| author | wenzelm | 
| Fri, 08 Dec 2023 15:37:46 +0100 | |
| changeset 79207 | f991d3003ec8 | 
| parent 76953 | f70d431b5016 | 
| child 82774 | 2865a6618cba | 
| permissions | -rw-r--r-- | 
| 55075 | 1 | (* Title: HOL/Basic_BNFs.thy | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 2 | Author: Dmitriy Traytel, TU Muenchen | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 3 | Author: Andrei Popescu, TU Muenchen | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 4 | Author: Jasmin Blanchette, TU Muenchen | 
| 75625 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 5 | Author: Jan van Brügge, TU Muenchen | 
| 75624 | 6 | Copyright 2012, 2022 | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 7 | |
| 49309 
f20b24214ac2
split basic BNFs into really basic ones and others, and added Andreas Lochbihler's "option" BNF
 blanchet parents: 
49236diff
changeset | 8 | Registration of basic types as bounded natural functors. | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 9 | *) | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 10 | |
| 60758 | 11 | section \<open>Registration of Basic Types as Bounded Natural Functors\<close> | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 12 | |
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 13 | theory Basic_BNFs | 
| 49310 | 14 | imports BNF_Def | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 15 | begin | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 16 | |
| 58916 | 17 | inductive_set setl :: "'a + 'b \<Rightarrow> 'a set" for s :: "'a + 'b" where | 
| 18 | "s = Inl x \<Longrightarrow> x \<in> setl s" | |
| 19 | inductive_set setr :: "'a + 'b \<Rightarrow> 'b set" for s :: "'a + 'b" where | |
| 20 | "s = Inr x \<Longrightarrow> x \<in> setr s" | |
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 21 | |
| 58916 | 22 | lemma sum_set_defs[code]: | 
| 67091 | 23 |   "setl = (\<lambda>x. case x of Inl z \<Rightarrow> {z} | _ \<Rightarrow> {})"
 | 
| 24 |   "setr = (\<lambda>x. case x of Inr z \<Rightarrow> {z} | _ \<Rightarrow> {})"
 | |
| 58916 | 25 | by (auto simp: fun_eq_iff intro: setl.intros setr.intros elim: setl.cases setr.cases split: sum.splits) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 26 | |
| 58916 | 27 | lemma rel_sum_simps[code, simp]: | 
| 55943 | 28 | "rel_sum R1 R2 (Inl a1) (Inl b1) = R1 a1 b1" | 
| 29 | "rel_sum R1 R2 (Inl a1) (Inr b2) = False" | |
| 30 | "rel_sum R1 R2 (Inr a2) (Inl b1) = False" | |
| 31 | "rel_sum R1 R2 (Inr a2) (Inr b2) = R2 a2 b2" | |
| 58916 | 32 | by (auto intro: rel_sum.intros elim: rel_sum.cases) | 
| 55083 | 33 | |
| 62324 | 34 | inductive | 
| 35 |    pred_sum :: "('a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> 'a + 'b \<Rightarrow> bool" for P1 P2
 | |
| 36 | where | |
| 37 | "P1 a \<Longrightarrow> pred_sum P1 P2 (Inl a)" | |
| 38 | | "P2 b \<Longrightarrow> pred_sum P1 P2 (Inr b)" | |
| 39 | ||
| 62335 | 40 | lemma pred_sum_inject[code, simp]: | 
| 41 | "pred_sum P1 P2 (Inl a) \<longleftrightarrow> P1 a" | |
| 42 | "pred_sum P1 P2 (Inr b) \<longleftrightarrow> P2 b" | |
| 43 | by (simp add: pred_sum.simps)+ | |
| 44 | ||
| 54421 | 45 | bnf "'a + 'b" | 
| 55931 | 46 | map: map_sum | 
| 54421 | 47 | sets: setl setr | 
| 48 | bd: natLeq | |
| 49 | wits: Inl Inr | |
| 55943 | 50 | rel: rel_sum | 
| 62324 | 51 | pred: pred_sum | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 52 | proof - | 
| 55931 | 53 | show "map_sum id id = id" by (rule map_sum.id) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 54 | next | 
| 54486 | 55 | fix f1 :: "'o \<Rightarrow> 's" and f2 :: "'p \<Rightarrow> 't" and g1 :: "'s \<Rightarrow> 'q" and g2 :: "'t \<Rightarrow> 'r" | 
| 67091 | 56 | show "map_sum (g1 \<circ> f1) (g2 \<circ> f2) = map_sum g1 g2 \<circ> map_sum f1 f2" | 
| 55931 | 57 | by (rule map_sum.comp[symmetric]) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 58 | next | 
| 54486 | 59 | fix x and f1 :: "'o \<Rightarrow> 'q" and f2 :: "'p \<Rightarrow> 'r" and g1 g2 | 
| 49451 
7a28d22c33c6
renamed "sum_setl" to "setl" and similarly for r
 blanchet parents: 
49450diff
changeset | 60 | assume a1: "\<And>z. z \<in> setl x \<Longrightarrow> f1 z = g1 z" and | 
| 
7a28d22c33c6
renamed "sum_setl" to "setl" and similarly for r
 blanchet parents: 
49450diff
changeset | 61 | a2: "\<And>z. z \<in> setr x \<Longrightarrow> f2 z = g2 z" | 
| 55931 | 62 | thus "map_sum f1 f2 x = map_sum g1 g2 x" | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 63 | proof (cases x) | 
| 58916 | 64 | case Inl thus ?thesis using a1 by (clarsimp simp: sum_set_defs(1)) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 65 | next | 
| 58916 | 66 | case Inr thus ?thesis using a2 by (clarsimp simp: sum_set_defs(2)) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 67 | qed | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 68 | next | 
| 54486 | 69 | fix f1 :: "'o \<Rightarrow> 'q" and f2 :: "'p \<Rightarrow> 'r" | 
| 67091 | 70 | show "setl \<circ> map_sum f1 f2 = image f1 \<circ> setl" | 
| 58916 | 71 | by (rule ext, unfold o_apply) (simp add: sum_set_defs(1) split: sum.split) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 72 | next | 
| 54486 | 73 | fix f1 :: "'o \<Rightarrow> 'q" and f2 :: "'p \<Rightarrow> 'r" | 
| 67091 | 74 | show "setr \<circ> map_sum f1 f2 = image f2 \<circ> setr" | 
| 58916 | 75 | by (rule ext, unfold o_apply) (simp add: sum_set_defs(2) split: sum.split) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 76 | next | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 77 | show "card_order natLeq" by (rule natLeq_card_order) | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 78 | next | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 79 | show "cinfinite natLeq" by (rule natLeq_cinfinite) | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 80 | next | 
| 75624 | 81 | show "regularCard natLeq" by (rule regularCard_natLeq) | 
| 82 | next | |
| 54486 | 83 | fix x :: "'o + 'p" | 
| 75624 | 84 | show "|setl x| <o natLeq" | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 85 | apply (rule finite_iff_ordLess_natLeq[THEN iffD1]) | 
| 58916 | 86 | by (simp add: sum_set_defs(1) split: sum.split) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 87 | next | 
| 54486 | 88 | fix x :: "'o + 'p" | 
| 75624 | 89 | show "|setr x| <o natLeq" | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 90 | apply (rule finite_iff_ordLess_natLeq[THEN iffD1]) | 
| 58916 | 91 | by (simp add: sum_set_defs(2) split: sum.split) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 92 | next | 
| 54841 
af71b753c459
express weak pullback property of bnfs only in terms of the relator
 traytel parents: 
54581diff
changeset | 93 | fix R1 R2 S1 S2 | 
| 55943 | 94 | show "rel_sum R1 R2 OO rel_sum S1 S2 \<le> rel_sum (R1 OO S1) (R2 OO S2)" | 
| 58916 | 95 | by (force elim: rel_sum.cases) | 
| 49453 | 96 | next | 
| 97 | fix R S | |
| 62324 | 98 | show "rel_sum R S = (\<lambda>x y. | 
| 99 |     \<exists>z. (setl z \<subseteq> {(x, y). R x y} \<and> setr z \<subseteq> {(x, y). S x y}) \<and>
 | |
| 100 | map_sum fst fst z = x \<and> map_sum snd snd z = y)" | |
| 101 | unfolding sum_set_defs relcompp.simps conversep.simps fun_eq_iff | |
| 58916 | 102 | by (fastforce elim: rel_sum.cases split: sum.splits) | 
| 62324 | 103 | qed (auto simp: sum_set_defs fun_eq_iff pred_sum.simps split: sum.splits) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 104 | |
| 58916 | 105 | inductive_set fsts :: "'a \<times> 'b \<Rightarrow> 'a set" for p :: "'a \<times> 'b" where | 
| 106 | "fst p \<in> fsts p" | |
| 107 | inductive_set snds :: "'a \<times> 'b \<Rightarrow> 'b set" for p :: "'a \<times> 'b" where | |
| 108 | "snd p \<in> snds p" | |
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 109 | |
| 58916 | 110 | lemma prod_set_defs[code]: "fsts = (\<lambda>p. {fst p})" "snds = (\<lambda>p. {snd p})"
 | 
| 111 | by (auto intro: fsts.intros snds.intros elim: fsts.cases snds.cases) | |
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 112 | |
| 58916 | 113 | inductive | 
| 114 |   rel_prod :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> 'a \<times> 'c \<Rightarrow> 'b \<times> 'd \<Rightarrow> bool" for R1 R2
 | |
| 55083 | 115 | where | 
| 58916 | 116 | "\<lbrakk>R1 a b; R2 c d\<rbrakk> \<Longrightarrow> rel_prod R1 R2 (a, c) (b, d)" | 
| 117 | ||
| 62324 | 118 | inductive | 
| 119 |   pred_prod :: "('a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool" for P1 P2
 | |
| 120 | where | |
| 121 | "\<lbrakk>P1 a; P2 b\<rbrakk> \<Longrightarrow> pred_prod P1 P2 (a, b)" | |
| 122 | ||
| 62335 | 123 | lemma rel_prod_inject [code, simp]: | 
| 58916 | 124 | "rel_prod R1 R2 (a, b) (c, d) \<longleftrightarrow> R1 a c \<and> R2 b d" | 
| 125 | by (auto intro: rel_prod.intros elim: rel_prod.cases) | |
| 126 | ||
| 62335 | 127 | lemma pred_prod_inject [code, simp]: | 
| 62324 | 128 | "pred_prod P1 P2 (a, b) \<longleftrightarrow> P1 a \<and> P2 b" | 
| 129 | by (auto intro: pred_prod.intros elim: pred_prod.cases) | |
| 130 | ||
| 58916 | 131 | lemma rel_prod_conv: | 
| 55944 | 132 | "rel_prod R1 R2 = (\<lambda>(a, b) (c, d). R1 a c \<and> R2 b d)" | 
| 76953 | 133 | by force | 
| 55083 | 134 | |
| 62324 | 135 | definition | 
| 136 |   pred_fun :: "('a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
 | |
| 137 | where | |
| 138 | "pred_fun A B = (\<lambda>f. \<forall>x. A x \<longrightarrow> B (f x))" | |
| 139 | ||
| 140 | lemma pred_funI: "(\<And>x. A x \<Longrightarrow> B (f x)) \<Longrightarrow> pred_fun A B f" | |
| 141 | unfolding pred_fun_def by simp | |
| 142 | ||
| 54421 | 143 | bnf "'a \<times> 'b" | 
| 55932 | 144 | map: map_prod | 
| 54421 | 145 | sets: fsts snds | 
| 146 | bd: natLeq | |
| 55944 | 147 | rel: rel_prod | 
| 62324 | 148 | pred: pred_prod | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 149 | proof (unfold prod_set_defs) | 
| 55932 | 150 | show "map_prod id id = id" by (rule map_prod.id) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 151 | next | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 152 | fix f1 f2 g1 g2 | 
| 67091 | 153 | show "map_prod (g1 \<circ> f1) (g2 \<circ> f2) = map_prod g1 g2 \<circ> map_prod f1 f2" | 
| 55932 | 154 | by (rule map_prod.comp[symmetric]) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 155 | next | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 156 | fix x f1 f2 g1 g2 | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 157 |   assume "\<And>z. z \<in> {fst x} \<Longrightarrow> f1 z = g1 z" "\<And>z. z \<in> {snd x} \<Longrightarrow> f2 z = g2 z"
 | 
| 55932 | 158 | thus "map_prod f1 f2 x = map_prod g1 g2 x" by (cases x) simp | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 159 | next | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 160 | fix f1 f2 | 
| 67091 | 161 |   show "(\<lambda>x. {fst x}) \<circ> map_prod f1 f2 = image f1 \<circ> (\<lambda>x. {fst x})"
 | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 162 | by (rule ext, unfold o_apply) simp | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 163 | next | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 164 | fix f1 f2 | 
| 67091 | 165 |   show "(\<lambda>x. {snd x}) \<circ> map_prod f1 f2 = image f2 \<circ> (\<lambda>x. {snd x})"
 | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 166 | by (rule ext, unfold o_apply) simp | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 167 | next | 
| 52635 
4f84b730c489
got rid of in_bd BNF property (derivable from set_bd+map_cong+map_comp+map_id)
 traytel parents: 
52545diff
changeset | 168 | show "card_order natLeq" by (rule natLeq_card_order) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 169 | next | 
| 52635 
4f84b730c489
got rid of in_bd BNF property (derivable from set_bd+map_cong+map_comp+map_id)
 traytel parents: 
52545diff
changeset | 170 | show "cinfinite natLeq" by (rule natLeq_cinfinite) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 171 | next | 
| 75624 | 172 | show "regularCard natLeq" by (rule regularCard_natLeq) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 173 | next | 
| 52635 
4f84b730c489
got rid of in_bd BNF property (derivable from set_bd+map_cong+map_comp+map_id)
 traytel parents: 
52545diff
changeset | 174 | fix x | 
| 75624 | 175 |   show "|{fst x}| <o natLeq"
 | 
| 176 | by (simp add: finite_iff_ordLess_natLeq[symmetric]) | |
| 177 | next | |
| 178 | fix x | |
| 179 |   show "|{snd x}| <o natLeq"
 | |
| 180 | by (simp add: finite_iff_ordLess_natLeq[symmetric]) | |
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 181 | next | 
| 54841 
af71b753c459
express weak pullback property of bnfs only in terms of the relator
 traytel parents: 
54581diff
changeset | 182 | fix R1 R2 S1 S2 | 
| 55944 | 183 | show "rel_prod R1 R2 OO rel_prod S1 S2 \<le> rel_prod (R1 OO S1) (R2 OO S2)" by auto | 
| 49453 | 184 | next | 
| 185 | fix R S | |
| 62324 | 186 | show "rel_prod R S = (\<lambda>x y. | 
| 187 |     \<exists>z. ({fst z} \<subseteq> {(x, y). R x y} \<and> {snd z} \<subseteq> {(x, y). S x y}) \<and>
 | |
| 188 | map_prod fst fst z = x \<and> map_prod snd snd z = y)" | |
| 62335 | 189 | unfolding prod_set_defs rel_prod_inject relcompp.simps conversep.simps fun_eq_iff | 
| 49453 | 190 | by auto | 
| 62324 | 191 | qed auto | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 192 | |
| 75625 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 193 | lemma card_order_bd_fun: "card_order (natLeq +c card_suc ( |UNIV| ))" | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 194 | by (auto simp: card_order_csum natLeq_card_order card_order_card_suc card_of_card_order_on) | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 195 | |
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 196 | lemma Cinfinite_bd_fun: "Cinfinite (natLeq +c card_suc ( |UNIV| ))" | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 197 | by (auto simp: Cinfinite_csum natLeq_Cinfinite) | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 198 | |
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 199 | lemma regularCard_bd_fun: "regularCard (natLeq +c card_suc ( |UNIV| ))" | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 200 | (is "regularCard (_ +c card_suc ?U)") | 
| 76953 | 201 | proof (cases "Cinfinite ?U") | 
| 202 | case True | |
| 203 | then show ?thesis | |
| 204 | by (intro regularCard_csum natLeq_Cinfinite Cinfinite_card_suc | |
| 205 | card_of_card_order_on regularCard_natLeq regularCard_card_suc) | |
| 206 | next | |
| 207 | case False | |
| 208 | then have "card_suc ?U \<le>o natLeq" | |
| 209 | unfolding cinfinite_def Field_card_of | |
| 210 | by (intro card_suc_least; | |
| 211 | simp add: natLeq_Card_order card_of_card_order_on flip: finite_iff_ordLess_natLeq) | |
| 212 | then have "natLeq =o natLeq +c card_suc ?U" | |
| 213 | using natLeq_Cinfinite csum_absorb1 ordIso_symmetric by blast | |
| 214 | then show ?thesis | |
| 215 | by (intro regularCard_ordIso[OF _ natLeq_Cinfinite regularCard_natLeq]) | |
| 216 | qed | |
| 75625 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 217 | |
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 218 | lemma ordLess_bd_fun: "|UNIV::'a set| <o natLeq +c card_suc ( |UNIV::'a set| )" | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 219 | (is "_ <o (_ +c card_suc (?U :: 'a rel))") | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 220 | proof (cases "Cinfinite ?U") | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 221 | case True | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 222 | have "?U <o card_suc ?U" using card_of_card_order_on natLeq_card_order card_suc_greater by blast | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 223 | also have "card_suc ?U =o natLeq +c card_suc ?U" by (rule csum_absorb2[THEN ordIso_symmetric]) | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 224 | (auto simp: True card_of_card_order_on intro!: Cinfinite_card_suc natLeq_ordLeq_cinfinite) | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 225 | finally show ?thesis . | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 226 | next | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 227 | case False | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 228 | then have "?U <o natLeq" | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 229 | by (auto simp: cinfinite_def Field_card_of card_of_card_order_on finite_iff_ordLess_natLeq[symmetric]) | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 230 | then show ?thesis | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 231 | by (rule ordLess_ordLeq_trans[OF _ ordLeq_csum1[OF natLeq_Card_order]]) | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 232 | qed | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 233 | |
| 54421 | 234 | bnf "'a \<Rightarrow> 'b" | 
| 67399 | 235 | map: "(\<circ>)" | 
| 54421 | 236 | sets: range | 
| 75625 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 237 | bd: "natLeq +c card_suc ( |UNIV::'a set| )" | 
| 67399 | 238 | rel: "rel_fun (=)" | 
| 62324 | 239 | pred: "pred_fun (\<lambda>_. True)" | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 240 | proof | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 241 | fix f show "id \<circ> f = id f" by simp | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 242 | next | 
| 67399 | 243 | fix f g show "(\<circ>) (g \<circ> f) = (\<circ>) g \<circ> (\<circ>) f" | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 244 | unfolding comp_def[abs_def] .. | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 245 | next | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 246 | fix x f g | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 247 | assume "\<And>z. z \<in> range x \<Longrightarrow> f z = g z" | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 248 | thus "f \<circ> x = g \<circ> x" by auto | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 249 | next | 
| 67399 | 250 | fix f show "range \<circ> (\<circ>) f = (`) f \<circ> range" | 
| 56077 | 251 | by (auto simp add: fun_eq_iff) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 252 | next | 
| 75625 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 253 | show "card_order (natLeq +c card_suc ( |UNIV| ))" | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 254 | by (rule card_order_bd_fun) | 
| 75624 | 255 | next | 
| 75625 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 256 | show "cinfinite (natLeq +c card_suc ( |UNIV| ))" | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 257 | by (rule Cinfinite_bd_fun[THEN conjunct1]) | 
| 75624 | 258 | next | 
| 75625 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 259 | show "regularCard (natLeq +c card_suc ( |UNIV| ))" | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 260 | by (rule regularCard_bd_fun) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 261 | next | 
| 75625 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 262 | fix f :: "'d \<Rightarrow> 'a" | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 263 | show "|range f| <o natLeq +c card_suc |UNIV :: 'd set|" | 
| 
0dd3ac5fdbaa
tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
 traytel parents: 
75624diff
changeset | 264 | by (rule ordLeq_ordLess_trans[OF card_of_image ordLess_bd_fun]) | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 265 | next | 
| 54841 
af71b753c459
express weak pullback property of bnfs only in terms of the relator
 traytel parents: 
54581diff
changeset | 266 | fix R S | 
| 67399 | 267 | show "rel_fun (=) R OO rel_fun (=) S \<le> rel_fun (=) (R OO S)" by (auto simp: rel_fun_def) | 
| 49453 | 268 | next | 
| 49463 | 269 | fix R | 
| 67399 | 270 | show "rel_fun (=) R = (\<lambda>x y. | 
| 62324 | 271 |     \<exists>z. range z \<subseteq> {(x, y). R x y} \<and> fst \<circ> z = x \<and> snd \<circ> z = y)"
 | 
| 272 | unfolding rel_fun_def subset_iff by (force simp: fun_eq_iff[symmetric]) | |
| 273 | qed (auto simp: pred_fun_def) | |
| 54191 | 274 | |
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 275 | end |