updated;
authorwenzelm
Thu, 26 Apr 2007 15:41:49 +0200
changeset 22813 882513df2472
parent 22812 1fe9d6384b11
child 22814 4cd25f1706bb
updated;
doc-src/IsarAdvanced/Classes/Thy/code_examples/Classes.hs
doc-src/IsarAdvanced/Classes/Thy/code_examples/classes.ML
--- a/doc-src/IsarAdvanced/Classes/Thy/code_examples/Classes.hs	Thu Apr 26 14:25:37 2007 +0200
+++ b/doc-src/IsarAdvanced/Classes/Thy/code_examples/Classes.hs	Thu Apr 26 15:41:49 2007 +0200
@@ -1,51 +1,61 @@
 module Classes where {
 
-import Nat;
-import Integer;
+import qualified Integer;
+import qualified Nat;
 
 class Semigroup a where {
   mult :: a -> a -> a;
 };
 
-class (Semigroup a) => Monoidl a where {
+class (Classes.Semigroup a) => Monoidl a where {
   neutral :: a;
 };
 
-class (Monoidl a) => Group a where {
+class (Classes.Monoidl a) => Group a where {
   inverse :: a -> a;
 };
 
-inverse_int :: Integer -> Integer;
-inverse_int i = negate i;
+inverse_int :: Integer.Inta -> Integer.Inta;
+inverse_int i = Integer.uminus_int i;
 
-neutral_int :: Integer;
-neutral_int = 0;
+neutral_int :: Integer.Inta;
+neutral_int = Integer.Number_of_int Integer.Pls;
 
-mult_int :: Integer -> Integer -> Integer;
-mult_int i j = i + j;
+mult_int :: Integer.Inta -> Integer.Inta -> Integer.Inta;
+mult_int i j = Integer.plus_int i j;
 
-instance Semigroup Integer where {
-  mult = mult_int;
+instance Classes.Semigroup Integer.Inta where {
+  mult = Classes.mult_int;
 };
 
-instance Monoidl Integer where {
-  neutral = neutral_int;
+instance Classes.Monoidl Integer.Inta where {
+  neutral = Classes.neutral_int;
+};
+
+instance Classes.Group Integer.Inta where {
+  inverse = Classes.inverse_int;
 };
 
-instance Group Integer where {
-  inverse = inverse_int;
-};
+pow_nat :: (Classes.Monoidl b) => Nat.Nat -> b -> b;
+pow_nat (Nat.Suc n) x = Classes.mult x (Classes.pow_nat n x);
+pow_nat Nat.Zero_nat x = Classes.neutral;
 
-pow_nat :: (Monoidl a) => Nat -> a -> a;
-pow_nat (Suc n) x = mult x (pow_nat n x);
-pow_nat Zero_nat x = neutral;
+pow_int :: (Classes.Group a) => Integer.Inta -> a -> a;
+pow_int k x =
+  (if Integer.less_eq_int (Integer.Number_of_int Integer.Pls) k
+    then Classes.pow_nat (Integer.nat k) x
+    else Classes.inverse
+           (Classes.pow_nat (Integer.nat (Integer.uminus_int k)) x));
 
-pow_int :: (Group a) => Integer -> a -> a;
-pow_int k x =
-  (if 0 <= k then pow_nat (nat k) x
-    else inverse (pow_nat (nat (negate k)) x));
-
-example :: Integer;
-example = pow_int 10 (-2);
+example :: Integer.Inta;
+example =
+  Classes.pow_int
+    (Integer.Number_of_int
+      (Integer.Bit
+        (Integer.Bit
+          (Integer.Bit (Integer.Bit Integer.Pls Integer.B1) Integer.B0)
+          Integer.B1)
+        Integer.B0))
+    (Integer.Number_of_int (Integer.Bit Integer.Min Integer.B0));
 
 }
--- a/doc-src/IsarAdvanced/Classes/Thy/code_examples/classes.ML	Thu Apr 26 14:25:37 2007 +0200
+++ b/doc-src/IsarAdvanced/Classes/Thy/code_examples/classes.ML	Thu Apr 26 15:41:49 2007 +0200
@@ -11,9 +11,73 @@
 structure Integer = 
 struct
 
+datatype bit = B0 | B1;
+
+datatype int = Pls | Min | Bit of int * bit | Number_of_int of int;
+
+fun pred (Bit (k, B0)) = Bit (pred k, B1)
+  | pred (Bit (k, B1)) = Bit (k, B0)
+  | pred Min = Bit (Min, B0)
+  | pred Pls = Min;
+
+fun uminus_int (Number_of_int w) = Number_of_int (uminus_int w)
+  | uminus_int (Bit (k, B0)) = Bit (uminus_int k, B0)
+  | uminus_int (Bit (k, B1)) = Bit (pred (uminus_int k), B1)
+  | uminus_int Min = Bit (Pls, B1)
+  | uminus_int Pls = Pls;
+
+fun succ (Bit (k, B0)) = Bit (k, B1)
+  | succ (Bit (k, B1)) = Bit (succ k, B0)
+  | succ Min = Pls
+  | succ Pls = Bit (Pls, B1);
+
+fun plus_int (Number_of_int v) (Number_of_int w) =
+  Number_of_int (plus_int v w)
+  | plus_int k Min = pred k
+  | plus_int k Pls = k
+  | plus_int (Bit (k, B1)) (Bit (l, B1)) = Bit (plus_int k (succ l), B0)
+  | plus_int (Bit (k, B1)) (Bit (l, B0)) = Bit (plus_int k l, B1)
+  | plus_int (Bit (k, B0)) (Bit (l, b)) = Bit (plus_int k l, b)
+  | plus_int Min k = pred k
+  | plus_int Pls k = k;
+
+fun minus_int (Number_of_int v) (Number_of_int w) =
+  Number_of_int (plus_int v (uminus_int w))
+  | minus_int z w = plus_int z (uminus_int w);
+
+fun less_eq_int (Number_of_int k) (Number_of_int l) = less_eq_int k l
+  | less_eq_int (Bit (k1, B1)) (Bit (k2, B0)) = less_int k1 k2
+  | less_eq_int (Bit (k1, v)) (Bit (k2, B1)) = less_eq_int k1 k2
+  | less_eq_int (Bit (k1, B0)) (Bit (k2, v)) = less_eq_int k1 k2
+  | less_eq_int (Bit (k, v)) Min = less_eq_int k Min
+  | less_eq_int (Bit (k, B1)) Pls = less_int k Pls
+  | less_eq_int (Bit (k, B0)) Pls = less_eq_int k Pls
+  | less_eq_int Min (Bit (k, B1)) = less_eq_int Min k
+  | less_eq_int Min (Bit (k, B0)) = less_int Min k
+  | less_eq_int Min Min = true
+  | less_eq_int Min Pls = true
+  | less_eq_int Pls (Bit (k, v)) = less_eq_int Pls k
+  | less_eq_int Pls Min = false
+  | less_eq_int Pls Pls = true
+and less_int (Number_of_int k) (Number_of_int l) = less_int k l
+  | less_int (Bit (k1, B0)) (Bit (k2, B1)) = less_eq_int k1 k2
+  | less_int (Bit (k1, B1)) (Bit (k2, v)) = less_int k1 k2
+  | less_int (Bit (k1, v)) (Bit (k2, B0)) = less_int k1 k2
+  | less_int (Bit (k, B1)) Min = less_int k Min
+  | less_int (Bit (k, B0)) Min = less_eq_int k Min
+  | less_int (Bit (k, v)) Pls = less_int k Pls
+  | less_int Min (Bit (k, v)) = less_int Min k
+  | less_int Min Min = false
+  | less_int Min Pls = true
+  | less_int Pls (Bit (k, B1)) = less_eq_int Pls k
+  | less_int Pls (Bit (k, B0)) = less_int Pls k
+  | less_int Pls Min = false
+  | less_int Pls Pls = false;
+
 fun nat_aux n i =
-  (if IntInf.<= (i, (0 : IntInf.int)) then n
-    else nat_aux (Nat.Suc n) (IntInf.- (i, (1 : IntInf.int))));
+  (if less_eq_int i (Number_of_int Pls) then n
+    else nat_aux (Nat.Suc n)
+           (minus_int i (Number_of_int (Bit (Pls, B1)))));
 
 fun nat i = nat_aux Nat.Zero_nat i;
 
@@ -34,34 +98,43 @@
 fun group_monoidl (A_:'a group) = #Classes__group_monoidl A_;
 fun inverse (A_:'a group) = #inverse A_;
 
-fun inverse_int i = IntInf.~ i;
+fun inverse_int i = Integer.uminus_int i;
 
-val neutral_int : IntInf.int = (0 : IntInf.int);
+val neutral_int : Integer.int = Integer.Number_of_int Integer.Pls;
 
-fun mult_int i j = IntInf.+ (i, j);
+fun mult_int i j = Integer.plus_int i j;
 
-val semigroup_int = {mult = mult_int} : IntInf.int semigroup;
+val semigroup_int = {mult = mult_int} : Integer.int semigroup;
 
 val monoidl_int =
   {Classes__monoidl_semigroup = semigroup_int, neutral = neutral_int} :
-  IntInf.int monoidl;
+  Integer.int monoidl;
 
 val group_int =
   {Classes__group_monoidl = monoidl_int, inverse = inverse_int} :
-  IntInf.int group;
+  Integer.int group;
 
-fun pow_nat A_ (Nat.Suc n) x =
-  mult (monoidl_semigroup A_) x (pow_nat A_ n x)
-  | pow_nat A_ Nat.Zero_nat x = neutral A_;
+fun pow_nat B_ (Nat.Suc n) x =
+  mult (monoidl_semigroup B_) x (pow_nat B_ n x)
+  | pow_nat B_ Nat.Zero_nat x = neutral B_;
 
 fun pow_int A_ k x =
-  (if IntInf.<= ((0 : IntInf.int), k)
+  (if Integer.less_eq_int (Integer.Number_of_int Integer.Pls) k
     then pow_nat (group_monoidl A_) (Integer.nat k) x
     else inverse A_
-           (pow_nat (group_monoidl A_) (Integer.nat (IntInf.~ k)) x));
+           (pow_nat (group_monoidl A_)
+             (Integer.nat (Integer.uminus_int k)) x));
 
-val example : IntInf.int =
-  pow_int group_int (10 : IntInf.int) (~2 : IntInf.int);
+val example : Integer.int =
+  pow_int group_int
+    (Integer.Number_of_int
+      (Integer.Bit
+        (Integer.Bit
+           (Integer.Bit
+              (Integer.Bit (Integer.Pls, Integer.B1), Integer.B0),
+             Integer.B1),
+          Integer.B0)))
+    (Integer.Number_of_int (Integer.Bit (Integer.Min, Integer.B0)));
 
 end; (*struct Classes*)