| author | huffman | 
| Tue, 29 Jan 2008 18:00:12 +0100 | |
| changeset 26012 | f6917792f8a4 | 
| parent 24915 | fc90277c0dd7 | 
| child 26271 | e324f8918c98 | 
| permissions | -rw-r--r-- | 
| 10358 | 1  | 
(* Title: HOL/Relation.thy  | 
| 
1128
 
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
 
nipkow 
parents:  
diff
changeset
 | 
2  | 
ID: $Id$  | 
| 1983 | 3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
4  | 
Copyright 1996 University of Cambridge  | 
|
| 
1128
 
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
 
nipkow 
parents:  
diff
changeset
 | 
5  | 
*)  | 
| 
 
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
 
nipkow 
parents:  
diff
changeset
 | 
6  | 
|
| 12905 | 7  | 
header {* Relations *}
 | 
8  | 
||
| 15131 | 9  | 
theory Relation  | 
| 24915 | 10  | 
imports Product_Type  | 
| 15131 | 11  | 
begin  | 
| 
5978
 
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
 
paulson 
parents: 
5608 
diff
changeset
 | 
12  | 
|
| 12913 | 13  | 
subsection {* Definitions *}
 | 
14  | 
||
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19363 
diff
changeset
 | 
15  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
16  | 
  converse :: "('a * 'b) set => ('b * 'a) set"
 | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
17  | 
    ("(_^-1)" [1000] 999) where
 | 
| 10358 | 18  | 
  "r^-1 == {(y, x). (x, y) : r}"
 | 
| 7912 | 19  | 
|
| 21210 | 20  | 
notation (xsymbols)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19363 
diff
changeset
 | 
21  | 
  converse  ("(_\<inverse>)" [1000] 999)
 | 
| 
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19363 
diff
changeset
 | 
22  | 
|
| 
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19363 
diff
changeset
 | 
23  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
24  | 
  rel_comp  :: "[('b * 'c) set, ('a * 'b) set] => ('a * 'c) set"
 | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
25  | 
(infixr "O" 75) where  | 
| 12913 | 26  | 
  "r O s == {(x,z). EX y. (x, y) : s & (y, z) : r}"
 | 
27  | 
||
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
28  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
29  | 
  Image :: "[('a * 'b) set, 'a set] => 'b set"
 | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
30  | 
(infixl "``" 90) where  | 
| 12913 | 31  | 
  "r `` s == {y. EX x:s. (x,y):r}"
 | 
| 7912 | 32  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
33  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
34  | 
  Id :: "('a * 'a) set" where -- {* the identity relation *}
 | 
| 12913 | 35  | 
  "Id == {p. EX x. p = (x,x)}"
 | 
| 7912 | 36  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
37  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
38  | 
  diag  :: "'a set => ('a * 'a) set" where -- {* diagonal: identity over a set *}
 | 
| 13830 | 39  | 
  "diag A == \<Union>x\<in>A. {(x,x)}"
 | 
| 12913 | 40  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
41  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
42  | 
  Domain :: "('a * 'b) set => 'a set" where
 | 
| 12913 | 43  | 
  "Domain r == {x. EX y. (x,y):r}"
 | 
| 
5978
 
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
 
paulson 
parents: 
5608 
diff
changeset
 | 
44  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
45  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
46  | 
  Range  :: "('a * 'b) set => 'b set" where
 | 
| 12913 | 47  | 
"Range r == Domain(r^-1)"  | 
| 
5978
 
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
 
paulson 
parents: 
5608 
diff
changeset
 | 
48  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
49  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
50  | 
  Field :: "('a * 'a) set => 'a set" where
 | 
| 13830 | 51  | 
"Field r == Domain r \<union> Range r"  | 
| 10786 | 52  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
53  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
54  | 
  refl :: "['a set, ('a * 'a) set] => bool" where -- {* reflexivity over a set *}
 | 
| 12913 | 55  | 
"refl A r == r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)"  | 
| 
6806
 
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
 
paulson 
parents: 
5978 
diff
changeset
 | 
56  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
57  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
58  | 
  sym :: "('a * 'a) set => bool" where -- {* symmetry predicate *}
 | 
| 12913 | 59  | 
"sym r == ALL x y. (x,y): r --> (y,x): r"  | 
| 
6806
 
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
 
paulson 
parents: 
5978 
diff
changeset
 | 
60  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
61  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
62  | 
  antisym :: "('a * 'a) set => bool" where -- {* antisymmetry predicate *}
 | 
| 12913 | 63  | 
"antisym r == ALL x y. (x,y):r --> (y,x):r --> x=y"  | 
| 
6806
 
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
 
paulson 
parents: 
5978 
diff
changeset
 | 
64  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
65  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
66  | 
  trans :: "('a * 'a) set => bool" where -- {* transitivity predicate *}
 | 
| 12913 | 67  | 
"trans r == (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)"  | 
| 
5978
 
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
 
paulson 
parents: 
5608 
diff
changeset
 | 
68  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
69  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
70  | 
  single_valued :: "('a * 'b) set => bool" where
 | 
| 12913 | 71  | 
"single_valued r == ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z)"  | 
| 
7014
 
11ee650edcd2
Added some definitions and theorems needed for the
 
berghofe 
parents: 
6806 
diff
changeset
 | 
72  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
73  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
74  | 
  inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" where
 | 
| 12913 | 75  | 
  "inv_image r f == {(x, y). (f x, f y) : r}"
 | 
| 11136 | 76  | 
|
| 19363 | 77  | 
abbreviation  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
78  | 
  reflexive :: "('a * 'a) set => bool" where -- {* reflexivity over a type *}
 | 
| 19363 | 79  | 
"reflexive == refl UNIV"  | 
| 
6806
 
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
 
paulson 
parents: 
5978 
diff
changeset
 | 
80  | 
|
| 12905 | 81  | 
|
| 12913 | 82  | 
subsection {* The identity relation *}
 | 
| 12905 | 83  | 
|
84  | 
lemma IdI [intro]: "(a, a) : Id"  | 
|
85  | 
by (simp add: Id_def)  | 
|
86  | 
||
87  | 
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P"  | 
|
| 17589 | 88  | 
by (unfold Id_def) (iprover elim: CollectE)  | 
| 12905 | 89  | 
|
90  | 
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)"  | 
|
91  | 
by (unfold Id_def) blast  | 
|
92  | 
||
93  | 
lemma reflexive_Id: "reflexive Id"  | 
|
94  | 
by (simp add: refl_def)  | 
|
95  | 
||
96  | 
lemma antisym_Id: "antisym Id"  | 
|
97  | 
  -- {* A strange result, since @{text Id} is also symmetric. *}
 | 
|
98  | 
by (simp add: antisym_def)  | 
|
99  | 
||
| 19228 | 100  | 
lemma sym_Id: "sym Id"  | 
101  | 
by (simp add: sym_def)  | 
|
102  | 
||
| 12905 | 103  | 
lemma trans_Id: "trans Id"  | 
104  | 
by (simp add: trans_def)  | 
|
105  | 
||
106  | 
||
| 12913 | 107  | 
subsection {* Diagonal: identity over a set *}
 | 
| 12905 | 108  | 
|
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13639 
diff
changeset
 | 
109  | 
lemma diag_empty [simp]: "diag {} = {}"
 | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13639 
diff
changeset
 | 
110  | 
by (simp add: diag_def)  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13639 
diff
changeset
 | 
111  | 
|
| 12905 | 112  | 
lemma diag_eqI: "a = b ==> a : A ==> (a, b) : diag A"  | 
113  | 
by (simp add: diag_def)  | 
|
114  | 
||
| 
24286
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
23709 
diff
changeset
 | 
115  | 
lemma diagI [intro!,noatp]: "a : A ==> (a, a) : diag A"  | 
| 12905 | 116  | 
by (rule diag_eqI) (rule refl)  | 
117  | 
||
118  | 
lemma diagE [elim!]:  | 
|
119  | 
"c : diag A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P"  | 
|
| 12913 | 120  | 
  -- {* The general elimination rule. *}
 | 
| 17589 | 121  | 
by (unfold diag_def) (iprover elim!: UN_E singletonE)  | 
| 12905 | 122  | 
|
123  | 
lemma diag_iff: "((x, y) : diag A) = (x = y & x : A)"  | 
|
124  | 
by blast  | 
|
125  | 
||
| 12913 | 126  | 
lemma diag_subset_Times: "diag A \<subseteq> A \<times> A"  | 
| 12905 | 127  | 
by blast  | 
128  | 
||
129  | 
||
130  | 
subsection {* Composition of two relations *}
 | 
|
131  | 
||
| 12913 | 132  | 
lemma rel_compI [intro]:  | 
| 12905 | 133  | 
"(a, b) : s ==> (b, c) : r ==> (a, c) : r O s"  | 
134  | 
by (unfold rel_comp_def) blast  | 
|
135  | 
||
| 12913 | 136  | 
lemma rel_compE [elim!]: "xz : r O s ==>  | 
| 12905 | 137  | 
(!!x y z. xz = (x, z) ==> (x, y) : s ==> (y, z) : r ==> P) ==> P"  | 
| 17589 | 138  | 
by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE)  | 
| 12905 | 139  | 
|
140  | 
lemma rel_compEpair:  | 
|
141  | 
"(a, c) : r O s ==> (!!y. (a, y) : s ==> (y, c) : r ==> P) ==> P"  | 
|
| 17589 | 142  | 
by (iprover elim: rel_compE Pair_inject ssubst)  | 
| 12905 | 143  | 
|
144  | 
lemma R_O_Id [simp]: "R O Id = R"  | 
|
145  | 
by fast  | 
|
146  | 
||
147  | 
lemma Id_O_R [simp]: "Id O R = R"  | 
|
148  | 
by fast  | 
|
149  | 
||
| 23185 | 150  | 
lemma rel_comp_empty1[simp]: "{} O R = {}"
 | 
151  | 
by blast  | 
|
152  | 
||
153  | 
lemma rel_comp_empty2[simp]: "R O {} = {}"
 | 
|
154  | 
by blast  | 
|
155  | 
||
| 12905 | 156  | 
lemma O_assoc: "(R O S) O T = R O (S O T)"  | 
157  | 
by blast  | 
|
158  | 
||
| 12913 | 159  | 
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r"  | 
| 12905 | 160  | 
by (unfold trans_def) blast  | 
161  | 
||
| 12913 | 162  | 
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)"  | 
| 12905 | 163  | 
by blast  | 
164  | 
||
165  | 
lemma rel_comp_subset_Sigma:  | 
|
| 12913 | 166  | 
"s \<subseteq> A \<times> B ==> r \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C"  | 
| 12905 | 167  | 
by blast  | 
168  | 
||
| 12913 | 169  | 
|
170  | 
subsection {* Reflexivity *}
 | 
|
171  | 
||
172  | 
lemma reflI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl A r"  | 
|
| 17589 | 173  | 
by (unfold refl_def) (iprover intro!: ballI)  | 
| 12905 | 174  | 
|
175  | 
lemma reflD: "refl A r ==> a : A ==> (a, a) : r"  | 
|
176  | 
by (unfold refl_def) blast  | 
|
177  | 
||
| 19228 | 178  | 
lemma reflD1: "refl A r ==> (x, y) : r ==> x : A"  | 
179  | 
by (unfold refl_def) blast  | 
|
180  | 
||
181  | 
lemma reflD2: "refl A r ==> (x, y) : r ==> y : A"  | 
|
182  | 
by (unfold refl_def) blast  | 
|
183  | 
||
184  | 
lemma refl_Int: "refl A r ==> refl B s ==> refl (A \<inter> B) (r \<inter> s)"  | 
|
185  | 
by (unfold refl_def) blast  | 
|
186  | 
||
187  | 
lemma refl_Un: "refl A r ==> refl B s ==> refl (A \<union> B) (r \<union> s)"  | 
|
188  | 
by (unfold refl_def) blast  | 
|
189  | 
||
190  | 
lemma refl_INTER:  | 
|
191  | 
"ALL x:S. refl (A x) (r x) ==> refl (INTER S A) (INTER S r)"  | 
|
192  | 
by (unfold refl_def) fast  | 
|
193  | 
||
194  | 
lemma refl_UNION:  | 
|
195  | 
"ALL x:S. refl (A x) (r x) \<Longrightarrow> refl (UNION S A) (UNION S r)"  | 
|
196  | 
by (unfold refl_def) blast  | 
|
197  | 
||
198  | 
lemma refl_diag: "refl A (diag A)"  | 
|
199  | 
by (rule reflI [OF diag_subset_Times diagI])  | 
|
200  | 
||
| 12913 | 201  | 
|
202  | 
subsection {* Antisymmetry *}
 | 
|
| 12905 | 203  | 
|
204  | 
lemma antisymI:  | 
|
205  | 
"(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r"  | 
|
| 17589 | 206  | 
by (unfold antisym_def) iprover  | 
| 12905 | 207  | 
|
208  | 
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b"  | 
|
| 17589 | 209  | 
by (unfold antisym_def) iprover  | 
| 12905 | 210  | 
|
| 19228 | 211  | 
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r"  | 
212  | 
by (unfold antisym_def) blast  | 
|
| 12913 | 213  | 
|
| 19228 | 214  | 
lemma antisym_empty [simp]: "antisym {}"
 | 
215  | 
by (unfold antisym_def) blast  | 
|
216  | 
||
217  | 
lemma antisym_diag [simp]: "antisym (diag A)"  | 
|
218  | 
by (unfold antisym_def) blast  | 
|
219  | 
||
220  | 
||
221  | 
subsection {* Symmetry *}
 | 
|
222  | 
||
223  | 
lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r"  | 
|
224  | 
by (unfold sym_def) iprover  | 
|
| 15177 | 225  | 
|
226  | 
lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r"  | 
|
227  | 
by (unfold sym_def, blast)  | 
|
| 12905 | 228  | 
|
| 19228 | 229  | 
lemma sym_Int: "sym r ==> sym s ==> sym (r \<inter> s)"  | 
230  | 
by (fast intro: symI dest: symD)  | 
|
231  | 
||
232  | 
lemma sym_Un: "sym r ==> sym s ==> sym (r \<union> s)"  | 
|
233  | 
by (fast intro: symI dest: symD)  | 
|
234  | 
||
235  | 
lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)"  | 
|
236  | 
by (fast intro: symI dest: symD)  | 
|
237  | 
||
238  | 
lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)"  | 
|
239  | 
by (fast intro: symI dest: symD)  | 
|
240  | 
||
241  | 
lemma sym_diag [simp]: "sym (diag A)"  | 
|
242  | 
by (rule symI) clarify  | 
|
243  | 
||
244  | 
||
245  | 
subsection {* Transitivity *}
 | 
|
246  | 
||
| 12905 | 247  | 
lemma transI:  | 
248  | 
"(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r"  | 
|
| 17589 | 249  | 
by (unfold trans_def) iprover  | 
| 12905 | 250  | 
|
251  | 
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r"  | 
|
| 17589 | 252  | 
by (unfold trans_def) iprover  | 
| 12905 | 253  | 
|
| 19228 | 254  | 
lemma trans_Int: "trans r ==> trans s ==> trans (r \<inter> s)"  | 
255  | 
by (fast intro: transI elim: transD)  | 
|
256  | 
||
257  | 
lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)"  | 
|
258  | 
by (fast intro: transI elim: transD)  | 
|
259  | 
||
260  | 
lemma trans_diag [simp]: "trans (diag A)"  | 
|
261  | 
by (fast intro: transI elim: transD)  | 
|
262  | 
||
| 12905 | 263  | 
|
| 12913 | 264  | 
subsection {* Converse *}
 | 
265  | 
||
266  | 
lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)"  | 
|
| 12905 | 267  | 
by (simp add: converse_def)  | 
268  | 
||
| 13343 | 269  | 
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^-1"  | 
| 12905 | 270  | 
by (simp add: converse_def)  | 
271  | 
||
| 13343 | 272  | 
lemma converseD[sym]: "(a,b) : r^-1 ==> (b, a) : r"  | 
| 12905 | 273  | 
by (simp add: converse_def)  | 
274  | 
||
275  | 
lemma converseE [elim!]:  | 
|
276  | 
"yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P"  | 
|
| 12913 | 277  | 
    -- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *}
 | 
| 17589 | 278  | 
by (unfold converse_def) (iprover elim!: CollectE splitE bexE)  | 
| 12905 | 279  | 
|
280  | 
lemma converse_converse [simp]: "(r^-1)^-1 = r"  | 
|
281  | 
by (unfold converse_def) blast  | 
|
282  | 
||
283  | 
lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1"  | 
|
284  | 
by blast  | 
|
285  | 
||
| 19228 | 286  | 
lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1"  | 
287  | 
by blast  | 
|
288  | 
||
289  | 
lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1"  | 
|
290  | 
by blast  | 
|
291  | 
||
292  | 
lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)"  | 
|
293  | 
by fast  | 
|
294  | 
||
295  | 
lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)"  | 
|
296  | 
by blast  | 
|
297  | 
||
| 12905 | 298  | 
lemma converse_Id [simp]: "Id^-1 = Id"  | 
299  | 
by blast  | 
|
300  | 
||
| 12913 | 301  | 
lemma converse_diag [simp]: "(diag A)^-1 = diag A"  | 
| 12905 | 302  | 
by blast  | 
303  | 
||
| 19228 | 304  | 
lemma refl_converse [simp]: "refl A (converse r) = refl A r"  | 
305  | 
by (unfold refl_def) auto  | 
|
| 12905 | 306  | 
|
| 19228 | 307  | 
lemma sym_converse [simp]: "sym (converse r) = sym r"  | 
308  | 
by (unfold sym_def) blast  | 
|
309  | 
||
310  | 
lemma antisym_converse [simp]: "antisym (converse r) = antisym r"  | 
|
| 12905 | 311  | 
by (unfold antisym_def) blast  | 
312  | 
||
| 19228 | 313  | 
lemma trans_converse [simp]: "trans (converse r) = trans r"  | 
| 12905 | 314  | 
by (unfold trans_def) blast  | 
315  | 
||
| 19228 | 316  | 
lemma sym_conv_converse_eq: "sym r = (r^-1 = r)"  | 
317  | 
by (unfold sym_def) fast  | 
|
318  | 
||
319  | 
lemma sym_Un_converse: "sym (r \<union> r^-1)"  | 
|
320  | 
by (unfold sym_def) blast  | 
|
321  | 
||
322  | 
lemma sym_Int_converse: "sym (r \<inter> r^-1)"  | 
|
323  | 
by (unfold sym_def) blast  | 
|
324  | 
||
| 12913 | 325  | 
|
| 12905 | 326  | 
subsection {* Domain *}
 | 
327  | 
||
| 
24286
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
23709 
diff
changeset
 | 
328  | 
declare Domain_def [noatp]  | 
| 
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
23709 
diff
changeset
 | 
329  | 
|
| 12905 | 330  | 
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)"  | 
331  | 
by (unfold Domain_def) blast  | 
|
332  | 
||
333  | 
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r"  | 
|
| 17589 | 334  | 
by (iprover intro!: iffD2 [OF Domain_iff])  | 
| 12905 | 335  | 
|
336  | 
lemma DomainE [elim!]:  | 
|
337  | 
"a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P"  | 
|
| 17589 | 338  | 
by (iprover dest!: iffD1 [OF Domain_iff])  | 
| 12905 | 339  | 
|
340  | 
lemma Domain_empty [simp]: "Domain {} = {}"
 | 
|
341  | 
by blast  | 
|
342  | 
||
343  | 
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)"  | 
|
344  | 
by blast  | 
|
345  | 
||
346  | 
lemma Domain_Id [simp]: "Domain Id = UNIV"  | 
|
347  | 
by blast  | 
|
348  | 
||
349  | 
lemma Domain_diag [simp]: "Domain (diag A) = A"  | 
|
350  | 
by blast  | 
|
351  | 
||
| 13830 | 352  | 
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)"  | 
| 12905 | 353  | 
by blast  | 
354  | 
||
| 13830 | 355  | 
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)"  | 
| 12905 | 356  | 
by blast  | 
357  | 
||
| 12913 | 358  | 
lemma Domain_Diff_subset: "Domain(A) - Domain(B) \<subseteq> Domain(A - B)"  | 
| 12905 | 359  | 
by blast  | 
360  | 
||
| 13830 | 361  | 
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)"  | 
| 12905 | 362  | 
by blast  | 
363  | 
||
| 12913 | 364  | 
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s"  | 
| 12905 | 365  | 
by blast  | 
366  | 
||
| 22172 | 367  | 
lemma fst_eq_Domain: "fst ` R = Domain R";  | 
368  | 
apply auto  | 
|
369  | 
apply (rule image_eqI, auto)  | 
|
370  | 
done  | 
|
371  | 
||
| 12905 | 372  | 
|
373  | 
subsection {* Range *}
 | 
|
374  | 
||
375  | 
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)"  | 
|
376  | 
by (simp add: Domain_def Range_def)  | 
|
377  | 
||
378  | 
lemma RangeI [intro]: "(a, b) : r ==> b : Range r"  | 
|
| 17589 | 379  | 
by (unfold Range_def) (iprover intro!: converseI DomainI)  | 
| 12905 | 380  | 
|
381  | 
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P"  | 
|
| 17589 | 382  | 
by (unfold Range_def) (iprover elim!: DomainE dest!: converseD)  | 
| 12905 | 383  | 
|
384  | 
lemma Range_empty [simp]: "Range {} = {}"
 | 
|
385  | 
by blast  | 
|
386  | 
||
387  | 
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)"  | 
|
388  | 
by blast  | 
|
389  | 
||
390  | 
lemma Range_Id [simp]: "Range Id = UNIV"  | 
|
391  | 
by blast  | 
|
392  | 
||
393  | 
lemma Range_diag [simp]: "Range (diag A) = A"  | 
|
394  | 
by auto  | 
|
395  | 
||
| 13830 | 396  | 
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)"  | 
| 12905 | 397  | 
by blast  | 
398  | 
||
| 13830 | 399  | 
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)"  | 
| 12905 | 400  | 
by blast  | 
401  | 
||
| 12913 | 402  | 
lemma Range_Diff_subset: "Range(A) - Range(B) \<subseteq> Range(A - B)"  | 
| 12905 | 403  | 
by blast  | 
404  | 
||
| 13830 | 405  | 
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)"  | 
| 12905 | 406  | 
by blast  | 
407  | 
||
| 22172 | 408  | 
lemma snd_eq_Range: "snd ` R = Range R";  | 
409  | 
apply auto  | 
|
410  | 
apply (rule image_eqI, auto)  | 
|
411  | 
done  | 
|
412  | 
||
| 12905 | 413  | 
|
414  | 
subsection {* Image of a set under a relation *}
 | 
|
415  | 
||
| 
24286
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
23709 
diff
changeset
 | 
416  | 
declare Image_def [noatp]  | 
| 
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
23709 
diff
changeset
 | 
417  | 
|
| 12913 | 418  | 
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)"  | 
| 12905 | 419  | 
by (simp add: Image_def)  | 
420  | 
||
| 12913 | 421  | 
lemma Image_singleton: "r``{a} = {b. (a, b) : r}"
 | 
| 12905 | 422  | 
by (simp add: Image_def)  | 
423  | 
||
| 12913 | 424  | 
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)"
 | 
| 12905 | 425  | 
by (rule Image_iff [THEN trans]) simp  | 
426  | 
||
| 
24286
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
23709 
diff
changeset
 | 
427  | 
lemma ImageI [intro,noatp]: "(a, b) : r ==> a : A ==> b : r``A"  | 
| 12905 | 428  | 
by (unfold Image_def) blast  | 
429  | 
||
430  | 
lemma ImageE [elim!]:  | 
|
| 12913 | 431  | 
"b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P"  | 
| 17589 | 432  | 
by (unfold Image_def) (iprover elim!: CollectE bexE)  | 
| 12905 | 433  | 
|
434  | 
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A"  | 
|
435  | 
  -- {* This version's more effective when we already have the required @{text a} *}
 | 
|
436  | 
by blast  | 
|
437  | 
||
438  | 
lemma Image_empty [simp]: "R``{} = {}"
 | 
|
439  | 
by blast  | 
|
440  | 
||
441  | 
lemma Image_Id [simp]: "Id `` A = A"  | 
|
442  | 
by blast  | 
|
443  | 
||
| 13830 | 444  | 
lemma Image_diag [simp]: "diag A `` B = A \<inter> B"  | 
445  | 
by blast  | 
|
446  | 
||
447  | 
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B"  | 
|
| 12905 | 448  | 
by blast  | 
449  | 
||
| 13830 | 450  | 
lemma Image_Int_eq:  | 
451  | 
"single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B"  | 
|
452  | 
by (simp add: single_valued_def, blast)  | 
|
| 12905 | 453  | 
|
| 13830 | 454  | 
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B"  | 
| 12905 | 455  | 
by blast  | 
456  | 
||
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13639 
diff
changeset
 | 
457  | 
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A"  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13639 
diff
changeset
 | 
458  | 
by blast  | 
| 
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13639 
diff
changeset
 | 
459  | 
|
| 12913 | 460  | 
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B"  | 
| 17589 | 461  | 
by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2)  | 
| 12905 | 462  | 
|
| 13830 | 463  | 
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})"
 | 
| 12905 | 464  | 
  -- {* NOT suitable for rewriting *}
 | 
465  | 
by blast  | 
|
466  | 
||
| 12913 | 467  | 
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)"  | 
| 12905 | 468  | 
by blast  | 
469  | 
||
| 13830 | 470  | 
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))"  | 
471  | 
by blast  | 
|
472  | 
||
473  | 
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))"  | 
|
| 12905 | 474  | 
by blast  | 
475  | 
||
| 13830 | 476  | 
text{*Converse inclusion requires some assumptions*}
 | 
477  | 
lemma Image_INT_eq:  | 
|
478  | 
     "[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)"
 | 
|
479  | 
apply (rule equalityI)  | 
|
480  | 
apply (rule Image_INT_subset)  | 
|
481  | 
apply (simp add: single_valued_def, blast)  | 
|
482  | 
done  | 
|
| 12905 | 483  | 
|
| 12913 | 484  | 
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))"  | 
| 12905 | 485  | 
by blast  | 
486  | 
||
487  | 
||
| 12913 | 488  | 
subsection {* Single valued relations *}
 | 
489  | 
||
490  | 
lemma single_valuedI:  | 
|
| 12905 | 491  | 
"ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r"  | 
492  | 
by (unfold single_valued_def)  | 
|
493  | 
||
494  | 
lemma single_valuedD:  | 
|
495  | 
"single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z"  | 
|
496  | 
by (simp add: single_valued_def)  | 
|
497  | 
||
| 19228 | 498  | 
lemma single_valued_rel_comp:  | 
499  | 
"single_valued r ==> single_valued s ==> single_valued (r O s)"  | 
|
500  | 
by (unfold single_valued_def) blast  | 
|
501  | 
||
502  | 
lemma single_valued_subset:  | 
|
503  | 
"r \<subseteq> s ==> single_valued s ==> single_valued r"  | 
|
504  | 
by (unfold single_valued_def) blast  | 
|
505  | 
||
506  | 
lemma single_valued_Id [simp]: "single_valued Id"  | 
|
507  | 
by (unfold single_valued_def) blast  | 
|
508  | 
||
509  | 
lemma single_valued_diag [simp]: "single_valued (diag A)"  | 
|
510  | 
by (unfold single_valued_def) blast  | 
|
511  | 
||
| 12905 | 512  | 
|
513  | 
subsection {* Graphs given by @{text Collect} *}
 | 
|
514  | 
||
515  | 
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}"
 | 
|
516  | 
by auto  | 
|
517  | 
||
518  | 
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}"
 | 
|
519  | 
by auto  | 
|
520  | 
||
521  | 
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}"
 | 
|
522  | 
by auto  | 
|
523  | 
||
524  | 
||
| 12913 | 525  | 
subsection {* Inverse image *}
 | 
| 12905 | 526  | 
|
| 19228 | 527  | 
lemma sym_inv_image: "sym r ==> sym (inv_image r f)"  | 
528  | 
by (unfold sym_def inv_image_def) blast  | 
|
529  | 
||
| 12913 | 530  | 
lemma trans_inv_image: "trans r ==> trans (inv_image r f)"  | 
| 12905 | 531  | 
apply (unfold trans_def inv_image_def)  | 
532  | 
apply (simp (no_asm))  | 
|
533  | 
apply blast  | 
|
534  | 
done  | 
|
535  | 
||
| 23709 | 536  | 
|
537  | 
subsection {* Version of @{text lfp_induct} for binary relations *}
 | 
|
538  | 
||
539  | 
lemmas lfp_induct2 =  | 
|
540  | 
lfp_induct_set [of "(a, b)", split_format (complete)]  | 
|
541  | 
||
| 
1128
 
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
 
nipkow 
parents:  
diff
changeset
 | 
542  | 
end  |