| author | wenzelm | 
| Sun, 03 Jan 2016 21:45:34 +0100 | |
| changeset 62048 | fefd79f6b232 | 
| parent 61824 | dcbe9f756ae0 | 
| child 62343 | 24106dc44def | 
| permissions | -rw-r--r-- | 
| 52265 | 1 | (* Title: HOL/Conditionally_Complete_Lattices.thy | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 2 | Author: Amine Chaieb and L C Paulson, University of Cambridge | 
| 51643 | 3 | Author: Johannes Hölzl, TU München | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 4 | Author: Luke S. Serafin, Carnegie Mellon University | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 5 | *) | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 6 | |
| 60758 | 7 | section \<open>Conditionally-complete Lattices\<close> | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 8 | |
| 51773 | 9 | theory Conditionally_Complete_Lattices | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 10 | imports Main | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 11 | begin | 
| 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 12 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 13 | lemma (in linorder) Sup_fin_eq_Max: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Sup_fin X = Max X"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 14 | by (induct X rule: finite_ne_induct) (simp_all add: sup_max) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 15 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 16 | lemma (in linorder) Inf_fin_eq_Min: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Inf_fin X = Min X"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 17 | by (induct X rule: finite_ne_induct) (simp_all add: inf_min) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 18 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 19 | context preorder | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 20 | begin | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 21 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 22 | definition "bdd_above A \<longleftrightarrow> (\<exists>M. \<forall>x \<in> A. x \<le> M)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 23 | definition "bdd_below A \<longleftrightarrow> (\<exists>m. \<forall>x \<in> A. m \<le> x)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 24 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 25 | lemma bdd_aboveI[intro]: "(\<And>x. x \<in> A \<Longrightarrow> x \<le> M) \<Longrightarrow> bdd_above A" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 26 | by (auto simp: bdd_above_def) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 27 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 28 | lemma bdd_belowI[intro]: "(\<And>x. x \<in> A \<Longrightarrow> m \<le> x) \<Longrightarrow> bdd_below A" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 29 | by (auto simp: bdd_below_def) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 30 | |
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 31 | lemma bdd_aboveI2: "(\<And>x. x \<in> A \<Longrightarrow> f x \<le> M) \<Longrightarrow> bdd_above (f`A)" | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 32 | by force | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 33 | |
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 34 | lemma bdd_belowI2: "(\<And>x. x \<in> A \<Longrightarrow> m \<le> f x) \<Longrightarrow> bdd_below (f`A)" | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 35 | by force | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 36 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 37 | lemma bdd_above_empty [simp, intro]: "bdd_above {}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 38 | unfolding bdd_above_def by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 39 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 40 | lemma bdd_below_empty [simp, intro]: "bdd_below {}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 41 | unfolding bdd_below_def by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 42 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 43 | lemma bdd_above_mono: "bdd_above B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> bdd_above A" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 44 | by (metis (full_types) bdd_above_def order_class.le_neq_trans psubsetD) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 45 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 46 | lemma bdd_below_mono: "bdd_below B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> bdd_below A" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 47 | by (metis bdd_below_def order_class.le_neq_trans psubsetD) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 48 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 49 | lemma bdd_above_Int1 [simp]: "bdd_above A \<Longrightarrow> bdd_above (A \<inter> B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 50 | using bdd_above_mono by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 51 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 52 | lemma bdd_above_Int2 [simp]: "bdd_above B \<Longrightarrow> bdd_above (A \<inter> B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 53 | using bdd_above_mono by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 54 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 55 | lemma bdd_below_Int1 [simp]: "bdd_below A \<Longrightarrow> bdd_below (A \<inter> B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 56 | using bdd_below_mono by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 57 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 58 | lemma bdd_below_Int2 [simp]: "bdd_below B \<Longrightarrow> bdd_below (A \<inter> B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 59 | using bdd_below_mono by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 60 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 61 | lemma bdd_above_Ioo [simp, intro]: "bdd_above {a <..< b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 62 | by (auto simp add: bdd_above_def intro!: exI[of _ b] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 63 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 64 | lemma bdd_above_Ico [simp, intro]: "bdd_above {a ..< b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 65 | by (auto simp add: bdd_above_def intro!: exI[of _ b] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 66 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 67 | lemma bdd_above_Iio [simp, intro]: "bdd_above {..< b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 68 | by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 69 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 70 | lemma bdd_above_Ioc [simp, intro]: "bdd_above {a <.. b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 71 | by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 72 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 73 | lemma bdd_above_Icc [simp, intro]: "bdd_above {a .. b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 74 | by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 75 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 76 | lemma bdd_above_Iic [simp, intro]: "bdd_above {.. b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 77 | by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 78 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 79 | lemma bdd_below_Ioo [simp, intro]: "bdd_below {a <..< b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 80 | by (auto simp add: bdd_below_def intro!: exI[of _ a] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 81 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 82 | lemma bdd_below_Ioc [simp, intro]: "bdd_below {a <.. b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 83 | by (auto simp add: bdd_below_def intro!: exI[of _ a] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 84 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 85 | lemma bdd_below_Ioi [simp, intro]: "bdd_below {a <..}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 86 | by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 87 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 88 | lemma bdd_below_Ico [simp, intro]: "bdd_below {a ..< b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 89 | by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 90 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 91 | lemma bdd_below_Icc [simp, intro]: "bdd_below {a .. b}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 92 | by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 93 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 94 | lemma bdd_below_Ici [simp, intro]: "bdd_below {a ..}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 95 | by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 96 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 97 | end | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 98 | |
| 54261 | 99 | lemma (in order_top) bdd_above_top[simp, intro!]: "bdd_above A" | 
| 100 | by (rule bdd_aboveI[of _ top]) simp | |
| 101 | ||
| 102 | lemma (in order_bot) bdd_above_bot[simp, intro!]: "bdd_below A" | |
| 103 | by (rule bdd_belowI[of _ bot]) simp | |
| 104 | ||
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 105 | lemma bdd_above_image_mono: "mono f \<Longrightarrow> bdd_above A \<Longrightarrow> bdd_above (f`A)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 106 | by (auto simp: bdd_above_def mono_def) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 107 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 108 | lemma bdd_below_image_mono: "mono f \<Longrightarrow> bdd_below A \<Longrightarrow> bdd_below (f`A)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 109 | by (auto simp: bdd_below_def mono_def) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 110 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 111 | lemma bdd_above_image_antimono: "antimono f \<Longrightarrow> bdd_below A \<Longrightarrow> bdd_above (f`A)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 112 | by (auto simp: bdd_above_def bdd_below_def antimono_def) | 
| 54262 
326fd7103cb4
generalize bdd_above/below_uminus to ordered_ab_group_add
 hoelzl parents: 
54261diff
changeset | 113 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 114 | lemma bdd_below_image_antimono: "antimono f \<Longrightarrow> bdd_above A \<Longrightarrow> bdd_below (f`A)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 115 | by (auto simp: bdd_above_def bdd_below_def antimono_def) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 116 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 117 | lemma | 
| 54262 
326fd7103cb4
generalize bdd_above/below_uminus to ordered_ab_group_add
 hoelzl parents: 
54261diff
changeset | 118 | fixes X :: "'a::ordered_ab_group_add set" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 119 | shows bdd_above_uminus[simp]: "bdd_above (uminus ` X) \<longleftrightarrow> bdd_below X" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 120 | and bdd_below_uminus[simp]: "bdd_below (uminus ` X) \<longleftrightarrow> bdd_above X" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 121 | using bdd_above_image_antimono[of uminus X] bdd_below_image_antimono[of uminus "uminus`X"] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 122 | using bdd_below_image_antimono[of uminus X] bdd_above_image_antimono[of uminus "uminus`X"] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
58889diff
changeset | 123 | by (auto simp: antimono_def image_image) | 
| 54262 
326fd7103cb4
generalize bdd_above/below_uminus to ordered_ab_group_add
 hoelzl parents: 
54261diff
changeset | 124 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 125 | context lattice | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 126 | begin | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 127 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 128 | lemma bdd_above_insert [simp]: "bdd_above (insert a A) = bdd_above A" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 129 | by (auto simp: bdd_above_def intro: le_supI2 sup_ge1) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 130 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 131 | lemma bdd_below_insert [simp]: "bdd_below (insert a A) = bdd_below A" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 132 | by (auto simp: bdd_below_def intro: le_infI2 inf_le1) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 133 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 134 | lemma bdd_finite [simp]: | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 135 | assumes "finite A" shows bdd_above_finite: "bdd_above A" and bdd_below_finite: "bdd_below A" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 136 | using assms by (induct rule: finite_induct, auto) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 137 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 138 | lemma bdd_above_Un [simp]: "bdd_above (A \<union> B) = (bdd_above A \<and> bdd_above B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 139 | proof | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 140 | assume "bdd_above (A \<union> B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 141 | thus "bdd_above A \<and> bdd_above B" unfolding bdd_above_def by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 142 | next | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 143 | assume "bdd_above A \<and> bdd_above B" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 144 | then obtain a b where "\<forall>x\<in>A. x \<le> a" "\<forall>x\<in>B. x \<le> b" unfolding bdd_above_def by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 145 | hence "\<forall>x \<in> A \<union> B. x \<le> sup a b" by (auto intro: Un_iff le_supI1 le_supI2) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 146 | thus "bdd_above (A \<union> B)" unfolding bdd_above_def .. | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 147 | qed | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 148 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 149 | lemma bdd_below_Un [simp]: "bdd_below (A \<union> B) = (bdd_below A \<and> bdd_below B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 150 | proof | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 151 | assume "bdd_below (A \<union> B)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 152 | thus "bdd_below A \<and> bdd_below B" unfolding bdd_below_def by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 153 | next | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 154 | assume "bdd_below A \<and> bdd_below B" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 155 | then obtain a b where "\<forall>x\<in>A. a \<le> x" "\<forall>x\<in>B. b \<le> x" unfolding bdd_below_def by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 156 | hence "\<forall>x \<in> A \<union> B. inf a b \<le> x" by (auto intro: Un_iff le_infI1 le_infI2) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 157 | thus "bdd_below (A \<union> B)" unfolding bdd_below_def .. | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 158 | qed | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 159 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 160 | lemma bdd_above_sup[simp]: "bdd_above ((\<lambda>x. sup (f x) (g x)) ` A) \<longleftrightarrow> bdd_above (f`A) \<and> bdd_above (g`A)" | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 161 | by (auto simp: bdd_above_def intro: le_supI1 le_supI2) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 162 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 163 | lemma bdd_below_inf[simp]: "bdd_below ((\<lambda>x. inf (f x) (g x)) ` A) \<longleftrightarrow> bdd_below (f`A) \<and> bdd_below (g`A)" | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 164 | by (auto simp: bdd_below_def intro: le_infI1 le_infI2) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 165 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 166 | end | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 167 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 168 | |
| 60758 | 169 | text \<open> | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 170 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 171 | To avoid name classes with the @{class complete_lattice}-class we prefix @{const Sup} and
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 172 | @{const Inf} in theorem names with c.
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 173 | |
| 60758 | 174 | \<close> | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 175 | |
| 51773 | 176 | class conditionally_complete_lattice = lattice + Sup + Inf + | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 177 | assumes cInf_lower: "x \<in> X \<Longrightarrow> bdd_below X \<Longrightarrow> Inf X \<le> x" | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 178 |     and cInf_greatest: "X \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> z \<le> Inf X"
 | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 179 | assumes cSup_upper: "x \<in> X \<Longrightarrow> bdd_above X \<Longrightarrow> x \<le> Sup X" | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 180 |     and cSup_least: "X \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> Sup X \<le> z"
 | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 181 | begin | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 182 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 183 | lemma cSup_upper2: "x \<in> X \<Longrightarrow> y \<le> x \<Longrightarrow> bdd_above X \<Longrightarrow> y \<le> Sup X" | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 184 | by (metis cSup_upper order_trans) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 185 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 186 | lemma cInf_lower2: "x \<in> X \<Longrightarrow> x \<le> y \<Longrightarrow> bdd_below X \<Longrightarrow> Inf X \<le> y" | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 187 | by (metis cInf_lower order_trans) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 188 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 189 | lemma cSup_mono: "B \<noteq> {} \<Longrightarrow> bdd_above A \<Longrightarrow> (\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. b \<le> a) \<Longrightarrow> Sup B \<le> Sup A"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 190 | by (metis cSup_least cSup_upper2) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 191 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 192 | lemma cInf_mono: "B \<noteq> {} \<Longrightarrow> bdd_below A \<Longrightarrow> (\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<le> b) \<Longrightarrow> Inf A \<le> Inf B"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 193 | by (metis cInf_greatest cInf_lower2) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 194 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 195 | lemma cSup_subset_mono: "A \<noteq> {} \<Longrightarrow> bdd_above B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> Sup A \<le> Sup B"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 196 | by (metis cSup_least cSup_upper subsetD) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 197 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 198 | lemma cInf_superset_mono: "A \<noteq> {} \<Longrightarrow> bdd_below B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> Inf B \<le> Inf A"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 199 | by (metis cInf_greatest cInf_lower subsetD) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 200 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 201 | lemma cSup_eq_maximum: "z \<in> X \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> Sup X = z" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 202 | by (intro antisym cSup_upper[of z X] cSup_least[of X z]) auto | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 203 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 204 | lemma cInf_eq_minimum: "z \<in> X \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> Inf X = z" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 205 | by (intro antisym cInf_lower[of z X] cInf_greatest[of X z]) auto | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 206 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 207 | lemma cSup_le_iff: "S \<noteq> {} \<Longrightarrow> bdd_above S \<Longrightarrow> Sup S \<le> a \<longleftrightarrow> (\<forall>x\<in>S. x \<le> a)"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 208 | by (metis order_trans cSup_upper cSup_least) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 209 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 210 | lemma le_cInf_iff: "S \<noteq> {} \<Longrightarrow> bdd_below S \<Longrightarrow> a \<le> Inf S \<longleftrightarrow> (\<forall>x\<in>S. a \<le> x)"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 211 | by (metis order_trans cInf_lower cInf_greatest) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 212 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 213 | lemma cSup_eq_non_empty: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 214 |   assumes 1: "X \<noteq> {}"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 215 | assumes 2: "\<And>x. x \<in> X \<Longrightarrow> x \<le> a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 216 | assumes 3: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> x \<le> y) \<Longrightarrow> a \<le> y" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 217 | shows "Sup X = a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 218 | by (intro 3 1 antisym cSup_least) (auto intro: 2 1 cSup_upper) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 219 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 220 | lemma cInf_eq_non_empty: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 221 |   assumes 1: "X \<noteq> {}"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 222 | assumes 2: "\<And>x. x \<in> X \<Longrightarrow> a \<le> x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 223 | assumes 3: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> y \<le> x) \<Longrightarrow> y \<le> a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 224 | shows "Inf X = a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 225 | by (intro 3 1 antisym cInf_greatest) (auto intro: 2 1 cInf_lower) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 226 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 227 | lemma cInf_cSup: "S \<noteq> {} \<Longrightarrow> bdd_below S \<Longrightarrow> Inf S = Sup {x. \<forall>s\<in>S. x \<le> s}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 228 | by (rule cInf_eq_non_empty) (auto intro!: cSup_upper cSup_least simp: bdd_below_def) | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 229 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 230 | lemma cSup_cInf: "S \<noteq> {} \<Longrightarrow> bdd_above S \<Longrightarrow> Sup S = Inf {x. \<forall>s\<in>S. s \<le> x}"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 231 | by (rule cSup_eq_non_empty) (auto intro!: cInf_lower cInf_greatest simp: bdd_above_def) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 232 | |
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 233 | lemma cSup_insert: "X \<noteq> {} \<Longrightarrow> bdd_above X \<Longrightarrow> Sup (insert a X) = sup a (Sup X)"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 234 | by (intro cSup_eq_non_empty) (auto intro: le_supI2 cSup_upper cSup_least) | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 235 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 236 | lemma cInf_insert: "X \<noteq> {} \<Longrightarrow> bdd_below X \<Longrightarrow> Inf (insert a X) = inf a (Inf X)"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 237 | by (intro cInf_eq_non_empty) (auto intro: le_infI2 cInf_lower cInf_greatest) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 238 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 239 | lemma cSup_singleton [simp]: "Sup {x} = x"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 240 | by (intro cSup_eq_maximum) auto | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 241 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 242 | lemma cInf_singleton [simp]: "Inf {x} = x"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 243 | by (intro cInf_eq_minimum) auto | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 244 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 245 | lemma cSup_insert_If:  "bdd_above X \<Longrightarrow> Sup (insert a X) = (if X = {} then a else sup a (Sup X))"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 246 | using cSup_insert[of X] by simp | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 247 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 248 | lemma cInf_insert_If: "bdd_below X \<Longrightarrow> Inf (insert a X) = (if X = {} then a else inf a (Inf X))"
 | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 249 | using cInf_insert[of X] by simp | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 250 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 251 | lemma le_cSup_finite: "finite X \<Longrightarrow> x \<in> X \<Longrightarrow> x \<le> Sup X" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 252 | proof (induct X arbitrary: x rule: finite_induct) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 253 | case (insert x X y) then show ?case | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 254 |     by (cases "X = {}") (auto simp: cSup_insert intro: le_supI2)
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 255 | qed simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 256 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 257 | lemma cInf_le_finite: "finite X \<Longrightarrow> x \<in> X \<Longrightarrow> Inf X \<le> x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 258 | proof (induct X arbitrary: x rule: finite_induct) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 259 | case (insert x X y) then show ?case | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 260 |     by (cases "X = {}") (auto simp: cInf_insert intro: le_infI2)
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 261 | qed simp | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 262 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 263 | lemma cSup_eq_Sup_fin: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Sup X = Sup_fin X"
 | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 264 | by (induct X rule: finite_ne_induct) (simp_all add: cSup_insert) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 265 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 266 | lemma cInf_eq_Inf_fin: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Inf X = Inf_fin X"
 | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 267 | by (induct X rule: finite_ne_induct) (simp_all add: cInf_insert) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 268 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 269 | lemma cSup_atMost[simp]: "Sup {..x} = x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 270 | by (auto intro!: cSup_eq_maximum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 271 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 272 | lemma cSup_greaterThanAtMost[simp]: "y < x \<Longrightarrow> Sup {y<..x} = x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 273 | by (auto intro!: cSup_eq_maximum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 274 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 275 | lemma cSup_atLeastAtMost[simp]: "y \<le> x \<Longrightarrow> Sup {y..x} = x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 276 | by (auto intro!: cSup_eq_maximum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 277 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 278 | lemma cInf_atLeast[simp]: "Inf {x..} = x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 279 | by (auto intro!: cInf_eq_minimum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 280 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 281 | lemma cInf_atLeastLessThan[simp]: "y < x \<Longrightarrow> Inf {y..<x} = y"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 282 | by (auto intro!: cInf_eq_minimum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 283 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 284 | lemma cInf_atLeastAtMost[simp]: "y \<le> x \<Longrightarrow> Inf {y..x} = y"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 285 | by (auto intro!: cInf_eq_minimum) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 286 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 287 | lemma cINF_lower: "bdd_below (f ` A) \<Longrightarrow> x \<in> A \<Longrightarrow> INFIMUM A f \<le> f x" | 
| 56166 | 288 | using cInf_lower [of _ "f ` A"] by simp | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 289 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 290 | lemma cINF_greatest: "A \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> m \<le> f x) \<Longrightarrow> m \<le> INFIMUM A f"
 | 
| 56166 | 291 | using cInf_greatest [of "f ` A"] by auto | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 292 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 293 | lemma cSUP_upper: "x \<in> A \<Longrightarrow> bdd_above (f ` A) \<Longrightarrow> f x \<le> SUPREMUM A f" | 
| 56166 | 294 | using cSup_upper [of _ "f ` A"] by simp | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 295 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 296 | lemma cSUP_least: "A \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<le> M) \<Longrightarrow> SUPREMUM A f \<le> M"
 | 
| 56166 | 297 | using cSup_least [of "f ` A"] by auto | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 298 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 299 | lemma cINF_lower2: "bdd_below (f ` A) \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<le> u \<Longrightarrow> INFIMUM A f \<le> u" | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 300 | by (auto intro: cINF_lower assms order_trans) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 301 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 302 | lemma cSUP_upper2: "bdd_above (f ` A) \<Longrightarrow> x \<in> A \<Longrightarrow> u \<le> f x \<Longrightarrow> u \<le> SUPREMUM A f" | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 303 | by (auto intro: cSUP_upper assms order_trans) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 304 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 305 | lemma cSUP_const [simp]: "A \<noteq> {} \<Longrightarrow> (SUP x:A. c) = c"
 | 
| 54261 | 306 | by (intro antisym cSUP_least) (auto intro: cSUP_upper) | 
| 307 | ||
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 308 | lemma cINF_const [simp]: "A \<noteq> {} \<Longrightarrow> (INF x:A. c) = c"
 | 
| 54261 | 309 | by (intro antisym cINF_greatest) (auto intro: cINF_lower) | 
| 310 | ||
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 311 | lemma le_cINF_iff: "A \<noteq> {} \<Longrightarrow> bdd_below (f ` A) \<Longrightarrow> u \<le> INFIMUM A f \<longleftrightarrow> (\<forall>x\<in>A. u \<le> f x)"
 | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 312 | by (metis cINF_greatest cINF_lower assms order_trans) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 313 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 314 | lemma cSUP_le_iff: "A \<noteq> {} \<Longrightarrow> bdd_above (f ` A) \<Longrightarrow> SUPREMUM A f \<le> u \<longleftrightarrow> (\<forall>x\<in>A. f x \<le> u)"
 | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 315 | by (metis cSUP_least cSUP_upper assms order_trans) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 316 | |
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 317 | lemma less_cINF_D: "bdd_below (f`A) \<Longrightarrow> y < (INF i:A. f i) \<Longrightarrow> i \<in> A \<Longrightarrow> y < f i" | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 318 | by (metis cINF_lower less_le_trans) | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 319 | |
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 320 | lemma cSUP_lessD: "bdd_above (f`A) \<Longrightarrow> (SUP i:A. f i) < y \<Longrightarrow> i \<in> A \<Longrightarrow> f i < y" | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 321 | by (metis cSUP_upper le_less_trans) | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 322 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 323 | lemma cINF_insert: "A \<noteq> {} \<Longrightarrow> bdd_below (f ` A) \<Longrightarrow> INFIMUM (insert a A) f = inf (f a) (INFIMUM A f)"
 | 
| 56166 | 324 | by (metis cInf_insert Inf_image_eq image_insert image_is_empty) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 325 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 326 | lemma cSUP_insert: "A \<noteq> {} \<Longrightarrow> bdd_above (f ` A) \<Longrightarrow> SUPREMUM (insert a A) f = sup (f a) (SUPREMUM A f)"
 | 
| 56166 | 327 | by (metis cSup_insert Sup_image_eq image_insert image_is_empty) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 328 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 329 | lemma cINF_mono: "B \<noteq> {} \<Longrightarrow> bdd_below (f ` A) \<Longrightarrow> (\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<le> g m) \<Longrightarrow> INFIMUM A f \<le> INFIMUM B g"
 | 
| 56166 | 330 | using cInf_mono [of "g ` B" "f ` A"] by auto | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 331 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 332 | lemma cSUP_mono: "A \<noteq> {} \<Longrightarrow> bdd_above (g ` B) \<Longrightarrow> (\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<le> g m) \<Longrightarrow> SUPREMUM A f \<le> SUPREMUM B g"
 | 
| 56166 | 333 | using cSup_mono [of "f ` A" "g ` B"] by auto | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 334 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 335 | lemma cINF_superset_mono: "A \<noteq> {} \<Longrightarrow> bdd_below (g ` B) \<Longrightarrow> A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> g x \<le> f x) \<Longrightarrow> INFIMUM B g \<le> INFIMUM A f"
 | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 336 | by (rule cINF_mono) auto | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 337 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 338 | lemma cSUP_subset_mono: "A \<noteq> {} \<Longrightarrow> bdd_above (g ` B) \<Longrightarrow> A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<le> g x) \<Longrightarrow> SUPREMUM A f \<le> SUPREMUM B g"
 | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 339 | by (rule cSUP_mono) auto | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 340 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 341 | lemma less_eq_cInf_inter: "bdd_below A \<Longrightarrow> bdd_below B \<Longrightarrow> A \<inter> B \<noteq> {} \<Longrightarrow> inf (Inf A) (Inf B) \<le> Inf (A \<inter> B)"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 342 | by (metis cInf_superset_mono lattice_class.inf_sup_ord(1) le_infI1) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 343 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 344 | lemma cSup_inter_less_eq: "bdd_above A \<Longrightarrow> bdd_above B \<Longrightarrow> A \<inter> B \<noteq> {} \<Longrightarrow> Sup (A \<inter> B) \<le> sup (Sup A) (Sup B) "
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 345 | by (metis cSup_subset_mono lattice_class.inf_sup_ord(1) le_supI1) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 346 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 347 | lemma cInf_union_distrib: "A \<noteq> {} \<Longrightarrow> bdd_below A \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_below B \<Longrightarrow> Inf (A \<union> B) = inf (Inf A) (Inf B)"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 348 | by (intro antisym le_infI cInf_greatest cInf_lower) (auto intro: le_infI1 le_infI2 cInf_lower) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 349 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 350 | lemma cINF_union: "A \<noteq> {} \<Longrightarrow> bdd_below (f`A) \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_below (f`B) \<Longrightarrow> INFIMUM (A \<union> B) f = inf (INFIMUM A f) (INFIMUM B f)"
 | 
| 56166 | 351 | using cInf_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un [symmetric]) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 352 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 353 | lemma cSup_union_distrib: "A \<noteq> {} \<Longrightarrow> bdd_above A \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_above B \<Longrightarrow> Sup (A \<union> B) = sup (Sup A) (Sup B)"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 354 | by (intro antisym le_supI cSup_least cSup_upper) (auto intro: le_supI1 le_supI2 cSup_upper) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 355 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 356 | lemma cSUP_union: "A \<noteq> {} \<Longrightarrow> bdd_above (f`A) \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_above (f`B) \<Longrightarrow> SUPREMUM (A \<union> B) f = sup (SUPREMUM A f) (SUPREMUM B f)"
 | 
| 56166 | 357 | using cSup_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un [symmetric]) | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 358 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 359 | lemma cINF_inf_distrib: "A \<noteq> {} \<Longrightarrow> bdd_below (f`A) \<Longrightarrow> bdd_below (g`A) \<Longrightarrow> inf (INFIMUM A f) (INFIMUM A g) = (INF a:A. inf (f a) (g a))"
 | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 360 | by (intro antisym le_infI cINF_greatest cINF_lower2) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 361 | (auto intro: le_infI1 le_infI2 cINF_greatest cINF_lower le_infI) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 362 | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56166diff
changeset | 363 | lemma SUP_sup_distrib: "A \<noteq> {} \<Longrightarrow> bdd_above (f`A) \<Longrightarrow> bdd_above (g`A) \<Longrightarrow> sup (SUPREMUM A f) (SUPREMUM A g) = (SUP a:A. sup (f a) (g a))"
 | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 364 | by (intro antisym le_supI cSUP_least cSUP_upper2) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 365 | (auto intro: le_supI1 le_supI2 cSUP_least cSUP_upper le_supI) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 366 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 367 | lemma cInf_le_cSup: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 368 |   "A \<noteq> {} \<Longrightarrow> bdd_above A \<Longrightarrow> bdd_below A \<Longrightarrow> Inf A \<le> Sup A"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 369 | by (auto intro!: cSup_upper2[of "SOME a. a \<in> A"] intro: someI cInf_lower) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 370 | |
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 371 | end | 
| 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 372 | |
| 51773 | 373 | instance complete_lattice \<subseteq> conditionally_complete_lattice | 
| 61169 | 374 | by standard (auto intro: Sup_upper Sup_least Inf_lower Inf_greatest) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 375 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 376 | lemma cSup_eq: | 
| 51773 | 377 |   fixes a :: "'a :: {conditionally_complete_lattice, no_bot}"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 378 | assumes upper: "\<And>x. x \<in> X \<Longrightarrow> x \<le> a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 379 | assumes least: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> x \<le> y) \<Longrightarrow> a \<le> y" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 380 | shows "Sup X = a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 381 | proof cases | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 382 |   assume "X = {}" with lt_ex[of a] least show ?thesis by (auto simp: less_le_not_le)
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 383 | qed (intro cSup_eq_non_empty assms) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 384 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 385 | lemma cInf_eq: | 
| 51773 | 386 |   fixes a :: "'a :: {conditionally_complete_lattice, no_top}"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 387 | assumes upper: "\<And>x. x \<in> X \<Longrightarrow> a \<le> x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 388 | assumes least: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> y \<le> x) \<Longrightarrow> y \<le> a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 389 | shows "Inf X = a" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 390 | proof cases | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 391 |   assume "X = {}" with gt_ex[of a] least show ?thesis by (auto simp: less_le_not_le)
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 392 | qed (intro cInf_eq_non_empty assms) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 393 | |
| 51773 | 394 | class conditionally_complete_linorder = conditionally_complete_lattice + linorder | 
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 395 | begin | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 396 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 397 | lemma less_cSup_iff : (*REAL_SUP_LE in HOL4*) | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 398 |   "X \<noteq> {} \<Longrightarrow> bdd_above X \<Longrightarrow> y < Sup X \<longleftrightarrow> (\<exists>x\<in>X. y < x)"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 399 | by (rule iffI) (metis cSup_least not_less, metis cSup_upper less_le_trans) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 400 | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 401 | lemma cInf_less_iff: "X \<noteq> {} \<Longrightarrow> bdd_below X \<Longrightarrow> Inf X < y \<longleftrightarrow> (\<exists>x\<in>X. x < y)"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 402 | by (rule iffI) (metis cInf_greatest not_less, metis cInf_lower le_less_trans) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 403 | |
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 404 | lemma cINF_less_iff: "A \<noteq> {} \<Longrightarrow> bdd_below (f`A) \<Longrightarrow> (INF i:A. f i) < a \<longleftrightarrow> (\<exists>x\<in>A. f x < a)"
 | 
| 56166 | 405 | using cInf_less_iff[of "f`A"] by auto | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 406 | |
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 407 | lemma less_cSUP_iff: "A \<noteq> {} \<Longrightarrow> bdd_above (f`A) \<Longrightarrow> a < (SUP i:A. f i) \<longleftrightarrow> (\<exists>x\<in>A. a < f x)"
 | 
| 56166 | 408 | using less_cSup_iff[of "f`A"] by auto | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54262diff
changeset | 409 | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 410 | lemma less_cSupE: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 411 |   assumes "y < Sup X" "X \<noteq> {}" obtains x where "x \<in> X" "y < x"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 412 | by (metis cSup_least assms not_le that) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 413 | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 414 | lemma less_cSupD: | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 415 |   "X \<noteq> {} \<Longrightarrow> z < Sup X \<Longrightarrow> \<exists>x\<in>X. z < x"
 | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61169diff
changeset | 416 | by (metis less_cSup_iff not_le_imp_less bdd_above_def) | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 417 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 418 | lemma cInf_lessD: | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 419 |   "X \<noteq> {} \<Longrightarrow> Inf X < z \<Longrightarrow> \<exists>x\<in>X. x < z"
 | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61169diff
changeset | 420 | by (metis cInf_less_iff not_le_imp_less bdd_below_def) | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51475diff
changeset | 421 | |
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 422 | lemma complete_interval: | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 423 | assumes "a < b" and "P a" and "\<not> P b" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 424 | shows "\<exists>c. a \<le> c \<and> c \<le> b \<and> (\<forall>x. a \<le> x \<and> x < c \<longrightarrow> P x) \<and> | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 425 | (\<forall>d. (\<forall>x. a \<le> x \<and> x < d \<longrightarrow> P x) \<longrightarrow> d \<le> c)" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 426 | proof (rule exI [where x = "Sup {d. \<forall>x. a \<le> x & x < d --> P x}"], auto)
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 427 |   show "a \<le> Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c}"
 | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 428 | by (rule cSup_upper, auto simp: bdd_above_def) | 
| 60758 | 429 | (metis \<open>a < b\<close> \<open>\<not> P b\<close> linear less_le) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 430 | next | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 431 |   show "Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c} \<le> b"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 432 | apply (rule cSup_least) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 433 | apply auto | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 434 | apply (metis less_le_not_le) | 
| 60758 | 435 | apply (metis \<open>a<b\<close> \<open>~ P b\<close> linear less_le) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 436 | done | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 437 | next | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 438 | fix x | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 439 |   assume x: "a \<le> x" and lt: "x < Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c}"
 | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 440 | show "P x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 441 | apply (rule less_cSupE [OF lt], auto) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 442 | apply (metis less_le_not_le) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 443 | apply (metis x) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 444 | done | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 445 | next | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 446 | fix d | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 447 | assume 0: "\<forall>x. a \<le> x \<and> x < d \<longrightarrow> P x" | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 448 |     thus "d \<le> Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c}"
 | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54257diff
changeset | 449 | by (rule_tac cSup_upper, auto simp: bdd_above_def) | 
| 60758 | 450 | (metis \<open>a<b\<close> \<open>~ P b\<close> linear less_le) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 451 | qed | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 452 | |
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 453 | end | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 454 | |
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
59452diff
changeset | 455 | instance complete_linorder < conditionally_complete_linorder | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
59452diff
changeset | 456 | .. | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
59452diff
changeset | 457 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 458 | lemma cSup_eq_Max: "finite (X::'a::conditionally_complete_linorder set) \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Sup X = Max X"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 459 | using cSup_eq_Sup_fin[of X] Sup_fin_eq_Max[of X] by simp | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 460 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 461 | lemma cInf_eq_Min: "finite (X::'a::conditionally_complete_linorder set) \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Inf X = Min X"
 | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 462 | using cInf_eq_Inf_fin[of X] Inf_fin_eq_Min[of X] by simp | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 463 | |
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
53216diff
changeset | 464 | lemma cSup_lessThan[simp]: "Sup {..<x::'a::{conditionally_complete_linorder, no_bot, dense_linorder}} = x"
 | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 465 | by (auto intro!: cSup_eq_non_empty intro: dense_le) | 
| 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 466 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 467 | lemma cSup_greaterThanLessThan[simp]: "y < x \<Longrightarrow> Sup {y<..<x::'a::{conditionally_complete_linorder, dense_linorder}} = x"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 468 | by (auto intro!: cSup_eq_non_empty intro: dense_le_bounded) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 469 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 470 | lemma cSup_atLeastLessThan[simp]: "y < x \<Longrightarrow> Sup {y..<x::'a::{conditionally_complete_linorder, dense_linorder}} = x"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 471 | by (auto intro!: cSup_eq_non_empty intro: dense_le_bounded) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 472 | |
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
53216diff
changeset | 473 | lemma cInf_greaterThan[simp]: "Inf {x::'a::{conditionally_complete_linorder, no_top, dense_linorder} <..} = x"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 474 | by (auto intro!: cInf_eq_non_empty intro: dense_ge) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 475 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 476 | lemma cInf_greaterThanAtMost[simp]: "y < x \<Longrightarrow> Inf {y<..x::'a::{conditionally_complete_linorder, dense_linorder}} = y"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 477 | by (auto intro!: cInf_eq_non_empty intro: dense_ge_bounded) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 478 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 479 | lemma cInf_greaterThanLessThan[simp]: "y < x \<Longrightarrow> Inf {y<..<x::'a::{conditionally_complete_linorder, dense_linorder}} = y"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 480 | by (auto intro!: cInf_eq_non_empty intro: dense_ge_bounded) | 
| 51475 
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
 hoelzl parents: 
46757diff
changeset | 481 | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 482 | class linear_continuum = conditionally_complete_linorder + dense_linorder + | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 483 | assumes UNIV_not_singleton: "\<exists>a b::'a. a \<noteq> b" | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 484 | begin | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 485 | |
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 486 | lemma ex_gt_or_lt: "\<exists>b. a < b \<or> b < a" | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 487 | by (metis UNIV_not_singleton neq_iff) | 
| 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 488 | |
| 33269 
3b7e2dbbd684
New theory SupInf of the supremum and infimum operators for sets of reals.
 paulson parents: diff
changeset | 489 | end | 
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 490 | |
| 54281 | 491 | instantiation nat :: conditionally_complete_linorder | 
| 492 | begin | |
| 493 | ||
| 494 | definition "Sup (X::nat set) = Max X" | |
| 495 | definition "Inf (X::nat set) = (LEAST n. n \<in> X)" | |
| 496 | ||
| 497 | lemma bdd_above_nat: "bdd_above X \<longleftrightarrow> finite (X::nat set)" | |
| 498 | proof | |
| 499 | assume "bdd_above X" | |
| 500 |   then obtain z where "X \<subseteq> {.. z}"
 | |
| 501 | by (auto simp: bdd_above_def) | |
| 502 | then show "finite X" | |
| 503 | by (rule finite_subset) simp | |
| 504 | qed simp | |
| 505 | ||
| 506 | instance | |
| 507 | proof | |
| 508 | fix x :: nat and X :: "nat set" | |
| 509 |   { assume "x \<in> X" "bdd_below X" then show "Inf X \<le> x"
 | |
| 510 | by (simp add: Inf_nat_def Least_le) } | |
| 511 |   { assume "X \<noteq> {}" "\<And>y. y \<in> X \<Longrightarrow> x \<le> y" then show "x \<le> Inf X"
 | |
| 512 | unfolding Inf_nat_def ex_in_conv[symmetric] by (rule LeastI2_ex) } | |
| 513 |   { assume "x \<in> X" "bdd_above X" then show "x \<le> Sup X"
 | |
| 514 | by (simp add: Sup_nat_def bdd_above_nat) } | |
| 515 |   { assume "X \<noteq> {}" "\<And>y. y \<in> X \<Longrightarrow> y \<le> x" 
 | |
| 516 | moreover then have "bdd_above X" | |
| 517 | by (auto simp: bdd_above_def) | |
| 518 | ultimately show "Sup X \<le> x" | |
| 519 | by (simp add: Sup_nat_def bdd_above_nat) } | |
| 520 | qed | |
| 54259 
71c701dc5bf9
add SUP and INF for conditionally complete lattices
 hoelzl parents: 
54258diff
changeset | 521 | end | 
| 54281 | 522 | |
| 523 | instantiation int :: conditionally_complete_linorder | |
| 524 | begin | |
| 525 | ||
| 526 | definition "Sup (X::int set) = (THE x. x \<in> X \<and> (\<forall>y\<in>X. y \<le> x))" | |
| 527 | definition "Inf (X::int set) = - (Sup (uminus ` X))" | |
| 528 | ||
| 529 | instance | |
| 530 | proof | |
| 531 |   { fix x :: int and X :: "int set" assume "X \<noteq> {}" "bdd_above X"
 | |
| 532 |     then obtain x y where "X \<subseteq> {..y}" "x \<in> X"
 | |
| 533 | by (auto simp: bdd_above_def) | |
| 534 |     then have *: "finite (X \<inter> {x..y})" "X \<inter> {x..y} \<noteq> {}" and "x \<le> y"
 | |
| 535 | by (auto simp: subset_eq) | |
| 536 | have "\<exists>!x\<in>X. (\<forall>y\<in>X. y \<le> x)" | |
| 537 | proof | |
| 538 |       { fix z assume "z \<in> X"
 | |
| 539 |         have "z \<le> Max (X \<inter> {x..y})"
 | |
| 540 | proof cases | |
| 60758 | 541 |           assume "x \<le> z" with \<open>z \<in> X\<close> \<open>X \<subseteq> {..y}\<close> *(1) show ?thesis
 | 
| 54281 | 542 | by (auto intro!: Max_ge) | 
| 543 | next | |
| 544 | assume "\<not> x \<le> z" | |
| 545 | then have "z < x" by simp | |
| 546 |           also have "x \<le> Max (X \<inter> {x..y})"
 | |
| 60758 | 547 | using \<open>x \<in> X\<close> *(1) \<open>x \<le> y\<close> by (intro Max_ge) auto | 
| 54281 | 548 | finally show ?thesis by simp | 
| 549 | qed } | |
| 550 | note le = this | |
| 551 |       with Max_in[OF *] show ex: "Max (X \<inter> {x..y}) \<in> X \<and> (\<forall>z\<in>X. z \<le> Max (X \<inter> {x..y}))" by auto
 | |
| 552 | ||
| 553 | fix z assume *: "z \<in> X \<and> (\<forall>y\<in>X. y \<le> z)" | |
| 554 |       with le have "z \<le> Max (X \<inter> {x..y})"
 | |
| 555 | by auto | |
| 556 |       moreover have "Max (X \<inter> {x..y}) \<le> z"
 | |
| 557 | using * ex by auto | |
| 558 |       ultimately show "z = Max (X \<inter> {x..y})"
 | |
| 559 | by auto | |
| 560 | qed | |
| 561 | then have "Sup X \<in> X \<and> (\<forall>y\<in>X. y \<le> Sup X)" | |
| 562 | unfolding Sup_int_def by (rule theI') } | |
| 563 | note Sup_int = this | |
| 564 | ||
| 565 |   { fix x :: int and X :: "int set" assume "x \<in> X" "bdd_above X" then show "x \<le> Sup X"
 | |
| 566 | using Sup_int[of X] by auto } | |
| 567 | note le_Sup = this | |
| 568 |   { fix x :: int and X :: "int set" assume "X \<noteq> {}" "\<And>y. y \<in> X \<Longrightarrow> y \<le> x" then show "Sup X \<le> x"
 | |
| 569 | using Sup_int[of X] by (auto simp: bdd_above_def) } | |
| 570 | note Sup_le = this | |
| 571 | ||
| 572 |   { fix x :: int and X :: "int set" assume "x \<in> X" "bdd_below X" then show "Inf X \<le> x"
 | |
| 573 | using le_Sup[of "-x" "uminus ` X"] by (auto simp: Inf_int_def) } | |
| 574 |   { fix x :: int and X :: "int set" assume "X \<noteq> {}" "\<And>y. y \<in> X \<Longrightarrow> x \<le> y" then show "x \<le> Inf X"
 | |
| 575 | using Sup_le[of "uminus ` X" "-x"] by (force simp: Inf_int_def) } | |
| 576 | qed | |
| 577 | end | |
| 578 | ||
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 579 | lemma interval_cases: | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 580 | fixes S :: "'a :: conditionally_complete_linorder set" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 581 | assumes ivl: "\<And>a b x. a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> x \<in> S" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 582 |   shows "\<exists>a b. S = {} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 583 | S = UNIV \<or> | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 584 |     S = {..<b} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 585 |     S = {..b} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 586 |     S = {a<..} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 587 |     S = {a..} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 588 |     S = {a<..<b} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 589 |     S = {a<..b} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 590 |     S = {a..<b} \<or>
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 591 |     S = {a..b}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 592 | proof - | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 593 |   def lower \<equiv> "{x. \<exists>s\<in>S. s \<le> x}" and upper \<equiv> "{x. \<exists>s\<in>S. x \<le> s}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 594 | with ivl have "S = lower \<inter> upper" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 595 | by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 596 | moreover | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 597 |   have "\<exists>a. upper = UNIV \<or> upper = {} \<or> upper = {.. a} \<or> upper = {..< a}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 598 | proof cases | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 599 |     assume *: "bdd_above S \<and> S \<noteq> {}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 600 |     from * have "upper \<subseteq> {.. Sup S}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 601 | by (auto simp: upper_def intro: cSup_upper2) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 602 |     moreover from * have "{..< Sup S} \<subseteq> upper"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 603 | by (force simp add: less_cSup_iff upper_def subset_eq Ball_def) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 604 |     ultimately have "upper = {.. Sup S} \<or> upper = {..< Sup S}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 605 | unfolding ivl_disj_un(2)[symmetric] by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 606 | then show ?thesis by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 607 | next | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 608 |     assume "\<not> (bdd_above S \<and> S \<noteq> {})"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 609 |     then have "upper = UNIV \<or> upper = {}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 610 | by (auto simp: upper_def bdd_above_def not_le dest: less_imp_le) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 611 | then show ?thesis | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 612 | by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 613 | qed | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 614 | moreover | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 615 |   have "\<exists>b. lower = UNIV \<or> lower = {} \<or> lower = {b ..} \<or> lower = {b <..}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 616 | proof cases | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 617 |     assume *: "bdd_below S \<and> S \<noteq> {}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 618 |     from * have "lower \<subseteq> {Inf S ..}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 619 | by (auto simp: lower_def intro: cInf_lower2) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 620 |     moreover from * have "{Inf S <..} \<subseteq> lower"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 621 | by (force simp add: cInf_less_iff lower_def subset_eq Ball_def) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 622 |     ultimately have "lower = {Inf S ..} \<or> lower = {Inf S <..}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 623 | unfolding ivl_disj_un(1)[symmetric] by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 624 | then show ?thesis by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 625 | next | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 626 |     assume "\<not> (bdd_below S \<and> S \<noteq> {})"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 627 |     then have "lower = UNIV \<or> lower = {}"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 628 | by (auto simp: lower_def bdd_below_def not_le dest: less_imp_le) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 629 | then show ?thesis | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 630 | by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 631 | qed | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 632 | ultimately show ?thesis | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 633 | unfolding greaterThanAtMost_def greaterThanLessThan_def atLeastAtMost_def atLeastLessThan_def | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 634 | by (elim exE disjE) auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 635 | qed | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56218diff
changeset | 636 | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 637 | lemma cSUP_eq_cINF_D: | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 638 | fixes f :: "_ \<Rightarrow> 'b::conditionally_complete_lattice" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 639 | assumes eq: "(SUP x:A. f x) = (INF x:A. f x)" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 640 | and bdd: "bdd_above (f ` A)" "bdd_below (f ` A)" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 641 | and a: "a \<in> A" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 642 | shows "f a = (INF x:A. f x)" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 643 | apply (rule antisym) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 644 | using a bdd | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 645 | apply (auto simp: cINF_lower) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 646 | apply (metis eq cSUP_upper) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 647 | done | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60172diff
changeset | 648 | |
| 54281 | 649 | end |