moved theories Parity, GCD, Binomial to Library;
authorwenzelm
Wed, 08 Nov 2006 23:11:13 +0100
changeset 21256 47195501ecf7
parent 21255 617fdb08abe9
child 21257 b7f090c5057d
moved theories Parity, GCD, Binomial to Library;
NEWS
src/HOL/Algebra/Exponent.thy
src/HOL/Algebra/ROOT.ML
src/HOL/Binomial.thy
src/HOL/Complex/ROOT.ML
src/HOL/GCD.thy
src/HOL/Hyperreal/HyperPow.thy
src/HOL/Import/HOL/ROOT.ML
src/HOL/Integ/Parity.thy
src/HOL/IsaMakefile
src/HOL/Library/Binomial.thy
src/HOL/Library/Commutative_Ring.thy
src/HOL/Library/GCD.thy
src/HOL/Library/Infinite_Set.thy
src/HOL/Library/Library.thy
src/HOL/Library/Parity.thy
src/HOL/Library/Primes.thy
src/HOL/PreList.thy
src/HOL/Real/Float.thy
src/HOL/ex/NatSum.thy
src/HOL/ex/ROOT.ML
src/HOL/ex/Reflected_Presburger.thy
--- a/NEWS	Wed Nov 08 22:24:54 2006 +0100
+++ b/NEWS	Wed Nov 08 23:11:13 2006 +0100
@@ -615,9 +615,9 @@
 * inductive and datatype: provide projections of mutual rules, bundled
 as foo_bar.inducts;
 
-* Library: theory Infinite_Set has been moved to the library.
-
-* Library: theory Accessible_Part has been move to main HOL.
+* Library: moved theories Parity, GCD, Binomial, Infinite_Set to Library.
+
+* Library: moved theory Accessible_Part to main HOL.
 
 * Library: added theory Coinductive_List of potentially infinite lists
 as greatest fixed-point.
--- a/src/HOL/Algebra/Exponent.thy	Wed Nov 08 22:24:54 2006 +0100
+++ b/src/HOL/Algebra/Exponent.thy	Wed Nov 08 23:11:13 2006 +0100
@@ -5,7 +5,7 @@
     exponent p s   yields the greatest power of p that divides s.
 *)
 
-theory Exponent imports Main Primes begin
+theory Exponent imports Main Primes Binomial begin
 
 
 section {*The Combinatorial Argument Underlying the First Sylow Theorem*}
--- a/src/HOL/Algebra/ROOT.ML	Wed Nov 08 22:24:54 2006 +0100
+++ b/src/HOL/Algebra/ROOT.ML	Wed Nov 08 23:11:13 2006 +0100
@@ -10,6 +10,8 @@
 
 no_document use_thy "FuncSet";
 no_document use_thy "Primes";
+no_document use_thy "Binomial";
+
 
 (* Groups *)
 
--- a/src/HOL/Binomial.thy	Wed Nov 08 22:24:54 2006 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,189 +0,0 @@
-(*  Title:      HOL/Binomial.thy
-    ID:         $Id$
-    Author:     Lawrence C Paulson
-    Copyright   1997  University of Cambridge
-*)
-
-header{*Binomial Coefficients*}
-
-theory Binomial
-imports GCD
-begin
-
-text{*This development is based on the work of Andy Gordon and
-Florian Kammueller*}
-
-consts
-  binomial :: "nat \<Rightarrow> nat \<Rightarrow> nat"      (infixl "choose" 65)
-
-primrec
-  binomial_0:   "(0     choose k) = (if k = 0 then 1 else 0)"
-
-  binomial_Suc: "(Suc n choose k) =
-                 (if k = 0 then 1 else (n choose (k - 1)) + (n choose k))"
-
-lemma binomial_n_0 [simp]: "(n choose 0) = 1"
-by (cases n) simp_all
-
-lemma binomial_0_Suc [simp]: "(0 choose Suc k) = 0"
-by simp
-
-lemma binomial_Suc_Suc [simp]:
-     "(Suc n choose Suc k) = (n choose k) + (n choose Suc k)"
-by simp
-
-lemma binomial_eq_0 [rule_format]: "\<forall>k. n < k --> (n choose k) = 0"
-apply (induct "n")
-apply auto
-done
-
-declare binomial_0 [simp del] binomial_Suc [simp del]
-
-lemma binomial_n_n [simp]: "(n choose n) = 1"
-apply (induct "n")
-apply (simp_all add: binomial_eq_0)
-done
-
-lemma binomial_Suc_n [simp]: "(Suc n choose n) = Suc n"
-by (induct "n", simp_all)
-
-lemma binomial_1 [simp]: "(n choose Suc 0) = n"
-by (induct "n", simp_all)
-
-lemma zero_less_binomial [rule_format]: "k \<le> n --> 0 < (n choose k)"
-by (rule_tac m = n and n = k in diff_induct, simp_all)
-
-lemma binomial_eq_0_iff: "(n choose k = 0) = (n<k)"
-apply (safe intro!: binomial_eq_0)
-apply (erule contrapos_pp)
-apply (simp add: zero_less_binomial)
-done
-
-lemma zero_less_binomial_iff: "(0 < n choose k) = (k\<le>n)"
-by (simp add: linorder_not_less [symmetric] binomial_eq_0_iff [symmetric])
-
-(*Might be more useful if re-oriented*)
-lemma Suc_times_binomial_eq [rule_format]:
-     "\<forall>k. k \<le> n --> Suc n * (n choose k) = (Suc n choose Suc k) * Suc k"
-apply (induct "n")
-apply (simp add: binomial_0, clarify)
-apply (case_tac "k")
-apply (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq
-                      binomial_eq_0)
-done
-
-text{*This is the well-known version, but it's harder to use because of the
-  need to reason about division.*}
-lemma binomial_Suc_Suc_eq_times:
-     "k \<le> n ==> (Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k"
-by (simp add: Suc_times_binomial_eq div_mult_self_is_m zero_less_Suc
-        del: mult_Suc mult_Suc_right)
-
-text{*Another version, with -1 instead of Suc.*}
-lemma times_binomial_minus1_eq:
-     "[|k \<le> n;  0<k|] ==> (n choose k) * k = n * ((n - 1) choose (k - 1))"
-apply (cut_tac n = "n - 1" and k = "k - 1" in Suc_times_binomial_eq)
-apply (simp split add: nat_diff_split, auto)
-done
-
-subsubsection {* Theorems about @{text "choose"} *}
-
-text {*
-  \medskip Basic theorem about @{text "choose"}.  By Florian
-  Kamm\"uller, tidied by LCP.
-*}
-
-lemma card_s_0_eq_empty:
-    "finite A ==> card {B. B \<subseteq> A & card B = 0} = 1"
-  apply (simp cong add: conj_cong add: finite_subset [THEN card_0_eq])
-  apply (simp cong add: rev_conj_cong)
-  done
-
-lemma choose_deconstruct: "finite M ==> x \<notin> M
-  ==> {s. s <= insert x M & card(s) = Suc k}
-       = {s. s <= M & card(s) = Suc k} Un
-         {s. EX t. t <= M & card(t) = k & s = insert x t}"
-  apply safe
-   apply (auto intro: finite_subset [THEN card_insert_disjoint])
-  apply (drule_tac x = "xa - {x}" in spec)
-  apply (subgoal_tac "x \<notin> xa", auto)
-  apply (erule rev_mp, subst card_Diff_singleton)
-  apply (auto intro: finite_subset)
-  done
-
-text{*There are as many subsets of @{term A} having cardinality @{term k}
- as there are sets obtained from the former by inserting a fixed element
- @{term x} into each.*}
-lemma constr_bij:
-   "[|finite A; x \<notin> A|] ==>
-    card {B. EX C. C <= A & card(C) = k & B = insert x C} =
-    card {B. B <= A & card(B) = k}"
-  apply (rule_tac f = "%s. s - {x}" and g = "insert x" in card_bij_eq)
-       apply (auto elim!: equalityE simp add: inj_on_def)
-    apply (subst Diff_insert0, auto)
-   txt {* finiteness of the two sets *}
-   apply (rule_tac [2] B = "Pow (A)" in finite_subset)
-   apply (rule_tac B = "Pow (insert x A)" in finite_subset)
-   apply fast+
-  done
-
-text {*
-  Main theorem: combinatorial statement about number of subsets of a set.
-*}
-
-lemma n_sub_lemma:
-  "!!A. finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
-  apply (induct k)
-   apply (simp add: card_s_0_eq_empty, atomize)
-  apply (rotate_tac -1, erule finite_induct)
-   apply (simp_all (no_asm_simp) cong add: conj_cong
-     add: card_s_0_eq_empty choose_deconstruct)
-  apply (subst card_Un_disjoint)
-     prefer 4 apply (force simp add: constr_bij)
-    prefer 3 apply force
-   prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2]
-     finite_subset [of _ "Pow (insert x F)", standard])
-  apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset])
-  done
-
-theorem n_subsets:
-    "finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
-  by (simp add: n_sub_lemma)
-
-
-text{* The binomial theorem (courtesy of Tobias Nipkow): *}
-
-theorem binomial: "(a+b::nat)^n = (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))"
-proof (induct n)
-  case 0 thus ?case by simp
-next
-  case (Suc n)
-  have decomp: "{0..n+1} = {0} \<union> {n+1} \<union> {1..n}"
-    by (auto simp add:atLeastAtMost_def atLeast_def atMost_def)
-  have decomp2: "{0..n} = {0} \<union> {1..n}"
-    by (auto simp add:atLeastAtMost_def atLeast_def atMost_def)
-  have "(a+b::nat)^(n+1) = (a+b) * (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))"
-    using Suc by simp
-  also have "\<dots> =  a*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k)) +
-                   b*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))"
-    by(rule nat_distrib)
-  also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^(k+1) * b^(n-k)) +
-                  (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k+1))"
-    by(simp add: setsum_right_distrib mult_ac)
-  also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^k * b^(n+1-k)) +
-                  (\<Sum>k=1..n+1. (n choose (k - 1)) * a^k * b^(n+1-k))"
-    by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le
-             del:setsum_cl_ivl_Suc)
-  also have "\<dots> = a^(n+1) + b^(n+1) +
-                  (\<Sum>k=1..n. (n choose (k - 1)) * a^k * b^(n+1-k)) +
-                  (\<Sum>k=1..n. (n choose k) * a^k * b^(n+1-k))"
-    by(simp add: decomp2)
-  also have
-    "\<dots> = a^(n+1) + b^(n+1) + (\<Sum>k=1..n. (n+1 choose k) * a^k * b^(n+1-k))"
-    by(simp add: nat_distrib setsum_addf binomial.simps)
-  also have "\<dots> = (\<Sum>k=0..n+1. (n+1 choose k) * a^k * b^(n+1-k))"
-    using decomp by simp
-  finally show ?case by simp
-qed
-
-end
--- a/src/HOL/Complex/ROOT.ML	Wed Nov 08 22:24:54 2006 +0100
+++ b/src/HOL/Complex/ROOT.ML	Wed Nov 08 23:11:13 2006 +0100
@@ -6,6 +6,8 @@
 *)
 
 no_document use_thy "Infinite_Set";
-with_path "../Real"      use_thy "Float";
+no_document use_thy "Parity";
+
+with_path "../Real" use_thy "Float";
 with_path "../Hyperreal" use_thy "Hyperreal";
 time_use_thy "Complex_Main";
--- a/src/HOL/GCD.thy	Wed Nov 08 22:24:54 2006 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,210 +0,0 @@
-(*  Title:      HOL/GCD.thy
-    ID:         $Id$
-    Author:     Christophe Tabacznyj and Lawrence C Paulson
-    Copyright   1996  University of Cambridge
-
-Builds on Integ/Parity mainly because that contains recdef, which we
-need, but also because we may want to include gcd on integers in here
-as well in the future.
-*)
-
-header {* The Greatest Common Divisor *}
-
-theory GCD
-imports Parity
-begin
-
-text {*
-  See \cite{davenport92}.
-  \bigskip
-*}
-
-consts
-  gcd  :: "nat \<times> nat => nat"  -- {* Euclid's algorithm *}
-
-recdef gcd  "measure ((\<lambda>(m, n). n) :: nat \<times> nat => nat)"
-  "gcd (m, n) = (if n = 0 then m else gcd (n, m mod n))"
-
-constdefs
-  is_gcd :: "nat => nat => nat => bool"  -- {* @{term gcd} as a relation *}
-  "is_gcd p m n == p dvd m \<and> p dvd n \<and>
-    (\<forall>d. d dvd m \<and> d dvd n --> d dvd p)"
-
-
-lemma gcd_induct:
-  "(!!m. P m 0) ==>
-    (!!m n. 0 < n ==> P n (m mod n) ==> P m n)
-  ==> P (m::nat) (n::nat)"
-  apply (induct m n rule: gcd.induct)
-  apply (case_tac "n = 0")
-   apply simp_all
-  done
-
-
-lemma gcd_0 [simp]: "gcd (m, 0) = m"
-  apply simp
-  done
-
-lemma gcd_non_0: "0 < n ==> gcd (m, n) = gcd (n, m mod n)"
-  apply simp
-  done
-
-declare gcd.simps [simp del]
-
-lemma gcd_1 [simp]: "gcd (m, Suc 0) = 1"
-  apply (simp add: gcd_non_0)
-  done
-
-text {*
-  \medskip @{term "gcd (m, n)"} divides @{text m} and @{text n}.  The
-  conjunctions don't seem provable separately.
-*}
-
-lemma gcd_dvd1 [iff]: "gcd (m, n) dvd m"
-  and gcd_dvd2 [iff]: "gcd (m, n) dvd n"
-  apply (induct m n rule: gcd_induct)
-   apply (simp_all add: gcd_non_0)
-  apply (blast dest: dvd_mod_imp_dvd)
-  done
-
-text {*
-  \medskip Maximality: for all @{term m}, @{term n}, @{term k}
-  naturals, if @{term k} divides @{term m} and @{term k} divides
-  @{term n} then @{term k} divides @{term "gcd (m, n)"}.
-*}
-
-lemma gcd_greatest: "k dvd m ==> k dvd n ==> k dvd gcd (m, n)"
-  apply (induct m n rule: gcd_induct)
-   apply (simp_all add: gcd_non_0 dvd_mod)
-  done
-
-lemma gcd_greatest_iff [iff]: "(k dvd gcd (m, n)) = (k dvd m \<and> k dvd n)"
-  apply (blast intro!: gcd_greatest intro: dvd_trans)
-  done
-
-lemma gcd_zero: "(gcd (m, n) = 0) = (m = 0 \<and> n = 0)"
-  by (simp only: dvd_0_left_iff [THEN sym] gcd_greatest_iff)
-
-
-text {*
-  \medskip Function gcd yields the Greatest Common Divisor.
-*}
-
-lemma is_gcd: "is_gcd (gcd (m, n)) m n"
-  apply (simp add: is_gcd_def gcd_greatest)
-  done
-
-text {*
-  \medskip Uniqueness of GCDs.
-*}
-
-lemma is_gcd_unique: "is_gcd m a b ==> is_gcd n a b ==> m = n"
-  apply (simp add: is_gcd_def)
-  apply (blast intro: dvd_anti_sym)
-  done
-
-lemma is_gcd_dvd: "is_gcd m a b ==> k dvd a ==> k dvd b ==> k dvd m"
-  apply (auto simp add: is_gcd_def)
-  done
-
-
-text {*
-  \medskip Commutativity
-*}
-
-lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m"
-  apply (auto simp add: is_gcd_def)
-  done
-
-lemma gcd_commute: "gcd (m, n) = gcd (n, m)"
-  apply (rule is_gcd_unique)
-   apply (rule is_gcd)
-  apply (subst is_gcd_commute)
-  apply (simp add: is_gcd)
-  done
-
-lemma gcd_assoc: "gcd (gcd (k, m), n) = gcd (k, gcd (m, n))"
-  apply (rule is_gcd_unique)
-   apply (rule is_gcd)
-  apply (simp add: is_gcd_def)
-  apply (blast intro: dvd_trans)
-  done
-
-lemma gcd_0_left [simp]: "gcd (0, m) = m"
-  apply (simp add: gcd_commute [of 0])
-  done
-
-lemma gcd_1_left [simp]: "gcd (Suc 0, m) = 1"
-  apply (simp add: gcd_commute [of "Suc 0"])
-  done
-
-
-text {*
-  \medskip Multiplication laws
-*}
-
-lemma gcd_mult_distrib2: "k * gcd (m, n) = gcd (k * m, k * n)"
-    -- {* \cite[page 27]{davenport92} *}
-  apply (induct m n rule: gcd_induct)
-   apply simp
-  apply (case_tac "k = 0")
-   apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
-  done
-
-lemma gcd_mult [simp]: "gcd (k, k * n) = k"
-  apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric])
-  done
-
-lemma gcd_self [simp]: "gcd (k, k) = k"
-  apply (rule gcd_mult [of k 1, simplified])
-  done
-
-lemma relprime_dvd_mult: "gcd (k, n) = 1 ==> k dvd m * n ==> k dvd m"
-  apply (insert gcd_mult_distrib2 [of m k n])
-  apply simp
-  apply (erule_tac t = m in ssubst)
-  apply simp
-  done
-
-lemma relprime_dvd_mult_iff: "gcd (k, n) = 1 ==> (k dvd m * n) = (k dvd m)"
-  apply (blast intro: relprime_dvd_mult dvd_trans)
-  done
-
-lemma gcd_mult_cancel: "gcd (k, n) = 1 ==> gcd (k * m, n) = gcd (m, n)"
-  apply (rule dvd_anti_sym)
-   apply (rule gcd_greatest)
-    apply (rule_tac n = k in relprime_dvd_mult)
-     apply (simp add: gcd_assoc)
-     apply (simp add: gcd_commute)
-    apply (simp_all add: mult_commute)
-  apply (blast intro: dvd_trans)
-  done
-
-
-text {* \medskip Addition laws *}
-
-lemma gcd_add1 [simp]: "gcd (m + n, n) = gcd (m, n)"
-  apply (case_tac "n = 0")
-   apply (simp_all add: gcd_non_0)
-  done
-
-lemma gcd_add2 [simp]: "gcd (m, m + n) = gcd (m, n)"
-proof -
-  have "gcd (m, m + n) = gcd (m + n, m)" by (rule gcd_commute) 
-  also have "... = gcd (n + m, m)" by (simp add: add_commute)
-  also have "... = gcd (n, m)" by simp
-  also have  "... = gcd (m, n)" by (rule gcd_commute) 
-  finally show ?thesis .
-qed
-
-lemma gcd_add2' [simp]: "gcd (m, n + m) = gcd (m, n)"
-  apply (subst add_commute)
-  apply (rule gcd_add2)
-  done
-
-lemma gcd_add_mult: "gcd (m, k * m + n) = gcd (m, n)"
-  apply (induct k)
-   apply (simp_all add: add_assoc)
-  done
-
-end
--- a/src/HOL/Hyperreal/HyperPow.thy	Wed Nov 08 22:24:54 2006 +0100
+++ b/src/HOL/Hyperreal/HyperPow.thy	Wed Nov 08 23:11:13 2006 +0100
@@ -7,7 +7,7 @@
 header{*Exponentials on the Hyperreals*}
 
 theory HyperPow
-imports HyperArith HyperNat
+imports HyperArith HyperNat Parity
 begin
 
 (* consts hpowr :: "[hypreal,nat] => hypreal" *)
--- a/src/HOL/Import/HOL/ROOT.ML	Wed Nov 08 22:24:54 2006 +0100
+++ b/src/HOL/Import/HOL/ROOT.ML	Wed Nov 08 23:11:13 2006 +0100
@@ -3,5 +3,6 @@
     Author:     Sebastian Skalberg (TU Muenchen)
 *)
 
+use_thy "Primes";
 setmp quick_and_dirty true use_thy "HOL4Prob";
 setmp quick_and_dirty true use_thy "HOL4";
--- a/src/HOL/Integ/Parity.thy	Wed Nov 08 22:24:54 2006 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,451 +0,0 @@
-(*  Title:      Parity.thy
-    ID:         $Id$
-    Author:     Jeremy Avigad
-*)
-
-header {* Even and Odd for ints and nats*}
-
-theory Parity
-imports Divides IntDiv NatSimprocs
-begin
-
-axclass even_odd < type
-
-consts
-  even :: "'a::even_odd => bool"
-
-instance int :: even_odd ..
-instance nat :: even_odd ..
-
-defs (overloaded)
-  even_def: "even (x::int) == x mod 2 = 0"
-  even_nat_def: "even (x::nat) == even (int x)"
-
-abbreviation
-  odd :: "'a::even_odd => bool"
-  "odd x == \<not> even x"
-
-
-subsection {* Even and odd are mutually exclusive *}
-
-lemma int_pos_lt_two_imp_zero_or_one: 
-    "0 <= x ==> (x::int) < 2 ==> x = 0 | x = 1"
-  by auto
-
-lemma neq_one_mod_two [simp]: "((x::int) mod 2 ~= 0) = (x mod 2 = 1)"
-  apply (subgoal_tac "x mod 2 = 0 | x mod 2 = 1", force)
-  apply (rule int_pos_lt_two_imp_zero_or_one, auto)
-  done
-
-subsection {* Behavior under integer arithmetic operations *}
-
-lemma even_times_anything: "even (x::int) ==> even (x * y)"
-  by (simp add: even_def zmod_zmult1_eq')
-
-lemma anything_times_even: "even (y::int) ==> even (x * y)"
-  by (simp add: even_def zmod_zmult1_eq)
-
-lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)"
-  by (simp add: even_def zmod_zmult1_eq)
-
-lemma even_product: "even((x::int) * y) = (even x | even y)"
-  apply (auto simp add: even_times_anything anything_times_even) 
-  apply (rule ccontr)
-  apply (auto simp add: odd_times_odd)
-  done
-
-lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)"
-  by (simp add: even_def zmod_zadd1_eq)
-
-lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)"
-  by (simp add: even_def zmod_zadd1_eq)
-
-lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)"
-  by (simp add: even_def zmod_zadd1_eq)
-
-lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)"
-  by (simp add: even_def zmod_zadd1_eq)
-
-lemma even_sum: "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))"
-  apply (auto intro: even_plus_even odd_plus_odd)
-  apply (rule ccontr, simp add: even_plus_odd)
-  apply (rule ccontr, simp add: odd_plus_even)
-  done
-
-lemma even_neg: "even (-(x::int)) = even x"
-  by (auto simp add: even_def zmod_zminus1_eq_if)
-
-lemma even_difference: 
-  "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))"
-  by (simp only: diff_minus even_sum even_neg)
-
-lemma even_pow_gt_zero [rule_format]: 
-    "even (x::int) ==> 0 < n --> even (x^n)"
-  apply (induct n)
-  apply (auto simp add: even_product)
-  done
-
-lemma odd_pow: "odd x ==> odd((x::int)^n)"
-  apply (induct n)
-  apply (simp add: even_def)
-  apply (simp add: even_product)
-  done
-
-lemma even_power: "even ((x::int)^n) = (even x & 0 < n)"
-  apply (auto simp add: even_pow_gt_zero) 
-  apply (erule contrapos_pp, erule odd_pow)
-  apply (erule contrapos_pp, simp add: even_def)
-  done
-
-lemma even_zero: "even (0::int)"
-  by (simp add: even_def)
-
-lemma odd_one: "odd (1::int)"
-  by (simp add: even_def)
-
-lemmas even_odd_simps [simp] = even_def[of "number_of v",standard] even_zero 
-  odd_one even_product even_sum even_neg even_difference even_power
-
-
-subsection {* Equivalent definitions *}
-
-lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x" 
-  by (auto simp add: even_def)
-
-lemma two_times_odd_div_two_plus_one: "odd (x::int) ==> 
-    2 * (x div 2) + 1 = x"
-  apply (insert zmod_zdiv_equality [of x 2, THEN sym])
-  by (simp add: even_def)
-
-lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)"
-  apply auto
-  apply (rule exI)
-  by (erule two_times_even_div_two [THEN sym])
-
-lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)"
-  apply auto
-  apply (rule exI)
-  by (erule two_times_odd_div_two_plus_one [THEN sym])
-
-
-subsection {* even and odd for nats *}
-
-lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)"
-  by (simp add: even_nat_def)
-
-lemma even_nat_product: "even((x::nat) * y) = (even x | even y)"
-  by (simp add: even_nat_def int_mult)
-
-lemma even_nat_sum: "even ((x::nat) + y) = 
-    ((even x & even y) | (odd x & odd y))"
-  by (unfold even_nat_def, simp)
-
-lemma even_nat_difference: 
-    "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))"
-  apply (auto simp add: even_nat_def zdiff_int [THEN sym])
-  apply (case_tac "x < y", auto simp add: zdiff_int [THEN sym])
-  apply (case_tac "x < y", auto simp add: zdiff_int [THEN sym])
-  done
-
-lemma even_nat_Suc: "even (Suc x) = odd x"
-  by (simp add: even_nat_def)
-
-lemma even_nat_power: "even ((x::nat)^y) = (even x & 0 < y)"
-  by (simp add: even_nat_def int_power)
-
-lemma even_nat_zero: "even (0::nat)"
-  by (simp add: even_nat_def)
-
-lemmas even_odd_nat_simps [simp] = even_nat_def[of "number_of v",standard] 
-  even_nat_zero even_nat_Suc even_nat_product even_nat_sum even_nat_power
-
-
-subsection {* Equivalent definitions *}
-
-lemma nat_lt_two_imp_zero_or_one: "(x::nat) < Suc (Suc 0) ==> 
-    x = 0 | x = Suc 0"
-  by auto
-
-lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0"
-  apply (insert mod_div_equality [of x "Suc (Suc 0)", THEN sym])
-  apply (drule subst, assumption)
-  apply (subgoal_tac "x mod Suc (Suc 0) = 0 | x mod Suc (Suc 0) = Suc 0")
-  apply force
-  apply (subgoal_tac "0 < Suc (Suc 0)")
-  apply (frule mod_less_divisor [of "Suc (Suc 0)" x])
-  apply (erule nat_lt_two_imp_zero_or_one, auto)
-  done
-
-lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0"
-  apply (insert mod_div_equality [of x "Suc (Suc 0)", THEN sym])
-  apply (drule subst, assumption)
-  apply (subgoal_tac "x mod Suc (Suc 0) = 0 | x mod Suc (Suc 0) = Suc 0")
-  apply force 
-  apply (subgoal_tac "0 < Suc (Suc 0)")
-  apply (frule mod_less_divisor [of "Suc (Suc 0)" x])
-  apply (erule nat_lt_two_imp_zero_or_one, auto)
-  done
-
-lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)" 
-  apply (rule iffI)
-  apply (erule even_nat_mod_two_eq_zero)
-  apply (insert odd_nat_mod_two_eq_one [of x], auto)
-  done
-
-lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)"
-  apply (auto simp add: even_nat_equiv_def)
-  apply (subgoal_tac "x mod (Suc (Suc 0)) < Suc (Suc 0)")
-  apply (frule nat_lt_two_imp_zero_or_one, auto)
-  done
-
-lemma even_nat_div_two_times_two: "even (x::nat) ==> 
-    Suc (Suc 0) * (x div Suc (Suc 0)) = x"
-  apply (insert mod_div_equality [of x "Suc (Suc 0)", THEN sym])
-  apply (drule even_nat_mod_two_eq_zero, simp)
-  done
-
-lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==> 
-    Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x"  
-  apply (insert mod_div_equality [of x "Suc (Suc 0)", THEN sym])
-  apply (drule odd_nat_mod_two_eq_one, simp)
-  done
-
-lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)"
-  apply (rule iffI, rule exI)
-  apply (erule even_nat_div_two_times_two [THEN sym], auto)
-  done
-
-lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))"
-  apply (rule iffI, rule exI)
-  apply (erule odd_nat_div_two_times_two_plus_one [THEN sym], auto)
-  done
-
-subsection {* Parity and powers *}
-
-lemma minus_one_even_odd_power:
-     "(even x --> (- 1::'a::{comm_ring_1,recpower})^x = 1) & 
-      (odd x --> (- 1::'a)^x = - 1)"
-  apply (induct x)
-  apply (rule conjI)
-  apply simp
-  apply (insert even_nat_zero, blast)
-  apply (simp add: power_Suc)
-done
-
-lemma minus_one_even_power [simp]:
-     "even x ==> (- 1::'a::{comm_ring_1,recpower})^x = 1"
-  by (rule minus_one_even_odd_power [THEN conjunct1, THEN mp], assumption)
-
-lemma minus_one_odd_power [simp]:
-     "odd x ==> (- 1::'a::{comm_ring_1,recpower})^x = - 1"
-  by (rule minus_one_even_odd_power [THEN conjunct2, THEN mp], assumption)
-
-lemma neg_one_even_odd_power:
-     "(even x --> (-1::'a::{number_ring,recpower})^x = 1) & 
-      (odd x --> (-1::'a)^x = -1)"
-  apply (induct x)
-  apply (simp, simp add: power_Suc)
-  done
-
-lemma neg_one_even_power [simp]:
-     "even x ==> (-1::'a::{number_ring,recpower})^x = 1"
-  by (rule neg_one_even_odd_power [THEN conjunct1, THEN mp], assumption)
-
-lemma neg_one_odd_power [simp]:
-     "odd x ==> (-1::'a::{number_ring,recpower})^x = -1"
-  by (rule neg_one_even_odd_power [THEN conjunct2, THEN mp], assumption)
-
-lemma neg_power_if:
-     "(-x::'a::{comm_ring_1,recpower}) ^ n = 
-      (if even n then (x ^ n) else -(x ^ n))"
-  by (induct n, simp_all split: split_if_asm add: power_Suc) 
-
-lemma zero_le_even_power: "even n ==> 
-    0 <= (x::'a::{recpower,ordered_ring_strict}) ^ n"
-  apply (simp add: even_nat_equiv_def2)
-  apply (erule exE)
-  apply (erule ssubst)
-  apply (subst power_add)
-  apply (rule zero_le_square)
-  done
-
-lemma zero_le_odd_power: "odd n ==> 
-    (0 <= (x::'a::{recpower,ordered_idom}) ^ n) = (0 <= x)"
-  apply (simp add: odd_nat_equiv_def2)
-  apply (erule exE)
-  apply (erule ssubst)
-  apply (subst power_Suc)
-  apply (subst power_add)
-  apply (subst zero_le_mult_iff)
-  apply auto
-  apply (subgoal_tac "x = 0 & 0 < y")
-  apply (erule conjE, assumption)
-  apply (subst power_eq_0_iff [THEN sym])
-  apply (subgoal_tac "0 <= x^y * x^y")
-  apply simp
-  apply (rule zero_le_square)+
-done
-
-lemma zero_le_power_eq: "(0 <= (x::'a::{recpower,ordered_idom}) ^ n) = 
-    (even n | (odd n & 0 <= x))"
-  apply auto
-  apply (subst zero_le_odd_power [THEN sym])
-  apply assumption+
-  apply (erule zero_le_even_power)
-  apply (subst zero_le_odd_power) 
-  apply assumption+
-done
-
-lemma zero_less_power_eq: "(0 < (x::'a::{recpower,ordered_idom}) ^ n) = 
-    (n = 0 | (even n & x ~= 0) | (odd n & 0 < x))"
-  apply (rule iffI)
-  apply clarsimp
-  apply (rule conjI)
-  apply clarsimp
-  apply (rule ccontr)
-  apply (subgoal_tac "~ (0 <= x^n)")
-  apply simp
-  apply (subst zero_le_odd_power)
-  apply assumption 
-  apply simp
-  apply (rule notI)
-  apply (simp add: power_0_left)
-  apply (rule notI)
-  apply (simp add: power_0_left)
-  apply auto
-  apply (subgoal_tac "0 <= x^n")
-  apply (frule order_le_imp_less_or_eq)
-  apply simp
-  apply (erule zero_le_even_power)
-  apply (subgoal_tac "0 <= x^n")
-  apply (frule order_le_imp_less_or_eq)
-  apply auto
-  apply (subst zero_le_odd_power)
-  apply assumption
-  apply (erule order_less_imp_le)
-done
-
-lemma power_less_zero_eq: "((x::'a::{recpower,ordered_idom}) ^ n < 0) =
-    (odd n & x < 0)" 
-  apply (subst linorder_not_le [THEN sym])+
-  apply (subst zero_le_power_eq)
-  apply auto
-done
-
-lemma power_le_zero_eq: "((x::'a::{recpower,ordered_idom}) ^ n <= 0) =
-    (n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))"
-  apply (subst linorder_not_less [THEN sym])+
-  apply (subst zero_less_power_eq)
-  apply auto
-done
-
-lemma power_even_abs: "even n ==> 
-    (abs (x::'a::{recpower,ordered_idom}))^n = x^n"
-  apply (subst power_abs [THEN sym])
-  apply (simp add: zero_le_even_power)
-done
-
-lemma zero_less_power_nat_eq: "(0 < (x::nat) ^ n) = (n = 0 | 0 < x)"
-  by (induct n, auto)
-
-lemma power_minus_even [simp]: "even n ==> 
-    (- x)^n = (x^n::'a::{recpower,comm_ring_1})"
-  apply (subst power_minus)
-  apply simp
-done
-
-lemma power_minus_odd [simp]: "odd n ==> 
-    (- x)^n = - (x^n::'a::{recpower,comm_ring_1})"
-  apply (subst power_minus)
-  apply simp
-done
-
-(* Simplify, when the exponent is a numeral *)
-
-lemmas power_0_left_number_of = power_0_left [of "number_of w", standard]
-declare power_0_left_number_of [simp]
-
-lemmas zero_le_power_eq_number_of =
-    zero_le_power_eq [of _ "number_of w", standard]
-declare zero_le_power_eq_number_of [simp]
-
-lemmas zero_less_power_eq_number_of =
-    zero_less_power_eq [of _ "number_of w", standard]
-declare zero_less_power_eq_number_of [simp]
-
-lemmas power_le_zero_eq_number_of =
-    power_le_zero_eq [of _ "number_of w", standard]
-declare power_le_zero_eq_number_of [simp]
-
-lemmas power_less_zero_eq_number_of =
-    power_less_zero_eq [of _ "number_of w", standard]
-declare power_less_zero_eq_number_of [simp]
-
-lemmas zero_less_power_nat_eq_number_of =
-    zero_less_power_nat_eq [of _ "number_of w", standard]
-declare zero_less_power_nat_eq_number_of [simp]
-
-lemmas power_eq_0_iff_number_of = power_eq_0_iff [of _ "number_of w", standard]
-declare power_eq_0_iff_number_of [simp]
-
-lemmas power_even_abs_number_of = power_even_abs [of "number_of w" _, standard]
-declare power_even_abs_number_of [simp]
-
-
-subsection {* An Equivalence for @{term [source] "0 \<le> a^n"} *}
-
-lemma even_power_le_0_imp_0:
-     "a ^ (2*k) \<le> (0::'a::{ordered_idom,recpower}) ==> a=0"
-apply (induct k) 
-apply (auto simp add: zero_le_mult_iff mult_le_0_iff power_Suc)  
-done
-
-lemma zero_le_power_iff:
-     "(0 \<le> a^n) = (0 \<le> (a::'a::{ordered_idom,recpower}) | even n)"
-      (is "?P n")
-proof cases
-  assume even: "even n"
-  then obtain k where "n = 2*k"
-    by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2)
-  thus ?thesis by (simp add: zero_le_even_power even) 
-next
-  assume odd: "odd n"
-  then obtain k where "n = Suc(2*k)"
-    by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2)
-  thus ?thesis
-    by (auto simp add: power_Suc zero_le_mult_iff zero_le_even_power 
-             dest!: even_power_le_0_imp_0) 
-qed 
-
-subsection {* Miscellaneous *}
-
-lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2"
-  apply (subst zdiv_zadd1_eq)
-  apply (simp add: even_def)
-  done
-
-lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1"
-  apply (subst zdiv_zadd1_eq)
-  apply (simp add: even_def)
-  done
-
-lemma div_Suc: "Suc a div c = a div c + Suc 0 div c + 
-    (a mod c + Suc 0 mod c) div c"
-  apply (subgoal_tac "Suc a = a + Suc 0")
-  apply (erule ssubst)
-  apply (rule div_add1_eq, simp)
-  done
-
-lemma even_nat_plus_one_div_two: "even (x::nat) ==> 
-   (Suc x) div Suc (Suc 0) = x div Suc (Suc 0)"
-  apply (subst div_Suc)
-  apply (simp add: even_nat_equiv_def)
-  done
-
-lemma odd_nat_plus_one_div_two: "odd (x::nat) ==> 
-    (Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))"
-  apply (subst div_Suc)
-  apply (simp add: odd_nat_equiv_def)
-  done
-
-end
--- a/src/HOL/IsaMakefile	Wed Nov 08 22:24:54 2006 +0100
+++ b/src/HOL/IsaMakefile	Wed Nov 08 23:11:13 2006 +0100
@@ -84,13 +84,13 @@
   $(SRC)/TFL/rules.ML $(SRC)/TFL/tfl.ML $(SRC)/TFL/thms.ML			\
   $(SRC)/TFL/thry.ML $(SRC)/TFL/usyntax.ML $(SRC)/TFL/utils.ML			\
   Tools/res_atpset.ML \
-  Binomial.thy Code_Generator.thy Datatype.ML Datatype.thy			\
+  Code_Generator.thy Datatype.ML Datatype.thy			\
   Divides.thy						\
   Equiv_Relations.thy Extraction.thy Finite_Set.ML Finite_Set.thy		\
   FixedPoint.thy Fun.thy HOL.ML HOL.thy Hilbert_Choice.thy Inductive.thy	\
   Integ/IntArith.thy Integ/IntDef.thy Integ/IntDiv.thy				\
   Integ/NatBin.thy Integ/NatSimprocs.thy Integ/Numeral.thy			\
-  Integ/Parity.thy Integ/Presburger.thy Integ/cooper_dec.ML			\
+  Integ/Presburger.thy Integ/cooper_dec.ML			\
   Integ/cooper_proof.ML Integ/reflected_presburger.ML				\
   Integ/reflected_cooper.ML Integ/int_arith1.ML Integ/int_factor_simprocs.ML	\
   Integ/nat_simprocs.ML Integ/presburger.ML Integ/qelim.ML LOrder.thy		\
@@ -182,7 +182,7 @@
   Complex/Complex_Main.thy Complex/CLim.thy Complex/CSeries.thy			\
   Complex/CStar.thy Complex/Complex.thy Complex/ComplexBin.thy			\
   Complex/NSCA.thy Complex/NSComplex.thy Complex/document/root.tex 		\
-  Library/Infinite_Set.thy
+  Library/Infinite_Set.thy Library/Parity.thy
 	@cd Complex; $(ISATOOL) usedir -b -g true $(OUT)/HOL HOL-Complex
 
 
@@ -215,7 +215,8 @@
   Library/Library/document/root.bib Library/While_Combinator.thy \
   Library/Product_ord.thy Library/Char_ord.thy \
   Library/List_lexord.thy Library/Commutative_Ring.thy Library/comm_ring.ML \
-  Library/Coinductive_List.thy Library/AssocList.thy
+  Library/Coinductive_List.thy Library/AssocList.thy \
+  Library/Parity.thy Library/GCD.thy Library/Binomial.thy
 	@cd Library; $(ISATOOL) usedir $(OUT)/HOL Library
 
 
@@ -656,7 +657,7 @@
   ex/SAT_Examples.thy ex/svc_oracle.ML ex/SVC_Oracle.thy 			\
   ex/Sudoku.thy ex/Tarski.thy ex/document/root.bib ex/document/root.tex		\
   ex/mesontest2.ML ex/mesontest2.thy ex/reflection.ML ex/set.thy		\
-  ex/svc_funcs.ML ex/svc_test.thy
+  ex/svc_funcs.ML ex/svc_test.thy Library/Parity.thy Library/GCD.thy
 	@$(ISATOOL) usedir $(OUT)/HOL ex
 
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Binomial.thy	Wed Nov 08 23:11:13 2006 +0100
@@ -0,0 +1,189 @@
+(*  Title:      HOL/Binomial.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson
+    Copyright   1997  University of Cambridge
+*)
+
+header{*Binomial Coefficients*}
+
+theory Binomial
+imports Main
+begin
+
+text{*This development is based on the work of Andy Gordon and
+Florian Kammueller*}
+
+consts
+  binomial :: "nat \<Rightarrow> nat \<Rightarrow> nat"      (infixl "choose" 65)
+
+primrec
+  binomial_0:   "(0     choose k) = (if k = 0 then 1 else 0)"
+
+  binomial_Suc: "(Suc n choose k) =
+                 (if k = 0 then 1 else (n choose (k - 1)) + (n choose k))"
+
+lemma binomial_n_0 [simp]: "(n choose 0) = 1"
+by (cases n) simp_all
+
+lemma binomial_0_Suc [simp]: "(0 choose Suc k) = 0"
+by simp
+
+lemma binomial_Suc_Suc [simp]:
+     "(Suc n choose Suc k) = (n choose k) + (n choose Suc k)"
+by simp
+
+lemma binomial_eq_0 [rule_format]: "\<forall>k. n < k --> (n choose k) = 0"
+apply (induct "n")
+apply auto
+done
+
+declare binomial_0 [simp del] binomial_Suc [simp del]
+
+lemma binomial_n_n [simp]: "(n choose n) = 1"
+apply (induct "n")
+apply (simp_all add: binomial_eq_0)
+done
+
+lemma binomial_Suc_n [simp]: "(Suc n choose n) = Suc n"
+by (induct "n", simp_all)
+
+lemma binomial_1 [simp]: "(n choose Suc 0) = n"
+by (induct "n", simp_all)
+
+lemma zero_less_binomial [rule_format]: "k \<le> n --> 0 < (n choose k)"
+by (rule_tac m = n and n = k in diff_induct, simp_all)
+
+lemma binomial_eq_0_iff: "(n choose k = 0) = (n<k)"
+apply (safe intro!: binomial_eq_0)
+apply (erule contrapos_pp)
+apply (simp add: zero_less_binomial)
+done
+
+lemma zero_less_binomial_iff: "(0 < n choose k) = (k\<le>n)"
+by (simp add: linorder_not_less [symmetric] binomial_eq_0_iff [symmetric])
+
+(*Might be more useful if re-oriented*)
+lemma Suc_times_binomial_eq [rule_format]:
+     "\<forall>k. k \<le> n --> Suc n * (n choose k) = (Suc n choose Suc k) * Suc k"
+apply (induct "n")
+apply (simp add: binomial_0, clarify)
+apply (case_tac "k")
+apply (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq
+                      binomial_eq_0)
+done
+
+text{*This is the well-known version, but it's harder to use because of the
+  need to reason about division.*}
+lemma binomial_Suc_Suc_eq_times:
+     "k \<le> n ==> (Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k"
+by (simp add: Suc_times_binomial_eq div_mult_self_is_m zero_less_Suc
+        del: mult_Suc mult_Suc_right)
+
+text{*Another version, with -1 instead of Suc.*}
+lemma times_binomial_minus1_eq:
+     "[|k \<le> n;  0<k|] ==> (n choose k) * k = n * ((n - 1) choose (k - 1))"
+apply (cut_tac n = "n - 1" and k = "k - 1" in Suc_times_binomial_eq)
+apply (simp split add: nat_diff_split, auto)
+done
+
+subsubsection {* Theorems about @{text "choose"} *}
+
+text {*
+  \medskip Basic theorem about @{text "choose"}.  By Florian
+  Kamm\"uller, tidied by LCP.
+*}
+
+lemma card_s_0_eq_empty:
+    "finite A ==> card {B. B \<subseteq> A & card B = 0} = 1"
+  apply (simp cong add: conj_cong add: finite_subset [THEN card_0_eq])
+  apply (simp cong add: rev_conj_cong)
+  done
+
+lemma choose_deconstruct: "finite M ==> x \<notin> M
+  ==> {s. s <= insert x M & card(s) = Suc k}
+       = {s. s <= M & card(s) = Suc k} Un
+         {s. EX t. t <= M & card(t) = k & s = insert x t}"
+  apply safe
+   apply (auto intro: finite_subset [THEN card_insert_disjoint])
+  apply (drule_tac x = "xa - {x}" in spec)
+  apply (subgoal_tac "x \<notin> xa", auto)
+  apply (erule rev_mp, subst card_Diff_singleton)
+  apply (auto intro: finite_subset)
+  done
+
+text{*There are as many subsets of @{term A} having cardinality @{term k}
+ as there are sets obtained from the former by inserting a fixed element
+ @{term x} into each.*}
+lemma constr_bij:
+   "[|finite A; x \<notin> A|] ==>
+    card {B. EX C. C <= A & card(C) = k & B = insert x C} =
+    card {B. B <= A & card(B) = k}"
+  apply (rule_tac f = "%s. s - {x}" and g = "insert x" in card_bij_eq)
+       apply (auto elim!: equalityE simp add: inj_on_def)
+    apply (subst Diff_insert0, auto)
+   txt {* finiteness of the two sets *}
+   apply (rule_tac [2] B = "Pow (A)" in finite_subset)
+   apply (rule_tac B = "Pow (insert x A)" in finite_subset)
+   apply fast+
+  done
+
+text {*
+  Main theorem: combinatorial statement about number of subsets of a set.
+*}
+
+lemma n_sub_lemma:
+  "!!A. finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
+  apply (induct k)
+   apply (simp add: card_s_0_eq_empty, atomize)
+  apply (rotate_tac -1, erule finite_induct)
+   apply (simp_all (no_asm_simp) cong add: conj_cong
+     add: card_s_0_eq_empty choose_deconstruct)
+  apply (subst card_Un_disjoint)
+     prefer 4 apply (force simp add: constr_bij)
+    prefer 3 apply force
+   prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2]
+     finite_subset [of _ "Pow (insert x F)", standard])
+  apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset])
+  done
+
+theorem n_subsets:
+    "finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
+  by (simp add: n_sub_lemma)
+
+
+text{* The binomial theorem (courtesy of Tobias Nipkow): *}
+
+theorem binomial: "(a+b::nat)^n = (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))"
+proof (induct n)
+  case 0 thus ?case by simp
+next
+  case (Suc n)
+  have decomp: "{0..n+1} = {0} \<union> {n+1} \<union> {1..n}"
+    by (auto simp add:atLeastAtMost_def atLeast_def atMost_def)
+  have decomp2: "{0..n} = {0} \<union> {1..n}"
+    by (auto simp add:atLeastAtMost_def atLeast_def atMost_def)
+  have "(a+b::nat)^(n+1) = (a+b) * (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))"
+    using Suc by simp
+  also have "\<dots> =  a*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k)) +
+                   b*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))"
+    by(rule nat_distrib)
+  also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^(k+1) * b^(n-k)) +
+                  (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k+1))"
+    by(simp add: setsum_right_distrib mult_ac)
+  also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^k * b^(n+1-k)) +
+                  (\<Sum>k=1..n+1. (n choose (k - 1)) * a^k * b^(n+1-k))"
+    by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le
+             del:setsum_cl_ivl_Suc)
+  also have "\<dots> = a^(n+1) + b^(n+1) +
+                  (\<Sum>k=1..n. (n choose (k - 1)) * a^k * b^(n+1-k)) +
+                  (\<Sum>k=1..n. (n choose k) * a^k * b^(n+1-k))"
+    by(simp add: decomp2)
+  also have
+    "\<dots> = a^(n+1) + b^(n+1) + (\<Sum>k=1..n. (n+1 choose k) * a^k * b^(n+1-k))"
+    by(simp add: nat_distrib setsum_addf binomial.simps)
+  also have "\<dots> = (\<Sum>k=0..n+1. (n+1 choose k) * a^k * b^(n+1-k))"
+    using decomp by simp
+  finally show ?case by simp
+qed
+
+end
--- a/src/HOL/Library/Commutative_Ring.thy	Wed Nov 08 22:24:54 2006 +0100
+++ b/src/HOL/Library/Commutative_Ring.thy	Wed Nov 08 23:11:13 2006 +0100
@@ -7,7 +7,7 @@
 header {* Proving equalities in commutative rings *}
 
 theory Commutative_Ring
-imports Main
+imports Main Parity
 uses ("comm_ring.ML")
 begin
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/GCD.thy	Wed Nov 08 23:11:13 2006 +0100
@@ -0,0 +1,206 @@
+(*  Title:      HOL/GCD.thy
+    ID:         $Id$
+    Author:     Christophe Tabacznyj and Lawrence C Paulson
+    Copyright   1996  University of Cambridge
+*)
+
+header {* The Greatest Common Divisor *}
+
+theory GCD
+imports Main
+begin
+
+text {*
+  See \cite{davenport92}.
+  \bigskip
+*}
+
+consts
+  gcd  :: "nat \<times> nat => nat"  -- {* Euclid's algorithm *}
+
+recdef gcd  "measure ((\<lambda>(m, n). n) :: nat \<times> nat => nat)"
+  "gcd (m, n) = (if n = 0 then m else gcd (n, m mod n))"
+
+constdefs
+  is_gcd :: "nat => nat => nat => bool"  -- {* @{term gcd} as a relation *}
+  "is_gcd p m n == p dvd m \<and> p dvd n \<and>
+    (\<forall>d. d dvd m \<and> d dvd n --> d dvd p)"
+
+
+lemma gcd_induct:
+  "(!!m. P m 0) ==>
+    (!!m n. 0 < n ==> P n (m mod n) ==> P m n)
+  ==> P (m::nat) (n::nat)"
+  apply (induct m n rule: gcd.induct)
+  apply (case_tac "n = 0")
+   apply simp_all
+  done
+
+
+lemma gcd_0 [simp]: "gcd (m, 0) = m"
+  apply simp
+  done
+
+lemma gcd_non_0: "0 < n ==> gcd (m, n) = gcd (n, m mod n)"
+  apply simp
+  done
+
+declare gcd.simps [simp del]
+
+lemma gcd_1 [simp]: "gcd (m, Suc 0) = 1"
+  apply (simp add: gcd_non_0)
+  done
+
+text {*
+  \medskip @{term "gcd (m, n)"} divides @{text m} and @{text n}.  The
+  conjunctions don't seem provable separately.
+*}
+
+lemma gcd_dvd1 [iff]: "gcd (m, n) dvd m"
+  and gcd_dvd2 [iff]: "gcd (m, n) dvd n"
+  apply (induct m n rule: gcd_induct)
+   apply (simp_all add: gcd_non_0)
+  apply (blast dest: dvd_mod_imp_dvd)
+  done
+
+text {*
+  \medskip Maximality: for all @{term m}, @{term n}, @{term k}
+  naturals, if @{term k} divides @{term m} and @{term k} divides
+  @{term n} then @{term k} divides @{term "gcd (m, n)"}.
+*}
+
+lemma gcd_greatest: "k dvd m ==> k dvd n ==> k dvd gcd (m, n)"
+  apply (induct m n rule: gcd_induct)
+   apply (simp_all add: gcd_non_0 dvd_mod)
+  done
+
+lemma gcd_greatest_iff [iff]: "(k dvd gcd (m, n)) = (k dvd m \<and> k dvd n)"
+  apply (blast intro!: gcd_greatest intro: dvd_trans)
+  done
+
+lemma gcd_zero: "(gcd (m, n) = 0) = (m = 0 \<and> n = 0)"
+  by (simp only: dvd_0_left_iff [THEN sym] gcd_greatest_iff)
+
+
+text {*
+  \medskip Function gcd yields the Greatest Common Divisor.
+*}
+
+lemma is_gcd: "is_gcd (gcd (m, n)) m n"
+  apply (simp add: is_gcd_def gcd_greatest)
+  done
+
+text {*
+  \medskip Uniqueness of GCDs.
+*}
+
+lemma is_gcd_unique: "is_gcd m a b ==> is_gcd n a b ==> m = n"
+  apply (simp add: is_gcd_def)
+  apply (blast intro: dvd_anti_sym)
+  done
+
+lemma is_gcd_dvd: "is_gcd m a b ==> k dvd a ==> k dvd b ==> k dvd m"
+  apply (auto simp add: is_gcd_def)
+  done
+
+
+text {*
+  \medskip Commutativity
+*}
+
+lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m"
+  apply (auto simp add: is_gcd_def)
+  done
+
+lemma gcd_commute: "gcd (m, n) = gcd (n, m)"
+  apply (rule is_gcd_unique)
+   apply (rule is_gcd)
+  apply (subst is_gcd_commute)
+  apply (simp add: is_gcd)
+  done
+
+lemma gcd_assoc: "gcd (gcd (k, m), n) = gcd (k, gcd (m, n))"
+  apply (rule is_gcd_unique)
+   apply (rule is_gcd)
+  apply (simp add: is_gcd_def)
+  apply (blast intro: dvd_trans)
+  done
+
+lemma gcd_0_left [simp]: "gcd (0, m) = m"
+  apply (simp add: gcd_commute [of 0])
+  done
+
+lemma gcd_1_left [simp]: "gcd (Suc 0, m) = 1"
+  apply (simp add: gcd_commute [of "Suc 0"])
+  done
+
+
+text {*
+  \medskip Multiplication laws
+*}
+
+lemma gcd_mult_distrib2: "k * gcd (m, n) = gcd (k * m, k * n)"
+    -- {* \cite[page 27]{davenport92} *}
+  apply (induct m n rule: gcd_induct)
+   apply simp
+  apply (case_tac "k = 0")
+   apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
+  done
+
+lemma gcd_mult [simp]: "gcd (k, k * n) = k"
+  apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric])
+  done
+
+lemma gcd_self [simp]: "gcd (k, k) = k"
+  apply (rule gcd_mult [of k 1, simplified])
+  done
+
+lemma relprime_dvd_mult: "gcd (k, n) = 1 ==> k dvd m * n ==> k dvd m"
+  apply (insert gcd_mult_distrib2 [of m k n])
+  apply simp
+  apply (erule_tac t = m in ssubst)
+  apply simp
+  done
+
+lemma relprime_dvd_mult_iff: "gcd (k, n) = 1 ==> (k dvd m * n) = (k dvd m)"
+  apply (blast intro: relprime_dvd_mult dvd_trans)
+  done
+
+lemma gcd_mult_cancel: "gcd (k, n) = 1 ==> gcd (k * m, n) = gcd (m, n)"
+  apply (rule dvd_anti_sym)
+   apply (rule gcd_greatest)
+    apply (rule_tac n = k in relprime_dvd_mult)
+     apply (simp add: gcd_assoc)
+     apply (simp add: gcd_commute)
+    apply (simp_all add: mult_commute)
+  apply (blast intro: dvd_trans)
+  done
+
+
+text {* \medskip Addition laws *}
+
+lemma gcd_add1 [simp]: "gcd (m + n, n) = gcd (m, n)"
+  apply (case_tac "n = 0")
+   apply (simp_all add: gcd_non_0)
+  done
+
+lemma gcd_add2 [simp]: "gcd (m, m + n) = gcd (m, n)"
+proof -
+  have "gcd (m, m + n) = gcd (m + n, m)" by (rule gcd_commute) 
+  also have "... = gcd (n + m, m)" by (simp add: add_commute)
+  also have "... = gcd (n, m)" by simp
+  also have  "... = gcd (m, n)" by (rule gcd_commute) 
+  finally show ?thesis .
+qed
+
+lemma gcd_add2' [simp]: "gcd (m, n + m) = gcd (m, n)"
+  apply (subst add_commute)
+  apply (rule gcd_add2)
+  done
+
+lemma gcd_add_mult: "gcd (m, k * m + n) = gcd (m, n)"
+  apply (induct k)
+   apply (simp_all add: add_assoc)
+  done
+
+end
--- a/src/HOL/Library/Infinite_Set.thy	Wed Nov 08 22:24:54 2006 +0100
+++ b/src/HOL/Library/Infinite_Set.thy	Wed Nov 08 23:11:13 2006 +0100
@@ -6,7 +6,7 @@
 header {* Infinite Sets and Related Concepts *}
 
 theory Infinite_Set
-imports Hilbert_Choice Binomial
+imports Main
 begin
 
 subsection "Infinite Sets"
--- a/src/HOL/Library/Library.thy	Wed Nov 08 22:24:54 2006 +0100
+++ b/src/HOL/Library/Library.thy	Wed Nov 08 23:11:13 2006 +0100
@@ -2,30 +2,33 @@
 (*<*)
 theory Library
 imports
+  AssocList
   BigO
+  Binomial
+  Char_ord
+  Coinductive_List
+  Commutative_Ring
   Continuity
   EfficientNat
+  ExecutableRat
   ExecutableSet
-  ExecutableRat
+  FuncSet
+  GCD
+  Infinite_Set
   MLString
-  FuncSet
   Multiset
   NatPair
   Nat_Infinity
   Nested_Environment
   OptionalSugar
+  Parity
   Permutation
   Primes
   Quotient
+  State_Monad
   While_Combinator
   Word
   Zorn
-  Char_ord
-  Commutative_Ring
-  Coinductive_List
-  AssocList
-  Infinite_Set
-  State_Monad
 begin
 end
 (*>*)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Parity.thy	Wed Nov 08 23:11:13 2006 +0100
@@ -0,0 +1,451 @@
+(*  Title:      Parity.thy
+    ID:         $Id$
+    Author:     Jeremy Avigad
+*)
+
+header {* Even and Odd for int and nat *}
+
+theory Parity
+imports Main
+begin
+
+axclass even_odd < type
+
+consts
+  even :: "'a::even_odd => bool"
+
+instance int :: even_odd ..
+instance nat :: even_odd ..
+
+defs (overloaded)
+  even_def: "even (x::int) == x mod 2 = 0"
+  even_nat_def: "even (x::nat) == even (int x)"
+
+abbreviation
+  odd :: "'a::even_odd => bool"
+  "odd x == \<not> even x"
+
+
+subsection {* Even and odd are mutually exclusive *}
+
+lemma int_pos_lt_two_imp_zero_or_one: 
+    "0 <= x ==> (x::int) < 2 ==> x = 0 | x = 1"
+  by auto
+
+lemma neq_one_mod_two [simp]: "((x::int) mod 2 ~= 0) = (x mod 2 = 1)"
+  apply (subgoal_tac "x mod 2 = 0 | x mod 2 = 1", force)
+  apply (rule int_pos_lt_two_imp_zero_or_one, auto)
+  done
+
+subsection {* Behavior under integer arithmetic operations *}
+
+lemma even_times_anything: "even (x::int) ==> even (x * y)"
+  by (simp add: even_def zmod_zmult1_eq')
+
+lemma anything_times_even: "even (y::int) ==> even (x * y)"
+  by (simp add: even_def zmod_zmult1_eq)
+
+lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)"
+  by (simp add: even_def zmod_zmult1_eq)
+
+lemma even_product: "even((x::int) * y) = (even x | even y)"
+  apply (auto simp add: even_times_anything anything_times_even) 
+  apply (rule ccontr)
+  apply (auto simp add: odd_times_odd)
+  done
+
+lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)"
+  by (simp add: even_def zmod_zadd1_eq)
+
+lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)"
+  by (simp add: even_def zmod_zadd1_eq)
+
+lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)"
+  by (simp add: even_def zmod_zadd1_eq)
+
+lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)"
+  by (simp add: even_def zmod_zadd1_eq)
+
+lemma even_sum: "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))"
+  apply (auto intro: even_plus_even odd_plus_odd)
+  apply (rule ccontr, simp add: even_plus_odd)
+  apply (rule ccontr, simp add: odd_plus_even)
+  done
+
+lemma even_neg: "even (-(x::int)) = even x"
+  by (auto simp add: even_def zmod_zminus1_eq_if)
+
+lemma even_difference: 
+  "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))"
+  by (simp only: diff_minus even_sum even_neg)
+
+lemma even_pow_gt_zero [rule_format]: 
+    "even (x::int) ==> 0 < n --> even (x^n)"
+  apply (induct n)
+  apply (auto simp add: even_product)
+  done
+
+lemma odd_pow: "odd x ==> odd((x::int)^n)"
+  apply (induct n)
+  apply (simp add: even_def)
+  apply (simp add: even_product)
+  done
+
+lemma even_power: "even ((x::int)^n) = (even x & 0 < n)"
+  apply (auto simp add: even_pow_gt_zero) 
+  apply (erule contrapos_pp, erule odd_pow)
+  apply (erule contrapos_pp, simp add: even_def)
+  done
+
+lemma even_zero: "even (0::int)"
+  by (simp add: even_def)
+
+lemma odd_one: "odd (1::int)"
+  by (simp add: even_def)
+
+lemmas even_odd_simps [simp] = even_def[of "number_of v",standard] even_zero 
+  odd_one even_product even_sum even_neg even_difference even_power
+
+
+subsection {* Equivalent definitions *}
+
+lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x" 
+  by (auto simp add: even_def)
+
+lemma two_times_odd_div_two_plus_one: "odd (x::int) ==> 
+    2 * (x div 2) + 1 = x"
+  apply (insert zmod_zdiv_equality [of x 2, THEN sym])
+  by (simp add: even_def)
+
+lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)"
+  apply auto
+  apply (rule exI)
+  by (erule two_times_even_div_two [THEN sym])
+
+lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)"
+  apply auto
+  apply (rule exI)
+  by (erule two_times_odd_div_two_plus_one [THEN sym])
+
+
+subsection {* even and odd for nats *}
+
+lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)"
+  by (simp add: even_nat_def)
+
+lemma even_nat_product: "even((x::nat) * y) = (even x | even y)"
+  by (simp add: even_nat_def int_mult)
+
+lemma even_nat_sum: "even ((x::nat) + y) = 
+    ((even x & even y) | (odd x & odd y))"
+  by (unfold even_nat_def, simp)
+
+lemma even_nat_difference: 
+    "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))"
+  apply (auto simp add: even_nat_def zdiff_int [THEN sym])
+  apply (case_tac "x < y", auto simp add: zdiff_int [THEN sym])
+  apply (case_tac "x < y", auto simp add: zdiff_int [THEN sym])
+  done
+
+lemma even_nat_Suc: "even (Suc x) = odd x"
+  by (simp add: even_nat_def)
+
+lemma even_nat_power: "even ((x::nat)^y) = (even x & 0 < y)"
+  by (simp add: even_nat_def int_power)
+
+lemma even_nat_zero: "even (0::nat)"
+  by (simp add: even_nat_def)
+
+lemmas even_odd_nat_simps [simp] = even_nat_def[of "number_of v",standard] 
+  even_nat_zero even_nat_Suc even_nat_product even_nat_sum even_nat_power
+
+
+subsection {* Equivalent definitions *}
+
+lemma nat_lt_two_imp_zero_or_one: "(x::nat) < Suc (Suc 0) ==> 
+    x = 0 | x = Suc 0"
+  by auto
+
+lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0"
+  apply (insert mod_div_equality [of x "Suc (Suc 0)", THEN sym])
+  apply (drule subst, assumption)
+  apply (subgoal_tac "x mod Suc (Suc 0) = 0 | x mod Suc (Suc 0) = Suc 0")
+  apply force
+  apply (subgoal_tac "0 < Suc (Suc 0)")
+  apply (frule mod_less_divisor [of "Suc (Suc 0)" x])
+  apply (erule nat_lt_two_imp_zero_or_one, auto)
+  done
+
+lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0"
+  apply (insert mod_div_equality [of x "Suc (Suc 0)", THEN sym])
+  apply (drule subst, assumption)
+  apply (subgoal_tac "x mod Suc (Suc 0) = 0 | x mod Suc (Suc 0) = Suc 0")
+  apply force 
+  apply (subgoal_tac "0 < Suc (Suc 0)")
+  apply (frule mod_less_divisor [of "Suc (Suc 0)" x])
+  apply (erule nat_lt_two_imp_zero_or_one, auto)
+  done
+
+lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)" 
+  apply (rule iffI)
+  apply (erule even_nat_mod_two_eq_zero)
+  apply (insert odd_nat_mod_two_eq_one [of x], auto)
+  done
+
+lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)"
+  apply (auto simp add: even_nat_equiv_def)
+  apply (subgoal_tac "x mod (Suc (Suc 0)) < Suc (Suc 0)")
+  apply (frule nat_lt_two_imp_zero_or_one, auto)
+  done
+
+lemma even_nat_div_two_times_two: "even (x::nat) ==> 
+    Suc (Suc 0) * (x div Suc (Suc 0)) = x"
+  apply (insert mod_div_equality [of x "Suc (Suc 0)", THEN sym])
+  apply (drule even_nat_mod_two_eq_zero, simp)
+  done
+
+lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==> 
+    Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x"  
+  apply (insert mod_div_equality [of x "Suc (Suc 0)", THEN sym])
+  apply (drule odd_nat_mod_two_eq_one, simp)
+  done
+
+lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)"
+  apply (rule iffI, rule exI)
+  apply (erule even_nat_div_two_times_two [THEN sym], auto)
+  done
+
+lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))"
+  apply (rule iffI, rule exI)
+  apply (erule odd_nat_div_two_times_two_plus_one [THEN sym], auto)
+  done
+
+subsection {* Parity and powers *}
+
+lemma minus_one_even_odd_power:
+     "(even x --> (- 1::'a::{comm_ring_1,recpower})^x = 1) & 
+      (odd x --> (- 1::'a)^x = - 1)"
+  apply (induct x)
+  apply (rule conjI)
+  apply simp
+  apply (insert even_nat_zero, blast)
+  apply (simp add: power_Suc)
+done
+
+lemma minus_one_even_power [simp]:
+     "even x ==> (- 1::'a::{comm_ring_1,recpower})^x = 1"
+  by (rule minus_one_even_odd_power [THEN conjunct1, THEN mp], assumption)
+
+lemma minus_one_odd_power [simp]:
+     "odd x ==> (- 1::'a::{comm_ring_1,recpower})^x = - 1"
+  by (rule minus_one_even_odd_power [THEN conjunct2, THEN mp], assumption)
+
+lemma neg_one_even_odd_power:
+     "(even x --> (-1::'a::{number_ring,recpower})^x = 1) & 
+      (odd x --> (-1::'a)^x = -1)"
+  apply (induct x)
+  apply (simp, simp add: power_Suc)
+  done
+
+lemma neg_one_even_power [simp]:
+     "even x ==> (-1::'a::{number_ring,recpower})^x = 1"
+  by (rule neg_one_even_odd_power [THEN conjunct1, THEN mp], assumption)
+
+lemma neg_one_odd_power [simp]:
+     "odd x ==> (-1::'a::{number_ring,recpower})^x = -1"
+  by (rule neg_one_even_odd_power [THEN conjunct2, THEN mp], assumption)
+
+lemma neg_power_if:
+     "(-x::'a::{comm_ring_1,recpower}) ^ n = 
+      (if even n then (x ^ n) else -(x ^ n))"
+  by (induct n, simp_all split: split_if_asm add: power_Suc) 
+
+lemma zero_le_even_power: "even n ==> 
+    0 <= (x::'a::{recpower,ordered_ring_strict}) ^ n"
+  apply (simp add: even_nat_equiv_def2)
+  apply (erule exE)
+  apply (erule ssubst)
+  apply (subst power_add)
+  apply (rule zero_le_square)
+  done
+
+lemma zero_le_odd_power: "odd n ==> 
+    (0 <= (x::'a::{recpower,ordered_idom}) ^ n) = (0 <= x)"
+  apply (simp add: odd_nat_equiv_def2)
+  apply (erule exE)
+  apply (erule ssubst)
+  apply (subst power_Suc)
+  apply (subst power_add)
+  apply (subst zero_le_mult_iff)
+  apply auto
+  apply (subgoal_tac "x = 0 & 0 < y")
+  apply (erule conjE, assumption)
+  apply (subst power_eq_0_iff [THEN sym])
+  apply (subgoal_tac "0 <= x^y * x^y")
+  apply simp
+  apply (rule zero_le_square)+
+done
+
+lemma zero_le_power_eq: "(0 <= (x::'a::{recpower,ordered_idom}) ^ n) = 
+    (even n | (odd n & 0 <= x))"
+  apply auto
+  apply (subst zero_le_odd_power [THEN sym])
+  apply assumption+
+  apply (erule zero_le_even_power)
+  apply (subst zero_le_odd_power) 
+  apply assumption+
+done
+
+lemma zero_less_power_eq: "(0 < (x::'a::{recpower,ordered_idom}) ^ n) = 
+    (n = 0 | (even n & x ~= 0) | (odd n & 0 < x))"
+  apply (rule iffI)
+  apply clarsimp
+  apply (rule conjI)
+  apply clarsimp
+  apply (rule ccontr)
+  apply (subgoal_tac "~ (0 <= x^n)")
+  apply simp
+  apply (subst zero_le_odd_power)
+  apply assumption 
+  apply simp
+  apply (rule notI)
+  apply (simp add: power_0_left)
+  apply (rule notI)
+  apply (simp add: power_0_left)
+  apply auto
+  apply (subgoal_tac "0 <= x^n")
+  apply (frule order_le_imp_less_or_eq)
+  apply simp
+  apply (erule zero_le_even_power)
+  apply (subgoal_tac "0 <= x^n")
+  apply (frule order_le_imp_less_or_eq)
+  apply auto
+  apply (subst zero_le_odd_power)
+  apply assumption
+  apply (erule order_less_imp_le)
+done
+
+lemma power_less_zero_eq: "((x::'a::{recpower,ordered_idom}) ^ n < 0) =
+    (odd n & x < 0)" 
+  apply (subst linorder_not_le [THEN sym])+
+  apply (subst zero_le_power_eq)
+  apply auto
+done
+
+lemma power_le_zero_eq: "((x::'a::{recpower,ordered_idom}) ^ n <= 0) =
+    (n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))"
+  apply (subst linorder_not_less [THEN sym])+
+  apply (subst zero_less_power_eq)
+  apply auto
+done
+
+lemma power_even_abs: "even n ==> 
+    (abs (x::'a::{recpower,ordered_idom}))^n = x^n"
+  apply (subst power_abs [THEN sym])
+  apply (simp add: zero_le_even_power)
+done
+
+lemma zero_less_power_nat_eq: "(0 < (x::nat) ^ n) = (n = 0 | 0 < x)"
+  by (induct n, auto)
+
+lemma power_minus_even [simp]: "even n ==> 
+    (- x)^n = (x^n::'a::{recpower,comm_ring_1})"
+  apply (subst power_minus)
+  apply simp
+done
+
+lemma power_minus_odd [simp]: "odd n ==> 
+    (- x)^n = - (x^n::'a::{recpower,comm_ring_1})"
+  apply (subst power_minus)
+  apply simp
+done
+
+(* Simplify, when the exponent is a numeral *)
+
+lemmas power_0_left_number_of = power_0_left [of "number_of w", standard]
+declare power_0_left_number_of [simp]
+
+lemmas zero_le_power_eq_number_of =
+    zero_le_power_eq [of _ "number_of w", standard]
+declare zero_le_power_eq_number_of [simp]
+
+lemmas zero_less_power_eq_number_of =
+    zero_less_power_eq [of _ "number_of w", standard]
+declare zero_less_power_eq_number_of [simp]
+
+lemmas power_le_zero_eq_number_of =
+    power_le_zero_eq [of _ "number_of w", standard]
+declare power_le_zero_eq_number_of [simp]
+
+lemmas power_less_zero_eq_number_of =
+    power_less_zero_eq [of _ "number_of w", standard]
+declare power_less_zero_eq_number_of [simp]
+
+lemmas zero_less_power_nat_eq_number_of =
+    zero_less_power_nat_eq [of _ "number_of w", standard]
+declare zero_less_power_nat_eq_number_of [simp]
+
+lemmas power_eq_0_iff_number_of = power_eq_0_iff [of _ "number_of w", standard]
+declare power_eq_0_iff_number_of [simp]
+
+lemmas power_even_abs_number_of = power_even_abs [of "number_of w" _, standard]
+declare power_even_abs_number_of [simp]
+
+
+subsection {* An Equivalence for @{term [source] "0 \<le> a^n"} *}
+
+lemma even_power_le_0_imp_0:
+     "a ^ (2*k) \<le> (0::'a::{ordered_idom,recpower}) ==> a=0"
+apply (induct k) 
+apply (auto simp add: zero_le_mult_iff mult_le_0_iff power_Suc)  
+done
+
+lemma zero_le_power_iff:
+     "(0 \<le> a^n) = (0 \<le> (a::'a::{ordered_idom,recpower}) | even n)"
+      (is "?P n")
+proof cases
+  assume even: "even n"
+  then obtain k where "n = 2*k"
+    by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2)
+  thus ?thesis by (simp add: zero_le_even_power even) 
+next
+  assume odd: "odd n"
+  then obtain k where "n = Suc(2*k)"
+    by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2)
+  thus ?thesis
+    by (auto simp add: power_Suc zero_le_mult_iff zero_le_even_power 
+             dest!: even_power_le_0_imp_0) 
+qed 
+
+subsection {* Miscellaneous *}
+
+lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2"
+  apply (subst zdiv_zadd1_eq)
+  apply (simp add: even_def)
+  done
+
+lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1"
+  apply (subst zdiv_zadd1_eq)
+  apply (simp add: even_def)
+  done
+
+lemma div_Suc: "Suc a div c = a div c + Suc 0 div c + 
+    (a mod c + Suc 0 mod c) div c"
+  apply (subgoal_tac "Suc a = a + Suc 0")
+  apply (erule ssubst)
+  apply (rule div_add1_eq, simp)
+  done
+
+lemma even_nat_plus_one_div_two: "even (x::nat) ==> 
+   (Suc x) div Suc (Suc 0) = x div Suc (Suc 0)"
+  apply (subst div_Suc)
+  apply (simp add: even_nat_equiv_def)
+  done
+
+lemma odd_nat_plus_one_div_two: "odd (x::nat) ==> 
+    (Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))"
+  apply (subst div_Suc)
+  apply (simp add: odd_nat_equiv_def)
+  done
+
+end
--- a/src/HOL/Library/Primes.thy	Wed Nov 08 22:24:54 2006 +0100
+++ b/src/HOL/Library/Primes.thy	Wed Nov 08 23:11:13 2006 +0100
@@ -7,7 +7,7 @@
 header {* Primality on nat *}
 
 theory Primes
-imports Main
+imports GCD
 begin
 
 definition
--- a/src/HOL/PreList.thy	Wed Nov 08 22:24:54 2006 +0100
+++ b/src/HOL/PreList.thy	Wed Nov 08 23:11:13 2006 +0100
@@ -7,7 +7,7 @@
 header {* A Basis for Building the Theory of Lists *}
 
 theory PreList
-imports Wellfounded_Relations Presburger Relation_Power Binomial
+imports Wellfounded_Relations Presburger Relation_Power
 begin
 
 text {*
--- a/src/HOL/Real/Float.thy	Wed Nov 08 22:24:54 2006 +0100
+++ b/src/HOL/Real/Float.thy	Wed Nov 08 23:11:13 2006 +0100
@@ -6,7 +6,7 @@
 header {* Floating Point Representation of the Reals *}
 
 theory Float
-imports Real
+imports Real Parity
 uses ("float.ML")
 begin
 
--- a/src/HOL/ex/NatSum.thy	Wed Nov 08 22:24:54 2006 +0100
+++ b/src/HOL/ex/NatSum.thy	Wed Nov 08 23:11:13 2006 +0100
@@ -5,7 +5,7 @@
 
 header {* Summing natural numbers *}
 
-theory NatSum imports Main begin
+theory NatSum imports Main Parity begin
 
 text {*
   Summing natural numbers, squares, cubes, etc.
--- a/src/HOL/ex/ROOT.ML	Wed Nov 08 22:24:54 2006 +0100
+++ b/src/HOL/ex/ROOT.ML	Wed Nov 08 23:11:13 2006 +0100
@@ -4,6 +4,9 @@
 Miscellaneous examples for Higher-Order Logic.
 *)
 
+no_document use_thy "Parity";
+no_document use_thy "GCD";
+
 no_document time_use_thy "Classpackage";
 no_document time_use_thy "Codegenerator";
 no_document time_use_thy "CodeCollections";
--- a/src/HOL/ex/Reflected_Presburger.thy	Wed Nov 08 22:24:54 2006 +0100
+++ b/src/HOL/ex/Reflected_Presburger.thy	Wed Nov 08 23:11:13 2006 +0100
@@ -9,7 +9,7 @@
 header {* Quantifier elimination for Presburger arithmetic *}
 
 theory Reflected_Presburger
-imports Main
+imports Main GCD
 begin
 
 (* Shadow syntax for integer terms *)