author | nipkow |
Tue, 28 Jul 2015 13:00:54 +0200 | |
changeset 60808 | fd26519b1a6a |
parent 60507 | 16993a3f4967 |
child 61585 | a9599d3d7610 |
permissions | -rw-r--r-- |
57250 | 1 |
(* Author: Tobias Nipkow *) |
2 |
||
60500 | 3 |
section \<open>Binary Tree\<close> |
57250 | 4 |
|
5 |
theory Tree |
|
6 |
imports Main |
|
7 |
begin |
|
8 |
||
58424 | 9 |
datatype 'a tree = |
10 |
Leaf ("\<langle>\<rangle>") | |
|
11 |
Node (left: "'a tree") (val: 'a) (right: "'a tree") ("\<langle>_, _, _\<rangle>") |
|
57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
12 |
where |
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
13 |
"left Leaf = Leaf" |
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
14 |
| "right Leaf = Leaf" |
57569
e20a999f7161
register tree with datatype_compat ot support QuickCheck
hoelzl
parents:
57530
diff
changeset
|
15 |
datatype_compat tree |
57250 | 16 |
|
60500 | 17 |
text\<open>Can be seen as counting the number of leaves rather than nodes:\<close> |
58438 | 18 |
|
19 |
definition size1 :: "'a tree \<Rightarrow> nat" where |
|
20 |
"size1 t = size t + 1" |
|
21 |
||
22 |
lemma size1_simps[simp]: |
|
23 |
"size1 \<langle>\<rangle> = 1" |
|
24 |
"size1 \<langle>l, x, r\<rangle> = size1 l + size1 r" |
|
25 |
by (simp_all add: size1_def) |
|
26 |
||
60507 | 27 |
lemma size_0_iff_Leaf: "size t = 0 \<longleftrightarrow> t = Leaf" |
60505 | 28 |
by(cases t) auto |
29 |
||
58424 | 30 |
lemma neq_Leaf_iff: "(t \<noteq> \<langle>\<rangle>) = (\<exists>l a r. t = \<langle>l, a, r\<rangle>)" |
31 |
by (cases t) auto |
|
57530 | 32 |
|
57687 | 33 |
lemma finite_set_tree[simp]: "finite(set_tree t)" |
34 |
by(induction t) auto |
|
35 |
||
59776 | 36 |
lemma size_map_tree[simp]: "size (map_tree f t) = size t" |
37 |
by (induction t) auto |
|
38 |
||
39 |
lemma size1_map_tree[simp]: "size1 (map_tree f t) = size1 t" |
|
40 |
by (simp add: size1_def) |
|
41 |
||
42 |
||
60808
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
43 |
subsection "The Height" |
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
44 |
|
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
45 |
class height = fixes height :: "'a \<Rightarrow> nat" |
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
46 |
|
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
47 |
instantiation tree :: (type)height |
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
48 |
begin |
59776 | 49 |
|
60808
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
50 |
fun height_tree :: "'a tree => nat" where |
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
51 |
"height Leaf = 0" | |
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
52 |
"height (Node t1 a t2) = max (height t1) (height t2) + 1" |
59776 | 53 |
|
60808
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
54 |
instance .. |
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
55 |
|
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
56 |
end |
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
57 |
|
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
58 |
lemma height_map_tree[simp]: "height (map_tree f t) = height t" |
59776 | 59 |
by (induction t) auto |
60 |
||
57687 | 61 |
|
62 |
subsection "The set of subtrees" |
|
63 |
||
57250 | 64 |
fun subtrees :: "'a tree \<Rightarrow> 'a tree set" where |
60808
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
65 |
"subtrees \<langle>\<rangle> = {\<langle>\<rangle>}" | |
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
66 |
"subtrees (\<langle>l, a, r\<rangle>) = insert \<langle>l, a, r\<rangle> (subtrees l \<union> subtrees r)" |
57250 | 67 |
|
58424 | 68 |
lemma set_treeE: "a \<in> set_tree t \<Longrightarrow> \<exists>l r. \<langle>l, a, r\<rangle> \<in> subtrees t" |
69 |
by (induction t)(auto) |
|
57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
70 |
|
57450 | 71 |
lemma Node_notin_subtrees_if[simp]: "a \<notin> set_tree t \<Longrightarrow> Node l a r \<notin> subtrees t" |
58424 | 72 |
by (induction t) auto |
57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
73 |
|
58424 | 74 |
lemma in_set_tree_if: "\<langle>l, a, r\<rangle> \<in> subtrees t \<Longrightarrow> a \<in> set_tree t" |
75 |
by (metis Node_notin_subtrees_if) |
|
57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
76 |
|
57687 | 77 |
|
59776 | 78 |
subsection "List of entries" |
79 |
||
80 |
fun preorder :: "'a tree \<Rightarrow> 'a list" where |
|
81 |
"preorder \<langle>\<rangle> = []" | |
|
82 |
"preorder \<langle>l, x, r\<rangle> = x # preorder l @ preorder r" |
|
57687 | 83 |
|
57250 | 84 |
fun inorder :: "'a tree \<Rightarrow> 'a list" where |
58424 | 85 |
"inorder \<langle>\<rangle> = []" | |
86 |
"inorder \<langle>l, x, r\<rangle> = inorder l @ [x] @ inorder r" |
|
57250 | 87 |
|
57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
88 |
lemma set_inorder[simp]: "set (inorder t) = set_tree t" |
58424 | 89 |
by (induction t) auto |
57250 | 90 |
|
59776 | 91 |
lemma set_preorder[simp]: "set (preorder t) = set_tree t" |
92 |
by (induction t) auto |
|
93 |
||
94 |
lemma length_preorder[simp]: "length (preorder t) = size t" |
|
95 |
by (induction t) auto |
|
96 |
||
97 |
lemma length_inorder[simp]: "length (inorder t) = size t" |
|
98 |
by (induction t) auto |
|
99 |
||
100 |
lemma preorder_map: "preorder (map_tree f t) = map f (preorder t)" |
|
101 |
by (induction t) auto |
|
102 |
||
103 |
lemma inorder_map: "inorder (map_tree f t) = map f (inorder t)" |
|
104 |
by (induction t) auto |
|
105 |
||
57687 | 106 |
|
60500 | 107 |
subsection \<open>Binary Search Tree predicate\<close> |
57250 | 108 |
|
57450 | 109 |
fun (in linorder) bst :: "'a tree \<Rightarrow> bool" where |
58424 | 110 |
"bst \<langle>\<rangle> \<longleftrightarrow> True" | |
111 |
"bst \<langle>l, a, r\<rangle> \<longleftrightarrow> bst l \<and> bst r \<and> (\<forall>x\<in>set_tree l. x < a) \<and> (\<forall>x\<in>set_tree r. a < x)" |
|
57250 | 112 |
|
60500 | 113 |
text\<open>In case there are duplicates:\<close> |
59561 | 114 |
|
115 |
fun (in linorder) bst_eq :: "'a tree \<Rightarrow> bool" where |
|
116 |
"bst_eq \<langle>\<rangle> \<longleftrightarrow> True" | |
|
117 |
"bst_eq \<langle>l,a,r\<rangle> \<longleftrightarrow> |
|
118 |
bst_eq l \<and> bst_eq r \<and> (\<forall>x\<in>set_tree l. x \<le> a) \<and> (\<forall>x\<in>set_tree r. a \<le> x)" |
|
119 |
||
59928 | 120 |
lemma (in linorder) bst_eq_if_bst: "bst t \<Longrightarrow> bst_eq t" |
121 |
by (induction t) (auto) |
|
122 |
||
59561 | 123 |
lemma (in linorder) bst_eq_imp_sorted: "bst_eq t \<Longrightarrow> sorted (inorder t)" |
124 |
apply (induction t) |
|
125 |
apply(simp) |
|
126 |
by (fastforce simp: sorted_append sorted_Cons intro: less_imp_le less_trans) |
|
127 |
||
59928 | 128 |
lemma (in linorder) distinct_preorder_if_bst: "bst t \<Longrightarrow> distinct (preorder t)" |
129 |
apply (induction t) |
|
130 |
apply simp |
|
131 |
apply(fastforce elim: order.asym) |
|
132 |
done |
|
133 |
||
134 |
lemma (in linorder) distinct_inorder_if_bst: "bst t \<Longrightarrow> distinct (inorder t)" |
|
135 |
apply (induction t) |
|
136 |
apply simp |
|
137 |
apply(fastforce elim: order.asym) |
|
138 |
done |
|
139 |
||
59776 | 140 |
|
60505 | 141 |
subsection "The heap predicate" |
142 |
||
143 |
fun heap :: "'a::linorder tree \<Rightarrow> bool" where |
|
144 |
"heap Leaf = True" | |
|
145 |
"heap (Node l m r) = |
|
146 |
(heap l \<and> heap r \<and> (\<forall>x \<in> set_tree l \<union> set_tree r. m \<le> x))" |
|
147 |
||
148 |
||
59561 | 149 |
subsection "Function @{text mirror}" |
150 |
||
151 |
fun mirror :: "'a tree \<Rightarrow> 'a tree" where |
|
152 |
"mirror \<langle>\<rangle> = Leaf" | |
|
153 |
"mirror \<langle>l,x,r\<rangle> = \<langle>mirror r, x, mirror l\<rangle>" |
|
154 |
||
155 |
lemma mirror_Leaf[simp]: "mirror t = \<langle>\<rangle> \<longleftrightarrow> t = \<langle>\<rangle>" |
|
156 |
by (induction t) simp_all |
|
157 |
||
158 |
lemma size_mirror[simp]: "size(mirror t) = size t" |
|
159 |
by (induction t) simp_all |
|
160 |
||
161 |
lemma size1_mirror[simp]: "size1(mirror t) = size1 t" |
|
162 |
by (simp add: size1_def) |
|
163 |
||
60808
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
164 |
lemma height_mirror[simp]: "height(mirror t) = height t" |
59776 | 165 |
by (induction t) simp_all |
166 |
||
167 |
lemma inorder_mirror: "inorder(mirror t) = rev(inorder t)" |
|
168 |
by (induction t) simp_all |
|
169 |
||
170 |
lemma map_mirror: "map_tree f (mirror t) = mirror (map_tree f t)" |
|
171 |
by (induction t) simp_all |
|
172 |
||
59561 | 173 |
lemma mirror_mirror[simp]: "mirror(mirror t) = t" |
174 |
by (induction t) simp_all |
|
175 |
||
57250 | 176 |
end |