal_tac "ALL i:F. x \<noteq> i") | 
| 752 | prefer 2 apply blast | |
| 753 |   apply (subgoal_tac "A x Int UNION F A = {}")
 | |
| 754 | prefer 2 apply blast | |
| 755 | apply (simp add: fold_Un_disjoint) | |
| 756 | done | |
| 757 | ||
| 15506 | 758 | text{*Fusion theorem, as described in
 | 
| 759 | Graham Hutton's paper, | |
| 760 | A Tutorial on the Universality and Expressiveness of Fold, | |
| 761 | JFP 9:4 (355-372), 1999.*} | |
| 762 | lemma (in ACf) fold_fusion: | |
| 763 | includes ACf g | |
| 764 | shows | |
| 765 | "finite A ==> | |
| 766 | (!!x y. h (g x y) = f x (h y)) ==> | |
| 767 | h (fold g j w A) = fold f j (h w) A" | |
| 22262 | 768 | by (induct set: finite) simp_all | 
| 15506 | 769 | |
| 15392 | 770 | lemma (in ACf) fold_cong: | 
| 15480 | 771 | "finite A \<Longrightarrow> (!!x. x:A ==> g x = h x) ==> fold f g z A = fold f h z A" | 
| 772 | apply (subgoal_tac "ALL C. C <= A --> (ALL x:C. g x = h x) --> fold f g z C = fold f h z C") | |
| 15392 | 773 | apply simp | 
| 774 | apply (erule finite_induct, simp) | |
| 775 | apply (simp add: subset_insert_iff, clarify) | |
| 776 | apply (subgoal_tac "finite C") | |
| 777 | prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl]) | |
| 778 |   apply (subgoal_tac "C = insert x (C - {x})")
 | |
| 779 | prefer 2 apply blast | |
| 780 | apply (erule ssubst) | |
| 781 | apply (drule spec) | |
| 782 | apply (erule (1) notE impE) | |
| 783 | apply (simp add: Ball_def del: insert_Diff_single) | |
| 784 | done | |
| 785 | ||
| 786 | lemma (in ACe) fold_Sigma: "finite A ==> ALL x:A. finite (B x) ==> | |
| 787 | fold f (%x. fold f (g x) e (B x)) e A = | |
| 788 | fold f (split g) e (SIGMA x:A. B x)" | |
| 789 | apply (subst Sigma_def) | |
| 15506 | 790 | apply (subst fold_UN_disjoint, assumption, simp) | 
| 15392 | 791 | apply blast | 
| 792 | apply (erule fold_cong) | |
| 15506 | 793 | apply (subst fold_UN_disjoint, simp, simp) | 
| 15392 | 794 | apply blast | 
| 15506 | 795 | apply simp | 
| 15392 | 796 | done | 
| 797 | ||
| 798 | lemma (in ACe) fold_distrib: "finite A \<Longrightarrow> | |
| 799 | fold f (%x. f (g x) (h x)) e A = f (fold f g e A) (fold f h e A)" | |
| 15506 | 800 | apply (erule finite_induct, simp) | 
| 15392 | 801 | apply (simp add:AC) | 
| 802 | done | |
| 803 | ||
| 804 | ||
| 22917 | 805 | text{* Interpretation of locales -- see OrderedGroup.thy *}
 | 
| 806 | ||
| 807 | interpretation AC_add: ACe ["op +" "0::'a::comm_monoid_add"] | |
| 808 | by unfold_locales (auto intro: add_assoc add_commute) | |
| 809 | ||
| 810 | interpretation AC_mult: ACe ["op *" "1::'a::comm_monoid_mult"] | |
| 811 | by unfold_locales (auto intro: mult_assoc mult_commute) | |
| 812 | ||
| 813 | ||
| 15402 | 814 | subsection {* Generalized summation over a set *}
 | 
| 815 | ||
| 816 | constdefs | |
| 817 |   setsum :: "('a => 'b) => 'a set => 'b::comm_monoid_add"
 | |
| 818 | "setsum f A == if finite A then fold (op +) f 0 A else 0" | |
| 819 | ||
| 19535 | 820 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21249diff
changeset | 821 |   Setsum  ("\<Sum>_" [1000] 999) where
 | 
| 19535 | 822 | "\<Sum>A == setsum (%x. x) A" | 
| 823 | ||
| 15402 | 824 | text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is
 | 
| 825 | written @{text"\<Sum>x\<in>A. e"}. *}
 | |
| 826 | ||
| 827 | syntax | |
| 17189 | 828 |   "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3SUM _:_. _)" [0, 51, 10] 10)
 | 
| 15402 | 829 | syntax (xsymbols) | 
| 17189 | 830 |   "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 15402 | 831 | syntax (HTML output) | 
| 17189 | 832 |   "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 15402 | 833 | |
| 834 | translations -- {* Beware of argument permutation! *}
 | |
| 835 | "SUM i:A. b" == "setsum (%i. b) A" | |
| 836 | "\<Sum>i\<in>A. b" == "setsum (%i. b) A" | |
| 837 | ||
| 838 | text{* Instead of @{term"\<Sum>x\<in>{x. P}. e"} we introduce the shorter
 | |
| 839 |  @{text"\<Sum>x|P. e"}. *}
 | |
| 840 | ||
| 841 | syntax | |
| 17189 | 842 |   "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10)
 | 
| 15402 | 843 | syntax (xsymbols) | 
| 17189 | 844 |   "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
 | 
| 15402 | 845 | syntax (HTML output) | 
| 17189 | 846 |   "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
 | 
| 15402 | 847 | |
| 848 | translations | |
| 849 |   "SUM x|P. t" => "setsum (%x. t) {x. P}"
 | |
| 850 |   "\<Sum>x|P. t" => "setsum (%x. t) {x. P}"
 | |
| 851 | ||
| 852 | print_translation {*
 | |
| 853 | let | |
| 19535 | 854 |   fun setsum_tr' [Abs(x,Tx,t), Const ("Collect",_) $ Abs(y,Ty,P)] = 
 | 
| 855 | if x<>y then raise Match | |
| 856 | else let val x' = Syntax.mark_bound x | |
| 857 | val t' = subst_bound(x',t) | |
| 858 | val P' = subst_bound(x',P) | |
| 859 | in Syntax.const "_qsetsum" $ Syntax.mark_bound x $ P' $ t' end | |
| 860 | in [("setsum", setsum_tr')] end
 | |
| 15402 | 861 | *} | 
| 862 | ||
| 19535 | 863 | |
| 15402 | 864 | lemma setsum_empty [simp]: "setsum f {} = 0"
 | 
| 865 | by (simp add: setsum_def) | |
| 866 | ||
| 867 | lemma setsum_insert [simp]: | |
| 868 | "finite F ==> a \<notin> F ==> setsum f (insert a F) = f a + setsum f F" | |
| 15765 | 869 | by (simp add: setsum_def) | 
| 15402 | 870 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 871 | lemma setsum_infinite [simp]: "~ finite A ==> setsum f A = 0" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 872 | by (simp add: setsum_def) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 873 | |
| 15402 | 874 | lemma setsum_reindex: | 
| 875 | "inj_on f B ==> setsum h (f ` B) = setsum (h \<circ> f) B" | |
| 15765 | 876 | by(auto simp add: setsum_def AC_add.fold_reindex dest!:finite_imageD) | 
| 15402 | 877 | |
| 878 | lemma setsum_reindex_id: | |
| 879 | "inj_on f B ==> setsum f B = setsum id (f ` B)" | |
| 880 | by (auto simp add: setsum_reindex) | |
| 881 | ||
| 882 | lemma setsum_cong: | |
| 883 | "A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B" | |
| 15765 | 884 | by(fastsimp simp: setsum_def intro: AC_add.fold_cong) | 
| 15402 | 885 | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16632diff
changeset | 886 | lemma strong_setsum_cong[cong]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16632diff
changeset | 887 | "A = B ==> (!!x. x:B =simp=> f x = g x) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16632diff
changeset | 888 | ==> setsum (%x. f x) A = setsum (%x. g x) B" | 
| 16632 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 889 | by(fastsimp simp: simp_implies_def setsum_def intro: AC_add.fold_cong) | 
| 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 890 | |
| 15554 | 891 | lemma setsum_cong2: "\<lbrakk>\<And>x. x \<in> A \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> setsum f A = setsum g A"; | 
| 892 | by (rule setsum_cong[OF refl], auto); | |
| 893 | ||
| 15402 | 894 | lemma setsum_reindex_cong: | 
| 15554 | 895 | "[|inj_on f A; B = f ` A; !!a. a:A \<Longrightarrow> g a = h (f a)|] | 
| 15402 | 896 | ==> setsum h B = setsum g A" | 
| 897 | by (simp add: setsum_reindex cong: setsum_cong) | |
| 898 | ||
| 15542 | 899 | lemma setsum_0[simp]: "setsum (%i. 0) A = 0" | 
| 15402 | 900 | apply (clarsimp simp: setsum_def) | 
| 15765 | 901 | apply (erule finite_induct, auto) | 
| 15402 | 902 | done | 
| 903 | ||
| 15543 | 904 | lemma setsum_0': "ALL a:A. f a = 0 ==> setsum f A = 0" | 
| 905 | by(simp add:setsum_cong) | |
| 15402 | 906 | |
| 907 | lemma setsum_Un_Int: "finite A ==> finite B ==> | |
| 908 | setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B" | |
| 909 |   -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
 | |
| 15765 | 910 | by(simp add: setsum_def AC_add.fold_Un_Int [symmetric]) | 
| 15402 | 911 | |
| 912 | lemma setsum_Un_disjoint: "finite A ==> finite B | |
| 913 |   ==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B"
 | |
| 914 | by (subst setsum_Un_Int [symmetric], auto) | |
| 915 | ||
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 916 | (*But we can't get rid of finite I. If infinite, although the rhs is 0, | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 917 | the lhs need not be, since UNION I A could still be finite.*) | 
| 15402 | 918 | lemma setsum_UN_disjoint: | 
| 919 | "finite I ==> (ALL i:I. finite (A i)) ==> | |
| 920 |         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
 | |
| 921 | setsum f (UNION I A) = (\<Sum>i\<in>I. setsum f (A i))" | |
| 15765 | 922 | by(simp add: setsum_def AC_add.fold_UN_disjoint cong: setsum_cong) | 
| 15402 | 923 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 924 | text{*No need to assume that @{term C} is finite.  If infinite, the rhs is
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 925 | directly 0, and @{term "Union C"} is also infinite, hence the lhs is also 0.*}
 | 
| 15402 | 926 | lemma setsum_Union_disjoint: | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 927 | "[| (ALL A:C. finite A); | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 928 |       (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |]
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 929 | ==> setsum f (Union C) = setsum (setsum f) C" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 930 | apply (cases "finite C") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 931 | prefer 2 apply (force dest: finite_UnionD simp add: setsum_def) | 
| 15402 | 932 | apply (frule setsum_UN_disjoint [of C id f]) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 933 | apply (unfold Union_def id_def, assumption+) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 934 | done | 
| 15402 | 935 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 936 | (*But we can't get rid of finite A. If infinite, although the lhs is 0, | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 937 | the rhs need not be, since SIGMA A B could still be finite.*) | 
| 15402 | 938 | lemma setsum_Sigma: "finite A ==> ALL x:A. finite (B x) ==> | 
| 17189 | 939 | (\<Sum>x\<in>A. (\<Sum>y\<in>B x. f x y)) = (\<Sum>(x,y)\<in>(SIGMA x:A. B x). f x y)" | 
| 15765 | 940 | by(simp add:setsum_def AC_add.fold_Sigma split_def cong:setsum_cong) | 
| 15402 | 941 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 942 | text{*Here we can eliminate the finiteness assumptions, by cases.*}
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 943 | lemma setsum_cartesian_product: | 
| 17189 | 944 | "(\<Sum>x\<in>A. (\<Sum>y\<in>B. f x y)) = (\<Sum>(x,y) \<in> A <*> B. f x y)" | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 945 | apply (cases "finite A") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 946 | apply (cases "finite B") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 947 | apply (simp add: setsum_Sigma) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 948 |  apply (cases "A={}", simp)
 | 
| 15543 | 949 | apply (simp) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 950 | apply (auto simp add: setsum_def | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 951 | dest: finite_cartesian_productD1 finite_cartesian_productD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 952 | done | 
| 15402 | 953 | |
| 954 | lemma setsum_addf: "setsum (%x. f x + g x) A = (setsum f A + setsum g A)" | |
| 15765 | 955 | by(simp add:setsum_def AC_add.fold_distrib) | 
| 15402 | 956 | |
| 957 | ||
| 958 | subsubsection {* Properties in more restricted classes of structures *}
 | |
| 959 | ||
| 960 | lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a" | |
| 961 | apply (case_tac "finite A") | |
| 962 | prefer 2 apply (simp add: setsum_def) | |
| 963 | apply (erule rev_mp) | |
| 964 | apply (erule finite_induct, auto) | |
| 965 | done | |
| 966 | ||
| 967 | lemma setsum_eq_0_iff [simp]: | |
| 968 | "finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))" | |
| 22262 | 969 | by (induct set: finite) auto | 
| 15402 | 970 | |
| 971 | lemma setsum_Un_nat: "finite A ==> finite B ==> | |
| 972 | (setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)" | |
| 973 |   -- {* For the natural numbers, we have subtraction. *}
 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 974 | by (subst setsum_Un_Int [symmetric], auto simp add: ring_simps) | 
| 15402 | 975 | |
| 976 | lemma setsum_Un: "finite A ==> finite B ==> | |
| 977 | (setsum f (A Un B) :: 'a :: ab_group_add) = | |
| 978 | setsum f A + setsum f B - setsum f (A Int B)" | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 979 | by (subst setsum_Un_Int [symmetric], auto simp add: ring_simps) | 
| 15402 | 980 | |
| 981 | lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) =
 | |
| 982 | (if a:A then setsum f A - f a else setsum f A)" | |
| 983 | apply (case_tac "finite A") | |
| 984 | prefer 2 apply (simp add: setsum_def) | |
| 985 | apply (erule finite_induct) | |
| 986 | apply (auto simp add: insert_Diff_if) | |
| 987 | apply (drule_tac a = a in mk_disjoint_insert, auto) | |
| 988 | done | |
| 989 | ||
| 990 | lemma setsum_diff1: "finite A \<Longrightarrow> | |
| 991 |   (setsum f (A - {a}) :: ('a::ab_group_add)) =
 | |
| 992 | (if a:A then setsum f A - f a else setsum f A)" | |
| 993 | by (erule finite_induct) (auto simp add: insert_Diff_if) | |
| 994 | ||
| 15552 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 995 | lemma setsum_diff1'[rule_format]: "finite A \<Longrightarrow> a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x)"
 | 
| 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 996 |   apply (erule finite_induct[where F=A and P="% A. (a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x))"])
 | 
| 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 997 | apply (auto simp add: insert_Diff_if add_ac) | 
| 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 998 | done | 
| 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 999 | |
| 15402 | 1000 | (* By Jeremy Siek: *) | 
| 1001 | ||
| 1002 | lemma setsum_diff_nat: | |
| 19535 | 1003 | assumes "finite B" | 
| 1004 | and "B \<subseteq> A" | |
| 1005 | shows "(setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)" | |
| 1006 | using prems | |
| 1007 | proof induct | |
| 15402 | 1008 |   show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp
 | 
| 1009 | next | |
| 1010 | fix F x assume finF: "finite F" and xnotinF: "x \<notin> F" | |
| 1011 | and xFinA: "insert x F \<subseteq> A" | |
| 1012 | and IH: "F \<subseteq> A \<Longrightarrow> setsum f (A - F) = setsum f A - setsum f F" | |
| 1013 | from xnotinF xFinA have xinAF: "x \<in> (A - F)" by simp | |
| 1014 |   from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x"
 | |
| 1015 | by (simp add: setsum_diff1_nat) | |
| 1016 | from xFinA have "F \<subseteq> A" by simp | |
| 1017 | with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp | |
| 1018 |   with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x"
 | |
| 1019 | by simp | |
| 1020 |   from xnotinF have "A - insert x F = (A - F) - {x}" by auto
 | |
| 1021 | with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x" | |
| 1022 | by simp | |
| 1023 | from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp | |
| 1024 | with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" | |
| 1025 | by simp | |
| 1026 | thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp | |
| 1027 | qed | |
| 1028 | ||
| 1029 | lemma setsum_diff: | |
| 1030 | assumes le: "finite A" "B \<subseteq> A" | |
| 1031 |   shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))"
 | |
| 1032 | proof - | |
| 1033 | from le have finiteB: "finite B" using finite_subset by auto | |
| 1034 | show ?thesis using finiteB le | |
| 21575 | 1035 | proof induct | 
| 19535 | 1036 | case empty | 
| 1037 | thus ?case by auto | |
| 1038 | next | |
| 1039 | case (insert x F) | |
| 1040 | thus ?case using le finiteB | |
| 1041 | by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb) | |
| 15402 | 1042 | qed | 
| 19535 | 1043 | qed | 
| 15402 | 1044 | |
| 1045 | lemma setsum_mono: | |
| 1046 |   assumes le: "\<And>i. i\<in>K \<Longrightarrow> f (i::'a) \<le> ((g i)::('b::{comm_monoid_add, pordered_ab_semigroup_add}))"
 | |
| 1047 | shows "(\<Sum>i\<in>K. f i) \<le> (\<Sum>i\<in>K. g i)" | |
| 1048 | proof (cases "finite K") | |
| 1049 | case True | |
| 1050 | thus ?thesis using le | |
| 19535 | 1051 | proof induct | 
| 15402 | 1052 | case empty | 
| 1053 | thus ?case by simp | |
| 1054 | next | |
| 1055 | case insert | |
| 19535 | 1056 | thus ?case using add_mono by fastsimp | 
| 15402 | 1057 | qed | 
| 1058 | next | |
| 1059 | case False | |
| 1060 | thus ?thesis | |
| 1061 | by (simp add: setsum_def) | |
| 1062 | qed | |
| 1063 | ||
| 15554 | 1064 | lemma setsum_strict_mono: | 
| 19535 | 1065 |   fixes f :: "'a \<Rightarrow> 'b::{pordered_cancel_ab_semigroup_add,comm_monoid_add}"
 | 
| 1066 |   assumes "finite A"  "A \<noteq> {}"
 | |
| 1067 | and "!!x. x:A \<Longrightarrow> f x < g x" | |
| 1068 | shows "setsum f A < setsum g A" | |
| 1069 | using prems | |
| 15554 | 1070 | proof (induct rule: finite_ne_induct) | 
| 1071 | case singleton thus ?case by simp | |
| 1072 | next | |
| 1073 | case insert thus ?case by (auto simp: add_strict_mono) | |
| 1074 | qed | |
| 1075 | ||
| 15535 | 1076 | lemma setsum_negf: | 
| 19535 | 1077 | "setsum (%x. - (f x)::'a::ab_group_add) A = - setsum f A" | 
| 15535 | 1078 | proof (cases "finite A") | 
| 22262 | 1079 | case True thus ?thesis by (induct set: finite) auto | 
| 15535 | 1080 | next | 
| 1081 | case False thus ?thesis by (simp add: setsum_def) | |
| 1082 | qed | |
| 15402 | 1083 | |
| 15535 | 1084 | lemma setsum_subtractf: | 
| 19535 | 1085 | "setsum (%x. ((f x)::'a::ab_group_add) - g x) A = | 
| 1086 | setsum f A - setsum g A" | |
| 15535 | 1087 | proof (cases "finite A") | 
| 1088 | case True thus ?thesis by (simp add: diff_minus setsum_addf setsum_negf) | |
| 1089 | next | |
| 1090 | case False thus ?thesis by (simp add: setsum_def) | |
| 1091 | qed | |
| 15402 | 1092 | |
| 15535 | 1093 | lemma setsum_nonneg: | 
| 19535 | 1094 |   assumes nn: "\<forall>x\<in>A. (0::'a::{pordered_ab_semigroup_add,comm_monoid_add}) \<le> f x"
 | 
| 1095 | shows "0 \<le> setsum f A" | |
| 15535 | 1096 | proof (cases "finite A") | 
| 1097 | case True thus ?thesis using nn | |
| 21575 | 1098 | proof induct | 
| 19535 | 1099 | case empty then show ?case by simp | 
| 1100 | next | |
| 1101 | case (insert x F) | |
| 1102 | then have "0 + 0 \<le> f x + setsum f F" by (blast intro: add_mono) | |
| 1103 | with insert show ?case by simp | |
| 1104 | qed | |
| 15535 | 1105 | next | 
| 1106 | case False thus ?thesis by (simp add: setsum_def) | |
| 1107 | qed | |
| 15402 | 1108 | |
| 15535 | 1109 | lemma setsum_nonpos: | 
| 19535 | 1110 |   assumes np: "\<forall>x\<in>A. f x \<le> (0::'a::{pordered_ab_semigroup_add,comm_monoid_add})"
 | 
| 1111 | shows "setsum f A \<le> 0" | |
| 15535 | 1112 | proof (cases "finite A") | 
| 1113 | case True thus ?thesis using np | |
| 21575 | 1114 | proof induct | 
| 19535 | 1115 | case empty then show ?case by simp | 
| 1116 | next | |
| 1117 | case (insert x F) | |
| 1118 | then have "f x + setsum f F \<le> 0 + 0" by (blast intro: add_mono) | |
| 1119 | with insert show ?case by simp | |
| 1120 | qed | |
| 15535 | 1121 | next | 
| 1122 | case False thus ?thesis by (simp add: setsum_def) | |
| 1123 | qed | |
| 15402 | 1124 | |
| 15539 | 1125 | lemma setsum_mono2: | 
| 1126 | fixes f :: "'a \<Rightarrow> 'b :: {pordered_ab_semigroup_add_imp_le,comm_monoid_add}"
 | |
| 1127 | assumes fin: "finite B" and sub: "A \<subseteq> B" and nn: "\<And>b. b \<in> B-A \<Longrightarrow> 0 \<le> f b" | |
| 1128 | shows "setsum f A \<le> setsum f B" | |
| 1129 | proof - | |
| 1130 | have "setsum f A \<le> setsum f A + setsum f (B-A)" | |
| 1131 | by(simp add: add_increasing2[OF setsum_nonneg] nn Ball_def) | |
| 1132 | also have "\<dots> = setsum f (A \<union> (B-A))" using fin finite_subset[OF sub fin] | |
| 1133 | by (simp add:setsum_Un_disjoint del:Un_Diff_cancel) | |
| 1134 | also have "A \<union> (B-A) = B" using sub by blast | |
| 1135 | finally show ?thesis . | |
| 1136 | qed | |
| 15542 | 1137 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1138 | lemma setsum_mono3: "finite B ==> A <= B ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1139 | ALL x: B - A. | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1140 |       0 <= ((f x)::'a::{comm_monoid_add,pordered_ab_semigroup_add}) ==>
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1141 | setsum f A <= setsum f B" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1142 | apply (subgoal_tac "setsum f B = setsum f A + setsum f (B - A)") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1143 | apply (erule ssubst) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1144 | apply (subgoal_tac "setsum f A + 0 <= setsum f A + setsum f (B - A)") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1145 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1146 | apply (rule add_left_mono) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1147 | apply (erule setsum_nonneg) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1148 | apply (subst setsum_Un_disjoint [THEN sym]) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1149 | apply (erule finite_subset, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1150 | apply (rule finite_subset) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1151 | prefer 2 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1152 | apply assumption | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1153 | apply auto | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1154 | apply (rule setsum_cong) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1155 | apply auto | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1156 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1157 | |
| 19279 | 1158 | lemma setsum_right_distrib: | 
| 22934 
64ecb3d6790a
generalize setsum lemmas from semiring_0_cancel to semiring_0
 huffman parents: 
22917diff
changeset | 1159 |   fixes f :: "'a => ('b::semiring_0)"
 | 
| 15402 | 1160 | shows "r * setsum f A = setsum (%n. r * f n) A" | 
| 1161 | proof (cases "finite A") | |
| 1162 | case True | |
| 1163 | thus ?thesis | |
| 21575 | 1164 | proof induct | 
| 15402 | 1165 | case empty thus ?case by simp | 
| 1166 | next | |
| 1167 | case (insert x A) thus ?case by (simp add: right_distrib) | |
| 1168 | qed | |
| 1169 | next | |
| 1170 | case False thus ?thesis by (simp add: setsum_def) | |
| 1171 | qed | |
| 1172 | ||
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1173 | lemma setsum_left_distrib: | 
| 22934 
64ecb3d6790a
generalize setsum lemmas from semiring_0_cancel to semiring_0
 huffman parents: 
22917diff
changeset | 1174 | "setsum f A * (r::'a::semiring_0) = (\<Sum>n\<in>A. f n * r)" | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1175 | proof (cases "finite A") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1176 | case True | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1177 | then show ?thesis | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1178 | proof induct | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1179 | case empty thus ?case by simp | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1180 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1181 | case (insert x A) thus ?case by (simp add: left_distrib) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1182 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1183 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1184 | case False thus ?thesis by (simp add: setsum_def) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1185 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1186 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1187 | lemma setsum_divide_distrib: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1188 | "setsum f A / (r::'a::field) = (\<Sum>n\<in>A. f n / r)" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1189 | proof (cases "finite A") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1190 | case True | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1191 | then show ?thesis | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1192 | proof induct | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1193 | case empty thus ?case by simp | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1194 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1195 | case (insert x A) thus ?case by (simp add: add_divide_distrib) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1196 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1197 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1198 | case False thus ?thesis by (simp add: setsum_def) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1199 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1200 | |
| 15535 | 1201 | lemma setsum_abs[iff]: | 
| 15402 | 1202 |   fixes f :: "'a => ('b::lordered_ab_group_abs)"
 | 
| 1203 | shows "abs (setsum f A) \<le> setsum (%i. abs(f i)) A" | |
| 15535 | 1204 | proof (cases "finite A") | 
| 1205 | case True | |
| 1206 | thus ?thesis | |
| 21575 | 1207 | proof induct | 
| 15535 | 1208 | case empty thus ?case by simp | 
| 1209 | next | |
| 1210 | case (insert x A) | |
| 1211 | thus ?case by (auto intro: abs_triangle_ineq order_trans) | |
| 1212 | qed | |
| 15402 | 1213 | next | 
| 15535 | 1214 | case False thus ?thesis by (simp add: setsum_def) | 
| 15402 | 1215 | qed | 
| 1216 | ||
| 15535 | 1217 | lemma setsum_abs_ge_zero[iff]: | 
| 15402 | 1218 |   fixes f :: "'a => ('b::lordered_ab_group_abs)"
 | 
| 1219 | shows "0 \<le> setsum (%i. abs(f i)) A" | |
| 15535 | 1220 | proof (cases "finite A") | 
| 1221 | case True | |
| 1222 | thus ?thesis | |
| 21575 | 1223 | proof induct | 
| 15535 | 1224 | case empty thus ?case by simp | 
| 1225 | next | |
| 21733 | 1226 | case (insert x A) thus ?case by (auto simp: add_nonneg_nonneg) | 
| 15535 | 1227 | qed | 
| 15402 | 1228 | next | 
| 15535 | 1229 | case False thus ?thesis by (simp add: setsum_def) | 
| 15402 | 1230 | qed | 
| 1231 | ||
| 15539 | 1232 | lemma abs_setsum_abs[simp]: | 
| 1233 |   fixes f :: "'a => ('b::lordered_ab_group_abs)"
 | |
| 1234 | shows "abs (\<Sum>a\<in>A. abs(f a)) = (\<Sum>a\<in>A. abs(f a))" | |
| 1235 | proof (cases "finite A") | |
| 1236 | case True | |
| 1237 | thus ?thesis | |
| 21575 | 1238 | proof induct | 
| 15539 | 1239 | case empty thus ?case by simp | 
| 1240 | next | |
| 1241 | case (insert a A) | |
| 1242 | hence "\<bar>\<Sum>a\<in>insert a A. \<bar>f a\<bar>\<bar> = \<bar>\<bar>f a\<bar> + (\<Sum>a\<in>A. \<bar>f a\<bar>)\<bar>" by simp | |
| 1243 | also have "\<dots> = \<bar>\<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>\<bar>" using insert by simp | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1244 | also have "\<dots> = \<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1245 | by (simp del: abs_of_nonneg) | 
| 15539 | 1246 | also have "\<dots> = (\<Sum>a\<in>insert a A. \<bar>f a\<bar>)" using insert by simp | 
| 1247 | finally show ?case . | |
| 1248 | qed | |
| 1249 | next | |
| 1250 | case False thus ?thesis by (simp add: setsum_def) | |
| 1251 | qed | |
| 1252 | ||
| 15402 | 1253 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1254 | text {* Commuting outer and inner summation *}
 | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1255 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1256 | lemma swap_inj_on: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1257 | "inj_on (%(i, j). (j, i)) (A \<times> B)" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1258 | by (unfold inj_on_def) fast | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1259 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1260 | lemma swap_product: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1261 | "(%(i, j). (j, i)) ` (A \<times> B) = B \<times> A" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1262 | by (simp add: split_def image_def) blast | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1263 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1264 | lemma setsum_commute: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1265 | "(\<Sum>i\<in>A. \<Sum>j\<in>B. f i j) = (\<Sum>j\<in>B. \<Sum>i\<in>A. f i j)" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1266 | proof (simp add: setsum_cartesian_product) | 
| 17189 | 1267 | have "(\<Sum>(x,y) \<in> A <*> B. f x y) = | 
| 1268 | (\<Sum>(y,x) \<in> (%(i, j). (j, i)) ` (A \<times> B). f x y)" | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1269 | (is "?s = _") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1270 | apply (simp add: setsum_reindex [where f = "%(i, j). (j, i)"] swap_inj_on) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1271 | apply (simp add: split_def) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1272 | done | 
| 17189 | 1273 | also have "... = (\<Sum>(y,x)\<in>B \<times> A. f x y)" | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1274 | (is "_ = ?t") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1275 | apply (simp add: swap_product) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1276 | done | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1277 | finally show "?s = ?t" . | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1278 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1279 | |
| 19279 | 1280 | lemma setsum_product: | 
| 22934 
64ecb3d6790a
generalize setsum lemmas from semiring_0_cancel to semiring_0
 huffman parents: 
22917diff
changeset | 1281 |   fixes f :: "'a => ('b::semiring_0)"
 | 
| 19279 | 1282 | shows "setsum f A * setsum g B = (\<Sum>i\<in>A. \<Sum>j\<in>B. f i * g j)" | 
| 1283 | by (simp add: setsum_right_distrib setsum_left_distrib) (rule setsum_commute) | |
| 1284 | ||
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1285 | |
| 15402 | 1286 | subsection {* Generalized product over a set *}
 | 
| 1287 | ||
| 1288 | constdefs | |
| 1289 |   setprod :: "('a => 'b) => 'a set => 'b::comm_monoid_mult"
 | |
| 1290 | "setprod f A == if finite A then fold (op *) f 1 A else 1" | |
| 1291 | ||
| 19535 | 1292 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21249diff
changeset | 1293 |   Setprod  ("\<Prod>_" [1000] 999) where
 | 
| 19535 | 1294 | "\<Prod>A == setprod (%x. x) A" | 
| 1295 | ||
| 15402 | 1296 | syntax | 
| 17189 | 1297 |   "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(3PROD _:_. _)" [0, 51, 10] 10)
 | 
| 15402 | 1298 | syntax (xsymbols) | 
| 17189 | 1299 |   "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 15402 | 1300 | syntax (HTML output) | 
| 17189 | 1301 |   "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 16550 | 1302 | |
| 1303 | translations -- {* Beware of argument permutation! *}
 | |
| 1304 | "PROD i:A. b" == "setprod (%i. b) A" | |
| 1305 | "\<Prod>i\<in>A. b" == "setprod (%i. b) A" | |
| 1306 | ||
| 1307 | text{* Instead of @{term"\<Prod>x\<in>{x. P}. e"} we introduce the shorter
 | |
| 1308 |  @{text"\<Prod>x|P. e"}. *}
 | |
| 1309 | ||
| 1310 | syntax | |
| 17189 | 1311 |   "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3PROD _ |/ _./ _)" [0,0,10] 10)
 | 
| 16550 | 1312 | syntax (xsymbols) | 
| 17189 | 1313 |   "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
 | 
| 16550 | 1314 | syntax (HTML output) | 
| 17189 | 1315 |   "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
 | 
| 16550 | 1316 | |
| 15402 | 1317 | translations | 
| 16550 | 1318 |   "PROD x|P. t" => "setprod (%x. t) {x. P}"
 | 
| 1319 |   "\<Prod>x|P. t" => "setprod (%x. t) {x. P}"
 | |
| 1320 | ||
| 15402 | 1321 | |
| 1322 | lemma setprod_empty [simp]: "setprod f {} = 1"
 | |
| 1323 | by (auto simp add: setprod_def) | |
| 1324 | ||
| 1325 | lemma setprod_insert [simp]: "[| finite A; a \<notin> A |] ==> | |
| 1326 | setprod f (insert a A) = f a * setprod f A" | |
| 19931 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 ballarin parents: 
19870diff
changeset | 1327 | by (simp add: setprod_def) | 
| 15402 | 1328 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1329 | lemma setprod_infinite [simp]: "~ finite A ==> setprod f A = 1" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1330 | by (simp add: setprod_def) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1331 | |
| 15402 | 1332 | lemma setprod_reindex: | 
| 1333 | "inj_on f B ==> setprod h (f ` B) = setprod (h \<circ> f) B" | |
| 15765 | 1334 | by(auto simp: setprod_def AC_mult.fold_reindex dest!:finite_imageD) | 
| 15402 | 1335 | |
| 1336 | lemma setprod_reindex_id: "inj_on f B ==> setprod f B = setprod id (f ` B)" | |
| 1337 | by (auto simp add: setprod_reindex) | |
| 1338 | ||
| 1339 | lemma setprod_cong: | |
| 1340 | "A = B ==> (!!x. x:B ==> f x = g x) ==> setprod f A = setprod g B" | |
| 15765 | 1341 | by(fastsimp simp: setprod_def intro: AC_mult.fold_cong) | 
| 15402 | 1342 | |
| 16632 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 1343 | lemma strong_setprod_cong: | 
| 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 1344 | "A = B ==> (!!x. x:B =simp=> f x = g x) ==> setprod f A = setprod g B" | 
| 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 1345 | by(fastsimp simp: simp_implies_def setprod_def intro: AC_mult.fold_cong) | 
| 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 1346 | |
| 15402 | 1347 | lemma setprod_reindex_cong: "inj_on f A ==> | 
| 1348 | B = f ` A ==> g = h \<circ> f ==> setprod h B = setprod g A" | |
| 1349 | by (frule setprod_reindex, simp) | |
| 1350 | ||
| 1351 | ||
| 1352 | lemma setprod_1: "setprod (%i. 1) A = 1" | |
| 1353 | apply (case_tac "finite A") | |
| 1354 | apply (erule finite_induct, auto simp add: mult_ac) | |
| 1355 | done | |
| 1356 | ||
| 1357 | lemma setprod_1': "ALL a:F. f a = 1 ==> setprod f F = 1" | |
| 1358 | apply (subgoal_tac "setprod f F = setprod (%x. 1) F") | |
| 1359 | apply (erule ssubst, rule setprod_1) | |
| 1360 | apply (rule setprod_cong, auto) | |
| 1361 | done | |
| 1362 | ||
| 1363 | lemma setprod_Un_Int: "finite A ==> finite B | |
| 1364 | ==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B" | |
| 15765 | 1365 | by(simp add: setprod_def AC_mult.fold_Un_Int[symmetric]) | 
| 15402 | 1366 | |
| 1367 | lemma setprod_Un_disjoint: "finite A ==> finite B | |
| 1368 |   ==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B"
 | |
| 1369 | by (subst setprod_Un_Int [symmetric], auto) | |
| 1370 | ||
| 1371 | lemma setprod_UN_disjoint: | |
| 1372 | "finite I ==> (ALL i:I. finite (A i)) ==> | |
| 1373 |         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
 | |
| 1374 | setprod f (UNION I A) = setprod (%i. setprod f (A i)) I" | |
| 15765 | 1375 | by(simp add: setprod_def AC_mult.fold_UN_disjoint cong: setprod_cong) | 
| 15402 | 1376 | |
| 1377 | lemma setprod_Union_disjoint: | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1378 | "[| (ALL A:C. finite A); | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1379 |       (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |] 
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1380 | ==> setprod f (Union C) = setprod (setprod f) C" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1381 | apply (cases "finite C") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1382 | prefer 2 apply (force dest: finite_UnionD simp add: setprod_def) | 
| 15402 | 1383 | apply (frule setprod_UN_disjoint [of C id f]) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1384 | apply (unfold Union_def id_def, assumption+) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1385 | done | 
| 15402 | 1386 | |
| 1387 | lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==> | |
| 16550 | 1388 | (\<Prod>x\<in>A. (\<Prod>y\<in> B x. f x y)) = | 
| 17189 | 1389 | (\<Prod>(x,y)\<in>(SIGMA x:A. B x). f x y)" | 
| 15765 | 1390 | by(simp add:setprod_def AC_mult.fold_Sigma split_def cong:setprod_cong) | 
| 15402 | 1391 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1392 | text{*Here we can eliminate the finiteness assumptions, by cases.*}
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1393 | lemma setprod_cartesian_product: | 
| 17189 | 1394 | "(\<Prod>x\<in>A. (\<Prod>y\<in> B. f x y)) = (\<Prod>(x,y)\<in>(A <*> B). f x y)" | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1395 | apply (cases "finite A") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1396 | apply (cases "finite B") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1397 | apply (simp add: setprod_Sigma) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1398 |  apply (cases "A={}", simp)
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1399 | apply (simp add: setprod_1) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1400 | apply (auto simp add: setprod_def | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1401 | dest: finite_cartesian_productD1 finite_cartesian_productD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1402 | done | 
| 15402 | 1403 | |
| 1404 | lemma setprod_timesf: | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1405 | "setprod (%x. f x * g x) A = (setprod f A * setprod g A)" | 
| 15765 | 1406 | by(simp add:setprod_def AC_mult.fold_distrib) | 
| 15402 | 1407 | |
| 1408 | ||
| 1409 | subsubsection {* Properties in more restricted classes of structures *}
 | |
| 1410 | ||
| 1411 | lemma setprod_eq_1_iff [simp]: | |
| 1412 | "finite F ==> (setprod f F = 1) = (ALL a:F. f a = (1::nat))" | |
| 22262 | 1413 | by (induct set: finite) auto | 
| 15402 | 1414 | |
| 1415 | lemma setprod_zero: | |
| 23277 | 1416 | "finite A ==> EX x: A. f x = (0::'a::comm_semiring_1) ==> setprod f A = 0" | 
| 22262 | 1417 | apply (induct set: finite, force, clarsimp) | 
| 15402 | 1418 | apply (erule disjE, auto) | 
| 1419 | done | |
| 1420 | ||
| 1421 | lemma setprod_nonneg [rule_format]: | |
| 1422 | "(ALL x: A. (0::'a::ordered_idom) \<le> f x) --> 0 \<le> setprod f A" | |
| 1423 | apply (case_tac "finite A") | |
| 22262 | 1424 | apply (induct set: finite, force, clarsimp) | 
| 15402 | 1425 | apply (subgoal_tac "0 * 0 \<le> f x * setprod f F", force) | 
| 1426 | apply (rule mult_mono, assumption+) | |
| 1427 | apply (auto simp add: setprod_def) | |
| 1428 | done | |
| 1429 | ||
| 1430 | lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::ordered_idom) < f x) | |
| 1431 | --> 0 < setprod f A" | |
| 1432 | apply (case_tac "finite A") | |
| 22262 | 1433 | apply (induct set: finite, force, clarsimp) | 
| 15402 | 1434 | apply (subgoal_tac "0 * 0 < f x * setprod f F", force) | 
| 1435 | apply (rule mult_strict_mono, assumption+) | |
| 1436 | apply (auto simp add: setprod_def) | |
| 1437 | done | |
| 1438 | ||
| 1439 | lemma setprod_nonzero [rule_format]: | |
| 23277 | 1440 | "(ALL x y. (x::'a::comm_semiring_1) * y = 0 --> x = 0 | y = 0) ==> | 
| 15402 | 1441 | finite A ==> (ALL x: A. f x \<noteq> (0::'a)) --> setprod f A \<noteq> 0" | 
| 1442 | apply (erule finite_induct, auto) | |
| 1443 | done | |
| 1444 | ||
| 1445 | lemma setprod_zero_eq: | |
| 23277 | 1446 | "(ALL x y. (x::'a::comm_semiring_1) * y = 0 --> x = 0 | y = 0) ==> | 
| 15402 | 1447 | finite A ==> (setprod f A = (0::'a)) = (EX x: A. f x = 0)" | 
| 1448 | apply (insert setprod_zero [of A f] setprod_nonzero [of A f], blast) | |
| 1449 | done | |
| 1450 | ||
| 1451 | lemma setprod_nonzero_field: | |
| 23277 | 1452 | "finite A ==> (ALL x: A. f x \<noteq> (0::'a::idom)) ==> setprod f A \<noteq> 0" | 
| 15402 | 1453 | apply (rule setprod_nonzero, auto) | 
| 1454 | done | |
| 1455 | ||
| 1456 | lemma setprod_zero_eq_field: | |
| 23277 | 1457 | "finite A ==> (setprod f A = (0::'a::idom)) = (EX x: A. f x = 0)" | 
| 15402 | 1458 | apply (rule setprod_zero_eq, auto) | 
| 1459 | done | |
| 1460 | ||
| 1461 | lemma setprod_Un: "finite A ==> finite B ==> (ALL x: A Int B. f x \<noteq> 0) ==> | |
| 1462 |     (setprod f (A Un B) :: 'a ::{field})
 | |
| 1463 | = setprod f A * setprod f B / setprod f (A Int B)" | |
| 1464 | apply (subst setprod_Un_Int [symmetric], auto) | |
| 1465 | apply (subgoal_tac "finite (A Int B)") | |
| 1466 | apply (frule setprod_nonzero_field [of "A Int B" f], assumption) | |
| 23398 | 1467 | apply (subst times_divide_eq_right [THEN sym], auto) | 
| 15402 | 1468 | done | 
| 1469 | ||
| 1470 | lemma setprod_diff1: "finite A ==> f a \<noteq> 0 ==> | |
| 1471 |     (setprod f (A - {a}) :: 'a :: {field}) =
 | |
| 1472 | (if a:A then setprod f A / f a else setprod f A)" | |
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23398diff
changeset | 1473 | by (erule finite_induct) (auto simp add: insert_Diff_if) | 
| 15402 | 1474 | |
| 1475 | lemma setprod_inversef: "finite A ==> | |
| 1476 |     ALL x: A. f x \<noteq> (0::'a::{field,division_by_zero}) ==>
 | |
| 1477 | setprod (inverse \<circ> f) A = inverse (setprod f A)" | |
| 1478 | apply (erule finite_induct) | |
| 1479 | apply (simp, simp) | |
| 1480 | done | |
| 1481 | ||
| 1482 | lemma setprod_dividef: | |
| 1483 | "[|finite A; | |
| 1484 |         \<forall>x \<in> A. g x \<noteq> (0::'a::{field,division_by_zero})|]
 | |
| 1485 | ==> setprod (%x. f x / g x) A = setprod f A / setprod g A" | |
| 1486 | apply (subgoal_tac | |
| 1487 | "setprod (%x. f x / g x) A = setprod (%x. f x * (inverse \<circ> g) x) A") | |
| 1488 | apply (erule ssubst) | |
| 1489 | apply (subst divide_inverse) | |
| 1490 | apply (subst setprod_timesf) | |
| 1491 | apply (subst setprod_inversef, assumption+, rule refl) | |
| 1492 | apply (rule setprod_cong, rule refl) | |
| 1493 | apply (subst divide_inverse, auto) | |
| 1494 | done | |
| 1495 | ||
| 12396 | 1496 | subsection {* Finite cardinality *}
 | 
| 1497 | ||
| 15402 | 1498 | text {* This definition, although traditional, is ugly to work with:
 | 
| 1499 | @{text "card A == LEAST n. EX f. A = {f i | i. i < n}"}.
 | |
| 1500 | But now that we have @{text setsum} things are easy:
 | |
| 12396 | 1501 | *} | 
| 1502 | ||
| 1503 | constdefs | |
| 1504 | card :: "'a set => nat" | |
| 15402 | 1505 | "card A == setsum (%x. 1::nat) A" | 
| 12396 | 1506 | |
| 1507 | lemma card_empty [simp]: "card {} = 0"
 | |
| 15402 | 1508 | by (simp add: card_def) | 
| 1509 | ||
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1510 | lemma card_infinite [simp]: "~ finite A ==> card A = 0" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1511 | by (simp add: card_def) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1512 | |
| 15402 | 1513 | lemma card_eq_setsum: "card A = setsum (%x. 1) A" | 
| 1514 | by (simp add: card_def) | |
| 12396 | 1515 | |
| 1516 | lemma card_insert_disjoint [simp]: | |
| 1517 | "finite A ==> x \<notin> A ==> card (insert x A) = Suc(card A)" | |
| 15765 | 1518 | by(simp add: card_def) | 
| 15402 | 1519 | |
| 1520 | lemma card_insert_if: | |
| 1521 | "finite A ==> card (insert x A) = (if x:A then card A else Suc(card(A)))" | |
| 1522 | by (simp add: insert_absorb) | |
| 12396 | 1523 | |
| 1524 | lemma card_0_eq [simp]: "finite A ==> (card A = 0) = (A = {})"
 | |
| 1525 | apply auto | |
| 15506 | 1526 | apply (drule_tac a = x in mk_disjoint_insert, clarify, auto) | 
| 12396 | 1527 | done | 
| 1528 | ||
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1529 | lemma card_eq_0_iff: "(card A = 0) = (A = {} | ~ finite A)"
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1530 | by auto | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1531 | |
| 12396 | 1532 | lemma card_Suc_Diff1: "finite A ==> x: A ==> Suc (card (A - {x})) = card A"
 | 
| 14302 | 1533 | apply(rule_tac t = A in insert_Diff [THEN subst], assumption) | 
| 1534 | apply(simp del:insert_Diff_single) | |
| 1535 | done | |
| 12396 | 1536 | |
| 1537 | lemma card_Diff_singleton: | |
| 1538 |     "finite A ==> x: A ==> card (A - {x}) = card A - 1"
 | |
| 1539 | by (simp add: card_Suc_Diff1 [symmetric]) | |
| 1540 | ||
| 1541 | lemma card_Diff_singleton_if: | |
| 1542 |     "finite A ==> card (A-{x}) = (if x : A then card A - 1 else card A)"
 | |
| 1543 | by (simp add: card_Diff_singleton) | |
| 1544 | ||
| 1545 | lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))"
 | |
| 1546 | by (simp add: card_insert_if card_Suc_Diff1) | |
| 1547 | ||
| 1548 | lemma card_insert_le: "finite A ==> card A <= card (insert x A)" | |
| 1549 | by (simp add: card_insert_if) | |
| 1550 | ||
| 15402 | 1551 | lemma card_mono: "\<lbrakk> finite B; A \<subseteq> B \<rbrakk> \<Longrightarrow> card A \<le> card B" | 
| 15539 | 1552 | by (simp add: card_def setsum_mono2) | 
| 15402 | 1553 | |
| 12396 | 1554 | lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)" | 
| 22262 | 1555 | apply (induct set: finite, simp, clarify) | 
| 12396 | 1556 |   apply (subgoal_tac "finite A & A - {x} <= F")
 | 
| 14208 | 1557 | prefer 2 apply (blast intro: finite_subset, atomize) | 
| 12396 | 1558 |   apply (drule_tac x = "A - {x}" in spec)
 | 
| 1559 | apply (simp add: card_Diff_singleton_if split add: split_if_asm) | |
| 14208 | 1560 | apply (case_tac "card A", auto) | 
| 12396 | 1561 | done | 
| 1562 | ||
| 1563 | lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B" | |
| 1564 | apply (simp add: psubset_def linorder_not_le [symmetric]) | |
| 1565 | apply (blast dest: card_seteq) | |
| 1566 | done | |
| 1567 | ||
| 1568 | lemma card_Un_Int: "finite A ==> finite B | |
| 1569 | ==> card A + card B = card (A Un B) + card (A Int B)" | |
| 15402 | 1570 | by(simp add:card_def setsum_Un_Int) | 
| 12396 | 1571 | |
| 1572 | lemma card_Un_disjoint: "finite A ==> finite B | |
| 1573 |     ==> A Int B = {} ==> card (A Un B) = card A + card B"
 | |
| 1574 | by (simp add: card_Un_Int) | |
| 1575 | ||
| 1576 | lemma card_Diff_subset: | |
| 15402 | 1577 | "finite B ==> B <= A ==> card (A - B) = card A - card B" | 
| 1578 | by(simp add:card_def setsum_diff_nat) | |
| 12396 | 1579 | |
| 1580 | lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A"
 | |
| 1581 | apply (rule Suc_less_SucD) | |
| 1582 | apply (simp add: card_Suc_Diff1) | |
| 1583 | done | |
| 1584 | ||
| 1585 | lemma card_Diff2_less: | |
| 1586 |     "finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A"
 | |
| 1587 | apply (case_tac "x = y") | |
| 1588 | apply (simp add: card_Diff1_less) | |
| 1589 | apply (rule less_trans) | |
| 1590 | prefer 2 apply (auto intro!: card_Diff1_less) | |
| 1591 | done | |
| 1592 | ||
| 1593 | lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A"
 | |
| 1594 | apply (case_tac "x : A") | |
| 1595 | apply (simp_all add: card_Diff1_less less_imp_le) | |
| 1596 | done | |
| 1597 | ||
| 1598 | lemma card_psubset: "finite B ==> A \<subseteq> B ==> card A < card B ==> A < B" | |
| 14208 | 1599 | by (erule psubsetI, blast) | 
| 12396 | 1600 | |
| 14889 | 1601 | lemma insert_partition: | 
| 15402 | 1602 |   "\<lbrakk> x \<notin> F; \<forall>c1 \<in> insert x F. \<forall>c2 \<in> insert x F. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {} \<rbrakk>
 | 
| 1603 |   \<Longrightarrow> x \<inter> \<Union> F = {}"
 | |
| 14889 | 1604 | by auto | 
| 1605 | ||
| 19793 | 1606 | text{* main cardinality theorem *}
 | 
| 14889 | 1607 | lemma card_partition [rule_format]: | 
| 1608 | "finite C ==> | |
| 1609 | finite (\<Union> C) --> | |
| 1610 | (\<forall>c\<in>C. card c = k) --> | |
| 1611 |         (\<forall>c1 \<in> C. \<forall>c2 \<in> C. c1 \<noteq> c2 --> c1 \<inter> c2 = {}) -->  
 | |
| 1612 | k * card(C) = card (\<Union> C)" | |
| 1613 | apply (erule finite_induct, simp) | |
| 1614 | apply (simp add: card_insert_disjoint card_Un_disjoint insert_partition | |
| 1615 | finite_subset [of _ "\<Union> (insert x F)"]) | |
| 1616 | done | |
| 1617 | ||
| 12396 | 1618 | |
| 19793 | 1619 | text{*The form of a finite set of given cardinality*}
 | 
| 1620 | ||
| 1621 | lemma card_eq_SucD: | |
| 1622 | assumes cardeq: "card A = Suc k" and fin: "finite A" | |
| 1623 | shows "\<exists>b B. A = insert b B & b \<notin> B & card B = k" | |
| 1624 | proof - | |
| 1625 | have "card A \<noteq> 0" using cardeq by auto | |
| 1626 | then obtain b where b: "b \<in> A" using fin by auto | |
| 1627 | show ?thesis | |
| 1628 | proof (intro exI conjI) | |
| 1629 |     show "A = insert b (A-{b})" using b by blast
 | |
| 1630 |     show "b \<notin> A - {b}" by blast
 | |
| 1631 |     show "card (A - {b}) = k" by (simp add: fin cardeq b card_Diff_singleton) 
 | |
| 1632 | qed | |
| 1633 | qed | |
| 1634 | ||
| 1635 | ||
| 1636 | lemma card_Suc_eq: | |
| 1637 | "finite A ==> | |
| 1638 | (card A = Suc k) = (\<exists>b B. A = insert b B & b \<notin> B & card B = k)" | |
| 1639 | by (auto dest!: card_eq_SucD) | |
| 1640 | ||
| 1641 | lemma card_1_eq: | |
| 1642 |   "finite A ==> (card A = Suc 0) = (\<exists>x. A = {x})"
 | |
| 1643 | by (auto dest!: card_eq_SucD) | |
| 1644 | ||
| 1645 | lemma card_2_eq: | |
| 1646 |   "finite A ==> (card A = Suc(Suc 0)) = (\<exists>x y. x\<noteq>y & A = {x,y})" 
 | |
| 1647 | by (auto dest!: card_eq_SucD, blast) | |
| 1648 | ||
| 1649 | ||
| 15539 | 1650 | lemma setsum_constant [simp]: "(\<Sum>x \<in> A. y) = of_nat(card A) * y" | 
| 1651 | apply (cases "finite A") | |
| 1652 | apply (erule finite_induct) | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1653 | apply (auto simp add: ring_simps) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1654 | done | 
| 15402 | 1655 | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
19984diff
changeset | 1656 | lemma setprod_constant: "finite A ==> (\<Prod>x\<in> A. (y::'a::{recpower, comm_monoid_mult})) = y^(card A)"
 | 
| 15402 | 1657 | apply (erule finite_induct) | 
| 1658 | apply (auto simp add: power_Suc) | |
| 1659 | done | |
| 1660 | ||
| 15542 | 1661 | lemma setsum_bounded: | 
| 23277 | 1662 |   assumes le: "\<And>i. i\<in>A \<Longrightarrow> f i \<le> (K::'a::{semiring_1, pordered_ab_semigroup_add})"
 | 
| 15542 | 1663 | shows "setsum f A \<le> of_nat(card A) * K" | 
| 1664 | proof (cases "finite A") | |
| 1665 | case True | |
| 1666 | thus ?thesis using le setsum_mono[where K=A and g = "%x. K"] by simp | |
| 1667 | next | |
| 1668 | case False thus ?thesis by (simp add: setsum_def) | |
| 1669 | qed | |
| 1670 | ||
| 15402 | 1671 | |
| 1672 | subsubsection {* Cardinality of unions *}
 | |
| 1673 | ||
| 1674 | lemma card_UN_disjoint: | |
| 1675 | "finite I ==> (ALL i:I. finite (A i)) ==> | |
| 1676 |         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
 | |
| 1677 | card (UNION I A) = (\<Sum>i\<in>I. card(A i))" | |
| 15539 | 1678 | apply (simp add: card_def del: setsum_constant) | 
| 15402 | 1679 | apply (subgoal_tac | 
| 1680 | "setsum (%i. card (A i)) I = setsum (%i. (setsum (%x. 1) (A i))) I") | |
| 15539 | 1681 | apply (simp add: setsum_UN_disjoint del: setsum_constant) | 
| 1682 | apply (simp cong: setsum_cong) | |
| 15402 | 1683 | done | 
| 1684 | ||
| 1685 | lemma card_Union_disjoint: | |
| 1686 | "finite C ==> (ALL A:C. finite A) ==> | |
| 1687 |         (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) ==>
 | |
| 1688 | card (Union C) = setsum card C" | |
| 1689 | apply (frule card_UN_disjoint [of C id]) | |
| 1690 | apply (unfold Union_def id_def, assumption+) | |
| 1691 | done | |
| 1692 | ||
| 12396 | 1693 | subsubsection {* Cardinality of image *}
 | 
| 1694 | ||
| 15447 | 1695 | text{*The image of a finite set can be expressed using @{term fold}.*}
 | 
| 1696 | lemma image_eq_fold: "finite A ==> f ` A = fold (op Un) (%x. {f x}) {} A"
 | |
| 1697 | apply (erule finite_induct, simp) | |
| 1698 | apply (subst ACf.fold_insert) | |
| 1699 | apply (auto simp add: ACf_def) | |
| 1700 | done | |
| 1701 | ||
| 12396 | 1702 | lemma card_image_le: "finite A ==> card (f ` A) <= card A" | 
| 22262 | 1703 | apply (induct set: finite) | 
| 21575 | 1704 | apply simp | 
| 12396 | 1705 | apply (simp add: le_SucI finite_imageI card_insert_if) | 
| 1706 | done | |
| 1707 | ||
| 15402 | 1708 | lemma card_image: "inj_on f A ==> card (f ` A) = card A" | 
| 15539 | 1709 | by(simp add:card_def setsum_reindex o_def del:setsum_constant) | 
| 12396 | 1710 | |
| 1711 | lemma endo_inj_surj: "finite A ==> f ` A \<subseteq> A ==> inj_on f A ==> f ` A = A" | |
| 1712 | by (simp add: card_seteq card_image) | |
| 1713 | ||
| 15111 | 1714 | lemma eq_card_imp_inj_on: | 
| 1715 | "[| finite A; card(f ` A) = card A |] ==> inj_on f A" | |
| 21575 | 1716 | apply (induct rule:finite_induct) | 
| 1717 | apply simp | |
| 15111 | 1718 | apply(frule card_image_le[where f = f]) | 
| 1719 | apply(simp add:card_insert_if split:if_splits) | |
| 1720 | done | |
| 1721 | ||
| 1722 | lemma inj_on_iff_eq_card: | |
| 1723 | "finite A ==> inj_on f A = (card(f ` A) = card A)" | |
| 1724 | by(blast intro: card_image eq_card_imp_inj_on) | |
| 1725 | ||
| 12396 | 1726 | |
| 15402 | 1727 | lemma card_inj_on_le: | 
| 1728 | "[|inj_on f A; f ` A \<subseteq> B; finite B |] ==> card A \<le> card B" | |
| 1729 | apply (subgoal_tac "finite A") | |
| 1730 | apply (force intro: card_mono simp add: card_image [symmetric]) | |
| 1731 | apply (blast intro: finite_imageD dest: finite_subset) | |
| 1732 | done | |
| 1733 | ||
| 1734 | lemma card_bij_eq: | |
| 1735 | "[|inj_on f A; f ` A \<subseteq> B; inj_on g B; g ` B \<subseteq> A; | |
| 1736 | finite A; finite B |] ==> card A = card B" | |
| 1737 | by (auto intro: le_anti_sym card_inj_on_le) | |
| 1738 | ||
| 1739 | ||
| 1740 | subsubsection {* Cardinality of products *}
 | |
| 1741 | ||
| 1742 | (* | |
| 1743 | lemma SigmaI_insert: "y \<notin> A ==> | |
| 1744 |   (SIGMA x:(insert y A). B x) = (({y} <*> (B y)) \<union> (SIGMA x: A. B x))"
 | |
| 1745 | by auto | |
| 1746 | *) | |
| 1747 | ||
| 1748 | lemma card_SigmaI [simp]: | |
| 1749 | "\<lbrakk> finite A; ALL a:A. finite (B a) \<rbrakk> | |
| 1750 | \<Longrightarrow> card (SIGMA x: A. B x) = (\<Sum>a\<in>A. card (B a))" | |
| 15539 | 1751 | by(simp add:card_def setsum_Sigma del:setsum_constant) | 
| 15402 | 1752 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1753 | lemma card_cartesian_product: "card (A <*> B) = card(A) * card(B)" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1754 | apply (cases "finite A") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1755 | apply (cases "finite B") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1756 | apply (auto simp add: card_eq_0_iff | 
| 15539 | 1757 | dest: finite_cartesian_productD1 finite_cartesian_productD2) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1758 | done | 
| 15402 | 1759 | |
| 1760 | lemma card_cartesian_product_singleton:  "card({x} <*> A) = card(A)"
 | |
| 15539 | 1761 | by (simp add: card_cartesian_product) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1762 | |
| 15402 | 1763 | |
| 1764 | ||
| 12396 | 1765 | subsubsection {* Cardinality of the Powerset *}
 | 
| 1766 | ||
| 1767 | lemma card_Pow: "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A" (* FIXME numeral 2 (!?) *) | |
| 22262 | 1768 | apply (induct set: finite) | 
| 12396 | 1769 | apply (simp_all add: Pow_insert) | 
| 14208 | 1770 | apply (subst card_Un_disjoint, blast) | 
| 1771 | apply (blast intro: finite_imageI, blast) | |
| 12396 | 1772 | apply (subgoal_tac "inj_on (insert x) (Pow F)") | 
| 1773 | apply (simp add: card_image Pow_insert) | |
| 1774 | apply (unfold inj_on_def) | |
| 1775 | apply (blast elim!: equalityE) | |
| 1776 | done | |
| 1777 | ||
| 15392 | 1778 | text {* Relates to equivalence classes.  Based on a theorem of
 | 
| 1779 | F. Kammüller's. *} | |
| 12396 | 1780 | |
| 1781 | lemma dvd_partition: | |
| 15392 | 1782 | "finite (Union C) ==> | 
| 12396 | 1783 | ALL c : C. k dvd card c ==> | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 1784 |     (ALL c1: C. ALL c2: C. c1 \<noteq> c2 --> c1 Int c2 = {}) ==>
 | 
| 12396 | 1785 | k dvd card (Union C)" | 
| 15392 | 1786 | apply(frule finite_UnionD) | 
| 1787 | apply(rotate_tac -1) | |
| 22262 | 1788 | apply (induct set: finite, simp_all, clarify) | 
| 12396 | 1789 | apply (subst card_Un_disjoint) | 
| 1790 | apply (auto simp add: dvd_add disjoint_eq_subset_Compl) | |
| 1791 | done | |
| 1792 | ||
| 1793 | ||
| 15392 | 1794 | subsection{* A fold functional for non-empty sets *}
 | 
| 1795 | ||
| 1796 | text{* Does not require start value. *}
 | |
| 12396 | 1797 | |
| 23736 | 1798 | inductive | 
| 22262 | 1799 |   fold1Set :: "('a => 'a => 'a) => 'a set => 'a => bool"
 | 
| 1800 | for f :: "'a => 'a => 'a" | |
| 1801 | where | |
| 15506 | 1802 | fold1Set_insertI [intro]: | 
| 22262 | 1803 | "\<lbrakk> foldSet f id a A x; a \<notin> A \<rbrakk> \<Longrightarrow> fold1Set f (insert a A) x" | 
| 12396 | 1804 | |
| 15392 | 1805 | constdefs | 
| 1806 |   fold1 :: "('a => 'a => 'a) => 'a set => 'a"
 | |
| 22262 | 1807 | "fold1 f A == THE x. fold1Set f A x" | 
| 15506 | 1808 | |
| 1809 | lemma fold1Set_nonempty: | |
| 22917 | 1810 |   "fold1Set f A x \<Longrightarrow> A \<noteq> {}"
 | 
| 1811 | by(erule fold1Set.cases, simp_all) | |
| 15392 | 1812 | |
| 23736 | 1813 | inductive_cases empty_fold1SetE [elim!]: "fold1Set f {} x"
 | 
| 1814 | ||
| 1815 | inductive_cases insert_fold1SetE [elim!]: "fold1Set f (insert a X) x" | |
| 22262 | 1816 | |
| 1817 | ||
| 1818 | lemma fold1Set_sing [iff]: "(fold1Set f {a} b) = (a = b)"
 | |
| 15506 | 1819 | by (blast intro: foldSet.intros elim: foldSet.cases) | 
| 15392 | 1820 | |
| 22917 | 1821 | lemma fold1_singleton [simp]: "fold1 f {a} = a"
 | 
| 15508 | 1822 | by (unfold fold1_def) blast | 
| 12396 | 1823 | |
| 15508 | 1824 | lemma finite_nonempty_imp_fold1Set: | 
| 22262 | 1825 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> EX x. fold1Set f A x"
 | 
| 15508 | 1826 | apply (induct A rule: finite_induct) | 
| 1827 | apply (auto dest: finite_imp_foldSet [of _ f id]) | |
| 1828 | done | |
| 15506 | 1829 | |
| 1830 | text{*First, some lemmas about @{term foldSet}.*}
 | |
| 15392 | 1831 | |
| 15508 | 1832 | lemma (in ACf) foldSet_insert_swap: | 
| 22262 | 1833 | assumes fold: "foldSet f id b A y" | 
| 1834 | shows "b \<notin> A \<Longrightarrow> foldSet f id z (insert b A) (z \<cdot> y)" | |
| 15508 | 1835 | using fold | 
| 1836 | proof (induct rule: foldSet.induct) | |
| 1837 | case emptyI thus ?case by (force simp add: fold_insert_aux commute) | |
| 1838 | next | |
| 22262 | 1839 | case (insertI x A y) | 
| 1840 | have "foldSet f (\<lambda>u. u) z (insert x (insert b A)) (x \<cdot> (z \<cdot> y))" | |
| 15521 | 1841 |       using insertI by force  --{*how does @{term id} get unfolded?*}
 | 
| 15508 | 1842 | thus ?case by (simp add: insert_commute AC) | 
| 1843 | qed | |
| 1844 | ||
| 1845 | lemma (in ACf) foldSet_permute_diff: | |
| 22262 | 1846 | assumes fold: "foldSet f id b A x" | 
| 1847 | shows "!!a. \<lbrakk>a \<in> A; b \<notin> A\<rbrakk> \<Longrightarrow> foldSet f id a (insert b (A-{a})) x"
 | |
| 15508 | 1848 | using fold | 
| 1849 | proof (induct rule: foldSet.induct) | |
| 1850 | case emptyI thus ?case by simp | |
| 1851 | next | |
| 22262 | 1852 | case (insertI x A y) | 
| 15521 | 1853 | have "a = x \<or> a \<in> A" using insertI by simp | 
| 1854 | thus ?case | |
| 1855 | proof | |
| 1856 | assume "a = x" | |
| 1857 | with insertI show ?thesis | |
| 1858 | by (simp add: id_def [symmetric], blast intro: foldSet_insert_swap) | |
| 1859 | next | |
| 1860 | assume ainA: "a \<in> A" | |
| 22262 | 1861 |     hence "foldSet f id a (insert x (insert b (A - {a}))) (x \<cdot> y)"
 | 
| 15521 | 1862 | using insertI by (force simp: id_def) | 
| 1863 | moreover | |
| 1864 |     have "insert x (insert b (A - {a})) = insert b (insert x A - {a})"
 | |
| 1865 | using ainA insertI by blast | |
| 1866 | ultimately show ?thesis by (simp add: id_def) | |
| 15508 | 1867 | qed | 
| 1868 | qed | |
| 1869 | ||
| 1870 | lemma (in ACf) fold1_eq_fold: | |
| 1871 | "[|finite A; a \<notin> A|] ==> fold1 f (insert a A) = fold f id a A" | |
| 1872 | apply (simp add: fold1_def fold_def) | |
| 1873 | apply (rule the_equality) | |
| 1874 | apply (best intro: foldSet_determ theI dest: finite_imp_foldSet [of _ f id]) | |
| 1875 | apply (rule sym, clarify) | |
| 1876 | apply (case_tac "Aa=A") | |
| 1877 | apply (best intro: the_equality foldSet_determ) | |
| 22262 | 1878 | apply (subgoal_tac "foldSet f id a A x") | 
| 15508 | 1879 | apply (best intro: the_equality foldSet_determ) | 
| 1880 | apply (subgoal_tac "insert aa (Aa - {a}) = A") 
 | |
| 1881 | prefer 2 apply (blast elim: equalityE) | |
| 1882 | apply (auto dest: foldSet_permute_diff [where a=a]) | |
| 1883 | done | |
| 1884 | ||
| 15521 | 1885 | lemma nonempty_iff: "(A \<noteq> {}) = (\<exists>x B. A = insert x B & x \<notin> B)"
 | 
| 1886 | apply safe | |
| 1887 | apply simp | |
| 1888 | apply (drule_tac x=x in spec) | |
| 1889 | apply (drule_tac x="A-{x}" in spec, auto) 
 | |
| 15508 | 1890 | done | 
| 1891 | ||
| 15521 | 1892 | lemma (in ACf) fold1_insert: | 
| 1893 |   assumes nonempty: "A \<noteq> {}" and A: "finite A" "x \<notin> A"
 | |
| 1894 | shows "fold1 f (insert x A) = f x (fold1 f A)" | |
| 1895 | proof - | |
| 1896 | from nonempty obtain a A' where "A = insert a A' & a ~: A'" | |
| 1897 | by (auto simp add: nonempty_iff) | |
| 1898 | with A show ?thesis | |
| 1899 | by (simp add: insert_commute [of x] fold1_eq_fold eq_commute) | |
| 1900 | qed | |
| 1901 | ||
| 15509 | 1902 | lemma (in ACIf) fold1_insert_idem [simp]: | 
| 15521 | 1903 |   assumes nonempty: "A \<noteq> {}" and A: "finite A" 
 | 
| 1904 | shows "fold1 f (insert x A) = f x (fold1 f A)" | |
| 1905 | proof - | |
| 1906 | from nonempty obtain a A' where A': "A = insert a A' & a ~: A'" | |
| 1907 | by (auto simp add: nonempty_iff) | |
| 1908 | show ?thesis | |
| 1909 | proof cases | |
| 1910 | assume "a = x" | |
| 1911 | thus ?thesis | |
| 1912 | proof cases | |
| 1913 |       assume "A' = {}"
 | |
| 1914 | with prems show ?thesis by (simp add: idem) | |
| 1915 | next | |
| 1916 |       assume "A' \<noteq> {}"
 | |
| 1917 | with prems show ?thesis | |
| 1918 | by (simp add: fold1_insert assoc [symmetric] idem) | |
| 1919 | qed | |
| 1920 | next | |
| 1921 | assume "a \<noteq> x" | |
| 1922 | with prems show ?thesis | |
| 1923 | by (simp add: insert_commute fold1_eq_fold fold_insert_idem) | |
| 1924 | qed | |
| 1925 | qed | |
| 15506 | 1926 | |
| 22917 | 1927 | lemma (in ACIf) hom_fold1_commute: | 
| 1928 | assumes hom: "!!x y. h(f x y) = f (h x) (h y)" | |
| 1929 | and N: "finite N" "N \<noteq> {}" shows "h(fold1 f N) = fold1 f (h ` N)"
 | |
| 1930 | using N proof (induct rule: finite_ne_induct) | |
| 1931 | case singleton thus ?case by simp | |
| 1932 | next | |
| 1933 | case (insert n N) | |
| 1934 | then have "h(fold1 f (insert n N)) = h(f n (fold1 f N))" by simp | |
| 1935 | also have "\<dots> = f (h n) (h(fold1 f N))" by(rule hom) | |
| 1936 | also have "h(fold1 f N) = fold1 f (h ` N)" by(rule insert) | |
| 1937 | also have "f (h n) \<dots> = fold1 f (insert (h n) (h ` N))" | |
| 1938 | using insert by(simp) | |
| 1939 | also have "insert (h n) (h ` N) = h ` insert n N" by simp | |
| 1940 | finally show ?case . | |
| 1941 | qed | |
| 1942 | ||
| 15506 | 1943 | |
| 15508 | 1944 | text{* Now the recursion rules for definitions: *}
 | 
| 1945 | ||
| 22917 | 1946 | lemma fold1_singleton_def: "g = fold1 f \<Longrightarrow> g {a} = a"
 | 
| 15508 | 1947 | by(simp add:fold1_singleton) | 
| 1948 | ||
| 1949 | lemma (in ACf) fold1_insert_def: | |
| 22917 | 1950 |   "\<lbrakk> g = fold1 f; finite A; x \<notin> A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g (insert x A) = x \<cdot> (g A)"
 | 
| 15508 | 1951 | by(simp add:fold1_insert) | 
| 1952 | ||
| 15509 | 1953 | lemma (in ACIf) fold1_insert_idem_def: | 
| 22917 | 1954 |   "\<lbrakk> g = fold1 f; finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g (insert x A) = x \<cdot> (g A)"
 | 
| 15509 | 1955 | by(simp add:fold1_insert_idem) | 
| 15508 | 1956 | |
| 1957 | subsubsection{* Determinacy for @{term fold1Set} *}
 | |
| 1958 | ||
| 1959 | text{*Not actually used!!*}
 | |
| 12396 | 1960 | |
| 15506 | 1961 | lemma (in ACf) foldSet_permute: | 
| 22262 | 1962 | "[|foldSet f id b (insert a A) x; a \<notin> A; b \<notin> A|] | 
| 1963 | ==> foldSet f id a (insert b A) x" | |
| 15506 | 1964 | apply (case_tac "a=b") | 
| 1965 | apply (auto dest: foldSet_permute_diff) | |
| 1966 | done | |
| 15376 | 1967 | |
| 15506 | 1968 | lemma (in ACf) fold1Set_determ: | 
| 22262 | 1969 | "fold1Set f A x ==> fold1Set f A y ==> y = x" | 
| 15506 | 1970 | proof (clarify elim!: fold1Set.cases) | 
| 1971 | fix A x B y a b | |
| 22262 | 1972 | assume Ax: "foldSet f id a A x" | 
| 1973 | assume By: "foldSet f id b B y" | |
| 15506 | 1974 | assume anotA: "a \<notin> A" | 
| 1975 | assume bnotB: "b \<notin> B" | |
| 1976 | assume eq: "insert a A = insert b B" | |
| 1977 | show "y=x" | |
| 1978 | proof cases | |
| 1979 | assume same: "a=b" | |
| 1980 | hence "A=B" using anotA bnotB eq by (blast elim!: equalityE) | |
| 1981 | thus ?thesis using Ax By same by (blast intro: foldSet_determ) | |
| 15392 | 1982 | next | 
| 15506 | 1983 | assume diff: "a\<noteq>b" | 
| 1984 |     let ?D = "B - {a}"
 | |
| 1985 | have B: "B = insert a ?D" and A: "A = insert b ?D" | |
| 1986 | and aB: "a \<in> B" and bA: "b \<in> A" | |
| 1987 | using eq anotA bnotB diff by (blast elim!:equalityE)+ | |
| 1988 | with aB bnotB By | |
| 22262 | 1989 | have "foldSet f id a (insert b ?D) y" | 
| 15506 | 1990 | by (auto intro: foldSet_permute simp add: insert_absorb) | 
| 1991 | moreover | |
| 22262 | 1992 | have "foldSet f id a (insert b ?D) x" | 
| 15506 | 1993 | by (simp add: A [symmetric] Ax) | 
| 1994 | ultimately show ?thesis by (blast intro: foldSet_determ) | |
| 15392 | 1995 | qed | 
| 12396 | 1996 | qed | 
| 1997 | ||
| 22262 | 1998 | lemma (in ACf) fold1Set_equality: "fold1Set f A y ==> fold1 f A = y" | 
| 15506 | 1999 | by (unfold fold1_def) (blast intro: fold1Set_determ) | 
| 2000 | ||
| 2001 | declare | |
| 2002 | empty_foldSetE [rule del] foldSet.intros [rule del] | |
| 2003 | empty_fold1SetE [rule del] insert_fold1SetE [rule del] | |
| 19931 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 ballarin parents: 
19870diff
changeset | 2004 |   -- {* No more proofs involve these relations. *}
 | 
| 15376 | 2005 | |
| 22917 | 2006 | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2007 | subsubsection{* Semi-Lattices *}
 | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2008 | |
| 22917 | 2009 | locale ACIfSL = ord + ACIf + | 
| 2010 | assumes below_def: "x \<sqsubseteq> y \<longleftrightarrow> x \<cdot> y = x" | |
| 2011 | and strict_below_def: "x \<sqsubset> y \<longleftrightarrow> x \<sqsubseteq> y \<and> x \<noteq> y" | |
| 2012 | begin | |
| 2013 | ||
| 2014 | lemma below_refl [simp]: "x \<^loc>\<le> x" | |
| 2015 | by (simp add: below_def idem) | |
| 2016 | ||
| 2017 | lemma below_antisym: | |
| 2018 | assumes xy: "x \<^loc>\<le> y" and yx: "y \<^loc>\<le> x" | |
| 2019 | shows "x = y" | |
| 2020 | using xy [unfolded below_def, symmetric] | |
| 2021 | yx [unfolded below_def commute] | |
| 2022 | by (rule trans) | |
| 2023 | ||
| 2024 | lemma below_trans: | |
| 2025 | assumes xy: "x \<^loc>\<le> y" and yz: "y \<^loc>\<le> z" | |
| 2026 | shows "x \<^loc>\<le> z" | |
| 2027 | proof - | |
| 2028 | from xy have x_xy: "x \<cdot> y = x" by (simp add: below_def) | |
| 2029 | from yz have y_yz: "y \<cdot> z = y" by (simp add: below_def) | |
| 2030 | from y_yz have "x \<cdot> y \<cdot> z = x \<cdot> y" by (simp add: assoc) | |
| 2031 | with x_xy have "x \<cdot> y \<cdot> z = x" by simp | |
| 2032 | moreover from x_xy have "x \<cdot> z = x \<cdot> y \<cdot> z" by simp | |
| 2033 | ultimately have "x \<cdot> z = x" by simp | |
| 2034 | then show ?thesis by (simp add: below_def) | |
| 2035 | qed | |
| 2036 | ||
| 2037 | lemma below_f_conv [simp]: "x \<sqsubseteq> y \<cdot> z = (x \<sqsubseteq> y \<and> x \<sqsubseteq> z)" | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2038 | proof | 
| 15500 | 2039 | assume "x \<sqsubseteq> y \<cdot> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2040 | hence xyzx: "x \<cdot> (y \<cdot> z) = x" by(simp add: below_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2041 | have "x \<cdot> y = x" | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2042 | proof - | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2043 | have "x \<cdot> y = (x \<cdot> (y \<cdot> z)) \<cdot> y" by(rule subst[OF xyzx], rule refl) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2044 | also have "\<dots> = x \<cdot> (y \<cdot> z)" by(simp add:ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2045 | also have "\<dots> = x" by(rule xyzx) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2046 | finally show ?thesis . | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2047 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2048 | moreover have "x \<cdot> z = x" | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2049 | proof - | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2050 | have "x \<cdot> z = (x \<cdot> (y \<cdot> z)) \<cdot> z" by(rule subst[OF xyzx], rule refl) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2051 | also have "\<dots> = x \<cdot> (y \<cdot> z)" by(simp add:ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2052 | also have "\<dots> = x" by(rule xyzx) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2053 | finally show ?thesis . | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2054 | qed | 
| 15500 | 2055 | ultimately show "x \<sqsubseteq> y \<and> x \<sqsubseteq> z" by(simp add: below_def) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2056 | next | 
| 15500 | 2057 | assume a: "x \<sqsubseteq> y \<and> x \<sqsubseteq> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2058 | hence y: "x \<cdot> y = x" and z: "x \<cdot> z = x" by(simp_all add: below_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2059 | have "x \<cdot> (y \<cdot> z) = (x \<cdot> y) \<cdot> z" by(simp add:assoc) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2060 | also have "x \<cdot> y = x" using a by(simp_all add: below_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2061 | also have "x \<cdot> z = x" using a by(simp_all add: below_def) | 
| 15500 | 2062 | finally show "x \<sqsubseteq> y \<cdot> z" by(simp_all add: below_def) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2063 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2064 | |
| 22917 | 2065 | end | 
| 2066 | ||
| 2067 | interpretation ACIfSL < order | |
| 2068 | by unfold_locales | |
| 2069 | (simp add: strict_below_def, auto intro: below_refl below_trans below_antisym) | |
| 2070 | ||
| 2071 | locale ACIfSLlin = ACIfSL + | |
| 2072 |   assumes lin: "x\<cdot>y \<in> {x,y}"
 | |
| 2073 | begin | |
| 2074 | ||
| 2075 | lemma above_f_conv: | |
| 15500 | 2076 | "x \<cdot> y \<sqsubseteq> z = (x \<sqsubseteq> z \<or> y \<sqsubseteq> z)" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2077 | proof | 
| 15500 | 2078 | assume a: "x \<cdot> y \<sqsubseteq> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2079 | have "x \<cdot> y = x \<or> x \<cdot> y = y" using lin[of x y] by simp | 
| 15500 | 2080 | thus "x \<sqsubseteq> z \<or> y \<sqsubseteq> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2081 | proof | 
| 15500 | 2082 | assume "x \<cdot> y = x" hence "x \<sqsubseteq> z" by(rule subst)(rule a) thus ?thesis .. | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2083 | next | 
| 15500 | 2084 | assume "x \<cdot> y = y" hence "y \<sqsubseteq> z" by(rule subst)(rule a) thus ?thesis .. | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2085 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2086 | next | 
| 15500 | 2087 | assume "x \<sqsubseteq> z \<or> y \<sqsubseteq> z" | 
| 2088 | thus "x \<cdot> y \<sqsubseteq> z" | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2089 | proof | 
| 15500 | 2090 | assume a: "x \<sqsubseteq> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2091 | have "(x \<cdot> y) \<cdot> z = (x \<cdot> z) \<cdot> y" by(simp add:ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2092 | also have "x \<cdot> z = x" using a by(simp add:below_def) | 
| 15500 | 2093 | finally show "x \<cdot> y \<sqsubseteq> z" by(simp add:below_def) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2094 | next | 
| 15500 | 2095 | assume a: "y \<sqsubseteq> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2096 | have "(x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)" by(simp add:ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2097 | also have "y \<cdot> z = y" using a by(simp add:below_def) | 
| 15500 | 2098 | finally show "x \<cdot> y \<sqsubseteq> z" by(simp add:below_def) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2099 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2100 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2101 | |
| 22917 | 2102 | lemma strict_below_f_conv[simp]: "x \<sqsubset> y \<cdot> z = (x \<sqsubset> y \<and> x \<sqsubset> z)" | 
| 18493 | 2103 | apply(simp add: strict_below_def) | 
| 2104 | using lin[of y z] by (auto simp:below_def ACI) | |
| 2105 | ||
| 22917 | 2106 | lemma strict_above_f_conv: | 
| 19931 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 ballarin parents: 
19870diff
changeset | 2107 | "x \<cdot> y \<sqsubset> z = (x \<sqsubset> z \<or> y \<sqsubset> z)" | 
| 18493 | 2108 | apply(simp add: strict_below_def above_f_conv) | 
| 2109 | using lin[of y z] lin[of x z] by (auto simp:below_def ACI) | |
| 2110 | ||
| 22917 | 2111 | end | 
| 2112 | ||
| 2113 | interpretation ACIfSLlin < linorder | |
| 2114 | by unfold_locales | |
| 2115 | (insert lin [simplified insert_iff], simp add: below_def commute) | |
| 2116 | ||
| 18493 | 2117 | |
| 15502 | 2118 | subsubsection{* Lemmas about @{text fold1} *}
 | 
| 15484 | 2119 | |
| 2120 | lemma (in ACf) fold1_Un: | |
| 2121 | assumes A: "finite A" "A \<noteq> {}"
 | |
| 2122 | shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow> A Int B = {} \<Longrightarrow>
 | |
| 2123 | fold1 f (A Un B) = f (fold1 f A) (fold1 f B)" | |
| 2124 | using A | |
| 2125 | proof(induct rule:finite_ne_induct) | |
| 2126 | case singleton thus ?case by(simp add:fold1_insert) | |
| 2127 | next | |
| 2128 | case insert thus ?case by (simp add:fold1_insert assoc) | |
| 2129 | qed | |
| 2130 | ||
| 2131 | lemma (in ACIf) fold1_Un2: | |
| 2132 | assumes A: "finite A" "A \<noteq> {}"
 | |
| 2133 | shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow>
 | |
| 2134 | fold1 f (A Un B) = f (fold1 f A) (fold1 f B)" | |
| 2135 | using A | |
| 2136 | proof(induct rule:finite_ne_induct) | |
| 15509 | 2137 | case singleton thus ?case by(simp add:fold1_insert_idem) | 
| 15484 | 2138 | next | 
| 15509 | 2139 | case insert thus ?case by (simp add:fold1_insert_idem assoc) | 
| 15484 | 2140 | qed | 
| 2141 | ||
| 2142 | lemma (in ACf) fold1_in: | |
| 2143 |   assumes A: "finite (A)" "A \<noteq> {}" and elem: "\<And>x y. x\<cdot>y \<in> {x,y}"
 | |
| 2144 | shows "fold1 f A \<in> A" | |
| 2145 | using A | |
| 2146 | proof (induct rule:finite_ne_induct) | |
| 15506 | 2147 | case singleton thus ?case by simp | 
| 15484 | 2148 | next | 
| 2149 | case insert thus ?case using elem by (force simp add:fold1_insert) | |
| 2150 | qed | |
| 2151 | ||
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2152 | lemma (in ACIfSL) below_fold1_iff: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2153 | assumes A: "finite A" "A \<noteq> {}"
 | 
| 15500 | 2154 | shows "x \<sqsubseteq> fold1 f A = (\<forall>a\<in>A. x \<sqsubseteq> a)" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2155 | using A | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2156 | by(induct rule:finite_ne_induct) simp_all | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2157 | |
| 18493 | 2158 | lemma (in ACIfSLlin) strict_below_fold1_iff: | 
| 2159 |   "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> x \<sqsubset> fold1 f A = (\<forall>a\<in>A. x \<sqsubset> a)"
 | |
| 2160 | by(induct rule:finite_ne_induct) simp_all | |
| 2161 | ||
| 2162 | ||
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2163 | lemma (in ACIfSL) fold1_belowI: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2164 | assumes A: "finite A" "A \<noteq> {}"
 | 
| 15500 | 2165 | shows "a \<in> A \<Longrightarrow> fold1 f A \<sqsubseteq> a" | 
| 15484 | 2166 | using A | 
| 2167 | proof (induct rule:finite_ne_induct) | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2168 | case singleton thus ?case by simp | 
| 15484 | 2169 | next | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2170 | case (insert x F) | 
| 15517 | 2171 | from insert(5) have "a = x \<or> a \<in> F" by simp | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2172 | thus ?case | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2173 | proof | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2174 | assume "a = x" thus ?thesis using insert by(simp add:below_def ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2175 | next | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2176 | assume "a \<in> F" | 
| 15508 | 2177 | hence bel: "fold1 f F \<sqsubseteq> a" by(rule insert) | 
| 2178 | have "fold1 f (insert x F) \<cdot> a = x \<cdot> (fold1 f F \<cdot> a)" | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2179 | using insert by(simp add:below_def ACI) | 
| 15508 | 2180 | also have "fold1 f F \<cdot> a = fold1 f F" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2181 | using bel by(simp add:below_def ACI) | 
| 15508 | 2182 | also have "x \<cdot> \<dots> = fold1 f (insert x F)" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2183 | using insert by(simp add:below_def ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2184 | finally show ?thesis by(simp add:below_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2185 | qed | 
| 15484 | 2186 | qed | 
| 2187 | ||
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2188 | lemma (in ACIfSLlin) fold1_below_iff: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2189 | assumes A: "finite A" "A \<noteq> {}"
 | 
| 15500 | 2190 | shows "fold1 f A \<sqsubseteq> x = (\<exists>a\<in>A. a \<sqsubseteq> x)" | 
| 15484 | 2191 | using A | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2192 | by(induct rule:finite_ne_induct)(simp_all add:above_f_conv) | 
| 15484 | 2193 | |
| 18493 | 2194 | lemma (in ACIfSLlin) fold1_strict_below_iff: | 
| 2195 | assumes A: "finite A" "A \<noteq> {}"
 | |
| 2196 | shows "fold1 f A \<sqsubset> x = (\<exists>a\<in>A. a \<sqsubset> x)" | |
| 2197 | using A | |
| 2198 | by(induct rule:finite_ne_induct)(simp_all add:strict_above_f_conv) | |
| 2199 | ||
| 18423 | 2200 | lemma (in ACIfSLlin) fold1_antimono: | 
| 2201 | assumes "A \<noteq> {}" and "A \<subseteq> B" and "finite B"
 | |
| 2202 | shows "fold1 f B \<sqsubseteq> fold1 f A" | |
| 2203 | proof(cases) | |
| 2204 | assume "A = B" thus ?thesis by simp | |
| 2205 | next | |
| 2206 | assume "A \<noteq> B" | |
| 2207 | have B: "B = A \<union> (B-A)" using `A \<subseteq> B` by blast | |
| 2208 | have "fold1 f B = fold1 f (A \<union> (B-A))" by(subst B)(rule refl) | |
| 2209 | also have "\<dots> = f (fold1 f A) (fold1 f (B-A))" | |
| 2210 | proof - | |
| 2211 | have "finite A" by(rule finite_subset[OF `A \<subseteq> B` `finite B`]) | |
| 18493 | 2212 | moreover have "finite(B-A)" by(rule finite_Diff[OF `finite B`]) (* by(blast intro:finite_Diff prems) fails *) | 
| 18423 | 2213 |     moreover have "(B-A) \<noteq> {}" using prems by blast
 | 
| 2214 |     moreover have "A Int (B-A) = {}" using prems by blast
 | |
| 2215 |     ultimately show ?thesis using `A \<noteq> {}` by(rule_tac fold1_Un)
 | |
| 2216 | qed | |
| 2217 | also have "\<dots> \<sqsubseteq> fold1 f A" by(simp add: above_f_conv) | |
| 2218 | finally show ?thesis . | |
| 2219 | qed | |
| 2220 | ||
| 2221 | ||
| 22917 | 2222 | subsubsection {* Fold1 in lattices with @{const inf} and @{const sup} *}
 | 
| 2223 | ||
| 2224 | text{*
 | |
| 2225 |   As an application of @{text fold1} we define infimum
 | |
| 2226 | and supremum in (not necessarily complete!) lattices | |
| 2227 |   over (non-empty) sets by means of @{text fold1}.
 | |
| 2228 | *} | |
| 2229 | ||
| 2230 | lemma (in lower_semilattice) ACf_inf: "ACf (op \<sqinter>)" | |
| 2231 | by (blast intro: ACf.intro inf_commute inf_assoc) | |
| 2232 | ||
| 2233 | lemma (in upper_semilattice) ACf_sup: "ACf (op \<squnion>)" | |
| 2234 | by (blast intro: ACf.intro sup_commute sup_assoc) | |
| 2235 | ||
| 2236 | lemma (in lower_semilattice) ACIf_inf: "ACIf (op \<sqinter>)" | |
| 15500 | 2237 | apply(rule ACIf.intro) | 
| 2238 | apply(rule ACf_inf) | |
| 2239 | apply(rule ACIf_axioms.intro) | |
| 2240 | apply(rule inf_idem) | |
| 2241 | done | |
| 2242 | ||
| 22917 | 2243 | lemma (in upper_semilattice) ACIf_sup: "ACIf (op \<squnion>)" | 
| 15500 | 2244 | apply(rule ACIf.intro) | 
| 2245 | apply(rule ACf_sup) | |
| 2246 | apply(rule ACIf_axioms.intro) | |
| 2247 | apply(rule sup_idem) | |
| 2248 | done | |
| 2249 | ||
| 22917 | 2250 | lemma (in lower_semilattice) ACIfSL_inf: "ACIfSL (op \<^loc>\<le>) (op \<^loc><) (op \<sqinter>)" | 
| 15500 | 2251 | apply(rule ACIfSL.intro) | 
| 19931 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 ballarin parents: 
19870diff
changeset | 2252 | apply(rule ACIf.intro) | 
| 15500 | 2253 | apply(rule ACf_inf) | 
| 2254 | apply(rule ACIf.axioms[OF ACIf_inf]) | |
| 2255 | apply(rule ACIfSL_axioms.intro) | |
| 2256 | apply(rule iffI) | |
| 21733 | 2257 | apply(blast intro: antisym inf_le1 inf_le2 inf_greatest refl) | 
| 15500 | 2258 | apply(erule subst) | 
| 2259 | apply(rule inf_le2) | |
| 22917 | 2260 | apply(rule less_le) | 
| 15500 | 2261 | done | 
| 2262 | ||
| 22917 | 2263 | lemma (in upper_semilattice) ACIfSL_sup: "ACIfSL (%x y. y \<^loc>\<le> x) (%x y. y \<^loc>< x) (op \<squnion>)" | 
| 15500 | 2264 | apply(rule ACIfSL.intro) | 
| 19931 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 ballarin parents: 
19870diff
changeset | 2265 | apply(rule ACIf.intro) | 
| 15500 | 2266 | apply(rule ACf_sup) | 
| 2267 | apply(rule ACIf.axioms[OF ACIf_sup]) | |
| 2268 | apply(rule ACIfSL_axioms.intro) | |
| 2269 | apply(rule iffI) | |
| 21733 | 2270 | apply(blast intro: antisym sup_ge1 sup_ge2 sup_least refl) | 
| 15500 | 2271 | apply(erule subst) | 
| 2272 | apply(rule sup_ge2) | |
| 22917 | 2273 | apply(simp add: neq_commute less_le) | 
| 15500 | 2274 | done | 
| 2275 | ||
| 23706 | 2276 | |
| 2277 | subsection {* Finiteness and quotients *}
 | |
| 2278 | ||
| 2279 | text {*Suggested by Florian Kammüller*}
 | |
| 2280 | ||
| 2281 | lemma finite_quotient: "finite A ==> r \<subseteq> A \<times> A ==> finite (A//r)" | |
| 2282 |   -- {* recall @{thm equiv_type} *}
 | |
| 2283 | apply (rule finite_subset) | |
| 2284 | apply (erule_tac [2] finite_Pow_iff [THEN iffD2]) | |
| 2285 | apply (unfold quotient_def) | |
| 2286 | apply blast | |
| 2287 | done | |
| 2288 | ||
| 2289 | lemma finite_equiv_class: | |
| 2290 | "finite A ==> r \<subseteq> A \<times> A ==> X \<in> A//r ==> finite X" | |
| 2291 | apply (unfold quotient_def) | |
| 2292 | apply (rule finite_subset) | |
| 2293 | prefer 2 apply assumption | |
| 2294 | apply blast | |
| 2295 | done | |
| 2296 | ||
| 2297 | lemma equiv_imp_dvd_card: | |
| 2298 | "finite A ==> equiv A r ==> \<forall>X \<in> A//r. k dvd card X | |
| 2299 | ==> k dvd card A" | |
| 2300 | apply (rule Union_quotient [THEN subst]) | |
| 2301 | apply assumption | |
| 2302 | apply (rule dvd_partition) | |
| 2303 | prefer 3 apply (blast dest: quotient_disj) | |
| 2304 | apply (simp_all add: Union_quotient equiv_type) | |
| 2305 | done | |
| 2306 | ||
| 2307 | lemma card_quotient_disjoint: | |
| 2308 |  "\<lbrakk> finite A; inj_on (\<lambda>x. {x} // r) A \<rbrakk> \<Longrightarrow> card(A//r) = card A"
 | |
| 2309 | apply(simp add:quotient_def) | |
| 2310 | apply(subst card_UN_disjoint) | |
| 2311 | apply assumption | |
| 2312 | apply simp | |
| 2313 | apply(fastsimp simp add:inj_on_def) | |
| 2314 | apply (simp add:setsum_constant) | |
| 2315 | done | |
| 2316 | ||
| 2317 | ||
| 2318 | subsection {* @{term setsum} and @{term setprod} on integers *}
 | |
| 2319 | ||
| 2320 | text {*By Jeremy Avigad*}
 | |
| 2321 | ||
| 2322 | lemma of_nat_setsum: "of_nat (setsum f A) = (\<Sum>x\<in>A. of_nat(f x))" | |
| 2323 | apply (cases "finite A") | |
| 2324 | apply (erule finite_induct, auto) | |
| 2325 | done | |
| 2326 | ||
| 2327 | lemma of_int_setsum: "of_int (setsum f A) = (\<Sum>x\<in>A. of_int(f x))" | |
| 2328 | apply (cases "finite A") | |
| 2329 | apply (erule finite_induct, auto) | |
| 2330 | done | |
| 2331 | ||
| 2332 | lemma of_nat_setprod: "of_nat (setprod f A) = (\<Prod>x\<in>A. of_nat(f x))" | |
| 2333 | apply (cases "finite A") | |
| 2334 | apply (erule finite_induct, auto simp add: of_nat_mult) | |
| 2335 | done | |
| 2336 | ||
| 2337 | lemma of_int_setprod: "of_int (setprod f A) = (\<Prod>x\<in>A. of_int(f x))" | |
| 2338 | apply (cases "finite A") | |
| 2339 | apply (erule finite_induct, auto) | |
| 2340 | done | |
| 2341 | ||
| 2342 | lemma setprod_nonzero_nat: | |
| 2343 | "finite A ==> (\<forall>x \<in> A. f x \<noteq> (0::nat)) ==> setprod f A \<noteq> 0" | |
| 2344 | by (rule setprod_nonzero, auto) | |
| 2345 | ||
| 2346 | lemma setprod_zero_eq_nat: | |
| 2347 | "finite A ==> (setprod f A = (0::nat)) = (\<exists>x \<in> A. f x = 0)" | |
| 2348 | by (rule setprod_zero_eq, auto) | |
| 2349 | ||
| 2350 | lemma setprod_nonzero_int: | |
| 2351 | "finite A ==> (\<forall>x \<in> A. f x \<noteq> (0::int)) ==> setprod f A \<noteq> 0" | |
| 2352 | by (rule setprod_nonzero, auto) | |
| 2353 | ||
| 2354 | lemma setprod_zero_eq_int: | |
| 2355 | "finite A ==> (setprod f A = (0::int)) = (\<exists>x \<in> A. f x = 0)" | |
| 2356 | by (rule setprod_zero_eq, auto) | |
| 2357 | ||
| 2358 | lemmas int_setsum = of_nat_setsum [where 'a=int] | |
| 2359 | lemmas int_setprod = of_nat_setprod [where 'a=int] | |
| 2360 | ||
| 2361 | ||
| 22917 | 2362 | locale Lattice = lattice -- {* we do not pollute the @{text lattice} clas *}
 | 
| 2363 | begin | |
| 2364 | ||
| 2365 | definition | |
| 2366 |   Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
 | |
| 2367 | where | |
| 2368 | "Inf = fold1 (op \<sqinter>)" | |
| 2369 | ||
| 2370 | definition | |
| 2371 |   Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
 | |
| 2372 | where | |
| 2373 | "Sup = fold1 (op \<squnion>)" | |
| 2374 | ||
| 2375 | end | |
| 2376 | ||
| 2377 | locale Distrib_Lattice = distrib_lattice + Lattice | |
| 15500 | 2378 | |
| 15780 | 2379 | lemma (in Lattice) Inf_le_Sup[simp]: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> \<Sqinter>A \<sqsubseteq> \<Squnion>A"
 | 
| 15500 | 2380 | apply(unfold Sup_def Inf_def) | 
| 2381 | apply(subgoal_tac "EX a. a:A") | |
| 2382 | prefer 2 apply blast | |
| 2383 | apply(erule exE) | |
| 22388 | 2384 | apply(rule order_trans) | 
| 15500 | 2385 | apply(erule (2) ACIfSL.fold1_belowI[OF ACIfSL_inf]) | 
| 2386 | apply(erule (2) ACIfSL.fold1_belowI[OF ACIfSL_sup]) | |
| 2387 | done | |
| 2388 | ||
| 15780 | 2389 | lemma (in Lattice) sup_Inf_absorb[simp]: | 
| 15504 | 2390 |   "\<lbrakk> finite A; A \<noteq> {}; a \<in> A \<rbrakk> \<Longrightarrow> (a \<squnion> \<Sqinter>A) = a"
 | 
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2391 | apply(subst sup_commute) | 
| 21733 | 2392 | apply(simp add:Inf_def sup_absorb2 ACIfSL.fold1_belowI[OF ACIfSL_inf]) | 
| 15504 | 2393 | done | 
| 2394 | ||
| 15780 | 2395 | lemma (in Lattice) inf_Sup_absorb[simp]: | 
| 15504 | 2396 |   "\<lbrakk> finite A; A \<noteq> {}; a \<in> A \<rbrakk> \<Longrightarrow> (a \<sqinter> \<Squnion>A) = a"
 | 
| 21733 | 2397 | by(simp add:Sup_def inf_absorb1 ACIfSL.fold1_belowI[OF ACIfSL_sup]) | 
| 15504 | 2398 | |
| 18423 | 2399 | lemma (in Distrib_Lattice) sup_Inf1_distrib: | 
| 2400 |  "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> (x \<squnion> \<Sqinter>A) = \<Sqinter>{x \<squnion> a|a. a \<in> A}"
 | |
| 2401 | apply(simp add:Inf_def image_def | |
| 2402 | ACIf.hom_fold1_commute[OF ACIf_inf, where h="sup x", OF sup_inf_distrib1]) | |
| 2403 | apply(rule arg_cong, blast) | |
| 2404 | done | |
| 2405 | ||
| 2406 | ||
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2407 | lemma (in Distrib_Lattice) sup_Inf2_distrib: | 
| 15500 | 2408 | assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
 | 
| 2409 | shows "(\<Sqinter>A \<squnion> \<Sqinter>B) = \<Sqinter>{a \<squnion> b|a b. a \<in> A \<and> b \<in> B}"
 | |
| 2410 | using A | |
| 2411 | proof (induct rule: finite_ne_induct) | |
| 2412 | case singleton thus ?case | |
| 22917 | 2413 | by (simp add: sup_Inf1_distrib[OF B] fold1_singleton_def[OF Inf_def]) | 
| 15500 | 2414 | next | 
| 2415 | case (insert x A) | |
| 2416 |   have finB: "finite {x \<squnion> b |b. b \<in> B}"
 | |
| 21733 | 2417 | by(rule finite_surj[where f = "%b. x \<squnion> b", OF B(1)], auto) | 
| 15500 | 2418 |   have finAB: "finite {a \<squnion> b |a b. a \<in> A \<and> b \<in> B}"
 | 
| 2419 | proof - | |
| 2420 |     have "{a \<squnion> b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {a \<squnion> b})"
 | |
| 2421 | by blast | |
| 15517 | 2422 | thus ?thesis by(simp add: insert(1) B(1)) | 
| 15500 | 2423 | qed | 
| 2424 |   have ne: "{a \<squnion> b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
 | |
| 2425 | have "\<Sqinter>(insert x A) \<squnion> \<Sqinter>B = (x \<sqinter> \<Sqinter>A) \<squnion> \<Sqinter>B" | |
| 22917 | 2426 | using insert | 
| 2427 | thm ACIf.fold1_insert_idem_def | |
| 2428 | by(simp add:ACIf.fold1_insert_idem_def[OF ACIf_inf Inf_def]) | |
| 15500 | 2429 | also have "\<dots> = (x \<squnion> \<Sqinter>B) \<sqinter> (\<Sqinter>A \<squnion> \<Sqinter>B)" by(rule sup_inf_distrib2) | 
| 2430 |   also have "\<dots> = \<Sqinter>{x \<squnion> b|b. b \<in> B} \<sqinter> \<Sqinter>{a \<squnion> b|a b. a \<in> A \<and> b \<in> B}"
 | |
| 2431 | using insert by(simp add:sup_Inf1_distrib[OF B]) | |
| 2432 |   also have "\<dots> = \<Sqinter>({x\<squnion>b |b. b \<in> B} \<union> {a\<squnion>b |a b. a \<in> A \<and> b \<in> B})"
 | |
| 2433 | (is "_ = \<Sqinter>?M") | |
| 2434 | using B insert | |
| 2435 | by(simp add:Inf_def ACIf.fold1_Un2[OF ACIf_inf finB _ finAB ne]) | |
| 2436 |   also have "?M = {a \<squnion> b |a b. a \<in> insert x A \<and> b \<in> B}"
 | |
| 2437 | by blast | |
| 2438 | finally show ?case . | |
| 2439 | qed | |
| 2440 | ||
| 15484 | 2441 | |
| 18423 | 2442 | lemma (in Distrib_Lattice) inf_Sup1_distrib: | 
| 2443 |  "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> (x \<sqinter> \<Squnion>A) = \<Squnion>{x \<sqinter> a|a. a \<in> A}"
 | |
| 2444 | apply(simp add:Sup_def image_def | |
| 2445 | ACIf.hom_fold1_commute[OF ACIf_sup, where h="inf x", OF inf_sup_distrib1]) | |
| 2446 | apply(rule arg_cong, blast) | |
| 2447 | done | |
| 2448 | ||
| 2449 | ||
| 2450 | lemma (in Distrib_Lattice) inf_Sup2_distrib: | |
| 2451 | assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
 | |
| 2452 | shows "(\<Squnion>A \<sqinter> \<Squnion>B) = \<Squnion>{a \<sqinter> b|a b. a \<in> A \<and> b \<in> B}"
 | |
| 2453 | using A | |
| 2454 | proof (induct rule: finite_ne_induct) | |
| 2455 | case singleton thus ?case | |
| 2456 | by(simp add: inf_Sup1_distrib[OF B] fold1_singleton_def[OF Sup_def]) | |
| 2457 | next | |
| 2458 | case (insert x A) | |
| 2459 |   have finB: "finite {x \<sqinter> b |b. b \<in> B}"
 | |
| 21733 | 2460 | by(rule finite_surj[where f = "%b. x \<sqinter> b", OF B(1)], auto) | 
| 18423 | 2461 |   have finAB: "finite {a \<sqinter> b |a b. a \<in> A \<and> b \<in> B}"
 | 
| 2462 | proof - | |
| 2463 |     have "{a \<sqinter> b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {a \<sqinter> b})"
 | |
| 2464 | by blast | |
| 2465 | thus ?thesis by(simp add: insert(1) B(1)) | |
| 2466 | qed | |
| 2467 |   have ne: "{a \<sqinter> b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
 | |
| 2468 | have "\<Squnion>(insert x A) \<sqinter> \<Squnion>B = (x \<squnion> \<Squnion>A) \<sqinter> \<Squnion>B" | |
| 2469 | using insert by(simp add:ACIf.fold1_insert_idem_def[OF ACIf_sup Sup_def]) | |
| 2470 | also have "\<dots> = (x \<sqinter> \<Squnion>B) \<squnion> (\<Squnion>A \<sqinter> \<Squnion>B)" by(rule inf_sup_distrib2) | |
| 2471 |   also have "\<dots> = \<Squnion>{x \<sqinter> b|b. b \<in> B} \<squnion> \<Squnion>{a \<sqinter> b|a b. a \<in> A \<and> b \<in> B}"
 | |
| 2472 | using insert by(simp add:inf_Sup1_distrib[OF B]) | |
| 2473 |   also have "\<dots> = \<Squnion>({x\<sqinter>b |b. b \<in> B} \<union> {a\<sqinter>b |a b. a \<in> A \<and> b \<in> B})"
 | |
| 2474 | (is "_ = \<Squnion>?M") | |
| 2475 | using B insert | |
| 2476 | by(simp add:Sup_def ACIf.fold1_Un2[OF ACIf_sup finB _ finAB ne]) | |
| 2477 |   also have "?M = {a \<sqinter> b |a b. a \<in> insert x A \<and> b \<in> B}"
 | |
| 2478 | by blast | |
| 2479 | finally show ?case . | |
| 2480 | qed | |
| 2481 | ||
| 22917 | 2482 | text {*
 | 
| 2483 | Infimum and supremum in complete lattices may also | |
| 2484 |   be characterized by @{const fold1}:
 | |
| 2485 | *} | |
| 2486 | ||
| 2487 | lemma (in complete_lattice) Inf_fold1: | |
| 22941 | 2488 |   "finite A \<Longrightarrow>  A \<noteq> {} \<Longrightarrow> \<Sqinter>A = fold1 (op \<sqinter>) A"
 | 
| 22917 | 2489 | by (induct A set: finite) | 
| 22941 | 2490 | (simp_all add: Inf_insert_simp ACIf.fold1_insert_idem [OF ACIf_inf]) | 
| 22917 | 2491 | |
| 2492 | lemma (in complete_lattice) Sup_fold1: | |
| 23234 | 2493 |   "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> \<Squnion>A = fold1 (op \<squnion>) A"
 | 
| 22917 | 2494 | by (induct A set: finite) | 
| 22941 | 2495 | (simp_all add: Sup_insert_simp ACIf.fold1_insert_idem [OF ACIf_sup]) | 
| 22917 | 2496 | |
| 2497 | ||
| 2498 | subsubsection {* Fold1 in linear orders with @{const min} and @{const max} *}
 | |
| 2499 | ||
| 2500 | text{*
 | |
| 2501 |   As an application of @{text fold1} we define minimum
 | |
| 2502 | and maximum in (not necessarily complete!) linear orders | |
| 2503 |   over (non-empty) sets by means of @{text fold1}.
 | |
| 2504 | *} | |
| 2505 | ||
| 23234 | 2506 | locale Linorder = linorder -- {* we do not pollute the @{text linorder} class *}
 | 
| 22917 | 2507 | begin | 
| 2508 | ||
| 2509 | definition | |
| 2510 | Min :: "'a set \<Rightarrow> 'a" | |
| 2511 | where | |
| 2512 | "Min = fold1 min" | |
| 2513 | ||
| 2514 | definition | |
| 2515 | Max :: "'a set \<Rightarrow> 'a" | |
| 2516 | where | |
| 2517 | "Max = fold1 max" | |
| 2518 | ||
| 2519 | text {* recall: @{term min} and @{term max} behave like @{const inf} and @{const sup} *}
 | |
| 2520 | ||
| 2521 | lemma ACIf_min: "ACIf min" | |
| 2522 | by (rule lower_semilattice.ACIf_inf, | |
| 23018 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2523 | rule lattice.axioms, | 
| 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2524 | rule distrib_lattice.axioms, | 
| 22917 | 2525 | rule distrib_lattice_min_max) | 
| 2526 | ||
| 2527 | lemma ACf_min: "ACf min" | |
| 2528 | by (rule lower_semilattice.ACf_inf, | |
| 23018 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2529 | rule lattice.axioms, | 
| 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2530 | rule distrib_lattice.axioms, | 
| 22917 | 2531 | rule distrib_lattice_min_max) | 
| 2532 | ||
| 2533 | lemma ACIfSL_min: "ACIfSL (op \<^loc>\<le>) (op \<^loc><) min" | |
| 2534 | by (rule lower_semilattice.ACIfSL_inf, | |
| 23018 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2535 | rule lattice.axioms, | 
| 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2536 | rule distrib_lattice.axioms, | 
| 22917 | 2537 | rule distrib_lattice_min_max) | 
| 2538 | ||
| 2539 | lemma ACIfSLlin_min: "ACIfSLlin (op \<^loc>\<le>) (op \<^loc><) min" | |
| 2540 | by (rule ACIfSLlin.intro, | |
| 2541 | rule lower_semilattice.ACIfSL_inf, | |
| 23018 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2542 | rule lattice.axioms, | 
| 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2543 | rule distrib_lattice.axioms, | 
| 22917 | 2544 | rule distrib_lattice_min_max) | 
| 2545 | (unfold_locales, simp add: min_def) | |
| 2546 | ||
| 2547 | lemma ACIf_max: "ACIf max" | |
| 2548 | by (rule upper_semilattice.ACIf_sup, | |
| 23018 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2549 | rule lattice.axioms, | 
| 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2550 | rule distrib_lattice.axioms, | 
| 22917 | 2551 | rule distrib_lattice_min_max) | 
| 2552 | ||
| 2553 | lemma ACf_max: "ACf max" | |
| 2554 | by (rule upper_semilattice.ACf_sup, | |
| 23018 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2555 | rule lattice.axioms, | 
| 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2556 | rule distrib_lattice.axioms, | 
| 22917 | 2557 | rule distrib_lattice_min_max) | 
| 2558 | ||
| 2559 | lemma ACIfSL_max: "ACIfSL (\<lambda>x y. y \<^loc>\<le> x) (\<lambda>x y. y \<^loc>< x) max" | |
| 2560 | by (rule upper_semilattice.ACIfSL_sup, | |
| 23018 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2561 | rule lattice.axioms, | 
| 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2562 | rule distrib_lattice.axioms, | 
| 22917 | 2563 | rule distrib_lattice_min_max) | 
| 2564 | ||
| 2565 | lemma ACIfSLlin_max: "ACIfSLlin (\<lambda>x y. y \<^loc>\<le> x) (\<lambda>x y. y \<^loc>< x) max" | |
| 2566 | by (rule ACIfSLlin.intro, | |
| 2567 | rule upper_semilattice.ACIfSL_sup, | |
| 23018 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2568 | rule lattice.axioms, | 
| 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2569 | rule distrib_lattice.axioms, | 
| 22917 | 2570 | rule distrib_lattice_min_max) | 
| 2571 | (unfold_locales, simp add: max_def) | |
| 2572 | ||
| 2573 | lemmas Min_singleton [simp] = fold1_singleton_def [OF Min_def] | |
| 2574 | lemmas Max_singleton [simp] = fold1_singleton_def [OF Max_def] | |
| 2575 | lemmas Min_insert [simp] = ACIf.fold1_insert_idem_def [OF ACIf_min Min_def] | |
| 2576 | lemmas Max_insert [simp] = ACIf.fold1_insert_idem_def [OF ACIf_max Max_def] | |
| 15392 | 2577 | |
| 2578 | lemma Min_in [simp]: | |
| 15484 | 2579 |   shows "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> Min A \<in> A"
 | 
| 22917 | 2580 | using ACf.fold1_in [OF ACf_min] | 
| 2581 | by (fastsimp simp: Min_def min_def) | |
| 15392 | 2582 | |
| 2583 | lemma Max_in [simp]: | |
| 15484 | 2584 |   shows "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> Max A \<in> A"
 | 
| 22917 | 2585 | using ACf.fold1_in [OF ACf_max] | 
| 2586 | by (fastsimp simp: Max_def max_def) | |
| 2587 | ||
| 2588 | lemma Min_antimono: "\<lbrakk> M \<subseteq> N; M \<noteq> {}; finite N \<rbrakk> \<Longrightarrow> Min N \<^loc>\<le> Min M"
 | |
| 2589 | by (simp add: Min_def ACIfSLlin.fold1_antimono [OF ACIfSLlin_min]) | |
| 2590 | ||
| 2591 | lemma Max_mono: "\<lbrakk> M \<subseteq> N; M \<noteq> {}; finite N \<rbrakk> \<Longrightarrow> Max M \<^loc>\<le> Max N"
 | |
| 2592 | by (simp add: Max_def ACIfSLlin.fold1_antimono [OF ACIfSLlin_max]) | |
| 2593 | ||
| 2594 | lemma Min_le [simp]: "\<lbrakk> finite A; A \<noteq> {}; x \<in> A \<rbrakk> \<Longrightarrow> Min A \<^loc>\<le> x"
 | |
| 2595 | by (simp add: Min_def ACIfSL.fold1_belowI [OF ACIfSL_min]) | |
| 2596 | ||
| 2597 | lemma Max_ge [simp]: "\<lbrakk> finite A; A \<noteq> {}; x \<in> A \<rbrakk> \<Longrightarrow> x \<^loc>\<le> Max A"
 | |
| 2598 | by (simp add: Max_def ACIfSL.fold1_belowI [OF ACIfSL_max]) | |
| 2599 | ||
| 2600 | lemma Min_ge_iff [simp]: | |
| 2601 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> x \<^loc>\<le> Min A \<longleftrightarrow> (\<forall>a\<in>A. x \<^loc>\<le> a)"
 | |
| 2602 | by (simp add: Min_def ACIfSL.below_fold1_iff [OF ACIfSL_min]) | |
| 2603 | ||
| 2604 | lemma Max_le_iff [simp]: | |
| 2605 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> Max A \<^loc>\<le> x \<longleftrightarrow> (\<forall>a\<in>A. a \<^loc>\<le> x)"
 | |
| 2606 | by (simp add: Max_def ACIfSL.below_fold1_iff [OF ACIfSL_max]) | |
| 2607 | ||
| 2608 | lemma Min_gr_iff [simp]: | |
| 2609 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> x \<^loc>< Min A \<longleftrightarrow> (\<forall>a\<in>A. x \<^loc>< a)"
 | |
| 2610 | by (simp add: Min_def ACIfSLlin.strict_below_fold1_iff [OF ACIfSLlin_min]) | |
| 2611 | ||
| 2612 | lemma Max_less_iff [simp]: | |
| 2613 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> Max A \<^loc>< x \<longleftrightarrow> (\<forall>a\<in>A. a \<^loc>< x)"
 | |
| 2614 | by (simp add: Max_def ACIfSLlin.strict_below_fold1_iff [OF ACIfSLlin_max]) | |
| 18493 | 2615 | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2616 | lemma Min_le_iff: | 
| 22917 | 2617 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> Min A \<^loc>\<le> x \<longleftrightarrow> (\<exists>a\<in>A. a \<^loc>\<le> x)"
 | 
| 2618 | by (simp add: Min_def ACIfSLlin.fold1_below_iff [OF ACIfSLlin_min]) | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2619 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2620 | lemma Max_ge_iff: | 
| 22917 | 2621 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> x \<^loc>\<le> Max A \<longleftrightarrow> (\<exists>a\<in>A. x \<^loc>\<le> a)"
 | 
| 2622 | by (simp add: Max_def ACIfSLlin.fold1_below_iff [OF ACIfSLlin_max]) | |
| 2623 | ||
| 2624 | lemma Min_less_iff: | |
| 2625 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> Min A \<^loc>< x \<longleftrightarrow> (\<exists>a\<in>A. a \<^loc>< x)"
 | |
| 2626 | by (simp add: Min_def ACIfSLlin.fold1_strict_below_iff [OF ACIfSLlin_min]) | |
| 2627 | ||
| 2628 | lemma Max_gr_iff: | |
| 2629 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> x \<^loc>< Max A \<longleftrightarrow> (\<exists>a\<in>A. x \<^loc>< a)"
 | |
| 2630 | by (simp add: Max_def ACIfSLlin.fold1_strict_below_iff [OF ACIfSLlin_max]) | |
| 18493 | 2631 | |
| 18423 | 2632 | lemma Min_Un: "\<lbrakk>finite A; A \<noteq> {}; finite B; B \<noteq> {}\<rbrakk>
 | 
| 2633 | \<Longrightarrow> Min (A \<union> B) = min (Min A) (Min B)" | |
| 22917 | 2634 | by (simp add: Min_def ACIf.fold1_Un2 [OF ACIf_min]) | 
| 18423 | 2635 | |
| 2636 | lemma Max_Un: "\<lbrakk>finite A; A \<noteq> {}; finite B; B \<noteq> {}\<rbrakk>
 | |
| 2637 | \<Longrightarrow> Max (A \<union> B) = max (Max A) (Max B)" | |
| 22917 | 2638 | by (simp add: Max_def ACIf.fold1_Un2 [OF ACIf_max]) | 
| 18423 | 2639 | |
| 2640 | lemma hom_Min_commute: | |
| 22917 | 2641 | "(\<And>x y. h (min x y) = min (h x) (h y)) | 
| 2642 |   \<Longrightarrow> finite N \<Longrightarrow> N \<noteq> {} \<Longrightarrow> h (Min N) = Min (h ` N)"
 | |
| 2643 | by (simp add: Min_def ACIf.hom_fold1_commute [OF ACIf_min]) | |
| 18423 | 2644 | |
| 2645 | lemma hom_Max_commute: | |
| 22917 | 2646 | "(\<And>x y. h (max x y) = max (h x) (h y)) | 
| 2647 |   \<Longrightarrow> finite N \<Longrightarrow> N \<noteq> {} \<Longrightarrow> h (Max N) = Max (h ` N)"
 | |
| 2648 | by (simp add: Max_def ACIf.hom_fold1_commute [OF ACIf_max]) | |
| 2649 | ||
| 2650 | end | |
| 2651 | ||
| 2652 | locale Linorder_ab_semigroup_add = Linorder + pordered_ab_semigroup_add | |
| 2653 | begin | |
| 2654 | ||
| 2655 | lemma add_Min_commute: | |
| 2656 | fixes k | |
| 2657 |   shows "finite N \<Longrightarrow> N \<noteq> {} \<Longrightarrow> k \<^loc>+ Min N = Min {k \<^loc>+ m | m. m \<in> N}"
 | |
| 2658 | apply (subgoal_tac "\<And>x y. k \<^loc>+ min x y = min (k \<^loc>+ x) (k \<^loc>+ y)") | |
| 2659 | using hom_Min_commute [of "(op \<^loc>+) k" N] | |
| 2660 | apply simp apply (rule arg_cong [where f = Min]) apply blast | |
| 2661 | apply (simp add: min_def not_le) | |
| 2662 | apply (blast intro: antisym less_imp_le add_left_mono) | |
| 2663 | done | |
| 2664 | ||
| 2665 | lemma add_Max_commute: | |
| 2666 | fixes k | |
| 2667 |   shows "finite N \<Longrightarrow> N \<noteq> {} \<Longrightarrow> k \<^loc>+ Max N = Max {k \<^loc>+ m | m. m \<in> N}"
 | |
| 2668 | apply (subgoal_tac "\<And>x y. k \<^loc>+ max x y = max (k \<^loc>+ x) (k \<^loc>+ y)") | |
| 2669 | using hom_Max_commute [of "(op \<^loc>+) k" N] | |
| 2670 | apply simp apply (rule arg_cong [where f = Max]) apply blast | |
| 2671 | apply (simp add: max_def not_le) | |
| 2672 | apply (blast intro: antisym less_imp_le add_left_mono) | |
| 2673 | done | |
| 2674 | ||
| 2675 | end | |
| 2676 | ||
| 2677 | definition | |
| 2678 | Min :: "'a set \<Rightarrow> 'a\<Colon>linorder" | |
| 2679 | where | |
| 2680 | "Min = fold1 min" | |
| 2681 | ||
| 2682 | definition | |
| 2683 | Max :: "'a set \<Rightarrow> 'a\<Colon>linorder" | |
| 2684 | where | |
| 2685 | "Max = fold1 max" | |
| 2686 | ||
| 23949 | 2687 | interpretation | 
| 2688 | Linorder ["op \<le> \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool" "op <"] | |
| 2689 | where | |
| 2690 | "Linorder.Min (op \<le>) = Min" and "Linorder.Max (op \<le>) = Max" | |
| 2691 | proof - | |
| 2692 | show "Linorder (op \<le> \<Colon> 'a \<Rightarrow> 'a \<Rightarrow> bool) op <" | |
| 2693 | by (rule Linorder.intro, rule linorder_axioms) | |
| 2694 | have "Linorder (op \<le> \<Colon> 'b \<Rightarrow> 'b \<Rightarrow> bool) op <" | |
| 2695 | by (rule Linorder.intro, rule linorder_axioms) | |
| 2696 | then interpret Linorder1: Linorder ["op \<le> \<Colon> 'b \<Rightarrow> 'b \<Rightarrow> bool" "op <"] . | |
| 2697 | show "Linorder1.Min = Min" by (simp add: Min_def Linorder1.Min_def ord_class.min) | |
| 2698 | have "Linorder (op \<le> \<Colon> 'c \<Rightarrow> 'c \<Rightarrow> bool) op <" | |
| 2699 | by (rule Linorder.intro, rule linorder_axioms) | |
| 2700 | then interpret Linorder2: Linorder ["op \<le> \<Colon> 'c \<Rightarrow> 'c \<Rightarrow> bool" "op <"] . | |
| 2701 | show "Linorder2.Max = Max" by (simp add: Max_def Linorder2.Max_def ord_class.max) | |
| 22917 | 2702 | qed | 
| 2703 | ||
| 23949 | 2704 | interpretation | 
| 22917 | 2705 |   Linorder_ab_semigroup_add ["op \<le> \<Colon> 'a\<Colon>{linorder, pordered_ab_semigroup_add} \<Rightarrow> 'a \<Rightarrow> bool" "op <" "op +"]
 | 
| 23949 | 2706 | proof - | 
| 2707 | show "Linorder_ab_semigroup_add (op \<le> \<Colon> 'a \<Rightarrow> 'a \<Rightarrow> bool) (op <) (op +)" | |
| 22917 | 2708 | by (rule Linorder_ab_semigroup_add.intro, | 
| 23018 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2709 | rule Linorder.intro, rule linorder_axioms, rule pordered_ab_semigroup_add_axioms) | 
| 23949 | 2710 | qed | 
| 18423 | 2711 | |
| 2712 | ||
| 22388 | 2713 | subsection {* Class @{text finite} *}
 | 
| 2714 | ||
| 23018 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2715 | setup {* Sign.add_path "finite" *} -- {*FIXME: name tweaking*}
 | 
| 22473 | 2716 | class finite (attach UNIV) = type + | 
| 22388 | 2717 | assumes finite: "finite UNIV" | 
| 23018 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2718 | setup {* Sign.parent_path *}
 | 
| 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22941diff
changeset | 2719 | hide const finite | 
| 17022 | 2720 | |
| 2721 | lemma finite_set: "finite (A::'a::finite set)" | |
| 22388 | 2722 | by (rule finite_subset [OF subset_UNIV finite]) | 
| 2723 | ||
| 2724 | lemma univ_unit: | |
| 2725 |   "UNIV = {()}" by auto
 | |
| 17022 | 2726 | |
| 2727 | instance unit :: finite | |
| 2728 | proof | |
| 2729 |   have "finite {()}" by simp
 | |
| 22388 | 2730 | also note univ_unit [symmetric] | 
| 17022 | 2731 | finally show "finite (UNIV :: unit set)" . | 
| 2732 | qed | |
| 2733 | ||
| 22388 | 2734 | lemmas [code func] = univ_unit | 
| 2735 | ||
| 2736 | lemma univ_bool: | |
| 2737 |   "UNIV = {False, True}" by auto
 | |
| 2738 | ||
| 17022 | 2739 | instance bool :: finite | 
| 2740 | proof | |
| 22388 | 2741 |   have "finite {False, True}" by simp
 | 
| 2742 | also note univ_bool [symmetric] | |
| 17022 | 2743 | finally show "finite (UNIV :: bool set)" . | 
| 2744 | qed | |
| 2745 | ||
| 22388 | 2746 | lemmas [code func] = univ_bool | 
| 17022 | 2747 | |
| 2748 | instance * :: (finite, finite) finite | |
| 2749 | proof | |
| 2750 |   show "finite (UNIV :: ('a \<times> 'b) set)"
 | |
| 2751 | proof (rule finite_Prod_UNIV) | |
| 2752 | show "finite (UNIV :: 'a set)" by (rule finite) | |
| 2753 | show "finite (UNIV :: 'b set)" by (rule finite) | |
| 2754 | qed | |
| 2755 | qed | |
| 2756 | ||
| 22388 | 2757 | lemma univ_prod [code func]: | 
| 2758 | "UNIV = (UNIV \<Colon> 'a\<Colon>finite set) \<times> (UNIV \<Colon> 'b\<Colon>finite set)" | |
| 2759 | unfolding UNIV_Times_UNIV .. | |
| 2760 | ||
| 17022 | 2761 | instance "+" :: (finite, finite) finite | 
| 2762 | proof | |
| 2763 | have a: "finite (UNIV :: 'a set)" by (rule finite) | |
| 2764 | have b: "finite (UNIV :: 'b set)" by (rule finite) | |
| 2765 | from a b have "finite ((UNIV :: 'a set) <+> (UNIV :: 'b set))" | |
| 2766 | by (rule finite_Plus) | |
| 2767 |   thus "finite (UNIV :: ('a + 'b) set)" by simp
 | |
| 2768 | qed | |
| 2769 | ||
| 22388 | 2770 | lemma univ_sum [code func]: | 
| 2771 | "UNIV = (UNIV \<Colon> 'a\<Colon>finite set) <+> (UNIV \<Colon> 'b\<Colon>finite set)" | |
| 2772 | unfolding UNIV_Plus_UNIV .. | |
| 17022 | 2773 | |
| 22398 | 2774 | lemma insert_None_conv_UNIV: "insert None (range Some) = UNIV" | 
| 2775 | by (rule set_ext, case_tac x, auto) | |
| 2776 | ||
| 2777 | instance option :: (finite) finite | |
| 2778 | proof | |
| 2779 | have "finite (UNIV :: 'a set)" by (rule finite) | |
| 2780 | hence "finite (insert None (Some ` (UNIV :: 'a set)))" by simp | |
| 2781 | also have "insert None (Some ` (UNIV :: 'a set)) = UNIV" | |
| 2782 | by (rule insert_None_conv_UNIV) | |
| 2783 | finally show "finite (UNIV :: 'a option set)" . | |
| 2784 | qed | |
| 2785 | ||
| 2786 | lemma univ_option [code func]: | |
| 2787 | "UNIV = insert (None \<Colon> 'a\<Colon>finite option) (image Some UNIV)" | |
| 2788 | unfolding insert_None_conv_UNIV .. | |
| 2789 | ||
| 17022 | 2790 | instance set :: (finite) finite | 
| 2791 | proof | |
| 2792 | have "finite (UNIV :: 'a set)" by (rule finite) | |
| 2793 | hence "finite (Pow (UNIV :: 'a set))" | |
| 2794 | by (rule finite_Pow_iff [THEN iffD2]) | |
| 2795 | thus "finite (UNIV :: 'a set set)" by simp | |
| 2796 | qed | |
| 2797 | ||
| 22388 | 2798 | lemma univ_set [code func]: | 
| 2799 | "UNIV = Pow (UNIV \<Colon> 'a\<Colon>finite set)" unfolding Pow_UNIV .. | |
| 2800 | ||
| 17022 | 2801 | lemma inj_graph: "inj (%f. {(x, y). y = f x})"
 | 
| 22388 | 2802 | by (rule inj_onI, auto simp add: expand_set_eq expand_fun_eq) | 
| 17022 | 2803 | |
| 21215 
7c9337a0e30a
made locale partial_order compatible with axclass order
 haftmann parents: 
21199diff
changeset | 2804 | instance "fun" :: (finite, finite) finite | 
| 17022 | 2805 | proof | 
| 2806 |   show "finite (UNIV :: ('a => 'b) set)"
 | |
| 2807 | proof (rule finite_imageD) | |
| 2808 |     let ?graph = "%f::'a => 'b. {(x, y). y = f x}"
 | |
| 2809 | show "finite (range ?graph)" by (rule finite_set) | |
| 2810 | show "inj ?graph" by (rule inj_graph) | |
| 2811 | qed | |
| 2812 | qed | |
| 2813 | ||
| 22388 | 2814 | |
| 22425 | 2815 | subsection {* Equality and order on functions *}
 | 
| 22388 | 2816 | |
| 2817 | instance "fun" :: (finite, eq) eq .. | |
| 2818 | ||
| 2819 | lemma eq_fun [code func]: | |
| 2820 | "f = g \<longleftrightarrow> (\<forall>x\<Colon>'a\<Colon>finite \<in> UNIV. (f x \<Colon> 'b\<Colon>eq) = g x)" | |
| 2821 | unfolding expand_fun_eq by auto | |
| 2822 | ||
| 22425 | 2823 | lemma order_fun [code func]: | 
| 2824 | "f \<le> g \<longleftrightarrow> (\<forall>x\<Colon>'a\<Colon>finite \<in> UNIV. (f x \<Colon> 'b\<Colon>order) \<le> g x)" | |
| 2825 | "f < g \<longleftrightarrow> f \<le> g \<and> (\<exists>x\<Colon>'a\<Colon>finite \<in> UNIV. (f x \<Colon> 'b\<Colon>order) < g x)" | |
| 2826 | unfolding le_fun_def less_fun_def less_le | |
| 2827 | by (auto simp add: expand_fun_eq) | |
| 2828 | ||
| 15042 | 2829 | end |