doc-src/TutorialI/CTL/CTL.thy
author nipkow
Wed, 12 Dec 2001 09:04:20 +0100
changeset 12473 f41e477576b9
parent 12334 60bf75e157e4
child 12489 c92e38c3cbaa
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
     1
(*<*)theory CTL = Base:;(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     2
10971
6852682eaf16 *** empty log message ***
nipkow
parents: 10895
diff changeset
     3
subsection{*Computation Tree Logic --- CTL*};
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     4
10212
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
     5
text{*\label{sec:CTL}
11494
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
     6
\index{CTL|(}%
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
     7
The semantics of PDL only needs reflexive transitive closure.
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
     8
Let us be adventurous and introduce a more expressive temporal operator.
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
     9
We extend the datatype
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    10
@{text formula} by a new constructor
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    11
*};
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    12
(*<*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    13
datatype formula = Atom atom
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    14
                  | Neg formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    15
                  | And formula formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    16
                  | AX formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    17
                  | EF formula(*>*)
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    18
                  | AF formula;
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    19
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    20
text{*\noindent
10983
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
    21
which stands for ``\emph{A}lways in the \emph{F}uture'':
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
    22
on all infinite paths, at some point the formula holds.
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
    23
Formalizing the notion of an infinite path is easy
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    24
in HOL: it is simply a function from @{typ nat} to @{typ state}.
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    25
*};
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    26
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    27
constdefs Paths :: "state \<Rightarrow> (nat \<Rightarrow> state)set"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    28
         "Paths s \<equiv> {p. s = p 0 \<and> (\<forall>i. (p i, p(i+1)) \<in> M)}";
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    29
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    30
text{*\noindent
11494
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
    31
This definition allows a succinct statement of the semantics of @{term AF}:
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
    32
\footnote{Do not be misled: neither datatypes nor recursive functions can be
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    33
extended by new constructors or equations. This is just a trick of the
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    34
presentation. In reality one has to define a new datatype and a new function.}
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    35
*};
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    36
(*<*)
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    37
consts valid :: "state \<Rightarrow> formula \<Rightarrow> bool" ("(_ \<Turnstile> _)" [80,80] 80);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    38
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    39
primrec
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10000
diff changeset
    40
"s \<Turnstile> Atom a  =  (a \<in> L s)"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    41
"s \<Turnstile> Neg f   = (~(s \<Turnstile> f))"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    42
"s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    43
"s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
10801
c00ac928fc6f *** empty log message ***
nipkow
parents: 10800
diff changeset
    44
"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    45
(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    46
"s \<Turnstile> AF f    = (\<forall>p \<in> Paths s. \<exists>i. p i \<Turnstile> f)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    47
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    48
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    49
Model checking @{term AF} involves a function which
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    50
is just complicated enough to warrant a separate definition:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    51
*};
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    52
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    53
constdefs af :: "state set \<Rightarrow> state set \<Rightarrow> state set"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    54
         "af A T \<equiv> A \<union> {s. \<forall>t. (s, t) \<in> M \<longrightarrow> t \<in> T}";
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    55
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    56
text{*\noindent
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
    57
Now we define @{term "mc(AF f)"} as the least set @{term T} that includes
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    58
@{term"mc f"} and all states all of whose direct successors are in @{term T}:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    59
*};
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    60
(*<*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    61
consts mc :: "formula \<Rightarrow> state set";
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    62
primrec
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10000
diff changeset
    63
"mc(Atom a)  = {s. a \<in> L s}"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    64
"mc(Neg f)   = -mc f"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    65
"mc(And f g) = mc f \<inter> mc g"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    66
"mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
    67
"mc(EF f)    = lfp(\<lambda>T. mc f \<union> M\<inverse> `` T)"(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    68
"mc(AF f)    = lfp(af(mc f))";
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    69
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    70
text{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    71
Because @{term af} is monotone in its second argument (and also its first, but
10983
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
    72
that is irrelevant), @{term"af A"} has a least fixed point:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    73
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    74
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    75
lemma mono_af: "mono(af A)";
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    76
apply(simp add: mono_def af_def);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    77
apply blast;
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    78
done
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    79
(*<*)
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
    80
lemma mono_ef: "mono(\<lambda>T. A \<union> M\<inverse> `` T)";
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    81
apply(rule monoI);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    82
by(blast);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    83
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    84
lemma EF_lemma:
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
    85
  "lfp(\<lambda>T. A \<union> M\<inverse> `` T) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}";
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    86
apply(rule equalityI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    87
 apply(rule subsetI);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    88
 apply(simp);
10210
e8aa81362f41 induct -> lfp_induct;
wenzelm
parents: 10192
diff changeset
    89
 apply(erule lfp_induct);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    90
  apply(rule mono_ef);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    91
 apply(simp);
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
    92
 apply(blast intro: rtrancl_trans);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    93
apply(rule subsetI);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    94
apply(simp, clarify);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    95
apply(erule converse_rtrancl_induct);
11231
30d96882f915 *** empty log message ***
nipkow
parents: 11149
diff changeset
    96
 apply(subst lfp_unfold[OF mono_ef]);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    97
 apply(blast);
11231
30d96882f915 *** empty log message ***
nipkow
parents: 11149
diff changeset
    98
apply(subst lfp_unfold[OF mono_ef]);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    99
by(blast);
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   100
(*>*)
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   101
text{*
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   102
All we need to prove now is  @{prop"mc(AF f) = {s. s \<Turnstile> AF f}"}, which states
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   103
that @{term mc} and @{text"\<Turnstile>"} agree for @{term AF}\@.
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   104
This time we prove the two inclusions separately, starting
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   105
with the easy one:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   106
*};
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   107
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   108
theorem AF_lemma1:
12328
7c4ec77a8715 *** empty log message ***
nipkow
parents: 11705
diff changeset
   109
  "lfp(af A) \<subseteq> {s. \<forall>p \<in> Paths s. \<exists>i. p i \<in> A}";
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   110
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   111
txt{*\noindent
11494
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
   112
In contrast to the analogous proof for @{term EF}, and just
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
   113
for a change, we do not use fixed point induction.  Park-induction,
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
   114
named after David Park, is weaker but sufficient for this proof:
10995
ef0b521698b7 *** empty log message ***
nipkow
parents: 10983
diff changeset
   115
\begin{center}
ef0b521698b7 *** empty log message ***
nipkow
parents: 10983
diff changeset
   116
@{thm lfp_lowerbound[of _ "S",no_vars]} \hfill (@{thm[source]lfp_lowerbound})
ef0b521698b7 *** empty log message ***
nipkow
parents: 10983
diff changeset
   117
\end{center}
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
   118
The instance of the premise @{prop"f S \<subseteq> S"} is proved pointwise,
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   119
a decision that clarification takes for us:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   120
*};
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
   121
apply(rule lfp_lowerbound);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   122
apply(clarsimp simp add: af_def Paths_def);
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10281
diff changeset
   123
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
   124
txt{*
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10281
diff changeset
   125
@{subgoals[display,indent=0,margin=70,goals_limit=1]}
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   126
Now we eliminate the disjunction. The case @{prop"p 0 \<in> A"} is trivial:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   127
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   128
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   129
apply(erule disjE);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   130
 apply(blast);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   131
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   132
txt{*\noindent
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   133
In the other case we set @{term t} to @{term"p 1"} and simplify matters:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   134
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   135
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   136
apply(erule_tac x = "p 1" in allE);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   137
apply(clarsimp);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   138
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   139
txt{*
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10281
diff changeset
   140
@{subgoals[display,indent=0,margin=70,goals_limit=1]}
11494
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
   141
It merely remains to set @{term pa} to @{term"\<lambda>i. p(i+1)"}, that is, 
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
   142
@{term p} without its first element.  The rest is automatic:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   143
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   144
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   145
apply(erule_tac x = "\<lambda>i. p(i+1)" in allE);
11494
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
   146
apply force;
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   147
done;
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   148
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
   149
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   150
text{*
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   151
The opposite inclusion is proved by contradiction: if some state
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   152
@{term s} is not in @{term"lfp(af A)"}, then we can construct an
11494
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
   153
infinite @{term A}-avoiding path starting from~@{term s}. The reason is
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   154
that by unfolding @{term lfp} we find that if @{term s} is not in
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   155
@{term"lfp(af A)"}, then @{term s} is not in @{term A} and there is a
10983
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
   156
direct successor of @{term s} that is again not in \mbox{@{term"lfp(af
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
   157
A)"}}. Iterating this argument yields the promised infinite
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   158
@{term A}-avoiding path. Let us formalize this sketch.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   159
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   160
The one-step argument in the sketch above
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   161
is proved by a variant of contraposition:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   162
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   163
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   164
lemma not_in_lfp_afD:
10983
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
   165
 "s \<notin> lfp(af A) \<Longrightarrow> s \<notin> A \<and> (\<exists> t. (s,t) \<in> M \<and> t \<notin> lfp(af A))";
10235
20cf817f3b4a renaming of contrapos rules
paulson
parents: 10225
diff changeset
   166
apply(erule contrapos_np);
11231
30d96882f915 *** empty log message ***
nipkow
parents: 11149
diff changeset
   167
apply(subst lfp_unfold[OF mono_af]);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   168
apply(simp add:af_def);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   169
done;
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   170
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   171
text{*\noindent
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   172
We assume the negation of the conclusion and prove @{term"s : lfp(af A)"}.
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10235
diff changeset
   173
Unfolding @{term lfp} once and
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   174
simplifying with the definition of @{term af} finishes the proof.
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   175
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   176
Now we iterate this process. The following construction of the desired
10895
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   177
path is parameterized by a predicate @{term Q} that should hold along the path:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   178
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   179
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   180
consts path :: "state \<Rightarrow> (state \<Rightarrow> bool) \<Rightarrow> (nat \<Rightarrow> state)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   181
primrec
10895
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   182
"path s Q 0 = s"
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   183
"path s Q (Suc n) = (SOME t. (path s Q n,t) \<in> M \<and> Q t)";
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   184
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   185
text{*\noindent
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   186
Element @{term"n+1"} on this path is some arbitrary successor
10895
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   187
@{term t} of element @{term n} such that @{term"Q t"} holds.  Remember that @{text"SOME t. R t"}
10654
458068404143 *** empty log message ***
nipkow
parents: 10363
diff changeset
   188
is some arbitrary but fixed @{term t} such that @{prop"R t"} holds (see \S\ref{sec:SOME}). Of
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   189
course, such a @{term t} need not exist, but that is of no
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   190
concern to us since we will only use @{term path} when a
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   191
suitable @{term t} does exist.
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   192
10895
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   193
Let us show that if each state @{term s} that satisfies @{term Q}
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   194
has a successor that again satisfies @{term Q}, then there exists an infinite @{term Q}-path:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   195
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   196
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   197
lemma infinity_lemma:
10895
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   198
  "\<lbrakk> Q s; \<forall>s. Q s \<longrightarrow> (\<exists> t. (s,t) \<in> M \<and> Q t) \<rbrakk> \<Longrightarrow>
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   199
   \<exists>p\<in>Paths s. \<forall>i. Q(p i)";
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   200
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   201
txt{*\noindent
10983
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
   202
First we rephrase the conclusion slightly because we need to prove simultaneously
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
   203
both the path property and the fact that @{term Q} holds:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   204
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   205
11705
ac8ca15c556c fixed numerals;
wenzelm
parents: 11494
diff changeset
   206
apply(subgoal_tac "\<exists>p. s = p (0::nat) \<and> (\<forall>i. (p i, p(i+1)) \<in> M \<and> Q(p i))");
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   207
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   208
txt{*\noindent
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   209
From this proposition the original goal follows easily:
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   210
*};
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   211
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   212
 apply(simp add:Paths_def, blast);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   213
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   214
txt{*\noindent
10895
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   215
The new subgoal is proved by providing the witness @{term "path s Q"} for @{term p}:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   216
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   217
10895
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   218
apply(rule_tac x = "path s Q" in exI);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   219
apply(clarsimp);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   220
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   221
txt{*\noindent
11494
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
   222
After simplification and clarification, the subgoal has the following form:
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10281
diff changeset
   223
@{subgoals[display,indent=0,margin=70,goals_limit=1]}
11494
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
   224
It invites a proof by induction on @{term i}:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   225
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   226
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   227
apply(induct_tac i);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   228
 apply(simp);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   229
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   230
txt{*\noindent
10983
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
   231
After simplification, the base case boils down to
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10281
diff changeset
   232
@{subgoals[display,indent=0,margin=70,goals_limit=1]}
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   233
The conclusion looks exceedingly trivial: after all, @{term t} is chosen such that @{prop"(s,t):M"}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   234
holds. However, we first have to show that such a @{term t} actually exists! This reasoning
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   235
is embodied in the theorem @{thm[source]someI2_ex}:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   236
@{thm[display,eta_contract=false]someI2_ex}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   237
When we apply this theorem as an introduction rule, @{text"?P x"} becomes
10895
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   238
@{prop"(s, x) : M & Q x"} and @{text"?Q x"} becomes @{prop"(s,x) : M"} and we have to prove
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   239
two subgoals: @{prop"EX a. (s, a) : M & Q a"}, which follows from the assumptions, and
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   240
@{prop"(s, x) : M & Q x ==> (s,x) : M"}, which is trivial. Thus it is not surprising that
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   241
@{text fast} can prove the base case quickly:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   242
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   243
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   244
 apply(fast intro:someI2_ex);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   245
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   246
txt{*\noindent
11494
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
   247
What is worth noting here is that we have used \methdx{fast} rather than
10212
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   248
@{text blast}.  The reason is that @{text blast} would fail because it cannot
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   249
cope with @{thm[source]someI2_ex}: unifying its conclusion with the current
11149
e258b536a137 *** empty log message ***
nipkow
parents: 10995
diff changeset
   250
subgoal is non-trivial because of the nested schematic variables. For
10212
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   251
efficiency reasons @{text blast} does not even attempt such unifications.
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   252
Although @{text fast} can in principle cope with complicated unification
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   253
problems, in practice the number of unifiers arising is often prohibitive and
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   254
the offending rule may need to be applied explicitly rather than
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   255
automatically. This is what happens in the step case.
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   256
10212
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   257
The induction step is similar, but more involved, because now we face nested
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   258
occurrences of @{text SOME}. As a result, @{text fast} is no longer able to
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   259
solve the subgoal and we apply @{thm[source]someI2_ex} by hand.  We merely
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   260
show the proof commands but do not describe the details:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   261
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   262
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   263
apply(simp);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   264
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   265
 apply(blast);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   266
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   267
 apply(blast);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   268
apply(blast);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   269
done;
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   270
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   271
text{*
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   272
Function @{term path} has fulfilled its purpose now and can be forgotten.
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   273
It was merely defined to provide the witness in the proof of the
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   274
@{thm[source]infinity_lemma}. Aficionados of minimal proofs might like to know
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   275
that we could have given the witness without having to define a new function:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   276
the term
10895
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   277
@{term[display]"nat_rec s (\<lambda>n t. SOME u. (t,u)\<in>M \<and> Q u)"}
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   278
is extensionally equal to @{term"path s Q"},
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   279
where @{term nat_rec} is the predefined primitive recursor on @{typ nat}.
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   280
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   281
(*<*)
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   282
lemma infinity_lemma:
10895
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   283
"\<lbrakk> Q s; \<forall> s. Q s \<longrightarrow> (\<exists> t. (s,t)\<in>M \<and> Q t) \<rbrakk> \<Longrightarrow>
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   284
 \<exists> p\<in>Paths s. \<forall> i. Q(p i)";
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   285
apply(subgoal_tac
10895
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   286
 "\<exists> p. s = p 0 \<and> (\<forall> i. (p i,p(Suc i))\<in>M \<and> Q(p i))");
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   287
 apply(simp add:Paths_def);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   288
 apply(blast);
10895
79194f07d356 *** empty log message ***
nipkow
parents: 10885
diff changeset
   289
apply(rule_tac x = "nat_rec s (\<lambda>n t. SOME u. (t,u)\<in>M \<and> Q u)" in exI);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   290
apply(simp);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   291
apply(intro strip);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   292
apply(induct_tac i);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   293
 apply(simp);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   294
 apply(fast intro:someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   295
apply(simp);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   296
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   297
 apply(blast);
10000
fe6ffa46266f someI2_ex;
wenzelm
parents: 9992
diff changeset
   298
apply(rule someI2_ex);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   299
 apply(blast);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   300
by(blast);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   301
(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   302
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   303
text{*
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   304
At last we can prove the opposite direction of @{thm[source]AF_lemma1}:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   305
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   306
12328
7c4ec77a8715 *** empty log message ***
nipkow
parents: 11705
diff changeset
   307
theorem AF_lemma2: "{s. \<forall>p \<in> Paths s. \<exists>i. p i \<in> A} \<subseteq> lfp(af A)";
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   308
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   309
txt{*\noindent
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10235
diff changeset
   310
The proof is again pointwise and then by contraposition:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   311
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   312
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   313
apply(rule subsetI);
10235
20cf817f3b4a renaming of contrapos rules
paulson
parents: 10225
diff changeset
   314
apply(erule contrapos_pp);
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   315
apply simp;
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   316
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   317
txt{*
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10281
diff changeset
   318
@{subgoals[display,indent=0,goals_limit=1]}
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   319
Applying the @{thm[source]infinity_lemma} as a destruction rule leaves two subgoals, the second
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   320
premise of @{thm[source]infinity_lemma} and the original subgoal:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   321
*};
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   322
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   323
apply(drule infinity_lemma);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   324
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   325
txt{*
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10281
diff changeset
   326
@{subgoals[display,indent=0,margin=65]}
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   327
Both are solved automatically:
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   328
*};
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   329
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   330
 apply(auto dest:not_in_lfp_afD);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   331
done;
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   332
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   333
text{*
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   334
If you find these proofs too complicated, we recommend that you read
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   335
\S\ref{sec:CTL-revisited}, where we show how inductive definitions lead to
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10212
diff changeset
   336
simpler arguments.
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10212
diff changeset
   337
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10212
diff changeset
   338
The main theorem is proved as for PDL, except that we also derive the
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10212
diff changeset
   339
necessary equality @{text"lfp(af A) = ..."} by combining
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10212
diff changeset
   340
@{thm[source]AF_lemma1} and @{thm[source]AF_lemma2} on the spot:
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   341
*}
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   342
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   343
theorem "mc f = {s. s \<Turnstile> f}";
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   344
apply(induct_tac f);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   345
apply(auto simp add: EF_lemma equalityI[OF AF_lemma1 AF_lemma2]);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   346
done
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   347
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   348
text{*
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   349
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   350
The language defined above is not quite CTL\@. The latter also includes an
10983
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
   351
until-operator @{term"EU f g"} with semantics ``there \emph{E}xists a path
11494
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
   352
where @{term f} is true \emph{U}ntil @{term g} becomes true''.  We need
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
   353
an auxiliary function:
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   354
*}
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   355
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   356
consts until:: "state set \<Rightarrow> state set \<Rightarrow> state \<Rightarrow> state list \<Rightarrow> bool"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   357
primrec
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   358
"until A B s []    = (s \<in> B)"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   359
"until A B s (t#p) = (s \<in> A \<and> (s,t) \<in> M \<and> until A B t p)"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   360
(*<*)constdefs
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   361
 eusem :: "state set \<Rightarrow> state set \<Rightarrow> state set"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   362
"eusem A B \<equiv> {s. \<exists>p. until A B s p}"(*>*)
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   363
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   364
text{*\noindent
11494
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
   365
Expressing the semantics of @{term EU} is now straightforward:
10983
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
   366
@{prop[display]"s \<Turnstile> EU f g = (\<exists>p. until {t. t \<Turnstile> f} {t. t \<Turnstile> g} s p)"}
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   367
Note that @{term EU} is not definable in terms of the other operators!
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   368
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   369
Model checking @{term EU} is again a least fixed point construction:
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
   370
@{text[display]"mc(EU f g) = lfp(\<lambda>T. mc g \<union> mc f \<inter> (M\<inverse> `` T))"}
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   371
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   372
\begin{exercise}
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   373
Extend the datatype of formulae by the above until operator
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   374
and prove the equivalence between semantics and model checking, i.e.\ that
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   375
@{prop[display]"mc(EU f g) = {s. s \<Turnstile> EU f g}"}
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   376
%For readability you may want to annotate {term EU} with its customary syntax
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   377
%{text[display]"| EU formula formula    E[_ U _]"}
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   378
%which enables you to read and write {text"E[f U g]"} instead of {term"EU f g"}.
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   379
\end{exercise}
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10866
diff changeset
   380
For more CTL exercises see, for example, Huth and Ryan \cite{Huth-Ryan-book}.
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   381
*}
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   382
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   383
(*<*)
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   384
constdefs
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   385
 eufix :: "state set \<Rightarrow> state set \<Rightarrow> state set \<Rightarrow> state set"
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
   386
"eufix A B T \<equiv> B \<union> A \<inter> (M\<inverse> `` T)"
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   387
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   388
lemma "lfp(eufix A B) \<subseteq> eusem A B"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   389
apply(rule lfp_lowerbound)
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   390
apply(clarsimp simp add:eusem_def eufix_def);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   391
apply(erule disjE);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   392
 apply(rule_tac x = "[]" in exI);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   393
 apply simp
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   394
apply(clarsimp);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   395
apply(rule_tac x = "y#xc" in exI);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   396
apply simp;
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   397
done
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   398
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   399
lemma mono_eufix: "mono(eufix A B)";
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   400
apply(simp add: mono_def eufix_def);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   401
apply blast;
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   402
done
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   403
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   404
lemma "eusem A B \<subseteq> lfp(eufix A B)";
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   405
apply(clarsimp simp add:eusem_def);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   406
apply(erule rev_mp);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   407
apply(rule_tac x = x in spec);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   408
apply(induct_tac p);
11231
30d96882f915 *** empty log message ***
nipkow
parents: 11149
diff changeset
   409
 apply(subst lfp_unfold[OF mono_eufix])
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   410
 apply(simp add:eufix_def);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   411
apply(clarsimp);
11231
30d96882f915 *** empty log message ***
nipkow
parents: 11149
diff changeset
   412
apply(subst lfp_unfold[OF mono_eufix])
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   413
apply(simp add:eufix_def);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   414
apply blast;
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   415
done
10178
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
   416
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   417
(*
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   418
constdefs
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   419
 eusem :: "state set \<Rightarrow> state set \<Rightarrow> state set"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   420
"eusem A B \<equiv> {s. \<exists>p\<in>Paths s. \<exists>j. p j \<in> B \<and> (\<forall>i < j. p i \<in> A)}"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   421
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   422
axioms
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   423
M_total: "\<exists>t. (s,t) \<in> M"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   424
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   425
consts apath :: "state \<Rightarrow> (nat \<Rightarrow> state)"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   426
primrec
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   427
"apath s 0 = s"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   428
"apath s (Suc i) = (SOME t. (apath s i,t) \<in> M)"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   429
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   430
lemma [iff]: "apath s \<in> Paths s";
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   431
apply(simp add:Paths_def);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   432
apply(blast intro: M_total[THEN someI_ex])
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   433
done
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   434
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   435
constdefs
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   436
 pcons :: "state \<Rightarrow> (nat \<Rightarrow> state) \<Rightarrow> (nat \<Rightarrow> state)"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   437
"pcons s p == \<lambda>i. case i of 0 \<Rightarrow> s | Suc j \<Rightarrow> p j"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   438
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   439
lemma pcons_PathI: "[| (s,t) : M; p \<in> Paths t |] ==> pcons s p \<in> Paths s";
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   440
by(simp add:Paths_def pcons_def split:nat.split);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   441
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   442
lemma "lfp(eufix A B) \<subseteq> eusem A B"
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   443
apply(rule lfp_lowerbound)
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   444
apply(clarsimp simp add:eusem_def eufix_def);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   445
apply(erule disjE);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   446
 apply(rule_tac x = "apath x" in bexI);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   447
  apply(rule_tac x = 0 in exI);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   448
  apply simp;
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   449
 apply simp;
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   450
apply(clarify);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   451
apply(rule_tac x = "pcons xb p" in bexI);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   452
 apply(rule_tac x = "j+1" in exI);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   453
 apply (simp add:pcons_def split:nat.split);
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   454
apply (simp add:pcons_PathI)
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   455
done
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   456
*)
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   457
(*>*)
12334
60bf75e157e4 *** empty log message ***
nipkow
parents: 12332
diff changeset
   458
60bf75e157e4 *** empty log message ***
nipkow
parents: 12332
diff changeset
   459
text{* Let us close this section with a few words about the executability of
60bf75e157e4 *** empty log message ***
nipkow
parents: 12332
diff changeset
   460
our model checkers.  It is clear that if all sets are finite, they can be
60bf75e157e4 *** empty log message ***
nipkow
parents: 12332
diff changeset
   461
represented as lists and the usual set operations are easily
60bf75e157e4 *** empty log message ***
nipkow
parents: 12332
diff changeset
   462
implemented. Only @{term lfp} requires a little thought.  Fortunately, theory
12473
f41e477576b9 *** empty log message ***
nipkow
parents: 12334
diff changeset
   463
@{text While_Combinator} in the Library~\cite{HOL-Library} provides a
12334
60bf75e157e4 *** empty log message ***
nipkow
parents: 12332
diff changeset
   464
theorem stating that in the case of finite sets and a monotone
60bf75e157e4 *** empty log message ***
nipkow
parents: 12332
diff changeset
   465
function~@{term F}, the value of \mbox{@{term"lfp F"}} can be computed by
60bf75e157e4 *** empty log message ***
nipkow
parents: 12332
diff changeset
   466
iterated application of @{term F} to~@{term"{}"} until a fixed point is
60bf75e157e4 *** empty log message ***
nipkow
parents: 12332
diff changeset
   467
reached. It is actually possible to generate executable functional programs
11494
23a118849801 revisions and indexing
paulson
parents: 11231
diff changeset
   468
from HOL definitions, but that is beyond the scope of the tutorial.%
12334
60bf75e157e4 *** empty log message ***
nipkow
parents: 12332
diff changeset
   469
\index{CTL|)} *}
10212
33fe2d701ddd *** empty log message ***
nipkow
parents: 10210
diff changeset
   470
(*<*)end(*>*)