| author | wenzelm | 
| Fri, 21 Sep 2012 11:47:16 +0200 | |
| changeset 49489 | f59475e6589f | 
| parent 48891 | c0eafbd55de3 | 
| child 49834 | b27bbb021df1 | 
| permissions | -rw-r--r-- | 
| 19494 | 1 | theory Nominal | 
| 41413 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
39777diff
changeset | 2 | imports Main "~~/src/HOL/Library/Infinite_Set" | 
| 46950 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46947diff
changeset | 3 | keywords | 
| 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46947diff
changeset | 4 | "atom_decl" "nominal_datatype" "equivariance" :: thy_decl and | 
| 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46947diff
changeset | 5 | "nominal_primrec" "nominal_inductive" "nominal_inductive2" :: thy_goal and | 
| 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46947diff
changeset | 6 | "avoids" | 
| 44689 | 7 | begin | 
| 17870 | 8 | |
| 9 | section {* Permutations *}
 | |
| 10 | (*======================*) | |
| 11 | ||
| 41798 | 12 | type_synonym | 
| 17870 | 13 |   'x prm = "('x \<times> 'x) list"
 | 
| 14 | ||
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 15 | (* polymorphic constants for permutation and swapping *) | 
| 17870 | 16 | consts | 
| 18491 | 17 | perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<bullet>" 80) | 
| 17870 | 18 |   swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x"
 | 
| 19 | ||
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 20 | (* a "private" copy of the option type used in the abstraction function *) | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 21 | datatype 'a noption = nSome 'a | nNone | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 22 | |
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 23 | (* a "private" copy of the product type used in the nominal induct method *) | 
| 44689 | 24 | datatype ('a, 'b) nprod = nPair 'a 'b
 | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 25 | |
| 24544 | 26 | (* an auxiliary constant for the decision procedure involving *) | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 27 | (* permutations (to avoid loops when using perm-compositions) *) | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 28 | definition | 
| 44683 | 29 | "perm_aux pi x = pi\<bullet>x" | 
| 19477 | 30 | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 31 | (* overloaded permutation operations *) | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 32 | overloading | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 33 |   perm_fun    \<equiv> "perm :: 'x prm \<Rightarrow> ('a\<Rightarrow>'b) \<Rightarrow> ('a\<Rightarrow>'b)"   (unchecked)
 | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 34 | perm_bool \<equiv> "perm :: 'x prm \<Rightarrow> bool \<Rightarrow> bool" (unchecked) | 
| 45961 | 35 | perm_set \<equiv> "perm :: 'x prm \<Rightarrow> 'a set \<Rightarrow> 'a set" (unchecked) | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 36 | perm_unit \<equiv> "perm :: 'x prm \<Rightarrow> unit \<Rightarrow> unit" (unchecked) | 
| 44689 | 37 |   perm_prod   \<equiv> "perm :: 'x prm \<Rightarrow> ('a\<times>'b) \<Rightarrow> ('a\<times>'b)"    (unchecked)
 | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 38 | perm_list \<equiv> "perm :: 'x prm \<Rightarrow> 'a list \<Rightarrow> 'a list" (unchecked) | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 39 | perm_option \<equiv> "perm :: 'x prm \<Rightarrow> 'a option \<Rightarrow> 'a option" (unchecked) | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 40 | perm_char \<equiv> "perm :: 'x prm \<Rightarrow> char \<Rightarrow> char" (unchecked) | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 41 | perm_nat \<equiv> "perm :: 'x prm \<Rightarrow> nat \<Rightarrow> nat" (unchecked) | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 42 | perm_int \<equiv> "perm :: 'x prm \<Rightarrow> int \<Rightarrow> int" (unchecked) | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 43 | |
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 44 | perm_noption \<equiv> "perm :: 'x prm \<Rightarrow> 'a noption \<Rightarrow> 'a noption" (unchecked) | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 45 |   perm_nprod   \<equiv> "perm :: 'x prm \<Rightarrow> ('a, 'b) nprod \<Rightarrow> ('a, 'b) nprod" (unchecked)
 | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 46 | begin | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 47 | |
| 44838 | 48 | definition perm_fun :: "'x prm \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where
 | 
| 44833 | 49 | "perm_fun pi f = (\<lambda>x. pi \<bullet> f (rev pi \<bullet> x))" | 
| 44683 | 50 | |
| 44689 | 51 | definition perm_bool :: "'x prm \<Rightarrow> bool \<Rightarrow> bool" where | 
| 44833 | 52 | "perm_bool pi b = b" | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 53 | |
| 45961 | 54 | definition perm_set :: "'x prm \<Rightarrow> 'a set \<Rightarrow> 'a set" where | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 55 |   "perm_set pi X = {pi \<bullet> x | x. x \<in> X}"
 | 
| 45961 | 56 | |
| 44683 | 57 | primrec perm_unit :: "'x prm \<Rightarrow> unit \<Rightarrow> unit" where | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 58 | "perm_unit pi () = ()" | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 59 | |
| 44683 | 60 | primrec perm_prod :: "'x prm \<Rightarrow> ('a\<times>'b) \<Rightarrow> ('a\<times>'b)" where
 | 
| 44833 | 61 | "perm_prod pi (x, y) = (pi\<bullet>x, pi\<bullet>y)" | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 62 | |
| 44683 | 63 | primrec perm_list :: "'x prm \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 64 | nil_eqvt: "perm_list pi [] = []" | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 65 | | cons_eqvt: "perm_list pi (x#xs) = (pi\<bullet>x)#(pi\<bullet>xs)" | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 66 | |
| 44683 | 67 | primrec perm_option :: "'x prm \<Rightarrow> 'a option \<Rightarrow> 'a option" where | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 68 | some_eqvt: "perm_option pi (Some x) = Some (pi\<bullet>x)" | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 69 | | none_eqvt: "perm_option pi None = None" | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 70 | |
| 44683 | 71 | definition perm_char :: "'x prm \<Rightarrow> char \<Rightarrow> char" where | 
| 44833 | 72 | "perm_char pi c = c" | 
| 44683 | 73 | |
| 74 | definition perm_nat :: "'x prm \<Rightarrow> nat \<Rightarrow> nat" where | |
| 44833 | 75 | "perm_nat pi i = i" | 
| 44683 | 76 | |
| 77 | definition perm_int :: "'x prm \<Rightarrow> int \<Rightarrow> int" where | |
| 44833 | 78 | "perm_int pi i = i" | 
| 44683 | 79 | |
| 80 | primrec perm_noption :: "'x prm \<Rightarrow> 'a noption \<Rightarrow> 'a noption" where | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 81 | nsome_eqvt: "perm_noption pi (nSome x) = nSome (pi\<bullet>x)" | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 82 | | nnone_eqvt: "perm_noption pi nNone = nNone" | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 83 | |
| 44683 | 84 | primrec perm_nprod :: "'x prm \<Rightarrow> ('a, 'b) nprod \<Rightarrow> ('a, 'b) nprod" where
 | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 85 | "perm_nprod pi (nPair x y) = nPair (pi\<bullet>x) (pi\<bullet>y)" | 
| 44683 | 86 | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 87 | end | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 88 | |
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 89 | (* permutations on booleans *) | 
| 44689 | 90 | lemmas perm_bool = perm_bool_def | 
| 91 | ||
| 92 | lemma true_eqvt [simp]: | |
| 93 | "pi \<bullet> True \<longleftrightarrow> True" | |
| 94 | by (simp add: perm_bool_def) | |
| 95 | ||
| 96 | lemma false_eqvt [simp]: | |
| 97 | "pi \<bullet> False \<longleftrightarrow> False" | |
| 98 | by (simp add: perm_bool_def) | |
| 18264 | 99 | |
| 19972 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 100 | lemma perm_boolI: | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 101 | assumes a: "P" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 102 | shows "pi\<bullet>P" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 103 | using a by (simp add: perm_bool) | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 104 | |
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 105 | lemma perm_boolE: | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 106 | assumes a: "pi\<bullet>P" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 107 | shows "P" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 108 | using a by (simp add: perm_bool) | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 109 | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 110 | lemma if_eqvt: | 
| 21010 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 111 | fixes pi::"'a prm" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 112 | shows "pi\<bullet>(if b then c1 else c2) = (if (pi\<bullet>b) then (pi\<bullet>c1) else (pi\<bullet>c2))" | 
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 113 | by (simp add: perm_fun_def) | 
| 21010 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 114 | |
| 22514 | 115 | lemma imp_eqvt: | 
| 116 | shows "pi\<bullet>(A\<longrightarrow>B) = ((pi\<bullet>A)\<longrightarrow>(pi\<bullet>B))" | |
| 117 | by (simp add: perm_bool) | |
| 118 | ||
| 119 | lemma conj_eqvt: | |
| 120 | shows "pi\<bullet>(A\<and>B) = ((pi\<bullet>A)\<and>(pi\<bullet>B))" | |
| 121 | by (simp add: perm_bool) | |
| 122 | ||
| 123 | lemma disj_eqvt: | |
| 124 | shows "pi\<bullet>(A\<or>B) = ((pi\<bullet>A)\<or>(pi\<bullet>B))" | |
| 125 | by (simp add: perm_bool) | |
| 126 | ||
| 127 | lemma neg_eqvt: | |
| 128 | shows "pi\<bullet>(\<not> A) = (\<not> (pi\<bullet>A))" | |
| 129 | by (simp add: perm_bool) | |
| 130 | ||
| 26806 | 131 | (* permutation on sets *) | 
| 132 | lemma empty_eqvt: | |
| 133 |   shows "pi\<bullet>{} = {}"
 | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 134 | by (simp add: perm_set_def) | 
| 26806 | 135 | |
| 136 | lemma union_eqvt: | |
| 137 | shows "(pi\<bullet>(X\<union>Y)) = (pi\<bullet>X) \<union> (pi\<bullet>Y)" | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 138 | by (auto simp add: perm_set_def) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 139 | |
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 140 | lemma insert_eqvt: | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 141 | shows "pi\<bullet>(insert x X) = insert (pi\<bullet>x) (pi\<bullet>X)" | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 142 | by (auto simp add: perm_set_def) | 
| 26806 | 143 | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 144 | (* permutations on products *) | 
| 26806 | 145 | lemma fst_eqvt: | 
| 146 | "pi\<bullet>(fst x) = fst (pi\<bullet>x)" | |
| 147 | by (cases x) simp | |
| 148 | ||
| 149 | lemma snd_eqvt: | |
| 150 | "pi\<bullet>(snd x) = snd (pi\<bullet>x)" | |
| 151 | by (cases x) simp | |
| 152 | ||
| 153 | (* permutation on lists *) | |
| 154 | lemma append_eqvt: | |
| 155 | fixes pi :: "'x prm" | |
| 156 | and l1 :: "'a list" | |
| 157 | and l2 :: "'a list" | |
| 158 | shows "pi\<bullet>(l1@l2) = (pi\<bullet>l1)@(pi\<bullet>l2)" | |
| 159 | by (induct l1) auto | |
| 160 | ||
| 161 | lemma rev_eqvt: | |
| 162 | fixes pi :: "'x prm" | |
| 163 | and l :: "'a list" | |
| 164 | shows "pi\<bullet>(rev l) = rev (pi\<bullet>l)" | |
| 165 | by (induct l) (simp_all add: append_eqvt) | |
| 166 | ||
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 167 | lemma set_eqvt: | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 168 | fixes pi :: "'x prm" | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 169 | and xs :: "'a list" | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 170 | shows "pi\<bullet>(set xs) = set (pi\<bullet>xs)" | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 171 | by (induct xs) (auto simp add: empty_eqvt insert_eqvt) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 172 | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 173 | (* permutation on characters and strings *) | 
| 23050 | 174 | lemma perm_string: | 
| 175 | fixes s::"string" | |
| 176 | shows "pi\<bullet>s = s" | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 177 | by (induct s)(auto simp add: perm_char_def) | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 178 | |
| 17870 | 179 | |
| 180 | section {* permutation equality *}
 | |
| 181 | (*==============================*) | |
| 182 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 183 | definition prm_eq :: "'x prm \<Rightarrow> 'x prm \<Rightarrow> bool" (" _ \<triangleq> _ " [80,80] 80) where
 | 
| 44683 | 184 | "pi1 \<triangleq> pi2 \<longleftrightarrow> (\<forall>a::'x. pi1\<bullet>a = pi2\<bullet>a)" | 
| 17870 | 185 | |
| 186 | section {* Support, Freshness and Supports*}
 | |
| 187 | (*========================================*) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 188 | definition supp :: "'a \<Rightarrow> ('x set)" where  
 | 
| 44683 | 189 |    "supp x = {a . (infinite {b . [(a,b)]\<bullet>x \<noteq> x})}"
 | 
| 17870 | 190 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 191 | definition fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" ("_ \<sharp> _" [80,80] 80) where
 | 
| 44683 | 192 | "a \<sharp> x \<longleftrightarrow> a \<notin> supp x" | 
| 17870 | 193 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 194 | definition supports :: "'x set \<Rightarrow> 'a \<Rightarrow> bool" (infixl "supports" 80) where | 
| 44683 | 195 | "S supports x \<longleftrightarrow> (\<forall>a b. (a\<notin>S \<and> b\<notin>S \<longrightarrow> [(a,b)]\<bullet>x=x))" | 
| 17870 | 196 | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 197 | (* lemmas about supp *) | 
| 17870 | 198 | lemma supp_fresh_iff: | 
| 199 | fixes x :: "'a" | |
| 200 |   shows "(supp x) = {a::'x. \<not>a\<sharp>x}"
 | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 201 | by (simp add: fresh_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 202 | |
| 17870 | 203 | lemma supp_unit: | 
| 204 |   shows "supp () = {}"
 | |
| 205 | by (simp add: supp_def) | |
| 206 | ||
| 18264 | 207 | lemma supp_set_empty: | 
| 208 |   shows "supp {} = {}"
 | |
| 26806 | 209 | by (force simp add: supp_def empty_eqvt) | 
| 18264 | 210 | |
| 17870 | 211 | lemma supp_prod: | 
| 212 | fixes x :: "'a" | |
| 213 | and y :: "'b" | |
| 214 | shows "(supp (x,y)) = (supp x)\<union>(supp y)" | |
| 215 | by (force simp add: supp_def Collect_imp_eq Collect_neg_eq) | |
| 216 | ||
| 18600 | 217 | lemma supp_nprod: | 
| 218 | fixes x :: "'a" | |
| 219 | and y :: "'b" | |
| 220 | shows "(supp (nPair x y)) = (supp x)\<union>(supp y)" | |
| 221 | by (force simp add: supp_def Collect_imp_eq Collect_neg_eq) | |
| 222 | ||
| 17870 | 223 | lemma supp_list_nil: | 
| 224 |   shows "supp [] = {}"
 | |
| 44696 | 225 | by (simp add: supp_def) | 
| 17870 | 226 | |
| 227 | lemma supp_list_cons: | |
| 228 | fixes x :: "'a" | |
| 229 | and xs :: "'a list" | |
| 230 | shows "supp (x#xs) = (supp x)\<union>(supp xs)" | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 231 | by (auto simp add: supp_def Collect_imp_eq Collect_neg_eq) | 
| 17870 | 232 | |
| 233 | lemma supp_list_append: | |
| 234 | fixes xs :: "'a list" | |
| 235 | and ys :: "'a list" | |
| 236 | shows "supp (xs@ys) = (supp xs)\<union>(supp ys)" | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 237 | by (induct xs) (auto simp add: supp_list_nil supp_list_cons) | 
| 17870 | 238 | |
| 239 | lemma supp_list_rev: | |
| 240 | fixes xs :: "'a list" | |
| 241 | shows "supp (rev xs) = (supp xs)" | |
| 242 | by (induct xs, auto simp add: supp_list_append supp_list_cons supp_list_nil) | |
| 243 | ||
| 244 | lemma supp_bool: | |
| 245 | fixes x :: "bool" | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 246 |   shows "supp x = {}"
 | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 247 | by (cases "x") (simp_all add: supp_def) | 
| 17870 | 248 | |
| 249 | lemma supp_some: | |
| 250 | fixes x :: "'a" | |
| 251 | shows "supp (Some x) = (supp x)" | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 252 | by (simp add: supp_def) | 
| 17870 | 253 | |
| 254 | lemma supp_none: | |
| 255 | fixes x :: "'a" | |
| 256 |   shows "supp (None) = {}"
 | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 257 | by (simp add: supp_def) | 
| 17870 | 258 | |
| 259 | lemma supp_int: | |
| 260 | fixes i::"int" | |
| 261 |   shows "supp (i) = {}"
 | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 262 | by (simp add: supp_def perm_int_def) | 
| 17870 | 263 | |
| 20388 | 264 | lemma supp_nat: | 
| 265 | fixes n::"nat" | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 266 |   shows "(supp n) = {}"
 | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 267 | by (simp add: supp_def perm_nat_def) | 
| 20388 | 268 | |
| 18627 | 269 | lemma supp_char: | 
| 270 | fixes c::"char" | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 271 |   shows "(supp c) = {}"
 | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 272 | by (simp add: supp_def perm_char_def) | 
| 18627 | 273 | |
| 274 | lemma supp_string: | |
| 275 | fixes s::"string" | |
| 30983 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 276 |   shows "(supp s) = {}"
 | 
| 
e54777ab68bd
adapted permutation functions to new overloading syntax (the functions are still "unchecked" because they are used in conjunction with type-classes)
 Christian Urban <urbanc@in.tum.de> parents: 
30242diff
changeset | 277 | by (simp add: supp_def perm_string) | 
| 18627 | 278 | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 279 | (* lemmas about freshness *) | 
| 18264 | 280 | lemma fresh_set_empty: | 
| 281 |   shows "a\<sharp>{}"
 | |
| 282 | by (simp add: fresh_def supp_set_empty) | |
| 283 | ||
| 19858 | 284 | lemma fresh_unit: | 
| 285 | shows "a\<sharp>()" | |
| 286 | by (simp add: fresh_def supp_unit) | |
| 287 | ||
| 17870 | 288 | lemma fresh_prod: | 
| 289 | fixes a :: "'x" | |
| 290 | and x :: "'a" | |
| 291 | and y :: "'b" | |
| 292 | shows "a\<sharp>(x,y) = (a\<sharp>x \<and> a\<sharp>y)" | |
| 293 | by (simp add: fresh_def supp_prod) | |
| 294 | ||
| 295 | lemma fresh_list_nil: | |
| 296 | fixes a :: "'x" | |
| 18264 | 297 | shows "a\<sharp>[]" | 
| 17870 | 298 | by (simp add: fresh_def supp_list_nil) | 
| 299 | ||
| 300 | lemma fresh_list_cons: | |
| 301 | fixes a :: "'x" | |
| 302 | and x :: "'a" | |
| 303 | and xs :: "'a list" | |
| 304 | shows "a\<sharp>(x#xs) = (a\<sharp>x \<and> a\<sharp>xs)" | |
| 305 | by (simp add: fresh_def supp_list_cons) | |
| 306 | ||
| 307 | lemma fresh_list_append: | |
| 308 | fixes a :: "'x" | |
| 309 | and xs :: "'a list" | |
| 310 | and ys :: "'a list" | |
| 311 | shows "a\<sharp>(xs@ys) = (a\<sharp>xs \<and> a\<sharp>ys)" | |
| 312 | by (simp add: fresh_def supp_list_append) | |
| 313 | ||
| 314 | lemma fresh_list_rev: | |
| 315 | fixes a :: "'x" | |
| 316 | and xs :: "'a list" | |
| 317 | shows "a\<sharp>(rev xs) = a\<sharp>xs" | |
| 318 | by (simp add: fresh_def supp_list_rev) | |
| 319 | ||
| 320 | lemma fresh_none: | |
| 321 | fixes a :: "'x" | |
| 322 | shows "a\<sharp>None" | |
| 22831 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 323 | by (simp add: fresh_def supp_none) | 
| 17870 | 324 | |
| 325 | lemma fresh_some: | |
| 326 | fixes a :: "'x" | |
| 327 | and x :: "'a" | |
| 328 | shows "a\<sharp>(Some x) = a\<sharp>x" | |
| 22831 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 329 | by (simp add: fresh_def supp_some) | 
| 17870 | 330 | |
| 21010 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 331 | lemma fresh_int: | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 332 | fixes a :: "'x" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 333 | and i :: "int" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 334 | shows "a\<sharp>i" | 
| 22831 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 335 | by (simp add: fresh_def supp_int) | 
| 21010 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 336 | |
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 337 | lemma fresh_nat: | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 338 | fixes a :: "'x" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 339 | and n :: "nat" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 340 | shows "a\<sharp>n" | 
| 22831 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 341 | by (simp add: fresh_def supp_nat) | 
| 21010 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 342 | |
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 343 | lemma fresh_char: | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 344 | fixes a :: "'x" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 345 | and c :: "char" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 346 | shows "a\<sharp>c" | 
| 22831 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 347 | by (simp add: fresh_def supp_char) | 
| 21010 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 348 | |
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 349 | lemma fresh_string: | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 350 | fixes a :: "'x" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 351 | and s :: "string" | 
| 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 352 | shows "a\<sharp>s" | 
| 22831 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 353 | by (simp add: fresh_def supp_string) | 
| 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 354 | |
| 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 355 | lemma fresh_bool: | 
| 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 356 | fixes a :: "'x" | 
| 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 357 | and b :: "bool" | 
| 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 358 | shows "a\<sharp>b" | 
| 
18f4014e1259
tuned some of the proofs and added the lemma fresh_bool
 urbanc parents: 
22829diff
changeset | 359 | by (simp add: fresh_def supp_bool) | 
| 21010 
7fe928722821
added the missing freshness-lemmas for nat, int, char and string and
 urbanc parents: 
20809diff
changeset | 360 | |
| 18294 
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
 wenzelm parents: 
18268diff
changeset | 361 | text {* Normalization of freshness results; cf.\ @{text nominal_induct} *}
 | 
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 362 | lemma fresh_unit_elim: | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 363 | shows "(a\<sharp>() \<Longrightarrow> PROP C) \<equiv> PROP C" | 
| 18294 
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
 wenzelm parents: 
18268diff
changeset | 364 | by (simp add: fresh_def supp_unit) | 
| 
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
 wenzelm parents: 
18268diff
changeset | 365 | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 366 | lemma fresh_prod_elim: | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 367 | shows "(a\<sharp>(x,y) \<Longrightarrow> PROP C) \<equiv> (a\<sharp>x \<Longrightarrow> a\<sharp>y \<Longrightarrow> PROP C)" | 
| 18294 
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
 wenzelm parents: 
18268diff
changeset | 368 | by rule (simp_all add: fresh_prod) | 
| 
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
 wenzelm parents: 
18268diff
changeset | 369 | |
| 21405 
26b51f724fe6
added an intro lemma for freshness of products; set up
 urbanc parents: 
21377diff
changeset | 370 | (* this rule needs to be added before the fresh_prodD is *) | 
| 
26b51f724fe6
added an intro lemma for freshness of products; set up
 urbanc parents: 
21377diff
changeset | 371 | (* added to the simplifier with mksimps *) | 
| 
26b51f724fe6
added an intro lemma for freshness of products; set up
 urbanc parents: 
21377diff
changeset | 372 | lemma [simp]: | 
| 
26b51f724fe6
added an intro lemma for freshness of products; set up
 urbanc parents: 
21377diff
changeset | 373 | shows "a\<sharp>x1 \<Longrightarrow> a\<sharp>x2 \<Longrightarrow> a\<sharp>(x1,x2)" | 
| 
26b51f724fe6
added an intro lemma for freshness of products; set up
 urbanc parents: 
21377diff
changeset | 374 | by (simp add: fresh_prod) | 
| 
26b51f724fe6
added an intro lemma for freshness of products; set up
 urbanc parents: 
21377diff
changeset | 375 | |
| 21318 
edb595802d22
added fresh_prodD, which is included fresh_prodD into mksimps setup;
 wenzelm parents: 
21010diff
changeset | 376 | lemma fresh_prodD: | 
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 377 | shows "a\<sharp>(x,y) \<Longrightarrow> a\<sharp>x" | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 378 | and "a\<sharp>(x,y) \<Longrightarrow> a\<sharp>y" | 
| 21318 
edb595802d22
added fresh_prodD, which is included fresh_prodD into mksimps setup;
 wenzelm parents: 
21010diff
changeset | 379 | by (simp_all add: fresh_prod) | 
| 
edb595802d22
added fresh_prodD, which is included fresh_prodD into mksimps setup;
 wenzelm parents: 
21010diff
changeset | 380 | |
| 26342 | 381 | ML {*
 | 
| 382 |   val mksimps_pairs = (@{const_name Nominal.fresh}, @{thms fresh_prodD}) :: mksimps_pairs;
 | |
| 383 | *} | |
| 384 | declaration {* fn _ =>
 | |
| 45625 
750c5a47400b
modernized some old-style infix operations, which were left over from the time of ML proof scripts;
 wenzelm parents: 
44838diff
changeset | 385 | Simplifier.map_ss (Simplifier.set_mksimps (mksimps mksimps_pairs)) | 
| 21318 
edb595802d22
added fresh_prodD, which is included fresh_prodD into mksimps setup;
 wenzelm parents: 
21010diff
changeset | 386 | *} | 
| 
edb595802d22
added fresh_prodD, which is included fresh_prodD into mksimps setup;
 wenzelm parents: 
21010diff
changeset | 387 | |
| 17870 | 388 | section {* Abstract Properties for Permutations and  Atoms *}
 | 
| 389 | (*=========================================================*) | |
| 390 | ||
| 391 | (* properties for being a permutation type *) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 392 | definition | 
| 17870 | 393 |   "pt TYPE('a) TYPE('x) \<equiv> 
 | 
| 394 | (\<forall>(x::'a). ([]::'x prm)\<bullet>x = x) \<and> | |
| 395 | (\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). (pi1@pi2)\<bullet>x = pi1\<bullet>(pi2\<bullet>x)) \<and> | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 396 | (\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). pi1 \<triangleq> pi2 \<longrightarrow> pi1\<bullet>x = pi2\<bullet>x)" | 
| 17870 | 397 | |
| 398 | (* properties for being an atom type *) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 399 | definition | 
| 17870 | 400 |   "at TYPE('x) \<equiv> 
 | 
| 401 | (\<forall>(x::'x). ([]::'x prm)\<bullet>x = x) \<and> | |
| 402 | (\<forall>(a::'x) (b::'x) (pi::'x prm) (x::'x). ((a,b)#(pi::'x prm))\<bullet>x = swap (a,b) (pi\<bullet>x)) \<and> | |
| 403 | (\<forall>(a::'x) (b::'x) (c::'x). swap (a,b) c = (if a=c then b else (if b=c then a else c))) \<and> | |
| 404 | (infinite (UNIV::'x set))" | |
| 405 | ||
| 406 | (* property of two atom-types being disjoint *) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 407 | definition | 
| 17870 | 408 |   "disjoint TYPE('x) TYPE('y) \<equiv> 
 | 
| 409 | (\<forall>(pi::'x prm)(x::'y). pi\<bullet>x = x) \<and> | |
| 410 | (\<forall>(pi::'y prm)(x::'x). pi\<bullet>x = x)" | |
| 411 | ||
| 412 | (* composition property of two permutation on a type 'a *) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 413 | definition | 
| 17870 | 414 |   "cp TYPE ('a) TYPE('x) TYPE('y) \<equiv> 
 | 
| 415 | (\<forall>(pi2::'y prm) (pi1::'x prm) (x::'a) . pi1\<bullet>(pi2\<bullet>x) = (pi1\<bullet>pi2)\<bullet>(pi1\<bullet>x))" | |
| 416 | ||
| 417 | (* property of having finite support *) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 418 | definition | 
| 17870 | 419 |   "fs TYPE('a) TYPE('x) \<equiv> \<forall>(x::'a). finite ((supp x)::'x set)"
 | 
| 420 | ||
| 421 | section {* Lemmas about the atom-type properties*}
 | |
| 422 | (*==============================================*) | |
| 423 | ||
| 424 | lemma at1: | |
| 425 | fixes x::"'x" | |
| 426 |   assumes a: "at TYPE('x)"
 | |
| 427 | shows "([]::'x prm)\<bullet>x = x" | |
| 428 | using a by (simp add: at_def) | |
| 429 | ||
| 430 | lemma at2: | |
| 431 | fixes a ::"'x" | |
| 432 | and b ::"'x" | |
| 433 | and x ::"'x" | |
| 434 | and pi::"'x prm" | |
| 435 |   assumes a: "at TYPE('x)"
 | |
| 436 | shows "((a,b)#pi)\<bullet>x = swap (a,b) (pi\<bullet>x)" | |
| 437 | using a by (simp only: at_def) | |
| 438 | ||
| 439 | lemma at3: | |
| 440 | fixes a ::"'x" | |
| 441 | and b ::"'x" | |
| 442 | and c ::"'x" | |
| 443 |   assumes a: "at TYPE('x)"
 | |
| 444 | shows "swap (a,b) c = (if a=c then b else (if b=c then a else c))" | |
| 445 | using a by (simp only: at_def) | |
| 446 | ||
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 447 | (* rules to calculate simple permutations *) | 
| 17870 | 448 | lemmas at_calc = at2 at1 at3 | 
| 449 | ||
| 22610 | 450 | lemma at_swap_simps: | 
| 451 | fixes a ::"'x" | |
| 452 | and b ::"'x" | |
| 453 |   assumes a: "at TYPE('x)"
 | |
| 454 | shows "[(a,b)]\<bullet>a = b" | |
| 455 | and "[(a,b)]\<bullet>b = a" | |
| 27374 | 456 | and "\<lbrakk>a\<noteq>c; b\<noteq>c\<rbrakk> \<Longrightarrow> [(a,b)]\<bullet>c = c" | 
| 22610 | 457 | using a by (simp_all add: at_calc) | 
| 458 | ||
| 17870 | 459 | lemma at4: | 
| 460 |   assumes a: "at TYPE('x)"
 | |
| 461 | shows "infinite (UNIV::'x set)" | |
| 462 | using a by (simp add: at_def) | |
| 463 | ||
| 464 | lemma at_append: | |
| 465 | fixes pi1 :: "'x prm" | |
| 466 | and pi2 :: "'x prm" | |
| 467 | and c :: "'x" | |
| 468 |   assumes at: "at TYPE('x)" 
 | |
| 469 | shows "(pi1@pi2)\<bullet>c = pi1\<bullet>(pi2\<bullet>c)" | |
| 470 | proof (induct pi1) | |
| 471 | case Nil show ?case by (simp add: at1[OF at]) | |
| 472 | next | |
| 473 | case (Cons x xs) | |
| 18053 
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
 urbanc parents: 
18048diff
changeset | 474 | have "(xs@pi2)\<bullet>c = xs\<bullet>(pi2\<bullet>c)" by fact | 
| 
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
 urbanc parents: 
18048diff
changeset | 475 | also have "(x#xs)@pi2 = x#(xs@pi2)" by simp | 
| 
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
 urbanc parents: 
18048diff
changeset | 476 | ultimately show ?case by (cases "x", simp add: at2[OF at]) | 
| 17870 | 477 | qed | 
| 478 | ||
| 479 | lemma at_swap: | |
| 480 | fixes a :: "'x" | |
| 481 | and b :: "'x" | |
| 482 | and c :: "'x" | |
| 483 |   assumes at: "at TYPE('x)" 
 | |
| 484 | shows "swap (a,b) (swap (a,b) c) = c" | |
| 485 | by (auto simp add: at3[OF at]) | |
| 486 | ||
| 487 | lemma at_rev_pi: | |
| 488 | fixes pi :: "'x prm" | |
| 489 | and c :: "'x" | |
| 490 |   assumes at: "at TYPE('x)"
 | |
| 491 | shows "(rev pi)\<bullet>(pi\<bullet>c) = c" | |
| 492 | proof(induct pi) | |
| 493 | case Nil show ?case by (simp add: at1[OF at]) | |
| 494 | next | |
| 495 | case (Cons x xs) thus ?case | |
| 496 | by (cases "x", simp add: at2[OF at] at_append[OF at] at1[OF at] at_swap[OF at]) | |
| 497 | qed | |
| 498 | ||
| 499 | lemma at_pi_rev: | |
| 500 | fixes pi :: "'x prm" | |
| 501 | and x :: "'x" | |
| 502 |   assumes at: "at TYPE('x)"
 | |
| 503 | shows "pi\<bullet>((rev pi)\<bullet>x) = x" | |
| 504 | by (rule at_rev_pi[OF at, of "rev pi" _,simplified]) | |
| 505 | ||
| 506 | lemma at_bij1: | |
| 507 | fixes pi :: "'x prm" | |
| 508 | and x :: "'x" | |
| 509 | and y :: "'x" | |
| 510 |   assumes at: "at TYPE('x)"
 | |
| 511 | and a: "(pi\<bullet>x) = y" | |
| 512 | shows "x=(rev pi)\<bullet>y" | |
| 513 | proof - | |
| 514 | from a have "y=(pi\<bullet>x)" by (rule sym) | |
| 515 | thus ?thesis by (simp only: at_rev_pi[OF at]) | |
| 516 | qed | |
| 517 | ||
| 518 | lemma at_bij2: | |
| 519 | fixes pi :: "'x prm" | |
| 520 | and x :: "'x" | |
| 521 | and y :: "'x" | |
| 522 |   assumes at: "at TYPE('x)"
 | |
| 523 | and a: "((rev pi)\<bullet>x) = y" | |
| 524 | shows "x=pi\<bullet>y" | |
| 525 | proof - | |
| 526 | from a have "y=((rev pi)\<bullet>x)" by (rule sym) | |
| 527 | thus ?thesis by (simp only: at_pi_rev[OF at]) | |
| 528 | qed | |
| 529 | ||
| 530 | lemma at_bij: | |
| 531 | fixes pi :: "'x prm" | |
| 532 | and x :: "'x" | |
| 533 | and y :: "'x" | |
| 534 |   assumes at: "at TYPE('x)"
 | |
| 535 | shows "(pi\<bullet>x = pi\<bullet>y) = (x=y)" | |
| 536 | proof | |
| 537 | assume "pi\<bullet>x = pi\<bullet>y" | |
| 538 | hence "x=(rev pi)\<bullet>(pi\<bullet>y)" by (rule at_bij1[OF at]) | |
| 539 | thus "x=y" by (simp only: at_rev_pi[OF at]) | |
| 540 | next | |
| 541 | assume "x=y" | |
| 542 | thus "pi\<bullet>x = pi\<bullet>y" by simp | |
| 543 | qed | |
| 544 | ||
| 545 | lemma at_supp: | |
| 546 | fixes x :: "'x" | |
| 547 |   assumes at: "at TYPE('x)"
 | |
| 548 |   shows "supp x = {x}"
 | |
| 29903 | 549 | by(auto simp: supp_def Collect_conj_eq Collect_imp_eq at_calc[OF at] at4[OF at]) | 
| 17870 | 550 | |
| 551 | lemma at_fresh: | |
| 552 | fixes a :: "'x" | |
| 553 | and b :: "'x" | |
| 554 |   assumes at: "at TYPE('x)"
 | |
| 555 | shows "(a\<sharp>b) = (a\<noteq>b)" | |
| 556 | by (simp add: at_supp[OF at] fresh_def) | |
| 557 | ||
| 26766 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 558 | lemma at_prm_fresh1: | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 559 | fixes c :: "'x" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 560 | and pi:: "'x prm" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 561 |   assumes at: "at TYPE('x)"
 | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 562 | and a: "c\<sharp>pi" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 563 | shows "\<forall>(a,b)\<in>set pi. c\<noteq>a \<and> c\<noteq>b" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 564 | using a by (induct pi) (auto simp add: fresh_list_cons fresh_prod at_fresh[OF at]) | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 565 | |
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 566 | lemma at_prm_fresh2: | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 567 | fixes c :: "'x" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 568 | and pi:: "'x prm" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 569 |   assumes at: "at TYPE('x)"
 | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 570 | and a: "\<forall>(a,b)\<in>set pi. c\<noteq>a \<and> c\<noteq>b" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 571 | shows "pi\<bullet>c = c" | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 572 | using a by(induct pi) (auto simp add: at1[OF at] at2[OF at] at3[OF at]) | 
| 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 573 | |
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 574 | lemma at_prm_fresh: | 
| 17870 | 575 | fixes c :: "'x" | 
| 576 | and pi:: "'x prm" | |
| 577 |   assumes at: "at TYPE('x)"
 | |
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 578 | and a: "c\<sharp>pi" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 579 | shows "pi\<bullet>c = c" | 
| 26766 
0e2a29a1065c
polished the proof for atm_prm_fresh and more lemmas for fresh_star
 urbanc parents: 
26522diff
changeset | 580 | by (rule at_prm_fresh2[OF at], rule at_prm_fresh1[OF at, OF a]) | 
| 17870 | 581 | |
| 582 | lemma at_prm_rev_eq: | |
| 583 | fixes pi1 :: "'x prm" | |
| 584 | and pi2 :: "'x prm" | |
| 585 |   assumes at: "at TYPE('x)"
 | |
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 586 | shows "((rev pi1) \<triangleq> (rev pi2)) = (pi1 \<triangleq> pi2)" | 
| 17870 | 587 | proof (simp add: prm_eq_def, auto) | 
| 588 | fix x | |
| 589 | assume "\<forall>x::'x. (rev pi1)\<bullet>x = (rev pi2)\<bullet>x" | |
| 590 | hence "(rev (pi1::'x prm))\<bullet>(pi2\<bullet>(x::'x)) = (rev (pi2::'x prm))\<bullet>(pi2\<bullet>x)" by simp | |
| 591 | hence "(rev (pi1::'x prm))\<bullet>((pi2::'x prm)\<bullet>x) = (x::'x)" by (simp add: at_rev_pi[OF at]) | |
| 592 | hence "(pi2::'x prm)\<bullet>x = (pi1::'x prm)\<bullet>x" by (simp add: at_bij2[OF at]) | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 593 | thus "pi1\<bullet>x = pi2\<bullet>x" by simp | 
| 17870 | 594 | next | 
| 595 | fix x | |
| 596 | assume "\<forall>x::'x. pi1\<bullet>x = pi2\<bullet>x" | |
| 597 | hence "(pi1::'x prm)\<bullet>((rev pi2)\<bullet>x) = (pi2::'x prm)\<bullet>((rev pi2)\<bullet>(x::'x))" by simp | |
| 598 | hence "(pi1::'x prm)\<bullet>((rev pi2)\<bullet>(x::'x)) = x" by (simp add: at_pi_rev[OF at]) | |
| 599 | hence "(rev pi2)\<bullet>x = (rev pi1)\<bullet>(x::'x)" by (simp add: at_bij1[OF at]) | |
| 600 | thus "(rev pi1)\<bullet>x = (rev pi2)\<bullet>(x::'x)" by simp | |
| 601 | qed | |
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 602 | |
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 603 | lemma at_prm_eq_append: | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 604 | fixes pi1 :: "'x prm" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 605 | and pi2 :: "'x prm" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 606 | and pi3 :: "'x prm" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 607 |   assumes at: "at TYPE('x)"
 | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 608 | and a: "pi1 \<triangleq> pi2" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 609 | shows "(pi3@pi1) \<triangleq> (pi3@pi2)" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 610 | using a by (simp add: prm_eq_def at_append[OF at] at_bij[OF at]) | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 611 | |
| 19325 | 612 | lemma at_prm_eq_append': | 
| 613 | fixes pi1 :: "'x prm" | |
| 614 | and pi2 :: "'x prm" | |
| 615 | and pi3 :: "'x prm" | |
| 616 |   assumes at: "at TYPE('x)"
 | |
| 617 | and a: "pi1 \<triangleq> pi2" | |
| 618 | shows "(pi1@pi3) \<triangleq> (pi2@pi3)" | |
| 619 | using a by (simp add: prm_eq_def at_append[OF at]) | |
| 620 | ||
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 621 | lemma at_prm_eq_trans: | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 622 | fixes pi1 :: "'x prm" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 623 | and pi2 :: "'x prm" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 624 | and pi3 :: "'x prm" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 625 | assumes a1: "pi1 \<triangleq> pi2" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 626 | and a2: "pi2 \<triangleq> pi3" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 627 | shows "pi1 \<triangleq> pi3" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 628 | using a1 a2 by (auto simp add: prm_eq_def) | 
| 17870 | 629 | |
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 630 | lemma at_prm_eq_refl: | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 631 | fixes pi :: "'x prm" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 632 | shows "pi \<triangleq> pi" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 633 | by (simp add: prm_eq_def) | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 634 | |
| 17870 | 635 | lemma at_prm_rev_eq1: | 
| 636 | fixes pi1 :: "'x prm" | |
| 637 | and pi2 :: "'x prm" | |
| 638 |   assumes at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 639 | shows "pi1 \<triangleq> pi2 \<Longrightarrow> (rev pi1) \<triangleq> (rev pi2)" | 
| 17870 | 640 | by (simp add: at_prm_rev_eq[OF at]) | 
| 641 | ||
| 642 | lemma at_ds1: | |
| 643 | fixes a :: "'x" | |
| 644 |   assumes at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 645 | shows "[(a,a)] \<triangleq> []" | 
| 17870 | 646 | by (force simp add: prm_eq_def at_calc[OF at]) | 
| 647 | ||
| 648 | lemma at_ds2: | |
| 649 | fixes pi :: "'x prm" | |
| 650 | and a :: "'x" | |
| 651 | and b :: "'x" | |
| 652 |   assumes at: "at TYPE('x)"
 | |
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 653 | shows "([(a,b)]@pi) \<triangleq> (pi@[((rev pi)\<bullet>a,(rev pi)\<bullet>b)])" | 
| 17870 | 654 | by (force simp add: prm_eq_def at_append[OF at] at_bij[OF at] at_pi_rev[OF at] | 
| 655 | at_rev_pi[OF at] at_calc[OF at]) | |
| 656 | ||
| 657 | lemma at_ds3: | |
| 658 | fixes a :: "'x" | |
| 659 | and b :: "'x" | |
| 660 | and c :: "'x" | |
| 661 |   assumes at: "at TYPE('x)"
 | |
| 662 | and a: "distinct [a,b,c]" | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 663 | shows "[(a,c),(b,c),(a,c)] \<triangleq> [(a,b)]" | 
| 17870 | 664 | using a by (force simp add: prm_eq_def at_calc[OF at]) | 
| 665 | ||
| 666 | lemma at_ds4: | |
| 667 | fixes a :: "'x" | |
| 668 | and b :: "'x" | |
| 669 | and pi :: "'x prm" | |
| 670 |   assumes at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 671 | shows "(pi@[(a,(rev pi)\<bullet>b)]) \<triangleq> ([(pi\<bullet>a,b)]@pi)" | 
| 17870 | 672 | by (force simp add: prm_eq_def at_append[OF at] at_calc[OF at] at_bij[OF at] | 
| 673 | at_pi_rev[OF at] at_rev_pi[OF at]) | |
| 674 | ||
| 675 | lemma at_ds5: | |
| 676 | fixes a :: "'x" | |
| 677 | and b :: "'x" | |
| 678 |   assumes at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 679 | shows "[(a,b)] \<triangleq> [(b,a)]" | 
| 17870 | 680 | by (force simp add: prm_eq_def at_calc[OF at]) | 
| 681 | ||
| 19164 | 682 | lemma at_ds5': | 
| 683 | fixes a :: "'x" | |
| 684 | and b :: "'x" | |
| 685 |   assumes at: "at TYPE('x)"
 | |
| 686 | shows "[(a,b),(b,a)] \<triangleq> []" | |
| 687 | by (force simp add: prm_eq_def at_calc[OF at]) | |
| 688 | ||
| 17870 | 689 | lemma at_ds6: | 
| 690 | fixes a :: "'x" | |
| 691 | and b :: "'x" | |
| 692 | and c :: "'x" | |
| 693 |   assumes at: "at TYPE('x)"
 | |
| 694 | and a: "distinct [a,b,c]" | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 695 | shows "[(a,c),(a,b)] \<triangleq> [(b,c),(a,c)]" | 
| 17870 | 696 | using a by (force simp add: prm_eq_def at_calc[OF at]) | 
| 697 | ||
| 698 | lemma at_ds7: | |
| 699 | fixes pi :: "'x prm" | |
| 700 |   assumes at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 701 | shows "((rev pi)@pi) \<triangleq> []" | 
| 17870 | 702 | by (simp add: prm_eq_def at1[OF at] at_append[OF at] at_rev_pi[OF at]) | 
| 703 | ||
| 704 | lemma at_ds8_aux: | |
| 705 | fixes pi :: "'x prm" | |
| 706 | and a :: "'x" | |
| 707 | and b :: "'x" | |
| 708 | and c :: "'x" | |
| 709 |   assumes at: "at TYPE('x)"
 | |
| 710 | shows "pi\<bullet>(swap (a,b) c) = swap (pi\<bullet>a,pi\<bullet>b) (pi\<bullet>c)" | |
| 711 | by (force simp add: at_calc[OF at] at_bij[OF at]) | |
| 712 | ||
| 713 | lemma at_ds8: | |
| 714 | fixes pi1 :: "'x prm" | |
| 715 | and pi2 :: "'x prm" | |
| 716 | and a :: "'x" | |
| 717 | and b :: "'x" | |
| 718 |   assumes at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 719 | shows "(pi1@pi2) \<triangleq> ((pi1\<bullet>pi2)@pi1)" | 
| 17870 | 720 | apply(induct_tac pi2) | 
| 721 | apply(simp add: prm_eq_def) | |
| 722 | apply(auto simp add: prm_eq_def) | |
| 723 | apply(simp add: at2[OF at]) | |
| 724 | apply(drule_tac x="aa" in spec) | |
| 725 | apply(drule sym) | |
| 726 | apply(simp) | |
| 727 | apply(simp add: at_append[OF at]) | |
| 728 | apply(simp add: at2[OF at]) | |
| 729 | apply(simp add: at_ds8_aux[OF at]) | |
| 730 | done | |
| 731 | ||
| 732 | lemma at_ds9: | |
| 733 | fixes pi1 :: "'x prm" | |
| 734 | and pi2 :: "'x prm" | |
| 735 | and a :: "'x" | |
| 736 | and b :: "'x" | |
| 737 |   assumes at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 738 | shows " ((rev pi2)@(rev pi1)) \<triangleq> ((rev pi1)@(rev (pi1\<bullet>pi2)))" | 
| 17870 | 739 | apply(induct_tac pi2) | 
| 740 | apply(simp add: prm_eq_def) | |
| 741 | apply(auto simp add: prm_eq_def) | |
| 742 | apply(simp add: at_append[OF at]) | |
| 743 | apply(simp add: at2[OF at] at1[OF at]) | |
| 744 | apply(drule_tac x="swap(pi1\<bullet>a,pi1\<bullet>b) aa" in spec) | |
| 745 | apply(drule sym) | |
| 746 | apply(simp) | |
| 747 | apply(simp add: at_ds8_aux[OF at]) | |
| 748 | apply(simp add: at_rev_pi[OF at]) | |
| 749 | done | |
| 750 | ||
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 751 | lemma at_ds10: | 
| 19132 | 752 | fixes pi :: "'x prm" | 
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 753 | and a :: "'x" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 754 | and b :: "'x" | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 755 |   assumes at: "at TYPE('x)"
 | 
| 19132 | 756 | and a: "b\<sharp>(rev pi)" | 
| 757 | shows "([(pi\<bullet>a,b)]@pi) \<triangleq> (pi@[(a,b)])" | |
| 19107 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 758 | using a | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 759 | apply - | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 760 | apply(rule at_prm_eq_trans) | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 761 | apply(rule at_ds2[OF at]) | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 762 | apply(simp add: at_prm_fresh[OF at] at_rev_pi[OF at]) | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 763 | apply(rule at_prm_eq_refl) | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 764 | done | 
| 
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
 urbanc parents: 
19045diff
changeset | 765 | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 766 | --"there always exists an atom that is not being in a finite set" | 
| 17870 | 767 | lemma ex_in_inf: | 
| 768 | fixes A::"'x set" | |
| 769 |   assumes at: "at TYPE('x)"
 | |
| 770 | and fs: "finite A" | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 771 | obtains c::"'x" where "c\<notin>A" | 
| 17870 | 772 | proof - | 
| 773 | from fs at4[OF at] have "infinite ((UNIV::'x set) - A)" | |
| 774 | by (simp add: Diff_infinite_finite) | |
| 775 |   hence "((UNIV::'x set) - A) \<noteq> ({}::'x set)" by (force simp only:)
 | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 776 | then obtain c::"'x" where "c\<in>((UNIV::'x set) - A)" by force | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 777 | then have "c\<notin>A" by simp | 
| 41550 | 778 | then show ?thesis .. | 
| 17870 | 779 | qed | 
| 780 | ||
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 781 | text {* there always exists a fresh name for an object with finite support *}
 | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 782 | lemma at_exists_fresh': | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 783 | fixes x :: "'a" | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 784 |   assumes at: "at TYPE('x)"
 | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 785 | and fs: "finite ((supp x)::'x set)" | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 786 | shows "\<exists>c::'x. c\<sharp>x" | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 787 | by (auto simp add: fresh_def intro: ex_in_inf[OF at, OF fs]) | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 788 | |
| 17870 | 789 | lemma at_exists_fresh: | 
| 790 | fixes x :: "'a" | |
| 791 |   assumes at: "at TYPE('x)"
 | |
| 792 | and fs: "finite ((supp x)::'x set)" | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 793 | obtains c::"'x" where "c\<sharp>x" | 
| 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 794 | by (auto intro: ex_in_inf[OF at, OF fs] simp add: fresh_def) | 
| 17870 | 795 | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 796 | lemma at_finite_select: | 
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 797 | fixes S::"'a set" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 798 |   assumes a: "at TYPE('a)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 799 | and b: "finite S" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 800 | shows "\<exists>x. x \<notin> S" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 801 | using a b | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 802 | apply(drule_tac S="UNIV::'a set" in Diff_infinite_finite) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 803 | apply(simp add: at_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 804 |   apply(subgoal_tac "UNIV - S \<noteq> {}")
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 805 | apply(simp only: ex_in_conv [symmetric]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 806 | apply(blast) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 807 | apply(rule notI) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 808 | apply(simp) | 
| 18657 | 809 | done | 
| 810 | ||
| 19140 | 811 | lemma at_different: | 
| 19132 | 812 |   assumes at: "at TYPE('x)"
 | 
| 19140 | 813 | shows "\<exists>(b::'x). a\<noteq>b" | 
| 19132 | 814 | proof - | 
| 19140 | 815 | have "infinite (UNIV::'x set)" by (rule at4[OF at]) | 
| 816 |   hence inf2: "infinite (UNIV-{a})" by (rule infinite_remove)
 | |
| 19132 | 817 |   have "(UNIV-{a}) \<noteq> ({}::'x set)" 
 | 
| 818 | proof (rule_tac ccontr, drule_tac notnotD) | |
| 819 |     assume "UNIV-{a} = ({}::'x set)"
 | |
| 820 |     with inf2 have "infinite ({}::'x set)" by simp
 | |
| 19869 | 821 | then show "False" by auto | 
| 19132 | 822 | qed | 
| 823 |   hence "\<exists>(b::'x). b\<in>(UNIV-{a})" by blast
 | |
| 824 |   then obtain b::"'x" where mem2: "b\<in>(UNIV-{a})" by blast
 | |
| 19140 | 825 | from mem2 have "a\<noteq>b" by blast | 
| 826 | then show "\<exists>(b::'x). a\<noteq>b" by blast | |
| 19132 | 827 | qed | 
| 828 | ||
| 17870 | 829 | --"the at-props imply the pt-props" | 
| 830 | lemma at_pt_inst: | |
| 831 |   assumes at: "at TYPE('x)"
 | |
| 832 |   shows "pt TYPE('x) TYPE('x)"
 | |
| 833 | apply(auto simp only: pt_def) | |
| 834 | apply(simp only: at1[OF at]) | |
| 835 | apply(simp only: at_append[OF at]) | |
| 18053 
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
 urbanc parents: 
18048diff
changeset | 836 | apply(simp only: prm_eq_def) | 
| 17870 | 837 | done | 
| 838 | ||
| 839 | section {* finite support properties *}
 | |
| 840 | (*===================================*) | |
| 841 | ||
| 842 | lemma fs1: | |
| 843 | fixes x :: "'a" | |
| 844 |   assumes a: "fs TYPE('a) TYPE('x)"
 | |
| 845 | shows "finite ((supp x)::'x set)" | |
| 846 | using a by (simp add: fs_def) | |
| 847 | ||
| 848 | lemma fs_at_inst: | |
| 849 | fixes a :: "'x" | |
| 850 |   assumes at: "at TYPE('x)"
 | |
| 851 |   shows "fs TYPE('x) TYPE('x)"
 | |
| 852 | apply(simp add: fs_def) | |
| 853 | apply(simp add: at_supp[OF at]) | |
| 854 | done | |
| 855 | ||
| 856 | lemma fs_unit_inst: | |
| 857 |   shows "fs TYPE(unit) TYPE('x)"
 | |
| 858 | apply(simp add: fs_def) | |
| 859 | apply(simp add: supp_unit) | |
| 860 | done | |
| 861 | ||
| 862 | lemma fs_prod_inst: | |
| 863 |   assumes fsa: "fs TYPE('a) TYPE('x)"
 | |
| 864 |   and     fsb: "fs TYPE('b) TYPE('x)"
 | |
| 865 |   shows "fs TYPE('a\<times>'b) TYPE('x)"
 | |
| 866 | apply(unfold fs_def) | |
| 867 | apply(auto simp add: supp_prod) | |
| 868 | apply(rule fs1[OF fsa]) | |
| 869 | apply(rule fs1[OF fsb]) | |
| 870 | done | |
| 871 | ||
| 18600 | 872 | lemma fs_nprod_inst: | 
| 873 |   assumes fsa: "fs TYPE('a) TYPE('x)"
 | |
| 874 |   and     fsb: "fs TYPE('b) TYPE('x)"
 | |
| 875 |   shows "fs TYPE(('a,'b) nprod) TYPE('x)"
 | |
| 876 | apply(unfold fs_def, rule allI) | |
| 877 | apply(case_tac x) | |
| 878 | apply(auto simp add: supp_nprod) | |
| 879 | apply(rule fs1[OF fsa]) | |
| 880 | apply(rule fs1[OF fsb]) | |
| 881 | done | |
| 882 | ||
| 17870 | 883 | lemma fs_list_inst: | 
| 884 |   assumes fs: "fs TYPE('a) TYPE('x)"
 | |
| 885 |   shows "fs TYPE('a list) TYPE('x)"
 | |
| 886 | apply(simp add: fs_def, rule allI) | |
| 887 | apply(induct_tac x) | |
| 888 | apply(simp add: supp_list_nil) | |
| 889 | apply(simp add: supp_list_cons) | |
| 890 | apply(rule fs1[OF fs]) | |
| 891 | done | |
| 892 | ||
| 18431 | 893 | lemma fs_option_inst: | 
| 894 |   assumes fs: "fs TYPE('a) TYPE('x)"
 | |
| 895 |   shows "fs TYPE('a option) TYPE('x)"
 | |
| 17870 | 896 | apply(simp add: fs_def, rule allI) | 
| 18431 | 897 | apply(case_tac x) | 
| 898 | apply(simp add: supp_none) | |
| 899 | apply(simp add: supp_some) | |
| 900 | apply(rule fs1[OF fs]) | |
| 17870 | 901 | done | 
| 902 | ||
| 903 | section {* Lemmas about the permutation properties *}
 | |
| 904 | (*=================================================*) | |
| 905 | ||
| 906 | lemma pt1: | |
| 907 | fixes x::"'a" | |
| 908 |   assumes a: "pt TYPE('a) TYPE('x)"
 | |
| 909 | shows "([]::'x prm)\<bullet>x = x" | |
| 910 | using a by (simp add: pt_def) | |
| 911 | ||
| 912 | lemma pt2: | |
| 913 | fixes pi1::"'x prm" | |
| 914 | and pi2::"'x prm" | |
| 915 | and x ::"'a" | |
| 916 |   assumes a: "pt TYPE('a) TYPE('x)"
 | |
| 917 | shows "(pi1@pi2)\<bullet>x = pi1\<bullet>(pi2\<bullet>x)" | |
| 918 | using a by (simp add: pt_def) | |
| 919 | ||
| 920 | lemma pt3: | |
| 921 | fixes pi1::"'x prm" | |
| 922 | and pi2::"'x prm" | |
| 923 | and x ::"'a" | |
| 924 |   assumes a: "pt TYPE('a) TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 925 | shows "pi1 \<triangleq> pi2 \<Longrightarrow> pi1\<bullet>x = pi2\<bullet>x" | 
| 17870 | 926 | using a by (simp add: pt_def) | 
| 927 | ||
| 928 | lemma pt3_rev: | |
| 929 | fixes pi1::"'x prm" | |
| 930 | and pi2::"'x prm" | |
| 931 | and x ::"'a" | |
| 932 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 933 |   and     at: "at TYPE('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 934 | shows "pi1 \<triangleq> pi2 \<Longrightarrow> (rev pi1)\<bullet>x = (rev pi2)\<bullet>x" | 
| 17870 | 935 | by (rule pt3[OF pt], simp add: at_prm_rev_eq[OF at]) | 
| 936 | ||
| 937 | section {* composition properties *}
 | |
| 938 | (* ============================== *) | |
| 939 | lemma cp1: | |
| 940 | fixes pi1::"'x prm" | |
| 941 | and pi2::"'y prm" | |
| 942 | and x ::"'a" | |
| 943 |   assumes cp: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | |
| 944 | shows "pi1\<bullet>(pi2\<bullet>x) = (pi1\<bullet>pi2)\<bullet>(pi1\<bullet>x)" | |
| 945 | using cp by (simp add: cp_def) | |
| 946 | ||
| 947 | lemma cp_pt_inst: | |
| 948 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 949 |   and     at: "at TYPE('x)"
 | |
| 950 |   shows "cp TYPE('a) TYPE('x) TYPE('x)"
 | |
| 951 | apply(auto simp add: cp_def pt2[OF pt,symmetric]) | |
| 952 | apply(rule pt3[OF pt]) | |
| 953 | apply(rule at_ds8[OF at]) | |
| 954 | done | |
| 955 | ||
| 19638 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 956 | section {* disjointness properties *}
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 957 | (*=================================*) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 958 | lemma dj_perm_forget: | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 959 | fixes pi::"'y prm" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 960 | and x ::"'x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 961 |   assumes dj: "disjoint TYPE('x) TYPE('y)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 962 | shows "pi\<bullet>x=x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 963 | using dj by (simp_all add: disjoint_def) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 964 | |
| 28371 
471a356fdea9
Added some more lemmas that are useful in proof of strong induction rule.
 berghofe parents: 
28322diff
changeset | 965 | lemma dj_perm_set_forget: | 
| 
471a356fdea9
Added some more lemmas that are useful in proof of strong induction rule.
 berghofe parents: 
28322diff
changeset | 966 | fixes pi::"'y prm" | 
| 
471a356fdea9
Added some more lemmas that are useful in proof of strong induction rule.
 berghofe parents: 
28322diff
changeset | 967 | and x ::"'x set" | 
| 
471a356fdea9
Added some more lemmas that are useful in proof of strong induction rule.
 berghofe parents: 
28322diff
changeset | 968 |   assumes dj: "disjoint TYPE('x) TYPE('y)"
 | 
| 44833 | 969 | shows "pi\<bullet>x=x" | 
| 45961 | 970 | using dj by (simp_all add: perm_set_def disjoint_def) | 
| 28371 
471a356fdea9
Added some more lemmas that are useful in proof of strong induction rule.
 berghofe parents: 
28322diff
changeset | 971 | |
| 19638 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 972 | lemma dj_perm_perm_forget: | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 973 | fixes pi1::"'x prm" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 974 | and pi2::"'y prm" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 975 |   assumes dj: "disjoint TYPE('x) TYPE('y)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 976 | shows "pi2\<bullet>pi1=pi1" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 977 | using dj by (induct pi1, auto simp add: disjoint_def) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 978 | |
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 979 | lemma dj_cp: | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 980 | fixes pi1::"'x prm" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 981 | and pi2::"'y prm" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 982 | and x ::"'a" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 983 |   assumes cp: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 984 |   and     dj: "disjoint TYPE('y) TYPE('x)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 985 | shows "pi1\<bullet>(pi2\<bullet>x) = (pi2)\<bullet>(pi1\<bullet>x)" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 986 | by (simp add: cp1[OF cp] dj_perm_perm_forget[OF dj]) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 987 | |
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 988 | lemma dj_supp: | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 989 | fixes a::"'x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 990 |   assumes dj: "disjoint TYPE('x) TYPE('y)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 991 |   shows "(supp a) = ({}::'y set)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 992 | apply(simp add: supp_def dj_perm_forget[OF dj]) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 993 | done | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 994 | |
| 19972 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 995 | lemma at_fresh_ineq: | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 996 | fixes a :: "'x" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 997 | and b :: "'y" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 998 |   assumes dj: "disjoint TYPE('y) TYPE('x)"
 | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 999 | shows "a\<sharp>b" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1000 | by (simp add: fresh_def dj_supp[OF dj]) | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1001 | |
| 17870 | 1002 | section {* permutation type instances *}
 | 
| 1003 | (* ===================================*) | |
| 1004 | ||
| 44696 | 1005 | lemma pt_fun_inst: | 
| 1006 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1007 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 1008 |   and     at:  "at TYPE('x)"
 | |
| 1009 |   shows  "pt TYPE('a\<Rightarrow>'b) TYPE('x)"
 | |
| 1010 | apply(auto simp only: pt_def) | |
| 1011 | apply(simp_all add: perm_fun_def) | |
| 1012 | apply(simp add: pt1[OF pta] pt1[OF ptb]) | |
| 1013 | apply(simp add: pt2[OF pta] pt2[OF ptb]) | |
| 1014 | apply(subgoal_tac "(rev pi1) \<triangleq> (rev pi2)")(*A*) | |
| 1015 | apply(simp add: pt3[OF pta] pt3[OF ptb]) | |
| 1016 | (*A*) | |
| 1017 | apply(simp add: at_prm_rev_eq[OF at]) | |
| 1018 | done | |
| 1019 | ||
| 1020 | lemma pt_bool_inst: | |
| 1021 |   shows  "pt TYPE(bool) TYPE('x)"
 | |
| 1022 | by (simp add: pt_def perm_bool_def) | |
| 1023 | ||
| 1024 | lemma pt_set_inst: | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1025 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1026 |   shows  "pt TYPE('a set) TYPE('x)"
 | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1027 | apply(simp add: pt_def) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1028 | apply(simp_all add: perm_set_def) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1029 | apply(simp add: pt1[OF pt]) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1030 | apply(force simp add: pt2[OF pt] pt3[OF pt]) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1031 | done | 
| 44696 | 1032 | |
| 1033 | lemma pt_unit_inst: | |
| 44833 | 1034 |   shows "pt TYPE(unit) TYPE('x)"
 | 
| 44696 | 1035 | by (simp add: pt_def) | 
| 1036 | ||
| 1037 | lemma pt_prod_inst: | |
| 1038 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1039 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 1040 |   shows  "pt TYPE('a \<times> 'b) TYPE('x)"
 | |
| 1041 | apply(auto simp add: pt_def) | |
| 1042 | apply(rule pt1[OF pta]) | |
| 1043 | apply(rule pt1[OF ptb]) | |
| 1044 | apply(rule pt2[OF pta]) | |
| 1045 | apply(rule pt2[OF ptb]) | |
| 1046 | apply(rule pt3[OF pta],assumption) | |
| 1047 | apply(rule pt3[OF ptb],assumption) | |
| 1048 | done | |
| 1049 | ||
| 17870 | 1050 | lemma pt_list_nil: | 
| 1051 | fixes xs :: "'a list" | |
| 1052 |   assumes pt: "pt TYPE('a) TYPE ('x)"
 | |
| 1053 | shows "([]::'x prm)\<bullet>xs = xs" | |
| 1054 | apply(induct_tac xs) | |
| 1055 | apply(simp_all add: pt1[OF pt]) | |
| 1056 | done | |
| 1057 | ||
| 1058 | lemma pt_list_append: | |
| 1059 | fixes pi1 :: "'x prm" | |
| 1060 | and pi2 :: "'x prm" | |
| 1061 | and xs :: "'a list" | |
| 1062 |   assumes pt: "pt TYPE('a) TYPE ('x)"
 | |
| 1063 | shows "(pi1@pi2)\<bullet>xs = pi1\<bullet>(pi2\<bullet>xs)" | |
| 1064 | apply(induct_tac xs) | |
| 1065 | apply(simp_all add: pt2[OF pt]) | |
| 1066 | done | |
| 1067 | ||
| 1068 | lemma pt_list_prm_eq: | |
| 1069 | fixes pi1 :: "'x prm" | |
| 1070 | and pi2 :: "'x prm" | |
| 1071 | and xs :: "'a list" | |
| 1072 |   assumes pt: "pt TYPE('a) TYPE ('x)"
 | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 1073 | shows "pi1 \<triangleq> pi2 \<Longrightarrow> pi1\<bullet>xs = pi2\<bullet>xs" | 
| 17870 | 1074 | apply(induct_tac xs) | 
| 1075 | apply(simp_all add: prm_eq_def pt3[OF pt]) | |
| 1076 | done | |
| 1077 | ||
| 1078 | lemma pt_list_inst: | |
| 1079 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1080 |   shows  "pt TYPE('a list) TYPE('x)"
 | |
| 1081 | apply(auto simp only: pt_def) | |
| 1082 | apply(rule pt_list_nil[OF pt]) | |
| 1083 | apply(rule pt_list_append[OF pt]) | |
| 1084 | apply(rule pt_list_prm_eq[OF pt],assumption) | |
| 1085 | done | |
| 1086 | ||
| 1087 | lemma pt_option_inst: | |
| 1088 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1089 |   shows  "pt TYPE('a option) TYPE('x)"
 | |
| 1090 | apply(auto simp only: pt_def) | |
| 1091 | apply(case_tac "x") | |
| 1092 | apply(simp_all add: pt1[OF pta]) | |
| 1093 | apply(case_tac "x") | |
| 1094 | apply(simp_all add: pt2[OF pta]) | |
| 1095 | apply(case_tac "x") | |
| 1096 | apply(simp_all add: pt3[OF pta]) | |
| 1097 | done | |
| 1098 | ||
| 1099 | lemma pt_noption_inst: | |
| 1100 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 18579 
002d371401f5
changed the name of the type "nOption" to "noption".
 urbanc parents: 
18578diff
changeset | 1101 |   shows  "pt TYPE('a noption) TYPE('x)"
 | 
| 17870 | 1102 | apply(auto simp only: pt_def) | 
| 1103 | apply(case_tac "x") | |
| 1104 | apply(simp_all add: pt1[OF pta]) | |
| 1105 | apply(case_tac "x") | |
| 1106 | apply(simp_all add: pt2[OF pta]) | |
| 1107 | apply(case_tac "x") | |
| 1108 | apply(simp_all add: pt3[OF pta]) | |
| 1109 | done | |
| 1110 | ||
| 44696 | 1111 | lemma pt_nprod_inst: | 
| 1112 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1113 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 1114 |   shows  "pt TYPE(('a,'b) nprod) TYPE('x)"
 | |
| 1115 | apply(auto simp add: pt_def) | |
| 1116 | apply(case_tac x) | |
| 1117 | apply(simp add: pt1[OF pta] pt1[OF ptb]) | |
| 1118 | apply(case_tac x) | |
| 1119 | apply(simp add: pt2[OF pta] pt2[OF ptb]) | |
| 1120 | apply(case_tac x) | |
| 1121 | apply(simp add: pt3[OF pta] pt3[OF ptb]) | |
| 1122 | done | |
| 24544 | 1123 | |
| 17870 | 1124 | section {* further lemmas for permutation types *}
 | 
| 1125 | (*==============================================*) | |
| 1126 | ||
| 1127 | lemma pt_rev_pi: | |
| 1128 | fixes pi :: "'x prm" | |
| 1129 | and x :: "'a" | |
| 1130 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1131 |   and     at: "at TYPE('x)"
 | |
| 1132 | shows "(rev pi)\<bullet>(pi\<bullet>x) = x" | |
| 1133 | proof - | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 1134 | have "((rev pi)@pi) \<triangleq> ([]::'x prm)" by (simp add: at_ds7[OF at]) | 
| 17870 | 1135 | hence "((rev pi)@pi)\<bullet>(x::'a) = ([]::'x prm)\<bullet>x" by (simp add: pt3[OF pt]) | 
| 1136 | thus ?thesis by (simp add: pt1[OF pt] pt2[OF pt]) | |
| 1137 | qed | |
| 1138 | ||
| 1139 | lemma pt_pi_rev: | |
| 1140 | fixes pi :: "'x prm" | |
| 1141 | and x :: "'a" | |
| 1142 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1143 |   and     at: "at TYPE('x)"
 | |
| 1144 | shows "pi\<bullet>((rev pi)\<bullet>x) = x" | |
| 1145 | by (simp add: pt_rev_pi[OF pt, OF at,of "rev pi" "x",simplified]) | |
| 1146 | ||
| 1147 | lemma pt_bij1: | |
| 1148 | fixes pi :: "'x prm" | |
| 1149 | and x :: "'a" | |
| 1150 | and y :: "'a" | |
| 1151 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1152 |   and     at: "at TYPE('x)"
 | |
| 1153 | and a: "(pi\<bullet>x) = y" | |
| 1154 | shows "x=(rev pi)\<bullet>y" | |
| 1155 | proof - | |
| 1156 | from a have "y=(pi\<bullet>x)" by (rule sym) | |
| 1157 | thus ?thesis by (simp only: pt_rev_pi[OF pt, OF at]) | |
| 1158 | qed | |
| 1159 | ||
| 1160 | lemma pt_bij2: | |
| 1161 | fixes pi :: "'x prm" | |
| 1162 | and x :: "'a" | |
| 1163 | and y :: "'a" | |
| 1164 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1165 |   and     at: "at TYPE('x)"
 | |
| 1166 | and a: "x = (rev pi)\<bullet>y" | |
| 1167 | shows "(pi\<bullet>x)=y" | |
| 1168 | using a by (simp add: pt_pi_rev[OF pt, OF at]) | |
| 1169 | ||
| 1170 | lemma pt_bij: | |
| 1171 | fixes pi :: "'x prm" | |
| 1172 | and x :: "'a" | |
| 1173 | and y :: "'a" | |
| 1174 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1175 |   and     at: "at TYPE('x)"
 | |
| 1176 | shows "(pi\<bullet>x = pi\<bullet>y) = (x=y)" | |
| 1177 | proof | |
| 1178 | assume "pi\<bullet>x = pi\<bullet>y" | |
| 1179 | hence "x=(rev pi)\<bullet>(pi\<bullet>y)" by (rule pt_bij1[OF pt, OF at]) | |
| 1180 | thus "x=y" by (simp only: pt_rev_pi[OF pt, OF at]) | |
| 1181 | next | |
| 1182 | assume "x=y" | |
| 1183 | thus "pi\<bullet>x = pi\<bullet>y" by simp | |
| 1184 | qed | |
| 1185 | ||
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1186 | lemma pt_eq_eqvt: | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1187 | fixes pi :: "'x prm" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1188 | and x :: "'a" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1189 | and y :: "'a" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1190 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1191 |   and     at: "at TYPE('x)"
 | 
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1192 | shows "pi\<bullet>(x=y) = (pi\<bullet>x = pi\<bullet>y)" | 
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 1193 | using pt at | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 1194 | by (auto simp add: pt_bij perm_bool) | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1195 | |
| 17870 | 1196 | lemma pt_bij3: | 
| 1197 | fixes pi :: "'x prm" | |
| 1198 | and x :: "'a" | |
| 1199 | and y :: "'a" | |
| 1200 | assumes a: "x=y" | |
| 1201 | shows "(pi\<bullet>x = pi\<bullet>y)" | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 1202 | using a by simp | 
| 17870 | 1203 | |
| 1204 | lemma pt_bij4: | |
| 1205 | fixes pi :: "'x prm" | |
| 1206 | and x :: "'a" | |
| 1207 | and y :: "'a" | |
| 1208 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1209 |   and     at: "at TYPE('x)"
 | |
| 1210 | and a: "pi\<bullet>x = pi\<bullet>y" | |
| 1211 | shows "x = y" | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 1212 | using a by (simp add: pt_bij[OF pt, OF at]) | 
| 17870 | 1213 | |
| 1214 | lemma pt_swap_bij: | |
| 1215 | fixes a :: "'x" | |
| 1216 | and b :: "'x" | |
| 1217 | and x :: "'a" | |
| 1218 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1219 |   and     at: "at TYPE('x)"
 | |
| 1220 | shows "[(a,b)]\<bullet>([(a,b)]\<bullet>x) = x" | |
| 1221 | by (rule pt_bij2[OF pt, OF at], simp) | |
| 1222 | ||
| 19164 | 1223 | lemma pt_swap_bij': | 
| 1224 | fixes a :: "'x" | |
| 1225 | and b :: "'x" | |
| 1226 | and x :: "'a" | |
| 1227 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1228 |   and     at: "at TYPE('x)"
 | |
| 1229 | shows "[(a,b)]\<bullet>([(b,a)]\<bullet>x) = x" | |
| 1230 | apply(simp add: pt2[OF pt,symmetric]) | |
| 1231 | apply(rule trans) | |
| 1232 | apply(rule pt3[OF pt]) | |
| 1233 | apply(rule at_ds5'[OF at]) | |
| 1234 | apply(rule pt1[OF pt]) | |
| 1235 | done | |
| 1236 | ||
| 24571 | 1237 | lemma pt_swap_bij'': | 
| 1238 | fixes a :: "'x" | |
| 1239 | and x :: "'a" | |
| 1240 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1241 |   and     at: "at TYPE('x)"
 | |
| 1242 | shows "[(a,a)]\<bullet>x = x" | |
| 1243 | apply(rule trans) | |
| 1244 | apply(rule pt3[OF pt]) | |
| 1245 | apply(rule at_ds1[OF at]) | |
| 1246 | apply(rule pt1[OF pt]) | |
| 1247 | done | |
| 1248 | ||
| 26806 | 1249 | lemma supp_singleton: | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1250 |   shows "supp {x} = supp x"
 | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1251 | by (force simp add: supp_def perm_set_def) | 
| 26806 | 1252 | |
| 1253 | lemma fresh_singleton: | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1254 |   shows "a\<sharp>{x} = a\<sharp>x"
 | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1255 | by (simp add: fresh_def supp_singleton) | 
| 26806 | 1256 | |
| 17870 | 1257 | lemma pt_set_bij1: | 
| 1258 | fixes pi :: "'x prm" | |
| 1259 | and x :: "'a" | |
| 1260 | and X :: "'a set" | |
| 1261 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1262 |   and     at: "at TYPE('x)"
 | |
| 1263 | shows "((pi\<bullet>x)\<in>X) = (x\<in>((rev pi)\<bullet>X))" | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1264 | by (force simp add: perm_set_def pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at]) | 
| 17870 | 1265 | |
| 1266 | lemma pt_set_bij1a: | |
| 1267 | fixes pi :: "'x prm" | |
| 1268 | and x :: "'a" | |
| 1269 | and X :: "'a set" | |
| 1270 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1271 |   and     at: "at TYPE('x)"
 | |
| 1272 | shows "(x\<in>(pi\<bullet>X)) = (((rev pi)\<bullet>x)\<in>X)" | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1273 | by (force simp add: perm_set_def pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at]) | 
| 17870 | 1274 | |
| 1275 | lemma pt_set_bij: | |
| 1276 | fixes pi :: "'x prm" | |
| 1277 | and x :: "'a" | |
| 1278 | and X :: "'a set" | |
| 1279 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1280 |   and     at: "at TYPE('x)"
 | |
| 1281 | shows "((pi\<bullet>x)\<in>(pi\<bullet>X)) = (x\<in>X)" | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1282 | by (simp add: perm_set_def pt_bij[OF pt, OF at]) | 
| 17870 | 1283 | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1284 | lemma pt_in_eqvt: | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1285 | fixes pi :: "'x prm" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1286 | and x :: "'a" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1287 | and X :: "'a set" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1288 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1289 |   and     at: "at TYPE('x)"
 | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1290 | shows "pi\<bullet>(x\<in>X)=((pi\<bullet>x)\<in>(pi\<bullet>X))" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1291 | using assms | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1292 | by (auto simp add: pt_set_bij perm_bool) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1293 | |
| 17870 | 1294 | lemma pt_set_bij2: | 
| 1295 | fixes pi :: "'x prm" | |
| 1296 | and x :: "'a" | |
| 1297 | and X :: "'a set" | |
| 1298 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1299 |   and     at: "at TYPE('x)"
 | |
| 1300 | and a: "x\<in>X" | |
| 1301 | shows "(pi\<bullet>x)\<in>(pi\<bullet>X)" | |
| 1302 | using a by (simp add: pt_set_bij[OF pt, OF at]) | |
| 1303 | ||
| 18264 | 1304 | lemma pt_set_bij2a: | 
| 1305 | fixes pi :: "'x prm" | |
| 1306 | and x :: "'a" | |
| 1307 | and X :: "'a set" | |
| 1308 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1309 |   and     at: "at TYPE('x)"
 | |
| 1310 | and a: "x\<in>((rev pi)\<bullet>X)" | |
| 1311 | shows "(pi\<bullet>x)\<in>X" | |
| 1312 | using a by (simp add: pt_set_bij1[OF pt, OF at]) | |
| 1313 | ||
| 26773 | 1314 | (* FIXME: is this lemma needed anywhere? *) | 
| 17870 | 1315 | lemma pt_set_bij3: | 
| 1316 | fixes pi :: "'x prm" | |
| 1317 | and x :: "'a" | |
| 1318 | and X :: "'a set" | |
| 1319 | shows "pi\<bullet>(x\<in>X) = (x\<in>X)" | |
| 26773 | 1320 | by (simp add: perm_bool) | 
| 17870 | 1321 | |
| 18159 
08282ca0402e
added a few equivariance lemmas (they need to be automated
 urbanc parents: 
18068diff
changeset | 1322 | lemma pt_subseteq_eqvt: | 
| 
08282ca0402e
added a few equivariance lemmas (they need to be automated
 urbanc parents: 
18068diff
changeset | 1323 | fixes pi :: "'x prm" | 
| 
08282ca0402e
added a few equivariance lemmas (they need to be automated
 urbanc parents: 
18068diff
changeset | 1324 | and Y :: "'a set" | 
| 
08282ca0402e
added a few equivariance lemmas (they need to be automated
 urbanc parents: 
18068diff
changeset | 1325 | and X :: "'a set" | 
| 
08282ca0402e
added a few equivariance lemmas (they need to be automated
 urbanc parents: 
18068diff
changeset | 1326 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
08282ca0402e
added a few equivariance lemmas (they need to be automated
 urbanc parents: 
18068diff
changeset | 1327 |   and     at: "at TYPE('x)"
 | 
| 26090 | 1328 | shows "(pi\<bullet>(X\<subseteq>Y)) = ((pi\<bullet>X)\<subseteq>(pi\<bullet>Y))" | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1329 | by (auto simp add: perm_set_def perm_bool pt_bij[OF pt, OF at]) | 
| 18159 
08282ca0402e
added a few equivariance lemmas (they need to be automated
 urbanc parents: 
18068diff
changeset | 1330 | |
| 19772 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1331 | lemma pt_set_diff_eqvt: | 
| 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1332 | fixes X::"'a set" | 
| 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1333 | and Y::"'a set" | 
| 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1334 | and pi::"'x prm" | 
| 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1335 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1336 |   and     at: "at TYPE('x)"
 | 
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1337 | shows "pi\<bullet>(X - Y) = (pi\<bullet>X) - (pi\<bullet>Y)" | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1338 | by (auto simp add: perm_set_def pt_bij[OF pt, OF at]) | 
| 19772 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1339 | |
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1340 | lemma pt_Collect_eqvt: | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1341 | fixes pi::"'x prm" | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1342 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1343 |   and     at: "at TYPE('x)"
 | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1344 |   shows "pi\<bullet>{x::'a. P x} = {x. P ((rev pi)\<bullet>x)}"
 | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1345 | apply(auto simp add: perm_set_def pt_rev_pi[OF pt, OF at]) | 
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1346 | apply(rule_tac x="(rev pi)\<bullet>x" in exI) | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1347 | apply(simp add: pt_pi_rev[OF pt, OF at]) | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1348 | done | 
| 19772 
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
 urbanc parents: 
19771diff
changeset | 1349 | |
| 17870 | 1350 | -- "some helper lemmas for the pt_perm_supp_ineq lemma" | 
| 1351 | lemma Collect_permI: | |
| 1352 | fixes pi :: "'x prm" | |
| 1353 | and x :: "'a" | |
| 1354 | assumes a: "\<forall>x. (P1 x = P2 x)" | |
| 1355 |   shows "{pi\<bullet>x| x. P1 x} = {pi\<bullet>x| x. P2 x}"
 | |
| 1356 | using a by force | |
| 1357 | ||
| 1358 | lemma Infinite_cong: | |
| 1359 | assumes a: "X = Y" | |
| 1360 | shows "infinite X = infinite Y" | |
| 1361 | using a by (simp) | |
| 1362 | ||
| 1363 | lemma pt_set_eq_ineq: | |
| 1364 | fixes pi :: "'y prm" | |
| 1365 |   assumes pt: "pt TYPE('x) TYPE('y)"
 | |
| 1366 |   and     at: "at TYPE('y)"
 | |
| 1367 |   shows "{pi\<bullet>x| x::'x. P x} = {x::'x. P ((rev pi)\<bullet>x)}"
 | |
| 1368 | by (force simp only: pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at]) | |
| 1369 | ||
| 1370 | lemma pt_inject_on_ineq: | |
| 1371 | fixes X :: "'y set" | |
| 1372 | and pi :: "'x prm" | |
| 1373 |   assumes pt: "pt TYPE('y) TYPE('x)"
 | |
| 1374 |   and     at: "at TYPE('x)"
 | |
| 1375 | shows "inj_on (perm pi) X" | |
| 1376 | proof (unfold inj_on_def, intro strip) | |
| 1377 | fix x::"'y" and y::"'y" | |
| 1378 | assume "pi\<bullet>x = pi\<bullet>y" | |
| 1379 | thus "x=y" by (simp add: pt_bij[OF pt, OF at]) | |
| 1380 | qed | |
| 1381 | ||
| 1382 | lemma pt_set_finite_ineq: | |
| 1383 | fixes X :: "'x set" | |
| 1384 | and pi :: "'y prm" | |
| 1385 |   assumes pt: "pt TYPE('x) TYPE('y)"
 | |
| 1386 |   and     at: "at TYPE('y)"
 | |
| 1387 | shows "finite (pi\<bullet>X) = finite X" | |
| 1388 | proof - | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1389 | have image: "(pi\<bullet>X) = (perm pi ` X)" by (force simp only: perm_set_def) | 
| 17870 | 1390 | show ?thesis | 
| 1391 | proof (rule iffI) | |
| 1392 | assume "finite (pi\<bullet>X)" | |
| 1393 | hence "finite (perm pi ` X)" using image by (simp) | |
| 1394 | thus "finite X" using pt_inject_on_ineq[OF pt, OF at] by (rule finite_imageD) | |
| 1395 | next | |
| 1396 | assume "finite X" | |
| 1397 | hence "finite (perm pi ` X)" by (rule finite_imageI) | |
| 1398 | thus "finite (pi\<bullet>X)" using image by (simp) | |
| 1399 | qed | |
| 1400 | qed | |
| 1401 | ||
| 1402 | lemma pt_set_infinite_ineq: | |
| 1403 | fixes X :: "'x set" | |
| 1404 | and pi :: "'y prm" | |
| 1405 |   assumes pt: "pt TYPE('x) TYPE('y)"
 | |
| 1406 |   and     at: "at TYPE('y)"
 | |
| 1407 | shows "infinite (pi\<bullet>X) = infinite X" | |
| 1408 | using pt at by (simp add: pt_set_finite_ineq) | |
| 1409 | ||
| 1410 | lemma pt_perm_supp_ineq: | |
| 1411 | fixes pi :: "'x prm" | |
| 1412 | and x :: "'a" | |
| 1413 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1414 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 1415 |   and     at:  "at TYPE('x)"
 | |
| 1416 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 1417 | shows "(pi\<bullet>((supp x)::'y set)) = supp (pi\<bullet>x)" (is "?LHS = ?RHS") | |
| 1418 | proof - | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1419 |   have "?LHS = {pi\<bullet>a | a. infinite {b. [(a,b)]\<bullet>x \<noteq> x}}" by (simp add: supp_def perm_set_def)
 | 
| 17870 | 1420 |   also have "\<dots> = {pi\<bullet>a | a. infinite {pi\<bullet>b | b. [(a,b)]\<bullet>x \<noteq> x}}" 
 | 
| 1421 | proof (rule Collect_permI, rule allI, rule iffI) | |
| 1422 | fix a | |
| 1423 |     assume "infinite {b::'y. [(a,b)]\<bullet>x  \<noteq> x}"
 | |
| 1424 |     hence "infinite (pi\<bullet>{b::'y. [(a,b)]\<bullet>x \<noteq> x})" by (simp add: pt_set_infinite_ineq[OF ptb, OF at])
 | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1425 |     thus "infinite {pi\<bullet>b |b::'y. [(a,b)]\<bullet>x  \<noteq> x}" by (simp add: perm_set_def)
 | 
| 17870 | 1426 | next | 
| 1427 | fix a | |
| 1428 |     assume "infinite {pi\<bullet>b |b::'y. [(a,b)]\<bullet>x \<noteq> x}"
 | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1429 |     hence "infinite (pi\<bullet>{b::'y. [(a,b)]\<bullet>x \<noteq> x})" by (simp add: perm_set_def)
 | 
| 17870 | 1430 |     thus "infinite {b::'y. [(a,b)]\<bullet>x  \<noteq> x}" 
 | 
| 1431 | by (simp add: pt_set_infinite_ineq[OF ptb, OF at]) | |
| 1432 | qed | |
| 1433 |   also have "\<dots> = {a. infinite {b::'y. [((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x \<noteq> x}}" 
 | |
| 1434 | by (simp add: pt_set_eq_ineq[OF ptb, OF at]) | |
| 1435 |   also have "\<dots> = {a. infinite {b. pi\<bullet>([((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x) \<noteq> (pi\<bullet>x)}}"
 | |
| 1436 | by (simp add: pt_bij[OF pta, OF at]) | |
| 1437 |   also have "\<dots> = {a. infinite {b. [(a,b)]\<bullet>(pi\<bullet>x) \<noteq> (pi\<bullet>x)}}"
 | |
| 1438 | proof (rule Collect_cong, rule Infinite_cong, rule Collect_cong) | |
| 1439 | fix a::"'y" and b::"'y" | |
| 1440 | have "pi\<bullet>(([((rev pi)\<bullet>a,(rev pi)\<bullet>b)])\<bullet>x) = [(a,b)]\<bullet>(pi\<bullet>x)" | |
| 1441 | by (simp add: cp1[OF cp] pt_pi_rev[OF ptb, OF at]) | |
| 1442 | thus "(pi\<bullet>([((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x) \<noteq> pi\<bullet>x) = ([(a,b)]\<bullet>(pi\<bullet>x) \<noteq> pi\<bullet>x)" by simp | |
| 1443 | qed | |
| 1444 | finally show "?LHS = ?RHS" by (simp add: supp_def) | |
| 1445 | qed | |
| 1446 | ||
| 1447 | lemma pt_perm_supp: | |
| 1448 | fixes pi :: "'x prm" | |
| 1449 | and x :: "'a" | |
| 1450 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1451 |   and     at: "at TYPE('x)"
 | |
| 1452 | shows "(pi\<bullet>((supp x)::'x set)) = supp (pi\<bullet>x)" | |
| 1453 | apply(rule pt_perm_supp_ineq) | |
| 1454 | apply(rule pt) | |
| 1455 | apply(rule at_pt_inst) | |
| 1456 | apply(rule at)+ | |
| 1457 | apply(rule cp_pt_inst) | |
| 1458 | apply(rule pt) | |
| 1459 | apply(rule at) | |
| 1460 | done | |
| 1461 | ||
| 1462 | lemma pt_supp_finite_pi: | |
| 1463 | fixes pi :: "'x prm" | |
| 1464 | and x :: "'a" | |
| 1465 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1466 |   and     at: "at TYPE('x)"
 | |
| 1467 | and f: "finite ((supp x)::'x set)" | |
| 1468 | shows "finite ((supp (pi\<bullet>x))::'x set)" | |
| 1469 | apply(simp add: pt_perm_supp[OF pt, OF at, symmetric]) | |
| 1470 | apply(simp add: pt_set_finite_ineq[OF at_pt_inst[OF at], OF at]) | |
| 1471 | apply(rule f) | |
| 1472 | done | |
| 1473 | ||
| 1474 | lemma pt_fresh_left_ineq: | |
| 1475 | fixes pi :: "'x prm" | |
| 1476 | and x :: "'a" | |
| 1477 | and a :: "'y" | |
| 1478 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1479 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 1480 |   and     at:  "at TYPE('x)"
 | |
| 1481 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 1482 | shows "a\<sharp>(pi\<bullet>x) = ((rev pi)\<bullet>a)\<sharp>x" | |
| 1483 | apply(simp add: fresh_def) | |
| 1484 | apply(simp add: pt_set_bij1[OF ptb, OF at]) | |
| 1485 | apply(simp add: pt_perm_supp_ineq[OF pta, OF ptb, OF at, OF cp]) | |
| 1486 | done | |
| 1487 | ||
| 1488 | lemma pt_fresh_right_ineq: | |
| 1489 | fixes pi :: "'x prm" | |
| 1490 | and x :: "'a" | |
| 1491 | and a :: "'y" | |
| 1492 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1493 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 1494 |   and     at:  "at TYPE('x)"
 | |
| 1495 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 1496 | shows "(pi\<bullet>a)\<sharp>x = a\<sharp>((rev pi)\<bullet>x)" | |
| 1497 | apply(simp add: fresh_def) | |
| 1498 | apply(simp add: pt_set_bij1[OF ptb, OF at]) | |
| 1499 | apply(simp add: pt_perm_supp_ineq[OF pta, OF ptb, OF at, OF cp]) | |
| 1500 | done | |
| 1501 | ||
| 1502 | lemma pt_fresh_bij_ineq: | |
| 1503 | fixes pi :: "'x prm" | |
| 1504 | and x :: "'a" | |
| 1505 | and a :: "'y" | |
| 1506 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 1507 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 1508 |   and     at:  "at TYPE('x)"
 | |
| 1509 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 1510 | shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x) = a\<sharp>x" | |
| 1511 | apply(simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp]) | |
| 1512 | apply(simp add: pt_rev_pi[OF ptb, OF at]) | |
| 1513 | done | |
| 1514 | ||
| 1515 | lemma pt_fresh_left: | |
| 1516 | fixes pi :: "'x prm" | |
| 1517 | and x :: "'a" | |
| 1518 | and a :: "'x" | |
| 1519 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1520 |   and     at: "at TYPE('x)"
 | |
| 1521 | shows "a\<sharp>(pi\<bullet>x) = ((rev pi)\<bullet>a)\<sharp>x" | |
| 1522 | apply(rule pt_fresh_left_ineq) | |
| 1523 | apply(rule pt) | |
| 1524 | apply(rule at_pt_inst) | |
| 1525 | apply(rule at)+ | |
| 1526 | apply(rule cp_pt_inst) | |
| 1527 | apply(rule pt) | |
| 1528 | apply(rule at) | |
| 1529 | done | |
| 1530 | ||
| 1531 | lemma pt_fresh_right: | |
| 1532 | fixes pi :: "'x prm" | |
| 1533 | and x :: "'a" | |
| 1534 | and a :: "'x" | |
| 1535 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1536 |   and     at: "at TYPE('x)"
 | |
| 1537 | shows "(pi\<bullet>a)\<sharp>x = a\<sharp>((rev pi)\<bullet>x)" | |
| 1538 | apply(rule pt_fresh_right_ineq) | |
| 1539 | apply(rule pt) | |
| 1540 | apply(rule at_pt_inst) | |
| 1541 | apply(rule at)+ | |
| 1542 | apply(rule cp_pt_inst) | |
| 1543 | apply(rule pt) | |
| 1544 | apply(rule at) | |
| 1545 | done | |
| 1546 | ||
| 1547 | lemma pt_fresh_bij: | |
| 1548 | fixes pi :: "'x prm" | |
| 1549 | and x :: "'a" | |
| 1550 | and a :: "'x" | |
| 1551 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1552 |   and     at: "at TYPE('x)"
 | |
| 1553 | shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x) = a\<sharp>x" | |
| 1554 | apply(rule pt_fresh_bij_ineq) | |
| 1555 | apply(rule pt) | |
| 1556 | apply(rule at_pt_inst) | |
| 1557 | apply(rule at)+ | |
| 1558 | apply(rule cp_pt_inst) | |
| 1559 | apply(rule pt) | |
| 1560 | apply(rule at) | |
| 1561 | done | |
| 1562 | ||
| 1563 | lemma pt_fresh_bij1: | |
| 1564 | fixes pi :: "'x prm" | |
| 1565 | and x :: "'a" | |
| 1566 | and a :: "'x" | |
| 1567 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1568 |   and     at: "at TYPE('x)"
 | |
| 1569 | and a: "a\<sharp>x" | |
| 1570 | shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x)" | |
| 1571 | using a by (simp add: pt_fresh_bij[OF pt, OF at]) | |
| 1572 | ||
| 19566 | 1573 | lemma pt_fresh_bij2: | 
| 1574 | fixes pi :: "'x prm" | |
| 1575 | and x :: "'a" | |
| 1576 | and a :: "'x" | |
| 1577 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1578 |   and     at: "at TYPE('x)"
 | |
| 1579 | and a: "(pi\<bullet>a)\<sharp>(pi\<bullet>x)" | |
| 1580 | shows "a\<sharp>x" | |
| 1581 | using a by (simp add: pt_fresh_bij[OF pt, OF at]) | |
| 1582 | ||
| 19972 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1583 | lemma pt_fresh_eqvt: | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1584 | fixes pi :: "'x prm" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1585 | and x :: "'a" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1586 | and a :: "'x" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1587 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1588 |   and     at: "at TYPE('x)"
 | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1589 | shows "pi\<bullet>(a\<sharp>x) = (pi\<bullet>a)\<sharp>(pi\<bullet>x)" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1590 | by (simp add: perm_bool pt_fresh_bij[OF pt, OF at]) | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1591 | |
| 17870 | 1592 | lemma pt_perm_fresh1: | 
| 1593 | fixes a :: "'x" | |
| 1594 | and b :: "'x" | |
| 1595 | and x :: "'a" | |
| 1596 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1597 |   and     at: "at TYPE ('x)"
 | |
| 1598 | and a1: "\<not>(a\<sharp>x)" | |
| 1599 | and a2: "b\<sharp>x" | |
| 1600 | shows "[(a,b)]\<bullet>x \<noteq> x" | |
| 1601 | proof | |
| 1602 | assume neg: "[(a,b)]\<bullet>x = x" | |
| 1603 | from a1 have a1':"a\<in>(supp x)" by (simp add: fresh_def) | |
| 1604 | from a2 have a2':"b\<notin>(supp x)" by (simp add: fresh_def) | |
| 1605 | from a1' a2' have a3: "a\<noteq>b" by force | |
| 1606 | from a1' have "([(a,b)]\<bullet>a)\<in>([(a,b)]\<bullet>(supp x))" | |
| 1607 | by (simp only: pt_set_bij[OF at_pt_inst[OF at], OF at]) | |
| 19325 | 1608 | hence "b\<in>([(a,b)]\<bullet>(supp x))" by (simp add: at_calc[OF at]) | 
| 17870 | 1609 | hence "b\<in>(supp ([(a,b)]\<bullet>x))" by (simp add: pt_perm_supp[OF pt,OF at]) | 
| 1610 | with a2' neg show False by simp | |
| 1611 | qed | |
| 1612 | ||
| 19638 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1613 | (* the next two lemmas are needed in the proof *) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1614 | (* of the structural induction principle *) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1615 | lemma pt_fresh_aux: | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1616 | fixes a::"'x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1617 | and b::"'x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1618 | and c::"'x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1619 | and x::"'a" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1620 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1621 |   and     at: "at TYPE ('x)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1622 | assumes a1: "c\<noteq>a" and a2: "a\<sharp>x" and a3: "c\<sharp>x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1623 | shows "c\<sharp>([(a,b)]\<bullet>x)" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1624 | using a1 a2 a3 by (simp_all add: pt_fresh_left[OF pt, OF at] at_calc[OF at]) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1625 | |
| 22786 | 1626 | lemma pt_fresh_perm_app: | 
| 1627 | fixes pi :: "'x prm" | |
| 1628 | and a :: "'x" | |
| 1629 | and x :: "'y" | |
| 1630 |   assumes pt: "pt TYPE('y) TYPE('x)"
 | |
| 1631 |   and     at: "at TYPE('x)"
 | |
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1632 | and h1: "a\<sharp>pi" | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1633 | and h2: "a\<sharp>x" | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1634 | shows "a\<sharp>(pi\<bullet>x)" | 
| 22786 | 1635 | using assms | 
| 1636 | proof - | |
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1637 | have "a\<sharp>(rev pi)"using h1 by (simp add: fresh_list_rev) | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1638 | then have "(rev pi)\<bullet>a = a" by (simp add: at_prm_fresh[OF at]) | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1639 | then have "((rev pi)\<bullet>a)\<sharp>x" using h2 by simp | 
| 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 1640 | thus "a\<sharp>(pi\<bullet>x)" by (simp add: pt_fresh_right[OF pt, OF at]) | 
| 22786 | 1641 | qed | 
| 1642 | ||
| 1643 | lemma pt_fresh_perm_app_ineq: | |
| 19638 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1644 | fixes pi::"'x prm" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1645 | and c::"'y" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1646 | and x::"'a" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1647 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1648 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1649 |   and     at:  "at TYPE('x)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1650 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1651 |   and     dj:  "disjoint TYPE('y) TYPE('x)"
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1652 | assumes a: "c\<sharp>x" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1653 | shows "c\<sharp>(pi\<bullet>x)" | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1654 | using a by (simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp] dj_perm_forget[OF dj]) | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 1655 | |
| 22535 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1656 | lemma pt_fresh_eqvt_ineq: | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1657 | fixes pi::"'x prm" | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1658 | and c::"'y" | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1659 | and x::"'a" | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1660 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1661 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1662 |   and     at:  "at TYPE('x)"
 | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1663 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1664 |   and     dj:  "disjoint TYPE('y) TYPE('x)"
 | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1665 | shows "pi\<bullet>(c\<sharp>x) = (pi\<bullet>c)\<sharp>(pi\<bullet>x)" | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1666 | by (simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp] dj_perm_forget[OF dj] perm_bool) | 
| 
cbee450f88a6
added extended the lemma for equivariance of freshness
 urbanc parents: 
22514diff
changeset | 1667 | |
| 17870 | 1668 | --"the co-set of a finite set is infinte" | 
| 1669 | lemma finite_infinite: | |
| 1670 |   assumes a: "finite {b::'x. P b}"
 | |
| 1671 | and b: "infinite (UNIV::'x set)" | |
| 1672 |   shows "infinite {b. \<not>P b}"
 | |
| 27687 | 1673 | proof - | 
| 1674 |   from a b have "infinite (UNIV - {b::'x. P b})" by (simp add: Diff_infinite_finite)
 | |
| 1675 | moreover | |
| 1676 |   have "{b::'x. \<not>P b} = UNIV - {b::'x. P b}" by auto
 | |
| 1677 |   ultimately show "infinite {b::'x. \<not>P b}" by simp
 | |
| 1678 | qed | |
| 17870 | 1679 | |
| 1680 | lemma pt_fresh_fresh: | |
| 1681 | fixes x :: "'a" | |
| 1682 | and a :: "'x" | |
| 1683 | and b :: "'x" | |
| 1684 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1685 |   and     at: "at TYPE ('x)"
 | |
| 1686 | and a1: "a\<sharp>x" and a2: "b\<sharp>x" | |
| 1687 | shows "[(a,b)]\<bullet>x=x" | |
| 1688 | proof (cases "a=b") | |
| 19325 | 1689 | assume "a=b" | 
| 1690 | hence "[(a,b)] \<triangleq> []" by (simp add: at_ds1[OF at]) | |
| 17870 | 1691 | hence "[(a,b)]\<bullet>x=([]::'x prm)\<bullet>x" by (rule pt3[OF pt]) | 
| 1692 | thus ?thesis by (simp only: pt1[OF pt]) | |
| 1693 | next | |
| 1694 | assume c2: "a\<noteq>b" | |
| 1695 |   from a1 have f1: "finite {c. [(a,c)]\<bullet>x \<noteq> x}" by (simp add: fresh_def supp_def)
 | |
| 1696 |   from a2 have f2: "finite {c. [(b,c)]\<bullet>x \<noteq> x}" by (simp add: fresh_def supp_def)
 | |
| 1697 |   from f1 and f2 have f3: "finite {c. perm [(a,c)] x \<noteq> x \<or> perm [(b,c)] x \<noteq> x}" 
 | |
| 1698 | by (force simp only: Collect_disj_eq) | |
| 1699 |   have "infinite {c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}" 
 | |
| 1700 | by (simp add: finite_infinite[OF f3,OF at4[OF at], simplified]) | |
| 1701 |   hence "infinite ({c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}-{a,b})" 
 | |
| 1702 | by (force dest: Diff_infinite_finite) | |
| 29903 | 1703 |   hence "({c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}-{a,b}) \<noteq> {}"
 | 
| 44683 | 1704 | by (metis finite_set set_empty2) | 
| 17870 | 1705 |   hence "\<exists>c. c\<in>({c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}-{a,b})" by (force)
 | 
| 1706 | then obtain c | |
| 1707 | where eq1: "[(a,c)]\<bullet>x = x" | |
| 1708 | and eq2: "[(b,c)]\<bullet>x = x" | |
| 1709 | and ineq: "a\<noteq>c \<and> b\<noteq>c" | |
| 1710 | by (force) | |
| 1711 | hence "[(a,c)]\<bullet>([(b,c)]\<bullet>([(a,c)]\<bullet>x)) = x" by simp | |
| 1712 | hence eq3: "[(a,c),(b,c),(a,c)]\<bullet>x = x" by (simp add: pt2[OF pt,symmetric]) | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 1713 | from c2 ineq have "[(a,c),(b,c),(a,c)] \<triangleq> [(a,b)]" by (simp add: at_ds3[OF at]) | 
| 17870 | 1714 | hence "[(a,c),(b,c),(a,c)]\<bullet>x = [(a,b)]\<bullet>x" by (rule pt3[OF pt]) | 
| 1715 | thus ?thesis using eq3 by simp | |
| 1716 | qed | |
| 1717 | ||
| 26773 | 1718 | lemma pt_pi_fresh_fresh: | 
| 1719 | fixes x :: "'a" | |
| 1720 | and pi :: "'x prm" | |
| 1721 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1722 |   and     at: "at TYPE ('x)"
 | |
| 1723 | and a: "\<forall>(a,b)\<in>set pi. a\<sharp>x \<and> b\<sharp>x" | |
| 1724 | shows "pi\<bullet>x=x" | |
| 1725 | using a | |
| 1726 | proof (induct pi) | |
| 1727 | case Nil | |
| 1728 | show "([]::'x prm)\<bullet>x = x" by (rule pt1[OF pt]) | |
| 1729 | next | |
| 1730 | case (Cons ab pi) | |
| 1731 | have a: "\<forall>(a,b)\<in>set (ab#pi). a\<sharp>x \<and> b\<sharp>x" by fact | |
| 1732 | have ih: "(\<forall>(a,b)\<in>set pi. a\<sharp>x \<and> b\<sharp>x) \<Longrightarrow> pi\<bullet>x=x" by fact | |
| 1733 | obtain a b where e: "ab=(a,b)" by (cases ab) (auto) | |
| 1734 | from a have a': "a\<sharp>x" "b\<sharp>x" using e by auto | |
| 1735 | have "(ab#pi)\<bullet>x = ([(a,b)]@pi)\<bullet>x" using e by simp | |
| 1736 | also have "\<dots> = [(a,b)]\<bullet>(pi\<bullet>x)" by (simp only: pt2[OF pt]) | |
| 1737 | also have "\<dots> = [(a,b)]\<bullet>x" using ih a by simp | |
| 1738 | also have "\<dots> = x" using a' by (simp add: pt_fresh_fresh[OF pt, OF at]) | |
| 1739 | finally show "(ab#pi)\<bullet>x = x" by simp | |
| 1740 | qed | |
| 1741 | ||
| 17870 | 1742 | lemma pt_perm_compose: | 
| 1743 | fixes pi1 :: "'x prm" | |
| 1744 | and pi2 :: "'x prm" | |
| 1745 | and x :: "'a" | |
| 1746 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1747 |   and     at: "at TYPE('x)"
 | |
| 1748 | shows "pi2\<bullet>(pi1\<bullet>x) = (pi2\<bullet>pi1)\<bullet>(pi2\<bullet>x)" | |
| 1749 | proof - | |
| 23393 | 1750 | have "(pi2@pi1) \<triangleq> ((pi2\<bullet>pi1)@pi2)" by (rule at_ds8 [OF at]) | 
| 17870 | 1751 | hence "(pi2@pi1)\<bullet>x = ((pi2\<bullet>pi1)@pi2)\<bullet>x" by (rule pt3[OF pt]) | 
| 1752 | thus ?thesis by (simp add: pt2[OF pt]) | |
| 1753 | qed | |
| 1754 | ||
| 19045 | 1755 | lemma pt_perm_compose': | 
| 1756 | fixes pi1 :: "'x prm" | |
| 1757 | and pi2 :: "'x prm" | |
| 1758 | and x :: "'a" | |
| 1759 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1760 |   and     at: "at TYPE('x)"
 | |
| 1761 | shows "(pi2\<bullet>pi1)\<bullet>x = pi2\<bullet>(pi1\<bullet>((rev pi2)\<bullet>x))" | |
| 1762 | proof - | |
| 1763 | have "pi2\<bullet>(pi1\<bullet>((rev pi2)\<bullet>x)) = (pi2\<bullet>pi1)\<bullet>(pi2\<bullet>((rev pi2)\<bullet>x))" | |
| 1764 | by (rule pt_perm_compose[OF pt, OF at]) | |
| 1765 | also have "\<dots> = (pi2\<bullet>pi1)\<bullet>x" by (simp add: pt_pi_rev[OF pt, OF at]) | |
| 1766 | finally have "pi2\<bullet>(pi1\<bullet>((rev pi2)\<bullet>x)) = (pi2\<bullet>pi1)\<bullet>x" by simp | |
| 1767 | thus ?thesis by simp | |
| 1768 | qed | |
| 1769 | ||
| 17870 | 1770 | lemma pt_perm_compose_rev: | 
| 1771 | fixes pi1 :: "'x prm" | |
| 1772 | and pi2 :: "'x prm" | |
| 1773 | and x :: "'a" | |
| 1774 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1775 |   and     at: "at TYPE('x)"
 | |
| 1776 | shows "(rev pi2)\<bullet>((rev pi1)\<bullet>x) = (rev pi1)\<bullet>(rev (pi1\<bullet>pi2)\<bullet>x)" | |
| 1777 | proof - | |
| 18295 
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
 urbanc parents: 
18294diff
changeset | 1778 | have "((rev pi2)@(rev pi1)) \<triangleq> ((rev pi1)@(rev (pi1\<bullet>pi2)))" by (rule at_ds9[OF at]) | 
| 17870 | 1779 | hence "((rev pi2)@(rev pi1))\<bullet>x = ((rev pi1)@(rev (pi1\<bullet>pi2)))\<bullet>x" by (rule pt3[OF pt]) | 
| 1780 | thus ?thesis by (simp add: pt2[OF pt]) | |
| 1781 | qed | |
| 1782 | ||
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 1783 | section {* equivariance for some connectives *}
 | 
| 19972 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1784 | lemma pt_all_eqvt: | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1785 | fixes pi :: "'x prm" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1786 | and x :: "'a" | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1787 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1788 |   and     at: "at TYPE('x)"
 | 
| 22715 
381e6c45f13b
improved the equivariance lemmas for the quantifiers; had to export the lemma eqvt_force_add and eqvt_force_del in the thmdecls
 urbanc parents: 
22714diff
changeset | 1789 | shows "pi\<bullet>(\<forall>(x::'a). P x) = (\<forall>(x::'a). pi\<bullet>(P ((rev pi)\<bullet>x)))" | 
| 19972 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1790 | apply(auto simp add: perm_bool perm_fun_def) | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1791 | apply(drule_tac x="pi\<bullet>x" in spec) | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1792 | apply(simp add: pt_rev_pi[OF pt, OF at]) | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1793 | done | 
| 
89c5afe4139a
added more infrastructure for the recursion combinator
 urbanc parents: 
19869diff
changeset | 1794 | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1795 | lemma pt_ex_eqvt: | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1796 | fixes pi :: "'x prm" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1797 | and x :: "'a" | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1798 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1799 |   and     at: "at TYPE('x)"
 | 
| 22715 
381e6c45f13b
improved the equivariance lemmas for the quantifiers; had to export the lemma eqvt_force_add and eqvt_force_del in the thmdecls
 urbanc parents: 
22714diff
changeset | 1800 | shows "pi\<bullet>(\<exists>(x::'a). P x) = (\<exists>(x::'a). pi\<bullet>(P ((rev pi)\<bullet>x)))" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1801 | apply(auto simp add: perm_bool perm_fun_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1802 | apply(rule_tac x="pi\<bullet>x" in exI) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1803 | apply(simp add: pt_rev_pi[OF pt, OF at]) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1804 | done | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 1805 | |
| 28011 | 1806 | lemma pt_ex1_eqvt: | 
| 1807 | fixes pi :: "'x prm" | |
| 1808 | and x :: "'a" | |
| 1809 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1810 |   and     at: "at TYPE('x)"
 | |
| 1811 | shows "(pi\<bullet>(\<exists>!x. P (x::'a))) = (\<exists>!x. pi\<bullet>(P (rev pi\<bullet>x)))" | |
| 1812 | unfolding Ex1_def | |
| 1813 | by (simp add: pt_ex_eqvt[OF pt at] conj_eqvt pt_all_eqvt[OF pt at] | |
| 1814 | imp_eqvt pt_eq_eqvt[OF pt at] pt_pi_rev[OF pt at]) | |
| 1815 | ||
| 1816 | lemma pt_the_eqvt: | |
| 1817 | fixes pi :: "'x prm" | |
| 1818 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 1819 |   and     at: "at TYPE('x)"
 | |
| 1820 | and unique: "\<exists>!x. P x" | |
| 1821 | shows "pi\<bullet>(THE(x::'a). P x) = (THE(x::'a). pi\<bullet>(P ((rev pi)\<bullet>x)))" | |
| 1822 | apply(rule the1_equality [symmetric]) | |
| 1823 | apply(simp add: pt_ex1_eqvt[OF pt at,symmetric]) | |
| 1824 | apply(simp add: perm_bool unique) | |
| 1825 | apply(simp add: perm_bool pt_rev_pi [OF pt at]) | |
| 1826 | apply(rule theI'[OF unique]) | |
| 1827 | done | |
| 1828 | ||
| 17870 | 1829 | section {* facts about supports *}
 | 
| 1830 | (*==============================*) | |
| 1831 | ||
| 1832 | lemma supports_subset: | |
| 1833 | fixes x :: "'a" | |
| 1834 | and S1 :: "'x set" | |
| 1835 | and S2 :: "'x set" | |
| 1836 | assumes a: "S1 supports x" | |
| 18053 
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
 urbanc parents: 
18048diff
changeset | 1837 | and b: "S1 \<subseteq> S2" | 
| 17870 | 1838 | shows "S2 supports x" | 
| 1839 | using a b | |
| 22808 | 1840 | by (force simp add: supports_def) | 
| 17870 | 1841 | |
| 1842 | lemma supp_is_subset: | |
| 1843 | fixes S :: "'x set" | |
| 1844 | and x :: "'a" | |
| 1845 | assumes a1: "S supports x" | |
| 1846 | and a2: "finite S" | |
| 1847 | shows "(supp x)\<subseteq>S" | |
| 1848 | proof (rule ccontr) | |
| 1849 | assume "\<not>(supp x \<subseteq> S)" | |
| 1850 | hence "\<exists>a. a\<in>(supp x) \<and> a\<notin>S" by force | |
| 1851 | then obtain a where b1: "a\<in>supp x" and b2: "a\<notin>S" by force | |
| 22808 | 1852 | from a1 b2 have "\<forall>b. (b\<notin>S \<longrightarrow> ([(a,b)]\<bullet>x = x))" by (unfold supports_def, force) | 
| 19216 | 1853 |   hence "{b. [(a,b)]\<bullet>x \<noteq> x}\<subseteq>S" by force
 | 
| 17870 | 1854 |   with a2 have "finite {b. [(a,b)]\<bullet>x \<noteq> x}" by (simp add: finite_subset)
 | 
| 1855 | hence "a\<notin>(supp x)" by (unfold supp_def, auto) | |
| 1856 | with b1 show False by simp | |
| 1857 | qed | |
| 1858 | ||
| 18264 | 1859 | lemma supp_supports: | 
| 1860 | fixes x :: "'a" | |
| 1861 |   assumes  pt: "pt TYPE('a) TYPE('x)"
 | |
| 1862 |   and      at: "at TYPE ('x)"
 | |
| 1863 | shows "((supp x)::'x set) supports x" | |
| 22808 | 1864 | proof (unfold supports_def, intro strip) | 
| 18264 | 1865 | fix a b | 
| 1866 | assume "(a::'x)\<notin>(supp x) \<and> (b::'x)\<notin>(supp x)" | |
| 1867 | hence "a\<sharp>x" and "b\<sharp>x" by (auto simp add: fresh_def) | |
| 1868 | thus "[(a,b)]\<bullet>x = x" by (rule pt_fresh_fresh[OF pt, OF at]) | |
| 1869 | qed | |
| 1870 | ||
| 17870 | 1871 | lemma supports_finite: | 
| 1872 | fixes S :: "'x set" | |
| 1873 | and x :: "'a" | |
| 1874 | assumes a1: "S supports x" | |
| 1875 | and a2: "finite S" | |
| 1876 | shows "finite ((supp x)::'x set)" | |
| 1877 | proof - | |
| 1878 | have "(supp x)\<subseteq>S" using a1 a2 by (rule supp_is_subset) | |
| 1879 | thus ?thesis using a2 by (simp add: finite_subset) | |
| 1880 | qed | |
| 1881 | ||
| 1882 | lemma supp_is_inter: | |
| 1883 | fixes x :: "'a" | |
| 1884 |   assumes  pt: "pt TYPE('a) TYPE('x)"
 | |
| 1885 |   and      at: "at TYPE ('x)"
 | |
| 1886 |   and      fs: "fs TYPE('a) TYPE('x)"
 | |
| 1887 |   shows "((supp x)::'x set) = (\<Inter> {S. finite S \<and> S supports x})"
 | |
| 1888 | proof (rule equalityI) | |
| 1889 |   show "((supp x)::'x set) \<subseteq> (\<Inter> {S. finite S \<and> S supports x})"
 | |
| 1890 | proof (clarify) | |
| 1891 | fix S c | |
| 1892 | assume b: "c\<in>((supp x)::'x set)" and "finite (S::'x set)" and "S supports x" | |
| 1893 | hence "((supp x)::'x set)\<subseteq>S" by (simp add: supp_is_subset) | |
| 1894 | with b show "c\<in>S" by force | |
| 1895 | qed | |
| 1896 | next | |
| 1897 |   show "(\<Inter> {S. finite S \<and> S supports x}) \<subseteq> ((supp x)::'x set)"
 | |
| 1898 | proof (clarify, simp) | |
| 1899 | fix c | |
| 1900 | assume d: "\<forall>(S::'x set). finite S \<and> S supports x \<longrightarrow> c\<in>S" | |
| 1901 | have "((supp x)::'x set) supports x" by (rule supp_supports[OF pt, OF at]) | |
| 1902 | with d fs1[OF fs] show "c\<in>supp x" by force | |
| 1903 | qed | |
| 1904 | qed | |
| 1905 | ||
| 1906 | lemma supp_is_least_supports: | |
| 1907 | fixes S :: "'x set" | |
| 1908 | and x :: "'a" | |
| 1909 |   assumes  pt: "pt TYPE('a) TYPE('x)"
 | |
| 1910 |   and      at: "at TYPE ('x)"
 | |
| 1911 | and a1: "S supports x" | |
| 1912 | and a2: "finite S" | |
| 19477 | 1913 | and a3: "\<forall>S'. (S' supports x) \<longrightarrow> S\<subseteq>S'" | 
| 17870 | 1914 | shows "S = (supp x)" | 
| 1915 | proof (rule equalityI) | |
| 1916 | show "((supp x)::'x set)\<subseteq>S" using a1 a2 by (rule supp_is_subset) | |
| 1917 | next | |
| 19477 | 1918 | have "((supp x)::'x set) supports x" by (rule supp_supports[OF pt, OF at]) | 
| 1919 | with a3 show "S\<subseteq>supp x" by force | |
| 17870 | 1920 | qed | 
| 1921 | ||
| 1922 | lemma supports_set: | |
| 1923 | fixes S :: "'x set" | |
| 1924 | and X :: "'a set" | |
| 1925 |   assumes  pt: "pt TYPE('a) TYPE('x)"
 | |
| 1926 |   and      at: "at TYPE ('x)"
 | |
| 1927 | and a: "\<forall>x\<in>X. (\<forall>(a::'x) (b::'x). a\<notin>S\<and>b\<notin>S \<longrightarrow> ([(a,b)]\<bullet>x)\<in>X)" | |
| 1928 | shows "S supports X" | |
| 1929 | using a | |
| 22808 | 1930 | apply(auto simp add: supports_def) | 
| 17870 | 1931 | apply(simp add: pt_set_bij1a[OF pt, OF at]) | 
| 1932 | apply(force simp add: pt_swap_bij[OF pt, OF at]) | |
| 1933 | apply(simp add: pt_set_bij1a[OF pt, OF at]) | |
| 1934 | done | |
| 1935 | ||
| 1936 | lemma supports_fresh: | |
| 1937 | fixes S :: "'x set" | |
| 1938 | and a :: "'x" | |
| 1939 | and x :: "'a" | |
| 1940 | assumes a1: "S supports x" | |
| 1941 | and a2: "finite S" | |
| 1942 | and a3: "a\<notin>S" | |
| 1943 | shows "a\<sharp>x" | |
| 1944 | proof (simp add: fresh_def) | |
| 1945 | have "(supp x)\<subseteq>S" using a1 a2 by (rule supp_is_subset) | |
| 1946 | thus "a\<notin>(supp x)" using a3 by force | |
| 1947 | qed | |
| 1948 | ||
| 1949 | lemma at_fin_set_supports: | |
| 1950 | fixes X::"'x set" | |
| 1951 |   assumes at: "at TYPE('x)"
 | |
| 1952 | shows "X supports X" | |
| 19329 | 1953 | proof - | 
| 26806 | 1954 | have "\<forall>a b. a\<notin>X \<and> b\<notin>X \<longrightarrow> [(a,b)]\<bullet>X = X" | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1955 | by (auto simp add: perm_set_def at_calc[OF at]) | 
| 22808 | 1956 | then show ?thesis by (simp add: supports_def) | 
| 17870 | 1957 | qed | 
| 1958 | ||
| 19329 | 1959 | lemma infinite_Collection: | 
| 1960 | assumes a1:"infinite X" | |
| 1961 | and a2:"\<forall>b\<in>X. P(b)" | |
| 1962 |   shows "infinite {b\<in>X. P(b)}"
 | |
| 1963 | using a1 a2 | |
| 1964 | apply auto | |
| 1965 |   apply (subgoal_tac "infinite (X - {b\<in>X. P b})")
 | |
| 26806 | 1966 | apply (simp add: set_diff_eq) | 
| 19329 | 1967 | apply (simp add: Diff_infinite_finite) | 
| 1968 | done | |
| 1969 | ||
| 17870 | 1970 | lemma at_fin_set_supp: | 
| 19329 | 1971 | fixes X::"'x set" | 
| 17870 | 1972 |   assumes at: "at TYPE('x)"
 | 
| 1973 | and fs: "finite X" | |
| 1974 | shows "(supp X) = X" | |
| 19329 | 1975 | proof (rule subset_antisym) | 
| 1976 | show "(supp X) \<subseteq> X" using at_fin_set_supports[OF at] using fs by (simp add: supp_is_subset) | |
| 1977 | next | |
| 1978 | have inf: "infinite (UNIV-X)" using at4[OF at] fs by (auto simp add: Diff_infinite_finite) | |
| 1979 |   { fix a::"'x"
 | |
| 1980 | assume asm: "a\<in>X" | |
| 26806 | 1981 | hence "\<forall>b\<in>(UNIV-X). [(a,b)]\<bullet>X\<noteq>X" | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 1982 | by (auto simp add: perm_set_def at_calc[OF at]) | 
| 19329 | 1983 |     with inf have "infinite {b\<in>(UNIV-X). [(a,b)]\<bullet>X\<noteq>X}" by (rule infinite_Collection)
 | 
| 1984 |     hence "infinite {b. [(a,b)]\<bullet>X\<noteq>X}" by (rule_tac infinite_super, auto)
 | |
| 1985 | hence "a\<in>(supp X)" by (simp add: supp_def) | |
| 1986 | } | |
| 1987 | then show "X\<subseteq>(supp X)" by blast | |
| 17870 | 1988 | qed | 
| 1989 | ||
| 25950 | 1990 | lemma at_fin_set_fresh: | 
| 1991 | fixes X::"'x set" | |
| 1992 |   assumes at: "at TYPE('x)"
 | |
| 1993 | and fs: "finite X" | |
| 1994 | shows "(x \<sharp> X) = (x \<notin> X)" | |
| 1995 | by (simp add: at_fin_set_supp fresh_def at fs) | |
| 1996 | ||
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 1997 | |
| 17870 | 1998 | section {* Permutations acting on Functions *}
 | 
| 1999 | (*==========================================*) | |
| 2000 | ||
| 2001 | lemma pt_fun_app_eq: | |
| 2002 | fixes f :: "'a\<Rightarrow>'b" | |
| 2003 | and x :: "'a" | |
| 2004 | and pi :: "'x prm" | |
| 2005 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2006 |   and     at: "at TYPE('x)"
 | |
| 2007 | shows "pi\<bullet>(f x) = (pi\<bullet>f)(pi\<bullet>x)" | |
| 2008 | by (simp add: perm_fun_def pt_rev_pi[OF pt, OF at]) | |
| 2009 | ||
| 2010 | ||
| 19045 | 2011 | --"sometimes pt_fun_app_eq does too much; this lemma 'corrects it'" | 
| 17870 | 2012 | lemma pt_perm: | 
| 2013 | fixes x :: "'a" | |
| 2014 | and pi1 :: "'x prm" | |
| 2015 | and pi2 :: "'x prm" | |
| 2016 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2017 |   and     at: "at TYPE ('x)"
 | |
| 2018 | shows "(pi1\<bullet>perm pi2)(pi1\<bullet>x) = pi1\<bullet>(pi2\<bullet>x)" | |
| 2019 | by (simp add: pt_fun_app_eq[OF pt, OF at]) | |
| 2020 | ||
| 2021 | ||
| 2022 | lemma pt_fun_eq: | |
| 2023 | fixes f :: "'a\<Rightarrow>'b" | |
| 2024 | and pi :: "'x prm" | |
| 2025 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2026 |   and     at: "at TYPE('x)"
 | |
| 2027 | shows "(pi\<bullet>f = f) = (\<forall> x. pi\<bullet>(f x) = f (pi\<bullet>x))" (is "?LHS = ?RHS") | |
| 2028 | proof | |
| 2029 | assume a: "?LHS" | |
| 2030 | show "?RHS" | |
| 2031 | proof | |
| 2032 | fix x | |
| 2033 | have "pi\<bullet>(f x) = (pi\<bullet>f)(pi\<bullet>x)" by (simp add: pt_fun_app_eq[OF pt, OF at]) | |
| 2034 | also have "\<dots> = f (pi\<bullet>x)" using a by simp | |
| 2035 | finally show "pi\<bullet>(f x) = f (pi\<bullet>x)" by simp | |
| 2036 | qed | |
| 2037 | next | |
| 2038 | assume b: "?RHS" | |
| 2039 | show "?LHS" | |
| 2040 | proof (rule ccontr) | |
| 2041 | assume "(pi\<bullet>f) \<noteq> f" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 2042 | hence "\<exists>x. (pi\<bullet>f) x \<noteq> f x" by (simp add: fun_eq_iff) | 
| 19477 | 2043 | then obtain x where b1: "(pi\<bullet>f) x \<noteq> f x" by force | 
| 2044 | from b have "pi\<bullet>(f ((rev pi)\<bullet>x)) = f (pi\<bullet>((rev pi)\<bullet>x))" by force | |
| 2045 | hence "(pi\<bullet>f)(pi\<bullet>((rev pi)\<bullet>x)) = f (pi\<bullet>((rev pi)\<bullet>x))" | |
| 17870 | 2046 | by (simp add: pt_fun_app_eq[OF pt, OF at]) | 
| 19477 | 2047 | hence "(pi\<bullet>f) x = f x" by (simp add: pt_pi_rev[OF pt, OF at]) | 
| 17870 | 2048 | with b1 show "False" by simp | 
| 2049 | qed | |
| 2050 | qed | |
| 2051 | ||
| 2052 | -- "two helper lemmas for the equivariance of functions" | |
| 2053 | lemma pt_swap_eq_aux: | |
| 2054 | fixes y :: "'a" | |
| 2055 | and pi :: "'x prm" | |
| 2056 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2057 | and a: "\<forall>(a::'x) (b::'x). [(a,b)]\<bullet>y = y" | |
| 2058 | shows "pi\<bullet>y = y" | |
| 2059 | proof(induct pi) | |
| 24544 | 2060 | case Nil show ?case by (simp add: pt1[OF pt]) | 
| 2061 | next | |
| 2062 | case (Cons x xs) | |
| 2063 | have ih: "xs\<bullet>y = y" by fact | |
| 2064 | obtain a b where p: "x=(a,b)" by force | |
| 2065 | have "((a,b)#xs)\<bullet>y = ([(a,b)]@xs)\<bullet>y" by simp | |
| 2066 | also have "\<dots> = [(a,b)]\<bullet>(xs\<bullet>y)" by (simp only: pt2[OF pt]) | |
| 2067 | finally show ?case using a ih p by simp | |
| 2068 | qed | |
| 17870 | 2069 | |
| 2070 | lemma pt_swap_eq: | |
| 2071 | fixes y :: "'a" | |
| 2072 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2073 | shows "(\<forall>(a::'x) (b::'x). [(a,b)]\<bullet>y = y) = (\<forall>pi::'x prm. pi\<bullet>y = y)" | |
| 2074 | by (force intro: pt_swap_eq_aux[OF pt]) | |
| 2075 | ||
| 2076 | lemma pt_eqvt_fun1a: | |
| 2077 | fixes f :: "'a\<Rightarrow>'b" | |
| 2078 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2079 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 2080 |   and     at:  "at TYPE('x)"
 | |
| 2081 |   and     a:   "((supp f)::'x set)={}"
 | |
| 2082 | shows "\<forall>(pi::'x prm). pi\<bullet>f = f" | |
| 2083 | proof (intro strip) | |
| 2084 | fix pi | |
| 2085 | have "\<forall>a b. a\<notin>((supp f)::'x set) \<and> b\<notin>((supp f)::'x set) \<longrightarrow> (([(a,b)]\<bullet>f) = f)" | |
| 2086 | by (intro strip, fold fresh_def, | |
| 2087 | simp add: pt_fresh_fresh[OF pt_fun_inst[OF pta, OF ptb, OF at],OF at]) | |
| 2088 | with a have "\<forall>(a::'x) (b::'x). ([(a,b)]\<bullet>f) = f" by force | |
| 2089 | hence "\<forall>(pi::'x prm). pi\<bullet>f = f" | |
| 2090 | by (simp add: pt_swap_eq[OF pt_fun_inst[OF pta, OF ptb, OF at]]) | |
| 2091 | thus "(pi::'x prm)\<bullet>f = f" by simp | |
| 2092 | qed | |
| 2093 | ||
| 2094 | lemma pt_eqvt_fun1b: | |
| 2095 | fixes f :: "'a\<Rightarrow>'b" | |
| 2096 | assumes a: "\<forall>(pi::'x prm). pi\<bullet>f = f" | |
| 2097 |   shows "((supp f)::'x set)={}"
 | |
| 2098 | using a by (simp add: supp_def) | |
| 2099 | ||
| 2100 | lemma pt_eqvt_fun1: | |
| 2101 | fixes f :: "'a\<Rightarrow>'b" | |
| 2102 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2103 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 2104 |   and     at: "at TYPE('x)"
 | |
| 2105 |   shows "(((supp f)::'x set)={}) = (\<forall>(pi::'x prm). pi\<bullet>f = f)" (is "?LHS = ?RHS")
 | |
| 2106 | by (rule iffI, simp add: pt_eqvt_fun1a[OF pta, OF ptb, OF at], simp add: pt_eqvt_fun1b) | |
| 2107 | ||
| 2108 | lemma pt_eqvt_fun2a: | |
| 2109 | fixes f :: "'a\<Rightarrow>'b" | |
| 2110 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2111 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 2112 |   and     at: "at TYPE('x)"
 | |
| 2113 |   assumes a: "((supp f)::'x set)={}"
 | |
| 2114 | shows "\<forall>(pi::'x prm) (x::'a). pi\<bullet>(f x) = f(pi\<bullet>x)" | |
| 2115 | proof (intro strip) | |
| 2116 | fix pi x | |
| 2117 | from a have b: "\<forall>(pi::'x prm). pi\<bullet>f = f" by (simp add: pt_eqvt_fun1[OF pta, OF ptb, OF at]) | |
| 2118 | have "(pi::'x prm)\<bullet>(f x) = (pi\<bullet>f)(pi\<bullet>x)" by (simp add: pt_fun_app_eq[OF pta, OF at]) | |
| 2119 | with b show "(pi::'x prm)\<bullet>(f x) = f (pi\<bullet>x)" by force | |
| 2120 | qed | |
| 2121 | ||
| 2122 | lemma pt_eqvt_fun2b: | |
| 2123 | fixes f :: "'a\<Rightarrow>'b" | |
| 2124 |   assumes pt1: "pt TYPE('a) TYPE('x)"
 | |
| 2125 |   and     pt2: "pt TYPE('b) TYPE('x)"
 | |
| 2126 |   and     at: "at TYPE('x)"
 | |
| 2127 | assumes a: "\<forall>(pi::'x prm) (x::'a). pi\<bullet>(f x) = f(pi\<bullet>x)" | |
| 2128 |   shows "((supp f)::'x set)={}"
 | |
| 2129 | proof - | |
| 2130 | from a have "\<forall>(pi::'x prm). pi\<bullet>f = f" by (simp add: pt_fun_eq[OF pt1, OF at, symmetric]) | |
| 2131 | thus ?thesis by (simp add: supp_def) | |
| 2132 | qed | |
| 2133 | ||
| 2134 | lemma pt_eqvt_fun2: | |
| 2135 | fixes f :: "'a\<Rightarrow>'b" | |
| 2136 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2137 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 2138 |   and     at: "at TYPE('x)"
 | |
| 2139 |   shows "(((supp f)::'x set)={}) = (\<forall>(pi::'x prm) (x::'a). pi\<bullet>(f x) = f(pi\<bullet>x))" 
 | |
| 2140 | by (rule iffI, | |
| 2141 | simp add: pt_eqvt_fun2a[OF pta, OF ptb, OF at], | |
| 2142 | simp add: pt_eqvt_fun2b[OF pta, OF ptb, OF at]) | |
| 2143 | ||
| 2144 | lemma pt_supp_fun_subset: | |
| 2145 | fixes f :: "'a\<Rightarrow>'b" | |
| 2146 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2147 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 2148 |   and     at: "at TYPE('x)" 
 | |
| 2149 | and f1: "finite ((supp f)::'x set)" | |
| 2150 | and f2: "finite ((supp x)::'x set)" | |
| 2151 | shows "supp (f x) \<subseteq> (((supp f)\<union>(supp x))::'x set)" | |
| 2152 | proof - | |
| 2153 | have s1: "((supp f)\<union>((supp x)::'x set)) supports (f x)" | |
| 22808 | 2154 | proof (simp add: supports_def, fold fresh_def, auto) | 
| 17870 | 2155 | fix a::"'x" and b::"'x" | 
| 2156 | assume "a\<sharp>f" and "b\<sharp>f" | |
| 2157 | hence a1: "[(a,b)]\<bullet>f = f" | |
| 2158 | by (rule pt_fresh_fresh[OF pt_fun_inst[OF pta, OF ptb, OF at], OF at]) | |
| 2159 | assume "a\<sharp>x" and "b\<sharp>x" | |
| 2160 | hence a2: "[(a,b)]\<bullet>x = x" by (rule pt_fresh_fresh[OF pta, OF at]) | |
| 2161 | from a1 a2 show "[(a,b)]\<bullet>(f x) = (f x)" by (simp add: pt_fun_app_eq[OF pta, OF at]) | |
| 2162 | qed | |
| 2163 | from f1 f2 have "finite ((supp f)\<union>((supp x)::'x set))" by force | |
| 2164 | with s1 show ?thesis by (rule supp_is_subset) | |
| 2165 | qed | |
| 2166 | ||
| 2167 | lemma pt_empty_supp_fun_subset: | |
| 2168 | fixes f :: "'a\<Rightarrow>'b" | |
| 2169 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2170 |   and     ptb: "pt TYPE('b) TYPE('x)"
 | |
| 2171 |   and     at:  "at TYPE('x)" 
 | |
| 2172 |   and     e:   "(supp f)=({}::'x set)"
 | |
| 2173 | shows "supp (f x) \<subseteq> ((supp x)::'x set)" | |
| 2174 | proof (unfold supp_def, auto) | |
| 2175 | fix a::"'x" | |
| 2176 |   assume a1: "finite {b. [(a, b)]\<bullet>x \<noteq> x}"
 | |
| 2177 |   assume "infinite {b. [(a, b)]\<bullet>(f x) \<noteq> f x}"
 | |
| 2178 |   hence a2: "infinite {b. f ([(a, b)]\<bullet>x) \<noteq> f x}" using e
 | |
| 2179 | by (simp add: pt_eqvt_fun2[OF pta, OF ptb, OF at]) | |
| 2180 |   have a3: "{b. f ([(a,b)]\<bullet>x) \<noteq> f x}\<subseteq>{b. [(a,b)]\<bullet>x \<noteq> x}" by force
 | |
| 2181 | from a1 a2 a3 show False by (force dest: finite_subset) | |
| 2182 | qed | |
| 2183 | ||
| 18264 | 2184 | section {* Facts about the support of finite sets of finitely supported things *}
 | 
| 2185 | (*=============================================================================*) | |
| 2186 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 2187 | definition X_to_Un_supp :: "('a set) \<Rightarrow> 'x set" where
 | 
| 18264 | 2188 | "X_to_Un_supp X \<equiv> \<Union>x\<in>X. ((supp x)::'x set)" | 
| 2189 | ||
| 2190 | lemma UNION_f_eqvt: | |
| 2191 |   fixes X::"('a set)"
 | |
| 2192 | and f::"'a \<Rightarrow> 'x set" | |
| 2193 | and pi::"'x prm" | |
| 2194 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2195 |   and     at: "at TYPE('x)"
 | |
| 2196 | shows "pi\<bullet>(\<Union>x\<in>X. f x) = (\<Union>x\<in>(pi\<bullet>X). (pi\<bullet>f) x)" | |
| 2197 | proof - | |
| 2198 |   have pt_x: "pt TYPE('x) TYPE('x)" by (force intro: at_pt_inst at)
 | |
| 2199 | show ?thesis | |
| 18351 | 2200 | proof (rule equalityI) | 
| 2201 | case goal1 | |
| 2202 | show "pi\<bullet>(\<Union>x\<in>X. f x) \<subseteq> (\<Union>x\<in>(pi\<bullet>X). (pi\<bullet>f) x)" | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2203 | apply(auto simp add: perm_set_def) | 
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 2204 | apply(rule_tac x="pi\<bullet>xb" in exI) | 
| 18351 | 2205 | apply(rule conjI) | 
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 2206 | apply(rule_tac x="xb" in exI) | 
| 18351 | 2207 | apply(simp) | 
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 2208 | apply(subgoal_tac "(pi\<bullet>f) (pi\<bullet>xb) = pi\<bullet>(f xb)")(*A*) | 
| 18351 | 2209 | apply(simp) | 
| 2210 | apply(rule pt_set_bij2[OF pt_x, OF at]) | |
| 2211 | apply(assumption) | |
| 2212 | (*A*) | |
| 2213 | apply(rule sym) | |
| 2214 | apply(rule pt_fun_app_eq[OF pt, OF at]) | |
| 2215 | done | |
| 2216 | next | |
| 2217 | case goal2 | |
| 2218 | show "(\<Union>x\<in>(pi\<bullet>X). (pi\<bullet>f) x) \<subseteq> pi\<bullet>(\<Union>x\<in>X. f x)" | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2219 | apply(auto simp add: perm_set_def) | 
| 18351 | 2220 | apply(rule_tac x="(rev pi)\<bullet>x" in exI) | 
| 2221 | apply(rule conjI) | |
| 2222 | apply(simp add: pt_pi_rev[OF pt_x, OF at]) | |
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 2223 | apply(rule_tac x="xb" in bexI) | 
| 18351 | 2224 | apply(simp add: pt_set_bij1[OF pt_x, OF at]) | 
| 2225 | apply(simp add: pt_fun_app_eq[OF pt, OF at]) | |
| 2226 | apply(assumption) | |
| 2227 | done | |
| 2228 | qed | |
| 18264 | 2229 | qed | 
| 2230 | ||
| 2231 | lemma X_to_Un_supp_eqvt: | |
| 2232 |   fixes X::"('a set)"
 | |
| 2233 | and pi::"'x prm" | |
| 2234 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2235 |   and     at: "at TYPE('x)"
 | |
| 2236 | shows "pi\<bullet>(X_to_Un_supp X) = ((X_to_Un_supp (pi\<bullet>X))::'x set)" | |
| 2237 | apply(simp add: X_to_Un_supp_def) | |
| 45961 | 2238 | apply(simp add: UNION_f_eqvt[OF pt, OF at] perm_fun_def) | 
| 18264 | 2239 | apply(simp add: pt_perm_supp[OF pt, OF at]) | 
| 2240 | apply(simp add: pt_pi_rev[OF pt, OF at]) | |
| 2241 | done | |
| 2242 | ||
| 2243 | lemma Union_supports_set: | |
| 2244 |   fixes X::"('a set)"
 | |
| 2245 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2246 |   and     at: "at TYPE('x)"
 | |
| 2247 | shows "(\<Union>x\<in>X. ((supp x)::'x set)) supports X" | |
| 22808 | 2248 | apply(simp add: supports_def fresh_def[symmetric]) | 
| 18264 | 2249 | apply(rule allI)+ | 
| 2250 | apply(rule impI) | |
| 2251 | apply(erule conjE) | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2252 | apply(simp add: perm_set_def) | 
| 18264 | 2253 | apply(auto) | 
| 22829 
f1db55c7534d
tuned some proofs and changed variable names in some definitions of Nominal.thy
 urbanc parents: 
22808diff
changeset | 2254 | apply(subgoal_tac "[(a,b)]\<bullet>xa = xa")(*A*) | 
| 18264 | 2255 | apply(simp) | 
| 2256 | apply(rule pt_fresh_fresh[OF pt, OF at]) | |
| 2257 | apply(force) | |
| 2258 | apply(force) | |
| 2259 | apply(rule_tac x="x" in exI) | |
| 2260 | apply(simp) | |
| 2261 | apply(rule sym) | |
| 2262 | apply(rule pt_fresh_fresh[OF pt, OF at]) | |
| 2263 | apply(force)+ | |
| 2264 | done | |
| 2265 | ||
| 2266 | lemma Union_of_fin_supp_sets: | |
| 2267 |   fixes X::"('a set)"
 | |
| 2268 |   assumes fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2269 | and fi: "finite X" | |
| 2270 | shows "finite (\<Union>x\<in>X. ((supp x)::'x set))" | |
| 2271 | using fi by (induct, auto simp add: fs1[OF fs]) | |
| 2272 | ||
| 2273 | lemma Union_included_in_supp: | |
| 2274 |   fixes X::"('a set)"
 | |
| 2275 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2276 |   and     at: "at TYPE('x)"
 | |
| 2277 |   and     fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2278 | and fi: "finite X" | |
| 2279 | shows "(\<Union>x\<in>X. ((supp x)::'x set)) \<subseteq> supp X" | |
| 2280 | proof - | |
| 2281 | have "supp ((X_to_Un_supp X)::'x set) \<subseteq> ((supp X)::'x set)" | |
| 2282 | apply(rule pt_empty_supp_fun_subset) | |
| 45961 | 2283 | apply(force intro: pt_set_inst at_pt_inst pt at)+ | 
| 18264 | 2284 | apply(rule pt_eqvt_fun2b) | 
| 45961 | 2285 | apply(force intro: pt_set_inst at_pt_inst pt at)+ | 
| 18351 | 2286 | apply(rule allI)+ | 
| 18264 | 2287 | apply(rule X_to_Un_supp_eqvt[OF pt, OF at]) | 
| 2288 | done | |
| 2289 | hence "supp (\<Union>x\<in>X. ((supp x)::'x set)) \<subseteq> ((supp X)::'x set)" by (simp add: X_to_Un_supp_def) | |
| 2290 | moreover | |
| 2291 | have "supp (\<Union>x\<in>X. ((supp x)::'x set)) = (\<Union>x\<in>X. ((supp x)::'x set))" | |
| 2292 | apply(rule at_fin_set_supp[OF at]) | |
| 2293 | apply(rule Union_of_fin_supp_sets[OF fs, OF fi]) | |
| 2294 | done | |
| 2295 | ultimately show ?thesis by force | |
| 2296 | qed | |
| 2297 | ||
| 2298 | lemma supp_of_fin_sets: | |
| 2299 |   fixes X::"('a set)"
 | |
| 2300 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2301 |   and     at: "at TYPE('x)"
 | |
| 2302 |   and     fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2303 | and fi: "finite X" | |
| 2304 | shows "(supp X) = (\<Union>x\<in>X. ((supp x)::'x set))" | |
| 18351 | 2305 | apply(rule equalityI) | 
| 18264 | 2306 | apply(rule supp_is_subset) | 
| 2307 | apply(rule Union_supports_set[OF pt, OF at]) | |
| 2308 | apply(rule Union_of_fin_supp_sets[OF fs, OF fi]) | |
| 2309 | apply(rule Union_included_in_supp[OF pt, OF at, OF fs, OF fi]) | |
| 2310 | done | |
| 2311 | ||
| 2312 | lemma supp_fin_union: | |
| 2313 |   fixes X::"('a set)"
 | |
| 2314 |   and   Y::"('a set)"
 | |
| 2315 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2316 |   and     at: "at TYPE('x)"
 | |
| 2317 |   and     fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2318 | and f1: "finite X" | |
| 2319 | and f2: "finite Y" | |
| 2320 | shows "(supp (X\<union>Y)) = (supp X)\<union>((supp Y)::'x set)" | |
| 2321 | using f1 f2 by (force simp add: supp_of_fin_sets[OF pt, OF at, OF fs]) | |
| 2322 | ||
| 2323 | lemma supp_fin_insert: | |
| 2324 |   fixes X::"('a set)"
 | |
| 2325 | and x::"'a" | |
| 2326 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2327 |   and     at: "at TYPE('x)"
 | |
| 2328 |   and     fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2329 | and f: "finite X" | |
| 2330 | shows "(supp (insert x X)) = (supp x)\<union>((supp X)::'x set)" | |
| 2331 | proof - | |
| 2332 |   have "(supp (insert x X)) = ((supp ({x}\<union>(X::'a set)))::'x set)" by simp
 | |
| 2333 |   also have "\<dots> = (supp {x})\<union>(supp X)"
 | |
| 2334 | by (rule supp_fin_union[OF pt, OF at, OF fs], simp_all add: f) | |
| 2335 | finally show "(supp (insert x X)) = (supp x)\<union>((supp X)::'x set)" | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2336 | by (simp add: supp_singleton) | 
| 18264 | 2337 | qed | 
| 2338 | ||
| 2339 | lemma fresh_fin_union: | |
| 2340 |   fixes X::"('a set)"
 | |
| 2341 |   and   Y::"('a set)"
 | |
| 2342 | and a::"'x" | |
| 2343 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2344 |   and     at: "at TYPE('x)"
 | |
| 2345 |   and     fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2346 | and f1: "finite X" | |
| 2347 | and f2: "finite Y" | |
| 2348 | shows "a\<sharp>(X\<union>Y) = (a\<sharp>X \<and> a\<sharp>Y)" | |
| 2349 | apply(simp add: fresh_def) | |
| 2350 | apply(simp add: supp_fin_union[OF pt, OF at, OF fs, OF f1, OF f2]) | |
| 2351 | done | |
| 2352 | ||
| 2353 | lemma fresh_fin_insert: | |
| 2354 |   fixes X::"('a set)"
 | |
| 2355 | and x::"'a" | |
| 2356 | and a::"'x" | |
| 2357 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2358 |   and     at: "at TYPE('x)"
 | |
| 2359 |   and     fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2360 | and f: "finite X" | |
| 2361 | shows "a\<sharp>(insert x X) = (a\<sharp>x \<and> a\<sharp>X)" | |
| 2362 | apply(simp add: fresh_def) | |
| 2363 | apply(simp add: supp_fin_insert[OF pt, OF at, OF fs, OF f]) | |
| 2364 | done | |
| 2365 | ||
| 2366 | lemma fresh_fin_insert1: | |
| 2367 |   fixes X::"('a set)"
 | |
| 2368 | and x::"'a" | |
| 2369 | and a::"'x" | |
| 2370 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2371 |   and     at: "at TYPE('x)"
 | |
| 2372 |   and     fs: "fs TYPE('a) TYPE('x)" 
 | |
| 2373 | and f: "finite X" | |
| 2374 | and a1: "a\<sharp>x" | |
| 2375 | and a2: "a\<sharp>X" | |
| 2376 | shows "a\<sharp>(insert x X)" | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2377 | using a1 a2 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2378 | by (simp add: fresh_fin_insert[OF pt, OF at, OF fs, OF f]) | 
| 18264 | 2379 | |
| 2380 | lemma pt_list_set_supp: | |
| 2381 | fixes xs :: "'a list" | |
| 2382 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2383 |   and     at: "at TYPE('x)"
 | |
| 2384 |   and     fs: "fs TYPE('a) TYPE('x)"
 | |
| 2385 | shows "supp (set xs) = ((supp xs)::'x set)" | |
| 2386 | proof - | |
| 2387 | have "supp (set xs) = (\<Union>x\<in>(set xs). ((supp x)::'x set))" | |
| 2388 | by (rule supp_of_fin_sets[OF pt, OF at, OF fs], rule finite_set) | |
| 2389 | also have "(\<Union>x\<in>(set xs). ((supp x)::'x set)) = (supp xs)" | |
| 2390 | proof(induct xs) | |
| 2391 | case Nil show ?case by (simp add: supp_list_nil) | |
| 2392 | next | |
| 2393 | case (Cons h t) thus ?case by (simp add: supp_list_cons) | |
| 2394 | qed | |
| 2395 | finally show ?thesis by simp | |
| 2396 | qed | |
| 2397 | ||
| 2398 | lemma pt_list_set_fresh: | |
| 2399 | fixes a :: "'x" | |
| 2400 | and xs :: "'a list" | |
| 2401 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2402 |   and     at: "at TYPE('x)"
 | |
| 2403 |   and     fs: "fs TYPE('a) TYPE('x)"
 | |
| 2404 | shows "a\<sharp>(set xs) = a\<sharp>xs" | |
| 2405 | by (simp add: fresh_def pt_list_set_supp[OF pt, OF at, OF fs]) | |
| 26847 | 2406 | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2407 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2408 | section {* generalisation of freshness to lists and sets of atoms *}
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2409 | (*================================================================*) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2410 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2411 | consts | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2412 |   fresh_star :: "'b \<Rightarrow> 'a \<Rightarrow> bool" ("_ \<sharp>* _" [100,100] 100)
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2413 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2414 | defs (overloaded) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2415 | fresh_star_set: "xs\<sharp>*c \<equiv> \<forall>x\<in>xs. x\<sharp>c" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2416 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2417 | defs (overloaded) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2418 | fresh_star_list: "xs\<sharp>*c \<equiv> \<forall>x\<in>set xs. x\<sharp>c" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2419 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2420 | lemmas fresh_star_def = fresh_star_list fresh_star_set | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2421 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2422 | lemma fresh_star_prod_set: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2423 | fixes xs::"'a set" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2424 | shows "xs\<sharp>*(a,b) = (xs\<sharp>*a \<and> xs\<sharp>*b)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2425 | by (auto simp add: fresh_star_def fresh_prod) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2426 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2427 | lemma fresh_star_prod_list: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2428 | fixes xs::"'a list" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2429 | shows "xs\<sharp>*(a,b) = (xs\<sharp>*a \<and> xs\<sharp>*b)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2430 | by (auto simp add: fresh_star_def fresh_prod) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2431 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2432 | lemmas fresh_star_prod = fresh_star_prod_list fresh_star_prod_set | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2433 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2434 | lemma fresh_star_set_eq: "set xs \<sharp>* c = xs \<sharp>* c" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2435 | by (simp add: fresh_star_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2436 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2437 | lemma fresh_star_Un_elim: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2438 | "((S \<union> T) \<sharp>* c \<Longrightarrow> PROP C) \<equiv> (S \<sharp>* c \<Longrightarrow> T \<sharp>* c \<Longrightarrow> PROP C)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2439 | apply rule | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2440 | apply (simp_all add: fresh_star_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2441 | apply (erule meta_mp) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2442 | apply blast | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2443 | done | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2444 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2445 | lemma fresh_star_insert_elim: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2446 | "(insert x S \<sharp>* c \<Longrightarrow> PROP C) \<equiv> (x \<sharp> c \<Longrightarrow> S \<sharp>* c \<Longrightarrow> PROP C)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2447 | by rule (simp_all add: fresh_star_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2448 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2449 | lemma fresh_star_empty_elim: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2450 |   "({} \<sharp>* c \<Longrightarrow> PROP C) \<equiv> PROP C"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2451 | by (simp add: fresh_star_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2452 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2453 | text {* Normalization of freshness results; see \ @{text nominal_induct} *}
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2454 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2455 | lemma fresh_star_unit_elim: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2456 | shows "((a::'a set)\<sharp>*() \<Longrightarrow> PROP C) \<equiv> PROP C" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2457 | and "((b::'a list)\<sharp>*() \<Longrightarrow> PROP C) \<equiv> PROP C" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2458 | by (simp_all add: fresh_star_def fresh_def supp_unit) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2459 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2460 | lemma fresh_star_prod_elim: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2461 | shows "((a::'a set)\<sharp>*(x,y) \<Longrightarrow> PROP C) \<equiv> (a\<sharp>*x \<Longrightarrow> a\<sharp>*y \<Longrightarrow> PROP C)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2462 | and "((b::'a list)\<sharp>*(x,y) \<Longrightarrow> PROP C) \<equiv> (b\<sharp>*x \<Longrightarrow> b\<sharp>*y \<Longrightarrow> PROP C)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2463 | by (rule, simp_all add: fresh_star_prod)+ | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2464 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2465 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2466 | lemma pt_fresh_star_bij_ineq: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2467 | fixes pi :: "'x prm" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2468 | and x :: "'a" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2469 | and a :: "'y set" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2470 | and b :: "'y list" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2471 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2472 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2473 |   and     at:  "at TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2474 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2475 | shows "(pi\<bullet>a)\<sharp>*(pi\<bullet>x) = a\<sharp>*x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2476 | and "(pi\<bullet>b)\<sharp>*(pi\<bullet>x) = b\<sharp>*x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2477 | apply(unfold fresh_star_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2478 | apply(auto) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2479 | apply(drule_tac x="pi\<bullet>xa" in bspec) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2480 | apply(erule pt_set_bij2[OF ptb, OF at]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2481 | apply(simp add: fresh_star_def pt_fresh_bij_ineq[OF pta, OF ptb, OF at, OF cp]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2482 | apply(drule_tac x="(rev pi)\<bullet>xa" in bspec) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2483 | apply(simp add: pt_set_bij1[OF ptb, OF at]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2484 | apply(simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2485 | apply(drule_tac x="pi\<bullet>xa" in bspec) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2486 | apply(simp add: pt_set_bij1[OF ptb, OF at]) | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2487 | apply(simp add: set_eqvt pt_rev_pi[OF pt_list_inst[OF ptb], OF at]) | 
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2488 | apply(simp add: pt_fresh_bij_ineq[OF pta, OF ptb, OF at, OF cp]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2489 | apply(drule_tac x="(rev pi)\<bullet>xa" in bspec) | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2490 | apply(simp add: pt_set_bij1[OF ptb, OF at] set_eqvt) | 
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2491 | apply(simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2492 | done | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2493 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2494 | lemma pt_fresh_star_bij: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2495 | fixes pi :: "'x prm" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2496 | and x :: "'a" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2497 | and a :: "'x set" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2498 | and b :: "'x list" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2499 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2500 |   and     at: "at TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2501 | shows "(pi\<bullet>a)\<sharp>*(pi\<bullet>x) = a\<sharp>*x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2502 | and "(pi\<bullet>b)\<sharp>*(pi\<bullet>x) = b\<sharp>*x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2503 | apply(rule pt_fresh_star_bij_ineq(1)) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2504 | apply(rule pt) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2505 | apply(rule at_pt_inst) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2506 | apply(rule at)+ | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2507 | apply(rule cp_pt_inst) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2508 | apply(rule pt) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2509 | apply(rule at) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2510 | apply(rule pt_fresh_star_bij_ineq(2)) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2511 | apply(rule pt) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2512 | apply(rule at_pt_inst) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2513 | apply(rule at)+ | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2514 | apply(rule cp_pt_inst) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2515 | apply(rule pt) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2516 | apply(rule at) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2517 | done | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2518 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2519 | lemma pt_fresh_star_eqvt: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2520 | fixes pi :: "'x prm" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2521 | and x :: "'a" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2522 | and a :: "'x set" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2523 | and b :: "'x list" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2524 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2525 |   and     at: "at TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2526 | shows "pi\<bullet>(a\<sharp>*x) = (pi\<bullet>a)\<sharp>*(pi\<bullet>x)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2527 | and "pi\<bullet>(b\<sharp>*x) = (pi\<bullet>b)\<sharp>*(pi\<bullet>x)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2528 | by (simp_all add: perm_bool pt_fresh_star_bij[OF pt, OF at]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2529 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2530 | lemma pt_fresh_star_eqvt_ineq: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2531 | fixes pi::"'x prm" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2532 | and a::"'y set" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2533 | and b::"'y list" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2534 | and x::"'a" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2535 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2536 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2537 |   and     at:  "at TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2538 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2539 |   and     dj:  "disjoint TYPE('y) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2540 | shows "pi\<bullet>(a\<sharp>*x) = (pi\<bullet>a)\<sharp>*(pi\<bullet>x)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2541 | and "pi\<bullet>(b\<sharp>*x) = (pi\<bullet>b)\<sharp>*(pi\<bullet>x)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2542 | by (simp_all add: pt_fresh_star_bij_ineq[OF pta, OF ptb, OF at, OF cp] dj_perm_forget[OF dj] perm_bool) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2543 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2544 | lemma pt_freshs_freshs: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2545 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2546 |   and at: "at TYPE ('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2547 | and pi: "set (pi::'x prm) \<subseteq> Xs \<times> Ys" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2548 | and Xs: "Xs \<sharp>* (x::'a)" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2549 | and Ys: "Ys \<sharp>* x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2550 | shows "pi\<bullet>x = x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2551 | using pi | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2552 | proof (induct pi) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2553 | case Nil | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2554 | show ?case by (simp add: pt1 [OF pt]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2555 | next | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2556 | case (Cons p pi) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2557 | obtain a b where p: "p = (a, b)" by (cases p) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2558 | with Cons Xs Ys have "a \<sharp> x" "b \<sharp> x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2559 | by (simp_all add: fresh_star_def) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2560 | with Cons p show ?case | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2561 | by (simp add: pt_fresh_fresh [OF pt at] | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2562 | pt2 [OF pt, of "[(a, b)]" pi, simplified]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2563 | qed | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2564 | |
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2565 | lemma pt_fresh_star_pi: | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2566 | fixes x::"'a" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2567 | and pi::"'x prm" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2568 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2569 |   and     at: "at TYPE('x)"
 | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2570 | and a: "((supp x)::'x set)\<sharp>* pi" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2571 | shows "pi\<bullet>x = x" | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2572 | using a | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2573 | apply(induct pi) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2574 | apply(auto simp add: fresh_star_def fresh_list_cons fresh_prod pt1[OF pt]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2575 | apply(subgoal_tac "((a,b)#pi)\<bullet>x = ([(a,b)]@pi)\<bullet>x") | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2576 | apply(simp only: pt2[OF pt]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2577 | apply(rule pt_fresh_fresh[OF pt at]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2578 | apply(simp add: fresh_def at_supp[OF at]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2579 | apply(blast) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2580 | apply(simp add: fresh_def at_supp[OF at]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2581 | apply(blast) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2582 | apply(simp add: pt2[OF pt]) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2583 | done | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2584 | |
| 26847 | 2585 | section {* Infrastructure lemmas for strong rule inductions *}
 | 
| 2586 | (*==========================================================*) | |
| 2587 | ||
| 2588 | text {* 
 | |
| 2589 | For every set of atoms, there is another set of atoms | |
| 2590 | avoiding a finitely supported c and there is a permutation | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 2591 | which 'translates' between both sets. | 
| 26847 | 2592 | *} | 
| 32638 | 2593 | |
| 26847 | 2594 | lemma at_set_avoiding_aux: | 
| 2595 | fixes Xs::"'a set" | |
| 2596 | and As::"'a set" | |
| 2597 |   assumes at: "at TYPE('a)"
 | |
| 2598 | and b: "Xs \<subseteq> As" | |
| 2599 | and c: "finite As" | |
| 2600 | and d: "finite ((supp c)::'a set)" | |
| 32638 | 2601 |   shows "\<exists>(pi::'a prm). (pi\<bullet>Xs)\<sharp>*c \<and> (pi\<bullet>Xs) \<inter> As = {} \<and> set pi \<subseteq> Xs \<times> (pi\<bullet>Xs)"
 | 
| 2602 | proof - | |
| 2603 | from b c have "finite Xs" by (simp add: finite_subset) | |
| 2604 | then show ?thesis using b | |
| 2605 | proof (induct) | |
| 2606 | case empty | |
| 2607 |     have "({}::'a set)\<sharp>*c" by (simp add: fresh_star_def)
 | |
| 2608 | moreover | |
| 2609 |     have "({}::'a set) \<inter> As = {}" by simp
 | |
| 2610 | moreover | |
| 2611 |     have "set ([]::'a prm) \<subseteq> {} \<times> {}" by simp
 | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2612 | ultimately show ?case by (simp add: empty_eqvt) | 
| 32638 | 2613 | next | 
| 2614 | case (insert x Xs) | |
| 2615 |     then have ih: "\<exists>pi. (pi\<bullet>Xs)\<sharp>*c \<and> (pi\<bullet>Xs) \<inter> As = {} \<and> set pi \<subseteq> Xs \<times> (pi\<bullet>Xs)" by simp
 | |
| 2616 |     then obtain pi where a1: "(pi\<bullet>Xs)\<sharp>*c" and a2: "(pi\<bullet>Xs) \<inter> As = {}" and 
 | |
| 2617 | a4: "set pi \<subseteq> Xs \<times> (pi\<bullet>Xs)" by blast | |
| 2618 | have b: "x\<notin>Xs" by fact | |
| 2619 | have d1: "finite As" by fact | |
| 2620 | have d2: "finite Xs" by fact | |
| 2621 |     have d3: "({x} \<union> Xs) \<subseteq> As" using insert(4) by simp
 | |
| 2622 | from d d1 d2 | |
| 2623 | obtain y::"'a" where fr: "y\<sharp>(c,pi\<bullet>Xs,As)" | |
| 2624 | apply(rule_tac at_exists_fresh[OF at, where x="(c,pi\<bullet>Xs,As)"]) | |
| 2625 | apply(auto simp add: supp_prod at_supp[OF at] at_fin_set_supp[OF at] | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2626 | pt_supp_finite_pi[OF pt_set_inst[OF at_pt_inst[OF at]] at]) | 
| 32638 | 2627 | done | 
| 2628 |     have "({y}\<union>(pi\<bullet>Xs))\<sharp>*c" using a1 fr by (simp add: fresh_star_def)
 | |
| 2629 | moreover | |
| 2630 |     have "({y}\<union>(pi\<bullet>Xs))\<inter>As = {}" using a2 d1 fr 
 | |
| 2631 | by (simp add: fresh_prod at_fin_set_fresh[OF at]) | |
| 2632 | moreover | |
| 2633 | have "pi\<bullet>x=x" using a4 b a2 d3 | |
| 2634 | by (rule_tac at_prm_fresh2[OF at]) (auto) | |
| 2635 |     then have "set ((pi\<bullet>x,y)#pi) \<subseteq> ({x} \<union> Xs) \<times> ({y}\<union>(pi\<bullet>Xs))" using a4 by auto
 | |
| 2636 | moreover | |
| 2637 |     have "(((pi\<bullet>x,y)#pi)\<bullet>({x} \<union> Xs)) = {y}\<union>(pi\<bullet>Xs)"
 | |
| 26847 | 2638 | proof - | 
| 32638 | 2639 | have eq: "[(pi\<bullet>x,y)]\<bullet>(pi\<bullet>Xs) = (pi\<bullet>Xs)" | 
| 2640 | proof - | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2641 | have "(pi\<bullet>x)\<sharp>(pi\<bullet>Xs)" using b d2 | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2642 | by (simp add: pt_fresh_bij [OF pt_set_inst [OF at_pt_inst [OF at]], OF at] | 
| 45961 | 2643 | at_fin_set_fresh [OF at]) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2644 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2645 | have "y\<sharp>(pi\<bullet>Xs)" using fr by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2646 | ultimately show "[(pi\<bullet>x,y)]\<bullet>(pi\<bullet>Xs) = (pi\<bullet>Xs)" | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2647 | by (simp add: pt_fresh_fresh[OF pt_set_inst | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2648 | [OF at_pt_inst[OF at]], OF at]) | 
| 32638 | 2649 | qed | 
| 2650 |       have "(((pi\<bullet>x,y)#pi)\<bullet>({x}\<union>Xs)) = ([(pi\<bullet>x,y)]\<bullet>(pi\<bullet>({x}\<union>Xs)))"
 | |
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2651 | by (simp add: pt2[symmetric, OF pt_set_inst [OF at_pt_inst[OF at]]]) | 
| 32638 | 2652 |       also have "\<dots> = {y}\<union>([(pi\<bullet>x,y)]\<bullet>(pi\<bullet>Xs))" 
 | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2653 | by (simp only: union_eqvt perm_set_def at_calc[OF at])(auto) | 
| 32638 | 2654 |       finally show "(((pi\<bullet>x,y)#pi)\<bullet>({x} \<union> Xs)) = {y}\<union>(pi\<bullet>Xs)" using eq by simp
 | 
| 26847 | 2655 | qed | 
| 32638 | 2656 | ultimately | 
| 2657 | show ?case by (rule_tac x="(pi\<bullet>x,y)#pi" in exI) (auto) | |
| 26847 | 2658 | qed | 
| 2659 | qed | |
| 2660 | ||
| 2661 | lemma at_set_avoiding: | |
| 2662 | fixes Xs::"'a set" | |
| 2663 |   assumes at: "at TYPE('a)"
 | |
| 2664 | and a: "finite Xs" | |
| 2665 | and b: "finite ((supp c)::'a set)" | |
| 32638 | 2666 | obtains pi::"'a prm" where "(pi\<bullet>Xs)\<sharp>*c" and "set pi \<subseteq> Xs \<times> (pi\<bullet>Xs)" | 
| 2667 | using a b at_set_avoiding_aux[OF at, where Xs="Xs" and As="Xs" and c="c"] | |
| 2668 | by (blast) | |
| 2669 | ||
| 19477 | 2670 | section {* composition instances *}
 | 
| 2671 | (* ============================= *) | |
| 2672 | ||
| 2673 | lemma cp_list_inst: | |
| 2674 |   assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | |
| 2675 |   shows "cp TYPE ('a list) TYPE('x) TYPE('y)"
 | |
| 2676 | using c1 | |
| 2677 | apply(simp add: cp_def) | |
| 2678 | apply(auto) | |
| 2679 | apply(induct_tac x) | |
| 2680 | apply(auto) | |
| 2681 | done | |
| 2682 | ||
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2683 | lemma cp_set_inst: | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2684 |   assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2685 |   shows "cp TYPE ('a set) TYPE('x) TYPE('y)"
 | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2686 | using c1 | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2687 | apply(simp add: cp_def) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2688 | apply(auto) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2689 | apply(auto simp add: perm_set_def) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2690 | apply(rule_tac x="pi2\<bullet>xc" in exI) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2691 | apply(auto) | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2692 | done | 
| 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 2693 | |
| 19477 | 2694 | lemma cp_option_inst: | 
| 2695 |   assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | |
| 2696 |   shows "cp TYPE ('a option) TYPE('x) TYPE('y)"
 | |
| 2697 | using c1 | |
| 2698 | apply(simp add: cp_def) | |
| 2699 | apply(auto) | |
| 2700 | apply(case_tac x) | |
| 2701 | apply(auto) | |
| 2702 | done | |
| 2703 | ||
| 2704 | lemma cp_noption_inst: | |
| 2705 |   assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | |
| 2706 |   shows "cp TYPE ('a noption) TYPE('x) TYPE('y)"
 | |
| 2707 | using c1 | |
| 2708 | apply(simp add: cp_def) | |
| 2709 | apply(auto) | |
| 2710 | apply(case_tac x) | |
| 2711 | apply(auto) | |
| 2712 | done | |
| 2713 | ||
| 2714 | lemma cp_unit_inst: | |
| 2715 |   shows "cp TYPE (unit) TYPE('x) TYPE('y)"
 | |
| 2716 | apply(simp add: cp_def) | |
| 2717 | done | |
| 2718 | ||
| 2719 | lemma cp_bool_inst: | |
| 2720 |   shows "cp TYPE (bool) TYPE('x) TYPE('y)"
 | |
| 2721 | apply(simp add: cp_def) | |
| 2722 | apply(rule allI)+ | |
| 2723 | apply(induct_tac x) | |
| 2724 | apply(simp_all) | |
| 2725 | done | |
| 2726 | ||
| 2727 | lemma cp_prod_inst: | |
| 2728 |   assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | |
| 2729 |   and     c2: "cp TYPE ('b) TYPE('x) TYPE('y)"
 | |
| 2730 |   shows "cp TYPE ('a\<times>'b) TYPE('x) TYPE('y)"
 | |
| 2731 | using c1 c2 | |
| 2732 | apply(simp add: cp_def) | |
| 2733 | done | |
| 2734 | ||
| 2735 | lemma cp_fun_inst: | |
| 2736 |   assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | |
| 2737 |   and     c2: "cp TYPE ('b) TYPE('x) TYPE('y)"
 | |
| 2738 |   and     pt: "pt TYPE ('y) TYPE('x)"
 | |
| 2739 |   and     at: "at TYPE ('x)"
 | |
| 2740 |   shows "cp TYPE ('a\<Rightarrow>'b) TYPE('x) TYPE('y)"
 | |
| 2741 | using c1 c2 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 2742 | apply(auto simp add: cp_def perm_fun_def fun_eq_iff) | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 2743 | apply(simp add: rev_eqvt[symmetric]) | 
| 19477 | 2744 | apply(simp add: pt_rev_pi[OF pt_list_inst[OF pt_prod_inst[OF pt, OF pt]], OF at]) | 
| 2745 | done | |
| 2746 | ||
| 2747 | ||
| 17870 | 2748 | section {* Andy's freshness lemma *}
 | 
| 2749 | (*================================*) | |
| 2750 | ||
| 2751 | lemma freshness_lemma: | |
| 2752 | fixes h :: "'x\<Rightarrow>'a" | |
| 2753 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2754 |   and     at:  "at TYPE('x)" 
 | |
| 2755 | and f1: "finite ((supp h)::'x set)" | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2756 | and a: "\<exists>a::'x. a\<sharp>(h,h a)" | 
| 17870 | 2757 | shows "\<exists>fr::'a. \<forall>a::'x. a\<sharp>h \<longrightarrow> (h a) = fr" | 
| 2758 | proof - | |
| 2759 |   have ptb: "pt TYPE('x) TYPE('x)" by (simp add: at_pt_inst[OF at]) 
 | |
| 2760 |   have ptc: "pt TYPE('x\<Rightarrow>'a) TYPE('x)" by (simp add: pt_fun_inst[OF ptb, OF pta, OF at]) 
 | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2761 | from a obtain a0 where a1: "a0\<sharp>h" and a2: "a0\<sharp>(h a0)" by (force simp add: fresh_prod) | 
| 17870 | 2762 | show ?thesis | 
| 2763 | proof | |
| 2764 | let ?fr = "h (a0::'x)" | |
| 2765 | show "\<forall>(a::'x). (a\<sharp>h \<longrightarrow> ((h a) = ?fr))" | |
| 2766 | proof (intro strip) | |
| 2767 | fix a | |
| 2768 | assume a3: "(a::'x)\<sharp>h" | |
| 2769 | show "h (a::'x) = h a0" | |
| 2770 | proof (cases "a=a0") | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2771 | case True thus "h (a::'x) = h a0" by simp | 
| 17870 | 2772 | next | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2773 | case False | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2774 | assume "a\<noteq>a0" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2775 | hence c1: "a\<notin>((supp a0)::'x set)" by (simp add: fresh_def[symmetric] at_fresh[OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2776 | have c2: "a\<notin>((supp h)::'x set)" using a3 by (simp add: fresh_def) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2777 | from c1 c2 have c3: "a\<notin>((supp h)\<union>((supp a0)::'x set))" by force | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2778 | have f2: "finite ((supp a0)::'x set)" by (simp add: at_supp[OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2779 | from f1 f2 have "((supp (h a0))::'x set)\<subseteq>((supp h)\<union>(supp a0))" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2780 | by (simp add: pt_supp_fun_subset[OF ptb, OF pta, OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2781 | hence "a\<notin>((supp (h a0))::'x set)" using c3 by force | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2782 | hence "a\<sharp>(h a0)" by (simp add: fresh_def) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2783 | with a2 have d1: "[(a0,a)]\<bullet>(h a0) = (h a0)" by (rule pt_fresh_fresh[OF pta, OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2784 | from a1 a3 have d2: "[(a0,a)]\<bullet>h = h" by (rule pt_fresh_fresh[OF ptc, OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2785 | from d1 have "h a0 = [(a0,a)]\<bullet>(h a0)" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2786 | also have "\<dots>= ([(a0,a)]\<bullet>h)([(a0,a)]\<bullet>a0)" by (simp add: pt_fun_app_eq[OF ptb, OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2787 | also have "\<dots> = h ([(a0,a)]\<bullet>a0)" using d2 by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2788 | also have "\<dots> = h a" by (simp add: at_calc[OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2789 | finally show "h a = h a0" by simp | 
| 17870 | 2790 | qed | 
| 2791 | qed | |
| 2792 | qed | |
| 2793 | qed | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 2794 | |
| 17870 | 2795 | lemma freshness_lemma_unique: | 
| 2796 | fixes h :: "'x\<Rightarrow>'a" | |
| 2797 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2798 |   and     at: "at TYPE('x)" 
 | |
| 2799 | and f1: "finite ((supp h)::'x set)" | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2800 | and a: "\<exists>(a::'x). a\<sharp>(h,h a)" | 
| 17870 | 2801 | shows "\<exists>!(fr::'a). \<forall>(a::'x). a\<sharp>h \<longrightarrow> (h a) = fr" | 
| 18703 | 2802 | proof (rule ex_ex1I) | 
| 17870 | 2803 | from pt at f1 a show "\<exists>fr::'a. \<forall>a::'x. a\<sharp>h \<longrightarrow> h a = fr" by (simp add: freshness_lemma) | 
| 2804 | next | |
| 2805 | fix fr1 fr2 | |
| 2806 | assume b1: "\<forall>a::'x. a\<sharp>h \<longrightarrow> h a = fr1" | |
| 2807 | assume b2: "\<forall>a::'x. a\<sharp>h \<longrightarrow> h a = fr2" | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2808 | from a obtain a where "(a::'x)\<sharp>h" by (force simp add: fresh_prod) | 
| 17870 | 2809 | with b1 b2 have "h a = fr1 \<and> h a = fr2" by force | 
| 2810 | thus "fr1 = fr2" by force | |
| 2811 | qed | |
| 2812 | ||
| 2813 | -- "packaging the freshness lemma into a function" | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 2814 | definition fresh_fun :: "('x\<Rightarrow>'a)\<Rightarrow>'a" where
 | 
| 17870 | 2815 | "fresh_fun (h) \<equiv> THE fr. (\<forall>(a::'x). a\<sharp>h \<longrightarrow> (h a) = fr)" | 
| 2816 | ||
| 2817 | lemma fresh_fun_app: | |
| 2818 | fixes h :: "'x\<Rightarrow>'a" | |
| 2819 | and a :: "'x" | |
| 2820 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2821 |   and     at: "at TYPE('x)" 
 | |
| 2822 | and f1: "finite ((supp h)::'x set)" | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2823 | and a: "\<exists>(a::'x). a\<sharp>(h,h a)" | 
| 17870 | 2824 | and b: "a\<sharp>h" | 
| 2825 | shows "(fresh_fun h) = (h a)" | |
| 2826 | proof (unfold fresh_fun_def, rule the_equality) | |
| 2827 | show "\<forall>(a'::'x). a'\<sharp>h \<longrightarrow> h a' = h a" | |
| 2828 | proof (intro strip) | |
| 2829 | fix a'::"'x" | |
| 2830 | assume c: "a'\<sharp>h" | |
| 2831 | from pt at f1 a have "\<exists>(fr::'a). \<forall>(a::'x). a\<sharp>h \<longrightarrow> (h a) = fr" by (rule freshness_lemma) | |
| 2832 | with b c show "h a' = h a" by force | |
| 2833 | qed | |
| 2834 | next | |
| 2835 | fix fr::"'a" | |
| 2836 | assume "\<forall>a. a\<sharp>h \<longrightarrow> h a = fr" | |
| 2837 | with b show "fr = h a" by force | |
| 2838 | qed | |
| 2839 | ||
| 22714 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2840 | lemma fresh_fun_app': | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2841 | fixes h :: "'x\<Rightarrow>'a" | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2842 | and a :: "'x" | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2843 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2844 |   and     at: "at TYPE('x)" 
 | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2845 | and f1: "finite ((supp h)::'x set)" | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2846 | and a: "a\<sharp>h" "a\<sharp>h a" | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2847 | shows "(fresh_fun h) = (h a)" | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2848 | apply(rule fresh_fun_app[OF pt, OF at, OF f1]) | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2849 | apply(auto simp add: fresh_prod intro: a) | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2850 | done | 
| 
ca804eb70d39
added a more usuable lemma for dealing with fresh_fun
 urbanc parents: 
22650diff
changeset | 2851 | |
| 19477 | 2852 | lemma fresh_fun_equiv_ineq: | 
| 2853 | fixes h :: "'y\<Rightarrow>'a" | |
| 2854 | and pi:: "'x prm" | |
| 2855 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2856 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 2857 |   and     ptb':"pt TYPE('a) TYPE('y)"
 | |
| 2858 |   and     at:  "at TYPE('x)" 
 | |
| 2859 |   and     at': "at TYPE('y)"
 | |
| 2860 |   and     cpa: "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 2861 |   and     cpb: "cp TYPE('y) TYPE('x) TYPE('y)"
 | |
| 2862 | and f1: "finite ((supp h)::'y set)" | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2863 | and a1: "\<exists>(a::'y). a\<sharp>(h,h a)" | 
| 19477 | 2864 | shows "pi\<bullet>(fresh_fun h) = fresh_fun(pi\<bullet>h)" (is "?LHS = ?RHS") | 
| 2865 | proof - | |
| 2866 |   have ptd: "pt TYPE('y) TYPE('y)" by (simp add: at_pt_inst[OF at']) 
 | |
| 2867 |   have ptc: "pt TYPE('y\<Rightarrow>'a) TYPE('x)" by (simp add: pt_fun_inst[OF ptb, OF pta, OF at]) 
 | |
| 23393 | 2868 |   have cpc: "cp TYPE('y\<Rightarrow>'a) TYPE ('x) TYPE ('y)" by (rule cp_fun_inst[OF cpb cpa ptb at])
 | 
| 19477 | 2869 | have f2: "finite ((supp (pi\<bullet>h))::'y set)" | 
| 2870 | proof - | |
| 2871 | from f1 have "finite (pi\<bullet>((supp h)::'y set))" | |
| 2872 | by (simp add: pt_set_finite_ineq[OF ptb, OF at]) | |
| 2873 | thus ?thesis | |
| 2874 | by (simp add: pt_perm_supp_ineq[OF ptc, OF ptb, OF at, OF cpc]) | |
| 2875 | qed | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2876 | from a1 obtain a' where c0: "a'\<sharp>(h,h a')" by force | 
| 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2877 | hence c1: "a'\<sharp>h" and c2: "a'\<sharp>(h a')" by (simp_all add: fresh_prod) | 
| 19477 | 2878 | have c3: "(pi\<bullet>a')\<sharp>(pi\<bullet>h)" using c1 | 
| 2879 | by (simp add: pt_fresh_bij_ineq[OF ptc, OF ptb, OF at, OF cpc]) | |
| 2880 | have c4: "(pi\<bullet>a')\<sharp>(pi\<bullet>h) (pi\<bullet>a')" | |
| 2881 | proof - | |
| 2882 | from c2 have "(pi\<bullet>a')\<sharp>(pi\<bullet>(h a'))" | |
| 2883 | by (simp add: pt_fresh_bij_ineq[OF pta, OF ptb, OF at,OF cpa]) | |
| 2884 | thus ?thesis by (simp add: pt_fun_app_eq[OF ptb, OF at]) | |
| 2885 | qed | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2886 | have a2: "\<exists>(a::'y). a\<sharp>(pi\<bullet>h,(pi\<bullet>h) a)" using c3 c4 by (force simp add: fresh_prod) | 
| 19477 | 2887 | have d1: "?LHS = pi\<bullet>(h a')" using c1 a1 by (simp add: fresh_fun_app[OF ptb', OF at', OF f1]) | 
| 2888 | have d2: "?RHS = (pi\<bullet>h) (pi\<bullet>a')" using c3 a2 | |
| 2889 | by (simp add: fresh_fun_app[OF ptb', OF at', OF f2]) | |
| 2890 | show ?thesis using d1 d2 by (simp add: pt_fun_app_eq[OF ptb, OF at]) | |
| 2891 | qed | |
| 2892 | ||
| 17870 | 2893 | lemma fresh_fun_equiv: | 
| 2894 | fixes h :: "'x\<Rightarrow>'a" | |
| 2895 | and pi:: "'x prm" | |
| 2896 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2897 |   and     at:  "at TYPE('x)" 
 | |
| 2898 | and f1: "finite ((supp h)::'x set)" | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2899 | and a1: "\<exists>(a::'x). a\<sharp>(h,h a)" | 
| 17870 | 2900 | shows "pi\<bullet>(fresh_fun h) = fresh_fun(pi\<bullet>h)" (is "?LHS = ?RHS") | 
| 2901 | proof - | |
| 2902 |   have ptb: "pt TYPE('x) TYPE('x)" by (simp add: at_pt_inst[OF at]) 
 | |
| 2903 |   have ptc: "pt TYPE('x\<Rightarrow>'a) TYPE('x)" by (simp add: pt_fun_inst[OF ptb, OF pta, OF at]) 
 | |
| 2904 | have f2: "finite ((supp (pi\<bullet>h))::'x set)" | |
| 2905 | proof - | |
| 2906 | from f1 have "finite (pi\<bullet>((supp h)::'x set))" by (simp add: pt_set_finite_ineq[OF ptb, OF at]) | |
| 2907 | thus ?thesis by (simp add: pt_perm_supp[OF ptc, OF at]) | |
| 2908 | qed | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2909 | from a1 obtain a' where c0: "a'\<sharp>(h,h a')" by force | 
| 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2910 | hence c1: "a'\<sharp>h" and c2: "a'\<sharp>(h a')" by (simp_all add: fresh_prod) | 
| 17870 | 2911 | have c3: "(pi\<bullet>a')\<sharp>(pi\<bullet>h)" using c1 by (simp add: pt_fresh_bij[OF ptc, OF at]) | 
| 2912 | have c4: "(pi\<bullet>a')\<sharp>(pi\<bullet>h) (pi\<bullet>a')" | |
| 2913 | proof - | |
| 2914 | from c2 have "(pi\<bullet>a')\<sharp>(pi\<bullet>(h a'))" by (simp add: pt_fresh_bij[OF pta, OF at]) | |
| 2915 | thus ?thesis by (simp add: pt_fun_app_eq[OF ptb, OF at]) | |
| 2916 | qed | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2917 | have a2: "\<exists>(a::'x). a\<sharp>(pi\<bullet>h,(pi\<bullet>h) a)" using c3 c4 by (force simp add: fresh_prod) | 
| 17870 | 2918 | have d1: "?LHS = pi\<bullet>(h a')" using c1 a1 by (simp add: fresh_fun_app[OF pta, OF at, OF f1]) | 
| 2919 | have d2: "?RHS = (pi\<bullet>h) (pi\<bullet>a')" using c3 a2 by (simp add: fresh_fun_app[OF pta, OF at, OF f2]) | |
| 2920 | show ?thesis using d1 d2 by (simp add: pt_fun_app_eq[OF ptb, OF at]) | |
| 2921 | qed | |
| 19216 | 2922 | |
| 2923 | lemma fresh_fun_supports: | |
| 2924 | fixes h :: "'x\<Rightarrow>'a" | |
| 2925 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2926 |   and     at: "at TYPE('x)" 
 | |
| 2927 | and f1: "finite ((supp h)::'x set)" | |
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 2928 | and a: "\<exists>(a::'x). a\<sharp>(h,h a)" | 
| 19216 | 2929 | shows "((supp h)::'x set) supports (fresh_fun h)" | 
| 22808 | 2930 | apply(simp add: supports_def fresh_def[symmetric]) | 
| 19216 | 2931 | apply(auto) | 
| 2932 | apply(simp add: fresh_fun_equiv[OF pt, OF at, OF f1, OF a]) | |
| 2933 | apply(simp add: pt_fresh_fresh[OF pt_fun_inst[OF at_pt_inst[OF at], OF pt], OF at, OF at]) | |
| 2934 | done | |
| 17870 | 2935 | |
| 2936 | section {* Abstraction function *}
 | |
| 2937 | (*==============================*) | |
| 2938 | ||
| 2939 | lemma pt_abs_fun_inst: | |
| 2940 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2941 |   and     at: "at TYPE('x)"
 | |
| 18579 
002d371401f5
changed the name of the type "nOption" to "noption".
 urbanc parents: 
18578diff
changeset | 2942 |   shows "pt TYPE('x\<Rightarrow>('a noption)) TYPE('x)"
 | 
| 17870 | 2943 | by (rule pt_fun_inst[OF at_pt_inst[OF at],OF pt_noption_inst[OF pt],OF at]) | 
| 2944 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 2945 | definition abs_fun :: "'x\<Rightarrow>'a\<Rightarrow>('x\<Rightarrow>('a noption))" ("[_]._" [100,100] 100) where 
 | 
| 17870 | 2946 | "[a].x \<equiv> (\<lambda>b. (if b=a then nSome(x) else (if b\<sharp>x then nSome([(a,b)]\<bullet>x) else nNone)))" | 
| 2947 | ||
| 18745 
060400dc077c
a fixme comments about abs_fun_if, which should be called perm_if
 urbanc parents: 
18703diff
changeset | 2948 | (* FIXME: should be called perm_if and placed close to the definition of permutations on bools *) | 
| 17870 | 2949 | lemma abs_fun_if: | 
| 2950 | fixes pi :: "'x prm" | |
| 2951 | and x :: "'a" | |
| 2952 | and y :: "'a" | |
| 2953 | and c :: "bool" | |
| 2954 | shows "pi\<bullet>(if c then x else y) = (if c then (pi\<bullet>x) else (pi\<bullet>y))" | |
| 2955 | by force | |
| 2956 | ||
| 2957 | lemma abs_fun_pi_ineq: | |
| 2958 | fixes a :: "'y" | |
| 2959 | and x :: "'a" | |
| 2960 | and pi :: "'x prm" | |
| 2961 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 2962 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 2963 |   and     at:  "at TYPE('x)"
 | |
| 2964 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 2965 | shows "pi\<bullet>([a].x) = [(pi\<bullet>a)].(pi\<bullet>x)" | |
| 2966 | apply(simp add: abs_fun_def perm_fun_def abs_fun_if) | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 2967 | apply(simp only: fun_eq_iff) | 
| 17870 | 2968 | apply(rule allI) | 
| 2969 | apply(subgoal_tac "(((rev pi)\<bullet>(xa::'y)) = (a::'y)) = (xa = pi\<bullet>a)")(*A*) | |
| 2970 | apply(subgoal_tac "(((rev pi)\<bullet>xa)\<sharp>x) = (xa\<sharp>(pi\<bullet>x))")(*B*) | |
| 2971 | apply(subgoal_tac "pi\<bullet>([(a,(rev pi)\<bullet>xa)]\<bullet>x) = [(pi\<bullet>a,xa)]\<bullet>(pi\<bullet>x)")(*C*) | |
| 2972 | apply(simp) | |
| 2973 | (*C*) | |
| 2974 | apply(simp add: cp1[OF cp]) | |
| 2975 | apply(simp add: pt_pi_rev[OF ptb, OF at]) | |
| 2976 | (*B*) | |
| 2977 | apply(simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp]) | |
| 2978 | (*A*) | |
| 2979 | apply(rule iffI) | |
| 2980 | apply(rule pt_bij2[OF ptb, OF at, THEN sym]) | |
| 2981 | apply(simp) | |
| 2982 | apply(rule pt_bij2[OF ptb, OF at]) | |
| 2983 | apply(simp) | |
| 2984 | done | |
| 2985 | ||
| 2986 | lemma abs_fun_pi: | |
| 2987 | fixes a :: "'x" | |
| 2988 | and x :: "'a" | |
| 2989 | and pi :: "'x prm" | |
| 2990 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 2991 |   and     at: "at TYPE('x)"
 | |
| 2992 | shows "pi\<bullet>([a].x) = [(pi\<bullet>a)].(pi\<bullet>x)" | |
| 2993 | apply(rule abs_fun_pi_ineq) | |
| 2994 | apply(rule pt) | |
| 2995 | apply(rule at_pt_inst) | |
| 2996 | apply(rule at)+ | |
| 2997 | apply(rule cp_pt_inst) | |
| 2998 | apply(rule pt) | |
| 2999 | apply(rule at) | |
| 3000 | done | |
| 3001 | ||
| 3002 | lemma abs_fun_eq1: | |
| 3003 | fixes x :: "'a" | |
| 3004 | and y :: "'a" | |
| 3005 | and a :: "'x" | |
| 3006 | shows "([a].x = [a].y) = (x = y)" | |
| 3007 | apply(auto simp add: abs_fun_def) | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 3008 | apply(auto simp add: fun_eq_iff) | 
| 17870 | 3009 | apply(drule_tac x="a" in spec) | 
| 3010 | apply(simp) | |
| 3011 | done | |
| 3012 | ||
| 3013 | lemma abs_fun_eq2: | |
| 3014 | fixes x :: "'a" | |
| 3015 | and y :: "'a" | |
| 3016 | and a :: "'x" | |
| 3017 | and b :: "'x" | |
| 3018 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3019 |       and at: "at TYPE('x)"
 | |
| 3020 | and a1: "a\<noteq>b" | |
| 3021 | and a2: "[a].x = [b].y" | |
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3022 | shows "x=[(a,b)]\<bullet>y \<and> a\<sharp>y" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3023 | proof - | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 3024 | from a2 have "\<forall>c::'x. ([a].x) c = ([b].y) c" by (force simp add: fun_eq_iff) | 
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3025 | hence "([a].x) a = ([b].y) a" by simp | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3026 | hence a3: "nSome(x) = ([b].y) a" by (simp add: abs_fun_def) | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3027 | show "x=[(a,b)]\<bullet>y \<and> a\<sharp>y" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3028 | proof (cases "a\<sharp>y") | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3029 | assume a4: "a\<sharp>y" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3030 | hence "x=[(b,a)]\<bullet>y" using a3 a1 by (simp add: abs_fun_def) | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3031 | moreover | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3032 | have "[(a,b)]\<bullet>y = [(b,a)]\<bullet>y" by (rule pt3[OF pt], rule at_ds5[OF at]) | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3033 | ultimately show ?thesis using a4 by simp | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3034 | next | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3035 | assume "\<not>a\<sharp>y" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3036 | hence "nSome(x) = nNone" using a1 a3 by (simp add: abs_fun_def) | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3037 | hence False by simp | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3038 | thus ?thesis by simp | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3039 | qed | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3040 | qed | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3041 | |
| 17870 | 3042 | lemma abs_fun_eq3: | 
| 3043 | fixes x :: "'a" | |
| 3044 | and y :: "'a" | |
| 3045 | and a :: "'x" | |
| 3046 | and b :: "'x" | |
| 3047 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3048 |       and at: "at TYPE('x)"
 | |
| 3049 | and a1: "a\<noteq>b" | |
| 3050 | and a2: "x=[(a,b)]\<bullet>y" | |
| 3051 | and a3: "a\<sharp>y" | |
| 3052 | shows "[a].x =[b].y" | |
| 3053 | proof - | |
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3054 | show ?thesis | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 3055 | proof (simp only: abs_fun_def fun_eq_iff, intro strip) | 
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3056 | fix c::"'x" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3057 | let ?LHS = "if c=a then nSome(x) else if c\<sharp>x then nSome([(a,c)]\<bullet>x) else nNone" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3058 | and ?RHS = "if c=b then nSome(y) else if c\<sharp>y then nSome([(b,c)]\<bullet>y) else nNone" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3059 | show "?LHS=?RHS" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3060 | proof - | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3061 | have "(c=a) \<or> (c=b) \<or> (c\<noteq>a \<and> c\<noteq>b)" by blast | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3062 | moreover --"case c=a" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3063 |       { have "nSome(x) = nSome([(a,b)]\<bullet>y)" using a2 by simp
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3064 | also have "\<dots> = nSome([(b,a)]\<bullet>y)" by (simp, rule pt3[OF pt], rule at_ds5[OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3065 | finally have "nSome(x) = nSome([(b,a)]\<bullet>y)" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3066 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3067 | assume "c=a" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3068 | ultimately have "?LHS=?RHS" using a1 a3 by simp | 
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3069 | } | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3070 | moreover -- "case c=b" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3071 |       { have a4: "y=[(a,b)]\<bullet>x" using a2 by (simp only: pt_swap_bij[OF pt, OF at])
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3072 | hence "a\<sharp>([(a,b)]\<bullet>x)" using a3 by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3073 | hence "b\<sharp>x" by (simp add: at_calc[OF at] pt_fresh_left[OF pt, OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3074 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3075 | assume "c=b" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3076 | ultimately have "?LHS=?RHS" using a1 a4 by simp | 
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3077 | } | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3078 | moreover -- "case c\<noteq>a \<and> c\<noteq>b" | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3079 |       { assume a5: "c\<noteq>a \<and> c\<noteq>b"
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3080 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3081 | have "c\<sharp>x = c\<sharp>y" using a2 a5 by (force simp add: at_calc[OF at] pt_fresh_left[OF pt, OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3082 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3083 | have "c\<sharp>y \<longrightarrow> [(a,c)]\<bullet>x = [(b,c)]\<bullet>y" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3084 | proof (intro strip) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3085 | assume a6: "c\<sharp>y" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3086 | have "[(a,c),(b,c),(a,c)] \<triangleq> [(a,b)]" using a1 a5 by (force intro: at_ds3[OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3087 | hence "[(a,c)]\<bullet>([(b,c)]\<bullet>([(a,c)]\<bullet>y)) = [(a,b)]\<bullet>y" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3088 | by (simp add: pt2[OF pt, symmetric] pt3[OF pt]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3089 | hence "[(a,c)]\<bullet>([(b,c)]\<bullet>y) = [(a,b)]\<bullet>y" using a3 a6 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3090 | by (simp add: pt_fresh_fresh[OF pt, OF at]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3091 | hence "[(a,c)]\<bullet>([(b,c)]\<bullet>y) = x" using a2 by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3092 | hence "[(b,c)]\<bullet>y = [(a,c)]\<bullet>x" by (drule_tac pt_bij1[OF pt, OF at], simp) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3093 | thus "[(a,c)]\<bullet>x = [(b,c)]\<bullet>y" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3094 | qed | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3095 | ultimately have "?LHS=?RHS" by simp | 
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3096 | } | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3097 | ultimately show "?LHS = ?RHS" by blast | 
| 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3098 | qed | 
| 17870 | 3099 | qed | 
| 18268 
734f23ad5d8f
ISAR-fied two proofs about equality for abstraction functions.
 urbanc parents: 
18264diff
changeset | 3100 | qed | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3101 | |
| 23158 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3102 | (* alpha equivalence *) | 
| 17870 | 3103 | lemma abs_fun_eq: | 
| 3104 | fixes x :: "'a" | |
| 3105 | and y :: "'a" | |
| 3106 | and a :: "'x" | |
| 3107 | and b :: "'x" | |
| 3108 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3109 |       and at: "at TYPE('x)"
 | |
| 3110 | shows "([a].x = [b].y) = ((a=b \<and> x=y)\<or>(a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y))" | |
| 3111 | proof (rule iffI) | |
| 3112 | assume b: "[a].x = [b].y" | |
| 3113 | show "(a=b \<and> x=y)\<or>(a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y)" | |
| 3114 | proof (cases "a=b") | |
| 3115 | case True with b show ?thesis by (simp add: abs_fun_eq1) | |
| 3116 | next | |
| 3117 | case False with b show ?thesis by (simp add: abs_fun_eq2[OF pt, OF at]) | |
| 3118 | qed | |
| 3119 | next | |
| 3120 | assume "(a=b \<and> x=y)\<or>(a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y)" | |
| 3121 | thus "[a].x = [b].y" | |
| 3122 | proof | |
| 3123 | assume "a=b \<and> x=y" thus ?thesis by simp | |
| 3124 | next | |
| 3125 | assume "a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y" | |
| 3126 | thus ?thesis by (simp add: abs_fun_eq3[OF pt, OF at]) | |
| 3127 | qed | |
| 3128 | qed | |
| 3129 | ||
| 23158 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3130 | (* symmetric version of alpha-equivalence *) | 
| 19562 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3131 | lemma abs_fun_eq': | 
| 23158 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3132 | fixes x :: "'a" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3133 | and y :: "'a" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3134 | and a :: "'x" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3135 | and b :: "'x" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3136 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3137 |       and at: "at TYPE('x)"
 | 
| 23159 | 3138 | shows "([a].x = [b].y) = ((a=b \<and> x=y)\<or>(a\<noteq>b \<and> [(b,a)]\<bullet>x=y \<and> b\<sharp>x))" | 
| 3139 | by (auto simp add: abs_fun_eq[OF pt, OF at] pt_swap_bij'[OF pt, OF at] | |
| 23158 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3140 | pt_fresh_left[OF pt, OF at] | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3141 | at_calc[OF at]) | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3142 | |
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3143 | (* alpha_equivalence with a fresh name *) | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3144 | lemma abs_fun_fresh: | 
| 19562 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3145 | fixes x :: "'a" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3146 | and y :: "'a" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3147 | and c :: "'x" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3148 | and a :: "'x" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3149 | and b :: "'x" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3150 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3151 |       and at: "at TYPE('x)"
 | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3152 | and fr: "c\<noteq>a" "c\<noteq>b" "c\<sharp>x" "c\<sharp>y" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3153 | shows "([a].x = [b].y) = ([(a,c)]\<bullet>x = [(b,c)]\<bullet>y)" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3154 | proof (rule iffI) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3155 | assume eq0: "[a].x = [b].y" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3156 | show "[(a,c)]\<bullet>x = [(b,c)]\<bullet>y" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3157 | proof (cases "a=b") | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3158 | case True then show ?thesis using eq0 by (simp add: pt_bij[OF pt, OF at] abs_fun_eq[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3159 | next | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3160 | case False | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3161 | have ineq: "a\<noteq>b" by fact | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3162 | with eq0 have eq: "x=[(a,b)]\<bullet>y" and fr': "a\<sharp>y" by (simp_all add: abs_fun_eq[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3163 | from eq have "[(a,c)]\<bullet>x = [(a,c)]\<bullet>[(a,b)]\<bullet>y" by (simp add: pt_bij[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3164 | also have "\<dots> = ([(a,c)]\<bullet>[(a,b)])\<bullet>([(a,c)]\<bullet>y)" by (rule pt_perm_compose[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3165 | also have "\<dots> = [(c,b)]\<bullet>y" using ineq fr fr' | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3166 | by (simp add: pt_fresh_fresh[OF pt, OF at] at_calc[OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3167 | also have "\<dots> = [(b,c)]\<bullet>y" by (rule pt3[OF pt], rule at_ds5[OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3168 | finally show ?thesis by simp | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3169 | qed | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3170 | next | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3171 | assume eq: "[(a,c)]\<bullet>x = [(b,c)]\<bullet>y" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3172 | thus "[a].x = [b].y" | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3173 | proof (cases "a=b") | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3174 | case True then show ?thesis using eq by (simp add: pt_bij[OF pt, OF at] abs_fun_eq[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3175 | next | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3176 | case False | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3177 | have ineq: "a\<noteq>b" by fact | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3178 | from fr have "([(a,c)]\<bullet>c)\<sharp>([(a,c)]\<bullet>x)" by (simp add: pt_fresh_bij[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3179 | hence "a\<sharp>([(b,c)]\<bullet>y)" using eq fr by (simp add: at_calc[OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3180 | hence fr0: "a\<sharp>y" using ineq fr by (simp add: pt_fresh_left[OF pt, OF at] at_calc[OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3181 | from eq have "x = (rev [(a,c)])\<bullet>([(b,c)]\<bullet>y)" by (rule pt_bij1[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3182 | also have "\<dots> = [(a,c)]\<bullet>([(b,c)]\<bullet>y)" by simp | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3183 | also have "\<dots> = ([(a,c)]\<bullet>[(b,c)])\<bullet>([(a,c)]\<bullet>y)" by (rule pt_perm_compose[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3184 | also have "\<dots> = [(b,a)]\<bullet>y" using ineq fr fr0 | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3185 | by (simp add: pt_fresh_fresh[OF pt, OF at] at_calc[OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3186 | also have "\<dots> = [(a,b)]\<bullet>y" by (rule pt3[OF pt], rule at_ds5[OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3187 | finally show ?thesis using ineq fr0 by (simp add: abs_fun_eq[OF pt, OF at]) | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3188 | qed | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3189 | qed | 
| 
e56b3c967ae8
added the lemma abs_fun_eq' to the nominal theory,
 urbanc parents: 
19494diff
changeset | 3190 | |
| 23158 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3191 | lemma abs_fun_fresh': | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3192 | fixes x :: "'a" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3193 | and y :: "'a" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3194 | and c :: "'x" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3195 | and a :: "'x" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3196 | and b :: "'x" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3197 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3198 |       and at: "at TYPE('x)"
 | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3199 | and as: "[a].x = [b].y" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3200 | and fr: "c\<noteq>a" "c\<noteq>b" "c\<sharp>x" "c\<sharp>y" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3201 | shows "x = [(a,c)]\<bullet>[(b,c)]\<bullet>y" | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3202 | using as fr | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3203 | apply(drule_tac sym) | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3204 | apply(simp add: abs_fun_fresh[OF pt, OF at] pt_swap_bij[OF pt, OF at]) | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3205 | done | 
| 
749b6870b1a1
introduced symmetric variants of the lemmas for alpha-equivalence
 urbanc parents: 
23050diff
changeset | 3206 | |
| 17870 | 3207 | lemma abs_fun_supp_approx: | 
| 3208 | fixes x :: "'a" | |
| 3209 | and a :: "'x" | |
| 3210 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3211 |   and     at: "at TYPE('x)"
 | |
| 18048 | 3212 | shows "((supp ([a].x))::'x set) \<subseteq> (supp (x,a))" | 
| 3213 | proof | |
| 3214 | fix c | |
| 3215 | assume "c\<in>((supp ([a].x))::'x set)" | |
| 3216 |   hence "infinite {b. [(c,b)]\<bullet>([a].x) \<noteq> [a].x}" by (simp add: supp_def)
 | |
| 3217 |   hence "infinite {b. [([(c,b)]\<bullet>a)].([(c,b)]\<bullet>x) \<noteq> [a].x}" by (simp add: abs_fun_pi[OF pt, OF at])
 | |
| 3218 | moreover | |
| 3219 |   have "{b. [([(c,b)]\<bullet>a)].([(c,b)]\<bullet>x) \<noteq> [a].x} \<subseteq> {b. ([(c,b)]\<bullet>x,[(c,b)]\<bullet>a) \<noteq> (x, a)}" by force
 | |
| 3220 |   ultimately have "infinite {b. ([(c,b)]\<bullet>x,[(c,b)]\<bullet>a) \<noteq> (x, a)}" by (simp add: infinite_super)
 | |
| 3221 | thus "c\<in>(supp (x,a))" by (simp add: supp_def) | |
| 17870 | 3222 | qed | 
| 3223 | ||
| 3224 | lemma abs_fun_finite_supp: | |
| 3225 | fixes x :: "'a" | |
| 3226 | and a :: "'x" | |
| 3227 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3228 |   and     at: "at TYPE('x)"
 | |
| 3229 | and f: "finite ((supp x)::'x set)" | |
| 3230 | shows "finite ((supp ([a].x))::'x set)" | |
| 3231 | proof - | |
| 18048 | 3232 | from f have "finite ((supp (x,a))::'x set)" by (simp add: supp_prod at_supp[OF at]) | 
| 3233 | moreover | |
| 3234 | have "((supp ([a].x))::'x set) \<subseteq> (supp (x,a))" by (rule abs_fun_supp_approx[OF pt, OF at]) | |
| 3235 | ultimately show ?thesis by (simp add: finite_subset) | |
| 17870 | 3236 | qed | 
| 3237 | ||
| 3238 | lemma fresh_abs_funI1: | |
| 3239 | fixes x :: "'a" | |
| 3240 | and a :: "'x" | |
| 3241 | and b :: "'x" | |
| 3242 |   assumes pt:  "pt TYPE('a) TYPE('x)"
 | |
| 3243 |   and     at:   "at TYPE('x)"
 | |
| 3244 | and f: "finite ((supp x)::'x set)" | |
| 3245 | and a1: "b\<sharp>x" | |
| 3246 | and a2: "a\<noteq>b" | |
| 3247 | shows "b\<sharp>([a].x)" | |
| 3248 | proof - | |
| 3249 | have "\<exists>c::'x. c\<sharp>(b,a,x,[a].x)" | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 3250 | proof (rule at_exists_fresh'[OF at], auto simp add: supp_prod at_supp[OF at] f) | 
| 17870 | 3251 | show "finite ((supp ([a].x))::'x set)" using f | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3252 | by (simp add: abs_fun_finite_supp[OF pt, OF at]) | 
| 17870 | 3253 | qed | 
| 3254 | then obtain c where fr1: "c\<noteq>b" | |
| 3255 | and fr2: "c\<noteq>a" | |
| 3256 | and fr3: "c\<sharp>x" | |
| 3257 | and fr4: "c\<sharp>([a].x)" | |
| 3258 | by (force simp add: fresh_prod at_fresh[OF at]) | |
| 3259 | have e: "[(c,b)]\<bullet>([a].x) = [a].([(c,b)]\<bullet>x)" using a2 fr1 fr2 | |
| 3260 | by (force simp add: abs_fun_pi[OF pt, OF at] at_calc[OF at]) | |
| 3261 | from fr4 have "([(c,b)]\<bullet>c)\<sharp> ([(c,b)]\<bullet>([a].x))" | |
| 3262 | by (simp add: pt_fresh_bij[OF pt_abs_fun_inst[OF pt, OF at], OF at]) | |
| 3263 | hence "b\<sharp>([a].([(c,b)]\<bullet>x))" using fr1 fr2 e | |
| 3264 | by (simp add: at_calc[OF at]) | |
| 3265 | thus ?thesis using a1 fr3 | |
| 3266 | by (simp add: pt_fresh_fresh[OF pt, OF at]) | |
| 3267 | qed | |
| 3268 | ||
| 3269 | lemma fresh_abs_funE: | |
| 3270 | fixes a :: "'x" | |
| 3271 | and b :: "'x" | |
| 3272 | and x :: "'a" | |
| 3273 |   assumes pt:  "pt TYPE('a) TYPE('x)"
 | |
| 3274 |   and     at:  "at TYPE('x)"
 | |
| 3275 | and f: "finite ((supp x)::'x set)" | |
| 3276 | and a1: "b\<sharp>([a].x)" | |
| 3277 | and a2: "b\<noteq>a" | |
| 3278 | shows "b\<sharp>x" | |
| 3279 | proof - | |
| 3280 | have "\<exists>c::'x. c\<sharp>(b,a,x,[a].x)" | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 3281 | proof (rule at_exists_fresh'[OF at], auto simp add: supp_prod at_supp[OF at] f) | 
| 17870 | 3282 | show "finite ((supp ([a].x))::'x set)" using f | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32638diff
changeset | 3283 | by (simp add: abs_fun_finite_supp[OF pt, OF at]) | 
| 17870 | 3284 | qed | 
| 3285 | then obtain c where fr1: "b\<noteq>c" | |
| 3286 | and fr2: "c\<noteq>a" | |
| 3287 | and fr3: "c\<sharp>x" | |
| 3288 | and fr4: "c\<sharp>([a].x)" by (force simp add: fresh_prod at_fresh[OF at]) | |
| 3289 | have "[a].x = [(b,c)]\<bullet>([a].x)" using a1 fr4 | |
| 3290 | by (simp add: pt_fresh_fresh[OF pt_abs_fun_inst[OF pt, OF at], OF at]) | |
| 3291 | hence "[a].x = [a].([(b,c)]\<bullet>x)" using fr2 a2 | |
| 3292 | by (force simp add: abs_fun_pi[OF pt, OF at] at_calc[OF at]) | |
| 3293 | hence b: "([(b,c)]\<bullet>x) = x" by (simp add: abs_fun_eq1) | |
| 3294 | from fr3 have "([(b,c)]\<bullet>c)\<sharp>([(b,c)]\<bullet>x)" | |
| 3295 | by (simp add: pt_fresh_bij[OF pt, OF at]) | |
| 3296 | thus ?thesis using b fr1 by (simp add: at_calc[OF at]) | |
| 3297 | qed | |
| 3298 | ||
| 3299 | lemma fresh_abs_funI2: | |
| 3300 | fixes a :: "'x" | |
| 3301 | and x :: "'a" | |
| 3302 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3303 |   and     at: "at TYPE('x)"
 | |
| 3304 | and f: "finite ((supp x)::'x set)" | |
| 3305 | shows "a\<sharp>([a].x)" | |
| 3306 | proof - | |
| 3307 | have "\<exists>c::'x. c\<sharp>(a,x)" | |
| 21377 
c29146dc14f1
replaced exists_fresh lemma with a version formulated with obtains;
 urbanc parents: 
21318diff
changeset | 3308 | by (rule at_exists_fresh'[OF at], auto simp add: supp_prod at_supp[OF at] f) | 
| 17870 | 3309 | then obtain c where fr1: "a\<noteq>c" and fr1_sym: "c\<noteq>a" | 
| 3310 | and fr2: "c\<sharp>x" by (force simp add: fresh_prod at_fresh[OF at]) | |
| 3311 | have "c\<sharp>([a].x)" using f fr1 fr2 by (simp add: fresh_abs_funI1[OF pt, OF at]) | |
| 3312 | hence "([(c,a)]\<bullet>c)\<sharp>([(c,a)]\<bullet>([a].x))" using fr1 | |
| 3313 | by (simp only: pt_fresh_bij[OF pt_abs_fun_inst[OF pt, OF at], OF at]) | |
| 3314 | hence a: "a\<sharp>([c].([(c,a)]\<bullet>x))" using fr1_sym | |
| 3315 | by (simp add: abs_fun_pi[OF pt, OF at] at_calc[OF at]) | |
| 3316 | have "[c].([(c,a)]\<bullet>x) = ([a].x)" using fr1_sym fr2 | |
| 3317 | by (simp add: abs_fun_eq[OF pt, OF at]) | |
| 3318 | thus ?thesis using a by simp | |
| 3319 | qed | |
| 3320 | ||
| 3321 | lemma fresh_abs_fun_iff: | |
| 3322 | fixes a :: "'x" | |
| 3323 | and b :: "'x" | |
| 3324 | and x :: "'a" | |
| 3325 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3326 |   and     at: "at TYPE('x)"
 | |
| 3327 | and f: "finite ((supp x)::'x set)" | |
| 3328 | shows "(b\<sharp>([a].x)) = (b=a \<or> b\<sharp>x)" | |
| 3329 | by (auto dest: fresh_abs_funE[OF pt, OF at,OF f] | |
| 3330 | intro: fresh_abs_funI1[OF pt, OF at,OF f] | |
| 3331 | fresh_abs_funI2[OF pt, OF at,OF f]) | |
| 3332 | ||
| 3333 | lemma abs_fun_supp: | |
| 3334 | fixes a :: "'x" | |
| 3335 | and x :: "'a" | |
| 3336 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3337 |   and     at: "at TYPE('x)"
 | |
| 3338 | and f: "finite ((supp x)::'x set)" | |
| 3339 |   shows "supp ([a].x) = (supp x)-{a}"
 | |
| 3340 | by (force simp add: supp_fresh_iff fresh_abs_fun_iff[OF pt, OF at, OF f]) | |
| 3341 | ||
| 18048 | 3342 | (* maybe needs to be better stated as supp intersection supp *) | 
| 17870 | 3343 | lemma abs_fun_supp_ineq: | 
| 3344 | fixes a :: "'y" | |
| 3345 | and x :: "'a" | |
| 3346 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 3347 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 3348 |   and     at:  "at TYPE('x)"
 | |
| 3349 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 3350 |   and     dj:  "disjoint TYPE('y) TYPE('x)"
 | |
| 3351 | shows "((supp ([a].x))::'x set) = (supp x)" | |
| 3352 | apply(auto simp add: supp_def) | |
| 3353 | apply(auto simp add: abs_fun_pi_ineq[OF pta, OF ptb, OF at, OF cp]) | |
| 3354 | apply(auto simp add: dj_perm_forget[OF dj]) | |
| 3355 | apply(auto simp add: abs_fun_eq1) | |
| 3356 | done | |
| 3357 | ||
| 3358 | lemma fresh_abs_fun_iff_ineq: | |
| 3359 | fixes a :: "'y" | |
| 3360 | and b :: "'x" | |
| 3361 | and x :: "'a" | |
| 3362 |   assumes pta: "pt TYPE('a) TYPE('x)"
 | |
| 3363 |   and     ptb: "pt TYPE('y) TYPE('x)"
 | |
| 3364 |   and     at:  "at TYPE('x)"
 | |
| 3365 |   and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
 | |
| 3366 |   and     dj:  "disjoint TYPE('y) TYPE('x)"
 | |
| 3367 | shows "b\<sharp>([a].x) = b\<sharp>x" | |
| 3368 | by (simp add: fresh_def abs_fun_supp_ineq[OF pta, OF ptb, OF at, OF cp, OF dj]) | |
| 3369 | ||
| 18048 | 3370 | section {* abstraction type for the parsing in nominal datatype *}
 | 
| 3371 | (*==============================================================*) | |
| 23755 | 3372 | |
| 3373 | inductive_set ABS_set :: "('x\<Rightarrow>('a noption)) set"
 | |
| 3374 | where | |
| 17870 | 3375 | ABS_in: "(abs_fun a x)\<in>ABS_set" | 
| 3376 | ||
| 45694 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45625diff
changeset | 3377 | definition "ABS = ABS_set" | 
| 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45625diff
changeset | 3378 | |
| 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45625diff
changeset | 3379 | typedef (open) ('x,'a) ABS ("\<guillemotleft>_\<guillemotright>_" [1000,1000] 1000) =
 | 
| 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45625diff
changeset | 3380 |     "ABS::('x\<Rightarrow>('a noption)) set"
 | 
| 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45625diff
changeset | 3381 | morphisms Rep_ABS Abs_ABS | 
| 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45625diff
changeset | 3382 | unfolding ABS_def | 
| 17870 | 3383 | proof | 
| 3384 | fix x::"'a" and a::"'x" | |
| 3385 | show "(abs_fun a x)\<in> ABS_set" by (rule ABS_in) | |
| 3386 | qed | |
| 3387 | ||
| 3388 | ||
| 18048 | 3389 | section {* lemmas for deciding permutation equations *}
 | 
| 17870 | 3390 | (*===================================================*) | 
| 3391 | ||
| 19477 | 3392 | lemma perm_aux_fold: | 
| 3393 | shows "perm_aux pi x = pi\<bullet>x" by (simp only: perm_aux_def) | |
| 3394 | ||
| 3395 | lemma pt_perm_compose_aux: | |
| 3396 | fixes pi1 :: "'x prm" | |
| 3397 | and pi2 :: "'x prm" | |
| 3398 | and x :: "'a" | |
| 3399 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3400 |   and     at: "at TYPE('x)"
 | |
| 3401 | shows "pi2\<bullet>(pi1\<bullet>x) = perm_aux (pi2\<bullet>pi1) (pi2\<bullet>x)" | |
| 3402 | proof - | |
| 23393 | 3403 | have "(pi2@pi1) \<triangleq> ((pi2\<bullet>pi1)@pi2)" by (rule at_ds8[OF at]) | 
| 19477 | 3404 | hence "(pi2@pi1)\<bullet>x = ((pi2\<bullet>pi1)@pi2)\<bullet>x" by (rule pt3[OF pt]) | 
| 3405 | thus ?thesis by (simp add: pt2[OF pt] perm_aux_def) | |
| 3406 | qed | |
| 3407 | ||
| 3408 | lemma cp1_aux: | |
| 3409 | fixes pi1::"'x prm" | |
| 3410 | and pi2::"'y prm" | |
| 3411 | and x ::"'a" | |
| 3412 |   assumes cp: "cp TYPE ('a) TYPE('x) TYPE('y)"
 | |
| 3413 | shows "pi1\<bullet>(pi2\<bullet>x) = perm_aux (pi1\<bullet>pi2) (pi1\<bullet>x)" | |
| 3414 | using cp by (simp add: cp_def perm_aux_def) | |
| 3415 | ||
| 17870 | 3416 | lemma perm_eq_app: | 
| 3417 | fixes f :: "'a\<Rightarrow>'b" | |
| 3418 | and x :: "'a" | |
| 3419 | and pi :: "'x prm" | |
| 3420 |   assumes pt: "pt TYPE('a) TYPE('x)"
 | |
| 3421 |   and     at: "at TYPE('x)"
 | |
| 3422 | shows "(pi\<bullet>(f x)=y) = ((pi\<bullet>f)(pi\<bullet>x)=y)" | |
| 3423 | by (simp add: pt_fun_app_eq[OF pt, OF at]) | |
| 3424 | ||
| 3425 | lemma perm_eq_lam: | |
| 3426 | fixes f :: "'a\<Rightarrow>'b" | |
| 3427 | and x :: "'a" | |
| 3428 | and pi :: "'x prm" | |
| 3429 | shows "((pi\<bullet>(\<lambda>x. f x))=y) = ((\<lambda>x. (pi\<bullet>(f ((rev pi)\<bullet>x))))=y)" | |
| 3430 | by (simp add: perm_fun_def) | |
| 3431 | ||
| 19132 | 3432 | section {* test *}
 | 
| 3433 | lemma at_prm_eq_compose: | |
| 3434 | fixes pi1 :: "'x prm" | |
| 3435 | and pi2 :: "'x prm" | |
| 3436 | and pi3 :: "'x prm" | |
| 3437 |   assumes at: "at TYPE('x)"
 | |
| 3438 | and a: "pi1 \<triangleq> pi2" | |
| 3439 | shows "(pi3\<bullet>pi1) \<triangleq> (pi3\<bullet>pi2)" | |
| 3440 | proof - | |
| 3441 |   have pt: "pt TYPE('x) TYPE('x)" by (rule at_pt_inst[OF at])
 | |
| 3442 |   have pt_prm: "pt TYPE('x prm) TYPE('x)" 
 | |
| 3443 | by (rule pt_list_inst[OF pt_prod_inst[OF pt, OF pt]]) | |
| 3444 | from a show ?thesis | |
| 3445 | apply - | |
| 3446 | apply(auto simp add: prm_eq_def) | |
| 3447 | apply(rule_tac pi="rev pi3" in pt_bij4[OF pt, OF at]) | |
| 3448 | apply(rule trans) | |
| 3449 | apply(rule pt_perm_compose[OF pt, OF at]) | |
| 3450 | apply(simp add: pt_rev_pi[OF pt_prm, OF at]) | |
| 3451 | apply(rule sym) | |
| 3452 | apply(rule trans) | |
| 3453 | apply(rule pt_perm_compose[OF pt, OF at]) | |
| 3454 | apply(simp add: pt_rev_pi[OF pt_prm, OF at]) | |
| 3455 | done | |
| 3456 | qed | |
| 3457 | ||
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3458 | (************************) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3459 | (* Various eqvt-lemmas *) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3460 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3461 | lemma Zero_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3462 | shows "pi\<bullet>(0::nat) = 0" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3463 | by (auto simp add: perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3464 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3465 | lemma One_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3466 | shows "pi\<bullet>(1::nat) = 1" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3467 | by (simp add: perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3468 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3469 | lemma Suc_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3470 | shows "pi\<bullet>(Suc x) = Suc (pi\<bullet>x)" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3471 | by (auto simp add: perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3472 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3473 | lemma numeral_nat_eqvt: | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46950diff
changeset | 3474 | shows "pi\<bullet>((numeral n)::nat) = numeral n" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3475 | by (simp add: perm_nat_def perm_int_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3476 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3477 | lemma max_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3478 | fixes x::"nat" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3479 | shows "pi\<bullet>(max x y) = max (pi\<bullet>x) (pi\<bullet>y)" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3480 | by (simp add:perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3481 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3482 | lemma min_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3483 | fixes x::"nat" | 
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 3484 | shows "pi\<bullet>(min x y) = min (pi\<bullet>x) (pi\<bullet>y)" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3485 | by (simp add:perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3486 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3487 | lemma plus_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3488 | fixes x::"nat" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3489 | shows "pi\<bullet>(x + y) = (pi\<bullet>x) + (pi\<bullet>y)" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3490 | by (simp add:perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3491 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3492 | lemma minus_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3493 | fixes x::"nat" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3494 | shows "pi\<bullet>(x - y) = (pi\<bullet>x) - (pi\<bullet>y)" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3495 | by (simp add:perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3496 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3497 | lemma mult_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3498 | fixes x::"nat" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3499 | shows "pi\<bullet>(x * y) = (pi\<bullet>x) * (pi\<bullet>y)" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3500 | by (simp add:perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3501 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3502 | lemma div_nat_eqvt: | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3503 | fixes x::"nat" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3504 | shows "pi\<bullet>(x div y) = (pi\<bullet>x) div (pi\<bullet>y)" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3505 | by (simp add:perm_nat_def) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3506 | |
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3507 | lemma Zero_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3508 | shows "pi\<bullet>(0::int) = 0" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3509 | by (auto simp add: perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3510 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3511 | lemma One_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3512 | shows "pi\<bullet>(1::int) = 1" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3513 | by (simp add: perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3514 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3515 | lemma numeral_int_eqvt: | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46950diff
changeset | 3516 | shows "pi\<bullet>((numeral n)::int) = numeral n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46950diff
changeset | 3517 | by (simp add: perm_int_def perm_int_def) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46950diff
changeset | 3518 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46950diff
changeset | 3519 | lemma neg_numeral_int_eqvt: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46950diff
changeset | 3520 | shows "pi\<bullet>((neg_numeral n)::int) = neg_numeral n" | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3521 | by (simp add: perm_int_def perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3522 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3523 | lemma max_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3524 | fixes x::"int" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3525 | shows "pi\<bullet>(max (x::int) y) = max (pi\<bullet>x) (pi\<bullet>y)" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3526 | by (simp add:perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3527 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3528 | lemma min_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3529 | fixes x::"int" | 
| 22500 
8436bfd21bf3
corrected the lemmas min_nat_eqvt and min_int_eqvt
 urbanc parents: 
22446diff
changeset | 3530 | shows "pi\<bullet>(min x y) = min (pi\<bullet>x) (pi\<bullet>y)" | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3531 | by (simp add:perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3532 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3533 | lemma plus_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3534 | fixes x::"int" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3535 | shows "pi\<bullet>(x + y) = (pi\<bullet>x) + (pi\<bullet>y)" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3536 | by (simp add:perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3537 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3538 | lemma minus_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3539 | fixes x::"int" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3540 | shows "pi\<bullet>(x - y) = (pi\<bullet>x) - (pi\<bullet>y)" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3541 | by (simp add:perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3542 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3543 | lemma mult_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3544 | fixes x::"int" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3545 | shows "pi\<bullet>(x * y) = (pi\<bullet>x) * (pi\<bullet>y)" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3546 | by (simp add:perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3547 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3548 | lemma div_int_eqvt: | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3549 | fixes x::"int" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3550 | shows "pi\<bullet>(x div y) = (pi\<bullet>x) div (pi\<bullet>y)" | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3551 | by (simp add:perm_int_def) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3552 | |
| 30990 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 3553 | (*******************************************************) | 
| 
4872eef36167
reorganised the section about fresh_star and added lemma pt_fresh_star_pi
 Christian Urban <urbanc@in.tum.de> parents: 
30983diff
changeset | 3554 | (* Setup of the theorem attributes eqvt and eqvt_force *) | 
| 48891 | 3555 | ML_file "nominal_thmdecls.ML" | 
| 22245 
1b8f4ef50c48
moved the infrastructure from the nominal_tags file to nominal_thmdecls
 urbanc parents: 
22231diff
changeset | 3556 | setup "NominalThmDecls.setup" | 
| 19132 | 3557 | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3558 | lemmas [eqvt] = | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3559 | (* connectives *) | 
| 22732 
5bd1a2a94e1b
declared lemmas true_eqvt and false_eqvt to be equivariant (suggested by samth at ccs.neu.edu)
 urbanc parents: 
22729diff
changeset | 3560 | if_eqvt imp_eqvt disj_eqvt conj_eqvt neg_eqvt | 
| 
5bd1a2a94e1b
declared lemmas true_eqvt and false_eqvt to be equivariant (suggested by samth at ccs.neu.edu)
 urbanc parents: 
22729diff
changeset | 3561 | true_eqvt false_eqvt | 
| 24568 | 3562 | imp_eqvt [folded induct_implies_def] | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3563 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3564 | (* datatypes *) | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3565 | perm_unit.simps | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3566 | perm_list.simps append_eqvt | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3567 | perm_prod.simps | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3568 | fst_eqvt snd_eqvt | 
| 22511 
ca326e0fb5c5
added the permutation operation on options to the list of equivariance lemmas
 urbanc parents: 
22500diff
changeset | 3569 | perm_option.simps | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3570 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3571 | (* nats *) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3572 | Suc_eqvt Zero_nat_eqvt One_nat_eqvt min_nat_eqvt max_nat_eqvt | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3573 | plus_nat_eqvt minus_nat_eqvt mult_nat_eqvt div_nat_eqvt | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3574 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3575 | (* ints *) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3576 | Zero_int_eqvt One_int_eqvt min_int_eqvt max_int_eqvt | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3577 | plus_int_eqvt minus_int_eqvt mult_int_eqvt div_int_eqvt | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3578 | |
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3579 | (* sets *) | 
| 46179 
47bcf3d5d1f0
Reverted several lemmas involving sets to the state before the
 berghofe parents: 
45961diff
changeset | 3580 | union_eqvt empty_eqvt insert_eqvt set_eqvt | 
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3581 | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3582 | |
| 22446 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3583 | (* the lemmas numeral_nat_eqvt numeral_int_eqvt do not conform with the *) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3584 | (* usual form of an eqvt-lemma, but they are needed for analysing *) | 
| 
91951d4177d3
added eqvt-lemmas for integers and eqvt-tagged the lemma append_eqvt
 urbanc parents: 
22418diff
changeset | 3585 | (* permutations on nats and ints *) | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46950diff
changeset | 3586 | lemmas [eqvt_force] = numeral_nat_eqvt numeral_int_eqvt neg_numeral_int_eqvt | 
| 22326 
a3acee47a883
start adding the attribute eqvt to some lemmas of the nominal library
 narboux parents: 
22312diff
changeset | 3587 | |
| 17870 | 3588 | (***************************************) | 
| 3589 | (* setup for the individial atom-kinds *) | |
| 18047 
3d643b13eb65
simplified the abs_supp_approx proof and tuned some comments in
 urbanc parents: 
18012diff
changeset | 3590 | (* and nominal datatypes *) | 
| 48891 | 3591 | ML_file "nominal_atoms.ML" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3592 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3593 | (************************************************************) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3594 | (* various tactics for analysing permutations, supports etc *) | 
| 48891 | 3595 | ML_file "nominal_permeq.ML" | 
| 17870 | 3596 | |
| 3597 | method_setup perm_simp = | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3598 |   {* NominalPermeq.perm_simp_meth *}
 | 
| 19477 | 3599 |   {* simp rules and simprocs for analysing permutations *}
 | 
| 17870 | 3600 | |
| 3601 | method_setup perm_simp_debug = | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3602 |   {* NominalPermeq.perm_simp_meth_debug *}
 | 
| 19986 
3e0eababf58d
- nominal_permeq.ML is now loaded before nominal_package.ML
 berghofe parents: 
19972diff
changeset | 3603 |   {* simp rules and simprocs for analysing permutations including debugging facilities *}
 | 
| 19477 | 3604 | |
| 28322 
6f4cf302c798
made the perm_simp tactic to understand options such as (no_asm)
 urbanc parents: 
28011diff
changeset | 3605 | method_setup perm_extend_simp = | 
| 
6f4cf302c798
made the perm_simp tactic to understand options such as (no_asm)
 urbanc parents: 
28011diff
changeset | 3606 |   {* NominalPermeq.perm_extend_simp_meth *}
 | 
| 19477 | 3607 |   {* tactic for deciding equalities involving permutations *}
 | 
| 3608 | ||
| 28322 
6f4cf302c798
made the perm_simp tactic to understand options such as (no_asm)
 urbanc parents: 
28011diff
changeset | 3609 | method_setup perm_extend_simp_debug = | 
| 
6f4cf302c798
made the perm_simp tactic to understand options such as (no_asm)
 urbanc parents: 
28011diff
changeset | 3610 |   {* NominalPermeq.perm_extend_simp_meth_debug *}
 | 
| 19986 
3e0eababf58d
- nominal_permeq.ML is now loaded before nominal_package.ML
 berghofe parents: 
19972diff
changeset | 3611 |   {* tactic for deciding equalities involving permutations including debugging facilities *}
 | 
| 17870 | 3612 | |
| 3613 | method_setup supports_simp = | |
| 19986 
3e0eababf58d
- nominal_permeq.ML is now loaded before nominal_package.ML
 berghofe parents: 
19972diff
changeset | 3614 |   {* NominalPermeq.supports_meth *}
 | 
| 18703 | 3615 |   {* tactic for deciding whether something supports something else *}
 | 
| 17870 | 3616 | |
| 3617 | method_setup supports_simp_debug = | |
| 19986 
3e0eababf58d
- nominal_permeq.ML is now loaded before nominal_package.ML
 berghofe parents: 
19972diff
changeset | 3618 |   {* NominalPermeq.supports_meth_debug *}
 | 
| 
3e0eababf58d
- nominal_permeq.ML is now loaded before nominal_package.ML
 berghofe parents: 
19972diff
changeset | 3619 |   {* tactic for deciding whether something supports something else including debugging facilities *}
 | 
| 17870 | 3620 | |
| 19164 | 3621 | method_setup finite_guess = | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3622 |   {* NominalPermeq.finite_guess_meth *}
 | 
| 19164 | 3623 |   {* tactic for deciding whether something has finite support *}
 | 
| 3624 | ||
| 3625 | method_setup finite_guess_debug = | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3626 |   {* NominalPermeq.finite_guess_meth_debug *}
 | 
| 19986 
3e0eababf58d
- nominal_permeq.ML is now loaded before nominal_package.ML
 berghofe parents: 
19972diff
changeset | 3627 |   {* tactic for deciding whether something has finite support including debugging facilities *}
 | 
| 19494 | 3628 | |
| 19638 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 3629 | method_setup fresh_guess = | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3630 |   {* NominalPermeq.fresh_guess_meth *}
 | 
| 19638 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 3631 |   {* tactic for deciding whether an atom is fresh for something*}
 | 
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 3632 | |
| 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 3633 | method_setup fresh_guess_debug = | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3634 |   {* NominalPermeq.fresh_guess_meth_debug *}
 | 
| 19986 
3e0eababf58d
- nominal_permeq.ML is now loaded before nominal_package.ML
 berghofe parents: 
19972diff
changeset | 3635 |   {* tactic for deciding whether an atom is fresh for something including debugging facilities *}
 | 
| 19638 
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
 urbanc parents: 
19634diff
changeset | 3636 | |
| 22762 | 3637 | (*****************************************************************) | 
| 3638 | (* tactics for generating fresh names and simplifying fresh_funs *) | |
| 48891 | 3639 | ML_file "nominal_fresh_fun.ML" | 
| 22729 | 3640 | |
| 3641 | method_setup generate_fresh = | |
| 3642 |   {* setup_generate_fresh *} 
 | |
| 3643 |   {* tactic to generate a name fresh for all the variables in the goal *}
 | |
| 3644 | ||
| 3645 | method_setup fresh_fun_simp = | |
| 3646 |   {* setup_fresh_fun_simp *} 
 | |
| 3647 |   {* tactic to delete one inner occurence of fresh_fun *}
 | |
| 3648 | ||
| 3649 | ||
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3650 | (************************************************) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3651 | (* main file for constructing nominal datatypes *) | 
| 27228 
4f7976a6ffc3
allE_Nil: only one copy, proven in regular theory source;
 wenzelm parents: 
26847diff
changeset | 3652 | lemma allE_Nil: assumes "\<forall>x. P x" obtains "P []" | 
| 
4f7976a6ffc3
allE_Nil: only one copy, proven in regular theory source;
 wenzelm parents: 
26847diff
changeset | 3653 | using assms .. | 
| 
4f7976a6ffc3
allE_Nil: only one copy, proven in regular theory source;
 wenzelm parents: 
26847diff
changeset | 3654 | |
| 48891 | 3655 | ML_file "nominal_datatype.ML" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3656 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3657 | (******************************************************) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3658 | (* primitive recursive functions on nominal datatypes *) | 
| 48891 | 3659 | ML_file "nominal_primrec.ML" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3660 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3661 | (****************************************************) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3662 | (* inductive definition involving nominal datatypes *) | 
| 48891 | 3663 | ML_file "nominal_inductive.ML" | 
| 3664 | ML_file "nominal_inductive2.ML" | |
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3665 | |
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3666 | (*****************************************) | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3667 | (* setup for induction principles method *) | 
| 48891 | 3668 | ML_file "nominal_induct.ML" | 
| 22418 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3669 | method_setup nominal_induct = | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3670 |   {* NominalInduct.nominal_induct_method *}
 | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3671 |   {* nominal induction *}
 | 
| 
49e2d9744ae1
major update of the nominal package; there is now an infrastructure
 urbanc parents: 
22326diff
changeset | 3672 | |
| 17870 | 3673 | end |