| author | wenzelm | 
| Wed, 31 Aug 2016 10:49:30 +0200 | |
| changeset 63735 | fb0ae6b60491 | 
| parent 63589 | 58aab4745e85 | 
| permissions | -rw-r--r-- | 
| 
29197
 
6d4cb27ed19c
adapted HOL source structure to distribution layout
 
haftmann 
parents: 
28952 
diff
changeset
 | 
1  | 
(* Author: Amine Chaieb, TU Muenchen *)  | 
| 26123 | 2  | 
|
| 60424 | 3  | 
section \<open>Fundamental Theorem of Algebra\<close>  | 
| 26123 | 4  | 
|
5  | 
theory Fundamental_Theorem_Algebra  | 
|
| 51537 | 6  | 
imports Polynomial Complex_Main  | 
| 26123 | 7  | 
begin  | 
8  | 
||
| 60424 | 9  | 
subsection \<open>More lemmas about module of complex numbers\<close>  | 
| 26123 | 10  | 
|
| 60424 | 11  | 
text \<open>The triangle inequality for cmod\<close>  | 
12  | 
||
| 26123 | 13  | 
lemma complex_mod_triangle_sub: "cmod w \<le> cmod (w + z) + norm z"  | 
14  | 
using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto  | 
|
15  | 
||
| 60424 | 16  | 
|
17  | 
subsection \<open>Basic lemmas about polynomials\<close>  | 
|
| 26123 | 18  | 
|
19  | 
lemma poly_bound_exists:  | 
|
| 56778 | 20  | 
  fixes p :: "'a::{comm_semiring_0,real_normed_div_algebra} poly"
 | 
21  | 
shows "\<exists>m. m > 0 \<and> (\<forall>z. norm z \<le> r \<longrightarrow> norm (poly p z) \<le> m)"  | 
|
22  | 
proof (induct p)  | 
|
23  | 
case 0  | 
|
24  | 
then show ?case by (rule exI[where x=1]) simp  | 
|
| 26123 | 25  | 
next  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
26  | 
case (pCons c cs)  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
27  | 
from pCons.hyps obtain m where m: "\<forall>z. norm z \<le> r \<longrightarrow> norm (poly cs z) \<le> m"  | 
| 26123 | 28  | 
by blast  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
29  | 
let ?k = " 1 + norm c + \<bar>r * m\<bar>"  | 
| 56795 | 30  | 
have kp: "?k > 0"  | 
31  | 
using abs_ge_zero[of "r*m"] norm_ge_zero[of c] by arith  | 
|
| 60424 | 32  | 
have "norm (poly (pCons c cs) z) \<le> ?k" if H: "norm z \<le> r" for z  | 
33  | 
proof -  | 
|
| 56778 | 34  | 
from m H have th: "norm (poly cs z) \<le> m"  | 
35  | 
by blast  | 
|
| 56795 | 36  | 
from H have rp: "r \<ge> 0"  | 
37  | 
using norm_ge_zero[of z] by arith  | 
|
38  | 
have "norm (poly (pCons c cs) z) \<le> norm c + norm (z * poly cs z)"  | 
|
| 27514 | 39  | 
using norm_triangle_ineq[of c "z* poly cs z"] by simp  | 
| 56778 | 40  | 
also have "\<dots> \<le> norm c + r * m"  | 
41  | 
using mult_mono[OF H th rp norm_ge_zero[of "poly cs z"]]  | 
|
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
42  | 
by (simp add: norm_mult)  | 
| 56778 | 43  | 
also have "\<dots> \<le> ?k"  | 
44  | 
by simp  | 
|
| 60424 | 45  | 
finally show ?thesis .  | 
46  | 
qed  | 
|
| 26123 | 47  | 
with kp show ?case by blast  | 
48  | 
qed  | 
|
49  | 
||
50  | 
||
| 60424 | 51  | 
text \<open>Offsetting the variable in a polynomial gives another of same degree\<close>  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
52  | 
|
| 52380 | 53  | 
definition offset_poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly"  | 
| 56778 | 54  | 
where "offset_poly p h = fold_coeffs (\<lambda>a q. smult h q + pCons a q) p 0"  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
55  | 
|
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
56  | 
lemma offset_poly_0: "offset_poly 0 h = 0"  | 
| 52380 | 57  | 
by (simp add: offset_poly_def)  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
58  | 
|
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
59  | 
lemma offset_poly_pCons:  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
60  | 
"offset_poly (pCons a p) h =  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
61  | 
smult h (offset_poly p h) + pCons a (offset_poly p h)"  | 
| 52380 | 62  | 
by (cases "p = 0 \<and> a = 0") (auto simp add: offset_poly_def)  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
63  | 
|
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
64  | 
lemma offset_poly_single: "offset_poly [:a:] h = [:a:]"  | 
| 56778 | 65  | 
by (simp add: offset_poly_pCons offset_poly_0)  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
66  | 
|
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
67  | 
lemma poly_offset_poly: "poly (offset_poly p h) x = poly p (h + x)"  | 
| 56778 | 68  | 
apply (induct p)  | 
69  | 
apply (simp add: offset_poly_0)  | 
|
70  | 
apply (simp add: offset_poly_pCons algebra_simps)  | 
|
71  | 
done  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
72  | 
|
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
73  | 
lemma offset_poly_eq_0_lemma: "smult c p + pCons a p = 0 \<Longrightarrow> p = 0"  | 
| 56778 | 74  | 
by (induct p arbitrary: a) (simp, force)  | 
| 26123 | 75  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
76  | 
lemma offset_poly_eq_0_iff: "offset_poly p h = 0 \<longleftrightarrow> p = 0"  | 
| 56778 | 77  | 
apply (safe intro!: offset_poly_0)  | 
| 56795 | 78  | 
apply (induct p)  | 
79  | 
apply simp  | 
|
| 56778 | 80  | 
apply (simp add: offset_poly_pCons)  | 
81  | 
apply (frule offset_poly_eq_0_lemma, simp)  | 
|
82  | 
done  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
83  | 
|
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
84  | 
lemma degree_offset_poly: "degree (offset_poly p h) = degree p"  | 
| 56778 | 85  | 
apply (induct p)  | 
86  | 
apply (simp add: offset_poly_0)  | 
|
87  | 
apply (case_tac "p = 0")  | 
|
88  | 
apply (simp add: offset_poly_0 offset_poly_pCons)  | 
|
89  | 
apply (simp add: offset_poly_pCons)  | 
|
90  | 
apply (subst degree_add_eq_right)  | 
|
91  | 
apply (rule le_less_trans [OF degree_smult_le])  | 
|
92  | 
apply (simp add: offset_poly_eq_0_iff)  | 
|
93  | 
apply (simp add: offset_poly_eq_0_iff)  | 
|
94  | 
done  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
95  | 
|
| 56778 | 96  | 
definition "psize p = (if p = 0 then 0 else Suc (degree p))"  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
97  | 
|
| 29538 | 98  | 
lemma psize_eq_0_iff [simp]: "psize p = 0 \<longleftrightarrow> p = 0"  | 
99  | 
unfolding psize_def by simp  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
100  | 
|
| 56778 | 101  | 
lemma poly_offset:  | 
102  | 
fixes p :: "'a::comm_ring_1 poly"  | 
|
103  | 
shows "\<exists>q. psize q = psize p \<and> (\<forall>x. poly q x = poly p (a + x))"  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
104  | 
proof (intro exI conjI)  | 
| 29538 | 105  | 
show "psize (offset_poly p a) = psize p"  | 
106  | 
unfolding psize_def  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
107  | 
by (simp add: offset_poly_eq_0_iff degree_offset_poly)  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
108  | 
show "\<forall>x. poly (offset_poly p a) x = poly p (a + x)"  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
109  | 
by (simp add: poly_offset_poly)  | 
| 26123 | 110  | 
qed  | 
111  | 
||
| 60424 | 112  | 
text \<open>An alternative useful formulation of completeness of the reals\<close>  | 
| 56778 | 113  | 
lemma real_sup_exists:  | 
114  | 
assumes ex: "\<exists>x. P x"  | 
|
115  | 
and bz: "\<exists>z. \<forall>x. P x \<longrightarrow> x < z"  | 
|
116  | 
shows "\<exists>s::real. \<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < s"  | 
|
| 
54263
 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 
hoelzl 
parents: 
54230 
diff
changeset
 | 
117  | 
proof  | 
| 
 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 
hoelzl 
parents: 
54230 
diff
changeset
 | 
118  | 
from bz have "bdd_above (Collect P)"  | 
| 
 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 
hoelzl 
parents: 
54230 
diff
changeset
 | 
119  | 
by (force intro: less_imp_le)  | 
| 
 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 
hoelzl 
parents: 
54230 
diff
changeset
 | 
120  | 
then show "\<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < Sup (Collect P)"  | 
| 
 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 
hoelzl 
parents: 
54230 
diff
changeset
 | 
121  | 
using ex bz by (subst less_cSup_iff) auto  | 
| 26123 | 122  | 
qed  | 
123  | 
||
| 60424 | 124  | 
|
125  | 
subsection \<open>Fundamental theorem of algebra\<close>  | 
|
126  | 
||
127  | 
lemma unimodular_reduce_norm:  | 
|
| 26123 | 128  | 
assumes md: "cmod z = 1"  | 
| 63589 | 129  | 
shows "cmod (z + 1) < 1 \<or> cmod (z - 1) < 1 \<or> cmod (z + \<i>) < 1 \<or> cmod (z - \<i>) < 1"  | 
| 56778 | 130  | 
proof -  | 
131  | 
obtain x y where z: "z = Complex x y "  | 
|
132  | 
by (cases z) auto  | 
|
133  | 
from md z have xy: "x\<^sup>2 + y\<^sup>2 = 1"  | 
|
134  | 
by (simp add: cmod_def)  | 
|
| 63589 | 135  | 
have False if "cmod (z + 1) \<ge> 1" "cmod (z - 1) \<ge> 1" "cmod (z + \<i>) \<ge> 1" "cmod (z - \<i>) \<ge> 1"  | 
| 60557 | 136  | 
proof -  | 
137  | 
from that z xy have "2 * x \<le> 1" "2 * x \<ge> -1" "2 * y \<le> 1" "2 * y \<ge> -1"  | 
|
| 29667 | 138  | 
by (simp_all add: cmod_def power2_eq_square algebra_simps)  | 
| 61945 | 139  | 
then have "\<bar>2 * x\<bar> \<le> 1" "\<bar>2 * y\<bar> \<le> 1"  | 
| 56778 | 140  | 
by simp_all  | 
| 61945 | 141  | 
then have "\<bar>2 * x\<bar>\<^sup>2 \<le> 1\<^sup>2" "\<bar>2 * y\<bar>\<^sup>2 \<le> 1\<^sup>2"  | 
| 26123 | 142  | 
by - (rule power_mono, simp, simp)+  | 
| 56778 | 143  | 
then have th0: "4 * x\<^sup>2 \<le> 1" "4 * y\<^sup>2 \<le> 1"  | 
| 51541 | 144  | 
by (simp_all add: power_mult_distrib)  | 
| 60557 | 145  | 
from add_mono[OF th0] xy show ?thesis  | 
146  | 
by simp  | 
|
147  | 
qed  | 
|
| 56778 | 148  | 
then show ?thesis  | 
149  | 
unfolding linorder_not_le[symmetric] by blast  | 
|
| 26123 | 150  | 
qed  | 
151  | 
||
| 61585 | 152  | 
text \<open>Hence we can always reduce modulus of \<open>1 + b z^n\<close> if nonzero\<close>  | 
| 26123 | 153  | 
lemma reduce_poly_simple:  | 
| 56778 | 154  | 
assumes b: "b \<noteq> 0"  | 
155  | 
and n: "n \<noteq> 0"  | 
|
| 26123 | 156  | 
shows "\<exists>z. cmod (1 + b * z^n) < 1"  | 
| 56778 | 157  | 
using n  | 
158  | 
proof (induct n rule: nat_less_induct)  | 
|
| 26123 | 159  | 
fix n  | 
| 56778 | 160  | 
assume IH: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>z. cmod (1 + b * z ^ m) < 1)"  | 
161  | 
assume n: "n \<noteq> 0"  | 
|
| 26123 | 162  | 
let ?P = "\<lambda>z n. cmod (1 + b * z ^ n) < 1"  | 
| 60457 | 163  | 
show "\<exists>z. ?P z n"  | 
164  | 
proof cases  | 
|
165  | 
assume "even n"  | 
|
| 56778 | 166  | 
then have "\<exists>m. n = 2 * m"  | 
167  | 
by presburger  | 
|
168  | 
then obtain m where m: "n = 2 * m"  | 
|
169  | 
by blast  | 
|
170  | 
from n m have "m \<noteq> 0" "m < n"  | 
|
171  | 
by presburger+  | 
|
172  | 
with IH[rule_format, of m] obtain z where z: "?P z m"  | 
|
173  | 
by blast  | 
|
| 56795 | 174  | 
from z have "?P (csqrt z) n"  | 
| 60457 | 175  | 
by (simp add: m power_mult)  | 
176  | 
then show ?thesis ..  | 
|
177  | 
next  | 
|
178  | 
assume "odd n"  | 
|
179  | 
then have "\<exists>m. n = Suc (2 * m)"  | 
|
| 56778 | 180  | 
by presburger+  | 
| 56795 | 181  | 
then obtain m where m: "n = Suc (2 * m)"  | 
| 56778 | 182  | 
by blast  | 
| 60457 | 183  | 
have th0: "cmod (complex_of_real (cmod b) / b) = 1"  | 
184  | 
using b by (simp add: norm_divide)  | 
|
185  | 
from unimodular_reduce_norm[OF th0] \<open>odd n\<close>  | 
|
| 26123 | 186  | 
have "\<exists>v. cmod (complex_of_real (cmod b) / b + v^n) < 1"  | 
| 56795 | 187  | 
apply (cases "cmod (complex_of_real (cmod b) / b + 1) < 1")  | 
188  | 
apply (rule_tac x="1" in exI)  | 
|
189  | 
apply simp  | 
|
190  | 
apply (cases "cmod (complex_of_real (cmod b) / b - 1) < 1")  | 
|
191  | 
apply (rule_tac x="-1" in exI)  | 
|
192  | 
apply simp  | 
|
| 63589 | 193  | 
apply (cases "cmod (complex_of_real (cmod b) / b + \<i>) < 1")  | 
| 56795 | 194  | 
apply (cases "even m")  | 
| 63589 | 195  | 
apply (rule_tac x="\<i>" in exI)  | 
| 56795 | 196  | 
apply (simp add: m power_mult)  | 
| 63589 | 197  | 
apply (rule_tac x="- \<i>" in exI)  | 
| 56795 | 198  | 
apply (simp add: m power_mult)  | 
199  | 
apply (cases "even m")  | 
|
| 63589 | 200  | 
apply (rule_tac x="- \<i>" in exI)  | 
| 56795 | 201  | 
apply (simp add: m power_mult)  | 
| 
54489
 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 
haftmann 
parents: 
54263 
diff
changeset
 | 
202  | 
apply (auto simp add: m power_mult)  | 
| 63589 | 203  | 
apply (rule_tac x="\<i>" in exI)  | 
| 
54489
 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 
haftmann 
parents: 
54263 
diff
changeset
 | 
204  | 
apply (auto simp add: m power_mult)  | 
| 26123 | 205  | 
done  | 
| 56778 | 206  | 
then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1"  | 
207  | 
by blast  | 
|
| 26123 | 208  | 
let ?w = "v / complex_of_real (root n (cmod b))"  | 
| 60457 | 209  | 
from odd_real_root_pow[OF \<open>odd n\<close>, of "cmod b"]  | 
| 30488 | 210  | 
have th1: "?w ^ n = v^n / complex_of_real (cmod b)"  | 
| 
56889
 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 
hoelzl 
parents: 
56795 
diff
changeset
 | 
211  | 
by (simp add: power_divide of_real_power[symmetric])  | 
| 56778 | 212  | 
have th2:"cmod (complex_of_real (cmod b) / b) = 1"  | 
213  | 
using b by (simp add: norm_divide)  | 
|
214  | 
then have th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0"  | 
|
215  | 
by simp  | 
|
| 26123 | 216  | 
have th4: "cmod (complex_of_real (cmod b) / b) *  | 
| 56778 | 217  | 
cmod (1 + b * (v ^ n / complex_of_real (cmod b))) <  | 
218  | 
cmod (complex_of_real (cmod b) / b) * 1"  | 
|
| 
49962
 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 
webertj 
parents: 
46240 
diff
changeset
 | 
219  | 
apply (simp only: norm_mult[symmetric] distrib_left)  | 
| 56778 | 220  | 
using b v  | 
221  | 
apply (simp add: th2)  | 
|
222  | 
done  | 
|
| 59555 | 223  | 
from mult_left_less_imp_less[OF th4 th3]  | 
| 30488 | 224  | 
have "?P ?w n" unfolding th1 .  | 
| 60457 | 225  | 
then show ?thesis ..  | 
226  | 
qed  | 
|
| 26123 | 227  | 
qed  | 
228  | 
||
| 60424 | 229  | 
text \<open>Bolzano-Weierstrass type property for closed disc in complex plane.\<close>  | 
| 26123 | 230  | 
|
| 56778 | 231  | 
lemma metric_bound_lemma: "cmod (x - y) \<le> \<bar>Re x - Re y\<bar> + \<bar>Im x - Im y\<bar>"  | 
| 56795 | 232  | 
using real_sqrt_sum_squares_triangle_ineq[of "Re x - Re y" 0 0 "Im x - Im y"]  | 
| 26123 | 233  | 
unfolding cmod_def by simp  | 
234  | 
||
235  | 
lemma bolzano_weierstrass_complex_disc:  | 
|
236  | 
assumes r: "\<forall>n. cmod (s n) \<le> r"  | 
|
237  | 
shows "\<exists>f z. subseq f \<and> (\<forall>e >0. \<exists>N. \<forall>n \<ge> N. cmod (s (f n) - z) < e)"  | 
|
| 60424 | 238  | 
proof -  | 
| 56778 | 239  | 
from seq_monosub[of "Re \<circ> s"]  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
240  | 
obtain f where f: "subseq f" "monoseq (\<lambda>n. Re (s (f n)))"  | 
| 26123 | 241  | 
unfolding o_def by blast  | 
| 56778 | 242  | 
from seq_monosub[of "Im \<circ> s \<circ> f"]  | 
243  | 
obtain g where g: "subseq g" "monoseq (\<lambda>n. Im (s (f (g n))))"  | 
|
244  | 
unfolding o_def by blast  | 
|
245  | 
let ?h = "f \<circ> g"  | 
|
246  | 
from r[rule_format, of 0] have rp: "r \<ge> 0"  | 
|
247  | 
using norm_ge_zero[of "s 0"] by arith  | 
|
248  | 
have th: "\<forall>n. r + 1 \<ge> \<bar>Re (s n)\<bar>"  | 
|
| 26123 | 249  | 
proof  | 
250  | 
fix n  | 
|
| 56778 | 251  | 
from abs_Re_le_cmod[of "s n"] r[rule_format, of n]  | 
252  | 
show "\<bar>Re (s n)\<bar> \<le> r + 1" by arith  | 
|
| 26123 | 253  | 
qed  | 
| 56778 | 254  | 
have conv1: "convergent (\<lambda>n. Re (s (f n)))"  | 
| 26123 | 255  | 
apply (rule Bseq_monoseq_convergent)  | 
256  | 
apply (simp add: Bseq_def)  | 
|
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
257  | 
apply (metis gt_ex le_less_linear less_trans order.trans th)  | 
| 56778 | 258  | 
apply (rule f(2))  | 
259  | 
done  | 
|
260  | 
have th: "\<forall>n. r + 1 \<ge> \<bar>Im (s n)\<bar>"  | 
|
| 26123 | 261  | 
proof  | 
262  | 
fix n  | 
|
| 56778 | 263  | 
from abs_Im_le_cmod[of "s n"] r[rule_format, of n]  | 
264  | 
show "\<bar>Im (s n)\<bar> \<le> r + 1"  | 
|
265  | 
by arith  | 
|
| 26123 | 266  | 
qed  | 
267  | 
||
268  | 
have conv2: "convergent (\<lambda>n. Im (s (f (g n))))"  | 
|
269  | 
apply (rule Bseq_monoseq_convergent)  | 
|
270  | 
apply (simp add: Bseq_def)  | 
|
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
271  | 
apply (metis gt_ex le_less_linear less_trans order.trans th)  | 
| 56778 | 272  | 
apply (rule g(2))  | 
273  | 
done  | 
|
| 26123 | 274  | 
|
| 30488 | 275  | 
from conv1[unfolded convergent_def] obtain x where "LIMSEQ (\<lambda>n. Re (s (f n))) x"  | 
276  | 
by blast  | 
|
| 56795 | 277  | 
then have x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Re (s (f n)) - x\<bar> < r"  | 
| 31337 | 278  | 
unfolding LIMSEQ_iff real_norm_def .  | 
| 26123 | 279  | 
|
| 30488 | 280  | 
from conv2[unfolded convergent_def] obtain y where "LIMSEQ (\<lambda>n. Im (s (f (g n)))) y"  | 
281  | 
by blast  | 
|
| 56795 | 282  | 
then have y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Im (s (f (g n))) - y\<bar> < r"  | 
| 31337 | 283  | 
unfolding LIMSEQ_iff real_norm_def .  | 
| 26123 | 284  | 
let ?w = "Complex x y"  | 
| 56778 | 285  | 
from f(1) g(1) have hs: "subseq ?h"  | 
286  | 
unfolding subseq_def by auto  | 
|
| 60557 | 287  | 
have "\<exists>N. \<forall>n\<ge>N. cmod (s (?h n) - ?w) < e" if "e > 0" for e  | 
288  | 
proof -  | 
|
289  | 
from that have e2: "e/2 > 0"  | 
|
| 56795 | 290  | 
by simp  | 
| 26123 | 291  | 
from x[rule_format, OF e2] y[rule_format, OF e2]  | 
| 56778 | 292  | 
obtain N1 N2 where N1: "\<forall>n\<ge>N1. \<bar>Re (s (f n)) - x\<bar> < e / 2"  | 
| 56795 | 293  | 
and N2: "\<forall>n\<ge>N2. \<bar>Im (s (f (g n))) - y\<bar> < e / 2"  | 
294  | 
by blast  | 
|
| 60557 | 295  | 
have "cmod (s (?h n) - ?w) < e" if "n \<ge> N1 + N2" for n  | 
296  | 
proof -  | 
|
297  | 
from that have nN1: "g n \<ge> N1" and nN2: "n \<ge> N2"  | 
|
| 56778 | 298  | 
using seq_suble[OF g(1), of n] by arith+  | 
| 26123 | 299  | 
from add_strict_mono[OF N1[rule_format, OF nN1] N2[rule_format, OF nN2]]  | 
| 60557 | 300  | 
show ?thesis  | 
| 56778 | 301  | 
using metric_bound_lemma[of "s (f (g n))" ?w] by simp  | 
| 60557 | 302  | 
qed  | 
303  | 
then show ?thesis by blast  | 
|
304  | 
qed  | 
|
| 56778 | 305  | 
with hs show ?thesis by blast  | 
| 26123 | 306  | 
qed  | 
307  | 
||
| 60424 | 308  | 
text \<open>Polynomial is continuous.\<close>  | 
| 26123 | 309  | 
|
310  | 
lemma poly_cont:  | 
|
| 56778 | 311  | 
  fixes p :: "'a::{comm_semiring_0,real_normed_div_algebra} poly"
 | 
| 30488 | 312  | 
assumes ep: "e > 0"  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
313  | 
shows "\<exists>d >0. \<forall>w. 0 < norm (w - z) \<and> norm (w - z) < d \<longrightarrow> norm (poly p w - poly p z) < e"  | 
| 56778 | 314  | 
proof -  | 
| 63060 | 315  | 
obtain q where q: "degree q = degree p" "poly q x = poly p (z + x)" for x  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
316  | 
proof  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
317  | 
show "degree (offset_poly p z) = degree p"  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
318  | 
by (rule degree_offset_poly)  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
319  | 
show "\<And>x. poly (offset_poly p z) x = poly p (z + x)"  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
320  | 
by (rule poly_offset_poly)  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
321  | 
qed  | 
| 56778 | 322  | 
have th: "\<And>w. poly q (w - z) = poly p w"  | 
323  | 
using q(2)[of "w - z" for w] by simp  | 
|
| 26123 | 324  | 
show ?thesis unfolding th[symmetric]  | 
| 56778 | 325  | 
proof (induct q)  | 
326  | 
case 0  | 
|
327  | 
then show ?case  | 
|
328  | 
using ep by auto  | 
|
| 26123 | 329  | 
next  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
330  | 
case (pCons c cs)  | 
| 30488 | 331  | 
from poly_bound_exists[of 1 "cs"]  | 
| 63060 | 332  | 
obtain m where m: "m > 0" "norm z \<le> 1 \<Longrightarrow> norm (poly cs z) \<le> m" for z  | 
| 56778 | 333  | 
by blast  | 
334  | 
from ep m(1) have em0: "e/m > 0"  | 
|
335  | 
by (simp add: field_simps)  | 
|
336  | 
have one0: "1 > (0::real)"  | 
|
337  | 
by arith  | 
|
| 30488 | 338  | 
from real_lbound_gt_zero[OF one0 em0]  | 
| 56778 | 339  | 
obtain d where d: "d > 0" "d < 1" "d < e / m"  | 
340  | 
by blast  | 
|
341  | 
from d(1,3) m(1) have dm: "d * m > 0" "d * m < e"  | 
|
| 56544 | 342  | 
by (simp_all add: field_simps)  | 
| 30488 | 343  | 
show ?case  | 
| 56778 | 344  | 
proof (rule ex_forward[OF real_lbound_gt_zero[OF one0 em0]], clarsimp simp add: norm_mult)  | 
345  | 
fix d w  | 
|
346  | 
assume H: "d > 0" "d < 1" "d < e/m" "w \<noteq> z" "norm (w - z) < d"  | 
|
347  | 
then have d1: "norm (w-z) \<le> 1" "d \<ge> 0"  | 
|
348  | 
by simp_all  | 
|
349  | 
from H(3) m(1) have dme: "d*m < e"  | 
|
350  | 
by (simp add: field_simps)  | 
|
351  | 
from H have th: "norm (w - z) \<le> d"  | 
|
352  | 
by simp  | 
|
353  | 
from mult_mono[OF th m(2)[OF d1(1)] d1(2) norm_ge_zero] dme  | 
|
354  | 
show "norm (w - z) * norm (poly cs (w - z)) < e"  | 
|
355  | 
by simp  | 
|
| 26123 | 356  | 
qed  | 
| 56778 | 357  | 
qed  | 
| 26123 | 358  | 
qed  | 
359  | 
||
| 60424 | 360  | 
text \<open>Hence a polynomial attains minimum on a closed disc  | 
361  | 
in the complex plane.\<close>  | 
|
| 56778 | 362  | 
lemma poly_minimum_modulus_disc: "\<exists>z. \<forall>w. cmod w \<le> r \<longrightarrow> cmod (poly p z) \<le> cmod (poly p w)"  | 
363  | 
proof -  | 
|
| 60424 | 364  | 
show ?thesis  | 
365  | 
proof (cases "r \<ge> 0")  | 
|
366  | 
case False  | 
|
367  | 
then show ?thesis  | 
|
| 56778 | 368  | 
by (metis norm_ge_zero order.trans)  | 
| 60424 | 369  | 
next  | 
370  | 
case True  | 
|
371  | 
then have "cmod 0 \<le> r \<and> cmod (poly p 0) = - (- cmod (poly p 0))"  | 
|
| 56778 | 372  | 
by simp  | 
373  | 
then have mth1: "\<exists>x z. cmod z \<le> r \<and> cmod (poly p z) = - x"  | 
|
374  | 
by blast  | 
|
| 60557 | 375  | 
have False if "cmod z \<le> r" "cmod (poly p z) = - x" "\<not> x < 1" for x z  | 
376  | 
proof -  | 
|
377  | 
from that have "- x < 0 "  | 
|
| 56778 | 378  | 
by arith  | 
| 60557 | 379  | 
with that(2) norm_ge_zero[of "poly p z"] show ?thesis  | 
| 56778 | 380  | 
by simp  | 
| 60557 | 381  | 
qed  | 
| 56778 | 382  | 
then have mth2: "\<exists>z. \<forall>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<longrightarrow> x < z"  | 
383  | 
by blast  | 
|
| 30488 | 384  | 
from real_sup_exists[OF mth1 mth2] obtain s where  | 
| 60557 | 385  | 
s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow> y < s"  | 
386  | 
by blast  | 
|
| 56778 | 387  | 
let ?m = "- s"  | 
| 60557 | 388  | 
have s1[unfolded minus_minus]:  | 
389  | 
"(\<exists>z x. cmod z \<le> r \<and> - (- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y" for y  | 
|
390  | 
using s[rule_format, of "-y"]  | 
|
391  | 
unfolding minus_less_iff[of y] equation_minus_iff by blast  | 
|
| 30488 | 392  | 
from s1[of ?m] have s1m: "\<And>z x. cmod z \<le> r \<Longrightarrow> cmod (poly p z) \<ge> ?m"  | 
| 26123 | 393  | 
by auto  | 
| 60557 | 394  | 
have "\<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" for n  | 
395  | 
using s1[rule_format, of "?m + 1/real (Suc n)"] by simp  | 
|
| 56778 | 396  | 
then have th: "\<forall>n. \<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" ..  | 
| 30488 | 397  | 
from choice[OF th] obtain g where  | 
| 56778 | 398  | 
g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m + 1 /real(Suc n)"  | 
| 26123 | 399  | 
by blast  | 
| 30488 | 400  | 
from bolzano_weierstrass_complex_disc[OF g(1)]  | 
| 26123 | 401  | 
obtain f z where fz: "subseq f" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e"  | 
| 30488 | 402  | 
by blast  | 
| 56778 | 403  | 
    {
 | 
404  | 
fix w  | 
|
| 26123 | 405  | 
assume wr: "cmod w \<le> r"  | 
406  | 
let ?e = "\<bar>cmod (poly p z) - ?m\<bar>"  | 
|
| 56778 | 407  | 
      {
 | 
408  | 
assume e: "?e > 0"  | 
|
| 56795 | 409  | 
then have e2: "?e/2 > 0"  | 
410  | 
by simp  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
411  | 
from poly_cont[OF e2, of z p] obtain d where  | 
| 56778 | 412  | 
d: "d > 0" "\<forall>w. 0<cmod (w - z)\<and> cmod(w - z) < d \<longrightarrow> cmod(poly p w - poly p z) < ?e/2"  | 
413  | 
by blast  | 
|
| 60557 | 414  | 
have th1: "cmod(poly p w - poly p z) < ?e / 2" if w: "cmod (w - z) < d" for w  | 
415  | 
using d(2)[rule_format, of w] w e by (cases "w = z") simp_all  | 
|
| 56778 | 416  | 
from fz(2) d(1) obtain N1 where N1: "\<forall>n\<ge>N1. cmod (g (f n) - z) < d"  | 
417  | 
by blast  | 
|
418  | 
from reals_Archimedean2[of "2/?e"] obtain N2 :: nat where N2: "2/?e < real N2"  | 
|
419  | 
by blast  | 
|
420  | 
have th2: "cmod (poly p (g (f (N1 + N2))) - poly p z) < ?e/2"  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
421  | 
using N1[rule_format, of "N1 + N2"] th1 by simp  | 
| 60424 | 422  | 
have th0: "a < e2 \<Longrightarrow> \<bar>b - m\<bar> < e2 \<Longrightarrow> 2 * e2 \<le> \<bar>b - m\<bar> + a \<Longrightarrow> False"  | 
423  | 
for a b e2 m :: real  | 
|
424  | 
by arith  | 
|
425  | 
have ath: "m \<le> x \<Longrightarrow> x < m + e \<Longrightarrow> \<bar>x - m\<bar> < e" for m x e :: real  | 
|
| 56778 | 426  | 
by arith  | 
427  | 
from s1m[OF g(1)[rule_format]] have th31: "?m \<le> cmod(poly p (g (f (N1 + N2))))" .  | 
|
| 56795 | 428  | 
from seq_suble[OF fz(1), of "N1 + N2"]  | 
| 56778 | 429  | 
have th00: "real (Suc (N1 + N2)) \<le> real (Suc (f (N1 + N2)))"  | 
430  | 
by simp  | 
|
431  | 
have th000: "0 \<le> (1::real)" "(1::real) \<le> 1" "real (Suc (N1 + N2)) > 0"  | 
|
432  | 
using N2 by auto  | 
|
433  | 
from frac_le[OF th000 th00]  | 
|
| 56795 | 434  | 
have th00: "?m + 1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))"  | 
| 56778 | 435  | 
by simp  | 
436  | 
from g(2)[rule_format, of "f (N1 + N2)"]  | 
|
437  | 
have th01:"cmod (poly p (g (f (N1 + N2)))) < - s + 1 / real (Suc (f (N1 + N2)))" .  | 
|
438  | 
from order_less_le_trans[OF th01 th00]  | 
|
| 56795 | 439  | 
have th32: "cmod (poly p (g (f (N1 + N2)))) < ?m + (1/ real(Suc (N1 + N2)))" .  | 
| 56778 | 440  | 
from N2 have "2/?e < real (Suc (N1 + N2))"  | 
441  | 
by arith  | 
|
442  | 
with e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"]  | 
|
443  | 
have "?e/2 > 1/ real (Suc (N1 + N2))"  | 
|
444  | 
by (simp add: inverse_eq_divide)  | 
|
| 60424 | 445  | 
with ath[OF th31 th32] have thc1: "\<bar>cmod (poly p (g (f (N1 + N2)))) - ?m\<bar> < ?e/2"  | 
| 56778 | 446  | 
by arith  | 
| 60424 | 447  | 
have ath2: "\<bar>a - b\<bar> \<le> c \<Longrightarrow> \<bar>b - m\<bar> \<le> \<bar>a - m\<bar> + c" for a b c m :: real  | 
| 56778 | 448  | 
by arith  | 
449  | 
have th22: "\<bar>cmod (poly p (g (f (N1 + N2)))) - cmod (poly p z)\<bar> \<le>  | 
|
450  | 
cmod (poly p (g (f (N1 + N2))) - poly p z)"  | 
|
451  | 
by (simp add: norm_triangle_ineq3)  | 
|
452  | 
from ath2[OF th22, of ?m]  | 
|
453  | 
have thc2: "2 * (?e/2) \<le>  | 
|
454  | 
\<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> + cmod (poly p (g (f (N1 + N2))) - poly p z)"  | 
|
455  | 
by simp  | 
|
456  | 
from th0[OF th2 thc1 thc2] have False .  | 
|
457  | 
}  | 
|
458  | 
then have "?e = 0"  | 
|
459  | 
by auto  | 
|
460  | 
then have "cmod (poly p z) = ?m"  | 
|
461  | 
by simp  | 
|
462  | 
with s1m[OF wr] have "cmod (poly p z) \<le> cmod (poly p w)"  | 
|
463  | 
by simp  | 
|
464  | 
}  | 
|
| 60424 | 465  | 
then show ?thesis by blast  | 
466  | 
qed  | 
|
| 26123 | 467  | 
qed  | 
468  | 
||
| 60424 | 469  | 
text \<open>Nonzero polynomial in z goes to infinity as z does.\<close>  | 
| 26123 | 470  | 
|
471  | 
lemma poly_infinity:  | 
|
| 56778 | 472  | 
  fixes p:: "'a::{comm_semiring_0,real_normed_div_algebra} poly"
 | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
473  | 
assumes ex: "p \<noteq> 0"  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
474  | 
shows "\<exists>r. \<forall>z. r \<le> norm z \<longrightarrow> d \<le> norm (poly (pCons a p) z)"  | 
| 56778 | 475  | 
using ex  | 
476  | 
proof (induct p arbitrary: a d)  | 
|
| 56795 | 477  | 
case 0  | 
478  | 
then show ?case by simp  | 
|
479  | 
next  | 
|
| 30488 | 480  | 
case (pCons c cs a d)  | 
| 56795 | 481  | 
show ?case  | 
482  | 
proof (cases "cs = 0")  | 
|
483  | 
case False  | 
|
| 56778 | 484  | 
with pCons.hyps obtain r where r: "\<forall>z. r \<le> norm z \<longrightarrow> d + norm a \<le> norm (poly (pCons c cs) z)"  | 
485  | 
by blast  | 
|
| 26123 | 486  | 
let ?r = "1 + \<bar>r\<bar>"  | 
| 60557 | 487  | 
have "d \<le> norm (poly (pCons a (pCons c cs)) z)" if "1 + \<bar>r\<bar> \<le> norm z" for z  | 
488  | 
proof -  | 
|
| 56795 | 489  | 
have r0: "r \<le> norm z"  | 
| 60557 | 490  | 
using that by arith  | 
| 56778 | 491  | 
from r[rule_format, OF r0] have th0: "d + norm a \<le> 1 * norm(poly (pCons c cs) z)"  | 
492  | 
by arith  | 
|
| 60557 | 493  | 
from that have z1: "norm z \<ge> 1"  | 
| 56778 | 494  | 
by arith  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
495  | 
from order_trans[OF th0 mult_right_mono[OF z1 norm_ge_zero[of "poly (pCons c cs) z"]]]  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
496  | 
have th1: "d \<le> norm(z * poly (pCons c cs) z) - norm a"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
497  | 
unfolding norm_mult by (simp add: algebra_simps)  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
498  | 
from norm_diff_ineq[of "z * poly (pCons c cs) z" a]  | 
| 56795 | 499  | 
have th2: "norm (z * poly (pCons c cs) z) - norm a \<le> norm (poly (pCons a (pCons c cs)) z)"  | 
| 51541 | 500  | 
by (simp add: algebra_simps)  | 
| 60557 | 501  | 
from th1 th2 show ?thesis  | 
| 56795 | 502  | 
by arith  | 
| 60557 | 503  | 
qed  | 
| 56795 | 504  | 
then show ?thesis by blast  | 
505  | 
next  | 
|
506  | 
case True  | 
|
| 56778 | 507  | 
with pCons.prems have c0: "c \<noteq> 0"  | 
508  | 
by simp  | 
|
| 60424 | 509  | 
have "d \<le> norm (poly (pCons a (pCons c cs)) z)"  | 
510  | 
if h: "(\<bar>d\<bar> + norm a) / norm c \<le> norm z" for z :: 'a  | 
|
511  | 
proof -  | 
|
| 56778 | 512  | 
from c0 have "norm c > 0"  | 
513  | 
by simp  | 
|
| 56403 | 514  | 
from h c0 have th0: "\<bar>d\<bar> + norm a \<le> norm (z * c)"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
515  | 
by (simp add: field_simps norm_mult)  | 
| 56778 | 516  | 
have ath: "\<And>mzh mazh ma. mzh \<le> mazh + ma \<Longrightarrow> \<bar>d\<bar> + ma \<le> mzh \<Longrightarrow> d \<le> mazh"  | 
517  | 
by arith  | 
|
518  | 
from norm_diff_ineq[of "z * c" a] have th1: "norm (z * c) \<le> norm (a + z * c) + norm a"  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
519  | 
by (simp add: algebra_simps)  | 
| 60424 | 520  | 
from ath[OF th1 th0] show ?thesis  | 
| 56795 | 521  | 
using True by simp  | 
| 60424 | 522  | 
qed  | 
| 56795 | 523  | 
then show ?thesis by blast  | 
524  | 
qed  | 
|
525  | 
qed  | 
|
| 26123 | 526  | 
|
| 60424 | 527  | 
text \<open>Hence polynomial's modulus attains its minimum somewhere.\<close>  | 
| 56778 | 528  | 
lemma poly_minimum_modulus: "\<exists>z.\<forall>w. cmod (poly p z) \<le> cmod (poly p w)"  | 
529  | 
proof (induct p)  | 
|
530  | 
case 0  | 
|
531  | 
then show ?case by simp  | 
|
532  | 
next  | 
|
| 30488 | 533  | 
case (pCons c cs)  | 
| 56778 | 534  | 
show ?case  | 
535  | 
proof (cases "cs = 0")  | 
|
536  | 
case False  | 
|
537  | 
from poly_infinity[OF False, of "cmod (poly (pCons c cs) 0)" c]  | 
|
| 63060 | 538  | 
obtain r where r: "cmod (poly (pCons c cs) 0) \<le> cmod (poly (pCons c cs) z)"  | 
539  | 
if "r \<le> cmod z" for z  | 
|
| 56778 | 540  | 
by blast  | 
541  | 
have ath: "\<And>z r. r \<le> cmod z \<or> cmod z \<le> \<bar>r\<bar>"  | 
|
542  | 
by arith  | 
|
| 30488 | 543  | 
from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "pCons c cs"]  | 
| 63060 | 544  | 
obtain v where v: "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) w)"  | 
545  | 
if "cmod w \<le> \<bar>r\<bar>" for w  | 
|
| 56778 | 546  | 
by blast  | 
| 60424 | 547  | 
have "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) z)" if z: "r \<le> cmod z" for z  | 
548  | 
using v[of 0] r[OF z] by simp  | 
|
549  | 
with v ath[of r] show ?thesis  | 
|
| 56778 | 550  | 
by blast  | 
551  | 
next  | 
|
552  | 
case True  | 
|
| 60424 | 553  | 
with pCons.hyps show ?thesis  | 
554  | 
by simp  | 
|
| 56778 | 555  | 
qed  | 
556  | 
qed  | 
|
| 26123 | 557  | 
|
| 60424 | 558  | 
text \<open>Constant function (non-syntactic characterization).\<close>  | 
| 56795 | 559  | 
definition "constant f \<longleftrightarrow> (\<forall>x y. f x = f y)"  | 
| 26123 | 560  | 
|
| 56778 | 561  | 
lemma nonconstant_length: "\<not> constant (poly p) \<Longrightarrow> psize p \<ge> 2"  | 
562  | 
by (induct p) (auto simp: constant_def psize_def)  | 
|
| 30488 | 563  | 
|
| 56795 | 564  | 
lemma poly_replicate_append: "poly (monom 1 n * p) (x::'a::comm_ring_1) = x^n * poly p x"  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
565  | 
by (simp add: poly_monom)  | 
| 26123 | 566  | 
|
| 60424 | 567  | 
text \<open>Decomposition of polynomial, skipping zero coefficients after the first.\<close>  | 
| 26123 | 568  | 
|
569  | 
lemma poly_decompose_lemma:  | 
|
| 56778 | 570  | 
assumes nz: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly p z = (0::'a::idom))"  | 
| 56795 | 571  | 
shows "\<exists>k a q. a \<noteq> 0 \<and> Suc (psize q + k) = psize p \<and> (\<forall>z. poly p z = z^k * poly (pCons a q) z)"  | 
| 56778 | 572  | 
unfolding psize_def  | 
573  | 
using nz  | 
|
574  | 
proof (induct p)  | 
|
575  | 
case 0  | 
|
576  | 
then show ?case by simp  | 
|
| 26123 | 577  | 
next  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
578  | 
case (pCons c cs)  | 
| 56778 | 579  | 
show ?case  | 
580  | 
proof (cases "c = 0")  | 
|
581  | 
case True  | 
|
582  | 
from pCons.hyps pCons.prems True show ?thesis  | 
|
| 60424 | 583  | 
apply auto  | 
| 26123 | 584  | 
apply (rule_tac x="k+1" in exI)  | 
| 60557 | 585  | 
apply (rule_tac x="a" in exI)  | 
586  | 
apply clarsimp  | 
|
| 26123 | 587  | 
apply (rule_tac x="q" in exI)  | 
| 56778 | 588  | 
apply auto  | 
589  | 
done  | 
|
590  | 
next  | 
|
591  | 
case False  | 
|
592  | 
show ?thesis  | 
|
| 26123 | 593  | 
apply (rule exI[where x=0])  | 
| 60424 | 594  | 
apply (rule exI[where x=c])  | 
595  | 
apply (auto simp: False)  | 
|
| 56778 | 596  | 
done  | 
597  | 
qed  | 
|
| 26123 | 598  | 
qed  | 
599  | 
||
600  | 
lemma poly_decompose:  | 
|
| 56776 | 601  | 
assumes nc: "\<not> constant (poly p)"  | 
| 56778 | 602  | 
shows "\<exists>k a q. a \<noteq> (0::'a::idom) \<and> k \<noteq> 0 \<and>  | 
| 30488 | 603  | 
psize q + k + 1 = psize p \<and>  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
604  | 
(\<forall>z. poly p z = poly p 0 + z^k * poly (pCons a q) z)"  | 
| 56776 | 605  | 
using nc  | 
606  | 
proof (induct p)  | 
|
607  | 
case 0  | 
|
608  | 
then show ?case  | 
|
609  | 
by (simp add: constant_def)  | 
|
| 26123 | 610  | 
next  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
611  | 
case (pCons c cs)  | 
| 60557 | 612  | 
have "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0)"  | 
613  | 
proof  | 
|
| 60424 | 614  | 
assume "\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0"  | 
615  | 
then have "poly (pCons c cs) x = poly (pCons c cs) y" for x y  | 
|
616  | 
by (cases "x = 0") auto  | 
|
| 60557 | 617  | 
with pCons.prems show False  | 
| 56778 | 618  | 
by (auto simp add: constant_def)  | 
| 60557 | 619  | 
qed  | 
620  | 
from poly_decompose_lemma[OF this]  | 
|
| 30488 | 621  | 
show ?case  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
622  | 
apply clarsimp  | 
| 26123 | 623  | 
apply (rule_tac x="k+1" in exI)  | 
624  | 
apply (rule_tac x="a" in exI)  | 
|
625  | 
apply simp  | 
|
626  | 
apply (rule_tac x="q" in exI)  | 
|
| 29538 | 627  | 
apply (auto simp add: psize_def split: if_splits)  | 
| 26123 | 628  | 
done  | 
629  | 
qed  | 
|
630  | 
||
| 60424 | 631  | 
text \<open>Fundamental theorem of algebra\<close>  | 
| 26123 | 632  | 
|
633  | 
lemma fundamental_theorem_of_algebra:  | 
|
| 56776 | 634  | 
assumes nc: "\<not> constant (poly p)"  | 
| 26123 | 635  | 
shows "\<exists>z::complex. poly p z = 0"  | 
| 56776 | 636  | 
using nc  | 
637  | 
proof (induct "psize p" arbitrary: p rule: less_induct)  | 
|
| 34915 | 638  | 
case less  | 
| 26123 | 639  | 
let ?p = "poly p"  | 
640  | 
let ?ths = "\<exists>z. ?p z = 0"  | 
|
641  | 
||
| 34915 | 642  | 
from nonconstant_length[OF less(2)] have n2: "psize p \<ge> 2" .  | 
| 56776 | 643  | 
from poly_minimum_modulus obtain c where c: "\<forall>w. cmod (?p c) \<le> cmod (?p w)"  | 
644  | 
by blast  | 
|
| 56778 | 645  | 
|
646  | 
show ?ths  | 
|
647  | 
proof (cases "?p c = 0")  | 
|
648  | 
case True  | 
|
649  | 
then show ?thesis by blast  | 
|
650  | 
next  | 
|
651  | 
case False  | 
|
652  | 
from poly_offset[of p c] obtain q where q: "psize q = psize p" "\<forall>x. poly q x = ?p (c + x)"  | 
|
653  | 
by blast  | 
|
| 60424 | 654  | 
have False if h: "constant (poly q)"  | 
655  | 
proof -  | 
|
| 56795 | 656  | 
from q(2) have th: "\<forall>x. poly q (x - c) = ?p x"  | 
657  | 
by auto  | 
|
| 60424 | 658  | 
have "?p x = ?p y" for x y  | 
659  | 
proof -  | 
|
| 56795 | 660  | 
from th have "?p x = poly q (x - c)"  | 
661  | 
by auto  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
662  | 
also have "\<dots> = poly q (y - c)"  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
663  | 
using h unfolding constant_def by blast  | 
| 56795 | 664  | 
also have "\<dots> = ?p y"  | 
665  | 
using th by auto  | 
|
| 60424 | 666  | 
finally show ?thesis .  | 
667  | 
qed  | 
|
668  | 
with less(2) show ?thesis  | 
|
| 56778 | 669  | 
unfolding constant_def by blast  | 
| 60424 | 670  | 
qed  | 
| 56778 | 671  | 
then have qnc: "\<not> constant (poly q)"  | 
672  | 
by blast  | 
|
673  | 
from q(2) have pqc0: "?p c = poly q 0"  | 
|
674  | 
by simp  | 
|
675  | 
from c pqc0 have cq0: "\<forall>w. cmod (poly q 0) \<le> cmod (?p w)"  | 
|
676  | 
by simp  | 
|
| 26123 | 677  | 
let ?a0 = "poly q 0"  | 
| 60424 | 678  | 
from False pqc0 have a00: "?a0 \<noteq> 0"  | 
| 56778 | 679  | 
by simp  | 
680  | 
from a00 have qr: "\<forall>z. poly q z = poly (smult (inverse ?a0) q) z * ?a0"  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
681  | 
by simp  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
682  | 
let ?r = "smult (inverse ?a0) q"  | 
| 29538 | 683  | 
have lgqr: "psize q = psize ?r"  | 
| 56778 | 684  | 
using a00  | 
685  | 
unfolding psize_def degree_def  | 
|
| 52380 | 686  | 
by (simp add: poly_eq_iff)  | 
| 60424 | 687  | 
have False if h: "\<And>x y. poly ?r x = poly ?r y"  | 
688  | 
proof -  | 
|
| 60557 | 689  | 
have "poly q x = poly q y" for x y  | 
690  | 
proof -  | 
|
| 56778 | 691  | 
from qr[rule_format, of x] have "poly q x = poly ?r x * ?a0"  | 
692  | 
by auto  | 
|
693  | 
also have "\<dots> = poly ?r y * ?a0"  | 
|
694  | 
using h by simp  | 
|
695  | 
also have "\<dots> = poly q y"  | 
|
696  | 
using qr[rule_format, of y] by simp  | 
|
| 60557 | 697  | 
finally show ?thesis .  | 
698  | 
qed  | 
|
| 60424 | 699  | 
with qnc show ?thesis  | 
| 56795 | 700  | 
unfolding constant_def by blast  | 
| 60424 | 701  | 
qed  | 
| 56778 | 702  | 
then have rnc: "\<not> constant (poly ?r)"  | 
703  | 
unfolding constant_def by blast  | 
|
704  | 
from qr[rule_format, of 0] a00 have r01: "poly ?r 0 = 1"  | 
|
705  | 
by auto  | 
|
| 60424 | 706  | 
have mrmq_eq: "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w) < cmod ?a0" for w  | 
707  | 
proof -  | 
|
| 26123 | 708  | 
have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w / ?a0) < 1"  | 
| 
57514
 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 
haftmann 
parents: 
57512 
diff
changeset
 | 
709  | 
using qr[rule_format, of w] a00 by (simp add: divide_inverse ac_simps)  | 
| 26123 | 710  | 
also have "\<dots> \<longleftrightarrow> cmod (poly q w) < cmod ?a0"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
711  | 
using a00 unfolding norm_divide by (simp add: field_simps)  | 
| 60424 | 712  | 
finally show ?thesis .  | 
713  | 
qed  | 
|
| 30488 | 714  | 
from poly_decompose[OF rnc] obtain k a s where  | 
| 56778 | 715  | 
kas: "a \<noteq> 0" "k \<noteq> 0" "psize s + k + 1 = psize ?r"  | 
716  | 
"\<forall>z. poly ?r z = poly ?r 0 + z^k* poly (pCons a s) z" by blast  | 
|
| 60424 | 717  | 
have "\<exists>w. cmod (poly ?r w) < 1"  | 
718  | 
proof (cases "psize p = k + 1")  | 
|
719  | 
case True  | 
|
| 56778 | 720  | 
with kas(3) lgqr[symmetric] q(1) have s0: "s = 0"  | 
721  | 
by auto  | 
|
| 60424 | 722  | 
have hth[symmetric]: "cmod (poly ?r w) = cmod (1 + a * w ^ k)" for w  | 
723  | 
using kas(4)[rule_format, of w] s0 r01 by (simp add: algebra_simps)  | 
|
724  | 
from reduce_poly_simple[OF kas(1,2)] show ?thesis  | 
|
| 56778 | 725  | 
unfolding hth by blast  | 
| 60424 | 726  | 
next  | 
727  | 
case False note kn = this  | 
|
| 56778 | 728  | 
from kn kas(3) q(1) lgqr have k1n: "k + 1 < psize p"  | 
729  | 
by simp  | 
|
| 30488 | 730  | 
have th01: "\<not> constant (poly (pCons 1 (monom a (k - 1))))"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
731  | 
unfolding constant_def poly_pCons poly_monom  | 
| 56795 | 732  | 
using kas(1)  | 
733  | 
apply simp  | 
|
| 56778 | 734  | 
apply (rule exI[where x=0])  | 
735  | 
apply (rule exI[where x=1])  | 
|
736  | 
apply simp  | 
|
737  | 
done  | 
|
738  | 
from kas(1) kas(2) have th02: "k + 1 = psize (pCons 1 (monom a (k - 1)))"  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
739  | 
by (simp add: psize_def degree_monom_eq)  | 
| 34915 | 740  | 
from less(1) [OF k1n [simplified th02] th01]  | 
| 26123 | 741  | 
obtain w where w: "1 + w^k * a = 0"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
742  | 
unfolding poly_pCons poly_monom  | 
| 56778 | 743  | 
using kas(2) by (cases k) (auto simp add: algebra_simps)  | 
| 30488 | 744  | 
from poly_bound_exists[of "cmod w" s] obtain m where  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
745  | 
m: "m > 0" "\<forall>z. cmod z \<le> cmod w \<longrightarrow> cmod (poly s z) \<le> m" by blast  | 
| 56795 | 746  | 
have w0: "w \<noteq> 0"  | 
747  | 
using kas(2) w by (auto simp add: power_0_left)  | 
|
| 56778 | 748  | 
from w have "(1 + w ^ k * a) - 1 = 0 - 1"  | 
749  | 
by simp  | 
|
750  | 
then have wm1: "w^k * a = - 1"  | 
|
751  | 
by simp  | 
|
| 30488 | 752  | 
have inv0: "0 < inverse (cmod w ^ (k + 1) * m)"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
753  | 
using norm_ge_zero[of w] w0 m(1)  | 
| 56778 | 754  | 
by (simp add: inverse_eq_divide zero_less_mult_iff)  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
755  | 
with real_lbound_gt_zero[OF zero_less_one] obtain t where  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
756  | 
t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast  | 
| 26123 | 757  | 
let ?ct = "complex_of_real t"  | 
758  | 
let ?w = "?ct * w"  | 
|
| 56778 | 759  | 
have "1 + ?w^k * (a + ?w * poly s ?w) = 1 + ?ct^k * (w^k * a) + ?w^k * ?w * poly s ?w"  | 
760  | 
using kas(1) by (simp add: algebra_simps power_mult_distrib)  | 
|
| 26123 | 761  | 
also have "\<dots> = complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w"  | 
| 56778 | 762  | 
unfolding wm1 by simp  | 
763  | 
finally have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) =  | 
|
764  | 
cmod (complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w)"  | 
|
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
765  | 
by metis  | 
| 30488 | 766  | 
with norm_triangle_ineq[of "complex_of_real (1 - t^k)" "?w^k * ?w * poly s ?w"]  | 
| 56778 | 767  | 
have th11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)"  | 
768  | 
unfolding norm_of_real by simp  | 
|
769  | 
have ath: "\<And>x t::real. 0 \<le> x \<Longrightarrow> x < t \<Longrightarrow> t \<le> 1 \<Longrightarrow> \<bar>1 - t\<bar> + x < 1"  | 
|
770  | 
by arith  | 
|
771  | 
have "t * cmod w \<le> 1 * cmod w"  | 
|
772  | 
apply (rule mult_mono)  | 
|
773  | 
using t(1,2)  | 
|
774  | 
apply auto  | 
|
775  | 
done  | 
|
776  | 
then have tw: "cmod ?w \<le> cmod w"  | 
|
777  | 
using t(1) by (simp add: norm_mult)  | 
|
778  | 
from t inv0 have "t * (cmod w ^ (k + 1) * m) < 1"  | 
|
| 57862 | 779  | 
by (simp add: field_simps)  | 
| 56778 | 780  | 
with zero_less_power[OF t(1), of k] have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1"  | 
| 59557 | 781  | 
by simp  | 
| 56778 | 782  | 
have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k + 1) * cmod (poly s ?w)))"  | 
783  | 
using w0 t(1)  | 
|
| 51541 | 784  | 
by (simp add: algebra_simps power_mult_distrib norm_power norm_mult)  | 
| 26123 | 785  | 
then have "cmod (?w^k * ?w * poly s ?w) \<le> t^k * (t* (cmod w ^ (k + 1) * m))"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
786  | 
using t(1,2) m(2)[rule_format, OF tw] w0  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
787  | 
by auto  | 
| 56778 | 788  | 
with th30 have th120: "cmod (?w^k * ?w * poly s ?w) < t^k"  | 
789  | 
by simp  | 
|
| 30488 | 790  | 
from power_strict_mono[OF t(2), of k] t(1) kas(2) have th121: "t^k \<le> 1"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
791  | 
by auto  | 
| 27514 | 792  | 
from ath[OF norm_ge_zero[of "?w^k * ?w * poly s ?w"] th120 th121]  | 
| 30488 | 793  | 
have th12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" .  | 
| 56778 | 794  | 
from th11 th12 have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) < 1"  | 
795  | 
by arith  | 
|
| 30488 | 796  | 
then have "cmod (poly ?r ?w) < 1"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
797  | 
unfolding kas(4)[rule_format, of ?w] r01 by simp  | 
| 60424 | 798  | 
then show ?thesis  | 
| 56778 | 799  | 
by blast  | 
| 60424 | 800  | 
qed  | 
801  | 
with cq0 q(2) show ?thesis  | 
|
| 56778 | 802  | 
unfolding mrmq_eq not_less[symmetric] by auto  | 
803  | 
qed  | 
|
| 26123 | 804  | 
qed  | 
805  | 
||
| 60424 | 806  | 
text \<open>Alternative version with a syntactic notion of constant polynomial.\<close>  | 
| 26123 | 807  | 
|
808  | 
lemma fundamental_theorem_of_algebra_alt:  | 
|
| 56778 | 809  | 
assumes nc: "\<not> (\<exists>a l. a \<noteq> 0 \<and> l = 0 \<and> p = pCons a l)"  | 
| 26123 | 810  | 
shows "\<exists>z. poly p z = (0::complex)"  | 
| 56778 | 811  | 
using nc  | 
812  | 
proof (induct p)  | 
|
813  | 
case 0  | 
|
814  | 
then show ?case by simp  | 
|
815  | 
next  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
816  | 
case (pCons c cs)  | 
| 56778 | 817  | 
show ?case  | 
818  | 
proof (cases "c = 0")  | 
|
819  | 
case True  | 
|
820  | 
then show ?thesis by auto  | 
|
821  | 
next  | 
|
822  | 
case False  | 
|
| 60557 | 823  | 
have "\<not> constant (poly (pCons c cs))"  | 
824  | 
proof  | 
|
| 56778 | 825  | 
assume nc: "constant (poly (pCons c cs))"  | 
| 30488 | 826  | 
from nc[unfolded constant_def, rule_format, of 0]  | 
827  | 
have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0" by auto  | 
|
| 56778 | 828  | 
then have "cs = 0"  | 
829  | 
proof (induct cs)  | 
|
830  | 
case 0  | 
|
831  | 
then show ?case by simp  | 
|
832  | 
next  | 
|
833  | 
case (pCons d ds)  | 
|
834  | 
show ?case  | 
|
835  | 
proof (cases "d = 0")  | 
|
836  | 
case True  | 
|
| 60424 | 837  | 
then show ?thesis  | 
838  | 
using pCons.prems pCons.hyps by simp  | 
|
| 56778 | 839  | 
next  | 
840  | 
case False  | 
|
841  | 
from poly_bound_exists[of 1 ds] obtain m where  | 
|
842  | 
m: "m > 0" "\<forall>z. \<forall>z. cmod z \<le> 1 \<longrightarrow> cmod (poly ds z) \<le> m" by blast  | 
|
| 56795 | 843  | 
have dm: "cmod d / m > 0"  | 
844  | 
using False m(1) by (simp add: field_simps)  | 
|
| 60424 | 845  | 
from real_lbound_gt_zero[OF dm zero_less_one]  | 
846  | 
obtain x where x: "x > 0" "x < cmod d / m" "x < 1"  | 
|
847  | 
by blast  | 
|
| 56778 | 848  | 
let ?x = "complex_of_real x"  | 
| 60424 | 849  | 
from x have cx: "?x \<noteq> 0" "cmod ?x \<le> 1"  | 
| 56795 | 850  | 
by simp_all  | 
| 56778 | 851  | 
from pCons.prems[rule_format, OF cx(1)]  | 
| 56795 | 852  | 
have cth: "cmod (?x*poly ds ?x) = cmod d"  | 
853  | 
by (simp add: eq_diff_eq[symmetric])  | 
|
| 56778 | 854  | 
from m(2)[rule_format, OF cx(2)] x(1)  | 
855  | 
have th0: "cmod (?x*poly ds ?x) \<le> x*m"  | 
|
856  | 
by (simp add: norm_mult)  | 
|
| 56795 | 857  | 
from x(2) m(1) have "x * m < cmod d"  | 
858  | 
by (simp add: field_simps)  | 
|
859  | 
with th0 have "cmod (?x*poly ds ?x) \<noteq> cmod d"  | 
|
860  | 
by auto  | 
|
861  | 
with cth show ?thesis  | 
|
862  | 
by blast  | 
|
| 56778 | 863  | 
qed  | 
864  | 
qed  | 
|
| 60557 | 865  | 
then show False  | 
866  | 
using pCons.prems False by blast  | 
|
867  | 
qed  | 
|
868  | 
then show ?thesis  | 
|
869  | 
by (rule fundamental_theorem_of_algebra)  | 
|
| 56778 | 870  | 
qed  | 
871  | 
qed  | 
|
| 26123 | 872  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
873  | 
|
| 60424 | 874  | 
subsection \<open>Nullstellensatz, degrees and divisibility of polynomials\<close>  | 
| 26123 | 875  | 
|
876  | 
lemma nullstellensatz_lemma:  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
877  | 
fixes p :: "complex poly"  | 
| 26123 | 878  | 
assumes "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"  | 
| 56776 | 879  | 
and "degree p = n"  | 
880  | 
and "n \<noteq> 0"  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
881  | 
shows "p dvd (q ^ n)"  | 
| 56776 | 882  | 
using assms  | 
883  | 
proof (induct n arbitrary: p q rule: nat_less_induct)  | 
|
884  | 
fix n :: nat  | 
|
885  | 
fix p q :: "complex poly"  | 
|
| 26123 | 886  | 
assume IH: "\<forall>m<n. \<forall>p q.  | 
887  | 
(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longrightarrow>  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
888  | 
degree p = m \<longrightarrow> m \<noteq> 0 \<longrightarrow> p dvd (q ^ m)"  | 
| 30488 | 889  | 
and pq0: "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"  | 
| 56778 | 890  | 
and dpn: "degree p = n"  | 
891  | 
and n0: "n \<noteq> 0"  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
892  | 
from dpn n0 have pne: "p \<noteq> 0" by auto  | 
| 60557 | 893  | 
show "p dvd (q ^ n)"  | 
894  | 
proof (cases "\<exists>a. poly p a = 0")  | 
|
895  | 
case True  | 
|
896  | 
then obtain a where a: "poly p a = 0" ..  | 
|
897  | 
have ?thesis if oa: "order a p \<noteq> 0"  | 
|
| 60424 | 898  | 
proof -  | 
| 26123 | 899  | 
let ?op = "order a p"  | 
| 56778 | 900  | 
from pne have ap: "([:- a, 1:] ^ ?op) dvd p" "\<not> [:- a, 1:] ^ (Suc ?op) dvd p"  | 
901  | 
using order by blast+  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
902  | 
note oop = order_degree[OF pne, unfolded dpn]  | 
| 60424 | 903  | 
show ?thesis  | 
904  | 
proof (cases "q = 0")  | 
|
905  | 
case True  | 
|
906  | 
with n0 show ?thesis by (simp add: power_0_left)  | 
|
907  | 
next  | 
|
908  | 
case False  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
909  | 
from pq0[rule_format, OF a, unfolded poly_eq_0_iff_dvd]  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
910  | 
obtain r where r: "q = [:- a, 1:] * r" by (rule dvdE)  | 
| 56778 | 911  | 
from ap(1) obtain s where s: "p = [:- a, 1:] ^ ?op * s"  | 
912  | 
by (rule dvdE)  | 
|
| 60424 | 913  | 
have sne: "s \<noteq> 0"  | 
914  | 
using s pne by auto  | 
|
915  | 
show ?thesis  | 
|
916  | 
proof (cases "degree s = 0")  | 
|
917  | 
case True  | 
|
918  | 
then obtain k where kpn: "s = [:k:]"  | 
|
| 51541 | 919  | 
by (cases s) (auto split: if_splits)  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
920  | 
from sne kpn have k: "k \<noteq> 0" by simp  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32456 
diff
changeset
 | 
921  | 
let ?w = "([:1/k:] * ([:-a,1:] ^ (n - ?op))) * (r ^ n)"  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
922  | 
have "q ^ n = p * ?w"  | 
| 56795 | 923  | 
apply (subst r)  | 
924  | 
apply (subst s)  | 
|
925  | 
apply (subst kpn)  | 
|
| 56778 | 926  | 
using k oop [of a]  | 
| 56795 | 927  | 
apply (subst power_mult_distrib)  | 
928  | 
apply simp  | 
|
929  | 
apply (subst power_add [symmetric])  | 
|
930  | 
apply simp  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
931  | 
done  | 
| 60424 | 932  | 
then show ?thesis  | 
| 56795 | 933  | 
unfolding dvd_def by blast  | 
| 60424 | 934  | 
next  | 
935  | 
case False  | 
|
936  | 
with sne dpn s oa have dsn: "degree s < n"  | 
|
| 60557 | 937  | 
apply auto  | 
938  | 
apply (erule ssubst)  | 
|
939  | 
apply (simp add: degree_mult_eq degree_linear_power)  | 
|
940  | 
done  | 
|
941  | 
have "poly r x = 0" if h: "poly s x = 0" for x  | 
|
942  | 
proof -  | 
|
943  | 
have xa: "x \<noteq> a"  | 
|
944  | 
proof  | 
|
945  | 
assume "x = a"  | 
|
946  | 
from h[unfolded this poly_eq_0_iff_dvd] obtain u where u: "s = [:- a, 1:] * u"  | 
|
947  | 
by (rule dvdE)  | 
|
948  | 
have "p = [:- a, 1:] ^ (Suc ?op) * u"  | 
|
949  | 
apply (subst s)  | 
|
950  | 
apply (subst u)  | 
|
951  | 
apply (simp only: power_Suc ac_simps)  | 
|
952  | 
done  | 
|
953  | 
with ap(2)[unfolded dvd_def] show False  | 
|
| 56795 | 954  | 
by blast  | 
| 60557 | 955  | 
qed  | 
956  | 
from h have "poly p x = 0"  | 
|
957  | 
by (subst s) simp  | 
|
958  | 
with pq0 have "poly q x = 0"  | 
|
| 56795 | 959  | 
by blast  | 
| 60557 | 960  | 
with r xa show ?thesis  | 
961  | 
by auto  | 
|
962  | 
qed  | 
|
963  | 
with IH[rule_format, OF dsn, of s r] False have "s dvd (r ^ (degree s))"  | 
|
964  | 
by blast  | 
|
965  | 
then obtain u where u: "r ^ (degree s) = s * u" ..  | 
|
966  | 
then have u': "\<And>x. poly s x * poly u x = poly r x ^ degree s"  | 
|
967  | 
by (simp only: poly_mult[symmetric] poly_power[symmetric])  | 
|
968  | 
let ?w = "(u * ([:-a,1:] ^ (n - ?op))) * (r ^ (n - degree s))"  | 
|
969  | 
from oop[of a] dsn have "q ^ n = p * ?w"  | 
|
970  | 
apply -  | 
|
971  | 
apply (subst s)  | 
|
972  | 
apply (subst r)  | 
|
973  | 
apply (simp only: power_mult_distrib)  | 
|
974  | 
apply (subst mult.assoc [where b=s])  | 
|
975  | 
apply (subst mult.assoc [where a=u])  | 
|
976  | 
apply (subst mult.assoc [where b=u, symmetric])  | 
|
977  | 
apply (subst u [symmetric])  | 
|
978  | 
apply (simp add: ac_simps power_add [symmetric])  | 
|
979  | 
done  | 
|
980  | 
then show ?thesis  | 
|
981  | 
unfolding dvd_def by blast  | 
|
| 60424 | 982  | 
qed  | 
983  | 
qed  | 
|
984  | 
qed  | 
|
| 60557 | 985  | 
then show ?thesis  | 
986  | 
using a order_root pne by blast  | 
|
987  | 
next  | 
|
988  | 
case False  | 
|
989  | 
with fundamental_theorem_of_algebra_alt[of p]  | 
|
| 56778 | 990  | 
obtain c where ccs: "c \<noteq> 0" "p = pCons c 0"  | 
991  | 
by blast  | 
|
| 60557 | 992  | 
then have pp: "poly p x = c" for x  | 
| 56778 | 993  | 
by simp  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
994  | 
let ?w = "[:1/c:] * (q ^ n)"  | 
| 56778 | 995  | 
from ccs have "(q ^ n) = (p * ?w)"  | 
996  | 
by simp  | 
|
| 60557 | 997  | 
then show ?thesis  | 
| 56778 | 998  | 
unfolding dvd_def by blast  | 
| 60557 | 999  | 
qed  | 
| 26123 | 1000  | 
qed  | 
1001  | 
||
1002  | 
lemma nullstellensatz_univariate:  | 
|
| 30488 | 1003  | 
"(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow>  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1004  | 
p dvd (q ^ (degree p)) \<or> (p = 0 \<and> q = 0)"  | 
| 56776 | 1005  | 
proof -  | 
| 60457 | 1006  | 
consider "p = 0" | "p \<noteq> 0" "degree p = 0" | n where "p \<noteq> 0" "degree p = Suc n"  | 
1007  | 
by (cases "degree p") auto  | 
|
1008  | 
then show ?thesis  | 
|
1009  | 
proof cases  | 
|
| 60567 | 1010  | 
case p: 1  | 
| 56778 | 1011  | 
then have eq: "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> q = 0"  | 
| 52380 | 1012  | 
by (auto simp add: poly_all_0_iff_0)  | 
| 56778 | 1013  | 
    {
 | 
1014  | 
assume "p dvd (q ^ (degree p))"  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1015  | 
then obtain r where r: "q ^ (degree p) = p * r" ..  | 
| 60567 | 1016  | 
from r p have False by simp  | 
| 56778 | 1017  | 
}  | 
| 60567 | 1018  | 
with eq p show ?thesis by blast  | 
| 60424 | 1019  | 
next  | 
| 60567 | 1020  | 
case dp: 2  | 
| 60457 | 1021  | 
then obtain k where k: "p = [:k:]" "k \<noteq> 0"  | 
1022  | 
by (cases p) (simp split: if_splits)  | 
|
1023  | 
then have th1: "\<forall>x. poly p x \<noteq> 0"  | 
|
1024  | 
by simp  | 
|
| 60567 | 1025  | 
from k dp(2) have "q ^ (degree p) = p * [:1/k:]"  | 
| 60457 | 1026  | 
by (simp add: one_poly_def)  | 
1027  | 
then have th2: "p dvd (q ^ (degree p))" ..  | 
|
| 60567 | 1028  | 
from dp(1) th1 th2 show ?thesis  | 
| 60457 | 1029  | 
by blast  | 
1030  | 
next  | 
|
| 60567 | 1031  | 
case dp: 3  | 
| 60557 | 1032  | 
have False if dvd: "p dvd (q ^ (Suc n))" and h: "poly p x = 0" "poly q x \<noteq> 0" for x  | 
1033  | 
proof -  | 
|
1034  | 
from dvd obtain u where u: "q ^ (Suc n) = p * u" ..  | 
|
1035  | 
from h have "poly (q ^ (Suc n)) x \<noteq> 0"  | 
|
| 56778 | 1036  | 
by simp  | 
| 60557 | 1037  | 
with u h(1) show ?thesis  | 
| 60457 | 1038  | 
by (simp only: poly_mult) simp  | 
| 60557 | 1039  | 
qed  | 
| 60567 | 1040  | 
with dp nullstellensatz_lemma[of p q "degree p"] show ?thesis  | 
1041  | 
by auto  | 
|
| 60424 | 1042  | 
qed  | 
| 26123 | 1043  | 
qed  | 
1044  | 
||
| 60424 | 1045  | 
text \<open>Useful lemma\<close>  | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1046  | 
lemma constant_degree:  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1047  | 
  fixes p :: "'a::{idom,ring_char_0} poly"
 | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1048  | 
shows "constant (poly p) \<longleftrightarrow> degree p = 0" (is "?lhs = ?rhs")  | 
| 26123 | 1049  | 
proof  | 
| 60557 | 1050  | 
show ?rhs if ?lhs  | 
1051  | 
proof -  | 
|
1052  | 
from that[unfolded constant_def, rule_format, of _ "0"]  | 
|
1053  | 
have th: "poly p = poly [:poly p 0:]"  | 
|
1054  | 
by auto  | 
|
1055  | 
then have "p = [:poly p 0:]"  | 
|
1056  | 
by (simp add: poly_eq_poly_eq_iff)  | 
|
1057  | 
then have "degree p = degree [:poly p 0:]"  | 
|
1058  | 
by simp  | 
|
1059  | 
then show ?thesis  | 
|
1060  | 
by simp  | 
|
1061  | 
qed  | 
|
1062  | 
show ?lhs if ?rhs  | 
|
1063  | 
proof -  | 
|
1064  | 
from that obtain k where "p = [:k:]"  | 
|
1065  | 
by (cases p) (simp split: if_splits)  | 
|
1066  | 
then show ?thesis  | 
|
1067  | 
unfolding constant_def by auto  | 
|
1068  | 
qed  | 
|
| 26123 | 1069  | 
qed  | 
1070  | 
||
| 60424 | 1071  | 
text \<open>Arithmetic operations on multivariate polynomials.\<close>  | 
| 26123 | 1072  | 
|
| 30488 | 1073  | 
lemma mpoly_base_conv:  | 
| 56778 | 1074  | 
fixes x :: "'a::comm_ring_1"  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
1075  | 
shows "0 = poly 0 x" "c = poly [:c:] x" "x = poly [:0,1:] x"  | 
| 
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
1076  | 
by simp_all  | 
| 26123 | 1077  | 
|
| 30488 | 1078  | 
lemma mpoly_norm_conv:  | 
| 56778 | 1079  | 
fixes x :: "'a::comm_ring_1"  | 
| 56776 | 1080  | 
shows "poly [:0:] x = poly 0 x" "poly [:poly 0 y:] x = poly 0 x"  | 
1081  | 
by simp_all  | 
|
| 26123 | 1082  | 
|
| 30488 | 1083  | 
lemma mpoly_sub_conv:  | 
| 56778 | 1084  | 
fixes x :: "'a::comm_ring_1"  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
1085  | 
shows "poly p x - poly q x = poly p x + -1 * poly q x"  | 
| 
54230
 
b1d955791529
more simplification rules on unary and binary minus
 
haftmann 
parents: 
53077 
diff
changeset
 | 
1086  | 
by simp  | 
| 26123 | 1087  | 
|
| 56778 | 1088  | 
lemma poly_pad_rule: "poly p x = 0 \<Longrightarrow> poly (pCons 0 p) x = 0"  | 
1089  | 
by simp  | 
|
| 26123 | 1090  | 
|
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
1091  | 
lemma poly_cancel_eq_conv:  | 
| 56778 | 1092  | 
fixes x :: "'a::field"  | 
| 56795 | 1093  | 
shows "x = 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> y = 0 \<longleftrightarrow> a * y - b * x = 0"  | 
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
1094  | 
by auto  | 
| 26123 | 1095  | 
|
| 30488 | 1096  | 
lemma poly_divides_pad_rule:  | 
| 56778 | 1097  | 
  fixes p:: "('a::comm_ring_1) poly"
 | 
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1098  | 
assumes pq: "p dvd q"  | 
| 56778 | 1099  | 
shows "p dvd (pCons 0 q)"  | 
1100  | 
proof -  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1101  | 
have "pCons 0 q = q * [:0,1:]" by simp  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1102  | 
then have "q dvd (pCons 0 q)" ..  | 
| 
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1103  | 
with pq show ?thesis by (rule dvd_trans)  | 
| 26123 | 1104  | 
qed  | 
1105  | 
||
| 30488 | 1106  | 
lemma poly_divides_conv0:  | 
| 56778 | 1107  | 
fixes p:: "'a::field poly"  | 
| 56776 | 1108  | 
assumes lgpq: "degree q < degree p"  | 
1109  | 
and lq: "p \<noteq> 0"  | 
|
1110  | 
shows "p dvd q \<longleftrightarrow> q = 0" (is "?lhs \<longleftrightarrow> ?rhs")  | 
|
1111  | 
proof  | 
|
| 60557 | 1112  | 
assume ?rhs  | 
| 56776 | 1113  | 
then have "q = p * 0" by simp  | 
1114  | 
then show ?lhs ..  | 
|
1115  | 
next  | 
|
1116  | 
assume l: ?lhs  | 
|
| 56778 | 1117  | 
show ?rhs  | 
1118  | 
proof (cases "q = 0")  | 
|
1119  | 
case True  | 
|
1120  | 
then show ?thesis by simp  | 
|
1121  | 
next  | 
|
| 56776 | 1122  | 
assume q0: "q \<noteq> 0"  | 
1123  | 
from l q0 have "degree p \<le> degree q"  | 
|
1124  | 
by (rule dvd_imp_degree_le)  | 
|
| 56778 | 1125  | 
with lgpq show ?thesis by simp  | 
1126  | 
qed  | 
|
| 26123 | 1127  | 
qed  | 
1128  | 
||
| 30488 | 1129  | 
lemma poly_divides_conv1:  | 
| 56778 | 1130  | 
fixes p :: "'a::field poly"  | 
| 56776 | 1131  | 
assumes a0: "a \<noteq> 0"  | 
1132  | 
and pp': "p dvd p'"  | 
|
1133  | 
and qrp': "smult a q - p' = r"  | 
|
1134  | 
shows "p dvd q \<longleftrightarrow> p dvd r" (is "?lhs \<longleftrightarrow> ?rhs")  | 
|
1135  | 
proof  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1136  | 
from pp' obtain t where t: "p' = p * t" ..  | 
| 60557 | 1137  | 
show ?rhs if ?lhs  | 
1138  | 
proof -  | 
|
1139  | 
from that obtain u where u: "q = p * u" ..  | 
|
| 56776 | 1140  | 
have "r = p * (smult a u - t)"  | 
1141  | 
using u qrp' [symmetric] t by (simp add: algebra_simps)  | 
|
| 60557 | 1142  | 
then show ?thesis ..  | 
1143  | 
qed  | 
|
1144  | 
show ?lhs if ?rhs  | 
|
1145  | 
proof -  | 
|
1146  | 
from that obtain u where u: "r = p * u" ..  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1147  | 
from u [symmetric] t qrp' [symmetric] a0  | 
| 60557 | 1148  | 
have "q = p * smult (1/a) (u + t)"  | 
1149  | 
by (simp add: algebra_simps)  | 
|
1150  | 
then show ?thesis ..  | 
|
1151  | 
qed  | 
|
| 26123 | 1152  | 
qed  | 
1153  | 
||
1154  | 
lemma basic_cqe_conv1:  | 
|
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1155  | 
"(\<exists>x. poly p x = 0 \<and> poly 0 x \<noteq> 0) \<longleftrightarrow> False"  | 
| 
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1156  | 
"(\<exists>x. poly 0 x \<noteq> 0) \<longleftrightarrow> False"  | 
| 56776 | 1157  | 
"(\<exists>x. poly [:c:] x \<noteq> 0) \<longleftrightarrow> c \<noteq> 0"  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1158  | 
"(\<exists>x. poly 0 x = 0) \<longleftrightarrow> True"  | 
| 56776 | 1159  | 
"(\<exists>x. poly [:c:] x = 0) \<longleftrightarrow> c = 0"  | 
1160  | 
by simp_all  | 
|
| 26123 | 1161  | 
|
| 30488 | 1162  | 
lemma basic_cqe_conv2:  | 
| 56795 | 1163  | 
assumes l: "p \<noteq> 0"  | 
1164  | 
shows "\<exists>x. poly (pCons a (pCons b p)) x = (0::complex)"  | 
|
| 56776 | 1165  | 
proof -  | 
| 60424 | 1166  | 
have False if "h \<noteq> 0" "t = 0" and "pCons a (pCons b p) = pCons h t" for h t  | 
| 60449 | 1167  | 
using l that by simp  | 
| 56776 | 1168  | 
then have th: "\<not> (\<exists> h t. h \<noteq> 0 \<and> t = 0 \<and> pCons a (pCons b p) = pCons h t)"  | 
| 26123 | 1169  | 
by blast  | 
| 56776 | 1170  | 
from fundamental_theorem_of_algebra_alt[OF th] show ?thesis  | 
1171  | 
by auto  | 
|
| 26123 | 1172  | 
qed  | 
1173  | 
||
| 56776 | 1174  | 
lemma basic_cqe_conv_2b: "(\<exists>x. poly p x \<noteq> (0::complex)) \<longleftrightarrow> p \<noteq> 0"  | 
1175  | 
by (metis poly_all_0_iff_0)  | 
|
| 26123 | 1176  | 
|
1177  | 
lemma basic_cqe_conv3:  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1178  | 
fixes p q :: "complex poly"  | 
| 30488 | 1179  | 
assumes l: "p \<noteq> 0"  | 
| 56795 | 1180  | 
shows "(\<exists>x. poly (pCons a p) x = 0 \<and> poly q x \<noteq> 0) \<longleftrightarrow> \<not> (pCons a p) dvd (q ^ psize p)"  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1181  | 
proof -  | 
| 56776 | 1182  | 
from l have dp: "degree (pCons a p) = psize p"  | 
1183  | 
by (simp add: psize_def)  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1184  | 
from nullstellensatz_univariate[of "pCons a p" q] l  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1185  | 
show ?thesis  | 
| 
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1186  | 
by (metis dp pCons_eq_0_iff)  | 
| 26123 | 1187  | 
qed  | 
1188  | 
||
1189  | 
lemma basic_cqe_conv4:  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1190  | 
fixes p q :: "complex poly"  | 
| 
55358
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1191  | 
assumes h: "\<And>x. poly (q ^ n) x = poly r x"  | 
| 
 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 
paulson <lp15@cam.ac.uk> 
parents: 
54489 
diff
changeset
 | 
1192  | 
shows "p dvd (q ^ n) \<longleftrightarrow> p dvd r"  | 
| 56776 | 1193  | 
proof -  | 
1194  | 
from h have "poly (q ^ n) = poly r"  | 
|
1195  | 
by auto  | 
|
1196  | 
then have "(q ^ n) = r"  | 
|
1197  | 
by (simp add: poly_eq_poly_eq_iff)  | 
|
1198  | 
then show "p dvd (q ^ n) \<longleftrightarrow> p dvd r"  | 
|
1199  | 
by simp  | 
|
| 26123 | 1200  | 
qed  | 
1201  | 
||
| 
55735
 
81ba62493610
generalised some results using type classes
 
paulson <lp15@cam.ac.uk> 
parents: 
55734 
diff
changeset
 | 
1202  | 
lemma poly_const_conv:  | 
| 56778 | 1203  | 
fixes x :: "'a::comm_ring_1"  | 
| 56776 | 1204  | 
shows "poly [:c:] x = y \<longleftrightarrow> c = y"  | 
1205  | 
by simp  | 
|
| 26123 | 1206  | 
|
| 
29464
 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 
huffman 
parents: 
29292 
diff
changeset
 | 
1207  | 
end  |