src/HOL/Transcendental.thy
author wenzelm
Sat, 08 Sep 2018 22:43:25 +0200
changeset 68955 0851db8cde12
parent 68774 9fc50a3e07f6
child 69020 4f94e262976d
permissions -rw-r--r--
more robust test: virtualization may provide misleading information;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     1
(*  Title:      HOL/Transcendental.thy
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     2
    Author:     Jacques D. Fleuriot, University of Cambridge, University of Edinburgh
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     3
    Author:     Lawrence C Paulson
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
     4
    Author:     Jeremy Avigad
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     5
*)
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     6
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
     7
section \<open>Power Series, Transcendental Functions etc.\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
     8
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
     9
theory Transcendental
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
    10
imports Series Deriv NthRoot
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
    11
begin
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    12
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
    13
text \<open>A theorem about the factcorial function on the reals.\<close>
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    14
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    15
lemma square_fact_le_2_fact: "fact n * fact n \<le> (fact (2 * n) :: real)"
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    16
proof (induct n)
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    17
  case 0
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    18
  then show ?case by simp
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    19
next
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    20
  case (Suc n)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    21
  have "(fact (Suc n)) * (fact (Suc n)) = of_nat (Suc n) * of_nat (Suc n) * (fact n * fact n :: real)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    22
    by (simp add: field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    23
  also have "\<dots> \<le> of_nat (Suc n) * of_nat (Suc n) * fact (2 * n)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    24
    by (rule mult_left_mono [OF Suc]) simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    25
  also have "\<dots> \<le> of_nat (Suc (Suc (2 * n))) * of_nat (Suc (2 * n)) * fact (2 * n)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    26
    by (rule mult_right_mono)+ (auto simp: field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    27
  also have "\<dots> = fact (2 * Suc n)" by (simp add: field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    28
  finally show ?case .
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    29
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    30
62347
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    31
lemma fact_in_Reals: "fact n \<in> \<real>"
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    32
  by (induction n) auto
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    33
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    34
lemma of_real_fact [simp]: "of_real (fact n) = fact n"
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    35
  by (metis of_nat_fact of_real_of_nat_eq)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
    36
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
    37
lemma pochhammer_of_real: "pochhammer (of_real x) n = of_real (pochhammer x n)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
    38
  by (simp add: pochhammer_prod)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
    39
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    40
lemma norm_fact [simp]: "norm (fact n :: 'a::real_normed_algebra_1) = fact n"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    41
proof -
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    42
  have "(fact n :: 'a) = of_real (fact n)"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    43
    by simp
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    44
  also have "norm \<dots> = fact n"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    45
    by (subst norm_of_real) simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    46
  finally show ?thesis .
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    47
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    48
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    49
lemma root_test_convergence:
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    50
  fixes f :: "nat \<Rightarrow> 'a::banach"
67443
3abf6a722518 standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents: 67399
diff changeset
    51
  assumes f: "(\<lambda>n. root n (norm (f n))) \<longlonglongrightarrow> x" \<comment> \<open>could be weakened to lim sup\<close>
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    52
    and "x < 1"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    53
  shows "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    54
proof -
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    55
  have "0 \<le> x"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    56
    by (rule LIMSEQ_le[OF tendsto_const f]) (auto intro!: exI[of _ 1])
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    57
  from \<open>x < 1\<close> obtain z where z: "x < z" "z < 1"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    58
    by (metis dense)
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    59
  from f \<open>x < z\<close> have "eventually (\<lambda>n. root n (norm (f n)) < z) sequentially"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    60
    by (rule order_tendstoD)
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    61
  then have "eventually (\<lambda>n. norm (f n) \<le> z^n) sequentially"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    62
    using eventually_ge_at_top
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    63
  proof eventually_elim
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    64
    fix n
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    65
    assume less: "root n (norm (f n)) < z" and n: "1 \<le> n"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    66
    from power_strict_mono[OF less, of n] n show "norm (f n) \<le> z ^ n"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    67
      by simp
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    68
  qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    69
  then show "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    70
    unfolding eventually_sequentially
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    71
    using z \<open>0 \<le> x\<close> by (auto intro!: summable_comparison_test[OF _  summable_geometric])
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    72
qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    73
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    74
subsection \<open>More facts about binomial coefficients\<close>
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    75
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    76
text \<open>
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
    77
  These facts could have been proven before, but having real numbers
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    78
  makes the proofs a lot easier.
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    79
\<close>
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    80
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    81
lemma central_binomial_odd:
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    82
  "odd n \<Longrightarrow> n choose (Suc (n div 2)) = n choose (n div 2)"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    83
proof -
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    84
  assume "odd n"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    85
  hence "Suc (n div 2) \<le> n" by presburger
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    86
  hence "n choose (Suc (n div 2)) = n choose (n - Suc (n div 2))"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    87
    by (rule binomial_symmetric)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    88
  also from \<open>odd n\<close> have "n - Suc (n div 2) = n div 2" by presburger
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    89
  finally show ?thesis .
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    90
qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    91
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    92
lemma binomial_less_binomial_Suc:
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    93
  assumes k: "k < n div 2"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    94
  shows   "n choose k < n choose (Suc k)"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    95
proof -
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    96
  from k have k': "k \<le> n" "Suc k \<le> n" by simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    97
  from k' have "real (n choose k) = fact n / (fact k * fact (n - k))"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    98
    by (simp add: binomial_fact)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    99
  also from k' have "n - k = Suc (n - Suc k)" by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   100
  also from k' have "fact \<dots> = (real n - real k) * fact (n - Suc k)"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   101
    by (subst fact_Suc) (simp_all add: of_nat_diff)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   102
  also from k have "fact k = fact (Suc k) / (real k + 1)" by (simp add: field_simps)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   103
  also have "fact n / (fact (Suc k) / (real k + 1) * ((real n - real k) * fact (n - Suc k))) =
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   104
               (n choose (Suc k)) * ((real k + 1) / (real n - real k))"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   105
    using k by (simp add: divide_simps binomial_fact)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   106
  also from assms have "(real k + 1) / (real n - real k) < 1" by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   107
  finally show ?thesis using k by (simp add: mult_less_cancel_left)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   108
qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   109
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   110
lemma binomial_strict_mono:
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   111
  assumes "k < k'" "2*k' \<le> n"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   112
  shows   "n choose k < n choose k'"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   113
proof -
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   114
  from assms have "k \<le> k' - 1" by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   115
  thus ?thesis
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   116
  proof (induction rule: inc_induct)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   117
    case base
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   118
    with assms binomial_less_binomial_Suc[of "k' - 1" n]
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   119
      show ?case by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   120
  next
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   121
    case (step k)
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   122
    from step.prems step.hyps assms have "n choose k < n choose (Suc k)"
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   123
      by (intro binomial_less_binomial_Suc) simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   124
    also have "\<dots> < n choose k'" by (rule step.IH)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   125
    finally show ?case .
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   126
  qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   127
qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   128
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   129
lemma binomial_mono:
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   130
  assumes "k \<le> k'" "2*k' \<le> n"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   131
  shows   "n choose k \<le> n choose k'"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   132
  using assms binomial_strict_mono[of k k' n] by (cases "k = k'") simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   133
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   134
lemma binomial_strict_antimono:
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   135
  assumes "k < k'" "2 * k \<ge> n" "k' \<le> n"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   136
  shows   "n choose k > n choose k'"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   137
proof -
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   138
  from assms have "n choose (n - k) > n choose (n - k')"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   139
    by (intro binomial_strict_mono) (simp_all add: algebra_simps)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   140
  with assms show ?thesis by (simp add: binomial_symmetric [symmetric])
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   141
qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   142
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   143
lemma binomial_antimono:
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   144
  assumes "k \<le> k'" "k \<ge> n div 2" "k' \<le> n"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   145
  shows   "n choose k \<ge> n choose k'"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   146
proof (cases "k = k'")
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   147
  case False
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   148
  note not_eq = False
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   149
  show ?thesis
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   150
  proof (cases "k = n div 2 \<and> odd n")
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   151
    case False
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   152
    with assms(2) have "2*k \<ge> n" by presburger
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   153
    with not_eq assms binomial_strict_antimono[of k k' n]
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   154
      show ?thesis by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   155
  next
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   156
    case True
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   157
    have "n choose k' \<le> n choose (Suc (n div 2))"
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   158
    proof (cases "k' = Suc (n div 2)")
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   159
      case False
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   160
      with assms True not_eq have "Suc (n div 2) < k'" by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   161
      with assms binomial_strict_antimono[of "Suc (n div 2)" k' n] True
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   162
        show ?thesis by auto
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   163
    qed simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   164
    also from True have "\<dots> = n choose k" by (simp add: central_binomial_odd)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   165
    finally show ?thesis .
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   166
  qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   167
qed simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   168
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   169
lemma binomial_maximum: "n choose k \<le> n choose (n div 2)"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   170
proof -
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   171
  have "k \<le> n div 2 \<longleftrightarrow> 2*k \<le> n" by linarith
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   172
  consider "2*k \<le> n" | "2*k \<ge> n" "k \<le> n" | "k > n" by linarith
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   173
  thus ?thesis
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   174
  proof cases
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   175
    case 1
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   176
    thus ?thesis by (intro binomial_mono) linarith+
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   177
  next
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   178
    case 2
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   179
    thus ?thesis by (intro binomial_antimono) simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   180
  qed (simp_all add: binomial_eq_0)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   181
qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   182
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   183
lemma binomial_maximum': "(2*n) choose k \<le> (2*n) choose n"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   184
  using binomial_maximum[of "2*n"] by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   185
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   186
lemma central_binomial_lower_bound:
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   187
  assumes "n > 0"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   188
  shows   "4^n / (2*real n) \<le> real ((2*n) choose n)"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   189
proof -
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   190
  from binomial[of 1 1 "2*n"]
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   191
    have "4 ^ n = (\<Sum>k\<le>2*n. (2*n) choose k)"
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   192
    by (simp add: power_mult power2_eq_square One_nat_def [symmetric] del: One_nat_def)
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   193
  also have "{..2*n} = {0<..<2*n} \<union> {0,2*n}" by auto
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   194
  also have "(\<Sum>k\<in>\<dots>. (2*n) choose k) =
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   195
             (\<Sum>k\<in>{0<..<2*n}. (2*n) choose k) + (\<Sum>k\<in>{0,2*n}. (2*n) choose k)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   196
    by (subst sum.union_disjoint) auto
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   197
  also have "(\<Sum>k\<in>{0,2*n}. (2*n) choose k) \<le> (\<Sum>k\<le>1. (n choose k)\<^sup>2)"
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   198
    by (cases n) simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   199
  also from assms have "\<dots> \<le> (\<Sum>k\<le>n. (n choose k)\<^sup>2)"
65680
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
   200
    by (intro sum_mono2) auto
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   201
  also have "\<dots> = (2*n) choose n" by (rule choose_square_sum)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   202
  also have "(\<Sum>k\<in>{0<..<2*n}. (2*n) choose k) \<le> (\<Sum>k\<in>{0<..<2*n}. (2*n) choose n)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   203
    by (intro sum_mono binomial_maximum')
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   204
  also have "\<dots> = card {0<..<2*n} * ((2*n) choose n)" by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   205
  also have "card {0<..<2*n} \<le> 2*n - 1" by (cases n) simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   206
  also have "(2 * n - 1) * (2 * n choose n) + (2 * n choose n) = ((2*n) choose n) * (2*n)"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   207
    using assms by (simp add: algebra_simps)
63834
6a757f36997e tuned proofs;
wenzelm
parents: 63766
diff changeset
   208
  finally have "4 ^ n \<le> (2 * n choose n) * (2 * n)" by simp_all
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   209
  hence "real (4 ^ n) \<le> real ((2 * n choose n) * (2 * n))"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   210
    by (subst of_nat_le_iff)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   211
  with assms show ?thesis by (simp add: field_simps)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   212
qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   213
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   214
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   215
subsection \<open>Properties of Power Series\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   216
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   217
lemma powser_zero [simp]: "(\<Sum>n. f n * 0 ^ n) = f 0"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   218
  for f :: "nat \<Rightarrow> 'a::real_normed_algebra_1"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   219
proof -
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   220
  have "(\<Sum>n<1. f n * 0 ^ n) = (\<Sum>n. f n * 0 ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   221
    by (subst suminf_finite[where N="{0}"]) (auto simp: power_0_left)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   222
  then show ?thesis by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   223
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   224
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   225
lemma powser_sums_zero: "(\<lambda>n. a n * 0^n) sums a 0"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   226
  for a :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   227
  using sums_finite [of "{0}" "\<lambda>n. a n * 0 ^ n"]
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   228
  by simp
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   229
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   230
lemma powser_sums_zero_iff [simp]: "(\<lambda>n. a n * 0^n) sums x \<longleftrightarrow> a 0 = x"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   231
  for a :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   232
  using powser_sums_zero sums_unique2 by blast
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   233
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   234
text \<open>
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   235
  Power series has a circle or radius of convergence: if it sums for \<open>x\<close>,
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   236
  then it sums absolutely for \<open>z\<close> with @{term "\<bar>z\<bar> < \<bar>x\<bar>"}.\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   237
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   238
lemma powser_insidea:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   239
  fixes x z :: "'a::real_normed_div_algebra"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   240
  assumes 1: "summable (\<lambda>n. f n * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   241
    and 2: "norm z < norm x"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   242
  shows "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   243
proof -
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   244
  from 2 have x_neq_0: "x \<noteq> 0" by clarsimp
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   245
  from 1 have "(\<lambda>n. f n * x^n) \<longlonglongrightarrow> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   246
    by (rule summable_LIMSEQ_zero)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   247
  then have "convergent (\<lambda>n. f n * x^n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   248
    by (rule convergentI)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   249
  then have "Cauchy (\<lambda>n. f n * x^n)"
44726
8478eab380e9 generalize some lemmas
huffman
parents: 44725
diff changeset
   250
    by (rule convergent_Cauchy)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   251
  then have "Bseq (\<lambda>n. f n * x^n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   252
    by (rule Cauchy_Bseq)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   253
  then obtain K where 3: "0 < K" and 4: "\<forall>n. norm (f n * x^n) \<le> K"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   254
    by (auto simp: Bseq_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   255
  have "\<exists>N. \<forall>n\<ge>N. norm (norm (f n * z ^ n)) \<le> K * norm (z ^ n) * inverse (norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   256
  proof (intro exI allI impI)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   257
    fix n :: nat
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   258
    assume "0 \<le> n"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   259
    have "norm (norm (f n * z ^ n)) * norm (x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   260
          norm (f n * x^n) * norm (z ^ n)"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   261
      by (simp add: norm_mult abs_mult)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   262
    also have "\<dots> \<le> K * norm (z ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   263
      by (simp only: mult_right_mono 4 norm_ge_zero)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   264
    also have "\<dots> = K * norm (z ^ n) * (inverse (norm (x^n)) * norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   265
      by (simp add: x_neq_0)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   266
    also have "\<dots> = K * norm (z ^ n) * inverse (norm (x^n)) * norm (x^n)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   267
      by (simp only: mult.assoc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   268
    finally show "norm (norm (f n * z ^ n)) \<le> K * norm (z ^ n) * inverse (norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   269
      by (simp add: mult_le_cancel_right x_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   270
  qed
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   271
  moreover have "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x^n)))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   272
  proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   273
    from 2 have "norm (norm (z * inverse x)) < 1"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   274
      using x_neq_0
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   275
      by (simp add: norm_mult nonzero_norm_inverse divide_inverse [where 'a=real, symmetric])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   276
    then have "summable (\<lambda>n. norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   277
      by (rule summable_geometric)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   278
    then have "summable (\<lambda>n. K * norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   279
      by (rule summable_mult)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   280
    then show "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x^n)))"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   281
      using x_neq_0
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   282
      by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   283
          power_inverse norm_power mult.assoc)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   284
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   285
  ultimately show "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   286
    by (rule summable_comparison_test)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   287
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   288
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   289
lemma powser_inside:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   290
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   291
  shows
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   292
    "summable (\<lambda>n. f n * (x^n)) \<Longrightarrow> norm z < norm x \<Longrightarrow>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   293
      summable (\<lambda>n. f n * (z ^ n))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   294
  by (rule powser_insidea [THEN summable_norm_cancel])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   295
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   296
lemma powser_times_n_limit_0:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   297
  fixes x :: "'a::{real_normed_div_algebra,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   298
  assumes "norm x < 1"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   299
    shows "(\<lambda>n. of_nat n * x ^ n) \<longlonglongrightarrow> 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   300
proof -
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   301
  have "norm x / (1 - norm x) \<ge> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   302
    using assms by (auto simp: divide_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   303
  moreover obtain N where N: "norm x / (1 - norm x) < of_int N"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   304
    using ex_le_of_int by (meson ex_less_of_int)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   305
  ultimately have N0: "N>0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   306
    by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   307
  then have *: "real_of_int (N + 1) * norm x / real_of_int N < 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   308
    using N assms by (auto simp: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   309
  have **: "real_of_int N * (norm x * (real_of_nat (Suc n) * norm (x ^ n))) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   310
      real_of_nat n * (norm x * ((1 + N) * norm (x ^ n)))" if "N \<le> int n" for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   311
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   312
    from that have "real_of_int N * real_of_nat (Suc n) \<le> real_of_nat n * real_of_int (1 + N)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   313
      by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   314
    then have "(real_of_int N * real_of_nat (Suc n)) * (norm x * norm (x ^ n)) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   315
        (real_of_nat n *  (1 + N)) * (norm x * norm (x ^ n))"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   316
      using N0 mult_mono by fastforce
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   317
    then show ?thesis
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   318
      by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   319
  qed
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   320
  show ?thesis using *
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   321
    by (rule summable_LIMSEQ_zero [OF summable_ratio_test, where N1="nat N"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   322
      (simp add: N0 norm_mult field_simps ** del: of_nat_Suc of_int_add)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   323
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   324
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   325
corollary lim_n_over_pown:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   326
  fixes x :: "'a::{real_normed_field,banach}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   327
  shows "1 < norm x \<Longrightarrow> ((\<lambda>n. of_nat n / x^n) \<longlongrightarrow> 0) sequentially"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   328
  using powser_times_n_limit_0 [of "inverse x"]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   329
  by (simp add: norm_divide divide_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   330
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   331
lemma sum_split_even_odd:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   332
  fixes f :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   333
  shows "(\<Sum>i<2 * n. if even i then f i else g i) = (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1))"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   334
proof (induct n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   335
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   336
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   337
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   338
  case (Suc n)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   339
  have "(\<Sum>i<2 * Suc n. if even i then f i else g i) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   340
    (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1)) + (f (2 * n) + g (2 * n + 1))"
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
   341
    using Suc.hyps unfolding One_nat_def by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   342
  also have "\<dots> = (\<Sum>i<Suc n. f (2 * i)) + (\<Sum>i<Suc n. g (2 * i + 1))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   343
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   344
  finally show ?case .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   345
qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   346
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   347
lemma sums_if':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   348
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   349
  assumes "g sums x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   350
  shows "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   351
  unfolding sums_def
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   352
proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   353
  fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   354
  assume "0 < r"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   355
  from \<open>g sums x\<close>[unfolded sums_def, THEN LIMSEQ_D, OF this]
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   356
  obtain no where no_eq: "\<And>n. n \<ge> no \<Longrightarrow> (norm (sum g {..<n} - x) < r)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   357
    by blast
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   358
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   359
  let ?SUM = "\<lambda> m. \<Sum>i<m. if even i then 0 else g ((i - 1) div 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   360
  have "(norm (?SUM m - x) < r)" if "m \<ge> 2 * no" for m
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   361
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   362
    from that have "m div 2 \<ge> no" by auto
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   363
    have sum_eq: "?SUM (2 * (m div 2)) = sum g {..< m div 2}"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   364
      using sum_split_even_odd by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   365
    then have "(norm (?SUM (2 * (m div 2)) - x) < r)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   366
      using no_eq unfolding sum_eq using \<open>m div 2 \<ge> no\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   367
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   368
    have "?SUM (2 * (m div 2)) = ?SUM m"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   369
    proof (cases "even m")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   370
      case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   371
      then show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   372
        by (auto simp: even_two_times_div_two)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   373
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   374
      case False
58834
773b378d9313 more simp rules concerning dvd and even/odd
haftmann
parents: 58740
diff changeset
   375
      then have eq: "Suc (2 * (m div 2)) = m" by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   376
      then have "even (2 * (m div 2))" using \<open>odd m\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   377
      have "?SUM m = ?SUM (Suc (2 * (m div 2)))" unfolding eq ..
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   378
      also have "\<dots> = ?SUM (2 * (m div 2))" using \<open>even (2 * (m div 2))\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   379
      finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   380
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   381
    ultimately show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   382
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   383
  then show "\<exists>no. \<forall> m \<ge> no. norm (?SUM m - x) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   384
    by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   385
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   386
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   387
lemma sums_if:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   388
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   389
  assumes "g sums x" and "f sums y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   390
  shows "(\<lambda> n. if even n then f (n div 2) else g ((n - 1) div 2)) sums (x + y)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   391
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   392
  let ?s = "\<lambda> n. if even n then 0 else f ((n - 1) div 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   393
  have if_sum: "(if B then (0 :: real) else E) + (if B then T else 0) = (if B then T else E)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   394
    for B T E
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   395
    by (cases B) auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   396
  have g_sums: "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   397
    using sums_if'[OF \<open>g sums x\<close>] .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   398
  have if_eq: "\<And>B T E. (if \<not> B then T else E) = (if B then E else T)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   399
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   400
  have "?s sums y" using sums_if'[OF \<open>f sums y\<close>] .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   401
  from this[unfolded sums_def, THEN LIMSEQ_Suc]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   402
  have "(\<lambda>n. if even n then f (n div 2) else 0) sums y"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   403
    by (simp add: lessThan_Suc_eq_insert_0 sum_atLeast1_atMost_eq image_Suc_lessThan
63566
e5abbdee461a more accurate cong del;
wenzelm
parents: 63558
diff changeset
   404
        if_eq sums_def cong del: if_weak_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   405
  from sums_add[OF g_sums this] show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   406
    by (simp only: if_sum)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   407
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   408
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   409
subsection \<open>Alternating series test / Leibniz formula\<close>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   410
(* FIXME: generalise these results from the reals via type classes? *)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   411
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   412
lemma sums_alternating_upper_lower:
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   413
  fixes a :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   414
  assumes mono: "\<And>n. a (Suc n) \<le> a n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   415
    and a_pos: "\<And>n. 0 \<le> a n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   416
    and "a \<longlonglongrightarrow> 0"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   417
  shows "\<exists>l. ((\<forall>n. (\<Sum>i<2*n. (- 1)^i*a i) \<le> l) \<and> (\<lambda> n. \<Sum>i<2*n. (- 1)^i*a i) \<longlonglongrightarrow> l) \<and>
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   418
             ((\<forall>n. l \<le> (\<Sum>i<2*n + 1. (- 1)^i*a i)) \<and> (\<lambda> n. \<Sum>i<2*n + 1. (- 1)^i*a i) \<longlonglongrightarrow> l)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   419
  (is "\<exists>l. ((\<forall>n. ?f n \<le> l) \<and> _) \<and> ((\<forall>n. l \<le> ?g n) \<and> _)")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   420
proof (rule nested_sequence_unique)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   421
  have fg_diff: "\<And>n. ?f n - ?g n = - a (2 * n)" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   422
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   423
  show "\<forall>n. ?f n \<le> ?f (Suc n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   424
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   425
    show "?f n \<le> ?f (Suc n)" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   426
      using mono[of "2*n"] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   427
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   428
  show "\<forall>n. ?g (Suc n) \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   429
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   430
    show "?g (Suc n) \<le> ?g n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   431
      using mono[of "Suc (2*n)"] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   432
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   433
  show "\<forall>n. ?f n \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   434
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   435
    show "?f n \<le> ?g n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   436
      using fg_diff a_pos by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   437
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   438
  show "(\<lambda>n. ?f n - ?g n) \<longlonglongrightarrow> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   439
    unfolding fg_diff
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   440
  proof (rule LIMSEQ_I)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   441
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   442
    assume "0 < r"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   443
    with \<open>a \<longlonglongrightarrow> 0\<close>[THEN LIMSEQ_D] obtain N where "\<And> n. n \<ge> N \<Longrightarrow> norm (a n - 0) < r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   444
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   445
    then have "\<forall>n \<ge> N. norm (- a (2 * n) - 0) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   446
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   447
    then show "\<exists>N. \<forall>n \<ge> N. norm (- a (2 * n) - 0) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   448
      by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   449
  qed
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   450
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   451
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   452
lemma summable_Leibniz':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   453
  fixes a :: "nat \<Rightarrow> real"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   454
  assumes a_zero: "a \<longlonglongrightarrow> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   455
    and a_pos: "\<And>n. 0 \<le> a n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   456
    and a_monotone: "\<And>n. a (Suc n) \<le> a n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   457
  shows summable: "summable (\<lambda> n. (-1)^n * a n)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   458
    and "\<And>n. (\<Sum>i<2*n. (-1)^i*a i) \<le> (\<Sum>i. (-1)^i*a i)"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   459
    and "(\<lambda>n. \<Sum>i<2*n. (-1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (-1)^i*a i)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   460
    and "\<And>n. (\<Sum>i. (-1)^i*a i) \<le> (\<Sum>i<2*n+1. (-1)^i*a i)"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   461
    and "(\<lambda>n. \<Sum>i<2*n+1. (-1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (-1)^i*a i)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   462
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   463
  let ?S = "\<lambda>n. (-1)^n * a n"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   464
  let ?P = "\<lambda>n. \<Sum>i<n. ?S i"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   465
  let ?f = "\<lambda>n. ?P (2 * n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   466
  let ?g = "\<lambda>n. ?P (2 * n + 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   467
  obtain l :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   468
    where below_l: "\<forall> n. ?f n \<le> l"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   469
      and "?f \<longlonglongrightarrow> l"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   470
      and above_l: "\<forall> n. l \<le> ?g n"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   471
      and "?g \<longlonglongrightarrow> l"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   472
    using sums_alternating_upper_lower[OF a_monotone a_pos a_zero] by blast
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   473
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   474
  let ?Sa = "\<lambda>m. \<Sum>n<m. ?S n"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   475
  have "?Sa \<longlonglongrightarrow> l"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   476
  proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   477
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   478
    assume "0 < r"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   479
    with \<open>?f \<longlonglongrightarrow> l\<close>[THEN LIMSEQ_D]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   480
    obtain f_no where f: "\<And>n. n \<ge> f_no \<Longrightarrow> norm (?f n - l) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   481
      by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   482
    from \<open>0 < r\<close> \<open>?g \<longlonglongrightarrow> l\<close>[THEN LIMSEQ_D]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   483
    obtain g_no where g: "\<And>n. n \<ge> g_no \<Longrightarrow> norm (?g n - l) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   484
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   485
    have "norm (?Sa n - l) < r" if "n \<ge> (max (2 * f_no) (2 * g_no))" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   486
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   487
      from that have "n \<ge> 2 * f_no" and "n \<ge> 2 * g_no" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   488
      show ?thesis
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   489
      proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   490
        case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   491
        then have n_eq: "2 * (n div 2) = n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   492
          by (simp add: even_two_times_div_two)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   493
        with \<open>n \<ge> 2 * f_no\<close> have "n div 2 \<ge> f_no"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   494
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   495
        from f[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   496
          unfolding n_eq atLeastLessThanSuc_atLeastAtMost .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   497
      next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   498
        case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   499
        then have "even (n - 1)" by simp
58710
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   500
        then have n_eq: "2 * ((n - 1) div 2) = n - 1"
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   501
          by (simp add: even_two_times_div_two)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   502
        then have range_eq: "n - 1 + 1 = n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   503
          using odd_pos[OF False] by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   504
        from n_eq \<open>n \<ge> 2 * g_no\<close> have "(n - 1) div 2 \<ge> g_no"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   505
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   506
        from g[OF this] show ?thesis
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   507
          by (simp only: n_eq range_eq)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   508
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   509
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   510
    then show "\<exists>no. \<forall>n \<ge> no. norm (?Sa n - l) < r" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   511
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   512
  then have sums_l: "(\<lambda>i. (-1)^i * a i) sums l"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   513
    by (simp only: sums_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   514
  then show "summable ?S"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   515
    by (auto simp: summable_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   516
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   517
  have "l = suminf ?S" by (rule sums_unique[OF sums_l])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   518
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   519
  fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   520
  show "suminf ?S \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   521
    unfolding sums_unique[OF sums_l, symmetric] using above_l by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   522
  show "?f n \<le> suminf ?S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   523
    unfolding sums_unique[OF sums_l, symmetric] using below_l by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   524
  show "?g \<longlonglongrightarrow> suminf ?S"
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   525
    using \<open>?g \<longlonglongrightarrow> l\<close> \<open>l = suminf ?S\<close> by auto
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   526
  show "?f \<longlonglongrightarrow> suminf ?S"
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   527
    using \<open>?f \<longlonglongrightarrow> l\<close> \<open>l = suminf ?S\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   528
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   529
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   530
theorem summable_Leibniz:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   531
  fixes a :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   532
  assumes a_zero: "a \<longlonglongrightarrow> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   533
    and "monoseq a"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   534
  shows "summable (\<lambda> n. (-1)^n * a n)" (is "?summable")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   535
    and "0 < a 0 \<longrightarrow>
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   536
      (\<forall>n. (\<Sum>i. (- 1)^i*a i) \<in> { \<Sum>i<2*n. (- 1)^i * a i .. \<Sum>i<2*n+1. (- 1)^i * a i})" (is "?pos")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   537
    and "a 0 < 0 \<longrightarrow>
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   538
      (\<forall>n. (\<Sum>i. (- 1)^i*a i) \<in> { \<Sum>i<2*n+1. (- 1)^i * a i .. \<Sum>i<2*n. (- 1)^i * a i})" (is "?neg")
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   539
    and "(\<lambda>n. \<Sum>i<2*n. (- 1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (- 1)^i*a i)" (is "?f")
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   540
    and "(\<lambda>n. \<Sum>i<2*n+1. (- 1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (- 1)^i*a i)" (is "?g")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   541
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   542
  have "?summable \<and> ?pos \<and> ?neg \<and> ?f \<and> ?g"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   543
  proof (cases "(\<forall>n. 0 \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   544
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   545
    then have ord: "\<And>n m. m \<le> n \<Longrightarrow> a n \<le> a m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   546
      and ge0: "\<And>n. 0 \<le> a n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   547
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   548
    have mono: "a (Suc n) \<le> a n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   549
      using ord[where n="Suc n" and m=n] by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   550
    note leibniz = summable_Leibniz'[OF \<open>a \<longlonglongrightarrow> 0\<close> ge0]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   551
    from leibniz[OF mono]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   552
    show ?thesis using \<open>0 \<le> a 0\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   553
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   554
    let ?a = "\<lambda>n. - a n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   555
    case False
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   556
    with monoseq_le[OF \<open>monoseq a\<close> \<open>a \<longlonglongrightarrow> 0\<close>]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   557
    have "(\<forall> n. a n \<le> 0) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)" by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   558
    then have ord: "\<And>n m. m \<le> n \<Longrightarrow> ?a n \<le> ?a m" and ge0: "\<And> n. 0 \<le> ?a n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   559
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   560
    have monotone: "?a (Suc n) \<le> ?a n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   561
      using ord[where n="Suc n" and m=n] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   562
    note leibniz =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   563
      summable_Leibniz'[OF _ ge0, of "\<lambda>x. x",
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   564
        OF tendsto_minus[OF \<open>a \<longlonglongrightarrow> 0\<close>, unfolded minus_zero] monotone]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   565
    have "summable (\<lambda> n. (-1)^n * ?a n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   566
      using leibniz(1) by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   567
    then obtain l where "(\<lambda> n. (-1)^n * ?a n) sums l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   568
      unfolding summable_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   569
    from this[THEN sums_minus] have "(\<lambda> n. (-1)^n * a n) sums -l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   570
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   571
    then have ?summable by (auto simp: summable_def)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   572
    moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   573
    have "\<bar>- a - - b\<bar> = \<bar>a - b\<bar>" for a b :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   574
      unfolding minus_diff_minus by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   575
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   576
    from suminf_minus[OF leibniz(1), unfolded mult_minus_right minus_minus]
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   577
    have move_minus: "(\<Sum>n. - ((- 1) ^ n * a n)) = - (\<Sum>n. (- 1) ^ n * a n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   578
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   579
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   580
    have ?pos using \<open>0 \<le> ?a 0\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   581
    moreover have ?neg
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   582
      using leibniz(2,4)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   583
      unfolding mult_minus_right sum_negf move_minus neg_le_iff_le
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   584
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   585
    moreover have ?f and ?g
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   586
      using leibniz(3,5)[unfolded mult_minus_right sum_negf move_minus, THEN tendsto_minus_cancel]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   587
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   588
    ultimately show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   589
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
   590
  then show ?summable and ?pos and ?neg and ?f and ?g
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   591
    by safe
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   592
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   593
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   594
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   595
subsection \<open>Term-by-Term Differentiability of Power Series\<close>
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   596
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   597
definition diffs :: "(nat \<Rightarrow> 'a::ring_1) \<Rightarrow> nat \<Rightarrow> 'a"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   598
  where "diffs c = (\<lambda>n. of_nat (Suc n) * c (Suc n))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   599
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   600
text \<open>Lemma about distributing negation over it.\<close>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   601
lemma diffs_minus: "diffs (\<lambda>n. - c n) = (\<lambda>n. - diffs c n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   602
  by (simp add: diffs_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   603
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   604
lemma diffs_equiv:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   605
  fixes x :: "'a::{real_normed_vector,ring_1}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   606
  shows "summable (\<lambda>n. diffs c n * x^n) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   607
    (\<lambda>n. of_nat n * c n * x^(n - Suc 0)) sums (\<Sum>n. diffs c n * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   608
  unfolding diffs_def
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   609
  by (simp add: summable_sums sums_Suc_imp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   610
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   611
lemma lemma_termdiff1:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   612
  fixes z :: "'a :: {monoid_mult,comm_ring}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   613
  shows "(\<Sum>p<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   614
    (\<Sum>p<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   615
  by (auto simp: algebra_simps power_add [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   616
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   617
lemma sumr_diff_mult_const2: "sum f {..<n} - of_nat n * r = (\<Sum>i<n. f i - r)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   618
  for r :: "'a::ring_1"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   619
  by (simp add: sum_subtractf)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   620
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
   621
lemma lemma_realpow_rev_sumr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   622
  "(\<Sum>p<Suc n. (x ^ p) * (y ^ (n - p))) = (\<Sum>p<Suc n. (x ^ (n - p)) * (y ^ p))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   623
  by (subst nat_diff_sum_reindex[symmetric]) simp
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
   624
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   625
lemma lemma_termdiff2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   626
  fixes h :: "'a::field"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   627
  assumes h: "h \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   628
  shows "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) =
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   629
         h * (\<Sum>p< n - Suc 0. \<Sum>q< n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   630
    (is "?lhs = ?rhs")
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   631
proof (cases n)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   632
  case (Suc n)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   633
  have 0: "\<And>x k. (\<Sum>n<Suc k. h * (z ^ x * (z ^ (k - n) * (h + z) ^ n))) =
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   634
                 (\<Sum>j<Suc k.  h * ((h + z) ^ j * z ^ (x + k - j)))"
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   635
    apply (rule sum.cong [OF refl])
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   636
    by (simp add: power_add [symmetric] mult.commute)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   637
  have *: "(\<Sum>i<n. z ^ i * ((z + h) ^ (n - i) - z ^ (n - i))) =
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   638
           (\<Sum>i<n. \<Sum>j<n - i. h * ((z + h) ^ j * z ^ (n - Suc j)))"
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   639
    apply (rule sum.cong [OF refl])
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   640
    apply (clarsimp simp add: less_iff_Suc_add sum_distrib_left diff_power_eq_sum ac_simps 0
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   641
        simp del: sum_lessThan_Suc power_Suc)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   642
    done
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   643
  have "h * ?lhs = h * ?rhs"
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   644
    apply (simp add: right_diff_distrib diff_divide_distrib h mult.assoc [symmetric])
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   645
    using Suc
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   646
    apply (simp add: diff_power_eq_sum h right_diff_distrib [symmetric] mult.assoc
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   647
        del: power_Suc sum_lessThan_Suc of_nat_Suc)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   648
    apply (subst lemma_realpow_rev_sumr)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   649
    apply (subst sumr_diff_mult_const2)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   650
    apply (simp add: lemma_termdiff1 sum_distrib_left *)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   651
    done
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   652
  then show ?thesis
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   653
    by (simp add: h)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   654
qed auto
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   655
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   656
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   657
lemma real_sum_nat_ivl_bounded2:
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34974
diff changeset
   658
  fixes K :: "'a::linordered_semidom"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   659
  assumes f: "\<And>p::nat. p < n \<Longrightarrow> f p \<le> K"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   660
    and K: "0 \<le> K"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   661
  shows "sum f {..<n-k} \<le> of_nat n * K"
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   662
  apply (rule order_trans [OF sum_mono [OF f]])
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   663
  apply (auto simp: mult_right_mono K)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   664
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   665
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   666
lemma lemma_termdiff3:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   667
  fixes h z :: "'a::real_normed_field"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   668
  assumes 1: "h \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   669
    and 2: "norm z \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   670
    and 3: "norm (z + h) \<le> K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   671
  shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   672
    of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   673
proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   674
  have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) =
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   675
    norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   676
    by (metis (lifting, no_types) lemma_termdiff2 [OF 1] mult.commute norm_mult)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   677
  also have "\<dots> \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   678
  proof (rule mult_right_mono [OF _ norm_ge_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   679
    from norm_ge_zero 2 have K: "0 \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   680
      by (rule order_trans)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   681
    have le_Kn: "\<And>i j n. i + j = n \<Longrightarrow> norm ((z + h) ^ i * z ^ j) \<le> K ^ n"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   682
      apply (erule subst)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   683
      apply (simp only: norm_mult norm_power power_add)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   684
      apply (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   685
      done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   686
    show "norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   687
        of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   688
      apply (intro
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   689
          order_trans [OF norm_sum]
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   690
          real_sum_nat_ivl_bounded2
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   691
          mult_nonneg_nonneg
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   692
          of_nat_0_le_iff
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   693
          zero_le_power K)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   694
      apply (rule le_Kn, simp)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   695
      done
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   696
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   697
  also have "\<dots> = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   698
    by (simp only: mult.assoc)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   699
  finally show ?thesis .
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   700
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   701
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   702
lemma lemma_termdiff4:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   703
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   704
    and k :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   705
  assumes k: "0 < k"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   706
    and le: "\<And>h. h \<noteq> 0 \<Longrightarrow> norm h < k \<Longrightarrow> norm (f h) \<le> K * norm h"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   707
  shows "f \<midarrow>0\<rightarrow> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   708
proof (rule tendsto_norm_zero_cancel)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   709
  show "(\<lambda>h. norm (f h)) \<midarrow>0\<rightarrow> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   710
  proof (rule real_tendsto_sandwich)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   711
    show "eventually (\<lambda>h. 0 \<le> norm (f h)) (at 0)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   712
      by simp
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   713
    show "eventually (\<lambda>h. norm (f h) \<le> K * norm h) (at 0)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   714
      using k by (auto simp: eventually_at dist_norm le)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   715
    show "(\<lambda>h. 0) \<midarrow>(0::'a)\<rightarrow> (0::real)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   716
      by (rule tendsto_const)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   717
    have "(\<lambda>h. K * norm h) \<midarrow>(0::'a)\<rightarrow> K * norm (0::'a)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   718
      by (intro tendsto_intros)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   719
    then show "(\<lambda>h. K * norm h) \<midarrow>(0::'a)\<rightarrow> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   720
      by simp
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   721
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   722
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   723
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   724
lemma lemma_termdiff5:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   725
  fixes g :: "'a::real_normed_vector \<Rightarrow> nat \<Rightarrow> 'b::banach"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   726
    and k :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   727
  assumes k: "0 < k"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   728
    and f: "summable f"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   729
    and le: "\<And>h n. h \<noteq> 0 \<Longrightarrow> norm h < k \<Longrightarrow> norm (g h n) \<le> f n * norm h"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   730
  shows "(\<lambda>h. suminf (g h)) \<midarrow>0\<rightarrow> 0"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   731
proof (rule lemma_termdiff4 [OF k])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   732
  fix h :: 'a
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   733
  assume "h \<noteq> 0" and "norm h < k"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   734
  then have 1: "\<forall>n. norm (g h n) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   735
    by (simp add: le)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   736
  then have "\<exists>N. \<forall>n\<ge>N. norm (norm (g h n)) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   737
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   738
  moreover from f have 2: "summable (\<lambda>n. f n * norm h)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   739
    by (rule summable_mult2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   740
  ultimately have 3: "summable (\<lambda>n. norm (g h n))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   741
    by (rule summable_comparison_test)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   742
  then have "norm (suminf (g h)) \<le> (\<Sum>n. norm (g h n))"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   743
    by (rule summable_norm)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   744
  also from 1 3 2 have "(\<Sum>n. norm (g h n)) \<le> (\<Sum>n. f n * norm h)"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
   745
    by (rule suminf_le)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   746
  also from f have "(\<Sum>n. f n * norm h) = suminf f * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   747
    by (rule suminf_mult2 [symmetric])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   748
  finally show "norm (suminf (g h)) \<le> suminf f * norm h" .
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   749
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   750
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   751
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   752
(* FIXME: Long proofs *)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   753
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   754
lemma termdiffs_aux:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   755
  fixes x :: "'a::{real_normed_field,banach}"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   756
  assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   757
    and 2: "norm x < norm K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   758
  shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) \<midarrow>0\<rightarrow> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   759
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   760
  from dense [OF 2] obtain r where r1: "norm x < r" and r2: "r < norm K"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   761
    by fast
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   762
  from norm_ge_zero r1 have r: "0 < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   763
    by (rule order_le_less_trans)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   764
  then have r_neq_0: "r \<noteq> 0" by simp
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   765
  show ?thesis
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   766
  proof (rule lemma_termdiff5)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   767
    show "0 < r - norm x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   768
      using r1 by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   769
    from r r2 have "norm (of_real r::'a) < norm K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   770
      by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   771
    with 1 have "summable (\<lambda>n. norm (diffs (diffs c) n * (of_real r ^ n)))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   772
      by (rule powser_insidea)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   773
    then have "summable (\<lambda>n. diffs (diffs (\<lambda>n. norm (c n))) n * r ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   774
      using r by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   775
    then have "summable (\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   776
      by (rule diffs_equiv [THEN sums_summable])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   777
    also have "(\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0)) =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   778
      (\<lambda>n. diffs (\<lambda>m. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   779
      apply (rule ext)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   780
      apply (case_tac n)
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   781
      apply (simp_all add: diffs_def r_neq_0)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   782
      done
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   783
    finally have "summable
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   784
      (\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   785
      by (rule diffs_equiv [THEN sums_summable])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   786
    also have
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   787
      "(\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0)) =
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   788
       (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   789
      apply (rule ext)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   790
      apply (case_tac n, simp)
55417
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 54576
diff changeset
   791
      apply (rename_tac nat)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   792
      apply (case_tac nat, simp)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   793
      apply (simp add: r_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   794
      done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   795
    finally show "summable (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" .
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   796
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   797
    fix h :: 'a
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   798
    fix n :: nat
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   799
    assume h: "h \<noteq> 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   800
    assume "norm h < r - norm x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   801
    then have "norm x + norm h < r" by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   802
    with norm_triangle_ineq have xh: "norm (x + h) < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   803
      by (rule order_le_less_trans)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   804
    show "norm (c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   805
      norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   806
      apply (simp only: norm_mult mult.assoc)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   807
      apply (rule mult_left_mono [OF _ norm_ge_zero])
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   808
      apply (simp add: mult.assoc [symmetric])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   809
      apply (metis h lemma_termdiff3 less_eq_real_def r1 xh)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   810
      done
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   811
  qed
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   812
qed
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19765
diff changeset
   813
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   814
lemma termdiffs:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   815
  fixes K x :: "'a::{real_normed_field,banach}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   816
  assumes 1: "summable (\<lambda>n. c n * K ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   817
    and 2: "summable (\<lambda>n. (diffs c) n * K ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   818
    and 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   819
    and 4: "norm x < norm K"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   820
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x^n) x :> (\<Sum>n. (diffs c) n * x^n)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   821
  unfolding DERIV_def
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   822
proof (rule LIM_zero_cancel)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   823
  show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x^n)) / h
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   824
            - suminf (\<lambda>n. diffs c n * x^n)) \<midarrow>0\<rightarrow> 0"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   825
  proof (rule LIM_equal2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   826
    show "0 < norm K - norm x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   827
      using 4 by (simp add: less_diff_eq)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   828
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   829
    fix h :: 'a
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   830
    assume "norm (h - 0) < norm K - norm x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   831
    then have "norm x + norm h < norm K" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   832
    then have 5: "norm (x + h) < norm K"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   833
      by (rule norm_triangle_ineq [THEN order_le_less_trans])
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   834
    have "summable (\<lambda>n. c n * x^n)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   835
      and "summable (\<lambda>n. c n * (x + h) ^ n)"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   836
      and "summable (\<lambda>n. diffs c n * x^n)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   837
      using 1 2 4 5 by (auto elim: powser_inside)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   838
    then have "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x^n)) / h - (\<Sum>n. diffs c n * x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   839
          (\<Sum>n. (c n * (x + h) ^ n - c n * x^n) / h - of_nat n * c n * x ^ (n - Suc 0))"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   840
      by (intro sums_unique sums_diff sums_divide diffs_equiv summable_sums)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   841
    then show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x^n)) / h - (\<Sum>n. diffs c n * x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   842
          (\<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0)))"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   843
      by (simp add: algebra_simps)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   844
  next
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   845
    show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) \<midarrow>0\<rightarrow> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   846
      by (rule termdiffs_aux [OF 3 4])
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   847
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   848
qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   849
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   850
subsection \<open>The Derivative of a Power Series Has the Same Radius of Convergence\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   851
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   852
lemma termdiff_converges:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   853
  fixes x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   854
  assumes K: "norm x < K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   855
    and sm: "\<And>x. norm x < K \<Longrightarrow> summable(\<lambda>n. c n * x ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   856
  shows "summable (\<lambda>n. diffs c n * x ^ n)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   857
proof (cases "x = 0")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   858
  case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   859
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   860
    using powser_sums_zero sums_summable by auto
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   861
next
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   862
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   863
  then have "K > 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   864
    using K less_trans zero_less_norm_iff by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   865
  then obtain r :: real where r: "norm x < norm r" "norm r < K" "r > 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   866
    using K False
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
   867
    by (auto simp: field_simps abs_less_iff add_pos_pos intro: that [of "(norm x + K) / 2"])
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   868
  have to0: "(\<lambda>n. of_nat n * (x / of_real r) ^ n) \<longlonglongrightarrow> 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   869
    using r by (simp add: norm_divide powser_times_n_limit_0 [of "x / of_real r"])
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   870
  obtain N where N: "\<And>n. n\<ge>N \<Longrightarrow> real_of_nat n * norm x ^ n < r ^ n"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   871
    using r LIMSEQ_D [OF to0, of 1]
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   872
    by (auto simp: norm_divide norm_mult norm_power field_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   873
  have "summable (\<lambda>n. (of_nat n * c n) * x ^ n)"
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   874
  proof (rule summable_comparison_test')
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   875
    show "summable (\<lambda>n. norm (c n * of_real r ^ n))"
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   876
      apply (rule powser_insidea [OF sm [of "of_real ((r+K)/2)"]])
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   877
      using N r norm_of_real [of "r + K", where 'a = 'a] by auto
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   878
    show "\<And>n. N \<le> n \<Longrightarrow> norm (of_nat n * c n * x ^ n) \<le> norm (c n * of_real r ^ n)"
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   879
      using N r by (fastforce simp add: norm_mult norm_power less_eq_real_def)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   880
  qed
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   881
  then have "summable (\<lambda>n. (of_nat (Suc n) * c(Suc n)) * x ^ Suc n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   882
    using summable_iff_shift [of "\<lambda>n. of_nat n * c n * x ^ n" 1]
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   883
    by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   884
  then have "summable (\<lambda>n. (of_nat (Suc n) * c(Suc n)) * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   885
    using False summable_mult2 [of "\<lambda>n. (of_nat (Suc n) * c(Suc n) * x ^ n) * x" "inverse x"]
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60762
diff changeset
   886
    by (simp add: mult.assoc) (auto simp: ac_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   887
  then show ?thesis
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   888
    by (simp add: diffs_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   889
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   890
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   891
lemma termdiff_converges_all:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   892
  fixes x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   893
  assumes "\<And>x. summable (\<lambda>n. c n * x^n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   894
  shows "summable (\<lambda>n. diffs c n * x^n)"
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   895
  by (rule termdiff_converges [where K = "1 + norm x"]) (use assms in auto)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   896
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   897
lemma termdiffs_strong:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   898
  fixes K x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   899
  assumes sm: "summable (\<lambda>n. c n * K ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   900
    and K: "norm x < norm K"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   901
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x^n) x :> (\<Sum>n. diffs c n * x^n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   902
proof -
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   903
  have K2: "norm ((of_real (norm K) + of_real (norm x)) / 2 :: 'a) < norm K"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   904
    using K
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
   905
    apply (auto simp: norm_divide field_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   906
    apply (rule le_less_trans [of _ "of_real (norm K) + of_real (norm x)"])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   907
     apply (auto simp: mult_2_right norm_triangle_mono)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   908
    done
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   909
  then have [simp]: "norm ((of_real (norm K) + of_real (norm x)) :: 'a) < norm K * 2"
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   910
    by simp
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   911
  have "summable (\<lambda>n. c n * (of_real (norm x + norm K) / 2) ^ n)"
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   912
    by (metis K2 summable_norm_cancel [OF powser_insidea [OF sm]] add.commute of_real_add)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   913
  moreover have "\<And>x. norm x < norm K \<Longrightarrow> summable (\<lambda>n. diffs c n * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   914
    by (blast intro: sm termdiff_converges powser_inside)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   915
  moreover have "\<And>x. norm x < norm K \<Longrightarrow> summable (\<lambda>n. diffs(diffs c) n * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   916
    by (blast intro: sm termdiff_converges powser_inside)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   917
  ultimately show ?thesis
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   918
    apply (rule termdiffs [where K = "of_real (norm x + norm K) / 2"])
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   919
    using K
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   920
      apply (auto simp: field_simps)
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   921
    apply (simp flip: of_real_add)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   922
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   923
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   924
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   925
lemma termdiffs_strong_converges_everywhere:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   926
  fixes K x :: "'a::{real_normed_field,banach}"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   927
  assumes "\<And>y. summable (\<lambda>n. c n * y ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   928
  shows "((\<lambda>x. \<Sum>n. c n * x^n) has_field_derivative (\<Sum>n. diffs c n * x^n)) (at x)"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   929
  using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   930
  by (force simp del: of_real_add)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   931
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   932
lemma termdiffs_strong':
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   933
  fixes z :: "'a :: {real_normed_field,banach}"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   934
  assumes "\<And>z. norm z < K \<Longrightarrow> summable (\<lambda>n. c n * z ^ n)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   935
  assumes "norm z < K"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   936
  shows   "((\<lambda>z. \<Sum>n. c n * z^n) has_field_derivative (\<Sum>n. diffs c n * z^n)) (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   937
proof (rule termdiffs_strong)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   938
  define L :: real where "L =  (norm z + K) / 2"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   939
  have "0 \<le> norm z" by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   940
  also note \<open>norm z < K\<close>
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   941
  finally have K: "K \<ge> 0" by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   942
  from assms K have L: "L \<ge> 0" "norm z < L" "L < K" by (simp_all add: L_def)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   943
  from L show "norm z < norm (of_real L :: 'a)" by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   944
  from L show "summable (\<lambda>n. c n * of_real L ^ n)" by (intro assms(1)) simp_all
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   945
qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   946
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   947
lemma termdiffs_sums_strong:
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   948
  fixes z :: "'a :: {banach,real_normed_field}"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   949
  assumes sums: "\<And>z. norm z < K \<Longrightarrow> (\<lambda>n. c n * z ^ n) sums f z"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   950
  assumes deriv: "(f has_field_derivative f') (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   951
  assumes norm: "norm z < K"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   952
  shows   "(\<lambda>n. diffs c n * z ^ n) sums f'"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   953
proof -
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   954
  have summable: "summable (\<lambda>n. diffs c n * z^n)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   955
    by (intro termdiff_converges[OF norm] sums_summable[OF sums])
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   956
  from norm have "eventually (\<lambda>z. z \<in> norm -` {..<K}) (nhds z)"
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   957
    by (intro eventually_nhds_in_open open_vimage)
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   958
       (simp_all add: continuous_on_norm continuous_on_id)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   959
  hence eq: "eventually (\<lambda>z. (\<Sum>n. c n * z^n) = f z) (nhds z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   960
    by eventually_elim (insert sums, simp add: sums_iff)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   961
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   962
  have "((\<lambda>z. \<Sum>n. c n * z^n) has_field_derivative (\<Sum>n. diffs c n * z^n)) (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   963
    by (intro termdiffs_strong'[OF _ norm] sums_summable[OF sums])
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   964
  hence "(f has_field_derivative (\<Sum>n. diffs c n * z^n)) (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   965
    by (subst (asm) DERIV_cong_ev[OF refl eq refl])
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   966
  from this and deriv have "(\<Sum>n. diffs c n * z^n) = f'" by (rule DERIV_unique)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   967
  with summable show ?thesis by (simp add: sums_iff)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   968
qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   969
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   970
lemma isCont_powser:
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   971
  fixes K x :: "'a::{real_normed_field,banach}"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   972
  assumes "summable (\<lambda>n. c n * K ^ n)"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   973
  assumes "norm x < norm K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   974
  shows "isCont (\<lambda>x. \<Sum>n. c n * x^n) x"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   975
  using termdiffs_strong[OF assms] by (blast intro!: DERIV_isCont)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   976
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   977
lemmas isCont_powser' = isCont_o2[OF _ isCont_powser]
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   978
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   979
lemma isCont_powser_converges_everywhere:
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   980
  fixes K x :: "'a::{real_normed_field,banach}"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   981
  assumes "\<And>y. summable (\<lambda>n. c n * y ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   982
  shows "isCont (\<lambda>x. \<Sum>n. c n * x^n) x"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   983
  using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   984
  by (force intro!: DERIV_isCont simp del: of_real_add)
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   985
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   986
lemma powser_limit_0:
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   987
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   988
  assumes s: "0 < s"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   989
    and sm: "\<And>x. norm x < s \<Longrightarrow> (\<lambda>n. a n * x ^ n) sums (f x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   990
  shows "(f \<longlongrightarrow> a 0) (at 0)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   991
proof -
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   992
  have "norm (of_real s / 2 :: 'a) < s"
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   993
    using s  by (auto simp: norm_divide)
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   994
  then have "summable (\<lambda>n. a n * (of_real s / 2) ^ n)"
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   995
    by (rule sums_summable [OF sm])
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   996
  then have "((\<lambda>x. \<Sum>n. a n * x ^ n) has_field_derivative (\<Sum>n. diffs a n * 0 ^ n)) (at 0)"
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   997
    by (rule termdiffs_strong) (use s in \<open>auto simp: norm_divide\<close>)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   998
  then have "isCont (\<lambda>x. \<Sum>n. a n * x ^ n) 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   999
    by (blast intro: DERIV_continuous)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1000
  then have "((\<lambda>x. \<Sum>n. a n * x ^ n) \<longlongrightarrow> a 0) (at 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1001
    by (simp add: continuous_within)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1002
  then show ?thesis
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1003
    apply (rule Lim_transform)
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
  1004
    apply (clarsimp simp: LIM_eq)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1005
    apply (rule_tac x=s in exI)
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
  1006
    using s sm sums_unique by fastforce
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1007
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1008
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1009
lemma powser_limit_0_strong:
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1010
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1011
  assumes s: "0 < s"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1012
    and sm: "\<And>x. x \<noteq> 0 \<Longrightarrow> norm x < s \<Longrightarrow> (\<lambda>n. a n * x ^ n) sums (f x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1013
  shows "(f \<longlongrightarrow> a 0) (at 0)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1014
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1015
  have *: "((\<lambda>x. if x = 0 then a 0 else f x) \<longlongrightarrow> a 0) (at 0)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1016
    by (rule powser_limit_0 [OF s]) (auto simp: powser_sums_zero sm)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1017
  show ?thesis
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1018
    apply (subst LIM_equal [where g = "(\<lambda>x. if x = 0 then a 0 else f x)"])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1019
     apply (simp_all add: *)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1020
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1021
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1022
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1023
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1024
subsection \<open>Derivability of power series\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1025
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1026
lemma DERIV_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1027
  fixes f :: "real \<Rightarrow> nat \<Rightarrow> real"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1028
  assumes DERIV_f: "\<And> n. DERIV (\<lambda> x. f x n) x0 :> (f' x0 n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1029
    and allf_summable: "\<And> x. x \<in> {a <..< b} \<Longrightarrow> summable (f x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1030
    and x0_in_I: "x0 \<in> {a <..< b}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1031
    and "summable (f' x0)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1032
    and "summable L"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1033
    and L_def: "\<And>n x y. x \<in> {a <..< b} \<Longrightarrow> y \<in> {a <..< b} \<Longrightarrow> \<bar>f x n - f y n\<bar> \<le> L n * \<bar>x - y\<bar>"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1034
  shows "DERIV (\<lambda> x. suminf (f x)) x0 :> (suminf (f' x0))"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1035
  unfolding DERIV_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1036
proof (rule LIM_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1037
  fix r :: real
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1038
  assume "0 < r" then have "0 < r/3" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1039
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1040
  obtain N_L where N_L: "\<And> n. N_L \<le> n \<Longrightarrow> \<bar> \<Sum> i. L (i + n) \<bar> < r/3"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1041
    using suminf_exist_split[OF \<open>0 < r/3\<close> \<open>summable L\<close>] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1042
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1043
  obtain N_f' where N_f': "\<And> n. N_f' \<le> n \<Longrightarrow> \<bar> \<Sum> i. f' x0 (i + n) \<bar> < r/3"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1044
    using suminf_exist_split[OF \<open>0 < r/3\<close> \<open>summable (f' x0)\<close>] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1045
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1046
  let ?N = "Suc (max N_L N_f')"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1047
  have "\<bar> \<Sum> i. f' x0 (i + ?N) \<bar> < r/3" (is "?f'_part < r/3")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1048
    and L_estimate: "\<bar> \<Sum> i. L (i + ?N) \<bar> < r/3"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1049
    using N_L[of "?N"] and N_f' [of "?N"] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1050
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1051
  let ?diff = "\<lambda>i x. (f (x0 + x) i - f x0 i) / x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1052
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1053
  let ?r = "r / (3 * real ?N)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1054
  from \<open>0 < r\<close> have "0 < ?r" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1055
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1056
  let ?s = "\<lambda>n. SOME s. 0 < s \<and> (\<forall> x. x \<noteq> 0 \<and> \<bar> x \<bar> < s \<longrightarrow> \<bar> ?diff n x - f' x0 n \<bar> < ?r)"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
  1057
  define S' where "S' = Min (?s ` {..< ?N })"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1058
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1059
  have "0 < S'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1060
    unfolding S'_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1061
  proof (rule iffD2[OF Min_gr_iff])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1062
    show "\<forall>x \<in> (?s ` {..< ?N }). 0 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1063
    proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1064
      fix x
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1065
      assume "x \<in> ?s ` {..<?N}"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1066
      then obtain n where "x = ?s n" and "n \<in> {..<?N}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1067
        using image_iff[THEN iffD1] by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1068
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF \<open>0 < ?r\<close>, unfolded real_norm_def]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1069
      obtain s where s_bound: "0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1070
        by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1071
      have "0 < ?s n"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1072
        by (rule someI2[where a=s]) (auto simp: s_bound simp del: of_nat_Suc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1073
      then show "0 < x" by (simp only: \<open>x = ?s n\<close>)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1074
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1075
  qed auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1076
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
  1077
  define S where "S = min (min (x0 - a) (b - x0)) S'"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1078
  then have "0 < S" and S_a: "S \<le> x0 - a" and S_b: "S \<le> b - x0"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1079
    and "S \<le> S'" using x0_in_I and \<open>0 < S'\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1080
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1081
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1082
  have "\<bar>(suminf (f (x0 + x)) - suminf (f x0)) / x - suminf (f' x0)\<bar> < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1083
    if "x \<noteq> 0" and "\<bar>x\<bar> < S" for x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1084
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1085
    from that have x_in_I: "x0 + x \<in> {a <..< b}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1086
      using S_a S_b by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1087
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1088
    note diff_smbl = summable_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1089
    note div_smbl = summable_divide[OF diff_smbl]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1090
    note all_smbl = summable_diff[OF div_smbl \<open>summable (f' x0)\<close>]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1091
    note ign = summable_ignore_initial_segment[where k="?N"]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1092
    note diff_shft_smbl = summable_diff[OF ign[OF allf_summable[OF x_in_I]] ign[OF allf_summable[OF x0_in_I]]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1093
    note div_shft_smbl = summable_divide[OF diff_shft_smbl]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1094
    note all_shft_smbl = summable_diff[OF div_smbl ign[OF \<open>summable (f' x0)\<close>]]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1095
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1096
    have 1: "\<bar>(\<bar>?diff (n + ?N) x\<bar>)\<bar> \<le> L (n + ?N)" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1097
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1098
      have "\<bar>?diff (n + ?N) x\<bar> \<le> L (n + ?N) * \<bar>(x0 + x) - x0\<bar> / \<bar>x\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1099
        using divide_right_mono[OF L_def[OF x_in_I x0_in_I] abs_ge_zero]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1100
        by (simp only: abs_divide)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1101
      with \<open>x \<noteq> 0\<close> show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1102
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1103
    note 2 = summable_rabs_comparison_test[OF _ ign[OF \<open>summable L\<close>]]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1104
    from 1 have "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> (\<Sum> i. L (i + ?N))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1105
      by (metis (lifting) abs_idempotent
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1106
          order_trans[OF summable_rabs[OF 2] suminf_le[OF _ 2 ign[OF \<open>summable L\<close>]]])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1107
    then have "\<bar>\<Sum>i. ?diff (i + ?N) x\<bar> \<le> r / 3" (is "?L_part \<le> r/3")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1108
      using L_estimate by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1109
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1110
    have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n\<bar> \<le> (\<Sum>n<?N. \<bar>?diff n x - f' x0 n\<bar>)" ..
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1111
    also have "\<dots> < (\<Sum>n<?N. ?r)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1112
    proof (rule sum_strict_mono)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1113
      fix n
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1114
      assume "n \<in> {..< ?N}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1115
      have "\<bar>x\<bar> < S" using \<open>\<bar>x\<bar> < S\<close> .
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1116
      also have "S \<le> S'" using \<open>S \<le> S'\<close> .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1117
      also have "S' \<le> ?s n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1118
        unfolding S'_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1119
      proof (rule Min_le_iff[THEN iffD2])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1120
        have "?s n \<in> (?s ` {..<?N}) \<and> ?s n \<le> ?s n"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1121
          using \<open>n \<in> {..< ?N}\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1122
        then show "\<exists> a \<in> (?s ` {..<?N}). a \<le> ?s n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1123
          by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1124
      qed auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1125
      finally have "\<bar>x\<bar> < ?s n" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1126
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1127
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF \<open>0 < ?r\<close>,
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1128
          unfolded real_norm_def diff_0_right, unfolded some_eq_ex[symmetric], THEN conjunct2]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1129
      have "\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < ?s n \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r" .
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1130
      with \<open>x \<noteq> 0\<close> and \<open>\<bar>x\<bar> < ?s n\<close> show "\<bar>?diff n x - f' x0 n\<bar> < ?r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1131
        by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1132
    qed auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1133
    also have "\<dots> = of_nat (card {..<?N}) * ?r"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1134
      by (rule sum_constant)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1135
    also have "\<dots> = real ?N * ?r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1136
      by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1137
    also have "\<dots> = r/3"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1138
      by (auto simp del: of_nat_Suc)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1139
    finally have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n \<bar> < r / 3" (is "?diff_part < r / 3") .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1140
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1141
    from suminf_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1142
    have "\<bar>(suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0)\<bar> =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1143
        \<bar>\<Sum>n. ?diff n x - f' x0 n\<bar>"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1144
      unfolding suminf_diff[OF div_smbl \<open>summable (f' x0)\<close>, symmetric]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1145
      using suminf_divide[OF diff_smbl, symmetric] by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1146
    also have "\<dots> \<le> ?diff_part + \<bar>(\<Sum>n. ?diff (n + ?N) x) - (\<Sum> n. f' x0 (n + ?N))\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1147
      unfolding suminf_split_initial_segment[OF all_smbl, where k="?N"]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1148
      unfolding suminf_diff[OF div_shft_smbl ign[OF \<open>summable (f' x0)\<close>]]
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1149
      apply (simp only: add.commute)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1150
      using abs_triangle_ineq by blast
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1151
    also have "\<dots> \<le> ?diff_part + ?L_part + ?f'_part"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1152
      using abs_triangle_ineq4 by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1153
    also have "\<dots> < r /3 + r/3 + r/3"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1154
      using \<open>?diff_part < r/3\<close> \<open>?L_part \<le> r/3\<close> and \<open>?f'_part < r/3\<close>
36842
99745a4b9cc9 fix some linarith_split_limit warnings
huffman
parents: 36824
diff changeset
  1155
      by (rule add_strict_mono [OF add_less_le_mono])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1156
    finally show ?thesis
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1157
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1158
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1159
  then show "\<exists>s > 0. \<forall> x. x \<noteq> 0 \<and> norm (x - 0) < s \<longrightarrow>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1160
      norm (((\<Sum>n. f (x0 + x) n) - (\<Sum>n. f x0 n)) / x - (\<Sum>n. f' x0 n)) < r"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1161
    using \<open>0 < S\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1162
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1163
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1164
lemma DERIV_power_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1165
  fixes f :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1166
  assumes converges: "\<And>x. x \<in> {-R <..< R} \<Longrightarrow> summable (\<lambda>n. f n * real (Suc n) * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1167
    and x0_in_I: "x0 \<in> {-R <..< R}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1168
    and "0 < R"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1169
  shows "DERIV (\<lambda>x. (\<Sum>n. f n * x^(Suc n))) x0 :> (\<Sum>n. f n * real (Suc n) * x0^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1170
    (is "DERIV (\<lambda>x. suminf (?f x)) x0 :> suminf (?f' x0)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1171
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1172
  have for_subinterval: "DERIV (\<lambda>x. suminf (?f x)) x0 :> suminf (?f' x0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1173
    if "0 < R'" and "R' < R" and "-R' < x0" and "x0 < R'" for R'
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1174
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1175
    from that have "x0 \<in> {-R' <..< R'}" and "R' \<in> {-R <..< R}" and "x0 \<in> {-R <..< R}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1176
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1177
    show ?thesis
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1178
    proof (rule DERIV_series')
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1179
      show "summable (\<lambda> n. \<bar>f n * real (Suc n) * R'^n\<bar>)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1180
      proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1181
        have "(R' + R) / 2 < R" and "0 < (R' + R) / 2"
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1182
          using \<open>0 < R'\<close> \<open>0 < R\<close> \<open>R' < R\<close> by (auto simp: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1183
        then have in_Rball: "(R' + R) / 2 \<in> {-R <..< R}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1184
          using \<open>R' < R\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1185
        have "norm R' < norm ((R' + R) / 2)"
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1186
          using \<open>0 < R'\<close> \<open>0 < R\<close> \<open>R' < R\<close> by (auto simp: field_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1187
        from powser_insidea[OF converges[OF in_Rball] this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1188
          by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1189
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1190
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1191
      fix n x y
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1192
      assume "x \<in> {-R' <..< R'}" and "y \<in> {-R' <..< R'}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1193
      show "\<bar>?f x n - ?f y n\<bar> \<le> \<bar>f n * real (Suc n) * R'^n\<bar> * \<bar>x-y\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1194
      proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1195
        have "\<bar>f n * x ^ (Suc n) - f n * y ^ (Suc n)\<bar> =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1196
          (\<bar>f n\<bar> * \<bar>x-y\<bar>) * \<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar>"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1197
          unfolding right_diff_distrib[symmetric] diff_power_eq_sum abs_mult
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1198
          by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1199
        also have "\<dots> \<le> (\<bar>f n\<bar> * \<bar>x-y\<bar>) * (\<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1200
        proof (rule mult_left_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1201
          have "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> (\<Sum>p<Suc n. \<bar>x ^ p * y ^ (n - p)\<bar>)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1202
            by (rule sum_abs)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1203
          also have "\<dots> \<le> (\<Sum>p<Suc n. R' ^ n)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1204
          proof (rule sum_mono)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1205
            fix p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1206
            assume "p \<in> {..<Suc n}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1207
            then have "p \<le> n" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1208
            have "\<bar>x^n\<bar> \<le> R'^n" if  "x \<in> {-R'<..<R'}" for n and x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1209
            proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1210
              from that have "\<bar>x\<bar> \<le> R'" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1211
              then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1212
                unfolding power_abs by (rule power_mono) auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1213
            qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1214
            from mult_mono[OF this[OF \<open>x \<in> {-R'<..<R'}\<close>, of p] this[OF \<open>y \<in> {-R'<..<R'}\<close>, of "n-p"]]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1215
              and \<open>0 < R'\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1216
            have "\<bar>x^p * y^(n - p)\<bar> \<le> R'^p * R'^(n - p)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1217
              unfolding abs_mult by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1218
            then show "\<bar>x^p * y^(n - p)\<bar> \<le> R'^n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1219
              unfolding power_add[symmetric] using \<open>p \<le> n\<close> by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1220
          qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1221
          also have "\<dots> = real (Suc n) * R' ^ n"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1222
            unfolding sum_constant card_atLeastLessThan by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1223
          finally show "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> \<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1224
            unfolding abs_of_nonneg[OF zero_le_power[OF less_imp_le[OF \<open>0 < R'\<close>]]]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1225
            by linarith
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1226
          show "0 \<le> \<bar>f n\<bar> * \<bar>x - y\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1227
            unfolding abs_mult[symmetric] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1228
        qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1229
        also have "\<dots> = \<bar>f n * real (Suc n) * R' ^ n\<bar> * \<bar>x - y\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1230
          unfolding abs_mult mult.assoc[symmetric] by algebra
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1231
        finally show ?thesis .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1232
      qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1233
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1234
      show "DERIV (\<lambda>x. ?f x n) x0 :> ?f' x0 n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1235
        by (auto intro!: derivative_eq_intros simp del: power_Suc)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1236
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1237
      fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1238
      assume "x \<in> {-R' <..< R'}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1239
      then have "R' \<in> {-R <..< R}" and "norm x < norm R'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1240
        using assms \<open>R' < R\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1241
      have "summable (\<lambda>n. f n * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1242
      proof (rule summable_comparison_test, intro exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1243
        fix n
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1244
        have le: "\<bar>f n\<bar> * 1 \<le> \<bar>f n\<bar> * real (Suc n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1245
          by (rule mult_left_mono) auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1246
        show "norm (f n * x^n) \<le> norm (f n * real (Suc n) * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1247
          unfolding real_norm_def abs_mult
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1248
          using le mult_right_mono by fastforce
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1249
      qed (rule powser_insidea[OF converges[OF \<open>R' \<in> {-R <..< R}\<close>] \<open>norm x < norm R'\<close>])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1250
      from this[THEN summable_mult2[where c=x], simplified mult.assoc, simplified mult.commute]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1251
      show "summable (?f x)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1252
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1253
      show "summable (?f' x0)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1254
        using converges[OF \<open>x0 \<in> {-R <..< R}\<close>] .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1255
      show "x0 \<in> {-R' <..< R'}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1256
        using \<open>x0 \<in> {-R' <..< R'}\<close> .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1257
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1258
  qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1259
  let ?R = "(R + \<bar>x0\<bar>) / 2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1260
  have "\<bar>x0\<bar> < ?R"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1261
    using assms by (auto simp: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1262
  then have "- ?R < x0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1263
  proof (cases "x0 < 0")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1264
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1265
    then have "- x0 < ?R"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1266
      using \<open>\<bar>x0\<bar> < ?R\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1267
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1268
      unfolding neg_less_iff_less[symmetric, of "- x0"] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1269
  next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1270
    case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1271
    have "- ?R < 0" using assms by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1272
    also have "\<dots> \<le> x0" using False by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1273
    finally show ?thesis .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1274
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1275
  then have "0 < ?R" "?R < R" "- ?R < x0" and "x0 < ?R"
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1276
    using assms by (auto simp: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1277
  from for_subinterval[OF this] show ?thesis .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1278
qed
29695
171146a93106 Added real related theorems from Fact.thy
chaieb
parents: 29667
diff changeset
  1279
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1280
lemma geometric_deriv_sums:
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1281
  fixes z :: "'a :: {real_normed_field,banach}"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1282
  assumes "norm z < 1"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1283
  shows   "(\<lambda>n. of_nat (Suc n) * z ^ n) sums (1 / (1 - z)^2)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1284
proof -
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1285
  have "(\<lambda>n. diffs (\<lambda>n. 1) n * z^n) sums (1 / (1 - z)^2)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1286
  proof (rule termdiffs_sums_strong)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1287
    fix z :: 'a assume "norm z < 1"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1288
    thus "(\<lambda>n. 1 * z^n) sums (1 / (1 - z))" by (simp add: geometric_sums)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1289
  qed (insert assms, auto intro!: derivative_eq_intros simp: power2_eq_square)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1290
  thus ?thesis unfolding diffs_def by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1291
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1292
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1293
lemma isCont_pochhammer [continuous_intros]: "isCont (\<lambda>z. pochhammer z n) z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1294
  for z :: "'a::real_normed_field"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1295
  by (induct n) (auto simp: pochhammer_rec')
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1296
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1297
lemma continuous_on_pochhammer [continuous_intros]: "continuous_on A (\<lambda>z. pochhammer z n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1298
  for A :: "'a::real_normed_field set"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1299
  by (intro continuous_at_imp_continuous_on ballI isCont_pochhammer)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1300
66486
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66279
diff changeset
  1301
lemmas continuous_on_pochhammer' [continuous_intros] =
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66279
diff changeset
  1302
  continuous_on_compose2[OF continuous_on_pochhammer _ subset_UNIV]
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66279
diff changeset
  1303
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1304
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1305
subsection \<open>Exponential Function\<close>
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1306
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1307
definition exp :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1308
  where "exp = (\<lambda>x. \<Sum>n. x^n /\<^sub>R fact n)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1309
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1310
lemma summable_exp_generic:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
  1311
  fixes x :: "'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1312
  defines S_def: "S \<equiv> \<lambda>n. x^n /\<^sub>R fact n"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1313
  shows "summable S"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1314
proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1315
  have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
  1316
    unfolding S_def by (simp del: mult_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1317
  obtain r :: real where r0: "0 < r" and r1: "r < 1"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1318
    using dense [OF zero_less_one] by fast
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1319
  obtain N :: nat where N: "norm x < real N * r"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1320
    using ex_less_of_nat_mult r0 by auto
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1321
  from r1 show ?thesis
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1322
  proof (rule summable_ratio_test [rule_format])
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1323
    fix n :: nat
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1324
    assume n: "N \<le> n"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1325
    have "norm x \<le> real N * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1326
      using N by (rule order_less_imp_le)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1327
    also have "real N * r \<le> real (Suc n) * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1328
      using r0 n by (simp add: mult_right_mono)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1329
    finally have "norm x * norm (S n) \<le> real (Suc n) * r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1330
      using norm_ge_zero by (rule mult_right_mono)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1331
    then have "norm (x * S n) \<le> real (Suc n) * r * norm (S n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1332
      by (rule order_trans [OF norm_mult_ineq])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1333
    then have "norm (x * S n) / real (Suc n) \<le> r * norm (S n)"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1334
      by (simp add: pos_divide_le_eq ac_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1335
    then show "norm (S (Suc n)) \<le> r * norm (S n)"
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1336
      by (simp add: S_Suc inverse_eq_divide)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1337
  qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1338
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1339
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1340
lemma summable_norm_exp: "summable (\<lambda>n. norm (x^n /\<^sub>R fact n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1341
  for x :: "'a::{real_normed_algebra_1,banach}"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1342
proof (rule summable_norm_comparison_test [OF exI, rule_format])
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1343
  show "summable (\<lambda>n. norm x^n /\<^sub>R fact n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1344
    by (rule summable_exp_generic)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1345
  show "norm (x^n /\<^sub>R fact n) \<le> norm x^n /\<^sub>R fact n" for n
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1346
    by (simp add: norm_power_ineq)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1347
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1348
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1349
lemma summable_exp: "summable (\<lambda>n. inverse (fact n) * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1350
  for x :: "'a::{real_normed_field,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1351
  using summable_exp_generic [where x=x]
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1352
  by (simp add: scaleR_conv_of_real nonzero_of_real_inverse)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1353
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1354
lemma exp_converges: "(\<lambda>n. x^n /\<^sub>R fact n) sums exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1355
  unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1356
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1357
lemma exp_fdiffs:
60241
wenzelm
parents: 60036
diff changeset
  1358
  "diffs (\<lambda>n. inverse (fact n)) = (\<lambda>n. inverse (fact n :: 'a::{real_normed_field,banach}))"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1359
  by (simp add: diffs_def mult_ac nonzero_inverse_mult_distrib nonzero_of_real_inverse
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1360
      del: mult_Suc of_nat_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1361
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1362
lemma diffs_of_real: "diffs (\<lambda>n. of_real (f n)) = (\<lambda>n. of_real (diffs f n))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1363
  by (simp add: diffs_def)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1364
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1365
lemma DERIV_exp [simp]: "DERIV exp x :> exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1366
  unfolding exp_def scaleR_conv_of_real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1367
proof (rule DERIV_cong)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1368
  have sinv: "summable (\<lambda>n. of_real (inverse (fact n)) * x ^ n)" for x::'a
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1369
    by (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1370
  note xx = exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real]
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1371
  show "((\<lambda>x. \<Sum>n. of_real (inverse (fact n)) * x ^ n) has_field_derivative
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1372
        (\<Sum>n. diffs (\<lambda>n. of_real (inverse (fact n))) n * x ^ n))  (at x)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1373
    by (rule termdiffs [where K="of_real (1 + norm x)"]) (simp_all only: diffs_of_real exp_fdiffs sinv norm_of_real)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1374
  show "(\<Sum>n. diffs (\<lambda>n. of_real (inverse (fact n))) n * x ^ n) = (\<Sum>n. of_real (inverse (fact n)) * x ^ n)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1375
    by (simp add: diffs_of_real exp_fdiffs)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1376
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1377
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1378
declare DERIV_exp[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1379
  and DERIV_exp[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1380
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1381
lemmas has_derivative_exp[derivative_intros] = DERIV_exp[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1382
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1383
lemma norm_exp: "norm (exp x) \<le> exp (norm x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1384
proof -
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1385
  from summable_norm[OF summable_norm_exp, of x]
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1386
  have "norm (exp x) \<le> (\<Sum>n. inverse (fact n) * norm (x^n))"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1387
    by (simp add: exp_def)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1388
  also have "\<dots> \<le> exp (norm x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1389
    using summable_exp_generic[of "norm x"] summable_norm_exp[of x]
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1390
    by (auto simp: exp_def intro!: suminf_le norm_power_ineq)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1391
  finally show ?thesis .
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1392
qed
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1393
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1394
lemma isCont_exp: "isCont exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1395
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1396
  by (rule DERIV_exp [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1397
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1398
lemma isCont_exp' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. exp (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1399
  for f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1400
  by (rule isCont_o2 [OF _ isCont_exp])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1401
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1402
lemma tendsto_exp [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. exp (f x)) \<longlongrightarrow> exp a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1403
  for f:: "_ \<Rightarrow>'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1404
  by (rule isCont_tendsto_compose [OF isCont_exp])
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1405
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1406
lemma continuous_exp [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. exp (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1407
  for f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1408
  unfolding continuous_def by (rule tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1409
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1410
lemma continuous_on_exp [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. exp (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1411
  for f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1412
  unfolding continuous_on_def by (auto intro: tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1413
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1414
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1415
subsubsection \<open>Properties of the Exponential Function\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1416
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1417
lemma exp_zero [simp]: "exp 0 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1418
  unfolding exp_def by (simp add: scaleR_conv_of_real)
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1419
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1420
lemma exp_series_add_commuting:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1421
  fixes x y :: "'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1422
  defines S_def: "S \<equiv> \<lambda>x n. x^n /\<^sub>R fact n"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1423
  assumes comm: "x * y = y * x"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1424
  shows "S (x + y) n = (\<Sum>i\<le>n. S x i * S y (n - i))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1425
proof (induct n)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1426
  case 0
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1427
  show ?case
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1428
    unfolding S_def by simp
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1429
next
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1430
  case (Suc n)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1431
  have S_Suc: "\<And>x n. S x (Suc n) = (x * S x n) /\<^sub>R real (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
  1432
    unfolding S_def by (simp del: mult_Suc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1433
  then have times_S: "\<And>x n. x * S x n = real (Suc n) *\<^sub>R S x (Suc n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1434
    by simp
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1435
  have S_comm: "\<And>n. S x n * y = y * S x n"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1436
    by (simp add: power_commuting_commutes comm S_def)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1437
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1438
  have "real (Suc n) *\<^sub>R S (x + y) (Suc n) = (x + y) * S (x + y) n"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1439
    by (simp only: times_S)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1440
  also have "\<dots> = (x + y) * (\<Sum>i\<le>n. S x i * S y (n - i))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1441
    by (simp only: Suc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1442
  also have "\<dots> = x * (\<Sum>i\<le>n. S x i * S y (n - i)) + y * (\<Sum>i\<le>n. S x i * S y (n - i))"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  1443
    by (rule distrib_right)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1444
  also have "\<dots> = (\<Sum>i\<le>n. x * S x i * S y (n - i)) + (\<Sum>i\<le>n. S x i * y * S y (n - i))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1445
    by (simp add: sum_distrib_left ac_simps S_comm)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1446
  also have "\<dots> = (\<Sum>i\<le>n. x * S x i * S y (n - i)) + (\<Sum>i\<le>n. S x i * (y * S y (n - i)))"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1447
    by (simp add: ac_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1448
  also have "\<dots> = (\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n - i))) +
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1449
      (\<Sum>i\<le>n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1450
    by (simp add: times_S Suc_diff_le)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1451
  also have "(\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n - i))) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1452
      (\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n - i)))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1453
    by (subst sum_atMost_Suc_shift) simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1454
  also have "(\<Sum>i\<le>n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i))) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1455
      (\<Sum>i\<le>Suc n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i)))"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1456
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1457
  also have "(\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n - i))) +
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1458
        (\<Sum>i\<le>Suc n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i))) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1459
      (\<Sum>i\<le>Suc n. real (Suc n) *\<^sub>R (S x i * S y (Suc n - i)))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1460
    by (simp only: sum.distrib [symmetric] scaleR_left_distrib [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1461
        of_nat_add [symmetric]) simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1462
  also have "\<dots> = real (Suc n) *\<^sub>R (\<Sum>i\<le>Suc n. S x i * S y (Suc n - i))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1463
    by (simp only: scaleR_right.sum)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1464
  finally show "S (x + y) (Suc n) = (\<Sum>i\<le>Suc n. S x i * S y (Suc n - i))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1465
    by (simp del: sum_cl_ivl_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1466
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1467
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1468
lemma exp_add_commuting: "x * y = y * x \<Longrightarrow> exp (x + y) = exp x * exp y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1469
  by (simp only: exp_def Cauchy_product summable_norm_exp exp_series_add_commuting)
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1470
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1471
lemma exp_times_arg_commute: "exp A * A = A * exp A"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1472
  by (simp add: exp_def suminf_mult[symmetric] summable_exp_generic power_commutes suminf_mult2)
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1473
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1474
lemma exp_add: "exp (x + y) = exp x * exp y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1475
  for x y :: "'a::{real_normed_field,banach}"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1476
  by (rule exp_add_commuting) (simp add: ac_simps)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1477
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1478
lemma exp_double: "exp(2 * z) = exp z ^ 2"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1479
  by (simp add: exp_add_commuting mult_2 power2_eq_square)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1480
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1481
lemmas mult_exp_exp = exp_add [symmetric]
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1482
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1483
lemma exp_of_real: "exp (of_real x) = of_real (exp x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1484
  unfolding exp_def
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1485
  apply (subst suminf_of_real [OF summable_exp_generic])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1486
  apply (simp add: scaleR_conv_of_real)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1487
  done
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1488
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1489
lemmas of_real_exp = exp_of_real[symmetric]
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1490
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1491
corollary exp_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> exp z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1492
  by (metis Reals_cases Reals_of_real exp_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1493
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1494
lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1495
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1496
  have "exp x * exp (- x) = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1497
    by (simp add: exp_add_commuting[symmetric])
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1498
  also assume "exp x = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1499
  finally show False by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1500
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1501
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1502
lemma exp_minus_inverse: "exp x * exp (- x) = 1"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1503
  by (simp add: exp_add_commuting[symmetric])
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1504
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1505
lemma exp_minus: "exp (- x) = inverse (exp x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1506
  for x :: "'a::{real_normed_field,banach}"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1507
  by (intro inverse_unique [symmetric] exp_minus_inverse)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1508
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1509
lemma exp_diff: "exp (x - y) = exp x / exp y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1510
  for x :: "'a::{real_normed_field,banach}"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  1511
  using exp_add [of x "- y"] by (simp add: exp_minus divide_inverse)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1512
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1513
lemma exp_of_nat_mult: "exp (of_nat n * x) = exp x ^ n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1514
  for x :: "'a::{real_normed_field,banach}"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1515
  by (induct n) (auto simp: distrib_left exp_add mult.commute)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1516
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1517
corollary exp_of_nat2_mult: "exp (x * of_nat n) = exp x ^ n"
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1518
  for x :: "'a::{real_normed_field,banach}"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1519
  by (metis exp_of_nat_mult mult_of_nat_commute)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1520
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1521
lemma exp_sum: "finite I \<Longrightarrow> exp (sum f I) = prod (\<lambda>x. exp (f x)) I"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1522
  by (induct I rule: finite_induct) (auto simp: exp_add_commuting mult.commute)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1523
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1524
lemma exp_divide_power_eq:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1525
  fixes x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1526
  assumes "n > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1527
  shows "exp (x / of_nat n) ^ n = exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1528
  using assms
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1529
proof (induction n arbitrary: x)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1530
  case (Suc n)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1531
  show ?case
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1532
  proof (cases "n = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1533
    case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1534
    then show ?thesis by simp
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1535
  next
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1536
    case False
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1537
    then have [simp]: "x * of_nat n / (1 + of_nat n) / of_nat n = x / (1 + of_nat n)"
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1538
      by simp
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1539
    have [simp]: "x / (1 + of_nat n) + x * of_nat n / (1 + of_nat n) = x"
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1540
      apply (simp add: divide_simps)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1541
      using of_nat_eq_0_iff apply (fastforce simp: distrib_left)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1542
      done
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1543
    show ?thesis
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1544
      using Suc.IH [of "x * of_nat n / (1 + of_nat n)"] False
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1545
      by (simp add: exp_add [symmetric])
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1546
  qed
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1547
qed simp
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1548
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1549
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1550
subsubsection \<open>Properties of the Exponential Function on Reals\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1551
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1552
text \<open>Comparisons of @{term "exp x"} with zero.\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1553
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1554
text \<open>Proof: because every exponential can be seen as a square.\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1555
lemma exp_ge_zero [simp]: "0 \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1556
  for x :: real
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1557
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1558
  have "0 \<le> exp (x/2) * exp (x/2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1559
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1560
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1561
    by (simp add: exp_add [symmetric])
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1562
qed
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1563
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1564
lemma exp_gt_zero [simp]: "0 < exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1565
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1566
  by (simp add: order_less_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1567
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1568
lemma not_exp_less_zero [simp]: "\<not> exp x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1569
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1570
  by (simp add: not_less)
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1571
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1572
lemma not_exp_le_zero [simp]: "\<not> exp x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1573
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1574
  by (simp add: not_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1575
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1576
lemma abs_exp_cancel [simp]: "\<bar>exp x\<bar> = exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1577
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1578
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1579
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1580
text \<open>Strict monotonicity of exponential.\<close>
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1581
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1582
lemma exp_ge_add_one_self_aux:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1583
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1584
  assumes "0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1585
  shows "1 + x \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1586
  using order_le_imp_less_or_eq [OF assms]
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1587
proof
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1588
  assume "0 < x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1589
  have "1 + x \<le> (\<Sum>n<2. inverse (fact n) * x^n)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1590
    by (auto simp: numeral_2_eq_2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1591
  also have "\<dots> \<le> (\<Sum>n. inverse (fact n) * x^n)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1592
    apply (rule sum_le_suminf [OF summable_exp])
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1593
    using \<open>0 < x\<close>
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1594
    apply (auto  simp add: zero_le_mult_iff)
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1595
    done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1596
  finally show "1 + x \<le> exp x"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1597
    by (simp add: exp_def)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1598
qed auto
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1599
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1600
lemma exp_gt_one: "0 < x \<Longrightarrow> 1 < exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1601
  for x :: real
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1602
proof -
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1603
  assume x: "0 < x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1604
  then have "1 < 1 + x" by simp
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1605
  also from x have "1 + x \<le> exp x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1606
    by (simp add: exp_ge_add_one_self_aux)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1607
  finally show ?thesis .
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1608
qed
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1609
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1610
lemma exp_less_mono:
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1611
  fixes x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1612
  assumes "x < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1613
  shows "exp x < exp y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1614
proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1615
  from \<open>x < y\<close> have "0 < y - x" by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1616
  then have "1 < exp (y - x)" by (rule exp_gt_one)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1617
  then have "1 < exp y / exp x" by (simp only: exp_diff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1618
  then show "exp x < exp y" by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1619
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1620
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1621
lemma exp_less_cancel: "exp x < exp y \<Longrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1622
  for x y :: real
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1623
  unfolding linorder_not_le [symmetric]
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1624
  by (auto simp: order_le_less exp_less_mono)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1625
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1626
lemma exp_less_cancel_iff [iff]: "exp x < exp y \<longleftrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1627
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1628
  by (auto intro: exp_less_mono exp_less_cancel)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1629
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1630
lemma exp_le_cancel_iff [iff]: "exp x \<le> exp y \<longleftrightarrow> x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1631
  for x y :: real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1632
  by (auto simp: linorder_not_less [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1633
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1634
lemma exp_inj_iff [iff]: "exp x = exp y \<longleftrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1635
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1636
  by (simp add: order_eq_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1637
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1638
text \<open>Comparisons of @{term "exp x"} with one.\<close>
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1639
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1640
lemma one_less_exp_iff [simp]: "1 < exp x \<longleftrightarrow> 0 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1641
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1642
  using exp_less_cancel_iff [where x = 0 and y = x] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1643
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1644
lemma exp_less_one_iff [simp]: "exp x < 1 \<longleftrightarrow> x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1645
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1646
  using exp_less_cancel_iff [where x = x and y = 0] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1647
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1648
lemma one_le_exp_iff [simp]: "1 \<le> exp x \<longleftrightarrow> 0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1649
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1650
  using exp_le_cancel_iff [where x = 0 and y = x] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1651
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1652
lemma exp_le_one_iff [simp]: "exp x \<le> 1 \<longleftrightarrow> x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1653
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1654
  using exp_le_cancel_iff [where x = x and y = 0] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1655
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1656
lemma exp_eq_one_iff [simp]: "exp x = 1 \<longleftrightarrow> x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1657
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1658
  using exp_inj_iff [where x = x and y = 0] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1659
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1660
lemma lemma_exp_total: "1 \<le> y \<Longrightarrow> \<exists>x. 0 \<le> x \<and> x \<le> y - 1 \<and> exp x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1661
  for y :: real
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1662
proof (rule IVT)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1663
  assume "1 \<le> y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1664
  then have "0 \<le> y - 1" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1665
  then have "1 + (y - 1) \<le> exp (y - 1)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1666
    by (rule exp_ge_add_one_self_aux)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1667
  then show "y \<le> exp (y - 1)" by simp
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1668
qed (simp_all add: le_diff_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1669
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1670
lemma exp_total: "0 < y \<Longrightarrow> \<exists>x. exp x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1671
  for y :: real
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1672
proof (rule linorder_le_cases [of 1 y])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1673
  assume "1 \<le> y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1674
  then show "\<exists>x. exp x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1675
    by (fast dest: lemma_exp_total)
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1676
next
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1677
  assume "0 < y" and "y \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1678
  then have "1 \<le> inverse y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1679
    by (simp add: one_le_inverse_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1680
  then obtain x where "exp x = inverse y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1681
    by (fast dest: lemma_exp_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1682
  then have "exp (- x) = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1683
    by (simp add: exp_minus)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1684
  then show "\<exists>x. exp x = y" ..
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1685
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1686
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1687
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1688
subsection \<open>Natural Logarithm\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1689
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1690
class ln = real_normed_algebra_1 + banach +
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1691
  fixes ln :: "'a \<Rightarrow> 'a"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1692
  assumes ln_one [simp]: "ln 1 = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1693
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1694
definition powr :: "'a \<Rightarrow> 'a \<Rightarrow> 'a::ln"  (infixr "powr" 80)
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61762
diff changeset
  1695
  \<comment> \<open>exponentation via ln and exp\<close>
68774
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  1696
  where "x powr a \<equiv> if x = 0 then 0 else exp (a * ln x)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1697
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1698
lemma powr_0 [simp]: "0 powr z = 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1699
  by (simp add: powr_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1700
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1701
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1702
instantiation real :: ln
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1703
begin
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1704
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1705
definition ln_real :: "real \<Rightarrow> real"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1706
  where "ln_real x = (THE u. exp u = x)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1707
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1708
instance
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1709
  by intro_classes (simp add: ln_real_def)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1710
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1711
end
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1712
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1713
lemma powr_eq_0_iff [simp]: "w powr z = 0 \<longleftrightarrow> w = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1714
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1715
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1716
lemma ln_exp [simp]: "ln (exp x) = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1717
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1718
  by (simp add: ln_real_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1719
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1720
lemma exp_ln [simp]: "0 < x \<Longrightarrow> exp (ln x) = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1721
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1722
  by (auto dest: exp_total)
22654
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
  1723
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1724
lemma exp_ln_iff [simp]: "exp (ln x) = x \<longleftrightarrow> 0 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1725
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1726
  by (metis exp_gt_zero exp_ln)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1727
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1728
lemma ln_unique: "exp y = x \<Longrightarrow> ln x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1729
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1730
  by (erule subst) (rule ln_exp)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1731
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1732
lemma ln_mult: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln (x * y) = ln x + ln y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1733
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1734
  by (rule ln_unique) (simp add: exp_add)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1735
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1736
lemma ln_prod: "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i > 0) \<Longrightarrow> ln (prod f I) = sum (\<lambda>x. ln(f x)) I"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1737
  for f :: "'a \<Rightarrow> real"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1738
  by (induct I rule: finite_induct) (auto simp: ln_mult prod_pos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1739
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1740
lemma ln_inverse: "0 < x \<Longrightarrow> ln (inverse x) = - ln x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1741
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1742
  by (rule ln_unique) (simp add: exp_minus)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1743
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1744
lemma ln_div: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln (x / y) = ln x - ln y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1745
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1746
  by (rule ln_unique) (simp add: exp_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1747
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1748
lemma ln_realpow: "0 < x \<Longrightarrow> ln (x^n) = real n * ln x"
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1749
  by (rule ln_unique) (simp add: exp_of_nat_mult)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1750
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1751
lemma ln_less_cancel_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x < ln y \<longleftrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1752
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1753
  by (subst exp_less_cancel_iff [symmetric]) simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1754
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1755
lemma ln_le_cancel_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x \<le> ln y \<longleftrightarrow> x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1756
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1757
  by (simp add: linorder_not_less [symmetric])
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1758
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1759
lemma ln_inj_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x = ln y \<longleftrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1760
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1761
  by (simp add: order_eq_iff)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1762
65680
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1763
lemma ln_add_one_self_le_self: "0 \<le> x \<Longrightarrow> ln (1 + x) \<le> x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1764
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1765
  by (rule exp_le_cancel_iff [THEN iffD1]) (simp add: exp_ge_add_one_self_aux)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1766
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1767
lemma ln_less_self [simp]: "0 < x \<Longrightarrow> ln x < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1768
  for x :: real
65680
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1769
  by (rule order_less_le_trans [where y = "ln (1 + x)"]) (simp_all add: ln_add_one_self_le_self)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1770
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1771
lemma ln_ge_iff: "\<And>x::real. 0 < x \<Longrightarrow> y \<le> ln x \<longleftrightarrow> exp y \<le> x"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1772
  using exp_le_cancel_iff exp_total by force
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1773
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1774
lemma ln_ge_zero [simp]: "1 \<le> x \<Longrightarrow> 0 \<le> ln x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1775
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1776
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1777
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1778
lemma ln_ge_zero_imp_ge_one: "0 \<le> ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1779
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1780
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1781
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1782
lemma ln_ge_zero_iff [simp]: "0 < x \<Longrightarrow> 0 \<le> ln x \<longleftrightarrow> 1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1783
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1784
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1785
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1786
lemma ln_less_zero_iff [simp]: "0 < x \<Longrightarrow> ln x < 0 \<longleftrightarrow> x < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1787
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1788
  using ln_less_cancel_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1789
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1790
lemma ln_le_zero_iff [simp]: "0 < x \<Longrightarrow> ln x \<le> 0 \<longleftrightarrow> x \<le> 1"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1791
  for x :: real
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1792
  by (metis less_numeral_extra(1) ln_le_cancel_iff ln_one)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1793
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1794
lemma ln_gt_zero: "1 < x \<Longrightarrow> 0 < ln x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1795
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1796
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1797
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1798
lemma ln_gt_zero_imp_gt_one: "0 < ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1799
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1800
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1801
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1802
lemma ln_gt_zero_iff [simp]: "0 < x \<Longrightarrow> 0 < ln x \<longleftrightarrow> 1 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1803
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1804
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1805
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1806
lemma ln_eq_zero_iff [simp]: "0 < x \<Longrightarrow> ln x = 0 \<longleftrightarrow> x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1807
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1808
  using ln_inj_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1809
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1810
lemma ln_less_zero: "0 < x \<Longrightarrow> x < 1 \<Longrightarrow> ln x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1811
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1812
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1813
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1814
lemma ln_neg_is_const: "x \<le> 0 \<Longrightarrow> ln x = (THE x. False)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1815
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1816
  by (auto simp: ln_real_def intro!: arg_cong[where f = The])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1817
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1818
lemma isCont_ln:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1819
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1820
  assumes "x \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1821
  shows "isCont ln x"
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1822
proof (cases "0 < x")
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1823
  case True
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1824
  then have "isCont ln (exp (ln x))"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  1825
    by (intro isCont_inverse_function[where d = "\<bar>x\<bar>" and f = exp]) auto
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1826
  with True show ?thesis
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1827
    by simp
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1828
next
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1829
  case False
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1830
  with \<open>x \<noteq> 0\<close> show "isCont ln x"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1831
    unfolding isCont_def
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1832
    by (subst filterlim_cong[OF _ refl, of _ "nhds (ln 0)" _ "\<lambda>_. ln 0"])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1833
       (auto simp: ln_neg_is_const not_less eventually_at dist_real_def
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1834
         intro!: exI[of _ "\<bar>x\<bar>"])
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1835
qed
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1836
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1837
lemma tendsto_ln [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. ln (f x)) \<longlongrightarrow> ln a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1838
  for a :: real
45915
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1839
  by (rule isCont_tendsto_compose [OF isCont_ln])
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1840
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1841
lemma continuous_ln:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1842
  "continuous F f \<Longrightarrow> f (Lim F (\<lambda>x. x)) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1843
  unfolding continuous_def by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1844
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1845
lemma isCont_ln' [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1846
  "continuous (at x) f \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> continuous (at x) (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1847
  unfolding continuous_at by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1848
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1849
lemma continuous_within_ln [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1850
  "continuous (at x within s) f \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1851
  unfolding continuous_within by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1852
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  1853
lemma continuous_on_ln [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1854
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. f x \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1855
  unfolding continuous_on_def by (auto intro: tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1856
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1857
lemma DERIV_ln: "0 < x \<Longrightarrow> DERIV ln x :> inverse x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1858
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1859
  by (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1860
    (auto intro: DERIV_cong [OF DERIV_exp exp_ln] isCont_ln)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1861
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1862
lemma DERIV_ln_divide: "0 < x \<Longrightarrow> DERIV ln x :> 1 / x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1863
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1864
  by (rule DERIV_ln[THEN DERIV_cong]) (simp_all add: divide_inverse)
33667
958dc9f03611 A little rationalisation
paulson
parents: 33549
diff changeset
  1865
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1866
declare DERIV_ln_divide[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1867
  and DERIV_ln_divide[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1868
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1869
lemmas has_derivative_ln[derivative_intros] = DERIV_ln[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1870
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1871
lemma ln_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1872
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1873
  shows "ln x = (\<Sum> n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1874
    (is "ln x = suminf (?f (x - 1))")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1875
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1876
  let ?f' = "\<lambda>x n. (-1)^n * (x - 1)^n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1877
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1878
  have "ln x - suminf (?f (x - 1)) = ln 1 - suminf (?f (1 - 1))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1879
  proof (rule DERIV_isconst3 [where x = x])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1880
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1881
    assume "x \<in> {0 <..< 2}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1882
    then have "0 < x" and "x < 2" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1883
    have "norm (1 - x) < 1"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1884
      using \<open>0 < x\<close> and \<open>x < 2\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1885
    have "1 / x = 1 / (1 - (1 - x))" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1886
    also have "\<dots> = (\<Sum> n. (1 - x)^n)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1887
      using geometric_sums[OF \<open>norm (1 - x) < 1\<close>] by (rule sums_unique)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1888
    also have "\<dots> = suminf (?f' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1889
      unfolding power_mult_distrib[symmetric]
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67268
diff changeset
  1890
      by (rule arg_cong[where f=suminf], rule arg_cong[where f="(^)"], auto)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1891
    finally have "DERIV ln x :> suminf (?f' x)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1892
      using DERIV_ln[OF \<open>0 < x\<close>] unfolding divide_inverse by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1893
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1894
    have repos: "\<And> h x :: real. h - 1 + x = h + x - 1" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1895
    have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1896
      (\<Sum>n. (-1)^n * (1 / real (n + 1)) * real (Suc n) * (x - 1) ^ n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1897
    proof (rule DERIV_power_series')
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1898
      show "x - 1 \<in> {- 1<..<1}" and "(0 :: real) < 1"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1899
        using \<open>0 < x\<close> \<open>x < 2\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1900
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1901
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1902
      assume "x \<in> {- 1<..<1}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1903
      then have "norm (-x) < 1" by auto
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1904
      show "summable (\<lambda>n. (- 1) ^ n * (1 / real (n + 1)) * real (Suc n) * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1905
        unfolding One_nat_def
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1906
        by (auto simp: power_mult_distrib[symmetric] summable_geometric[OF \<open>norm (-x) < 1\<close>])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1907
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1908
    then have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :> suminf (?f' x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1909
      unfolding One_nat_def by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1910
    then have "DERIV (\<lambda>x. suminf (?f (x - 1))) x :> suminf (?f' x)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1911
      unfolding DERIV_def repos .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1912
    ultimately have "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> suminf (?f' x) - suminf (?f' x)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1913
      by (rule DERIV_diff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1914
    then show "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> 0" by auto
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1915
  qed (auto simp: assms)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1916
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1917
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1918
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1919
lemma exp_first_terms:
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1920
  fixes x :: "'a::{real_normed_algebra_1,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1921
  shows "exp x = (\<Sum>n<k. inverse(fact n) *\<^sub>R (x ^ n)) + (\<Sum>n. inverse(fact (n + k)) *\<^sub>R (x ^ (n + k)))"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1922
proof -
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1923
  have "exp x = suminf (\<lambda>n. inverse(fact n) *\<^sub>R (x^n))"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1924
    by (simp add: exp_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1925
  also from summable_exp_generic have "\<dots> = (\<Sum> n. inverse(fact(n+k)) *\<^sub>R (x ^ (n + k))) +
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1926
    (\<Sum> n::nat<k. inverse(fact n) *\<^sub>R (x^n))" (is "_ = _ + ?a")
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1927
    by (rule suminf_split_initial_segment)
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1928
  finally show ?thesis by simp
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1929
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1930
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1931
lemma exp_first_term: "exp x = 1 + (\<Sum>n. inverse (fact (Suc n)) *\<^sub>R (x ^ Suc n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1932
  for x :: "'a::{real_normed_algebra_1,banach}"
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1933
  using exp_first_terms[of x 1] by simp
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1934
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1935
lemma exp_first_two_terms: "exp x = 1 + x + (\<Sum>n. inverse (fact (n + 2)) *\<^sub>R (x ^ (n + 2)))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1936
  for x :: "'a::{real_normed_algebra_1,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1937
  using exp_first_terms[of x 2] by (simp add: eval_nat_numeral)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1938
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1939
lemma exp_bound:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1940
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1941
  assumes a: "0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1942
    and b: "x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1943
  shows "exp x \<le> 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1944
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1945
  have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n + 2))) \<le> x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1946
  proof -
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1947
    have "(\<lambda>n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums (x\<^sup>2 / 2 * (1 / (1 - 1 / 2)))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1948
      by (intro sums_mult geometric_sums) simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1949
    then have sumsx: "(\<lambda>n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums x\<^sup>2"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1950
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1951
    have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n + 2))) \<le> suminf (\<lambda>n. (x\<^sup>2/2) * ((1/2)^n))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1952
    proof (intro suminf_le allI)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1953
      show "inverse (fact (n + 2)) * x ^ (n + 2) \<le> (x\<^sup>2/2) * ((1/2)^n)" for n :: nat
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1954
      proof -
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1955
        have "(2::nat) * 2 ^ n \<le> fact (n + 2)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1956
          by (induct n) simp_all
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1957
        then have "real ((2::nat) * 2 ^ n) \<le> real_of_nat (fact (n + 2))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1958
          by (simp only: of_nat_le_iff)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1959
        then have "((2::real) * 2 ^ n) \<le> fact (n + 2)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1960
          unfolding of_nat_fact by simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1961
        then have "inverse (fact (n + 2)) \<le> inverse ((2::real) * 2 ^ n)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1962
          by (rule le_imp_inverse_le) simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1963
        then have "inverse (fact (n + 2)) \<le> 1/(2::real) * (1/2)^n"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1964
          by (simp add: power_inverse [symmetric])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1965
        then have "inverse (fact (n + 2)) * (x^n * x\<^sup>2) \<le> 1/2 * (1/2)^n * (1 * x\<^sup>2)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1966
          by (rule mult_mono) (rule mult_mono, simp_all add: power_le_one a b)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1967
        then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1968
          unfolding power_add by (simp add: ac_simps del: fact_Suc)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1969
      qed
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1970
      show "summable (\<lambda>n. inverse (fact (n + 2)) * x ^ (n + 2))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1971
        by (rule summable_exp [THEN summable_ignore_initial_segment])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1972
      show "summable (\<lambda>n. x\<^sup>2 / 2 * (1 / 2) ^ n)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1973
        by (rule sums_summable [OF sumsx])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1974
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1975
    also have "\<dots> = x\<^sup>2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1976
      by (rule sums_unique [THEN sym]) (rule sumsx)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1977
    finally show ?thesis .
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1978
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1979
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1980
    unfolding exp_first_two_terms by auto
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1981
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1982
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1983
corollary exp_half_le2: "exp(1/2) \<le> (2::real)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1984
  using exp_bound [of "1/2"]
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1985
  by (simp add: field_simps)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1986
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1987
corollary exp_le: "exp 1 \<le> (3::real)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1988
  using exp_bound [of 1]
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1989
  by (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1990
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1991
lemma exp_bound_half: "norm z \<le> 1/2 \<Longrightarrow> norm (exp z) \<le> 2"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1992
  by (blast intro: order_trans intro!: exp_half_le2 norm_exp)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1993
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1994
lemma exp_bound_lemma:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1995
  assumes "norm z \<le> 1/2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1996
  shows "norm (exp z) \<le> 1 + 2 * norm z"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1997
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1998
  have *: "(norm z)\<^sup>2 \<le> norm z * 1"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1999
    unfolding power2_eq_square
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2000
    by (rule mult_left_mono) (use assms in auto)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2001
  have "norm (exp z) \<le> exp (norm z)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2002
    by (rule norm_exp)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2003
  also have "\<dots> \<le> 1 + (norm z) + (norm z)\<^sup>2"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2004
    using assms exp_bound by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2005
  also have "\<dots> \<le> 1 + 2 * norm z"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2006
    using * by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2007
  finally show ?thesis .
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2008
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2009
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2010
lemma real_exp_bound_lemma: "0 \<le> x \<Longrightarrow> x \<le> 1/2 \<Longrightarrow> exp x \<le> 1 + 2 * x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2011
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2012
  using exp_bound_lemma [of x] by simp
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2013
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2014
lemma ln_one_minus_pos_upper_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2015
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2016
  assumes a: "0 \<le> x" and b: "x < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2017
  shows "ln (1 - x) \<le> - x"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2018
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2019
  have "(1 - x) * (1 + x + x\<^sup>2) = 1 - x^3"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2020
    by (simp add: algebra_simps power2_eq_square power3_eq_cube)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2021
  also have "\<dots> \<le> 1"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2022
    by (auto simp: a)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2023
  finally have "(1 - x) * (1 + x + x\<^sup>2) \<le> 1" .
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2024
  moreover have c: "0 < 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2025
    by (simp add: add_pos_nonneg a)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2026
  ultimately have "1 - x \<le> 1 / (1 + x + x\<^sup>2)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2027
    by (elim mult_imp_le_div_pos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2028
  also have "\<dots> \<le> 1 / exp x"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2029
    by (metis a abs_one b exp_bound exp_gt_zero frac_le less_eq_real_def real_sqrt_abs
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2030
        real_sqrt_pow2_iff real_sqrt_power)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2031
  also have "\<dots> = exp (- x)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2032
    by (auto simp: exp_minus divide_inverse)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2033
  finally have "1 - x \<le> exp (- x)" .
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2034
  also have "1 - x = exp (ln (1 - x))"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  2035
    by (metis b diff_0 exp_ln_iff less_iff_diff_less_0 minus_diff_eq)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2036
  finally have "exp (ln (1 - x)) \<le> exp (- x)" .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2037
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2038
    by (auto simp only: exp_le_cancel_iff)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2039
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2040
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2041
lemma exp_ge_add_one_self [simp]: "1 + x \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2042
  for x :: real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2043
proof (cases "0 \<le> x \<or> x \<le> -1")
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2044
  case True
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2045
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2046
    apply (rule disjE)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2047
     apply (simp add: exp_ge_add_one_self_aux)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2048
    using exp_ge_zero order_trans real_add_le_0_iff by blast
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2049
next
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2050
  case False
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2051
  then have ln1: "ln (1 + x) \<le> x"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2052
    using ln_one_minus_pos_upper_bound [of "-x"] by simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2053
  have "1 + x = exp (ln (1 + x))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2054
    using False by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2055
  also have "\<dots> \<le> exp x"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2056
    by (simp add: ln1)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2057
  finally show ?thesis .
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2058
qed
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2059
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2060
lemma ln_one_plus_pos_lower_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2061
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2062
  assumes a: "0 \<le> x" and b: "x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2063
  shows "x - x\<^sup>2 \<le> ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2064
proof -
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  2065
  have "exp (x - x\<^sup>2) = exp x / exp (x\<^sup>2)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2066
    by (rule exp_diff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2067
  also have "\<dots> \<le> (1 + x + x\<^sup>2) / exp (x \<^sup>2)"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  2068
    by (metis a b divide_right_mono exp_bound exp_ge_zero)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2069
  also have "\<dots> \<le> (1 + x + x\<^sup>2) / (1 + x\<^sup>2)"
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56541
diff changeset
  2070
    by (simp add: a divide_left_mono add_pos_nonneg)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2071
  also from a have "\<dots> \<le> 1 + x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2072
    by (simp add: field_simps add_strict_increasing zero_le_mult_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2073
  finally have "exp (x - x\<^sup>2) \<le> 1 + x" .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2074
  also have "\<dots> = exp (ln (1 + x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2075
  proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2076
    from a have "0 < 1 + x" by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2077
    then show ?thesis
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2078
      by (auto simp only: exp_ln_iff [THEN sym])
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2079
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2080
  finally have "exp (x - x\<^sup>2) \<le> exp (ln (1 + x))" .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2081
  then show ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2082
    by (metis exp_le_cancel_iff)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2083
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2084
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2085
lemma ln_one_minus_pos_lower_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2086
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2087
  assumes a: "0 \<le> x" and b: "x \<le> 1 / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2088
  shows "- x - 2 * x\<^sup>2 \<le> ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2089
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2090
  from b have c: "x < 1" by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2091
  then have "ln (1 - x) = - ln (1 + x / (1 - x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2092
    by (auto simp: ln_inverse [symmetric] field_simps intro: arg_cong [where f=ln])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2093
  also have "- (x / (1 - x)) \<le> \<dots>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2094
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2095
    have "ln (1 + x / (1 - x)) \<le> x / (1 - x)"
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  2096
      using a c by (intro ln_add_one_self_le_self) auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2097
    then show ?thesis
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2098
      by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2099
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2100
  also have "- (x / (1 - x)) = - x / (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2101
    by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2102
  finally have d: "- x / (1 - x) \<le> ln (1 - x)" .
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2103
  have "0 < 1 - x" using a b by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2104
  then have e: "- x - 2 * x\<^sup>2 \<le> - x / (1 - x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2105
    using mult_right_le_one_le[of "x * x" "2 * x"] a b
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2106
    by (simp add: field_simps power2_eq_square)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2107
  from e d show "- x - 2 * x\<^sup>2 \<le> ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2108
    by (rule order_trans)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2109
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2110
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2111
lemma ln_add_one_self_le_self2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2112
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2113
  shows "-1 < x \<Longrightarrow> ln (1 + x) \<le> x"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2114
  by (metis diff_gt_0_iff_gt diff_minus_eq_add exp_ge_add_one_self exp_le_cancel_iff exp_ln minus_less_iff)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2115
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2116
lemma abs_ln_one_plus_x_minus_x_bound_nonneg:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2117
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2118
  assumes x: "0 \<le> x" and x1: "x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2119
  shows "\<bar>ln (1 + x) - x\<bar> \<le> x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2120
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2121
  from x have "ln (1 + x) \<le> x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2122
    by (rule ln_add_one_self_le_self)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2123
  then have "ln (1 + x) - x \<le> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2124
    by simp
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  2125
  then have "\<bar>ln(1 + x) - x\<bar> = - (ln(1 + x) - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2126
    by (rule abs_of_nonpos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2127
  also have "\<dots> = x - ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2128
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2129
  also have "\<dots> \<le> x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2130
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2131
    from x x1 have "x - x\<^sup>2 \<le> ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2132
      by (intro ln_one_plus_pos_lower_bound)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2133
    then show ?thesis
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2134
      by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2135
  qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2136
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2137
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2138
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2139
lemma abs_ln_one_plus_x_minus_x_bound_nonpos:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2140
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2141
  assumes a: "-(1 / 2) \<le> x" and b: "x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2142
  shows "\<bar>ln (1 + x) - x\<bar> \<le> 2 * x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2143
proof -
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2144
  have *: "- (-x) - 2 * (-x)\<^sup>2 \<le> ln (1 - (- x))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2145
    by (metis a b diff_zero ln_one_minus_pos_lower_bound minus_diff_eq neg_le_iff_le) 
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2146
  have "\<bar>ln (1 + x) - x\<bar> = x - ln (1 - (- x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2147
    using a ln_add_one_self_le_self2 [of x] by (simp add: abs_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2148
  also have "\<dots> \<le> 2 * x\<^sup>2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2149
    using * by (simp add: algebra_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2150
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2151
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2152
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2153
lemma abs_ln_one_plus_x_minus_x_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2154
  fixes x :: real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2155
  assumes "\<bar>x\<bar> \<le> 1 / 2"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2156
  shows "\<bar>ln (1 + x) - x\<bar> \<le> 2 * x\<^sup>2"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2157
proof (cases "0 \<le> x")
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2158
  case True
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2159
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2160
    using abs_ln_one_plus_x_minus_x_bound_nonneg assms by fastforce
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2161
next
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2162
  case False
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2163
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2164
    using abs_ln_one_plus_x_minus_x_bound_nonpos assms by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2165
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2166
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2167
lemma ln_x_over_x_mono:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2168
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2169
  assumes x: "exp 1 \<le> x" "x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2170
  shows "ln y / y \<le> ln x / x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2171
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2172
  note x
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2173
  moreover have "0 < exp (1::real)" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2174
  ultimately have a: "0 < x" and b: "0 < y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2175
    by (fast intro: less_le_trans order_trans)+
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2176
  have "x * ln y - x * ln x = x * (ln y - ln x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2177
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2178
  also have "\<dots> = x * ln (y / x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2179
    by (simp only: ln_div a b)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2180
  also have "y / x = (x + (y - x)) / x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2181
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2182
  also have "\<dots> = 1 + (y - x) / x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2183
    using x a by (simp add: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2184
  also have "x * ln (1 + (y - x) / x) \<le> x * ((y - x) / x)"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2185
    using x a
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  2186
    by (intro mult_left_mono ln_add_one_self_le_self) simp_all
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2187
  also have "\<dots> = y - x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2188
    using a by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2189
  also have "\<dots> = (y - x) * ln (exp 1)" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2190
  also have "\<dots> \<le> (y - x) * ln x"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2191
    using a x exp_total of_nat_1 x(1)  by (fastforce intro: mult_left_mono)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2192
  also have "\<dots> = y * ln x - x * ln x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2193
    by (rule left_diff_distrib)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2194
  finally have "x * ln y \<le> y * ln x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2195
    by arith
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2196
  then have "ln y \<le> (y * ln x) / x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2197
    using a by (simp add: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2198
  also have "\<dots> = y * (ln x / x)" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2199
  finally show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2200
    using b by (simp add: field_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2201
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2202
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2203
lemma ln_le_minus_one: "0 < x \<Longrightarrow> ln x \<le> x - 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2204
  for x :: real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2205
  using exp_ge_add_one_self[of "ln x"] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2206
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2207
corollary ln_diff_le: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x - ln y \<le> (x - y) / y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2208
  for x :: real
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2209
  by (simp add: ln_div [symmetric] diff_divide_distrib ln_le_minus_one)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2210
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2211
lemma ln_eq_minus_one:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2212
  fixes x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2213
  assumes "0 < x" "ln x = x - 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2214
  shows "x = 1"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2215
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2216
  let ?l = "\<lambda>y. ln y - y + 1"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2217
  have D: "\<And>x::real. 0 < x \<Longrightarrow> DERIV ?l x :> (1 / x - 1)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2218
    by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2219
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2220
  show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2221
  proof (cases rule: linorder_cases)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2222
    assume "x < 1"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2223
    from dense[OF \<open>x < 1\<close>] obtain a where "x < a" "a < 1" by blast
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2224
    from \<open>x < a\<close> have "?l x < ?l a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2225
    proof (rule DERIV_pos_imp_increasing, safe)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2226
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2227
      assume "x \<le> y" "y \<le> a"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2228
      with \<open>0 < x\<close> \<open>a < 1\<close> have "0 < 1 / y - 1" "0 < y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2229
        by (auto simp: field_simps)
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61738
diff changeset
  2230
      with D show "\<exists>z. DERIV ?l y :> z \<and> 0 < z" by blast
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2231
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2232
    also have "\<dots> \<le> 0"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2233
      using ln_le_minus_one \<open>0 < x\<close> \<open>x < a\<close> by (auto simp: field_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2234
    finally show "x = 1" using assms by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2235
  next
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2236
    assume "1 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2237
    from dense[OF this] obtain a where "1 < a" "a < x" by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2238
    from \<open>a < x\<close> have "?l x < ?l a"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  2239
    proof (rule DERIV_neg_imp_decreasing)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2240
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2241
      assume "a \<le> y" "y \<le> x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2242
      with \<open>1 < a\<close> have "1 / y - 1 < 0" "0 < y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2243
        by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2244
      with D show "\<exists>z. DERIV ?l y :> z \<and> z < 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2245
        by blast
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2246
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2247
    also have "\<dots> \<le> 0"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2248
      using ln_le_minus_one \<open>1 < a\<close> by (auto simp: field_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2249
    finally show "x = 1" using assms by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2250
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2251
    assume "x = 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2252
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2253
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2254
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2255
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2256
lemma ln_x_over_x_tendsto_0: "((\<lambda>x::real. ln x / x) \<longlongrightarrow> 0) at_top"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2257
proof (rule lhospital_at_top_at_top[where f' = inverse and g' = "\<lambda>_. 1"])
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2258
  from eventually_gt_at_top[of "0::real"]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2259
  show "\<forall>\<^sub>F x in at_top. (ln has_real_derivative inverse x) (at x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2260
    by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2261
qed (use tendsto_inverse_0 in
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2262
      \<open>auto simp: filterlim_ident dest!: tendsto_mono[OF at_top_le_at_infinity]\<close>)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2263
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2264
lemma exp_ge_one_plus_x_over_n_power_n:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2265
  assumes "x \<ge> - real n" "n > 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2266
  shows "(1 + x / of_nat n) ^ n \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2267
proof (cases "x = - of_nat n")
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2268
  case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2269
  from assms False have "(1 + x / of_nat n) ^ n = exp (of_nat n * ln (1 + x / of_nat n))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2270
    by (subst exp_of_nat_mult, subst exp_ln) (simp_all add: field_simps)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2271
  also from assms False have "ln (1 + x / real n) \<le> x / real n"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2272
    by (intro ln_add_one_self_le_self2) (simp_all add: field_simps)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2273
  with assms have "exp (of_nat n * ln (1 + x / of_nat n)) \<le> exp x"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2274
    by (simp add: field_simps)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2275
  finally show ?thesis .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2276
next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2277
  case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2278
  then show ?thesis by (simp add: zero_power)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2279
qed
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2280
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2281
lemma exp_ge_one_minus_x_over_n_power_n:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2282
  assumes "x \<le> real n" "n > 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2283
  shows "(1 - x / of_nat n) ^ n \<le> exp (-x)"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2284
  using exp_ge_one_plus_x_over_n_power_n[of n "-x"] assms by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2285
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2286
lemma exp_at_bot: "(exp \<longlongrightarrow> (0::real)) at_bot"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2287
  unfolding tendsto_Zfun_iff
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2288
proof (rule ZfunI, simp add: eventually_at_bot_dense)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2289
  fix r :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2290
  assume "0 < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2291
  have "exp x < r" if "x < ln r" for x
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2292
    by (metis \<open>0 < r\<close> exp_less_mono exp_ln that)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2293
  then show "\<exists>k. \<forall>n<k. exp n < r" by auto
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2294
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2295
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2296
lemma exp_at_top: "LIM x at_top. exp x :: real :> at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2297
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. True" and P="\<lambda>x. 0 < x" and g=ln])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2298
    (auto intro: eventually_gt_at_top)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2299
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2300
lemma lim_exp_minus_1: "((\<lambda>z::'a. (exp(z) - 1) / z) \<longlongrightarrow> 1) (at 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2301
  for x :: "'a::{real_normed_field,banach}"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2302
proof -
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2303
  have "((\<lambda>z::'a. exp(z) - 1) has_field_derivative 1) (at 0)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2304
    by (intro derivative_eq_intros | simp)+
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2305
  then show ?thesis
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2306
    by (simp add: Deriv.has_field_derivative_iff)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2307
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2308
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2309
lemma ln_at_0: "LIM x at_right 0. ln (x::real) :> at_bot"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2310
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g=exp])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51527
diff changeset
  2311
     (auto simp: eventually_at_filter)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2312
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2313
lemma ln_at_top: "LIM x at_top. ln (x::real) :> at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2314
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g=exp])
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  2315
     (auto intro: eventually_gt_at_top)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2316
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2317
lemma filtermap_ln_at_top: "filtermap (ln::real \<Rightarrow> real) at_top = at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2318
  by (intro filtermap_fun_inverse[of exp] exp_at_top ln_at_top) auto
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2319
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2320
lemma filtermap_exp_at_top: "filtermap (exp::real \<Rightarrow> real) at_top = at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2321
  by (intro filtermap_fun_inverse[of ln] exp_at_top ln_at_top)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2322
     (auto simp: eventually_at_top_dense)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2323
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2324
lemma filtermap_ln_at_right: "filtermap ln (at_right (0::real)) = at_bot"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2325
  by (auto intro!: filtermap_fun_inverse[where g="\<lambda>x. exp x"] ln_at_0
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2326
      simp: filterlim_at exp_at_bot)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2327
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2328
lemma tendsto_power_div_exp_0: "((\<lambda>x. x ^ k / exp x) \<longlongrightarrow> (0::real)) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2329
proof (induct k)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2330
  case 0
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2331
  show "((\<lambda>x. x ^ 0 / exp x) \<longlongrightarrow> (0::real)) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2332
    by (simp add: inverse_eq_divide[symmetric])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2333
       (metis filterlim_compose[OF tendsto_inverse_0] exp_at_top filterlim_mono
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2334
         at_top_le_at_infinity order_refl)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2335
next
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2336
  case (Suc k)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2337
  show ?case
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2338
  proof (rule lhospital_at_top_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2339
    show "eventually (\<lambda>x. DERIV (\<lambda>x. x ^ Suc k) x :> (real (Suc k) * x^k)) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2340
      by eventually_elim (intro derivative_eq_intros, auto)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2341
    show "eventually (\<lambda>x. DERIV exp x :> exp x) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2342
      by eventually_elim auto
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2343
    show "eventually (\<lambda>x. exp x \<noteq> 0) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2344
      by auto
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2345
    from tendsto_mult[OF tendsto_const Suc, of "real (Suc k)"]
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2346
    show "((\<lambda>x. real (Suc k) * x ^ k / exp x) \<longlongrightarrow> 0) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2347
      by simp
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2348
  qed (rule exp_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2349
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2350
64758
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2351
subsubsection\<open> A couple of simple bounds\<close>
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2352
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2353
lemma exp_plus_inverse_exp:
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2354
  fixes x::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2355
  shows "2 \<le> exp x + inverse (exp x)"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2356
proof -
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2357
  have "2 \<le> exp x + exp (-x)"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2358
    using exp_ge_add_one_self [of x] exp_ge_add_one_self [of "-x"]
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2359
    by linarith
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2360
  then show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2361
    by (simp add: exp_minus)
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2362
qed
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2363
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2364
lemma real_le_x_sinh:
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2365
  fixes x::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2366
  assumes "0 \<le> x"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2367
  shows "x \<le> (exp x - inverse(exp x)) / 2"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2368
proof -
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2369
  have *: "exp a - inverse(exp a) - 2*a \<le> exp b - inverse(exp b) - 2*b" if "a \<le> b" for a b::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2370
    using exp_plus_inverse_exp
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  2371
    by (fastforce intro: derivative_eq_intros DERIV_nonneg_imp_nondecreasing [OF that])
64758
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2372
  show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2373
    using*[OF assms] by simp
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2374
qed
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2375
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2376
lemma real_le_abs_sinh:
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2377
  fixes x::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2378
  shows "abs x \<le> abs((exp x - inverse(exp x)) / 2)"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2379
proof (cases "0 \<le> x")
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2380
  case True
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2381
  show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2382
    using real_le_x_sinh [OF True] True by (simp add: abs_if)
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2383
next
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2384
  case False
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2385
  have "-x \<le> (exp(-x) - inverse(exp(-x))) / 2"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2386
    by (meson False linear neg_le_0_iff_le real_le_x_sinh)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2387
  also have "\<dots> \<le> \<bar>(exp x - inverse (exp x)) / 2\<bar>"
64758
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2388
    by (metis (no_types, hide_lams) abs_divide abs_le_iff abs_minus_cancel
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2389
       add.inverse_inverse exp_minus minus_diff_eq order_refl)
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2390
  finally show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2391
    using False by linarith
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2392
qed
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2393
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2394
subsection\<open>The general logarithm\<close>
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2395
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2396
definition log :: "real \<Rightarrow> real \<Rightarrow> real"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61762
diff changeset
  2397
  \<comment> \<open>logarithm of @{term x} to base @{term a}\<close>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2398
  where "log a x = ln x / ln a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2399
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2400
lemma tendsto_log [tendsto_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2401
  "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> 0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < b \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2402
    ((\<lambda>x. log (f x) (g x)) \<longlongrightarrow> log a b) F"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2403
  unfolding log_def by (intro tendsto_intros) auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2404
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2405
lemma continuous_log:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2406
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2407
    and "continuous F g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2408
    and "0 < f (Lim F (\<lambda>x. x))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2409
    and "f (Lim F (\<lambda>x. x)) \<noteq> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2410
    and "0 < g (Lim F (\<lambda>x. x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2411
  shows "continuous F (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2412
  using assms unfolding continuous_def by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2413
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2414
lemma continuous_at_within_log[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2415
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2416
    and "continuous (at a within s) g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2417
    and "0 < f a"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2418
    and "f a \<noteq> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2419
    and "0 < g a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2420
  shows "continuous (at a within s) (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2421
  using assms unfolding continuous_within by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2422
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2423
lemma isCont_log[continuous_intros, simp]:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2424
  assumes "isCont f a" "isCont g a" "0 < f a" "f a \<noteq> 1" "0 < g a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2425
  shows "isCont (\<lambda>x. log (f x) (g x)) a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2426
  using assms unfolding continuous_at by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2427
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2428
lemma continuous_on_log[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2429
  assumes "continuous_on s f" "continuous_on s g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2430
    and "\<forall>x\<in>s. 0 < f x" "\<forall>x\<in>s. f x \<noteq> 1" "\<forall>x\<in>s. 0 < g x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2431
  shows "continuous_on s (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2432
  using assms unfolding continuous_on_def by (fast intro: tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2433
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2434
lemma powr_one_eq_one [simp]: "1 powr a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2435
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2436
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2437
lemma powr_zero_eq_one [simp]: "x powr 0 = (if x = 0 then 0 else 1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2438
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2439
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2440
lemma powr_one_gt_zero_iff [simp]: "x powr 1 = x \<longleftrightarrow> 0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2441
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2442
  by (auto simp: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2443
declare powr_one_gt_zero_iff [THEN iffD2, simp]
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2444
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2445
lemma powr_diff:
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2446
  fixes w:: "'a::{ln,real_normed_field}" shows  "w powr (z1 - z2) = w powr z1 / w powr z2"
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2447
  by (simp add: powr_def algebra_simps exp_diff)
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2448
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2449
lemma powr_mult: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> (x * y) powr a = (x powr a) * (y powr a)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2450
  for a x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2451
  by (simp add: powr_def exp_add [symmetric] ln_mult distrib_left)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2452
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2453
lemma powr_ge_pzero [simp]: "0 \<le> x powr y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2454
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2455
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2456
67573
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2457
lemma powr_non_neg[simp]: "\<not>a powr x < 0" for a x::real
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2458
  using powr_ge_pzero[of a x] by arith
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2459
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2460
lemma powr_divide: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> (x / y) powr a = (x powr a) / (y powr a)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2461
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2462
  apply (simp add: divide_inverse positive_imp_inverse_positive powr_mult)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2463
  apply (simp add: powr_def exp_minus [symmetric] exp_add [symmetric] ln_inverse)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2464
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2465
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2466
lemma powr_add: "x powr (a + b) = (x powr a) * (x powr b)"
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2467
  for a b x :: "'a::{ln,real_normed_field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2468
  by (simp add: powr_def exp_add [symmetric] distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2469
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2470
lemma powr_mult_base: "0 < x \<Longrightarrow>x * x powr y = x powr (1 + y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2471
  for x :: real
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63040
diff changeset
  2472
  by (auto simp: powr_add)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2473
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2474
lemma powr_powr: "(x powr a) powr b = x powr (a * b)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2475
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2476
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2477
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2478
lemma powr_powr_swap: "(x powr a) powr b = (x powr b) powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2479
  for a b x :: real
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2480
  by (simp add: powr_powr mult.commute)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2481
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2482
lemma powr_minus: "x powr (- a) = inverse (x powr a)"
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2483
      for a x :: "'a::{ln,real_normed_field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2484
  by (simp add: powr_def exp_minus [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2485
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2486
lemma powr_minus_divide: "x powr (- a) = 1/(x powr a)"
67268
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  2487
      for a x :: "'a::{ln,real_normed_field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2488
  by (simp add: divide_inverse powr_minus)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2489
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2490
lemma divide_powr_uminus: "a / b powr c = a * b powr (- c)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2491
  for a b c :: real
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2492
  by (simp add: powr_minus_divide)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2493
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2494
lemma powr_less_mono: "a < b \<Longrightarrow> 1 < x \<Longrightarrow> x powr a < x powr b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2495
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2496
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2497
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2498
lemma powr_less_cancel: "x powr a < x powr b \<Longrightarrow> 1 < x \<Longrightarrow> a < b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2499
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2500
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2501
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2502
lemma powr_less_cancel_iff [simp]: "1 < x \<Longrightarrow> x powr a < x powr b \<longleftrightarrow> a < b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2503
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2504
  by (blast intro: powr_less_cancel powr_less_mono)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2505
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2506
lemma powr_le_cancel_iff [simp]: "1 < x \<Longrightarrow> x powr a \<le> x powr b \<longleftrightarrow> a \<le> b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2507
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2508
  by (simp add: linorder_not_less [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2509
66511
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2510
lemma powr_realpow: "0 < x \<Longrightarrow> x powr (real n) = x^n"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2511
by (induction n) (simp_all add: ac_simps powr_add)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2512
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2513
lemma log_ln: "ln x = log (exp(1)) x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2514
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2515
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2516
lemma DERIV_log:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2517
  assumes "x > 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2518
  shows "DERIV (\<lambda>y. log b y) x :> 1 / (ln b * x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2519
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
  2520
  define lb where "lb = 1 / ln b"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2521
  moreover have "DERIV (\<lambda>y. lb * ln y) x :> lb / x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2522
    using \<open>x > 0\<close> by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2523
  ultimately show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2524
    by (simp add: log_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2525
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2526
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2527
lemmas DERIV_log[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2528
  and DERIV_log[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2529
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2530
lemma powr_log_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> a powr (log a x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2531
  by (simp add: powr_def log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2532
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2533
lemma log_powr_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a (a powr y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2534
  by (simp add: log_def powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2535
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2536
lemma log_mult:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2537
  "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2538
    log a (x * y) = log a x + log a y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2539
  by (simp add: log_def ln_mult divide_inverse distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2540
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2541
lemma log_eq_div_ln_mult_log:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2542
  "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2543
    log a x = (ln b/ln a) * log b x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2544
  by (simp add: log_def divide_inverse)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2545
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2546
text\<open>Base 10 logarithms\<close>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2547
lemma log_base_10_eq1: "0 < x \<Longrightarrow> log 10 x = (ln (exp 1) / ln 10) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2548
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2549
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2550
lemma log_base_10_eq2: "0 < x \<Longrightarrow> log 10 x = (log 10 (exp 1)) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2551
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2552
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2553
lemma log_one [simp]: "log a 1 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2554
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2555
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2556
lemma log_eq_one [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2557
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2558
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2559
lemma log_inverse: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log a (inverse x) = - log a x"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  2560
  using ln_inverse log_def by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2561
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2562
lemma log_divide: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a (x/y) = log a x - log a y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2563
  by (simp add: log_mult divide_inverse log_inverse)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2564
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2565
lemma powr_gt_zero [simp]: "0 < x powr a \<longleftrightarrow> x \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2566
  for a x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2567
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2568
67573
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2569
lemma powr_nonneg_iff[simp]: "a powr x \<le> 0 \<longleftrightarrow> a = 0"
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2570
  for a x::real
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2571
  by (meson not_less powr_gt_zero)
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2572
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2573
lemma log_add_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log b x + y = log b (x * b powr y)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2574
  and add_log_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> y + log b x = log b (b powr y * x)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2575
  and log_minus_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log b x - y = log b (x * b powr -y)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2576
  and minus_log_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> y - log b x = log b (b powr y / x)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2577
  by (simp_all add: log_mult log_divide)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2578
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2579
lemma log_less_cancel_iff [simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a x < log a y \<longleftrightarrow> x < y"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  2580
  using powr_less_cancel_iff [of a] powr_log_cancel [of a x] powr_log_cancel [of a y]
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  2581
  by (metis less_eq_real_def less_trans not_le zero_less_one)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2582
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2583
lemma log_inj:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2584
  assumes "1 < b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2585
  shows "inj_on (log b) {0 <..}"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2586
proof (rule inj_onI, simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2587
  fix x y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2588
  assume pos: "0 < x" "0 < y" and *: "log b x = log b y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2589
  show "x = y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2590
  proof (cases rule: linorder_cases)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2591
    assume "x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2592
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2593
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2594
    assume "x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2595
    then have "log b x < log b y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2596
      using log_less_cancel_iff[OF \<open>1 < b\<close>] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2597
    then show ?thesis using * by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2598
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2599
    assume "y < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2600
    then have "log b y < log b x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2601
      using log_less_cancel_iff[OF \<open>1 < b\<close>] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2602
    then show ?thesis using * by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2603
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2604
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2605
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2606
lemma log_le_cancel_iff [simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a x \<le> log a y \<longleftrightarrow> x \<le> y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2607
  by (simp add: linorder_not_less [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2608
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2609
lemma zero_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < log a x \<longleftrightarrow> 1 < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2610
  using log_less_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2611
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2612
lemma zero_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 \<le> log a x \<longleftrightarrow> 1 \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2613
  using log_le_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2614
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2615
lemma log_less_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 0 \<longleftrightarrow> x < 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2616
  using log_less_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2617
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2618
lemma log_le_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 0 \<longleftrightarrow> x \<le> 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2619
  using log_le_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2620
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2621
lemma one_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 < log a x \<longleftrightarrow> a < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2622
  using log_less_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2623
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2624
lemma one_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> log a x \<longleftrightarrow> a \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2625
  using log_le_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2626
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2627
lemma log_less_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 1 \<longleftrightarrow> x < a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2628
  using log_less_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2629
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2630
lemma log_le_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 1 \<longleftrightarrow> x \<le> a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2631
  using log_le_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2632
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2633
lemma le_log_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2634
  fixes b x y :: real
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2635
  assumes "1 < b" "x > 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2636
  shows "y \<le> log b x \<longleftrightarrow> b powr y \<le> x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  2637
  using assms
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  2638
  by (metis less_irrefl less_trans powr_le_cancel_iff powr_log_cancel zero_less_one)
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2639
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2640
lemma less_log_iff:
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2641
  assumes "1 < b" "x > 0"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2642
  shows "y < log b x \<longleftrightarrow> b powr y < x"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2643
  by (metis assms dual_order.strict_trans less_irrefl powr_less_cancel_iff
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2644
    powr_log_cancel zero_less_one)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2645
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2646
lemma
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2647
  assumes "1 < b" "x > 0"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2648
  shows log_less_iff: "log b x < y \<longleftrightarrow> x < b powr y"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2649
    and log_le_iff: "log b x \<le> y \<longleftrightarrow> x \<le> b powr y"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2650
  using le_log_iff[OF assms, of y] less_log_iff[OF assms, of y]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2651
  by auto
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2652
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2653
lemmas powr_le_iff = le_log_iff[symmetric]
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2654
  and powr_less_iff = less_log_iff[symmetric]
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2655
  and less_powr_iff = log_less_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2656
  and le_powr_iff = log_le_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2657
66511
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2658
lemma le_log_of_power:
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2659
  assumes "b ^ n \<le> m" "1 < b"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2660
  shows "n \<le> log b m"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2661
proof -
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2662
  from assms have "0 < m" by (metis less_trans zero_less_power less_le_trans zero_less_one)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2663
  thus ?thesis using assms by (simp add: le_log_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2664
qed
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2665
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2666
lemma le_log2_of_power: "2 ^ n \<le> m \<Longrightarrow> n \<le> log 2 m" for m n :: nat
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2667
using le_log_of_power[of 2] by simp
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2668
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2669
lemma log_of_power_le: "\<lbrakk> m \<le> b ^ n; b > 1; m > 0 \<rbrakk> \<Longrightarrow> log b (real m) \<le> n"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2670
by (simp add: log_le_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2671
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2672
lemma log2_of_power_le: "\<lbrakk> m \<le> 2 ^ n; m > 0 \<rbrakk> \<Longrightarrow> log 2 m \<le> n" for m n :: nat
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2673
using log_of_power_le[of _ 2] by simp
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2674
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2675
lemma log_of_power_less: "\<lbrakk> m < b ^ n; b > 1; m > 0 \<rbrakk> \<Longrightarrow> log b (real m) < n"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2676
by (simp add: log_less_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2677
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2678
lemma log2_of_power_less: "\<lbrakk> m < 2 ^ n; m > 0 \<rbrakk> \<Longrightarrow> log 2 m < n" for m n :: nat
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2679
using log_of_power_less[of _ 2] by simp
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2680
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2681
lemma less_log_of_power:
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2682
  assumes "b ^ n < m" "1 < b"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2683
  shows "n < log b m"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2684
proof -
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2685
  have "0 < m" by (metis assms less_trans zero_less_power zero_less_one)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2686
  thus ?thesis using assms by (simp add: less_log_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2687
qed
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2688
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2689
lemma less_log2_of_power: "2 ^ n < m \<Longrightarrow> n < log 2 m" for m n :: nat
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2690
using less_log_of_power[of 2] by simp
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2691
64446
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2692
lemma gr_one_powr[simp]:
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2693
  fixes x y :: real shows "\<lbrakk> x > 1; y > 0 \<rbrakk> \<Longrightarrow> 1 < x powr y"
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2694
by(simp add: less_powr_iff)
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2695
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2696
lemma floor_log_eq_powr_iff: "x > 0 \<Longrightarrow> b > 1 \<Longrightarrow> \<lfloor>log b x\<rfloor> = k \<longleftrightarrow> b powr k \<le> x \<and> x < b powr (k + 1)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2697
  by (auto simp: floor_eq_iff powr_le_iff less_powr_iff)
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2698
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2699
lemma floor_log_nat_eq_powr_iff: fixes b n k :: nat
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2700
  shows "\<lbrakk> b \<ge> 2; k > 0 \<rbrakk> \<Longrightarrow>
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2701
  floor (log b (real k)) = n \<longleftrightarrow> b^n \<le> k \<and> k < b^(n+1)"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2702
by (auto simp: floor_log_eq_powr_iff powr_add powr_realpow
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2703
               of_nat_power[symmetric] of_nat_mult[symmetric] ac_simps
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2704
         simp del: of_nat_power of_nat_mult)
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2705
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2706
lemma floor_log_nat_eq_if: fixes b n k :: nat
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2707
  assumes "b^n \<le> k" "k < b^(n+1)" "b \<ge> 2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2708
  shows "floor (log b (real k)) = n"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2709
proof -
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2710
  have "k \<ge> 1" using assms(1,3) one_le_power[of b n] by linarith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2711
  with assms show ?thesis by(simp add: floor_log_nat_eq_powr_iff)
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2712
qed
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2713
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2714
lemma ceiling_log_eq_powr_iff: "\<lbrakk> x > 0; b > 1 \<rbrakk>
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2715
  \<Longrightarrow> \<lceil>log b x\<rceil> = int k + 1 \<longleftrightarrow> b powr k < x \<and> x \<le> b powr (k + 1)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2716
by (auto simp: ceiling_eq_iff powr_less_iff le_powr_iff)
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2717
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2718
lemma ceiling_log_nat_eq_powr_iff: fixes b n k :: nat
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2719
  shows "\<lbrakk> b \<ge> 2; k > 0 \<rbrakk> \<Longrightarrow>
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2720
  ceiling (log b (real k)) = int n + 1 \<longleftrightarrow> (b^n < k \<and> k \<le> b^(n+1))"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2721
using ceiling_log_eq_powr_iff
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2722
by (auto simp: powr_add powr_realpow of_nat_power[symmetric] of_nat_mult[symmetric] ac_simps
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2723
         simp del: of_nat_power of_nat_mult)
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2724
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2725
lemma ceiling_log_nat_eq_if: fixes b n k :: nat
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2726
  assumes "b^n < k" "k \<le> b^(n+1)" "b \<ge> 2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2727
  shows "ceiling (log b (real k)) = int n + 1"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2728
proof -
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2729
  have "k \<ge> 1" using assms(1,3) one_le_power[of b n] by linarith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2730
  with assms show ?thesis by(simp add: ceiling_log_nat_eq_powr_iff)
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2731
qed
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2732
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2733
lemma floor_log2_div2: fixes n :: nat assumes "n \<ge> 2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2734
shows "floor(log 2 n) = floor(log 2 (n div 2)) + 1"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2735
proof cases
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2736
  assume "n=2" thus ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2737
next
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2738
  let ?m = "n div 2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2739
  assume "n\<noteq>2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2740
  hence "1 \<le> ?m" using assms by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2741
  then obtain i where i: "2 ^ i \<le> ?m" "?m < 2 ^ (i + 1)"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2742
    using ex_power_ivl1[of 2 ?m] by auto
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2743
  have "2^(i+1) \<le> 2*?m" using i(1) by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2744
  also have "2*?m \<le> n" by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2745
  finally have *: "2^(i+1) \<le> \<dots>" .
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2746
  have "n < 2^(i+1+1)" using i(2) by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2747
  from floor_log_nat_eq_if[OF * this] floor_log_nat_eq_if[OF i]
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2748
  show ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2749
qed
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2750
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2751
lemma ceiling_log2_div2: assumes "n \<ge> 2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2752
shows "ceiling(log 2 (real n)) = ceiling(log 2 ((n-1) div 2 + 1)) + 1"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2753
proof cases
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2754
  assume "n=2" thus ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2755
next
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2756
  let ?m = "(n-1) div 2 + 1"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2757
  assume "n\<noteq>2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2758
  hence "2 \<le> ?m" using assms by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2759
  then obtain i where i: "2 ^ i < ?m" "?m \<le> 2 ^ (i + 1)"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2760
    using ex_power_ivl2[of 2 ?m] by auto
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2761
  have "n \<le> 2*?m" by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2762
  also have "2*?m \<le> 2 ^ ((i+1)+1)" using i(2) by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2763
  finally have *: "n \<le> \<dots>" .
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2764
  have "2^(i+1) < n" using i(1) by (auto simp: less_Suc_eq_0_disj)
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2765
  from ceiling_log_nat_eq_if[OF this *] ceiling_log_nat_eq_if[OF i]
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2766
  show ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2767
qed
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2768
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2769
lemma powr_real_of_int:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2770
  "x > 0 \<Longrightarrow> x powr real_of_int n = (if n \<ge> 0 then x ^ nat n else inverse (x ^ nat (- n)))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61976
diff changeset
  2771
  using powr_realpow[of x "nat n"] powr_realpow[of x "nat (-n)"]
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2772
  by (auto simp: field_simps powr_minus)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61976
diff changeset
  2773
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2774
lemma powr_numeral [simp]: "0 < x \<Longrightarrow> x powr (numeral n :: real) = x ^ (numeral n)"
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2775
  by (metis of_nat_numeral powr_realpow)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2776
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2777
lemma powr_int:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2778
  assumes "x > 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2779
  shows "x powr i = (if i \<ge> 0 then x ^ nat i else 1 / x ^ nat (-i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2780
proof (cases "i < 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2781
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2782
  have r: "x powr i = 1 / x powr (- i)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2783
    by (simp add: powr_minus field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2784
  show ?thesis using \<open>i < 0\<close> \<open>x > 0\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2785
    by (simp add: r field_simps powr_realpow[symmetric])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2786
next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2787
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2788
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2789
    by (simp add: assms powr_realpow[symmetric])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2790
qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2791
68774
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2792
definition powr_real :: "real \<Rightarrow> real \<Rightarrow> real"
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2793
  where [code_abbrev, simp]: "powr_real = Transcendental.powr"
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2794
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2795
lemma compute_powr_real [code]:
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2796
  "powr_real b i =
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2797
    (if b \<le> 0 then Code.abort (STR ''powr_real with nonpositive base'') (\<lambda>_. powr_real b i)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2798
     else if \<lfloor>i\<rfloor> = i then (if 0 \<le> i then b ^ nat \<lfloor>i\<rfloor> else 1 / b ^ nat \<lfloor>- i\<rfloor>)
68774
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2799
     else Code.abort (STR ''powr_real with non-integer exponent'') (\<lambda>_. powr_real b i))"
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2800
    for b i :: real
59587
8ea7b22525cb Removed the obsolete functions "natfloor" and "natceiling"
nipkow
parents: 58984
diff changeset
  2801
  by (auto simp: powr_int)
58981
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2802
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2803
lemma powr_one: "0 \<le> x \<Longrightarrow> x powr 1 = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2804
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2805
  using powr_realpow [of x 1] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2806
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2807
lemma powr_neg_one: "0 < x \<Longrightarrow> x powr - 1 = 1 / x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2808
  for x :: real
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2809
  using powr_int [of x "- 1"] by simp
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2810
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2811
lemma powr_neg_numeral: "0 < x \<Longrightarrow> x powr - numeral n = 1 / x ^ numeral n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2812
  for x :: real
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2813
  using powr_int [of x "- numeral n"] by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2814
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2815
lemma root_powr_inverse: "0 < n \<Longrightarrow> 0 < x \<Longrightarrow> root n x = x powr (1/n)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2816
  by (rule real_root_pos_unique) (auto simp: powr_realpow[symmetric] powr_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2817
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2818
lemma ln_powr: "x \<noteq> 0 \<Longrightarrow> ln (x powr y) = y * ln x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2819
  for x :: real
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2820
  by (simp add: powr_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2821
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2822
lemma ln_root: "n > 0 \<Longrightarrow> b > 0 \<Longrightarrow> ln (root n b) =  ln b / n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2823
  by (simp add: root_powr_inverse ln_powr)
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2824
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2825
lemma ln_sqrt: "0 < x \<Longrightarrow> ln (sqrt x) = ln x / 2"
65109
a79c1080f1e9 added numeral_powr_numeral
nipkow
parents: 65057
diff changeset
  2826
  by (simp add: ln_powr ln_powr[symmetric] mult.commute)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2827
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2828
lemma log_root: "n > 0 \<Longrightarrow> a > 0 \<Longrightarrow> log b (root n a) =  log b a / n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2829
  by (simp add: log_def ln_root)
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2830
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2831
lemma log_powr: "x \<noteq> 0 \<Longrightarrow> log b (x powr y) = y * log b x"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2832
  by (simp add: log_def ln_powr)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2833
64446
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2834
(* [simp] is not worth it, interferes with some proofs *)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2835
lemma log_nat_power: "0 < x \<Longrightarrow> log b (x^n) = real n * log b x"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2836
  by (simp add: log_powr powr_realpow [symmetric])
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2837
66510
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2838
lemma log_of_power_eq:
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2839
  assumes "m = b ^ n" "b > 1"
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2840
  shows "n = log b (real m)"
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2841
proof -
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2842
  have "n = log b (b ^ n)" using assms(2) by (simp add: log_nat_power)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2843
  also have "\<dots> = log b m" using assms by simp
66510
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2844
  finally show ?thesis .
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2845
qed
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2846
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2847
lemma log2_of_power_eq: "m = 2 ^ n \<Longrightarrow> n = log 2 m" for m n :: nat
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2848
using log_of_power_eq[of _ 2] by simp
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2849
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2850
lemma log_base_change: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log b x = log a x / log a b"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2851
  by (simp add: log_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2852
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2853
lemma log_base_pow: "0 < a \<Longrightarrow> log (a ^ n) x = log a x / n"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2854
  by (simp add: log_def ln_realpow)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2855
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2856
lemma log_base_powr: "a \<noteq> 0 \<Longrightarrow> log (a powr b) x = log a x / b"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2857
  by (simp add: log_def ln_powr)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2858
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2859
lemma log_base_root: "n > 0 \<Longrightarrow> b > 0 \<Longrightarrow> log (root n b) x = n * (log b x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2860
  by (simp add: log_def ln_root)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2861
67727
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67685
diff changeset
  2862
lemma ln_bound: "0 < x \<Longrightarrow> ln x \<le> x" for x :: real
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67685
diff changeset
  2863
  using ln_le_minus_one by force
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2864
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2865
lemma powr_mono:
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2866
  fixes x :: real
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2867
  assumes "a \<le> b" and "1 \<le> x" shows "x powr a \<le> x powr b"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2868
  using assms less_eq_real_def by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2869
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2870
lemma ge_one_powr_ge_zero: "1 \<le> x \<Longrightarrow> 0 \<le> a \<Longrightarrow> 1 \<le> x powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2871
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2872
  using powr_mono by fastforce
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2873
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2874
lemma powr_less_mono2: "0 < a \<Longrightarrow> 0 \<le> x \<Longrightarrow> x < y \<Longrightarrow> x powr a < y powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2875
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2876
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2877
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2878
lemma powr_less_mono2_neg: "a < 0 \<Longrightarrow> 0 < x \<Longrightarrow> x < y \<Longrightarrow> y powr a < x powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2879
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2880
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2881
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2882
lemma powr_mono2: "x powr a \<le> y powr a" if "0 \<le> a" "0 \<le> x" "x \<le> y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2883
  for x :: real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2884
  using less_eq_real_def powr_less_mono2 that by auto
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2885
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2886
lemma powr_le1: "0 \<le> a \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> x powr a \<le> 1"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2887
  for x :: real
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2888
  using powr_mono2 by fastforce
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2889
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2890
lemma powr_mono2':
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2891
  fixes a x y :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2892
  assumes "a \<le> 0" "x > 0" "x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2893
  shows "x powr a \<ge> y powr a"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2894
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2895
  from assms have "x powr - a \<le> y powr - a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2896
    by (intro powr_mono2) simp_all
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2897
  with assms show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2898
    by (auto simp: powr_minus field_simps)
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2899
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2900
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2901
lemma powr_mono_both:
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2902
  fixes x :: real
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2903
  assumes "0 \<le> a" "a \<le> b" "1 \<le> x" "x \<le> y"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2904
    shows "x powr a \<le> y powr b"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2905
  by (meson assms order.trans powr_mono powr_mono2 zero_le_one)
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2906
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2907
lemma powr_inj: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> a powr x = a powr y \<longleftrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2908
  for x :: real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2909
  unfolding powr_def exp_inj_iff by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2910
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2911
lemma powr_half_sqrt: "0 \<le> x \<Longrightarrow> x powr (1/2) = sqrt x"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2912
  by (simp add: powr_def root_powr_inverse sqrt_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2913
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2914
lemma ln_powr_bound: "1 \<le> x \<Longrightarrow> 0 < a \<Longrightarrow> ln x \<le> (x powr a) / a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2915
  for x :: real
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2916
  by (metis exp_gt_zero linear ln_eq_zero_iff ln_exp ln_less_self ln_powr mult.commute
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2917
      mult_imp_le_div_pos not_less powr_gt_zero)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2918
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2919
lemma ln_powr_bound2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2920
  fixes x :: real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2921
  assumes "1 < x" and "0 < a"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2922
  shows "(ln x) powr a \<le> (a powr a) * x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2923
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2924
  from assms have "ln x \<le> (x powr (1 / a)) / (1 / a)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2925
    by (metis less_eq_real_def ln_powr_bound zero_less_divide_1_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2926
  also have "\<dots> = a * (x powr (1 / a))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2927
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2928
  finally have "(ln x) powr a \<le> (a * (x powr (1 / a))) powr a"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2929
    by (metis assms less_imp_le ln_gt_zero powr_mono2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2930
  also have "\<dots> = (a powr a) * ((x powr (1 / a)) powr a)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2931
    using assms powr_mult by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2932
  also have "(x powr (1 / a)) powr a = x powr ((1 / a) * a)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2933
    by (rule powr_powr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2934
  also have "\<dots> = x" using assms
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2935
    by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2936
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2937
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2938
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2939
lemma tendsto_powr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2940
  fixes a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2941
  assumes f: "(f \<longlongrightarrow> a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2942
    and g: "(g \<longlongrightarrow> b) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2943
    and a: "a \<noteq> 0"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2944
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> a powr b) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2945
  unfolding powr_def
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2946
proof (rule filterlim_If)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2947
  from f show "((\<lambda>x. 0) \<longlongrightarrow> (if a = 0 then 0 else exp (b * ln a))) (inf F (principal {x. f x = 0}))"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  2948
    by simp (auto simp: filterlim_iff eventually_inf_principal elim: eventually_mono dest: t1_space_nhds)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2949
  from f g a show "((\<lambda>x. exp (g x * ln (f x))) \<longlongrightarrow> (if a = 0 then 0 else exp (b * ln a)))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2950
      (inf F (principal {x. f x \<noteq> 0}))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2951
    by (auto intro!: tendsto_intros intro: tendsto_mono inf_le1)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2952
qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2953
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2954
lemma tendsto_powr'[tendsto_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2955
  fixes a :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2956
  assumes f: "(f \<longlongrightarrow> a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2957
    and g: "(g \<longlongrightarrow> b) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2958
    and a: "a \<noteq> 0 \<or> (b > 0 \<and> eventually (\<lambda>x. f x \<ge> 0) F)"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2959
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> a powr b) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2960
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2961
  from a consider "a \<noteq> 0" | "a = 0" "b > 0" "eventually (\<lambda>x. f x \<ge> 0) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2962
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2963
  then show ?thesis
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2964
  proof cases
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2965
    case 1
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2966
    with f g show ?thesis by (rule tendsto_powr)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2967
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2968
    case 2
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2969
    have "((\<lambda>x. if f x = 0 then 0 else exp (g x * ln (f x))) \<longlongrightarrow> 0) F"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2970
    proof (intro filterlim_If)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2971
      have "filterlim f (principal {0<..}) (inf F (principal {z. f z \<noteq> 0}))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2972
        using \<open>eventually (\<lambda>x. f x \<ge> 0) F\<close>
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2973
        by (auto simp: filterlim_iff eventually_inf_principal
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2974
            eventually_principal elim: eventually_mono)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2975
      moreover have "filterlim f (nhds a) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2976
        by (rule tendsto_mono[OF _ f]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2977
      ultimately have f: "filterlim f (at_right 0) (inf F (principal {x. f x \<noteq> 0}))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2978
        by (simp add: at_within_def filterlim_inf \<open>a = 0\<close>)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2979
      have g: "(g \<longlongrightarrow> b) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2980
        by (rule tendsto_mono[OF _ g]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2981
      show "((\<lambda>x. exp (g x * ln (f x))) \<longlongrightarrow> 0) (inf F (principal {x. f x \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2982
        by (rule filterlim_compose[OF exp_at_bot] filterlim_tendsto_pos_mult_at_bot
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2983
                 filterlim_compose[OF ln_at_0] f g \<open>b > 0\<close>)+
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2984
    qed simp_all
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2985
    with \<open>a = 0\<close> show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2986
      by (simp add: powr_def)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2987
  qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2988
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2989
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2990
lemma continuous_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2991
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2992
    and "continuous F g"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2993
    and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2994
  shows "continuous F (\<lambda>x. (f x) powr (g x :: real))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2995
  using assms unfolding continuous_def by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2996
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2997
lemma continuous_at_within_powr[continuous_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2998
  fixes f g :: "_ \<Rightarrow> real"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2999
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3000
    and "continuous (at a within s) g"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3001
    and "f a \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3002
  shows "continuous (at a within s) (\<lambda>x. (f x) powr (g x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3003
  using assms unfolding continuous_within by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3004
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3005
lemma isCont_powr[continuous_intros, simp]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3006
  fixes f g :: "_ \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3007
  assumes "isCont f a" "isCont g a" "f a \<noteq> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3008
  shows "isCont (\<lambda>x. (f x) powr g x) a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3009
  using assms unfolding continuous_at by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3010
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  3011
lemma continuous_on_powr[continuous_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3012
  fixes f g :: "_ \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3013
  assumes "continuous_on s f" "continuous_on s g" and "\<forall>x\<in>s. f x \<noteq> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3014
  shows "continuous_on s (\<lambda>x. (f x) powr (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3015
  using assms unfolding continuous_on_def by (fast intro: tendsto_powr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3016
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3017
lemma tendsto_powr2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3018
  fixes a :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3019
  assumes f: "(f \<longlongrightarrow> a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3020
    and g: "(g \<longlongrightarrow> b) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3021
    and "\<forall>\<^sub>F x in F. 0 \<le> f x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3022
    and b: "0 < b"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3023
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> a powr b) F"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3024
  using tendsto_powr'[of f a F g b] assms by auto
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3025
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3026
lemma has_derivative_powr[derivative_intros]:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3027
  assumes g[derivative_intros]: "(g has_derivative g') (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3028
    and f[derivative_intros]:"(f has_derivative f') (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3029
  assumes pos: "0 < g x" and "x \<in> X"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3030
  shows "((\<lambda>x. g x powr f x::real) has_derivative (\<lambda>h. (g x powr f x) * (f' h * ln (g x) + g' h * f x / g x))) (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3031
proof -
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3032
  have "\<forall>\<^sub>F x in at x within X. g x > 0"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3033
    by (rule order_tendstoD[OF _ pos])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3034
      (rule has_derivative_continuous[OF g, unfolded continuous_within])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3035
  then obtain d where "d > 0" and pos': "\<And>x'. x' \<in> X \<Longrightarrow> dist x' x < d \<Longrightarrow> 0 < g x'"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3036
    using pos unfolding eventually_at by force
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3037
  have "((\<lambda>x. exp (f x * ln (g x))) has_derivative
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3038
    (\<lambda>h. (g x powr f x) * (f' h * ln (g x) + g' h * f x / g x))) (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3039
    using pos
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3040
    by (auto intro!: derivative_eq_intros simp: divide_simps powr_def)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3041
  then show ?thesis
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3042
    by (rule has_derivative_transform_within[OF _ \<open>d > 0\<close> \<open>x \<in> X\<close>]) (auto simp: powr_def dest: pos')
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3043
qed
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3044
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3045
lemma DERIV_powr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3046
  fixes r :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3047
  assumes g: "DERIV g x :> m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3048
    and pos: "g x > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3049
    and f: "DERIV f x :> r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3050
  shows "DERIV (\<lambda>x. g x powr f x) x :> (g x powr f x) * (r * ln (g x) + m * f x / g x)"
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3051
  using assms
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3052
  by (auto intro!: derivative_eq_intros ext simp: has_field_derivative_def algebra_simps)
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3053
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3054
lemma DERIV_fun_powr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3055
  fixes r :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3056
  assumes g: "DERIV g x :> m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3057
    and pos: "g x > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3058
  shows "DERIV (\<lambda>x. (g x) powr r) x :> r * (g x) powr (r - of_nat 1) * m"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3059
  using DERIV_powr[OF g pos DERIV_const, of r] pos
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  3060
  by (simp add: powr_diff field_simps)
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3061
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3062
lemma has_real_derivative_powr:
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3063
  assumes "z > 0"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3064
  shows "((\<lambda>z. z powr r) has_real_derivative r * z powr (r - 1)) (at z)"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3065
proof (subst DERIV_cong_ev[OF refl _ refl])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3066
  from assms have "eventually (\<lambda>z. z \<noteq> 0) (nhds z)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3067
    by (intro t1_space_nhds) auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3068
  then show "eventually (\<lambda>z. z powr r = exp (r * ln z)) (nhds z)"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3069
    unfolding powr_def by eventually_elim simp
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3070
  from assms show "((\<lambda>z. exp (r * ln z)) has_real_derivative r * z powr (r - 1)) (at z)"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3071
    by (auto intro!: derivative_eq_intros simp: powr_def field_simps exp_diff)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3072
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3073
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3074
declare has_real_derivative_powr[THEN DERIV_chain2, derivative_intros]
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3075
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3076
lemma tendsto_zero_powrI:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3077
  assumes "(f \<longlongrightarrow> (0::real)) F" "(g \<longlongrightarrow> b) F" "\<forall>\<^sub>F x in F. 0 \<le> f x" "0 < b"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3078
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> 0) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3079
  using tendsto_powr2[OF assms] by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3080
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3081
lemma continuous_on_powr':
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3082
  fixes f g :: "_ \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3083
  assumes "continuous_on s f" "continuous_on s g"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3084
    and "\<forall>x\<in>s. f x \<ge> 0 \<and> (f x = 0 \<longrightarrow> g x > 0)"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3085
  shows "continuous_on s (\<lambda>x. (f x) powr (g x))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3086
  unfolding continuous_on_def
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3087
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3088
  fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3089
  assume x: "x \<in> s"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3090
  from assms x show "((\<lambda>x. f x powr g x) \<longlongrightarrow> f x powr g x) (at x within s)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3091
  proof (cases "f x = 0")
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3092
    case True
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3093
    from assms(3) have "eventually (\<lambda>x. f x \<ge> 0) (at x within s)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3094
      by (auto simp: at_within_def eventually_inf_principal)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3095
    with True x assms show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3096
      by (auto intro!: tendsto_zero_powrI[of f _ g "g x"] simp: continuous_on_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3097
  next
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3098
    case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3099
    with assms x show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3100
      by (auto intro!: tendsto_powr' simp: continuous_on_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3101
  qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3102
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3103
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3104
lemma tendsto_neg_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3105
  assumes "s < 0"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3106
    and f: "LIM x F. f x :> at_top"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3107
  shows "((\<lambda>x. f x powr s) \<longlongrightarrow> (0::real)) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3108
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3109
  have "((\<lambda>x. exp (s * ln (f x))) \<longlongrightarrow> (0::real)) F" (is "?X")
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3110
    by (auto intro!: filterlim_compose[OF exp_at_bot] filterlim_compose[OF ln_at_top]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3111
        filterlim_tendsto_neg_mult_at_bot assms)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3112
  also have "?X \<longleftrightarrow> ((\<lambda>x. f x powr s) \<longlongrightarrow> (0::real)) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3113
    using f filterlim_at_top_dense[of f F]
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  3114
    by (intro filterlim_cong[OF refl refl]) (auto simp: neq_iff powr_def elim: eventually_mono)
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3115
  finally show ?thesis .
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3116
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3117
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3118
lemma tendsto_exp_limit_at_right: "((\<lambda>y. (1 + x * y) powr (1 / y)) \<longlongrightarrow> exp x) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3119
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3120
proof (cases "x = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3121
  case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3122
  then show ?thesis by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3123
next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3124
  case False
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3125
  have "((\<lambda>y. ln (1 + x * y)::real) has_real_derivative 1 * x) (at 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3126
    by (auto intro!: derivative_eq_intros)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3127
  then have "((\<lambda>y. ln (1 + x * y) / y) \<longlongrightarrow> x) (at 0)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3128
    by (auto simp: has_field_derivative_def field_has_derivative_at)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3129
  then have *: "((\<lambda>y. exp (ln (1 + x * y) / y)) \<longlongrightarrow> exp x) (at 0)"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3130
    by (rule tendsto_intros)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3131
  then show ?thesis
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3132
  proof (rule filterlim_mono_eventually)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3133
    show "eventually (\<lambda>xa. exp (ln (1 + x * xa) / xa) = (1 + x * xa) powr (1 / xa)) (at_right 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3134
      unfolding eventually_at_right[OF zero_less_one]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3135
      using False
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  3136
      by (intro exI[of _ "1 / \<bar>x\<bar>"]) (auto simp: field_simps powr_def abs_if add_nonneg_eq_0_iff)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3137
  qed (simp_all add: at_eq_sup_left_right)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3138
qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3139
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3140
lemma tendsto_exp_limit_at_top: "((\<lambda>y. (1 + x / y) powr y) \<longlongrightarrow> exp x) at_top"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3141
  for x :: real
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3142
  by (simp add: filterlim_at_top_to_right inverse_eq_divide tendsto_exp_limit_at_right)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3143
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3144
lemma tendsto_exp_limit_sequentially: "(\<lambda>n. (1 + x / n) ^ n) \<longlonglongrightarrow> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3145
  for x :: real
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3146
proof (rule filterlim_mono_eventually)
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  3147
  from reals_Archimedean2 [of "\<bar>x\<bar>"] obtain n :: nat where *: "real n > \<bar>x\<bar>" ..
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3148
  then have "eventually (\<lambda>n :: nat. 0 < 1 + x / real n) at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3149
    by (intro eventually_sequentiallyI [of n]) (auto simp: divide_simps)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3150
  then show "eventually (\<lambda>n. (1 + x / n) powr n = (1 + x / n) ^ n) at_top"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  3151
    by (rule eventually_mono) (erule powr_realpow)
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  3152
  show "(\<lambda>n. (1 + x / real n) powr real n) \<longlonglongrightarrow> exp x"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3153
    by (rule filterlim_compose [OF tendsto_exp_limit_at_top filterlim_real_sequentially])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3154
qed auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3155
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3156
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3157
subsection \<open>Sine and Cosine\<close>
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3158
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3159
definition sin_coeff :: "nat \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3160
  where "sin_coeff = (\<lambda>n. if even n then 0 else (- 1) ^ ((n - Suc 0) div 2) / (fact n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3161
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3162
definition cos_coeff :: "nat \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3163
  where "cos_coeff = (\<lambda>n. if even n then ((- 1) ^ (n div 2)) / (fact n) else 0)"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  3164
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3165
definition sin :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3166
  where "sin = (\<lambda>x. \<Sum>n. sin_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3167
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3168
definition cos :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3169
  where "cos = (\<lambda>x. \<Sum>n. cos_coeff n *\<^sub>R x^n)"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  3170
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3171
lemma sin_coeff_0 [simp]: "sin_coeff 0 = 0"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3172
  unfolding sin_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3173
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3174
lemma cos_coeff_0 [simp]: "cos_coeff 0 = 1"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3175
  unfolding cos_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3176
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3177
lemma sin_coeff_Suc: "sin_coeff (Suc n) = cos_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3178
  unfolding cos_coeff_def sin_coeff_def
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3179
  by (simp del: mult_Suc)
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3180
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3181
lemma cos_coeff_Suc: "cos_coeff (Suc n) = - sin_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3182
  unfolding cos_coeff_def sin_coeff_def
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3183
  by (simp del: mult_Suc) (auto elim: oddE)
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3184
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3185
lemma summable_norm_sin: "summable (\<lambda>n. norm (sin_coeff n *\<^sub>R x^n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3186
  for x :: "'a::{real_normed_algebra_1,banach}"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3187
  unfolding sin_coeff_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3188
  apply (rule summable_comparison_test [OF _ summable_norm_exp [where x=x]])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3189
  apply (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3190
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3191
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3192
lemma summable_norm_cos: "summable (\<lambda>n. norm (cos_coeff n *\<^sub>R x^n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3193
  for x :: "'a::{real_normed_algebra_1,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3194
  unfolding cos_coeff_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3195
  apply (rule summable_comparison_test [OF _ summable_norm_exp [where x=x]])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3196
  apply (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3197
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3198
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3199
lemma sin_converges: "(\<lambda>n. sin_coeff n *\<^sub>R x^n) sums sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3200
  unfolding sin_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3201
  by (metis (full_types) summable_norm_cancel summable_norm_sin summable_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3202
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3203
lemma cos_converges: "(\<lambda>n. cos_coeff n *\<^sub>R x^n) sums cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3204
  unfolding cos_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3205
  by (metis (full_types) summable_norm_cancel summable_norm_cos summable_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3206
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3207
lemma sin_of_real: "sin (of_real x) = of_real (sin x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3208
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3209
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3210
  have "(\<lambda>n. of_real (sin_coeff n *\<^sub>R  x^n)) = (\<lambda>n. sin_coeff n *\<^sub>R  (of_real x)^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3211
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3212
    show "of_real (sin_coeff n *\<^sub>R  x^n) = sin_coeff n *\<^sub>R of_real x^n" for n
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3213
      by (simp add: scaleR_conv_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3214
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3215
  also have "\<dots> sums (sin (of_real x))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3216
    by (rule sin_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3217
  finally have "(\<lambda>n. of_real (sin_coeff n *\<^sub>R x^n)) sums (sin (of_real x))" .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3218
  then show ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3219
    using sums_unique2 sums_of_real [OF sin_converges]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3220
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3221
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3222
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3223
corollary sin_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> sin z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3224
  by (metis Reals_cases Reals_of_real sin_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3225
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3226
lemma cos_of_real: "cos (of_real x) = of_real (cos x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3227
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3228
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3229
  have "(\<lambda>n. of_real (cos_coeff n *\<^sub>R  x^n)) = (\<lambda>n. cos_coeff n *\<^sub>R  (of_real x)^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3230
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3231
    show "of_real (cos_coeff n *\<^sub>R  x^n) = cos_coeff n *\<^sub>R of_real x^n" for n
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3232
      by (simp add: scaleR_conv_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3233
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3234
  also have "\<dots> sums (cos (of_real x))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3235
    by (rule cos_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3236
  finally have "(\<lambda>n. of_real (cos_coeff n *\<^sub>R x^n)) sums (cos (of_real x))" .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3237
  then show ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3238
    using sums_unique2 sums_of_real [OF cos_converges]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3239
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3240
qed
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3241
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3242
corollary cos_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> cos z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3243
  by (metis Reals_cases Reals_of_real cos_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3244
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3245
lemma diffs_sin_coeff: "diffs sin_coeff = cos_coeff"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3246
  by (simp add: diffs_def sin_coeff_Suc del: of_nat_Suc)
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3247
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3248
lemma diffs_cos_coeff: "diffs cos_coeff = (\<lambda>n. - sin_coeff n)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3249
  by (simp add: diffs_def cos_coeff_Suc del: of_nat_Suc)
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3250
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3251
lemma sin_int_times_real: "sin (of_int m * of_real x) = of_real (sin (of_int m * x))"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3252
  by (metis sin_of_real of_real_mult of_real_of_int_eq)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3253
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3254
lemma cos_int_times_real: "cos (of_int m * of_real x) = of_real (cos (of_int m * x))"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3255
  by (metis cos_of_real of_real_mult of_real_of_int_eq)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3256
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3257
text \<open>Now at last we can get the derivatives of exp, sin and cos.\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3258
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3259
lemma DERIV_sin [simp]: "DERIV sin x :> cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3260
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3261
  unfolding sin_def cos_def scaleR_conv_of_real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3262
  apply (rule DERIV_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3263
   apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3264
      apply (simp_all add: norm_less_p1 diffs_of_real diffs_sin_coeff diffs_cos_coeff
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3265
              summable_minus_iff scaleR_conv_of_real [symmetric]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3266
              summable_norm_sin [THEN summable_norm_cancel]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3267
              summable_norm_cos [THEN summable_norm_cancel])
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3268
  done
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3269
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3270
declare DERIV_sin[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3271
  and DERIV_sin[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3272
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3273
lemmas has_derivative_sin[derivative_intros] = DERIV_sin[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3274
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3275
lemma DERIV_cos [simp]: "DERIV cos x :> - sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3276
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3277
  unfolding sin_def cos_def scaleR_conv_of_real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3278
  apply (rule DERIV_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3279
   apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3280
      apply (simp_all add: norm_less_p1 diffs_of_real diffs_minus suminf_minus
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3281
              diffs_sin_coeff diffs_cos_coeff
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3282
              summable_minus_iff scaleR_conv_of_real [symmetric]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3283
              summable_norm_sin [THEN summable_norm_cancel]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3284
              summable_norm_cos [THEN summable_norm_cancel])
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3285
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3286
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3287
declare DERIV_cos[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3288
  and DERIV_cos[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3289
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3290
lemmas has_derivative_cos[derivative_intros] = DERIV_cos[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3291
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3292
lemma isCont_sin: "isCont sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3293
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3294
  by (rule DERIV_sin [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3295
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3296
lemma isCont_cos: "isCont cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3297
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3298
  by (rule DERIV_cos [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3299
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3300
lemma isCont_sin' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. sin (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3301
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3302
  by (rule isCont_o2 [OF _ isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3303
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3304
(* FIXME a context for f would be better *)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3305
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3306
lemma isCont_cos' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. cos (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3307
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3308
  by (rule isCont_o2 [OF _ isCont_cos])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3309
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3310
lemma tendsto_sin [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. sin (f x)) \<longlongrightarrow> sin a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3311
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3312
  by (rule isCont_tendsto_compose [OF isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3313
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3314
lemma tendsto_cos [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. cos (f x)) \<longlongrightarrow> cos a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3315
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3316
  by (rule isCont_tendsto_compose [OF isCont_cos])
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3317
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3318
lemma continuous_sin [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. sin (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3319
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3320
  unfolding continuous_def by (rule tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3321
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3322
lemma continuous_on_sin [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. sin (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3323
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3324
  unfolding continuous_on_def by (auto intro: tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3325
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3326
lemma continuous_within_sin: "continuous (at z within s) sin"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3327
  for z :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3328
  by (simp add: continuous_within tendsto_sin)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3329
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3330
lemma continuous_cos [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. cos (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3331
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3332
  unfolding continuous_def by (rule tendsto_cos)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3333
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3334
lemma continuous_on_cos [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. cos (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3335
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3336
  unfolding continuous_on_def by (auto intro: tendsto_cos)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3337
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3338
lemma continuous_within_cos: "continuous (at z within s) cos"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3339
  for z :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3340
  by (simp add: continuous_within tendsto_cos)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3341
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3342
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3343
subsection \<open>Properties of Sine and Cosine\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3344
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3345
lemma sin_zero [simp]: "sin 0 = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3346
  by (simp add: sin_def sin_coeff_def scaleR_conv_of_real)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3347
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3348
lemma cos_zero [simp]: "cos 0 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3349
  by (simp add: cos_def cos_coeff_def scaleR_conv_of_real)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3350
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3351
lemma DERIV_fun_sin: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. sin (g x)) x :> cos (g x) * m"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3352
  by (auto intro!: derivative_intros)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3353
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3354
lemma DERIV_fun_cos: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. cos(g x)) x :> - sin (g x) * m"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3355
  by (auto intro!: derivative_eq_intros)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3356
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3357
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3358
subsection \<open>Deriving the Addition Formulas\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3359
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3360
text \<open>The product of two cosine series.\<close>
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3361
lemma cos_x_cos_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3362
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3363
  shows
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3364
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3365
        if even p \<and> even n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3366
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3367
      sums (cos x * cos y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3368
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3369
  have "(cos_coeff n * cos_coeff (p - n)) *\<^sub>R (x^n * y^(p - n)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3370
    (if even p \<and> even n then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p - n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3371
     else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3372
    if "n \<le> p" for n p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3373
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3374
    from that have *: "even n \<Longrightarrow> even p \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3375
        (-1) ^ (n div 2) * (-1) ^ ((p - n) div 2) = (-1 :: real) ^ (p div 2)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3376
      by (metis div_add power_add le_add_diff_inverse odd_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3377
    with that show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3378
      by (auto simp: algebra_simps cos_coeff_def binomial_fact)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3379
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3380
  then have "(\<lambda>p. \<Sum>n\<le>p. if even p \<and> even n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3381
                  then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3382
             (\<lambda>p. \<Sum>n\<le>p. (cos_coeff n * cos_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3383
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3384
  also have "\<dots> = (\<lambda>p. \<Sum>n\<le>p. (cos_coeff n *\<^sub>R x^n) * (cos_coeff (p - n) *\<^sub>R y^(p-n)))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3385
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3386
  also have "\<dots> sums (cos x * cos y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3387
    using summable_norm_cos
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3388
    by (auto simp: cos_def scaleR_conv_of_real intro!: Cauchy_product_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3389
  finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3390
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3391
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3392
text \<open>The product of two sine series.\<close>
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3393
lemma sin_x_sin_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3394
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3395
  shows
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3396
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3397
        if even p \<and> odd n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3398
        then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3399
        else 0)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3400
      sums (sin x * sin y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3401
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3402
  have "(sin_coeff n * sin_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3403
    (if even p \<and> odd n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3404
     then -((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3405
     else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3406
    if "n \<le> p" for n p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3407
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3408
    have "(-1) ^ ((n - Suc 0) div 2) * (-1) ^ ((p - Suc n) div 2) = - ((-1 :: real) ^ (p div 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3409
      if np: "odd n" "even p"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3410
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3411
      from \<open>n \<le> p\<close> np have *: "n - Suc 0 + (p - Suc n) = p - Suc (Suc 0)" "Suc (Suc 0) \<le> p"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3412
        by arith+
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3413
      have "(p - Suc (Suc 0)) div 2 = p div 2 - Suc 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3414
        by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3415
      with \<open>n \<le> p\<close> np * show ?thesis
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3416
        apply (simp add: power_add [symmetric] div_add [symmetric] del: div_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3417
        apply (metis (no_types) One_nat_def Suc_1 le_div_geq minus_minus
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3418
            mult.left_neutral mult_minus_left power.simps(2) zero_less_Suc)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3419
        done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3420
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3421
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3422
      using \<open>n\<le>p\<close> by (auto simp: algebra_simps sin_coeff_def binomial_fact)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3423
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3424
  then have "(\<lambda>p. \<Sum>n\<le>p. if even p \<and> odd n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3425
               then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3426
             (\<lambda>p. \<Sum>n\<le>p. (sin_coeff n * sin_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3427
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3428
  also have "\<dots> = (\<lambda>p. \<Sum>n\<le>p. (sin_coeff n *\<^sub>R x^n) * (sin_coeff (p - n) *\<^sub>R y^(p-n)))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3429
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3430
  also have "\<dots> sums (sin x * sin y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3431
    using summable_norm_sin
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3432
    by (auto simp: sin_def scaleR_conv_of_real intro!: Cauchy_product_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3433
  finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3434
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3435
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3436
lemma sums_cos_x_plus_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3437
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3438
  shows
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3439
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3440
        if even p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3441
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3442
        else 0)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3443
      sums cos (x + y)"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3444
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3445
  have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3446
    "(\<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3447
      if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3448
      else 0) = cos_coeff p *\<^sub>R ((x + y) ^ p)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3449
    for p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3450
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3451
    have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3452
      "(\<Sum>n\<le>p. if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3453
       (if even p then \<Sum>n\<le>p. ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3454
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3455
    also have "\<dots> =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3456
       (if even p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3457
        then of_real ((-1) ^ (p div 2) / (fact p)) * (\<Sum>n\<le>p. (p choose n) *\<^sub>R (x^n) * y^(p-n))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3458
        else 0)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  3459
      by (auto simp: sum_distrib_left field_simps scaleR_conv_of_real nonzero_of_real_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3460
    also have "\<dots> = cos_coeff p *\<^sub>R ((x + y) ^ p)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3461
      by (simp add: cos_coeff_def binomial_ring [of x y]  scaleR_conv_of_real atLeast0AtMost)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3462
    finally show ?thesis .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3463
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3464
  then have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3465
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3466
        if even p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3467
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3468
        else 0) = (\<lambda>p. cos_coeff p *\<^sub>R ((x+y)^p))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3469
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3470
   also have "\<dots> sums cos (x + y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3471
    by (rule cos_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3472
   finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3473
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3474
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3475
theorem cos_add:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3476
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3477
  shows "cos (x + y) = cos x * cos y - sin x * sin y"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3478
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3479
  have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3480
    "(if even p \<and> even n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3481
      then ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3482
     (if even p \<and> odd n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3483
      then - ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3484
     (if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3485
    if "n \<le> p" for n p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3486
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3487
  then have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3488
    "(\<lambda>p. \<Sum>n\<le>p. (if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3489
      sums (cos x * cos y - sin x * sin y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3490
    using sums_diff [OF cos_x_cos_y [of x y] sin_x_sin_y [of x y]]
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  3491
    by (simp add: sum_subtractf [symmetric])
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3492
  then show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3493
    by (blast intro: sums_cos_x_plus_y sums_unique2)
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3494
qed
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3495
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3496
lemma sin_minus_converges: "(\<lambda>n. - (sin_coeff n *\<^sub>R (-x)^n)) sums sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3497
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3498
  have [simp]: "\<And>n. - (sin_coeff n *\<^sub>R (-x)^n) = (sin_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3499
    by (auto simp: sin_coeff_def elim!: oddE)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3500
  show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3501
    by (simp add: sin_def summable_norm_sin [THEN summable_norm_cancel, THEN summable_sums])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3502
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3503
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3504
lemma sin_minus [simp]: "sin (- x) = - sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3505
  for x :: "'a::{real_normed_algebra_1,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3506
  using sin_minus_converges [of x]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3507
  by (auto simp: sin_def summable_norm_sin [THEN summable_norm_cancel]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3508
      suminf_minus sums_iff equation_minus_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3509
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3510
lemma cos_minus_converges: "(\<lambda>n. (cos_coeff n *\<^sub>R (-x)^n)) sums cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3511
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3512
  have [simp]: "\<And>n. (cos_coeff n *\<^sub>R (-x)^n) = (cos_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3513
    by (auto simp: Transcendental.cos_coeff_def elim!: evenE)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3514
  show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3515
    by (simp add: cos_def summable_norm_cos [THEN summable_norm_cancel, THEN summable_sums])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3516
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3517
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3518
lemma cos_minus [simp]: "cos (-x) = cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3519
  for x :: "'a::{real_normed_algebra_1,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3520
  using cos_minus_converges [of x]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3521
  by (simp add: cos_def summable_norm_cos [THEN summable_norm_cancel]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3522
      suminf_minus sums_iff equation_minus_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3523
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3524
lemma sin_cos_squared_add [simp]: "(sin x)\<^sup>2 + (cos x)\<^sup>2 = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3525
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3526
  using cos_add [of x "-x"]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3527
  by (simp add: power2_eq_square algebra_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3528
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3529
lemma sin_cos_squared_add2 [simp]: "(cos x)\<^sup>2 + (sin x)\<^sup>2 = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3530
  for x :: "'a::{real_normed_field,banach}"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3531
  by (subst add.commute, rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3532
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3533
lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3534
  for x :: "'a::{real_normed_field,banach}"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3535
  using sin_cos_squared_add2 [unfolded power2_eq_square] .
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3536
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3537
lemma sin_squared_eq: "(sin x)\<^sup>2 = 1 - (cos x)\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3538
  for x :: "'a::{real_normed_field,banach}"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3539
  unfolding eq_diff_eq by (rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3540
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3541
lemma cos_squared_eq: "(cos x)\<^sup>2 = 1 - (sin x)\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3542
  for x :: "'a::{real_normed_field,banach}"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3543
  unfolding eq_diff_eq by (rule sin_cos_squared_add2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3544
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3545
lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3546
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3547
  by (rule power2_le_imp_le) (simp_all add: sin_squared_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3548
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3549
lemma sin_ge_minus_one [simp]: "- 1 \<le> sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3550
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3551
  using abs_sin_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3552
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3553
lemma sin_le_one [simp]: "sin x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3554
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3555
  using abs_sin_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3556
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3557
lemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3558
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3559
  by (rule power2_le_imp_le) (simp_all add: cos_squared_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3560
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3561
lemma cos_ge_minus_one [simp]: "- 1 \<le> cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3562
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3563
  using abs_cos_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3564
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3565
lemma cos_le_one [simp]: "cos x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3566
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3567
  using abs_cos_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3568
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3569
lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3570
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3571
  using cos_add [of x "- y"] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3572
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3573
lemma cos_double: "cos(2*x) = (cos x)\<^sup>2 - (sin x)\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3574
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3575
  using cos_add [where x=x and y=x] by (simp add: power2_eq_square)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3576
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3577
lemma sin_cos_le1: "\<bar>sin x * sin y + cos x * cos y\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3578
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3579
  using cos_diff [of x y] by (metis abs_cos_le_one add.commute)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3580
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3581
lemma DERIV_fun_pow: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3582
  by (auto intro!: derivative_eq_intros simp:)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3583
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3584
lemma DERIV_fun_exp: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. exp (g x)) x :> exp (g x) * m"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3585
  by (auto intro!: derivative_intros)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3586
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3587
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3588
subsection \<open>The Constant Pi\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3589
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3590
definition pi :: real
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3591
  where "pi = 2 * (THE x. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3592
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3593
text \<open>Show that there's a least positive @{term x} with @{term "cos x = 0"};
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3594
   hence define pi.\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3595
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3596
lemma sin_paired: "(\<lambda>n. (- 1) ^ n / (fact (2 * n + 1)) * x ^ (2 * n + 1)) sums  sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3597
  for x :: real
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3598
proof -
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3599
  have "(\<lambda>n. \<Sum>k = n*2..<n * 2 + 2. sin_coeff k * x ^ k) sums sin x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3600
    by (rule sums_group) (use sin_converges [of x, unfolded scaleR_conv_of_real] in auto)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3601
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3602
    by (simp add: sin_coeff_def ac_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3603
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3604
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3605
lemma sin_gt_zero_02:
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3606
  fixes x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3607
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3608
  shows "0 < sin x"
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3609
proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3610
  let ?f = "\<lambda>n::nat. \<Sum>k = n*2..<n*2+2. (- 1) ^ k / (fact (2*k+1)) * x^(2*k+1)"
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3611
  have pos: "\<forall>n. 0 < ?f n"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3612
  proof
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3613
    fix n :: nat
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3614
    let ?k2 = "real (Suc (Suc (4 * n)))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3615
    let ?k3 = "real (Suc (Suc (Suc (4 * n))))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3616
    have "x * x < ?k2 * ?k3"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3617
      using assms by (intro mult_strict_mono', simp_all)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3618
    then have "x * x * x * x ^ (n * 4) < ?k2 * ?k3 * x * x ^ (n * 4)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3619
      by (intro mult_strict_right_mono zero_less_power \<open>0 < x\<close>)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3620
    then show "0 < ?f n"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3621
      by (simp add: divide_simps mult_ac del: mult_Suc)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3622
qed
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3623
  have sums: "?f sums sin x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3624
    by (rule sin_paired [THEN sums_group]) simp
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3625
  show "0 < sin x"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3626
    unfolding sums_unique [OF sums]
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3627
    using sums_summable [OF sums] pos
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  3628
    by (rule suminf_pos)
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3629
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3630
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3631
lemma cos_double_less_one: "0 < x \<Longrightarrow> x < 2 \<Longrightarrow> cos (2 * x) < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3632
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3633
  using sin_gt_zero_02 [where x = x] by (auto simp: cos_squared_eq cos_double)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3634
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3635
lemma cos_paired: "(\<lambda>n. (- 1) ^ n / (fact (2 * n)) * x ^ (2 * n)) sums cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3636
  for x :: real
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3637
proof -
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  3638
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. cos_coeff k * x ^ k) sums cos x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3639
    by (rule sums_group) (use cos_converges [of x, unfolded scaleR_conv_of_real] in auto)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3640
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3641
    by (simp add: cos_coeff_def ac_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3642
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3643
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3644
lemma sum_pos_lt_pair:
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3645
  fixes f :: "nat \<Rightarrow> real"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3646
  assumes f: "summable f" and fplus: "\<And>d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc (Suc 0) * d) + 1))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3647
  shows "sum f {..<k} < suminf f"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3648
proof -
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3649
  have "(\<lambda>n. \<Sum>n = n * Suc (Suc 0)..<n * Suc (Suc 0) +  Suc (Suc 0). f (n + k)) 
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3650
             sums (\<Sum>n. f (n + k))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3651
  proof (rule sums_group)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3652
    show "(\<lambda>n. f (n + k)) sums (\<Sum>n. f (n + k))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3653
      by (simp add: f summable_iff_shift summable_sums)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3654
  qed auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3655
  with fplus have "0 < (\<Sum>n. f (n + k))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3656
    apply (simp add: add.commute)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3657
    apply (metis (no_types, lifting) suminf_pos summable_def sums_unique)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3658
    done
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3659
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3660
    by (simp add: f suminf_minus_initial_segment)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3661
qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3662
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3663
lemma cos_two_less_zero [simp]: "cos 2 < (0::real)"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3664
proof -
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63365
diff changeset
  3665
  note fact_Suc [simp del]
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3666
  from sums_minus [OF cos_paired]
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3667
  have *: "(\<lambda>n. - ((- 1) ^ n * 2 ^ (2 * n) / fact (2 * n))) sums - cos (2::real)"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3668
    by simp
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3669
  then have sm: "summable (\<lambda>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3670
    by (rule sums_summable)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3671
  have "0 < (\<Sum>n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3672
    by (simp add: fact_num_eq_if power_eq_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3673
  moreover have "(\<Sum>n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n  * 2 ^ (2 * n) / (fact (2 * n)))) <
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3674
    (\<Sum>n. - ((- 1) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3675
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3676
    {
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3677
      fix d
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3678
      let ?six4d = "Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))"
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3679
      have "(4::real) * (fact (?six4d)) < (Suc (Suc (?six4d)) * fact (Suc (?six4d)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3680
        unfolding of_nat_mult by (rule mult_strict_mono) (simp_all add: fact_less_mono)
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3681
      then have "(4::real) * (fact (?six4d)) < (fact (Suc (Suc (?six4d))))"
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63365
diff changeset
  3682
        by (simp only: fact_Suc [of "Suc (?six4d)"] of_nat_mult of_nat_fact)
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3683
      then have "(4::real) * inverse (fact (Suc (Suc (?six4d)))) < inverse (fact (?six4d))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3684
        by (simp add: inverse_eq_divide less_divide_eq)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3685
    }
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3686
    then show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3687
      by (force intro!: sum_pos_lt_pair [OF sm] simp add: divide_inverse algebra_simps)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3688
  qed
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3689
  ultimately have "0 < (\<Sum>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3690
    by (rule order_less_trans)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3691
  moreover from * have "- cos 2 = (\<Sum>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3692
    by (rule sums_unique)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3693
  ultimately have "(0::real) < - cos 2" by simp
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3694
  then show ?thesis by simp
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3695
qed
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3696
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3697
lemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3698
lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3699
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3700
lemma cos_is_zero: "\<exists>!x::real. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0"
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3701
proof (rule ex_ex1I)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3702
  show "\<exists>x::real. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3703
    by (rule IVT2) simp_all
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3704
next
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3705
  fix a b :: real
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3706
  assume ab: "0 \<le> a \<and> a \<le> 2 \<and> cos a = 0" "0 \<le> b \<and> b \<le> 2 \<and> cos b = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3707
  have cosd: "\<And>x::real. cos differentiable (at x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  3708
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3709
  show "a = b"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3710
  proof (cases a b rule: linorder_cases)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3711
    case less
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3712
    then obtain z where "a < z" "z < b" "(cos has_real_derivative 0) (at z)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3713
      using Rolle by (metis cosd isCont_cos ab)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3714
    then have "sin z = 0"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3715
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3716
    then show ?thesis
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3717
      by (metis \<open>a < z\<close> \<open>z < b\<close> ab order_less_le_trans less_le sin_gt_zero_02)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3718
  next
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3719
    case greater
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3720
    then obtain z where "b < z" "z < a" "(cos has_real_derivative 0) (at z)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3721
      using Rolle by (metis cosd isCont_cos ab)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3722
    then have "sin z = 0"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3723
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3724
    then show ?thesis
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3725
      by (metis \<open>b < z\<close> \<open>z < a\<close> ab order_less_le_trans less_le sin_gt_zero_02)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3726
  qed auto
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3727
qed
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  3728
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3729
lemma pi_half: "pi/2 = (THE x. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3730
  by (simp add: pi_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3731
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3732
lemma cos_pi_half [simp]: "cos (pi/2) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3733
  by (simp add: pi_half cos_is_zero [THEN theI'])
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3734
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3735
lemma cos_of_real_pi_half [simp]: "cos ((of_real pi/2) :: 'a) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3736
  if "SORT_CONSTRAINT('a::{real_field,banach,real_normed_algebra_1})"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3737
  by (metis cos_pi_half cos_of_real eq_numeral_simps(4)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3738
      nonzero_of_real_divide of_real_0 of_real_numeral)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3739
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3740
lemma pi_half_gt_zero [simp]: "0 < pi/2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3741
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3742
  have "0 \<le> pi/2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3743
    by (simp add: pi_half cos_is_zero [THEN theI'])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3744
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3745
    by (metis cos_pi_half cos_zero less_eq_real_def one_neq_zero)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3746
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3747
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3748
lemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3749
lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3750
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3751
lemma pi_half_less_two [simp]: "pi/2 < 2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3752
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3753
  have "pi/2 \<le> 2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3754
    by (simp add: pi_half cos_is_zero [THEN theI'])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3755
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3756
    by (metis cos_pi_half cos_two_neq_zero le_less)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3757
qed
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3758
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3759
lemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3760
lemmas pi_half_le_two [simp] =  pi_half_less_two [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3761
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3762
lemma pi_gt_zero [simp]: "0 < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3763
  using pi_half_gt_zero by simp
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3764
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3765
lemma pi_ge_zero [simp]: "0 \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3766
  by (rule pi_gt_zero [THEN order_less_imp_le])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3767
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3768
lemma pi_neq_zero [simp]: "pi \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3769
  by (rule pi_gt_zero [THEN less_imp_neq, symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3770
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3771
lemma pi_not_less_zero [simp]: "\<not> pi < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3772
  by (simp add: linorder_not_less)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3773
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  3774
lemma minus_pi_half_less_zero: "-(pi/2) < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3775
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3776
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3777
lemma m2pi_less_pi: "- (2*pi) < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3778
  by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3779
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3780
lemma sin_pi_half [simp]: "sin(pi/2) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3781
  using sin_cos_squared_add2 [where x = "pi/2"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3782
  using sin_gt_zero_02 [OF pi_half_gt_zero pi_half_less_two]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3783
  by (simp add: power2_eq_1_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3784
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3785
lemma sin_of_real_pi_half [simp]: "sin ((of_real pi/2) :: 'a) = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3786
  if "SORT_CONSTRAINT('a::{real_field,banach,real_normed_algebra_1})"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3787
  using sin_pi_half
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3788
  by (metis sin_pi_half eq_numeral_simps(4) nonzero_of_real_divide of_real_1 of_real_numeral sin_of_real)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3789
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3790
lemma sin_cos_eq: "sin x = cos (of_real pi/2 - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3791
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3792
  by (simp add: cos_diff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3793
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3794
lemma minus_sin_cos_eq: "- sin x = cos (x + of_real pi/2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3795
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3796
  by (simp add: cos_add nonzero_of_real_divide)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3797
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3798
lemma cos_sin_eq: "cos x = sin (of_real pi/2 - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3799
  for x :: "'a::{real_normed_field,banach}"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3800
  using sin_cos_eq [of "of_real pi/2 - x"] by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3801
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3802
lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3803
  for x :: "'a::{real_normed_field,banach}"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3804
  using cos_add [of "of_real pi/2 - x" "-y"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3805
  by (simp add: cos_sin_eq) (simp add: sin_cos_eq)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3806
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3807
lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3808
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3809
  using sin_add [of x "- y"] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3810
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3811
lemma sin_double: "sin(2 * x) = 2 * sin x * cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3812
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3813
  using sin_add [where x=x and y=x] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3814
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3815
lemma cos_of_real_pi [simp]: "cos (of_real pi) = -1"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3816
  using cos_add [where x = "pi/2" and y = "pi/2"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3817
  by (simp add: cos_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3818
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3819
lemma sin_of_real_pi [simp]: "sin (of_real pi) = 0"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3820
  using sin_add [where x = "pi/2" and y = "pi/2"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3821
  by (simp add: sin_of_real)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3822
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3823
lemma cos_pi [simp]: "cos pi = -1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3824
  using cos_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3825
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3826
lemma sin_pi [simp]: "sin pi = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3827
  using sin_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3828
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3829
lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3830
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3831
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3832
lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3833
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3834
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3835
lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3836
  by (simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3837
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3838
lemma cos_periodic_pi2 [simp]: "cos (pi + x) = - cos x"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3839
  by (simp add: cos_add)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3840
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3841
lemma sin_periodic [simp]: "sin (x + 2 * pi) = sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3842
  by (simp add: sin_add sin_double cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3843
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3844
lemma cos_periodic [simp]: "cos (x + 2 * pi) = cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3845
  by (simp add: cos_add sin_double cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3846
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3847
lemma cos_npi [simp]: "cos (real n * pi) = (- 1) ^ n"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3848
  by (induct n) (auto simp: distrib_right)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3849
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3850
lemma cos_npi2 [simp]: "cos (pi * real n) = (- 1) ^ n"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3851
  by (metis cos_npi mult.commute)
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3852
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3853
lemma sin_npi [simp]: "sin (real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3854
  for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3855
  by (induct n) (auto simp: distrib_right)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3856
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3857
lemma sin_npi2 [simp]: "sin (pi * real n) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3858
  for n :: nat
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3859
  by (simp add: mult.commute [of pi])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3860
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3861
lemma cos_two_pi [simp]: "cos (2 * pi) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3862
  by (simp add: cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3863
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3864
lemma sin_two_pi [simp]: "sin (2 * pi) = 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3865
  by (simp add: sin_double)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3866
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3867
lemma sin_times_sin: "sin w * sin z = (cos (w - z) - cos (w + z)) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3868
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3869
  by (simp add: cos_diff cos_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3870
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3871
lemma sin_times_cos: "sin w * cos z = (sin (w + z) + sin (w - z)) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3872
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3873
  by (simp add: sin_diff sin_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3874
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3875
lemma cos_times_sin: "cos w * sin z = (sin (w + z) - sin (w - z)) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3876
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3877
  by (simp add: sin_diff sin_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3878
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3879
lemma cos_times_cos: "cos w * cos z = (cos (w - z) + cos (w + z)) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3880
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3881
  by (simp add: cos_diff cos_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3882
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3883
lemma sin_plus_sin: "sin w + sin z = 2 * sin ((w + z) / 2) * cos ((w - z) / 2)"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3884
  for w :: "'a::{real_normed_field,banach}" 
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3885
  apply (simp add: mult.assoc sin_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3886
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3887
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3888
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3889
lemma sin_diff_sin: "sin w - sin z = 2 * sin ((w - z) / 2) * cos ((w + z) / 2)"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3890
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3891
  apply (simp add: mult.assoc sin_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3892
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3893
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3894
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3895
lemma cos_plus_cos: "cos w + cos z = 2 * cos ((w + z) / 2) * cos ((w - z) / 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3896
  for w :: "'a::{real_normed_field,banach,field}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3897
  apply (simp add: mult.assoc cos_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3898
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3899
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3900
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3901
lemma cos_diff_cos: "cos w - cos z = 2 * sin ((w + z) / 2) * sin ((z - w) / 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3902
  for w :: "'a::{real_normed_field,banach,field}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3903
  apply (simp add: mult.assoc sin_times_sin)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3904
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3905
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3906
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3907
lemma cos_double_cos: "cos (2 * z) = 2 * cos z ^ 2 - 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3908
  for z :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3909
  by (simp add: cos_double sin_squared_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3910
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3911
lemma cos_double_sin: "cos (2 * z) = 1 - 2 * sin z ^ 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3912
  for z :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3913
  by (simp add: cos_double sin_squared_eq)
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3914
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3915
lemma sin_pi_minus [simp]: "sin (pi - x) = sin x"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3916
  by (metis sin_minus sin_periodic_pi minus_minus uminus_add_conv_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3917
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3918
lemma cos_pi_minus [simp]: "cos (pi - x) = - (cos x)"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3919
  by (metis cos_minus cos_periodic_pi uminus_add_conv_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3920
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3921
lemma sin_minus_pi [simp]: "sin (x - pi) = - (sin x)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3922
  by (simp add: sin_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3923
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3924
lemma cos_minus_pi [simp]: "cos (x - pi) = - (cos x)"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3925
  by (simp add: cos_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3926
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3927
lemma sin_2pi_minus [simp]: "sin (2 * pi - x) = - (sin x)"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3928
  by (metis sin_periodic_pi2 add_diff_eq mult_2 sin_pi_minus)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3929
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3930
lemma cos_2pi_minus [simp]: "cos (2 * pi - x) = cos x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3931
  by (metis (no_types, hide_lams) cos_add cos_minus cos_two_pi sin_minus sin_two_pi
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3932
      diff_0_right minus_diff_eq mult_1 mult_zero_left uminus_add_conv_diff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3933
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3934
lemma sin_gt_zero2: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3935
  by (metis sin_gt_zero_02 order_less_trans pi_half_less_two)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3936
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3937
lemma sin_less_zero:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3938
  assumes "- pi/2 < x" and "x < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3939
  shows "sin x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3940
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3941
  have "0 < sin (- x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3942
    using assms by (simp only: sin_gt_zero2)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3943
  then show ?thesis by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3944
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3945
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3946
lemma pi_less_4: "pi < 4"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3947
  using pi_half_less_two by auto
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3948
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3949
lemma cos_gt_zero: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3950
  by (simp add: cos_sin_eq sin_gt_zero2)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3951
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3952
lemma cos_gt_zero_pi: "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3953
  using cos_gt_zero [of x] cos_gt_zero [of "-x"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3954
  by (cases rule: linorder_cases [of x 0]) auto
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3955
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3956
lemma cos_ge_zero: "-(pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> 0 \<le> cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3957
  by (auto simp: order_le_less cos_gt_zero_pi)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3958
    (metis cos_pi_half eq_divide_eq eq_numeral_simps(4))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3959
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3960
lemma sin_gt_zero: "0 < x \<Longrightarrow> x < pi \<Longrightarrow> 0 < sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3961
  by (simp add: sin_cos_eq cos_gt_zero_pi)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3962
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3963
lemma sin_lt_zero: "pi < x \<Longrightarrow> x < 2 * pi \<Longrightarrow> sin x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3964
  using sin_gt_zero [of "x - pi"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3965
  by (simp add: sin_diff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3966
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3967
lemma pi_ge_two: "2 \<le> pi"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3968
proof (rule ccontr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3969
  assume "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3970
  then have "pi < 2" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3971
  have "\<exists>y > pi. y < 2 \<and> y < 2 * pi"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3972
  proof (cases "2 < 2 * pi")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3973
    case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3974
    with dense[OF \<open>pi < 2\<close>] show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3975
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3976
    case False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3977
    have "pi < 2 * pi" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3978
    from dense[OF this] and False show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3979
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3980
  then obtain y where "pi < y" and "y < 2" and "y < 2 * pi"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3981
    by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3982
  then have "0 < sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3983
    using sin_gt_zero_02 by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3984
  moreover have "sin y < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3985
    using sin_gt_zero[of "y - pi"] \<open>pi < y\<close> and \<open>y < 2 * pi\<close> sin_periodic_pi[of "y - pi"]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3986
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3987
  ultimately show False by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3988
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3989
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3990
lemma sin_ge_zero: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3991
  by (auto simp: order_le_less sin_gt_zero)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3992
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3993
lemma sin_le_zero: "pi \<le> x \<Longrightarrow> x < 2 * pi \<Longrightarrow> sin x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3994
  using sin_ge_zero [of "x - pi"] by (simp add: sin_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3995
62948
7700f467892b lots of new theorems for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 62679
diff changeset
  3996
lemma sin_pi_divide_n_ge_0 [simp]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3997
  assumes "n \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3998
  shows "0 \<le> sin (pi / real n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3999
  by (rule sin_ge_zero) (use assms in \<open>simp_all add: divide_simps\<close>)
62948
7700f467892b lots of new theorems for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 62679
diff changeset
  4000
7700f467892b lots of new theorems for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 62679
diff changeset
  4001
lemma sin_pi_divide_n_gt_0:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4002
  assumes "2 \<le> n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4003
  shows "0 < sin (pi / real n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4004
  by (rule sin_gt_zero) (use assms in \<open>simp_all add: divide_simps\<close>)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4005
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4006
text\<open>Proof resembles that of @{text cos_is_zero} but with @{term pi} for the upper bound\<close>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4007
lemma cos_total:
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4008
  assumes y: "-1 \<le> y" "y \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4009
  shows "\<exists>!x. 0 \<le> x \<and> x \<le> pi \<and> cos x = y"
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  4010
proof (rule ex_ex1I)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4011
  show "\<exists>x::real. 0 \<le> x \<and> x \<le> pi \<and> cos x = y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4012
    by (rule IVT2) (simp_all add: y)
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  4013
next
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4014
  fix a b :: real
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4015
  assume ab: "0 \<le> a \<and> a \<le> pi \<and> cos a = y" "0 \<le> b \<and> b \<le> pi \<and> cos b = y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4016
  have cosd: "\<And>x::real. cos differentiable (at x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  4017
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4018
  show "a = b"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4019
  proof (cases a b rule: linorder_cases)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4020
    case less
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4021
    then obtain z where "a < z" "z < b" "(cos has_real_derivative 0) (at z)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4022
      using Rolle by (metis cosd isCont_cos ab)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4023
    then have "sin z = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4024
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4025
    then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4026
      by (metis \<open>a < z\<close> \<open>z < b\<close> ab order_less_le_trans less_le sin_gt_zero)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4027
  next
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4028
    case greater
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4029
    then obtain z where "b < z" "z < a" "(cos has_real_derivative 0) (at z)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4030
      using Rolle by (metis cosd isCont_cos ab)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4031
    then have "sin z = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4032
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4033
    then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4034
      by (metis \<open>b < z\<close> \<open>z < a\<close> ab order_less_le_trans less_le sin_gt_zero)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4035
  qed auto
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  4036
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4037
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4038
lemma sin_total:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4039
  assumes y: "-1 \<le> y" "y \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4040
  shows "\<exists>!x. - (pi/2) \<le> x \<and> x \<le> pi/2 \<and> sin x = y"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4041
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4042
  from cos_total [OF y]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4043
  obtain x where x: "0 \<le> x" "x \<le> pi" "cos x = y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4044
    and uniq: "\<And>x'. 0 \<le> x' \<Longrightarrow> x' \<le> pi \<Longrightarrow> cos x' = y \<Longrightarrow> x' = x "
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4045
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4046
  show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4047
    unfolding sin_cos_eq
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4048
  proof (rule ex1I [where a="pi/2 - x"])
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4049
    show "- (pi/2) \<le> z \<and> z \<le> pi/2 \<and> cos (of_real pi/2 - z) = y \<Longrightarrow>
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4050
          z = pi/2 - x" for z
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4051
      using uniq [of "pi/2 -z"] by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4052
  qed (use x in auto)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4053
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4054
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4055
lemma cos_zero_lemma:
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4056
  assumes "0 \<le> x" "cos x = 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4057
  shows "\<exists>n. odd n \<and> x = of_nat n * (pi/2) \<and> n > 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4058
proof -
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4059
  have xle: "x < (1 + real_of_int \<lfloor>x/pi\<rfloor>) * pi"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4060
    using floor_correct [of "x/pi"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4061
    by (simp add: add.commute divide_less_eq)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4062
  obtain n where "real n * pi \<le> x" "x < real (Suc n) * pi"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4063
  proof 
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4064
    show "real (nat \<lfloor>x / pi\<rfloor>) * pi \<le> x"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4065
      using assms floor_divide_lower [of pi x] by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4066
    show "x < real (Suc (nat \<lfloor>x / pi\<rfloor>)) * pi"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4067
      using assms floor_divide_upper [of pi x]  by (simp add: xle)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4068
  qed
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4069
  then have x: "0 \<le> x - n * pi" "(x - n * pi) \<le> pi" "cos (x - n * pi) = 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4070
    by (auto simp: algebra_simps cos_diff assms)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4071
  then have "\<exists>!x. 0 \<le> x \<and> x \<le> pi \<and> cos x = 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4072
    by (auto simp: intro!: cos_total)
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  4073
  then obtain \<theta> where \<theta>: "0 \<le> \<theta>" "\<theta> \<le> pi" "cos \<theta> = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4074
    and uniq: "\<And>\<phi>. 0 \<le> \<phi> \<Longrightarrow> \<phi> \<le> pi \<Longrightarrow> cos \<phi> = 0 \<Longrightarrow> \<phi> = \<theta>"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4075
    by blast
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4076
  then have "x - real n * pi = \<theta>"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4077
    using x by blast
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4078
  moreover have "pi/2 = \<theta>"
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  4079
    using pi_half_ge_zero uniq by fastforce
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4080
  ultimately show ?thesis
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4081
    by (rule_tac x = "Suc (2 * n)" in exI) (simp add: algebra_simps)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4082
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4083
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4084
lemma sin_zero_lemma: "0 \<le> x \<Longrightarrow> sin x = 0 \<Longrightarrow> \<exists>n::nat. even n \<and> x = real n * (pi/2)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4085
  using cos_zero_lemma [of "x + pi/2"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4086
  apply (clarsimp simp add: cos_add)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4087
  apply (rule_tac x = "n - 1" in exI)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4088
  apply (simp add: algebra_simps of_nat_diff)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4089
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4090
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4091
lemma cos_zero_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4092
  "cos x = 0 \<longleftrightarrow> ((\<exists>n. odd n \<and> x = real n * (pi/2)) \<or> (\<exists>n. odd n \<and> x = - (real n * (pi/2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4093
  (is "?lhs = ?rhs")
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  4094
proof -
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4095
  have *: "cos (real n * pi/2) = 0" if "odd n" for n :: nat
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4096
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4097
    from that obtain m where "n = 2 * m + 1" ..
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4098
    then show ?thesis
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4099
      by (simp add: field_simps) (simp add: cos_add add_divide_distrib)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4100
  qed
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  4101
  show ?thesis
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4102
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4103
    show ?rhs if ?lhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4104
      using that cos_zero_lemma [of x] cos_zero_lemma [of "-x"] by force
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4105
    show ?lhs if ?rhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4106
      using that by (auto dest: * simp del: eq_divide_eq_numeral1)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4107
  qed
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  4108
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4109
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4110
lemma sin_zero_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4111
  "sin x = 0 \<longleftrightarrow> ((\<exists>n. even n \<and> x = real n * (pi/2)) \<or> (\<exists>n. even n \<and> x = - (real n * (pi/2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4112
  (is "?lhs = ?rhs")
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4113
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4114
  show ?rhs if ?lhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4115
    using that sin_zero_lemma [of x] sin_zero_lemma [of "-x"] by force
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4116
  show ?lhs if ?rhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4117
    using that by (auto elim: evenE)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4118
qed
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4119
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4120
lemma cos_zero_iff_int: "cos x = 0 \<longleftrightarrow> (\<exists>n. odd n \<and> x = of_int n * (pi/2))"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4121
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4122
  have 1: "\<And>n. odd n \<Longrightarrow> \<exists>i. odd i \<and> real n = real_of_int i"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4123
    by (metis even_of_nat of_int_of_nat_eq)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4124
  have 2: "\<And>n. odd n \<Longrightarrow> \<exists>i. odd i \<and> - (real n * pi) = real_of_int i * pi"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4125
    by (metis even_minus even_of_nat mult.commute mult_minus_right of_int_minus of_int_of_nat_eq)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4126
  have 3: "\<lbrakk>odd i;  \<forall>n. even n \<or> real_of_int i \<noteq> - (real n)\<rbrakk>
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4127
         \<Longrightarrow> \<exists>n. odd n \<and> real_of_int i = real n" for i
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4128
    by (cases i rule: int_cases2) auto
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4129
  show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4130
    by (force simp: cos_zero_iff intro!: 1 2 3)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4131
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4132
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4133
lemma sin_zero_iff_int: "sin x = 0 \<longleftrightarrow> (\<exists>n. even n \<and> x = of_int n * (pi/2))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4134
proof safe
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4135
  assume "sin x = 0"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4136
  then show "\<exists>n. even n \<and> x = of_int n * (pi/2)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4137
    apply (simp add: sin_zero_iff, safe)
68100
b2d84b1114fa removed some lemma duplicates
haftmann
parents: 68077
diff changeset
  4138
     apply (metis even_of_nat of_int_of_nat_eq)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4139
    apply (rule_tac x="- (int n)" in exI)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4140
    apply simp
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4141
    done
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4142
next
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4143
  fix i :: int
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4144
  assume "even i"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4145
  then show "sin (of_int i * (pi/2)) = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4146
    by (cases i rule: int_cases2, simp_all add: sin_zero_iff)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4147
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4148
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4149
lemma sin_zero_iff_int2: "sin x = 0 \<longleftrightarrow> (\<exists>n::int. x = of_int n * pi)"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  4150
  apply (simp only: sin_zero_iff_int)
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  4151
  apply (safe elim!: evenE)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4152
   apply (simp_all add: field_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4153
  using dvd_triv_left apply fastforce
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60301
diff changeset
  4154
  done
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4155
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4156
lemma sin_npi_int [simp]: "sin (pi * of_int n) = 0"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4157
  by (simp add: sin_zero_iff_int2)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4158
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4159
lemma cos_monotone_0_pi:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4160
  assumes "0 \<le> y" and "y < x" and "x \<le> pi"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4161
  shows "cos x < cos y"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4162
proof -
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  4163
  have "- (x - y) < 0" using assms by auto
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4164
  from MVT2[OF \<open>y < x\<close> DERIV_cos]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4165
  obtain z where "y < z" and "z < x" and cos_diff: "cos x - cos y = (x - y) * - sin z"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4166
    by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4167
  then have "0 < z" and "z < pi"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4168
    using assms by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4169
  then have "0 < sin z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4170
    using sin_gt_zero by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4171
  then have "cos x - cos y < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4172
    unfolding cos_diff minus_mult_commute[symmetric]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4173
    using \<open>- (x - y) < 0\<close> by (rule mult_pos_neg2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4174
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4175
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4176
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4177
lemma cos_monotone_0_pi_le:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4178
  assumes "0 \<le> y" and "y \<le> x" and "x \<le> pi"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4179
  shows "cos x \<le> cos y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4180
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4181
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4182
  show ?thesis
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4183
    using cos_monotone_0_pi[OF \<open>0 \<le> y\<close> True \<open>x \<le> pi\<close>] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4184
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4185
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4186
  then have "y = x" using \<open>y \<le> x\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4187
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4188
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4189
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4190
lemma cos_monotone_minus_pi_0:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4191
  assumes "- pi \<le> y" and "y < x" and "x \<le> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4192
  shows "cos y < cos x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4193
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4194
  have "0 \<le> - x" and "- x < - y" and "- y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4195
    using assms by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4196
  from cos_monotone_0_pi[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4197
    unfolding cos_minus .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4198
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4199
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4200
lemma cos_monotone_minus_pi_0':
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4201
  assumes "- pi \<le> y" and "y \<le> x" and "x \<le> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4202
  shows "cos y \<le> cos x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4203
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4204
  case True
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4205
  show ?thesis using cos_monotone_minus_pi_0[OF \<open>-pi \<le> y\<close> True \<open>x \<le> 0\<close>]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4206
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4207
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4208
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4209
  then have "y = x" using \<open>y \<le> x\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4210
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4211
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4212
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4213
lemma sin_monotone_2pi:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4214
  assumes "- (pi/2) \<le> y" and "y < x" and "x \<le> pi/2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4215
  shows "sin y < sin x"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4216
  unfolding sin_cos_eq
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4217
  using assms by (auto intro: cos_monotone_0_pi)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4218
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4219
lemma sin_monotone_2pi_le:
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4220
  assumes "- (pi/2) \<le> y" and "y \<le> x" and "x \<le> pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4221
  shows "sin y \<le> sin x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4222
  by (metis assms le_less sin_monotone_2pi)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4223
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4224
lemma sin_x_le_x:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4225
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4226
  assumes x: "x \<ge> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4227
  shows "sin x \<le> x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4228
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4229
  let ?f = "\<lambda>x. x - sin x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4230
  from x have "?f x \<ge> ?f 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4231
    apply (rule DERIV_nonneg_imp_nondecreasing)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4232
    apply (intro allI impI exI[of _ "1 - cos x" for x])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4233
    apply (auto intro!: derivative_eq_intros simp: field_simps)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4234
    done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4235
  then show "sin x \<le> x" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4236
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4237
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4238
lemma sin_x_ge_neg_x:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4239
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4240
  assumes x: "x \<ge> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4241
  shows "sin x \<ge> - x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4242
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4243
  let ?f = "\<lambda>x. x + sin x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4244
  from x have "?f x \<ge> ?f 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4245
    apply (rule DERIV_nonneg_imp_nondecreasing)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4246
    apply (intro allI impI exI[of _ "1 + cos x" for x])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4247
    apply (auto intro!: derivative_eq_intros simp: field_simps real_0_le_add_iff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4248
    done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4249
  then show "sin x \<ge> -x" by simp
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4250
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4251
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4252
lemma abs_sin_x_le_abs_x: "\<bar>sin x\<bar> \<le> \<bar>x\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4253
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4254
  using sin_x_ge_neg_x [of x] sin_x_le_x [of x] sin_x_ge_neg_x [of "-x"] sin_x_le_x [of "-x"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4255
  by (auto simp: abs_real_def)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4256
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4257
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4258
subsection \<open>More Corollaries about Sine and Cosine\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4259
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4260
lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi/2) = (-1) ^ n"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4261
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4262
  have "sin ((real n + 1/2) * pi) = cos (real n * pi)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4263
    by (auto simp: algebra_simps sin_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4264
  then show ?thesis
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4265
    by (simp add: distrib_right add_divide_distrib add.commute mult.commute [of pi])
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4266
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4267
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4268
lemma cos_2npi [simp]: "cos (2 * real n * pi) = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4269
  for n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4270
  by (cases "even n") (simp_all add: cos_double mult.assoc)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4271
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4272
lemma cos_3over2_pi [simp]: "cos (3/2*pi) = 0"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4273
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4274
  have "cos (3/2*pi) = cos (pi + pi/2)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4275
    by simp
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4276
  also have "... = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4277
    by (subst cos_add, simp)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4278
  finally show ?thesis .
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4279
qed
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4280
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4281
lemma sin_2npi [simp]: "sin (2 * real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4282
  for n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4283
  by (auto simp: mult.assoc sin_double)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4284
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4285
lemma sin_3over2_pi [simp]: "sin (3/2*pi) = - 1"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4286
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4287
  have "sin (3/2*pi) = sin (pi + pi/2)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4288
    by simp
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4289
  also have "... = -1"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4290
    by (subst sin_add, simp)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4291
  finally show ?thesis .
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4292
qed
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4293
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4294
lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4295
  by (simp only: cos_add sin_add of_nat_Suc distrib_right distrib_left add_divide_distrib, auto)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4296
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4297
lemma DERIV_cos_add [simp]: "DERIV (\<lambda>x. cos (x + k)) xa :> - sin (xa + k)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4298
  by (auto intro!: derivative_eq_intros)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4299
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4300
lemma sin_zero_norm_cos_one:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4301
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4302
  assumes "sin x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4303
  shows "norm (cos x) = 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4304
  using sin_cos_squared_add [of x, unfolded assms]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4305
  by (simp add: square_norm_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4306
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4307
lemma sin_zero_abs_cos_one: "sin x = 0 \<Longrightarrow> \<bar>cos x\<bar> = (1::real)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4308
  using sin_zero_norm_cos_one by fastforce
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4309
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4310
lemma cos_one_sin_zero:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4311
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4312
  assumes "cos x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4313
  shows "sin x = 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4314
  using sin_cos_squared_add [of x, unfolded assms]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4315
  by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4316
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4317
lemma sin_times_pi_eq_0: "sin (x * pi) = 0 \<longleftrightarrow> x \<in> \<int>"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4318
  by (simp add: sin_zero_iff_int2) (metis Ints_cases Ints_of_int)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4319
67091
1393c2340eec more symbols;
wenzelm
parents: 66827
diff changeset
  4320
lemma cos_one_2pi: "cos x = 1 \<longleftrightarrow> (\<exists>n::nat. x = n * 2 * pi) \<or> (\<exists>n::nat. x = - (n * 2 * pi))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4321
  (is "?lhs = ?rhs")
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4322
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4323
  assume ?lhs
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4324
  then have "sin x = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4325
    by (simp add: cos_one_sin_zero)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4326
  then show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4327
  proof (simp only: sin_zero_iff, elim exE disjE conjE)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4328
    fix n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4329
    assume n: "even n" "x = real n * (pi/2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4330
    then obtain m where m: "n = 2 * m"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4331
      using dvdE by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4332
    then have me: "even m" using \<open>?lhs\<close> n
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4333
      by (auto simp: field_simps) (metis one_neq_neg_one  power_minus_odd power_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4334
    show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4335
      using m me n
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4336
      by (auto simp: field_simps elim!: evenE)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4337
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4338
    fix n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4339
    assume n: "even n" "x = - (real n * (pi/2))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4340
    then obtain m where m: "n = 2 * m"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4341
      using dvdE by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4342
    then have me: "even m" using \<open>?lhs\<close> n
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4343
      by (auto simp: field_simps) (metis one_neq_neg_one  power_minus_odd power_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4344
    show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4345
      using m me n
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4346
      by (auto simp: field_simps elim!: evenE)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4347
  qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4348
next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4349
  assume ?rhs
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4350
  then show "cos x = 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4351
    by (metis cos_2npi cos_minus mult.assoc mult.left_commute)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4352
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4353
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4354
lemma cos_one_2pi_int: "cos x = 1 \<longleftrightarrow> (\<exists>n::int. x = n * 2 * pi)" (is "?lhs = ?rhs")
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4355
proof
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4356
  assume "cos x = 1"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4357
  then show ?rhs
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4358
    by (metis cos_one_2pi mult.commute mult_minus_right of_int_minus of_int_of_nat_eq)
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4359
next
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4360
  assume ?rhs
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4361
  then show "cos x = 1"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4362
    by (clarsimp simp add: cos_one_2pi) (metis mult_minus_right of_int_of_nat)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4363
qed
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4364
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4365
lemma cos_npi_int [simp]:
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4366
  fixes n::int shows "cos (pi * of_int n) = (if even n then 1 else -1)"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4367
    by (auto simp: algebra_simps cos_one_2pi_int elim!: oddE evenE)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4368
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4369
lemma sin_cos_sqrt: "0 \<le> sin x \<Longrightarrow> sin x = sqrt (1 - (cos(x) ^ 2))"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4370
  using sin_squared_eq real_sqrt_unique by fastforce
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4371
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4372
lemma sin_eq_0_pi: "- pi < x \<Longrightarrow> x < pi \<Longrightarrow> sin x = 0 \<Longrightarrow> x = 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4373
  by (metis sin_gt_zero sin_minus minus_less_iff neg_0_less_iff_less not_less_iff_gr_or_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4374
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4375
lemma cos_treble_cos: "cos (3 * x) = 4 * cos x ^ 3 - 3 * cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4376
  for x :: "'a::{real_normed_field,banach}"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4377
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4378
  have *: "(sin x * (sin x * 3)) = 3 - (cos x * (cos x * 3))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4379
    by (simp add: mult.assoc [symmetric] sin_squared_eq [unfolded power2_eq_square])
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4380
  have "cos(3 * x) = cos(2*x + x)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4381
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4382
  also have "\<dots> = 4 * cos x ^ 3 - 3 * cos x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4383
    apply (simp only: cos_add cos_double sin_double)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4384
    apply (simp add: * field_simps power2_eq_square power3_eq_cube)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4385
    done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4386
  finally show ?thesis .
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4387
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4388
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4389
lemma cos_45: "cos (pi / 4) = sqrt 2 / 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4390
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4391
  let ?c = "cos (pi / 4)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4392
  let ?s = "sin (pi / 4)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4393
  have nonneg: "0 \<le> ?c"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4394
    by (simp add: cos_ge_zero)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4395
  have "0 = cos (pi / 4 + pi / 4)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4396
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4397
  also have "cos (pi / 4 + pi / 4) = ?c\<^sup>2 - ?s\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4398
    by (simp only: cos_add power2_eq_square)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4399
  also have "\<dots> = 2 * ?c\<^sup>2 - 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4400
    by (simp add: sin_squared_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4401
  finally have "?c\<^sup>2 = (sqrt 2 / 2)\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4402
    by (simp add: power_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4403
  then show ?thesis
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4404
    using nonneg by (rule power2_eq_imp_eq) simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4405
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4406
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4407
lemma cos_30: "cos (pi / 6) = sqrt 3/2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4408
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4409
  let ?c = "cos (pi / 6)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4410
  let ?s = "sin (pi / 6)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4411
  have pos_c: "0 < ?c"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4412
    by (rule cos_gt_zero) simp_all
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4413
  have "0 = cos (pi / 6 + pi / 6 + pi / 6)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4414
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4415
  also have "\<dots> = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4416
    by (simp only: cos_add sin_add)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4417
  also have "\<dots> = ?c * (?c\<^sup>2 - 3 * ?s\<^sup>2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4418
    by (simp add: algebra_simps power2_eq_square)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4419
  finally have "?c\<^sup>2 = (sqrt 3/2)\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4420
    using pos_c by (simp add: sin_squared_eq power_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4421
  then show ?thesis
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4422
    using pos_c [THEN order_less_imp_le]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4423
    by (rule power2_eq_imp_eq) simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4424
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4425
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4426
lemma sin_45: "sin (pi / 4) = sqrt 2 / 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4427
  by (simp add: sin_cos_eq cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4428
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4429
lemma sin_60: "sin (pi / 3) = sqrt 3/2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4430
  by (simp add: sin_cos_eq cos_30)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4431
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4432
lemma cos_60: "cos (pi / 3) = 1 / 2"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4433
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4434
  have "0 \<le> cos (pi / 3)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4435
    by (rule cos_ge_zero) (use pi_half_ge_zero in \<open>linarith+\<close>)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4436
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4437
    by (simp add: cos_squared_eq sin_60 power_divide power2_eq_imp_eq)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4438
qed
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4439
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4440
lemma sin_30: "sin (pi / 6) = 1 / 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4441
  by (simp add: sin_cos_eq cos_60)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4442
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4443
lemma cos_integer_2pi: "n \<in> \<int> \<Longrightarrow> cos(2 * pi * n) = 1"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4444
  by (metis Ints_cases cos_one_2pi_int mult.assoc mult.commute)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4445
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4446
lemma sin_integer_2pi: "n \<in> \<int> \<Longrightarrow> sin(2 * pi * n) = 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4447
  by (metis sin_two_pi Ints_mult mult.assoc mult.commute sin_times_pi_eq_0)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4448
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  4449
lemma cos_int_2pin [simp]: "cos ((2 * pi) * of_int n) = 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4450
  by (simp add: cos_one_2pi_int)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4451
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  4452
lemma sin_int_2pin [simp]: "sin ((2 * pi) * of_int n) = 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  4453
  by (metis Ints_of_int sin_integer_2pi)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4454
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4455
lemma sincos_principal_value: "\<exists>y. (- pi < y \<and> y \<le> pi) \<and> (sin y = sin x \<and> cos y = cos x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4456
  apply (rule exI [where x="pi - (2 * pi) * frac ((pi - x) / (2 * pi))"])
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4457
  apply (auto simp: field_simps frac_lt_1)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4458
   apply (simp_all add: frac_def divide_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4459
   apply (simp_all add: add_divide_distrib diff_divide_distrib)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4460
   apply (simp_all add: sin_diff cos_diff mult.assoc [symmetric] cos_integer_2pi sin_integer_2pi)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4461
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4462
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4463
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4464
subsection \<open>Tangent\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4465
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4466
definition tan :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4467
  where "tan = (\<lambda>x. sin x / cos x)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4468
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4469
lemma tan_of_real: "of_real (tan x) = (tan (of_real x) :: 'a::{real_normed_field,banach})"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4470
  by (simp add: tan_def sin_of_real cos_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4471
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4472
lemma tan_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> tan z \<in> \<real>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4473
  for z :: "'a::{real_normed_field,banach}"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4474
  by (simp add: tan_def)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4475
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4476
lemma tan_zero [simp]: "tan 0 = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4477
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4478
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4479
lemma tan_pi [simp]: "tan pi = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4480
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4481
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4482
lemma tan_npi [simp]: "tan (real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4483
  for n :: nat
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4484
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4485
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4486
lemma tan_minus [simp]: "tan (- x) = - tan x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4487
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4488
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4489
lemma tan_periodic [simp]: "tan (x + 2 * pi) = tan x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4490
  by (simp add: tan_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4491
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4492
lemma lemma_tan_add1: "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> 1 - tan x * tan y = cos (x + y)/(cos x * cos y)"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4493
  by (simp add: tan_def cos_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4494
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4495
lemma add_tan_eq: "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> tan x + tan y = sin(x + y)/(cos x * cos y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4496
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4497
  by (simp add: tan_def sin_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4498
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4499
lemma tan_add:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4500
  "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> cos (x + y) \<noteq> 0 \<Longrightarrow> tan (x + y) = (tan x + tan y)/(1 - tan x * tan y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4501
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4502
  by (simp add: add_tan_eq lemma_tan_add1 field_simps) (simp add: tan_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4503
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4504
lemma tan_double: "cos x \<noteq> 0 \<Longrightarrow> cos (2 * x) \<noteq> 0 \<Longrightarrow> tan (2 * x) = (2 * tan x) / (1 - (tan x)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4505
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4506
  using tan_add [of x x] by (simp add: power2_eq_square)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4507
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4508
lemma tan_gt_zero: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < tan x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4509
  by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4510
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4511
lemma tan_less_zero:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4512
  assumes "- pi/2 < x" and "x < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4513
  shows "tan x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4514
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4515
  have "0 < tan (- x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4516
    using assms by (simp only: tan_gt_zero)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4517
  then show ?thesis by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4518
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4519
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4520
lemma tan_half: "tan x = sin (2 * x) / (cos (2 * x) + 1)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4521
  for x :: "'a::{real_normed_field,banach,field}"
44756
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  4522
  unfolding tan_def sin_double cos_double sin_squared_eq
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  4523
  by (simp add: power2_eq_square)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4524
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4525
lemma tan_30: "tan (pi / 6) = 1 / sqrt 3"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4526
  unfolding tan_def by (simp add: sin_30 cos_30)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4527
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4528
lemma tan_45: "tan (pi / 4) = 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4529
  unfolding tan_def by (simp add: sin_45 cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4530
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4531
lemma tan_60: "tan (pi / 3) = sqrt 3"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4532
  unfolding tan_def by (simp add: sin_60 cos_60)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4533
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4534
lemma DERIV_tan [simp]: "cos x \<noteq> 0 \<Longrightarrow> DERIV tan x :> inverse ((cos x)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4535
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4536
  unfolding tan_def
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  4537
  by (auto intro!: derivative_eq_intros, simp add: divide_inverse power2_eq_square)
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4538
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4539
declare DERIV_tan[THEN DERIV_chain2, derivative_intros]
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4540
  and DERIV_tan[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4541
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  4542
lemmas has_derivative_tan[derivative_intros] = DERIV_tan[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  4543
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4544
lemma isCont_tan: "cos x \<noteq> 0 \<Longrightarrow> isCont tan x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4545
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4546
  by (rule DERIV_tan [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4547
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4548
lemma isCont_tan' [simp,continuous_intros]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4549
  fixes a :: "'a::{real_normed_field,banach}" and f :: "'a \<Rightarrow> 'a"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4550
  shows "isCont f a \<Longrightarrow> cos (f a) \<noteq> 0 \<Longrightarrow> isCont (\<lambda>x. tan (f x)) a"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4551
  by (rule isCont_o2 [OF _ isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4552
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4553
lemma tendsto_tan [tendsto_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4554
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4555
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> cos a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. tan (f x)) \<longlongrightarrow> tan a) F"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4556
  by (rule isCont_tendsto_compose [OF isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4557
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4558
lemma continuous_tan:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4559
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4560
  shows "continuous F f \<Longrightarrow> cos (f (Lim F (\<lambda>x. x))) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. tan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4561
  unfolding continuous_def by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4562
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4563
lemma continuous_on_tan [continuous_intros]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4564
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4565
  shows "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. cos (f x) \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. tan (f x))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4566
  unfolding continuous_on_def by (auto intro: tendsto_tan)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4567
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4568
lemma continuous_within_tan [continuous_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4569
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4570
  shows "continuous (at x within s) f \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4571
    cos (f x) \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. tan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4572
  unfolding continuous_within by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4573
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  4574
lemma LIM_cos_div_sin: "(\<lambda>x. cos(x)/sin(x)) \<midarrow>pi/2\<rightarrow> 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4575
  by (rule LIM_cong_limit, (rule tendsto_intros)+, simp_all)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4576
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4577
lemma lemma_tan_total: 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4578
  assumes "0 < y" shows "\<exists>x. 0 < x \<and> x < pi/2 \<and> y < tan x"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4579
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4580
  obtain s where "0 < s" 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4581
    and s: "\<And>x. \<lbrakk>x \<noteq> pi/2; norm (x - pi/2) < s\<rbrakk> \<Longrightarrow> norm (cos x / sin x - 0) < inverse y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4582
    using LIM_D [OF LIM_cos_div_sin, of "inverse y"] that assms by force
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4583
  obtain e where e: "0 < e" "e < s" "e < pi/2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4584
    using \<open>0 < s\<close> field_lbound_gt_zero pi_half_gt_zero by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4585
  show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4586
  proof (intro exI conjI)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4587
    have "0 < sin e" "0 < cos e"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4588
      using e by (auto intro: cos_gt_zero sin_gt_zero2 simp: mult.commute)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4589
    then 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4590
    show "y < tan (pi/2 - e)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4591
      using s [of "pi/2 - e"] e assms
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4592
      by (simp add: tan_def sin_diff cos_diff) (simp add: field_simps split: if_split_asm)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4593
  qed (use e in auto)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4594
qed
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4595
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4596
lemma tan_total_pos: 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4597
  assumes "0 \<le> y" shows "\<exists>x. 0 \<le> x \<and> x < pi/2 \<and> tan x = y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4598
proof (cases "y = 0")
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4599
  case True
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4600
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4601
    using pi_half_gt_zero tan_zero by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4602
next
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4603
  case False
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4604
  with assms have "y > 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4605
    by linarith
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4606
  obtain x where x: "0 < x" "x < pi/2" "y < tan x"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4607
    using lemma_tan_total \<open>0 < y\<close> by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4608
  have "\<exists>u\<ge>0. u \<le> x \<and> tan u = y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4609
  proof (intro IVT allI impI)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4610
    show "isCont tan u" if "0 \<le> u \<and> u \<le> x" for u
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4611
    proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4612
      have "cos u \<noteq> 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4613
        using antisym_conv2 cos_gt_zero that x(2) by fastforce
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4614
      with assms show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4615
        by (auto intro!: DERIV_tan [THEN DERIV_isCont])
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4616
    qed
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4617
  qed (use assms x in auto)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4618
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4619
    using x(2) by auto
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4620
qed
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4621
    
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4622
lemma lemma_tan_total1: "\<exists>x. -(pi/2) < x \<and> x < (pi/2) \<and> tan x = y"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4623
proof (cases "0::real" y rule: le_cases)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4624
  case le
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4625
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4626
    by (meson less_le_trans minus_pi_half_less_zero tan_total_pos)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4627
next
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4628
  case ge
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4629
  with tan_total_pos [of "-y"] obtain x where "0 \<le> x" "x < pi / 2" "tan x = - y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4630
    by force
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4631
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4632
    by (rule_tac x="-x" in exI) auto
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4633
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4634
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4635
proposition tan_total: "\<exists>! x. -(pi/2) < x \<and> x < (pi/2) \<and> tan x = y"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4636
proof -
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4637
  have "u = v" if u: "- (pi / 2) < u" "u < pi / 2" and v: "- (pi / 2) < v" "v < pi / 2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4638
    and eq: "tan u = tan v" for u v
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4639
  proof (cases u v rule: linorder_cases)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4640
    case less
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4641
    have "\<And>x. u \<le> x \<and> x \<le> v \<longrightarrow> isCont tan x"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4642
      by (metis cos_gt_zero_pi isCont_tan less_numeral_extra(3) less_trans order.not_eq_order_implies_strict u v)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4643
    moreover have "\<And>x. u < x \<and> x < v \<Longrightarrow> tan differentiable (at x)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4644
      by (metis DERIV_tan cos_gt_zero_pi differentiableI less_numeral_extra(3) order.strict_trans u(1) v(2))
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4645
    ultimately obtain z where "u < z" "z < v" "DERIV tan z :> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4646
      by (metis less Rolle eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4647
    moreover have "cos z \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4648
      by (metis (no_types) \<open>u < z\<close> \<open>z < v\<close> cos_gt_zero_pi less_le_trans linorder_not_less not_less_iff_gr_or_eq u(1) v(2))
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4649
    ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4650
      using DERIV_unique [OF _ DERIV_tan] by fastforce
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4651
  next
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4652
    case greater
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4653
    have "\<And>x. v \<le> x \<and> x \<le> u \<Longrightarrow> isCont tan x"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4654
      by (metis cos_gt_zero_pi isCont_tan less_numeral_extra(3) less_trans order.not_eq_order_implies_strict u v)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4655
    moreover have "\<And>x. v < x \<and> x < u \<Longrightarrow> tan differentiable (at x)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4656
      by (metis DERIV_tan cos_gt_zero_pi differentiableI less_numeral_extra(3) order.strict_trans u(2) v(1))
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4657
    ultimately obtain z where "v < z" "z < u" "DERIV tan z :> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4658
      by (metis greater Rolle eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4659
    moreover have "cos z \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4660
      by (metis  \<open>v < z\<close> \<open>z < u\<close> cos_gt_zero_pi less_le_trans linorder_not_less not_less_iff_gr_or_eq u(2) v(1))
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4661
    ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4662
      using DERIV_unique [OF _ DERIV_tan] by fastforce
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4663
  qed auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4664
  then have "\<exists>!x. - (pi / 2) < x \<and> x < pi / 2 \<and> tan x = y" 
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4665
    if x: "- (pi / 2) < x" "x < pi / 2" "tan x = y" for x
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4666
    using that by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4667
  then show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4668
    using lemma_tan_total1 [where y = y]
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4669
    by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4670
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4671
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4672
lemma tan_monotone:
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4673
  assumes "- (pi/2) < y" and "y < x" and "x < pi/2"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4674
  shows "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4675
proof -
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4676
  have "DERIV tan x' :> inverse ((cos x')\<^sup>2)" if "y \<le> x'" "x' \<le> x" for x'
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4677
  proof -
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4678
    have "-(pi/2) < x'" and "x' < pi/2"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4679
      using that assms by auto
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4680
    with cos_gt_zero_pi have "cos x' \<noteq> 0" by force
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4681
    then show "DERIV tan x' :> inverse ((cos x')\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4682
      by (rule DERIV_tan)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4683
  qed
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4684
  from MVT2[OF \<open>y < x\<close> this]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4685
  obtain z where "y < z" and "z < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4686
    and tan_diff: "tan x - tan y = (x - y) * inverse ((cos z)\<^sup>2)" by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4687
  then have "- (pi/2) < z" and "z < pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4688
    using assms by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4689
  then have "0 < cos z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4690
    using cos_gt_zero_pi by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4691
  then have inv_pos: "0 < inverse ((cos z)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4692
    by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4693
  have "0 < x - y" using \<open>y < x\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4694
  with inv_pos have "0 < tan x - tan y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4695
    unfolding tan_diff by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4696
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4697
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4698
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4699
lemma tan_monotone':
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4700
  assumes "- (pi/2) < y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4701
    and "y < pi/2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4702
    and "- (pi/2) < x"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4703
    and "x < pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4704
  shows "y < x \<longleftrightarrow> tan y < tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4705
proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4706
  assume "y < x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4707
  then show "tan y < tan x"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4708
    using tan_monotone and \<open>- (pi/2) < y\<close> and \<open>x < pi/2\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4709
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4710
  assume "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4711
  show "y < x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4712
  proof (rule ccontr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4713
    assume "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4714
    then have "x \<le> y" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4715
    then have "tan x \<le> tan y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4716
    proof (cases "x = y")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4717
      case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4718
      then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4719
    next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4720
      case False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4721
      then have "x < y" using \<open>x \<le> y\<close> by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4722
      from tan_monotone[OF \<open>- (pi/2) < x\<close> this \<open>y < pi/2\<close>] show ?thesis
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4723
        by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4724
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4725
    then show False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4726
      using \<open>tan y < tan x\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4727
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4728
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4729
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4730
lemma tan_inverse: "1 / (tan y) = tan (pi/2 - y)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4731
  unfolding tan_def sin_cos_eq[of y] cos_sin_eq[of y] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4732
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4733
lemma tan_periodic_pi[simp]: "tan (x + pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4734
  by (simp add: tan_def)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4735
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4736
lemma tan_periodic_nat[simp]: "tan (x + real n * pi) = tan x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4737
  for n :: nat
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4738
proof (induct n arbitrary: x)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4739
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4740
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4741
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4742
  case (Suc n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4743
  have split_pi_off: "x + real (Suc n) * pi = (x + real n * pi) + pi"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4744
    unfolding Suc_eq_plus1 of_nat_add  distrib_right by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4745
  show ?case
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4746
    unfolding split_pi_off using Suc by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4747
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4748
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4749
lemma tan_periodic_int[simp]: "tan (x + of_int i * pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4750
proof (cases "0 \<le> i")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4751
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4752
  then have i_nat: "of_int i = of_int (nat i)" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4753
  show ?thesis unfolding i_nat
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  4754
    by (metis of_int_of_nat_eq tan_periodic_nat)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4755
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4756
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4757
  then have i_nat: "of_int i = - of_int (nat (- i))" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4758
  have "tan x = tan (x + of_int i * pi - of_int i * pi)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4759
    by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4760
  also have "\<dots> = tan (x + of_int i * pi)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4761
    unfolding i_nat mult_minus_left diff_minus_eq_add
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  4762
    by (metis of_int_of_nat_eq tan_periodic_nat)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4763
  finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4764
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4765
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46240
diff changeset
  4766
lemma tan_periodic_n[simp]: "tan (x + numeral n * pi) = tan x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4767
  using tan_periodic_int[of _ "numeral n" ] by simp
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4768
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4769
lemma tan_minus_45: "tan (-(pi/4)) = -1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4770
  unfolding tan_def by (simp add: sin_45 cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4771
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4772
lemma tan_diff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4773
  "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> cos (x - y) \<noteq> 0 \<Longrightarrow> tan (x - y) = (tan x - tan y)/(1 + tan x * tan y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4774
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4775
  using tan_add [of x "-y"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4776
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4777
lemma tan_pos_pi2_le: "0 \<le> x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 \<le> tan x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4778
  using less_eq_real_def tan_gt_zero by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4779
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4780
lemma cos_tan: "\<bar>x\<bar> < pi/2 \<Longrightarrow> cos x = 1 / sqrt (1 + tan x ^ 2)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4781
  using cos_gt_zero_pi [of x]
62390
842917225d56 more canonical names
nipkow
parents: 62379
diff changeset
  4782
  by (simp add: divide_simps tan_def real_sqrt_divide abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4783
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4784
lemma sin_tan: "\<bar>x\<bar> < pi/2 \<Longrightarrow> sin x = tan x / sqrt (1 + tan x ^ 2)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4785
  using cos_gt_zero [of "x"] cos_gt_zero [of "-x"]
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4786
  by (force simp: divide_simps tan_def real_sqrt_divide abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4787
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4788
lemma tan_mono_le: "-(pi/2) < x \<Longrightarrow> x \<le> y \<Longrightarrow> y < pi/2 \<Longrightarrow> tan x \<le> tan y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4789
  using less_eq_real_def tan_monotone by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4790
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4791
lemma tan_mono_lt_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4792
  "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> -(pi/2) < y \<Longrightarrow> y < pi/2 \<Longrightarrow> tan x < tan y \<longleftrightarrow> x < y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4793
  using tan_monotone' by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4794
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4795
lemma tan_mono_le_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4796
  "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> -(pi/2) < y \<Longrightarrow> y < pi/2 \<Longrightarrow> tan x \<le> tan y \<longleftrightarrow> x \<le> y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4797
  by (meson tan_mono_le not_le tan_monotone)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4798
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  4799
lemma tan_bound_pi2: "\<bar>x\<bar> < pi/4 \<Longrightarrow> \<bar>tan x\<bar> < 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4800
  using tan_45 tan_monotone [of x "pi/4"] tan_monotone [of "-x" "pi/4"]
62390
842917225d56 more canonical names
nipkow
parents: 62379
diff changeset
  4801
  by (auto simp: abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4802
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4803
lemma tan_cot: "tan(pi/2 - x) = inverse(tan x)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4804
  by (simp add: tan_def sin_diff cos_diff)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4805
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4806
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4807
subsection \<open>Cotangent\<close>
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4808
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4809
definition cot :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4810
  where "cot = (\<lambda>x. cos x / sin x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4811
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4812
lemma cot_of_real: "of_real (cot x) = (cot (of_real x) :: 'a::{real_normed_field,banach})"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4813
  by (simp add: cot_def sin_of_real cos_of_real)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4814
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4815
lemma cot_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> cot z \<in> \<real>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4816
  for z :: "'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4817
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4818
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4819
lemma cot_zero [simp]: "cot 0 = 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4820
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4821
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4822
lemma cot_pi [simp]: "cot pi = 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4823
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4824
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4825
lemma cot_npi [simp]: "cot (real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4826
  for n :: nat
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4827
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4828
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4829
lemma cot_minus [simp]: "cot (- x) = - cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4830
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4831
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4832
lemma cot_periodic [simp]: "cot (x + 2 * pi) = cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4833
  by (simp add: cot_def)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4834
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4835
lemma cot_altdef: "cot x = inverse (tan x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4836
  by (simp add: cot_def tan_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4837
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4838
lemma tan_altdef: "tan x = inverse (cot x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4839
  by (simp add: cot_def tan_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4840
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4841
lemma tan_cot': "tan (pi/2 - x) = cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4842
  by (simp add: tan_cot cot_altdef)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4843
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4844
lemma cot_gt_zero: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4845
  by (simp add: cot_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4846
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4847
lemma cot_less_zero:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4848
  assumes lb: "- pi/2 < x" and "x < 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4849
  shows "cot x < 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4850
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4851
  have "0 < cot (- x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4852
    using assms by (simp only: cot_gt_zero)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4853
  then show ?thesis by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4854
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4855
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4856
lemma DERIV_cot [simp]: "sin x \<noteq> 0 \<Longrightarrow> DERIV cot x :> -inverse ((sin x)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4857
  for x :: "'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4858
  unfolding cot_def using cos_squared_eq[of x]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4859
  by (auto intro!: derivative_eq_intros) (simp add: divide_inverse power2_eq_square)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4860
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4861
lemma isCont_cot: "sin x \<noteq> 0 \<Longrightarrow> isCont cot x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4862
  for x :: "'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4863
  by (rule DERIV_cot [THEN DERIV_isCont])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4864
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4865
lemma isCont_cot' [simp,continuous_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4866
  "isCont f a \<Longrightarrow> sin (f a) \<noteq> 0 \<Longrightarrow> isCont (\<lambda>x. cot (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4867
  for a :: "'a::{real_normed_field,banach}" and f :: "'a \<Rightarrow> 'a"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4868
  by (rule isCont_o2 [OF _ isCont_cot])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4869
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4870
lemma tendsto_cot [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> sin a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. cot (f x)) \<longlongrightarrow> cot a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4871
  for f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4872
  by (rule isCont_tendsto_compose [OF isCont_cot])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4873
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4874
lemma continuous_cot:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4875
  "continuous F f \<Longrightarrow> sin (f (Lim F (\<lambda>x. x))) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. cot (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4876
  for f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4877
  unfolding continuous_def by (rule tendsto_cot)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4878
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4879
lemma continuous_on_cot [continuous_intros]:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4880
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4881
  shows "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. sin (f x) \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. cot (f x))"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4882
  unfolding continuous_on_def by (auto intro: tendsto_cot)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4883
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4884
lemma continuous_within_cot [continuous_intros]:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4885
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4886
  shows "continuous (at x within s) f \<Longrightarrow> sin (f x) \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. cot (f x))"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4887
  unfolding continuous_within by (rule tendsto_cot)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4888
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4889
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4890
subsection \<open>Inverse Trigonometric Functions\<close>
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4891
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4892
definition arcsin :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4893
  where "arcsin y = (THE x. -(pi/2) \<le> x \<and> x \<le> pi/2 \<and> sin x = y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4894
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4895
definition arccos :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4896
  where "arccos y = (THE x. 0 \<le> x \<and> x \<le> pi \<and> cos x = y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4897
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4898
definition arctan :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4899
  where "arctan y = (THE x. -(pi/2) < x \<and> x < pi/2 \<and> tan x = y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4900
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4901
lemma arcsin: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y \<and> arcsin y \<le> pi/2 \<and> sin (arcsin y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4902
  unfolding arcsin_def by (rule theI' [OF sin_total])
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  4903
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4904
lemma arcsin_pi: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y \<and> arcsin y \<le> pi \<and> sin (arcsin y) = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4905
  by (drule (1) arcsin) (force intro: order_trans)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4906
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4907
lemma sin_arcsin [simp]: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> sin (arcsin y) = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4908
  by (blast dest: arcsin)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4909
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4910
lemma arcsin_bounded: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y \<and> arcsin y \<le> pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4911
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4912
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4913
lemma arcsin_lbound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4914
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4915
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4916
lemma arcsin_ubound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin y \<le> pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4917
  by (blast dest: arcsin)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4918
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4919
lemma arcsin_lt_bounded:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4920
  assumes "- 1 < y" "y < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4921
  shows  "- (pi/2) < arcsin y \<and> arcsin y < pi/2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4922
proof -
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4923
  have "arcsin y \<noteq> pi/2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4924
    by (metis arcsin assms not_less not_less_iff_gr_or_eq sin_pi_half)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4925
  moreover have "arcsin y \<noteq> - pi/2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4926
    by (metis arcsin assms minus_divide_left not_less not_less_iff_gr_or_eq sin_minus sin_pi_half)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4927
  ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4928
    using arcsin_bounded [of y] assms by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4929
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4930
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4931
lemma arcsin_sin: "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> arcsin (sin x) = x"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4932
  unfolding arcsin_def
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4933
  using the1_equality [OF sin_total]  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4934
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4935
lemma arcsin_0 [simp]: "arcsin 0 = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4936
  using arcsin_sin [of 0] by simp
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4937
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4938
lemma arcsin_1 [simp]: "arcsin 1 = pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4939
  using arcsin_sin [of "pi/2"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4940
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4941
lemma arcsin_minus_1 [simp]: "arcsin (- 1) = - (pi/2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4942
  using arcsin_sin [of "- pi/2"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4943
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4944
lemma arcsin_minus: "- 1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arcsin (- x) = - arcsin x"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4945
  by (metis (no_types, hide_lams) arcsin arcsin_sin minus_minus neg_le_iff_le sin_minus)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4946
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4947
lemma arcsin_eq_iff: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arcsin x = arcsin y \<longleftrightarrow> x = y"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  4948
  by (metis abs_le_iff arcsin minus_le_iff)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4949
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4950
lemma cos_arcsin_nonzero: "- 1 < x \<Longrightarrow> x < 1 \<Longrightarrow> cos (arcsin x) \<noteq> 0"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4951
  using arcsin_lt_bounded cos_gt_zero_pi by force
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4952
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4953
lemma arccos: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> 0 \<le> arccos y \<and> arccos y \<le> pi \<and> cos (arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4954
  unfolding arccos_def by (rule theI' [OF cos_total])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4955
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4956
lemma cos_arccos [simp]: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> cos (arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4957
  by (blast dest: arccos)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4958
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4959
lemma arccos_bounded: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> 0 \<le> arccos y \<and> arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4960
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4961
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4962
lemma arccos_lbound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> 0 \<le> arccos y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4963
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4964
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4965
lemma arccos_ubound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4966
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4967
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4968
lemma arccos_lt_bounded: 
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4969
  assumes "- 1 < y" "y < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4970
  shows  "0 < arccos y \<and> arccos y < pi"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4971
proof -
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4972
  have "arccos y \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4973
    by (metis (no_types) arccos assms(1) assms(2) cos_zero less_eq_real_def less_irrefl)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4974
  moreover have "arccos y \<noteq> -pi"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4975
    by (metis arccos assms(1) assms(2) cos_minus cos_pi not_less not_less_iff_gr_or_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4976
  ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4977
    using arccos_bounded [of y] assms
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4978
    by (metis arccos cos_pi not_less not_less_iff_gr_or_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4979
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4980
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4981
lemma arccos_cos: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> arccos (cos x) = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4982
  by (auto simp: arccos_def intro!: the1_equality cos_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4983
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4984
lemma arccos_cos2: "x \<le> 0 \<Longrightarrow> - pi \<le> x \<Longrightarrow> arccos (cos x) = -x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4985
  by (auto simp: arccos_def intro!: the1_equality cos_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4986
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4987
lemma cos_arcsin:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4988
  assumes "- 1 \<le> x" "x \<le> 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4989
  shows "cos (arcsin x) = sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4990
proof (rule power2_eq_imp_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4991
  show "(cos (arcsin x))\<^sup>2 = (sqrt (1 - x\<^sup>2))\<^sup>2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4992
    by (simp add: square_le_1 assms cos_squared_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4993
  show "0 \<le> cos (arcsin x)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4994
    using arcsin assms cos_ge_zero by blast
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4995
  show "0 \<le> sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4996
    by (simp add: square_le_1 assms)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4997
qed
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4998
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4999
lemma sin_arccos:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5000
  assumes "- 1 \<le> x" "x \<le> 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5001
  shows "sin (arccos x) = sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5002
proof (rule power2_eq_imp_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5003
  show "(sin (arccos x))\<^sup>2 = (sqrt (1 - x\<^sup>2))\<^sup>2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5004
    by (simp add: square_le_1 assms sin_squared_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5005
  show "0 \<le> sin (arccos x)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5006
    by (simp add: arccos_bounded assms sin_ge_zero)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5007
  show "0 \<le> sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5008
    by (simp add: square_le_1 assms)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5009
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5010
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5011
lemma arccos_0 [simp]: "arccos 0 = pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5012
  by (metis arccos_cos cos_gt_zero cos_pi cos_pi_half pi_gt_zero
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5013
      pi_half_ge_zero not_le not_zero_less_neg_numeral numeral_One)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5014
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5015
lemma arccos_1 [simp]: "arccos 1 = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5016
  using arccos_cos by force
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5017
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5018
lemma arccos_minus_1 [simp]: "arccos (- 1) = pi"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5019
  by (metis arccos_cos cos_pi order_refl pi_ge_zero)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5020
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5021
lemma arccos_minus: "-1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arccos (- x) = pi - arccos x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5022
  by (metis arccos_cos arccos_cos2 cos_minus_pi cos_total diff_le_0_iff_le le_add_same_cancel1
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5023
      minus_diff_eq uminus_add_conv_diff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5024
65057
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5025
corollary arccos_minus_abs:
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5026
  assumes "\<bar>x\<bar> \<le> 1"
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5027
  shows "arccos (- x) = pi - arccos x"
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5028
using assms by (simp add: arccos_minus)
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5029
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5030
lemma sin_arccos_nonzero: "- 1 < x \<Longrightarrow> x < 1 \<Longrightarrow> sin (arccos x) \<noteq> 0"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5031
  using arccos_lt_bounded sin_gt_zero by force
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5032
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5033
lemma arctan: "- (pi/2) < arctan y \<and> arctan y < pi/2 \<and> tan (arctan y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5034
  unfolding arctan_def by (rule theI' [OF tan_total])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5035
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5036
lemma tan_arctan: "tan (arctan y) = y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5037
  by (simp add: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5038
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5039
lemma arctan_bounded: "- (pi/2) < arctan y \<and> arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5040
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5041
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5042
lemma arctan_lbound: "- (pi/2) < arctan y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5043
  by (simp add: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5044
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5045
lemma arctan_ubound: "arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5046
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5047
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5048
lemma arctan_unique:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5049
  assumes "-(pi/2) < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5050
    and "x < pi/2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5051
    and "tan x = y"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5052
  shows "arctan y = x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5053
  using assms arctan [of y] tan_total [of y] by (fast elim: ex1E)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5054
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5055
lemma arctan_tan: "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> arctan (tan x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5056
  by (rule arctan_unique) simp_all
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5057
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5058
lemma arctan_zero_zero [simp]: "arctan 0 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5059
  by (rule arctan_unique) simp_all
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5060
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5061
lemma arctan_minus: "arctan (- x) = - arctan x"
65057
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5062
  using arctan [of "x"] by (auto simp: arctan_unique)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5063
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5064
lemma cos_arctan_not_zero [simp]: "cos (arctan x) \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5065
  by (intro less_imp_neq [symmetric] cos_gt_zero_pi arctan_lbound arctan_ubound)
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5066
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5067
lemma cos_arctan: "cos (arctan x) = 1 / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5068
proof (rule power2_eq_imp_eq)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5069
  have "0 < 1 + x\<^sup>2" by (simp add: add_pos_nonneg)
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5070
  show "0 \<le> 1 / sqrt (1 + x\<^sup>2)" by simp
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5071
  show "0 \<le> cos (arctan x)"
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5072
    by (intro less_imp_le cos_gt_zero_pi arctan_lbound arctan_ubound)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5073
  have "(cos (arctan x))\<^sup>2 * (1 + (tan (arctan x))\<^sup>2) = 1"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  5074
    unfolding tan_def by (simp add: distrib_left power_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5075
  then show "(cos (arctan x))\<^sup>2 = (1 / sqrt (1 + x\<^sup>2))\<^sup>2"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5076
    using \<open>0 < 1 + x\<^sup>2\<close> by (simp add: arctan power_divide eq_divide_eq)
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5077
qed
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5078
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5079
lemma sin_arctan: "sin (arctan x) = x / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5080
  using add_pos_nonneg [OF zero_less_one zero_le_power2 [of x]]
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5081
  using tan_arctan [of x] unfolding tan_def cos_arctan
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5082
  by (simp add: eq_divide_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5083
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5084
lemma tan_sec: "cos x \<noteq> 0 \<Longrightarrow> 1 + (tan x)\<^sup>2 = (inverse (cos x))\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5085
  for x :: "'a::{real_normed_field,banach,field}"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5086
  by (simp add: add_divide_eq_iff inverse_eq_divide power2_eq_square tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5087
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5088
lemma arctan_less_iff: "arctan x < arctan y \<longleftrightarrow> x < y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5089
  by (metis tan_monotone' arctan_lbound arctan_ubound tan_arctan)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5090
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5091
lemma arctan_le_iff: "arctan x \<le> arctan y \<longleftrightarrow> x \<le> y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5092
  by (simp only: not_less [symmetric] arctan_less_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5093
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5094
lemma arctan_eq_iff: "arctan x = arctan y \<longleftrightarrow> x = y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5095
  by (simp only: eq_iff [where 'a=real] arctan_le_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5096
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5097
lemma zero_less_arctan_iff [simp]: "0 < arctan x \<longleftrightarrow> 0 < x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5098
  using arctan_less_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5099
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5100
lemma arctan_less_zero_iff [simp]: "arctan x < 0 \<longleftrightarrow> x < 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5101
  using arctan_less_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5102
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5103
lemma zero_le_arctan_iff [simp]: "0 \<le> arctan x \<longleftrightarrow> 0 \<le> x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5104
  using arctan_le_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5105
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5106
lemma arctan_le_zero_iff [simp]: "arctan x \<le> 0 \<longleftrightarrow> x \<le> 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5107
  using arctan_le_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5108
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5109
lemma arctan_eq_zero_iff [simp]: "arctan x = 0 \<longleftrightarrow> x = 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5110
  using arctan_eq_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5111
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5112
lemma continuous_on_arcsin': "continuous_on {-1 .. 1} arcsin"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5113
proof -
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5114
  have "continuous_on (sin ` {- pi/2 .. pi/2}) arcsin"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5115
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arcsin_sin)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5116
  also have "sin ` {- pi/2 .. pi/2} = {-1 .. 1}"
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5117
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5118
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5119
    assume "x \<in> {-1..1}"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5120
    then show "x \<in> sin ` {- pi/2..pi/2}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5121
      using arcsin_lbound arcsin_ubound
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  5122
      by (intro image_eqI[where x="arcsin x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5123
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5124
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5125
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5126
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5127
lemma continuous_on_arcsin [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5128
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arcsin (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5129
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arcsin']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5130
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5131
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5132
lemma isCont_arcsin: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arcsin x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5133
  using continuous_on_arcsin'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5134
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5135
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5136
lemma continuous_on_arccos': "continuous_on {-1 .. 1} arccos"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5137
proof -
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5138
  have "continuous_on (cos ` {0 .. pi}) arccos"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5139
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arccos_cos)
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5140
  also have "cos ` {0 .. pi} = {-1 .. 1}"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5141
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5142
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5143
    assume "x \<in> {-1..1}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5144
    then show "x \<in> cos ` {0..pi}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5145
      using arccos_lbound arccos_ubound
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5146
      by (intro image_eqI[where x="arccos x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5147
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5148
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5149
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5150
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5151
lemma continuous_on_arccos [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5152
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arccos (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5153
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arccos']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5154
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5155
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5156
lemma isCont_arccos: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arccos x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5157
  using continuous_on_arccos'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5158
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5159
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5160
lemma isCont_arctan: "isCont arctan x"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5161
proof -
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5162
  obtain u where u: "- (pi / 2) < u" "u < arctan x"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5163
    by (meson arctan arctan_less_iff linordered_field_no_lb)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5164
  obtain v where v: "arctan x < v" "v < pi / 2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5165
    by (meson arctan_less_iff arctan_ubound linordered_field_no_ub)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5166
  have "isCont arctan (tan (arctan x))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5167
  proof (rule isCont_inverse_function2 [of u "arctan x" v])
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5168
    show "\<And>z. \<lbrakk>u \<le> z; z \<le> v\<rbrakk> \<Longrightarrow> arctan (tan z) = z"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5169
      using arctan_unique u(1) v(2) by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5170
    then show "\<And>z. \<lbrakk>u \<le> z; z \<le> v\<rbrakk> \<Longrightarrow> isCont tan z"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5171
      by (metis arctan cos_gt_zero_pi isCont_tan less_irrefl)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5172
  qed (use u v in auto)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5173
  then show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5174
    by (simp add: arctan)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5175
qed
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5176
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  5177
lemma tendsto_arctan [tendsto_intros]: "(f \<longlongrightarrow> x) F \<Longrightarrow> ((\<lambda>x. arctan (f x)) \<longlongrightarrow> arctan x) F"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5178
  by (rule isCont_tendsto_compose [OF isCont_arctan])
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5179
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5180
lemma continuous_arctan [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. arctan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5181
  unfolding continuous_def by (rule tendsto_arctan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5182
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5183
lemma continuous_on_arctan [continuous_intros]:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5184
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. arctan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5185
  unfolding continuous_on_def by (auto intro: tendsto_arctan)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5186
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5187
lemma DERIV_arcsin:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5188
  assumes "- 1 < x" "x < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5189
  shows "DERIV arcsin x :> inverse (sqrt (1 - x\<^sup>2))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5190
proof (rule DERIV_inverse_function)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5191
  show "(sin has_real_derivative sqrt (1 - x\<^sup>2)) (at (arcsin x))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5192
    by (rule derivative_eq_intros | use assms cos_arcsin in force)+
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5193
  show "sqrt (1 - x\<^sup>2) \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5194
    using abs_square_eq_1 assms by force
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5195
qed (use assms isCont_arcsin in auto)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5196
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5197
lemma DERIV_arccos:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5198
  assumes "- 1 < x" "x < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5199
  shows "DERIV arccos x :> inverse (- sqrt (1 - x\<^sup>2))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5200
proof (rule DERIV_inverse_function)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5201
  show "(cos has_real_derivative - sqrt (1 - x\<^sup>2)) (at (arccos x))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5202
    by (rule derivative_eq_intros | use assms sin_arccos in force)+
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5203
  show "- sqrt (1 - x\<^sup>2) \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5204
    using abs_square_eq_1 assms by force
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5205
qed (use assms isCont_arccos in auto)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5206
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5207
lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x\<^sup>2)"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5208
proof (rule DERIV_inverse_function [where f=tan and a="x - 1" and b="x + 1"])
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5209
  show "(tan has_real_derivative 1 + x\<^sup>2) (at (arctan x))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5210
    apply (rule derivative_eq_intros | simp)+
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5211
    by (metis arctan cos_arctan_not_zero power_inverse tan_sec)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5212
  show "\<And>y. \<lbrakk>x - 1 < y; y < x + 1\<rbrakk> \<Longrightarrow> tan (arctan y) = y"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5213
    using tan_arctan by blast
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5214
  show "1 + x\<^sup>2 \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5215
    by (metis power_one sum_power2_eq_zero_iff zero_neq_one)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5216
qed (use isCont_arctan in auto)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5217
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  5218
declare
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  5219
  DERIV_arcsin[THEN DERIV_chain2, derivative_intros]
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61284
diff changeset
  5220
  DERIV_arcsin[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  5221
  DERIV_arccos[THEN DERIV_chain2, derivative_intros]
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61284
diff changeset
  5222
  DERIV_arccos[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  5223
  DERIV_arctan[THEN DERIV_chain2, derivative_intros]
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61284
diff changeset
  5224
  DERIV_arctan[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  5225
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5226
lemmas has_derivative_arctan[derivative_intros] = DERIV_arctan[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5227
  and has_derivative_arccos[derivative_intros] = DERIV_arccos[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5228
  and has_derivative_arcsin[derivative_intros] = DERIV_arcsin[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5229
61881
b4bfa62e799d Transcendental: use [simp]-canonical form - (pi/2)
hoelzl
parents: 61810
diff changeset
  5230
lemma filterlim_tan_at_right: "filterlim tan at_bot (at_right (- (pi/2)))"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5231
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5232
     (auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5233
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5234
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5235
lemma filterlim_tan_at_left: "filterlim tan at_top (at_left (pi/2))"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5236
  by (rule filterlim_at_top_at_left[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5237
     (auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5238
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5239
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  5240
lemma tendsto_arctan_at_top: "(arctan \<longlongrightarrow> (pi/2)) at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5241
proof (rule tendstoI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5242
  fix e :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5243
  assume "0 < e"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
  5244
  define y where "y = pi/2 - min (pi/2) e"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5245
  then have y: "0 \<le> y" "y < pi/2" "pi/2 \<le> e + y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5246
    using \<open>0 < e\<close> by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5247
  show "eventually (\<lambda>x. dist (arctan x) (pi/2) < e) at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5248
  proof (intro eventually_at_top_dense[THEN iffD2] exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5249
    fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5250
    assume "tan y < x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5251
    then have "arctan (tan y) < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5252
      by (simp add: arctan_less_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5253
    with y have "y < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5254
      by (subst (asm) arctan_tan) simp_all
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5255
    with arctan_ubound[of x, arith] y \<open>0 < e\<close>
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5256
    show "dist (arctan x) (pi/2) < e"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5257
      by (simp add: dist_real_def)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5258
  qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5259
qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5260
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  5261
lemma tendsto_arctan_at_bot: "(arctan \<longlongrightarrow> - (pi/2)) at_bot"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5262
  unfolding filterlim_at_bot_mirror arctan_minus
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5263
  by (intro tendsto_minus tendsto_arctan_at_top)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5264
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5265
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5266
subsection \<open>Prove Totality of the Trigonometric Functions\<close>
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5267
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5268
lemma cos_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> cos (arccos y) = y"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5269
  by (simp add: abs_le_iff)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5270
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5271
lemma sin_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> sin (arccos y) = sqrt (1 - y\<^sup>2)"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5272
  by (simp add: sin_arccos abs_le_iff)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5273
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5274
lemma sin_mono_less_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5275
  "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> - (pi/2) \<le> y \<Longrightarrow> y \<le> pi/2 \<Longrightarrow> sin x < sin y \<longleftrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5276
  by (metis not_less_iff_gr_or_eq sin_monotone_2pi)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5277
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5278
lemma sin_mono_le_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5279
  "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> - (pi/2) \<le> y \<Longrightarrow> y \<le> pi/2 \<Longrightarrow> sin x \<le> sin y \<longleftrightarrow> x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5280
  by (meson leD le_less_linear sin_monotone_2pi sin_monotone_2pi_le)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5281
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5282
lemma sin_inj_pi:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5283
  "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> - (pi/2) \<le> y \<Longrightarrow> y \<le> pi/2 \<Longrightarrow> sin x = sin y \<Longrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5284
  by (metis arcsin_sin)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5285
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5286
lemma cos_mono_less_eq: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> pi \<Longrightarrow> cos x < cos y \<longleftrightarrow> y < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5287
  by (meson cos_monotone_0_pi cos_monotone_0_pi_le leD le_less_linear)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5288
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5289
lemma cos_mono_le_eq: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> pi \<Longrightarrow> cos x \<le> cos y \<longleftrightarrow> y \<le> x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5290
  by (metis arccos_cos cos_monotone_0_pi_le eq_iff linear)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5291
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5292
lemma cos_inj_pi: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> pi \<Longrightarrow> cos x = cos y \<Longrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5293
  by (metis arccos_cos)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5294
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5295
lemma arccos_le_pi2: "\<lbrakk>0 \<le> y; y \<le> 1\<rbrakk> \<Longrightarrow> arccos y \<le> pi/2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5296
  by (metis (mono_tags) arccos_0 arccos cos_le_one cos_monotone_0_pi_le
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5297
      cos_pi cos_pi_half pi_half_ge_zero antisym_conv less_eq_neg_nonpos linear minus_minus order.trans order_refl)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5298
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5299
lemma sincos_total_pi_half:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5300
  assumes "0 \<le> x" "0 \<le> y" "x\<^sup>2 + y\<^sup>2 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5301
  shows "\<exists>t. 0 \<le> t \<and> t \<le> pi/2 \<and> x = cos t \<and> y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5302
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5303
  have x1: "x \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5304
    using assms by (metis le_add_same_cancel1 power2_le_imp_le power_one zero_le_power2)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5305
  with assms have *: "0 \<le> arccos x" "cos (arccos x) = x"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5306
    by (auto simp: arccos)
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  5307
  from assms have "y = sqrt (1 - x\<^sup>2)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5308
    by (metis abs_of_nonneg add.commute add_diff_cancel real_sqrt_abs)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5309
  with x1 * assms arccos_le_pi2 [of x] show ?thesis
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5310
    by (rule_tac x="arccos x" in exI) (auto simp: sin_arccos)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5311
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5312
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5313
lemma sincos_total_pi:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5314
  assumes "0 \<le> y" "x\<^sup>2 + y\<^sup>2 = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5315
  shows "\<exists>t. 0 \<le> t \<and> t \<le> pi \<and> x = cos t \<and> y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5316
proof (cases rule: le_cases [of 0 x])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5317
  case le
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5318
  from sincos_total_pi_half [OF le] show ?thesis
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5319
    by (metis pi_ge_two pi_half_le_two add.commute add_le_cancel_left add_mono assms)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5320
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5321
  case ge
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5322
  then have "0 \<le> -x"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5323
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5324
  then obtain t where t: "t\<ge>0" "t \<le> pi/2" "-x = cos t" "y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5325
    using sincos_total_pi_half assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5326
    by auto (metis \<open>0 \<le> - x\<close> power2_minus)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5327
  show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5328
    by (rule exI [where x = "pi -t"]) (use t in auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5329
qed
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5330
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5331
lemma sincos_total_2pi_le:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5332
  assumes "x\<^sup>2 + y\<^sup>2 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5333
  shows "\<exists>t. 0 \<le> t \<and> t \<le> 2 * pi \<and> x = cos t \<and> y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5334
proof (cases rule: le_cases [of 0 y])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5335
  case le
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5336
  from sincos_total_pi [OF le] show ?thesis
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5337
    by (metis assms le_add_same_cancel1 mult.commute mult_2_right order.trans)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5338
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5339
  case ge
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5340
  then have "0 \<le> -y"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5341
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5342
  then obtain t where t: "t\<ge>0" "t \<le> pi" "x = cos t" "-y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5343
    using sincos_total_pi assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5344
    by auto (metis \<open>0 \<le> - y\<close> power2_minus)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5345
  show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5346
    by (rule exI [where x = "2 * pi - t"]) (use t in auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5347
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5348
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5349
lemma sincos_total_2pi:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5350
  assumes "x\<^sup>2 + y\<^sup>2 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5351
  obtains t where "0 \<le> t" "t < 2*pi" "x = cos t" "y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5352
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5353
  from sincos_total_2pi_le [OF assms]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5354
  obtain t where t: "0 \<le> t" "t \<le> 2*pi" "x = cos t" "y = sin t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5355
    by blast
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5356
  show ?thesis
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5357
    by (cases "t = 2 * pi") (use t that in \<open>force+\<close>)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5358
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5359
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  5360
lemma arcsin_less_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arcsin x < arcsin y \<longleftrightarrow> x < y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5361
  by (rule trans [OF sin_mono_less_eq [symmetric]]) (use arcsin_ubound arcsin_lbound in auto)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5362
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  5363
lemma arcsin_le_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arcsin x \<le> arcsin y \<longleftrightarrow> x \<le> y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5364
  using arcsin_less_mono not_le by blast
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5365
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5366
lemma arcsin_less_arcsin: "- 1 \<le> x \<Longrightarrow> x < y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin x < arcsin y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5367
  using arcsin_less_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5368
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5369
lemma arcsin_le_arcsin: "- 1 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin x \<le> arcsin y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5370
  using arcsin_le_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5371
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5372
lemma arccos_less_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arccos x < arccos y \<longleftrightarrow> y < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5373
  by (rule trans [OF cos_mono_less_eq [symmetric]]) (use arccos_ubound arccos_lbound in auto)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5374
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  5375
lemma arccos_le_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arccos x \<le> arccos y \<longleftrightarrow> y \<le> x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5376
  using arccos_less_mono [of y x] by (simp add: not_le [symmetric])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5377
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5378
lemma arccos_less_arccos: "- 1 \<le> x \<Longrightarrow> x < y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y < arccos x"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5379
  using arccos_less_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5380
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5381
lemma arccos_le_arccos: "- 1 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y \<le> arccos x"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5382
  using arccos_le_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5383
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5384
lemma arccos_eq_iff: "\<bar>x\<bar> \<le> 1 \<and> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arccos x = arccos y \<longleftrightarrow> x = y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5385
  using cos_arccos_abs by fastforce
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5386
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5387
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5388
lemma arccos_cos_eq_abs:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5389
  assumes "\<bar>\<theta>\<bar> \<le> pi"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5390
  shows "arccos (cos \<theta>) = \<bar>\<theta>\<bar>"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5391
  unfolding arccos_def
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5392
proof (intro the_equality conjI; clarify?)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5393
  show "cos \<bar>\<theta>\<bar> = cos \<theta>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5394
    by (simp add: abs_real_def)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5395
  show "x = \<bar>\<theta>\<bar>" if "cos x = cos \<theta>" "0 \<le> x" "x \<le> pi" for x
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5396
    by (simp add: \<open>cos \<bar>\<theta>\<bar> = cos \<theta>\<close> assms cos_inj_pi that)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5397
qed (use assms in auto)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5398
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5399
lemma arccos_cos_eq_abs_2pi:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5400
  obtains k where "arccos (cos \<theta>) = \<bar>\<theta> - of_int k * (2 * pi)\<bar>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5401
proof -
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5402
  define k where "k \<equiv>  \<lfloor>(\<theta> + pi) / (2 * pi)\<rfloor>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5403
  have lepi: "\<bar>\<theta> - of_int k * (2 * pi)\<bar> \<le> pi"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5404
    using floor_divide_lower [of "2*pi" "\<theta> + pi"] floor_divide_upper [of "2*pi" "\<theta> + pi"]
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5405
    by (auto simp: k_def abs_if algebra_simps)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5406
  have "arccos (cos \<theta>) = arccos (cos (\<theta> - of_int k * (2 * pi)))"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5407
    using cos_int_2pin sin_int_2pin by (simp add: cos_diff mult.commute)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5408
  also have "\<dots> = \<bar>\<theta> - of_int k * (2 * pi)\<bar>"
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5409
    using arccos_cos_eq_abs lepi by blast
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5410
  finally show ?thesis
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5411
    using that by metis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5412
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5413
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5414
lemma cos_limit_1:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5415
  assumes "(\<lambda>j. cos (\<theta> j)) \<longlonglongrightarrow> 1"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5416
  shows "\<exists>k. (\<lambda>j. \<theta> j - of_int (k j) * (2 * pi)) \<longlonglongrightarrow> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5417
proof -
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5418
  have "\<forall>\<^sub>F j in sequentially. cos (\<theta> j) \<in> {- 1..1}"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5419
    by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5420
  then have "(\<lambda>j. arccos (cos (\<theta> j))) \<longlonglongrightarrow> arccos 1"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5421
    using continuous_on_tendsto_compose [OF continuous_on_arccos' assms] by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5422
  moreover have "\<And>j. \<exists>k. arccos (cos (\<theta> j)) = \<bar>\<theta> j - of_int k * (2 * pi)\<bar>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5423
    using arccos_cos_eq_abs_2pi by metis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5424
  then have "\<exists>k. \<forall>j. arccos (cos (\<theta> j)) = \<bar>\<theta> j - of_int (k j) * (2 * pi)\<bar>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5425
    by metis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5426
  ultimately have "\<exists>k. (\<lambda>j. \<bar>\<theta> j - of_int (k j) * (2 * pi)\<bar>) \<longlonglongrightarrow> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5427
    by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5428
  then show ?thesis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5429
    by (simp add: tendsto_rabs_zero_iff)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5430
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5431
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5432
lemma cos_diff_limit_1:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5433
  assumes "(\<lambda>j. cos (\<theta> j - \<Theta>)) \<longlonglongrightarrow> 1"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5434
  obtains k where "(\<lambda>j. \<theta> j - of_int (k j) * (2 * pi)) \<longlonglongrightarrow> \<Theta>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5435
proof -
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5436
  obtain k where "(\<lambda>j. (\<theta> j - \<Theta>) - of_int (k j) * (2 * pi)) \<longlonglongrightarrow> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5437
    using cos_limit_1 [OF assms] by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5438
  then have "(\<lambda>j. \<Theta> + ((\<theta> j - \<Theta>) - of_int (k j) * (2 * pi))) \<longlonglongrightarrow> \<Theta> + 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5439
    by (rule tendsto_add [OF tendsto_const])
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5440
  with that show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5441
    by auto
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5442
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5443
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5444
subsection \<open>Machin's formula\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5445
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5446
lemma arctan_one: "arctan 1 = pi / 4"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5447
  by (rule arctan_unique) (simp_all add: tan_45 m2pi_less_pi)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5448
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5449
lemma tan_total_pi4:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5450
  assumes "\<bar>x\<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5451
  shows "\<exists>z. - (pi / 4) < z \<and> z < pi / 4 \<and> tan z = x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5452
proof
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5453
  show "- (pi / 4) < arctan x \<and> arctan x < pi / 4 \<and> tan (arctan x) = x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5454
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5455
    unfolding arctan_less_iff
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5456
    using assms by (auto simp: arctan)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5457
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5458
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5459
lemma arctan_add:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5460
  assumes "\<bar>x\<bar> \<le> 1" "\<bar>y\<bar> < 1"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5461
  shows "arctan x + arctan y = arctan ((x + y) / (1 - x * y))"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5462
proof (rule arctan_unique [symmetric])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5463
  have "- (pi / 4) \<le> arctan x" "- (pi / 4) < arctan y"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5464
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5465
    unfolding arctan_le_iff arctan_less_iff
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5466
    using assms by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5467
  from add_le_less_mono [OF this] show 1: "- (pi/2) < arctan x + arctan y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5468
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5469
  have "arctan x \<le> pi / 4" "arctan y < pi / 4"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5470
    unfolding arctan_one [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5471
    unfolding arctan_le_iff arctan_less_iff
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5472
    using assms by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5473
  from add_le_less_mono [OF this] show 2: "arctan x + arctan y < pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5474
    by simp
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5475
  show "tan (arctan x + arctan y) = (x + y) / (1 - x * y)"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5476
    using cos_gt_zero_pi [OF 1 2] by (simp add: arctan tan_add)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5477
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5478
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5479
lemma arctan_double: "\<bar>x\<bar> < 1 \<Longrightarrow> 2 * arctan x = arctan ((2 * x) / (1 - x\<^sup>2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5480
  by (metis arctan_add linear mult_2 not_less power2_eq_square)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5481
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5482
theorem machin: "pi / 4 = 4 * arctan (1 / 5) - arctan (1 / 239)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5483
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5484
  have "\<bar>1 / 5\<bar> < (1 :: real)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5485
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5486
  from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (1 / 5) = arctan (5 / 12)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5487
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5488
  moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5489
  have "\<bar>5 / 12\<bar> < (1 :: real)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5490
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5491
  from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (5 / 12) = arctan (120 / 119)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5492
    by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5493
  moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5494
  have "\<bar>1\<bar> \<le> (1::real)" and "\<bar>1 / 239\<bar> < (1::real)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5495
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5496
  from arctan_add[OF this] have "arctan 1 + arctan (1 / 239) = arctan (120 / 119)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5497
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5498
  ultimately have "arctan 1 + arctan (1 / 239) = 4 * arctan (1 / 5)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5499
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5500
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5501
    unfolding arctan_one by algebra
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5502
qed
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5503
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5504
lemma machin_Euler: "5 * arctan (1 / 7) + 2 * arctan (3 / 79) = pi / 4"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5505
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5506
  have 17: "\<bar>1 / 7\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5507
  with arctan_double have "2 * arctan (1 / 7) = arctan (7 / 24)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  5508
    by simp (simp add: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5509
  moreover
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5510
  have "\<bar>7 / 24\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5511
  with arctan_double have "2 * arctan (7 / 24) = arctan (336 / 527)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5512
    by simp (simp add: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5513
  moreover
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5514
  have "\<bar>336 / 527\<bar> < (1 :: real)" by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5515
  from arctan_add[OF less_imp_le[OF 17] this]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5516
  have "arctan(1/7) + arctan (336 / 527) = arctan (2879 / 3353)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5517
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5518
  ultimately have I: "5 * arctan (1 / 7) = arctan (2879 / 3353)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5519
  have 379: "\<bar>3 / 79\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5520
  with arctan_double have II: "2 * arctan (3 / 79) = arctan (237 / 3116)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5521
    by simp (simp add: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5522
  have *: "\<bar>2879 / 3353\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5523
  have "\<bar>237 / 3116\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5524
  from arctan_add[OF less_imp_le[OF *] this] have "arctan (2879/3353) + arctan (237/3116) = pi/4"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5525
    by (simp add: arctan_one)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5526
  with I II show ?thesis by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5527
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5528
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5529
(*But could also prove MACHIN_GAUSS:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5530
  12 * arctan(1/18) + 8 * arctan(1/57) - 5 * arctan(1/239) = pi/4*)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5531
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5532
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5533
subsection \<open>Introducing the inverse tangent power series\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5534
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5535
lemma monoseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5536
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5537
  assumes "\<bar>x\<bar> \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5538
  shows "monoseq (\<lambda>n. 1 / real (n * 2 + 1) * x^(n * 2 + 1))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5539
    (is "monoseq ?a")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5540
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5541
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5542
  then show ?thesis by (auto simp: monoseq_def)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5543
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5544
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5545
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5546
    using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5547
  show "monoseq ?a"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5548
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5549
    have mono: "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<le>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5550
        1 / real (Suc (n * 2)) * x ^ Suc (n * 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5551
      if "0 \<le> x" and "x \<le> 1" for n and x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5552
    proof (rule mult_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5553
      show "1 / real (Suc (Suc n * 2)) \<le> 1 / real (Suc (n * 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5554
        by (rule frac_le) simp_all
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5555
      show "0 \<le> 1 / real (Suc (n * 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5556
        by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5557
      show "x ^ Suc (Suc n * 2) \<le> x ^ Suc (n * 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5558
        by (rule power_decreasing) (simp_all add: \<open>0 \<le> x\<close> \<open>x \<le> 1\<close>)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5559
      show "0 \<le> x ^ Suc (Suc n * 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5560
        by (rule zero_le_power) (simp add: \<open>0 \<le> x\<close>)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5561
    qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5562
    show ?thesis
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5563
    proof (cases "0 \<le> x")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5564
      case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5565
      from mono[OF this \<open>x \<le> 1\<close>, THEN allI]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5566
      show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5567
        unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI2)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5568
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5569
      case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5570
      then have "0 \<le> - x" and "- x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5571
        using \<open>-1 \<le> x\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5572
      from mono[OF this]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5573
      have "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<ge>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5574
          1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5575
        using \<open>0 \<le> -x\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5576
      then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5577
        unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI1[OF allI])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5578
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5579
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5580
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5581
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5582
lemma zeroseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5583
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5584
  assumes "\<bar>x\<bar> \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5585
  shows "(\<lambda>n. 1 / real (n * 2 + 1) * x^(n * 2 + 1)) \<longlonglongrightarrow> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5586
    (is "?a \<longlonglongrightarrow> 0")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5587
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5588
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5589
  then show ?thesis by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5590
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5591
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5592
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5593
    using assms by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5594
  show "?a \<longlonglongrightarrow> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5595
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5596
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5597
    then have "norm x < 1" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5598
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_power_zero[OF \<open>norm x < 1\<close>, THEN LIMSEQ_Suc]]
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5599
    have "(\<lambda>n. 1 / real (n + 1) * x ^ (n + 1)) \<longlonglongrightarrow> 0"
31790
05c92381363c corrected and unified thm names
nipkow
parents: 31338
diff changeset
  5600
      unfolding inverse_eq_divide Suc_eq_plus1 by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5601
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5602
      using pos2 by (rule LIMSEQ_linear)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5603
  next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5604
    case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5605
    then have "x = -1 \<or> x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5606
      using \<open>\<bar>x\<bar> \<le> 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5607
    then have n_eq: "\<And> n. x ^ (n * 2 + 1) = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5608
      unfolding One_nat_def by auto
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  5609
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat[THEN LIMSEQ_linear, OF pos2, unfolded inverse_eq_divide] tendsto_const[of x]]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5610
    show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5611
      unfolding n_eq Suc_eq_plus1 by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5612
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5613
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5614
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5615
lemma summable_arctan_series:
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  5616
  fixes n :: nat
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5617
  assumes "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5618
  shows "summable (\<lambda> k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5619
    (is "summable (?c x)")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5620
  by (rule summable_Leibniz(1),
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5621
      rule zeroseq_arctan_series[OF assms],
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5622
      rule monoseq_arctan_series[OF assms])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5623
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5624
lemma DERIV_arctan_series:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5625
  assumes "\<bar>x\<bar> < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5626
  shows "DERIV (\<lambda>x'. \<Sum>k. (-1)^k * (1 / real (k * 2 + 1) * x' ^ (k * 2 + 1))) x :>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5627
      (\<Sum>k. (-1)^k * x^(k * 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5628
    (is "DERIV ?arctan _ :> ?Int")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5629
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5630
  let ?f = "\<lambda>n. if even n then (-1)^(n div 2) * 1 / real (Suc n) else 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5631
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5632
  have n_even: "even n \<Longrightarrow> 2 * (n div 2) = n" for n :: nat
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5633
    by presburger
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5634
  then have if_eq: "?f n * real (Suc n) * x'^n =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5635
      (if even n then (-1)^(n div 2) * x'^(2 * (n div 2)) else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5636
    for n x'
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5637
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5638
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5639
  have summable_Integral: "summable (\<lambda> n. (- 1) ^ n * x^(2 * n))" if "\<bar>x\<bar> < 1" for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5640
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5641
    from that have "x\<^sup>2 < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5642
      by (simp add: abs_square_less_1)
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5643
    have "summable (\<lambda> n. (- 1) ^ n * (x\<^sup>2) ^n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5644
      by (rule summable_Leibniz(1))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5645
        (auto intro!: LIMSEQ_realpow_zero monoseq_realpow \<open>x\<^sup>2 < 1\<close> order_less_imp_le[OF \<open>x\<^sup>2 < 1\<close>])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5646
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5647
      by (simp only: power_mult)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5648
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5649
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67268
diff changeset
  5650
  have sums_even: "(sums) f = (sums) (\<lambda> n. if even n then f (n div 2) else 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5651
    for f :: "nat \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5652
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5653
    have "f sums x = (\<lambda> n. if even n then f (n div 2) else 0) sums x" for x :: real
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5654
    proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5655
      assume "f sums x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5656
      from sums_if[OF sums_zero this] show "(\<lambda>n. if even n then f (n div 2) else 0) sums x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5657
        by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5658
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5659
      assume "(\<lambda> n. if even n then f (n div 2) else 0) sums x"
63170
eae6549dbea2 tuned proofs, to allow unfold_abs_def;
wenzelm
parents: 63145
diff changeset
  5660
      from LIMSEQ_linear[OF this[simplified sums_def] pos2, simplified sum_split_even_odd[simplified mult.commute]]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5661
      show "f sums x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5662
        unfolding sums_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5663
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5664
    then show ?thesis ..
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5665
  qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5666
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5667
  have Int_eq: "(\<Sum>n. ?f n * real (Suc n) * x^n) = ?Int"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5668
    unfolding if_eq mult.commute[of _ 2]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5669
      suminf_def sums_even[of "\<lambda> n. (- 1) ^ n * x ^ (2 * n)", symmetric]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5670
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5671
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5672
  have arctan_eq: "(\<Sum>n. ?f n * x^(Suc n)) = ?arctan x" for x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5673
  proof -
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5674
    have if_eq': "\<And>n. (if even n then (- 1) ^ (n div 2) * 1 / real (Suc n) else 0) * x ^ Suc n =
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5675
      (if even n then (- 1) ^ (n div 2) * (1 / real (Suc (2 * (n div 2))) * x ^ Suc (2 * (n div 2))) else 0)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5676
      using n_even by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5677
    have idx_eq: "\<And>n. n * 2 + 1 = Suc (2 * n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5678
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5679
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5680
      unfolding if_eq' idx_eq suminf_def
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5681
        sums_even[of "\<lambda> n. (- 1) ^ n * (1 / real (Suc (2 * n)) * x ^ Suc (2 * n))", symmetric]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5682
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5683
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5684
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5685
  have "DERIV (\<lambda> x. \<Sum> n. ?f n * x^(Suc n)) x :> (\<Sum>n. ?f n * real (Suc n) * x^n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5686
  proof (rule DERIV_power_series')
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5687
    show "x \<in> {- 1 <..< 1}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5688
      using \<open>\<bar> x \<bar> < 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5689
    show "summable (\<lambda> n. ?f n * real (Suc n) * x'^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5690
      if x'_bounds: "x' \<in> {- 1 <..< 1}" for x' :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5691
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5692
      from that have "\<bar>x'\<bar> < 1" by auto
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  5693
      then show ?thesis
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  5694
        using that sums_summable sums_if [OF sums_0 [of "\<lambda>x. 0"] summable_sums [OF summable_Integral]]   
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  5695
        by (auto simp add: if_distrib [of "\<lambda>x. x * y" for y] cong: if_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5696
    qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5697
  qed auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5698
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5699
    by (simp only: Int_eq arctan_eq)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5700
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5701
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5702
lemma arctan_series:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5703
  assumes "\<bar>x\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5704
  shows "arctan x = (\<Sum>k. (-1)^k * (1 / real (k * 2 + 1) * x ^ (k * 2 + 1)))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5705
    (is "_ = suminf (\<lambda> n. ?c x n)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5706
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5707
  let ?c' = "\<lambda>x n. (-1)^n * x^(n*2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5708
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5709
  have DERIV_arctan_suminf: "DERIV (\<lambda> x. suminf (?c x)) x :> (suminf (?c' x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5710
    if "0 < r" and "r < 1" and "\<bar>x\<bar> < r" for r x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5711
  proof (rule DERIV_arctan_series)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5712
    from that show "\<bar>x\<bar> < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5713
      using \<open>r < 1\<close> and \<open>\<bar>x\<bar> < r\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5714
  qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5715
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5716
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5717
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5718
    assume "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5719
    note summable_Leibniz[OF zeroseq_arctan_series[OF this] monoseq_arctan_series[OF this]]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5720
  } note arctan_series_borders = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5721
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5722
  have when_less_one: "arctan x = (\<Sum>k. ?c x k)" if "\<bar>x\<bar> < 1" for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5723
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5724
    obtain r where "\<bar>x\<bar> < r" and "r < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5725
      using dense[OF \<open>\<bar>x\<bar> < 1\<close>] by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5726
    then have "0 < r" and "- r < x" and "x < r" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5727
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5728
    have suminf_eq_arctan_bounded: "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5729
      if "-r < a" and "b < r" and "a < b" and "a \<le> x" and "x \<le> b" for x a b
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5730
    proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5731
      from that have "\<bar>x\<bar> < r" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5732
      show "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5733
      proof (rule DERIV_isconst2[of "a" "b"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5734
        show "a < b" and "a \<le> x" and "x \<le> b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5735
          using \<open>a < b\<close> \<open>a \<le> x\<close> \<open>x \<le> b\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5736
        have "\<forall>x. - r < x \<and> x < r \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5737
        proof (rule allI, rule impI)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5738
          fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5739
          assume "-r < x \<and> x < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5740
          then have "\<bar>x\<bar> < r" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5741
          with \<open>r < 1\<close> have "\<bar>x\<bar> < 1" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5742
          have "\<bar>- (x\<^sup>2)\<bar> < 1" using abs_square_less_1 \<open>\<bar>x\<bar> < 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5743
          then have "(\<lambda>n. (- (x\<^sup>2)) ^ n) sums (1 / (1 - (- (x\<^sup>2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5744
            unfolding real_norm_def[symmetric] by (rule geometric_sums)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5745
          then have "(?c' x) sums (1 / (1 - (- (x\<^sup>2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5746
            unfolding power_mult_distrib[symmetric] power_mult mult.commute[of _ 2] by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5747
          then have suminf_c'_eq_geom: "inverse (1 + x\<^sup>2) = suminf (?c' x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5748
            using sums_unique unfolding inverse_eq_divide by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5749
          have "DERIV (\<lambda> x. suminf (?c x)) x :> (inverse (1 + x\<^sup>2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5750
            unfolding suminf_c'_eq_geom
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5751
            by (rule DERIV_arctan_suminf[OF \<open>0 < r\<close> \<open>r < 1\<close> \<open>\<bar>x\<bar> < r\<close>])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5752
          from DERIV_diff [OF this DERIV_arctan] show "DERIV (\<lambda>x. suminf (?c x) - arctan x) x :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5753
            by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5754
        qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5755
        then have DERIV_in_rball: "\<forall>y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda>x. suminf (?c x) - arctan x) y :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5756
          using \<open>-r < a\<close> \<open>b < r\<close> by auto
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  5757
        then show "\<And>y. \<lbrakk>a < y; y < b\<rbrakk> \<Longrightarrow> DERIV (\<lambda>x. suminf (?c x) - arctan x) y :> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5758
          using \<open>\<bar>x\<bar> < r\<close> by auto
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  5759
        show "\<And>y. \<lbrakk>a \<le> y; y \<le> b\<rbrakk> \<Longrightarrow>  isCont (\<lambda>x. suminf (?c x) - arctan x) y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5760
          using DERIV_in_rball DERIV_isCont by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5761
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5762
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5763
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5764
    have suminf_arctan_zero: "suminf (?c 0) - arctan 0 = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5765
      unfolding Suc_eq_plus1[symmetric] power_Suc2 mult_zero_right arctan_zero_zero suminf_zero
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5766
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5767
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5768
    have "suminf (?c x) - arctan x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5769
    proof (cases "x = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5770
      case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5771
      then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5772
        using suminf_arctan_zero by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5773
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5774
      case False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5775
      then have "0 < \<bar>x\<bar>" and "- \<bar>x\<bar> < \<bar>x\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5776
        by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5777
      have "suminf (?c (- \<bar>x\<bar>)) - arctan (- \<bar>x\<bar>) = suminf (?c 0) - arctan 0"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5778
        by (rule suminf_eq_arctan_bounded[where x1=0 and a1="-\<bar>x\<bar>" and b1="\<bar>x\<bar>", symmetric])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5779
          (simp_all only: \<open>\<bar>x\<bar> < r\<close> \<open>-\<bar>x\<bar> < \<bar>x\<bar>\<close> neg_less_iff_less)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5780
      moreover
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5781
      have "suminf (?c x) - arctan x = suminf (?c (- \<bar>x\<bar>)) - arctan (- \<bar>x\<bar>)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5782
        by (rule suminf_eq_arctan_bounded[where x1=x and a1="- \<bar>x\<bar>" and b1="\<bar>x\<bar>"])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5783
           (simp_all only: \<open>\<bar>x\<bar> < r\<close> \<open>- \<bar>x\<bar> < \<bar>x\<bar>\<close> neg_less_iff_less)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5784
      ultimately show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5785
        using suminf_arctan_zero by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5786
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5787
    then show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5788
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5789
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5790
  show "arctan x = suminf (\<lambda>n. ?c x n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5791
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5792
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5793
    then show ?thesis by (rule when_less_one)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5794
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5795
    case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5796
    then have "\<bar>x\<bar> = 1" using \<open>\<bar>x\<bar> \<le> 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5797
    let ?a = "\<lambda>x n. \<bar>1 / real (n * 2 + 1) * x^(n * 2 + 1)\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5798
    let ?diff = "\<lambda>x n. \<bar>arctan x - (\<Sum>i<n. ?c x i)\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5799
    have "?diff 1 n \<le> ?a 1 n" for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5800
    proof -
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5801
      have "0 < (1 :: real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5802
      moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5803
      have "?diff x n \<le> ?a x n" if "0 < x" and "x < 1" for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5804
      proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5805
        from that have "\<bar>x\<bar> \<le> 1" and "\<bar>x\<bar> < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5806
          by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5807
        from \<open>0 < x\<close> have "0 < 1 / real (0 * 2 + (1::nat)) * x ^ (0 * 2 + 1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5808
          by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5809
        note bounds = mp[OF arctan_series_borders(2)[OF \<open>\<bar>x\<bar> \<le> 1\<close>] this, unfolded when_less_one[OF \<open>\<bar>x\<bar> < 1\<close>, symmetric], THEN spec]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5810
        have "0 < 1 / real (n*2+1) * x^(n*2+1)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5811
          by (rule mult_pos_pos) (simp_all only: zero_less_power[OF \<open>0 < x\<close>], auto)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5812
        then have a_pos: "?a x n = 1 / real (n*2+1) * x^(n*2+1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5813
          by (rule abs_of_pos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5814
        show ?thesis
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5815
        proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5816
          case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5817
          then have sgn_pos: "(-1)^n = (1::real)" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5818
          from \<open>even n\<close> obtain m where "n = 2 * m" ..
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  5819
          then have "2 * m = n" ..
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5820
          from bounds[of m, unfolded this atLeastAtMost_iff]
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  5821
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n + 1. (?c x i)) - (\<Sum>i<n. (?c x i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5822
            by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5823
          also have "\<dots> = ?c x n" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5824
          also have "\<dots> = ?a x n" unfolding sgn_pos a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5825
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5826
        next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5827
          case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5828
          then have sgn_neg: "(-1)^n = (-1::real)" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5829
          from \<open>odd n\<close> obtain m where "n = 2 * m + 1" ..
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  5830
          then have m_def: "2 * m + 1 = n" ..
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5831
          then have m_plus: "2 * (m + 1) = n + 1" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5832
          from bounds[of "m + 1", unfolded this atLeastAtMost_iff, THEN conjunct1] bounds[of m, unfolded m_def atLeastAtMost_iff, THEN conjunct2]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5833
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n. (?c x i)) - (\<Sum>i<n+1. (?c x i))" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5834
          also have "\<dots> = - ?c x n" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5835
          also have "\<dots> = ?a x n" unfolding sgn_neg a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5836
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5837
        qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5838
      qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5839
      hence "\<forall>x \<in> { 0 <..< 1 }. 0 \<le> ?a x n - ?diff x n" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5840
      moreover have "isCont (\<lambda> x. ?a x n - ?diff x n) x" for x
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  5841
        unfolding diff_conv_add_uminus divide_inverse
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5842
        by (auto intro!: isCont_add isCont_rabs continuous_ident isCont_minus isCont_arctan
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5843
          continuous_at_within_inverse isCont_mult isCont_power continuous_const isCont_sum
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  5844
          simp del: add_uminus_conv_diff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5845
      ultimately have "0 \<le> ?a 1 n - ?diff 1 n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5846
        by (rule LIM_less_bound)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5847
      then show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5848
    qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5849
    have "?a 1 \<longlonglongrightarrow> 0"
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  5850
      unfolding tendsto_rabs_zero_iff power_one divide_inverse One_nat_def
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5851
      by (auto intro!: tendsto_mult LIMSEQ_linear LIMSEQ_inverse_real_of_nat simp del: of_nat_Suc)
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5852
    have "?diff 1 \<longlonglongrightarrow> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5853
    proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5854
      fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5855
      assume "0 < r"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5856
      obtain N :: nat where N_I: "N \<le> n \<Longrightarrow> ?a 1 n < r" for n
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5857
        using LIMSEQ_D[OF \<open>?a 1 \<longlonglongrightarrow> 0\<close> \<open>0 < r\<close>] by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5858
      have "norm (?diff 1 n - 0) < r" if "N \<le> n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5859
        using \<open>?diff 1 n \<le> ?a 1 n\<close> N_I[OF that] by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5860
      then show "\<exists>N. \<forall> n \<ge> N. norm (?diff 1 n - 0) < r" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5861
    qed
44710
9caf6883f1f4 remove redundant lemmas about LIMSEQ
huffman
parents: 44568
diff changeset
  5862
    from this [unfolded tendsto_rabs_zero_iff, THEN tendsto_add [OF _ tendsto_const], of "- arctan 1", THEN tendsto_minus]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5863
    have "(?c 1) sums (arctan 1)" unfolding sums_def by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5864
    then have "arctan 1 = (\<Sum>i. ?c 1 i)" by (rule sums_unique)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5865
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5866
    show ?thesis
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5867
    proof (cases "x = 1")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5868
      case True
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5869
      then show ?thesis by (simp add: \<open>arctan 1 = (\<Sum> i. ?c 1 i)\<close>)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5870
    next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5871
      case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5872
      then have "x = -1" using \<open>\<bar>x\<bar> = 1\<close> by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5873
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5874
      have "- (pi/2) < 0" using pi_gt_zero by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5875
      have "- (2 * pi) < 0" using pi_gt_zero by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5876
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5877
      have c_minus_minus: "?c (- 1) i = - ?c 1 i" for i by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5878
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5879
      have "arctan (- 1) = arctan (tan (-(pi / 4)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5880
        unfolding tan_45 tan_minus ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5881
      also have "\<dots> = - (pi / 4)"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5882
        by (rule arctan_tan) (auto simp: order_less_trans[OF \<open>- (pi/2) < 0\<close> pi_gt_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5883
      also have "\<dots> = - (arctan (tan (pi / 4)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5884
        unfolding neg_equal_iff_equal
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5885
        by (rule arctan_tan[symmetric]) (auto simp: order_less_trans[OF \<open>- (2 * pi) < 0\<close> pi_gt_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5886
      also have "\<dots> = - (arctan 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5887
        unfolding tan_45 ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5888
      also have "\<dots> = - (\<Sum> i. ?c 1 i)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5889
        using \<open>arctan 1 = (\<Sum> i. ?c 1 i)\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5890
      also have "\<dots> = (\<Sum> i. ?c (- 1) i)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5891
        using suminf_minus[OF sums_summable[OF \<open>(?c 1) sums (arctan 1)\<close>]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5892
        unfolding c_minus_minus by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5893
      finally show ?thesis using \<open>x = -1\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5894
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5895
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5896
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5897
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5898
lemma arctan_half: "arctan x = 2 * arctan (x / (1 + sqrt(1 + x\<^sup>2)))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5899
  for x :: real
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5900
proof -
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5901
  obtain y where low: "- (pi/2) < y" and high: "y < pi/2" and y_eq: "tan y = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5902
    using tan_total by blast
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5903
  then have low2: "- (pi/2) < y / 2" and high2: "y / 2 < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5904
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5905
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5906
  have "0 < cos y" by (rule cos_gt_zero_pi[OF low high])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5907
  then have "cos y \<noteq> 0" and cos_sqrt: "sqrt ((cos y)\<^sup>2) = cos y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5908
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5909
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5910
  have "1 + (tan y)\<^sup>2 = 1 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5911
    unfolding tan_def power_divide ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5912
  also have "\<dots> = (cos y)\<^sup>2 / (cos y)\<^sup>2 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5913
    using \<open>cos y \<noteq> 0\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5914
  also have "\<dots> = 1 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5915
    unfolding add_divide_distrib[symmetric] sin_cos_squared_add2 ..
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  5916
  finally have "1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5917
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5918
  have "sin y / (cos y + 1) = tan y / ((cos y + 1) / cos y)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5919
    unfolding tan_def using \<open>cos y \<noteq> 0\<close> by (simp add: field_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5920
  also have "\<dots> = tan y / (1 + 1 / cos y)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5921
    using \<open>cos y \<noteq> 0\<close> unfolding add_divide_distrib by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5922
  also have "\<dots> = tan y / (1 + 1 / sqrt ((cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5923
    unfolding cos_sqrt ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5924
  also have "\<dots> = tan y / (1 + sqrt (1 / (cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5925
    unfolding real_sqrt_divide by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5926
  finally have eq: "sin y / (cos y + 1) = tan y / (1 + sqrt(1 + (tan y)\<^sup>2))"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5927
    unfolding \<open>1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2\<close> .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5928
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5929
  have "arctan x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5930
    using arctan_tan low high y_eq by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5931
  also have "\<dots> = 2 * (arctan (tan (y/2)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5932
    using arctan_tan[OF low2 high2] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5933
  also have "\<dots> = 2 * (arctan (sin y / (cos y + 1)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5934
    unfolding tan_half by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5935
  finally show ?thesis
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5936
    unfolding eq \<open>tan y = x\<close> .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5937
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5938
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5939
lemma arctan_monotone: "x < y \<Longrightarrow> arctan x < arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5940
  by (simp only: arctan_less_iff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5941
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5942
lemma arctan_monotone': "x \<le> y \<Longrightarrow> arctan x \<le> arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5943
  by (simp only: arctan_le_iff)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5944
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5945
lemma arctan_inverse:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5946
  assumes "x \<noteq> 0"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5947
  shows "arctan (1 / x) = sgn x * pi/2 - arctan x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5948
proof (rule arctan_unique)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5949
  show "- (pi/2) < sgn x * pi/2 - arctan x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5950
    using arctan_bounded [of x] assms
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5951
    unfolding sgn_real_def
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5952
    apply (auto simp: arctan algebra_simps)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5953
    apply (drule zero_less_arctan_iff [THEN iffD2], arith)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5954
    done
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5955
  show "sgn x * pi/2 - arctan x < pi/2"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5956
    using arctan_bounded [of "- x"] assms
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5957
    unfolding sgn_real_def arctan_minus
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5958
    by (auto simp: algebra_simps)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5959
  show "tan (sgn x * pi/2 - arctan x) = 1 / x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5960
    unfolding tan_inverse [of "arctan x", unfolded tan_arctan]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5961
    unfolding sgn_real_def
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  5962
    by (simp add: tan_def cos_arctan sin_arctan sin_diff cos_diff)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5963
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5964
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5965
theorem pi_series: "pi / 4 = (\<Sum>k. (-1)^k * 1 / real (k * 2 + 1))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5966
  (is "_ = ?SUM")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5967
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5968
  have "pi / 4 = arctan 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5969
    using arctan_one by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5970
  also have "\<dots> = ?SUM"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5971
    using arctan_series[of 1] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5972
  finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5973
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5974
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5975
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5976
subsection \<open>Existence of Polar Coordinates\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5977
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5978
lemma cos_x_y_le_one: "\<bar>x / sqrt (x\<^sup>2 + y\<^sup>2)\<bar> \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5979
  by (rule power2_le_imp_le [OF _ zero_le_one])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5980
    (simp add: power_divide divide_le_eq not_sum_power2_lt_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5981
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  5982
lemmas cos_arccos_lemma1 = cos_arccos_abs [OF cos_x_y_le_one]
15228
4d332d10fa3d revised simprules for division
paulson
parents: 15140
diff changeset
  5983
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5984
lemmas sin_arccos_lemma1 = sin_arccos_abs [OF cos_x_y_le_one]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5985
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5986
lemma polar_Ex: "\<exists>r::real. \<exists>a. x = r * cos a \<and> y = r * sin a"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5987
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5988
  have polar_ex1: "0 < y \<Longrightarrow> \<exists>r a. x = r * cos a \<and> y = r * sin a" for y
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5989
    apply (rule exI [where x = "sqrt (x\<^sup>2 + y\<^sup>2)"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5990
    apply (rule exI [where x = "arccos (x / sqrt (x\<^sup>2 + y\<^sup>2))"])
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5991
    apply (simp add: cos_arccos_lemma1 sin_arccos_lemma1 power_divide
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5992
        real_sqrt_mult [symmetric] right_diff_distrib)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5993
    done
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5994
  show ?thesis
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5995
  proof (cases "0::real" y rule: linorder_cases)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  5996
    case less
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5997
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5998
      by (rule polar_ex1)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5999
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6000
    case equal
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6001
    then show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6002
      by (force simp: intro!: cos_zero sin_zero)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6003
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6004
    case greater
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6005
    with polar_ex1 [where y="-y"] show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6006
      by auto (metis cos_minus minus_minus minus_mult_right sin_minus)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6007
  qed
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6008
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  6009
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6010
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6011
subsection \<open>Basics about polynomial functions: products, extremal behaviour and root counts\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6012
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6013
lemma pairs_le_eq_Sigma: "{(i, j). i + j \<le> m} = Sigma (atMost m) (\<lambda>r. atMost (m - r))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6014
  for m :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6015
  by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6016
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6017
lemma sum_up_index_split: "(\<Sum>k\<le>m + n. f k) = (\<Sum>k\<le>m. f k) + (\<Sum>k = Suc m..m + n. f k)"
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6018
  by (metis atLeast0AtMost Suc_eq_plus1 le0 sum_ub_add_nat)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6019
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6020
lemma Sigma_interval_disjoint: "(SIGMA i:A. {..v i}) \<inter> (SIGMA i:A.{v i<..w}) = {}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6021
  for w :: "'a::order"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6022
  by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6023
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6024
lemma product_atMost_eq_Un: "A \<times> {..m} = (SIGMA i:A.{..m - i}) \<union> (SIGMA i:A.{m - i<..m})"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6025
  for m :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6026
  by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6027
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6028
lemma polynomial_product: (*with thanks to Chaitanya Mangla*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6029
  fixes x :: "'a::idom"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6030
  assumes m: "\<And>i. i > m \<Longrightarrow> a i = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6031
    and n: "\<And>j. j > n \<Longrightarrow> b j = 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  6032
  shows "(\<Sum>i\<le>m. (a i) * x ^ i) * (\<Sum>j\<le>n. (b j) * x ^ j) =
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6033
    (\<Sum>r\<le>m + n. (\<Sum>k\<le>r. (a k) * (b (r - k))) * x ^ r)"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6034
proof -
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6035
  have "(\<Sum>i\<le>m. (a i) * x ^ i) * (\<Sum>j\<le>n. (b j) * x ^ j) = (\<Sum>i\<le>m. \<Sum>j\<le>n. (a i * x ^ i) * (b j * x ^ j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6036
    by (rule sum_product)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6037
  also have "\<dots> = (\<Sum>i\<le>m + n. \<Sum>j\<le>n + m. a i * x ^ i * (b j * x ^ j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6038
    using assms by (auto simp: sum_up_index_split)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6039
  also have "\<dots> = (\<Sum>r\<le>m + n. \<Sum>j\<le>m + n - r. a r * x ^ r * (b j * x ^ j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6040
    apply (simp add: add_ac sum.Sigma product_atMost_eq_Un)
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6041
    apply (clarsimp simp add: sum_Un Sigma_interval_disjoint intro!: sum.neutral)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6042
    apply (metis add_diff_assoc2 add.commute add_lessD1 leD m n nat_le_linear neqE)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6043
    done
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6044
  also have "\<dots> = (\<Sum>(i,j)\<in>{(i,j). i+j \<le> m+n}. (a i * x ^ i) * (b j * x ^ j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6045
    by (auto simp: pairs_le_eq_Sigma sum.Sigma)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6046
  also have "\<dots> = (\<Sum>r\<le>m + n. (\<Sum>k\<le>r. (a k) * (b (r - k))) * x ^ r)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6047
    apply (subst sum_triangle_reindex_eq)
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6048
    apply (auto simp: algebra_simps sum_distrib_left intro!: sum.cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6049
    apply (metis le_add_diff_inverse power_add)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6050
    done
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6051
  finally show ?thesis .
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6052
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6053
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  6054
lemma polynomial_product_nat:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6055
  fixes x :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6056
  assumes m: "\<And>i. i > m \<Longrightarrow> a i = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6057
    and n: "\<And>j. j > n \<Longrightarrow> b j = 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  6058
  shows "(\<Sum>i\<le>m. (a i) * x ^ i) * (\<Sum>j\<le>n. (b j) * x ^ j) =
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6059
    (\<Sum>r\<le>m + n. (\<Sum>k\<le>r. (a k) * (b (r - k))) * x ^ r)"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6060
  using polynomial_product [of m a n b x] assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6061
  by (simp only: of_nat_mult [symmetric] of_nat_power [symmetric]
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6062
      of_nat_eq_iff Int.int_sum [symmetric])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6063
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6064
lemma polyfun_diff: (*COMPLEX_SUB_POLYFUN in HOL Light*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6065
  fixes x :: "'a::idom"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6066
  assumes "1 \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6067
  shows "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6068
    (x - y) * (\<Sum>j<n. (\<Sum>i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6069
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6070
  have h: "bij_betw (\<lambda>(i,j). (j,i)) ((SIGMA i : atMost n. lessThan i)) (SIGMA j : lessThan n. {Suc j..n})"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6071
    by (auto simp: bij_betw_def inj_on_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6072
  have "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) = (\<Sum>i\<le>n. a i * (x^i - y^i))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6073
    by (simp add: right_diff_distrib sum_subtractf)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6074
  also have "\<dots> = (\<Sum>i\<le>n. a i * (x - y) * (\<Sum>j<i. y^(i - Suc j) * x^j))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6075
    by (simp add: power_diff_sumr2 mult.assoc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6076
  also have "\<dots> = (\<Sum>i\<le>n. \<Sum>j<i. a i * (x - y) * (y^(i - Suc j) * x^j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6077
    by (simp add: sum_distrib_left)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6078
  also have "\<dots> = (\<Sum>(i,j) \<in> (SIGMA i : atMost n. lessThan i). a i * (x - y) * (y^(i - Suc j) * x^j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6079
    by (simp add: sum.Sigma)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6080
  also have "\<dots> = (\<Sum>(j,i) \<in> (SIGMA j : lessThan n. {Suc j..n}). a i * (x - y) * (y^(i - Suc j) * x^j))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6081
    by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.strong_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6082
  also have "\<dots> = (\<Sum>j<n. \<Sum>i=Suc j..n. a i * (x - y) * (y^(i - Suc j) * x^j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6083
    by (simp add: sum.Sigma)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6084
  also have "\<dots> = (x - y) * (\<Sum>j<n. (\<Sum>i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6085
    by (simp add: sum_distrib_left mult_ac)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6086
  finally show ?thesis .
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6087
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6088
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6089
lemma polyfun_diff_alt: (*COMPLEX_SUB_POLYFUN_ALT in HOL Light*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6090
  fixes x :: "'a::idom"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6091
  assumes "1 \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6092
  shows "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6093
    (x - y) * ((\<Sum>j<n. \<Sum>k<n-j. a(j + k + 1) * y^k * x^j))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6094
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6095
  have "(\<Sum>i=Suc j..n. a i * y^(i - j - 1)) = (\<Sum>k<n-j. a(j+k+1) * y^k)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6096
    if "j < n" for j :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6097
  proof -
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6098
    have h: "bij_betw (\<lambda>i. i - (j + 1)) {Suc j..n} (lessThan (n-j))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6099
      apply (auto simp: bij_betw_def inj_on_def)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6100
      apply (rule_tac x="x + Suc j" in image_eqI, auto)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6101
      done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6102
    then show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6103
      by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.strong_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6104
  qed
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6105
  then show ?thesis
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6106
    by (simp add: polyfun_diff [OF assms] sum_distrib_right)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6107
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6108
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6109
lemma polyfun_linear_factor:  (*COMPLEX_POLYFUN_LINEAR_FACTOR in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6110
  fixes a :: "'a::idom"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6111
  shows "\<exists>b. \<forall>z. (\<Sum>i\<le>n. c(i) * z^i) = (z - a) * (\<Sum>i<n. b(i) * z^i) + (\<Sum>i\<le>n. c(i) * a^i)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6112
proof (cases "n = 0")
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6113
  case True then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6114
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6115
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6116
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6117
  have "(\<exists>b. \<forall>z. (\<Sum>i\<le>n. c i * z^i) = (z - a) * (\<Sum>i<n. b i * z^i) + (\<Sum>i\<le>n. c i * a^i)) \<longleftrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6118
        (\<exists>b. \<forall>z. (\<Sum>i\<le>n. c i * z^i) - (\<Sum>i\<le>n. c i * a^i) = (z - a) * (\<Sum>i<n. b i * z^i))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6119
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6120
  also have "\<dots> \<longleftrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6121
    (\<exists>b. \<forall>z. (z - a) * (\<Sum>j<n. (\<Sum>i = Suc j..n. c i * a^(i - Suc j)) * z^j) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6122
      (z - a) * (\<Sum>i<n. b i * z^i))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6123
    using False by (simp add: polyfun_diff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6124
  also have "\<dots> = True" by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6125
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6126
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6127
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6128
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6129
lemma polyfun_linear_factor_root:  (*COMPLEX_POLYFUN_LINEAR_FACTOR_ROOT in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6130
  fixes a :: "'a::idom"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6131
  assumes "(\<Sum>i\<le>n. c(i) * a^i) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6132
  obtains b where "\<And>z. (\<Sum>i\<le>n. c i * z^i) = (z - a) * (\<Sum>i<n. b i * z^i)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6133
  using polyfun_linear_factor [of c n a] assms by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6134
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6135
(*The material of this section, up until this point, could go into a new theory of polynomials
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6136
  based on Main alone. The remaining material involves limits, continuity, series, etc.*)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6137
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6138
lemma isCont_polynom: "isCont (\<lambda>w. \<Sum>i\<le>n. c i * w^i) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6139
  for c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6140
  by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6141
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6142
lemma zero_polynom_imp_zero_coeffs:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6143
  fixes c :: "nat \<Rightarrow> 'a::{ab_semigroup_mult,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6144
  assumes "\<And>w. (\<Sum>i\<le>n. c i * w^i) = 0"  "k \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6145
  shows "c k = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6146
  using assms
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6147
proof (induction n arbitrary: c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6148
  case 0
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6149
  then show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6150
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6151
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6152
  case (Suc n c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6153
  have [simp]: "c 0 = 0" using Suc.prems(1) [of 0]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6154
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6155
  have "(\<Sum>i\<le>Suc n. c i * w^i) = w * (\<Sum>i\<le>n. c (Suc i) * w^i)" for w
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6156
  proof -
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6157
    have "(\<Sum>i\<le>Suc n. c i * w^i) = (\<Sum>i\<le>n. c (Suc i) * w ^ Suc i)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6158
      unfolding Set_Interval.sum_atMost_Suc_shift
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6159
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6160
    also have "\<dots> = w * (\<Sum>i\<le>n. c (Suc i) * w^i)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6161
      by (simp add: sum_distrib_left ac_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6162
    finally show ?thesis .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6163
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6164
  then have w: "\<And>w. w \<noteq> 0 \<Longrightarrow> (\<Sum>i\<le>n. c (Suc i) * w^i) = 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6165
    using Suc  by auto
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  6166
  then have "(\<lambda>h. \<Sum>i\<le>n. c (Suc i) * h^i) \<midarrow>0\<rightarrow> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6167
    by (simp cong: LIM_cong)  \<comment> \<open>the case \<open>w = 0\<close> by continuity\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6168
  then have "(\<Sum>i\<le>n. c (Suc i) * 0^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6169
    using isCont_polynom [of 0 "\<lambda>i. c (Suc i)" n] LIM_unique
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6170
    by (force simp: Limits.isCont_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6171
  then have "\<And>w. (\<Sum>i\<le>n. c (Suc i) * w^i) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6172
    using w by metis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6173
  then have "\<And>i. i \<le> n \<Longrightarrow> c (Suc i) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6174
    using Suc.IH [of "\<lambda>i. c (Suc i)"] by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6175
  then show ?case using \<open>k \<le> Suc n\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6176
    by (cases k) auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6177
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6178
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6179
lemma polyfun_rootbound: (*COMPLEX_POLYFUN_ROOTBOUND in HOL Light*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6180
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6181
  assumes "c k \<noteq> 0" "k\<le>n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6182
  shows "finite {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<and> card {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<le> n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6183
  using assms
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6184
proof (induction n arbitrary: c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6185
  case 0
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6186
  then show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6187
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6188
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6189
  case (Suc m c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6190
  let ?succase = ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6191
  show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6192
  proof (cases "{z. (\<Sum>i\<le>Suc m. c(i) * z^i) = 0} = {}")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6193
    case True
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6194
    then show ?succase
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6195
      by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6196
  next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6197
    case False
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6198
    then obtain z0 where z0: "(\<Sum>i\<le>Suc m. c(i) * z0^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6199
      by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6200
    then obtain b where b: "\<And>w. (\<Sum>i\<le>Suc m. c i * w^i) = (w - z0) * (\<Sum>i\<le>m. b i * w^i)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6201
      using polyfun_linear_factor_root [OF z0, unfolded lessThan_Suc_atMost]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6202
      by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6203
    then have eq: "{z. (\<Sum>i\<le>Suc m. c i * z^i) = 0} = insert z0 {z. (\<Sum>i\<le>m. b i * z^i) = 0}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6204
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6205
    have "\<not> (\<forall>k\<le>m. b k = 0)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6206
    proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6207
      assume [simp]: "\<forall>k\<le>m. b k = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6208
      then have "\<And>w. (\<Sum>i\<le>m. b i * w^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6209
        by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6210
      then have "\<And>w. (\<Sum>i\<le>Suc m. c i * w^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6211
        using b by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6212
      then have "\<And>k. k \<le> Suc m \<Longrightarrow> c k = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6213
        using zero_polynom_imp_zero_coeffs by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6214
      then show False using Suc.prems by blast
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6215
    qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6216
    then obtain k' where bk': "b k' \<noteq> 0" "k' \<le> m"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6217
      by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6218
    show ?succase
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6219
      using Suc.IH [of b k'] bk'
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6220
      by (simp add: eq card_insert_if del: sum_atMost_Suc)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6221
    qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6222
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6223
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6224
lemma
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6225
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6226
  assumes "c k \<noteq> 0" "k\<le>n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6227
  shows polyfun_roots_finite: "finite {z. (\<Sum>i\<le>n. c(i) * z^i) = 0}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6228
    and polyfun_roots_card: "card {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<le> n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6229
  using polyfun_rootbound assms by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6230
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6231
lemma polyfun_finite_roots: (*COMPLEX_POLYFUN_FINITE_ROOTS in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6232
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6233
  shows "finite {x. (\<Sum>i\<le>n. c i * x^i) = 0} \<longleftrightarrow> (\<exists>i\<le>n. c i \<noteq> 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6234
    (is "?lhs = ?rhs")
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6235
proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6236
  assume ?lhs
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6237
  moreover have "\<not> finite {x. (\<Sum>i\<le>n. c i * x^i) = 0}" if "\<forall>i\<le>n. c i = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6238
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6239
    from that have "\<And>x. (\<Sum>i\<le>n. c i * x^i) = 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6240
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6241
    then show ?thesis
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6242
      using ex_new_if_finite [OF infinite_UNIV_char_0 [where 'a='a]]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6243
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6244
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6245
  ultimately show ?rhs by metis
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6246
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6247
  assume ?rhs
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6248
  with polyfun_rootbound show ?lhs by blast
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6249
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6250
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6251
lemma polyfun_eq_0: "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = 0) \<longleftrightarrow> (\<forall>i\<le>n. c i = 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6252
  for c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6253
  (*COMPLEX_POLYFUN_EQ_0 in HOL Light*)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6254
  using zero_polynom_imp_zero_coeffs by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6255
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6256
lemma polyfun_eq_coeffs: "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = (\<Sum>i\<le>n. d i * x^i)) \<longleftrightarrow> (\<forall>i\<le>n. c i = d i)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6257
  for c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6258
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6259
  have "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = (\<Sum>i\<le>n. d i * x^i)) \<longleftrightarrow> (\<forall>x. (\<Sum>i\<le>n. (c i - d i) * x^i) = 0)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6260
    by (simp add: left_diff_distrib Groups_Big.sum_subtractf)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6261
  also have "\<dots> \<longleftrightarrow> (\<forall>i\<le>n. c i - d i = 0)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6262
    by (rule polyfun_eq_0)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6263
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6264
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6265
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6266
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6267
lemma polyfun_eq_const: (*COMPLEX_POLYFUN_EQ_CONST in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6268
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6269
  shows "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = k) \<longleftrightarrow> c 0 = k \<and> (\<forall>i \<in> {1..n}. c i = 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6270
    (is "?lhs = ?rhs")
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6271
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6272
  have *: "\<forall>x. (\<Sum>i\<le>n. (if i=0 then k else 0) * x^i) = k"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6273
    by (induct n) auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6274
  show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6275
  proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6276
    assume ?lhs
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6277
    with * have "(\<forall>i\<le>n. c i = (if i=0 then k else 0))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6278
      by (simp add: polyfun_eq_coeffs [symmetric])
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6279
    then show ?rhs by simp
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6280
  next
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6281
    assume ?rhs
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6282
    then show ?lhs by (induct n) auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6283
  qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6284
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6285
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6286
lemma root_polyfun:
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6287
  fixes z :: "'a::idom"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6288
  assumes "1 \<le> n"
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6289
  shows "z^n = a \<longleftrightarrow> (\<Sum>i\<le>n. (if i = 0 then -a else if i=n then 1 else 0) * z^i) = 0"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6290
  using assms by (cases n) (simp_all add: sum_head_Suc atLeast0AtMost [symmetric])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6291
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6292
lemma
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6293
  assumes "SORT_CONSTRAINT('a::{idom,real_normed_div_algebra})"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6294
    and "1 \<le> n"
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6295
  shows finite_roots_unity: "finite {z::'a. z^n = 1}"
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6296
    and card_roots_unity: "card {z::'a. z^n = 1} \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6297
  using polyfun_rootbound [of "\<lambda>i. if i = 0 then -1 else if i=n then 1 else 0" n n] assms(2)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6298
  by (auto simp: root_polyfun [OF assms(2)])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6299
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  6300
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6301
subsection \<open>Hyperbolic functions\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6302
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6303
definition sinh :: "'a :: {banach, real_normed_algebra_1} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6304
  "sinh x = (exp x - exp (-x)) /\<^sub>R 2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6305
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6306
definition cosh :: "'a :: {banach, real_normed_algebra_1} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6307
  "cosh x = (exp x + exp (-x)) /\<^sub>R 2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6308
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6309
definition tanh :: "'a :: {banach, real_normed_field} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6310
  "tanh x = sinh x / cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6311
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6312
definition arsinh :: "'a :: {banach, real_normed_algebra_1, ln} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6313
  "arsinh x = ln (x + (x^2 + 1) powr of_real (1/2))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6314
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6315
definition arcosh :: "'a :: {banach, real_normed_algebra_1, ln} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6316
  "arcosh x = ln (x + (x^2 - 1) powr of_real (1/2))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6317
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6318
definition artanh :: "'a :: {banach, real_normed_field, ln} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6319
  "artanh x = ln ((1 + x) / (1 - x)) / 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6320
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6321
lemma arsinh_0 [simp]: "arsinh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6322
  by (simp add: arsinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6323
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6324
lemma arcosh_1 [simp]: "arcosh 1 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6325
  by (simp add: arcosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6326
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6327
lemma artanh_0 [simp]: "artanh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6328
  by (simp add: artanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6329
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6330
lemma tanh_altdef:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6331
  "tanh x = (exp x - exp (-x)) / (exp x + exp (-x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6332
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6333
  have "tanh x = (2 *\<^sub>R sinh x) / (2 *\<^sub>R cosh x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6334
    by (simp add: tanh_def scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6335
  also have "2 *\<^sub>R sinh x = exp x - exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6336
    by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6337
  also have "2 *\<^sub>R cosh x = exp x + exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6338
    by (simp add: cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6339
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6340
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6341
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6342
lemma tanh_real_altdef: "tanh (x::real) = (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6343
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6344
  have [simp]: "exp (2 * x) = exp x * exp x" "exp (x * 2) = exp x * exp x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6345
    by (subst exp_add [symmetric]; simp)+
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6346
  have "tanh x = (2 * exp (-x) * sinh x) / (2 * exp (-x) * cosh x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6347
    by (simp add: tanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6348
  also have "2 * exp (-x) * sinh x = 1 - exp (-2*x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6349
    by (simp add: exp_minus field_simps sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6350
  also have "2 * exp (-x) * cosh x = 1 + exp (-2*x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6351
    by (simp add: exp_minus field_simps cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6352
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6353
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6354
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6355
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6356
lemma sinh_converges: "(\<lambda>n. if even n then 0 else x ^ n /\<^sub>R fact n) sums sinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6357
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6358
  have "(\<lambda>n. (x ^ n /\<^sub>R fact n - (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) sums sinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6359
    unfolding sinh_def by (intro sums_scaleR_right sums_diff exp_converges)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6360
  also have "(\<lambda>n. (x ^ n /\<^sub>R fact n - (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) =
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6361
               (\<lambda>n. if even n then 0 else x ^ n /\<^sub>R fact n)" by auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6362
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6363
qed
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6364
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6365
lemma cosh_converges: "(\<lambda>n. if even n then x ^ n /\<^sub>R fact n else 0) sums cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6366
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6367
  have "(\<lambda>n. (x ^ n /\<^sub>R fact n + (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) sums cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6368
    unfolding cosh_def by (intro sums_scaleR_right sums_add exp_converges)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6369
  also have "(\<lambda>n. (x ^ n /\<^sub>R fact n + (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) =
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6370
               (\<lambda>n. if even n then x ^ n /\<^sub>R fact n else 0)" by auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6371
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6372
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6373
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6374
lemma sinh_0 [simp]: "sinh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6375
  by (simp add: sinh_def)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6376
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6377
lemma cosh_0 [simp]: "cosh 0 = 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6378
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6379
  have "cosh 0 = (1/2) *\<^sub>R (1 + 1)" by (simp add: cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6380
  also have "\<dots> = 1" by (rule scaleR_half_double)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6381
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6382
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6383
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6384
lemma tanh_0 [simp]: "tanh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6385
  by (simp add: tanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6386
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6387
lemma sinh_minus [simp]: "sinh (- x) = -sinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6388
  by (simp add: sinh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6389
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6390
lemma cosh_minus [simp]: "cosh (- x) = cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6391
  by (simp add: cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6392
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6393
lemma tanh_minus [simp]: "tanh (-x) = -tanh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6394
  by (simp add: tanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6395
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6396
lemma sinh_ln_real: "x > 0 \<Longrightarrow> sinh (ln x :: real) = (x - inverse x) / 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6397
  by (simp add: sinh_def exp_minus)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6398
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6399
lemma cosh_ln_real: "x > 0 \<Longrightarrow> cosh (ln x :: real) = (x + inverse x) / 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6400
  by (simp add: cosh_def exp_minus)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6401
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6402
lemma tanh_ln_real: "x > 0 \<Longrightarrow> tanh (ln x :: real) = (x ^ 2 - 1) / (x ^ 2 + 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6403
  by (simp add: tanh_def sinh_ln_real cosh_ln_real divide_simps power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6404
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6405
lemma has_field_derivative_scaleR_right [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6406
  "(f has_field_derivative D) F \<Longrightarrow> ((\<lambda>x. c *\<^sub>R f x) has_field_derivative (c *\<^sub>R D)) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6407
  unfolding has_field_derivative_def
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6408
  using has_derivative_scaleR_right[of f "\<lambda>x. D * x" F c]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6409
  by (simp add: mult_scaleR_left [symmetric] del: mult_scaleR_left)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6410
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6411
lemma has_field_derivative_sinh [THEN DERIV_chain2, derivative_intros]:
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6412
  "(sinh has_field_derivative cosh x) (at (x :: 'a :: {banach, real_normed_field}))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6413
  unfolding sinh_def cosh_def by (auto intro!: derivative_eq_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6414
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6415
lemma has_field_derivative_cosh [THEN DERIV_chain2, derivative_intros]:
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6416
  "(cosh has_field_derivative sinh x) (at (x :: 'a :: {banach, real_normed_field}))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6417
  unfolding sinh_def cosh_def by (auto intro!: derivative_eq_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6418
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6419
lemma has_field_derivative_tanh [THEN DERIV_chain2, derivative_intros]:
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6420
  "cosh x \<noteq> 0 \<Longrightarrow> (tanh has_field_derivative 1 - tanh x ^ 2)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6421
                     (at (x :: 'a :: {banach, real_normed_field}))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6422
  unfolding tanh_def by (auto intro!: derivative_eq_intros simp: power2_eq_square divide_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6423
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6424
lemma has_derivative_sinh [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6425
  fixes g :: "'a \<Rightarrow> ('a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6426
  assumes "(g has_derivative (\<lambda>x. Db * x)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6427
  shows   "((\<lambda>x. sinh (g x)) has_derivative (\<lambda>y. (cosh (g x) * Db) * y)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6428
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6429
  have "((\<lambda>x. - g x) has_derivative (\<lambda>y. -(Db * y))) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6430
    using assms by (intro derivative_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6431
  also have "(\<lambda>y. -(Db * y)) = (\<lambda>x. (-Db) * x)" by (simp add: fun_eq_iff)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6432
  finally have "((\<lambda>x. sinh (g x)) has_derivative
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6433
    (\<lambda>y. (exp (g x) * Db * y - exp (-g x) * (-Db) * y) /\<^sub>R 2)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6434
    unfolding sinh_def by (intro derivative_intros assms)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6435
  also have "(\<lambda>y. (exp (g x) * Db * y - exp (-g x) * (-Db) * y) /\<^sub>R 2) = (\<lambda>y. (cosh (g x) * Db) * y)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6436
    by (simp add: fun_eq_iff cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6437
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6438
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6439
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6440
lemma has_derivative_cosh [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6441
  fixes g :: "'a \<Rightarrow> ('a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6442
  assumes "(g has_derivative (\<lambda>y. Db * y)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6443
  shows   "((\<lambda>x. cosh (g x)) has_derivative (\<lambda>y. (sinh (g x) * Db) * y)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6444
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6445
  have "((\<lambda>x. - g x) has_derivative (\<lambda>y. -(Db * y))) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6446
    using assms by (intro derivative_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6447
  also have "(\<lambda>y. -(Db * y)) = (\<lambda>y. (-Db) * y)" by (simp add: fun_eq_iff)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6448
  finally have "((\<lambda>x. cosh (g x)) has_derivative
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6449
    (\<lambda>y. (exp (g x) * Db * y + exp (-g x) * (-Db) * y) /\<^sub>R 2)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6450
    unfolding cosh_def by (intro derivative_intros assms)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6451
  also have "(\<lambda>y. (exp (g x) * Db * y + exp (-g x) * (-Db) * y) /\<^sub>R 2) = (\<lambda>y. (sinh (g x) * Db) * y)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6452
    by (simp add: fun_eq_iff sinh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6453
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6454
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6455
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6456
lemma sinh_plus_cosh: "sinh x + cosh x = exp x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6457
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6458
  have "sinh x + cosh x = (1 / 2) *\<^sub>R (exp x + exp x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6459
    by (simp add: sinh_def cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6460
  also have "\<dots> = exp x" by (rule scaleR_half_double)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6461
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6462
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6463
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6464
lemma cosh_plus_sinh: "cosh x + sinh x = exp x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6465
  by (subst add.commute) (rule sinh_plus_cosh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6466
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6467
lemma cosh_minus_sinh: "cosh x - sinh x = exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6468
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6469
  have "cosh x - sinh x = (1 / 2) *\<^sub>R (exp (-x) + exp (-x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6470
    by (simp add: sinh_def cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6471
  also have "\<dots> = exp (-x)" by (rule scaleR_half_double)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6472
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6473
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6474
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6475
lemma sinh_minus_cosh: "sinh x - cosh x = -exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6476
  using cosh_minus_sinh[of x] by (simp add: algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6477
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6478
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6479
context
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6480
  fixes x :: "'a :: {real_normed_field, banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6481
begin
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6482
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6483
lemma sinh_zero_iff: "sinh x = 0 \<longleftrightarrow> exp x \<in> {1, -1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6484
  by (auto simp: sinh_def field_simps exp_minus power2_eq_square square_eq_1_iff)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6485
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6486
lemma cosh_zero_iff: "cosh x = 0 \<longleftrightarrow> exp x ^ 2 = -1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6487
  by (auto simp: cosh_def exp_minus field_simps power2_eq_square eq_neg_iff_add_eq_0)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6488
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6489
lemma cosh_square_eq: "cosh x ^ 2 = sinh x ^ 2 + 1"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6490
  by (simp add: cosh_def sinh_def algebra_simps power2_eq_square exp_add [symmetric]
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6491
                scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6492
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6493
lemma sinh_square_eq: "sinh x ^ 2 = cosh x ^ 2 - 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6494
  by (simp add: cosh_square_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6495
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6496
lemma hyperbolic_pythagoras: "cosh x ^ 2 - sinh x ^ 2 = 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6497
  by (simp add: cosh_square_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6498
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6499
lemma sinh_add: "sinh (x + y) = sinh x * cosh y + cosh x * sinh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6500
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6501
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6502
lemma sinh_diff: "sinh (x - y) = sinh x * cosh y - cosh x * sinh y"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6503
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6504
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6505
lemma cosh_add: "cosh (x + y) = cosh x * cosh y + sinh x * sinh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6506
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6507
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6508
lemma cosh_diff: "cosh (x - y) = cosh x * cosh y - sinh x * sinh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6509
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6510
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6511
lemma tanh_add:
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6512
  "cosh x \<noteq> 0 \<Longrightarrow> cosh y \<noteq> 0 \<Longrightarrow> tanh (x + y) = (tanh x + tanh y) / (1 + tanh x * tanh y)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6513
  by (simp add: tanh_def sinh_add cosh_add divide_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6514
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6515
lemma sinh_double: "sinh (2 * x) = 2 * sinh x * cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6516
  using sinh_add[of x] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6517
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6518
lemma cosh_double: "cosh (2 * x) = cosh x ^ 2 + sinh x ^ 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6519
  using cosh_add[of x] by (simp add: power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6520
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6521
end
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6522
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6523
lemma sinh_field_def: "sinh z = (exp z - exp (-z)) / (2 :: 'a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6524
  by (simp add: sinh_def scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6525
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6526
lemma cosh_field_def: "cosh z = (exp z + exp (-z)) / (2 :: 'a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6527
  by (simp add: cosh_def scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6528
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6529
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6530
subsubsection \<open>More specific properties of the real functions\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6531
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6532
lemma sinh_real_zero_iff [simp]: "sinh (x::real) = 0 \<longleftrightarrow> x = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6533
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6534
  have "(-1 :: real) < 0" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6535
  also have "0 < exp x" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6536
  finally have "exp x \<noteq> -1" by (intro notI) simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6537
  thus ?thesis by (subst sinh_zero_iff) simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6538
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6539
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6540
lemma plus_inverse_ge_2:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6541
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6542
  assumes "x > 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6543
  shows   "x + inverse x \<ge> 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6544
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6545
  have "0 \<le> (x - 1) ^ 2" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6546
  also have "\<dots> = x^2 - 2*x + 1" by (simp add: power2_eq_square algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6547
  finally show ?thesis using assms by (simp add: field_simps power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6548
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6549
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6550
lemma sinh_real_nonneg_iff [simp]: "sinh (x :: real) \<ge> 0 \<longleftrightarrow> x \<ge> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6551
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6552
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6553
lemma sinh_real_pos_iff [simp]: "sinh (x :: real) > 0 \<longleftrightarrow> x > 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6554
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6555
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6556
lemma sinh_real_nonpos_iff [simp]: "sinh (x :: real) \<le> 0 \<longleftrightarrow> x \<le> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6557
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6558
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6559
lemma sinh_real_neg_iff [simp]: "sinh (x :: real) < 0 \<longleftrightarrow> x < 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6560
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6561
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6562
lemma cosh_real_ge_1: "cosh (x :: real) \<ge> 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6563
  using plus_inverse_ge_2[of "exp x"] by (simp add: cosh_def exp_minus)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6564
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6565
lemma cosh_real_pos [simp]: "cosh (x :: real) > 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6566
  using cosh_real_ge_1[of x] by simp
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6567
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6568
lemma cosh_real_nonneg[simp]: "cosh (x :: real) \<ge> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6569
  using cosh_real_ge_1[of x] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6570
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6571
lemma cosh_real_nonzero [simp]: "cosh (x :: real) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6572
  using cosh_real_ge_1[of x] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6573
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6574
lemma tanh_real_nonneg_iff [simp]: "tanh (x :: real) \<ge> 0 \<longleftrightarrow> x \<ge> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6575
  by (simp add: tanh_def field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6576
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6577
lemma tanh_real_pos_iff [simp]: "tanh (x :: real) > 0 \<longleftrightarrow> x > 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6578
  by (simp add: tanh_def field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6579
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6580
lemma tanh_real_nonpos_iff [simp]: "tanh (x :: real) \<le> 0 \<longleftrightarrow> x \<le> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6581
  by (simp add: tanh_def field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6582
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6583
lemma tanh_real_neg_iff [simp]: "tanh (x :: real) < 0 \<longleftrightarrow> x < 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6584
  by (simp add: tanh_def field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6585
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6586
lemma tanh_real_zero_iff [simp]: "tanh (x :: real) = 0 \<longleftrightarrow> x = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6587
  by (simp add: tanh_def field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6588
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6589
lemma arsinh_real_def: "arsinh (x::real) = ln (x + sqrt (x^2 + 1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6590
  by (simp add: arsinh_def powr_half_sqrt)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6591
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6592
lemma arcosh_real_def: "x \<ge> 1 \<Longrightarrow> arcosh (x::real) = ln (x + sqrt (x^2 - 1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6593
  by (simp add: arcosh_def powr_half_sqrt)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6594
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6595
lemma arsinh_real_aux: "0 < x + sqrt (x ^ 2 + 1 :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6596
proof (cases "x < 0")
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6597
  case True
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6598
  have "(-x) ^ 2 = x ^ 2" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6599
  also have "x ^ 2 < x ^ 2 + 1" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6600
  finally have "sqrt ((-x) ^ 2) < sqrt (x ^ 2 + 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6601
    by (rule real_sqrt_less_mono)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6602
  thus ?thesis using True by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6603
qed (auto simp: add_nonneg_pos)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6604
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6605
lemma arsinh_minus_real [simp]: "arsinh (-x::real) = -arsinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6606
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6607
  have "arsinh (-x) = ln (sqrt (x\<^sup>2 + 1) - x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6608
    by (simp add: arsinh_real_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6609
  also have "sqrt (x^2 + 1) - x = inverse (sqrt (x^2 + 1) + x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6610
    using arsinh_real_aux[of x] by (simp add: divide_simps algebra_simps power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6611
  also have "ln \<dots> = -arsinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6612
    using arsinh_real_aux[of x] by (simp add: arsinh_real_def ln_inverse)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6613
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6614
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6615
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6616
lemma artanh_minus_real [simp]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6617
  assumes "abs x < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6618
  shows   "artanh (-x::real) = -artanh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6619
  using assms by (simp add: artanh_def ln_div field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6620
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6621
lemma sinh_less_cosh_real: "sinh (x :: real) < cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6622
  by (simp add: sinh_def cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6623
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6624
lemma sinh_le_cosh_real: "sinh (x :: real) \<le> cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6625
  by (simp add: sinh_def cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6626
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6627
lemma tanh_real_lt_1: "tanh (x :: real) < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6628
  by (simp add: tanh_def sinh_less_cosh_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6629
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6630
lemma tanh_real_gt_neg1: "tanh (x :: real) > -1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6631
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6632
  have "- cosh x < sinh x" by (simp add: sinh_def cosh_def divide_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6633
  thus ?thesis by (simp add: tanh_def field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6634
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6635
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6636
lemma tanh_real_bounds: "tanh (x :: real) \<in> {-1<..<1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6637
  using tanh_real_lt_1 tanh_real_gt_neg1 by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6638
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6639
context
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6640
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6641
begin
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6642
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6643
lemma arsinh_sinh_real: "arsinh (sinh x) = x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6644
  by (simp add: arsinh_real_def powr_def sinh_square_eq sinh_plus_cosh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6645
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6646
lemma arcosh_cosh_real: "x \<ge> 0 \<Longrightarrow> arcosh (cosh x) = x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6647
  by (simp add: arcosh_real_def powr_def cosh_square_eq cosh_real_ge_1 cosh_plus_sinh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6648
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6649
lemma artanh_tanh_real: "artanh (tanh x) = x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6650
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6651
  have "artanh (tanh x) = ln (cosh x * (cosh x + sinh x) / (cosh x * (cosh x - sinh x))) / 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6652
    by (simp add: artanh_def tanh_def divide_simps)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6653
  also have "cosh x * (cosh x + sinh x) / (cosh x * (cosh x - sinh x)) =
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6654
               (cosh x + sinh x) / (cosh x - sinh x)" by simp
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6655
  also have "\<dots> = (exp x)^2"
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6656
    by (simp add: cosh_plus_sinh cosh_minus_sinh exp_minus field_simps power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6657
  also have "ln ((exp x)^2) / 2 = x" by (simp add: ln_realpow)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6658
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6659
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6660
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6661
end
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6662
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6663
lemma sinh_real_strict_mono: "strict_mono (sinh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6664
  by (rule pos_deriv_imp_strict_mono derivative_intros)+ auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6665
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6666
lemma cosh_real_strict_mono:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6667
  assumes "0 \<le> x" and "x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6668
  shows   "cosh x < cosh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6669
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6670
  from assms have "\<exists>z>x. z < y \<and> cosh y - cosh x = (y - x) * sinh z"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6671
    by (intro MVT2) (auto dest: connectedD_interval intro!: derivative_eq_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6672
  then obtain z where z: "z > x" "z < y" "cosh y - cosh x = (y - x) * sinh z" by blast
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6673
  note \<open>cosh y - cosh x = (y - x) * sinh z\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6674
  also from \<open>z > x\<close> and assms have "(y - x) * sinh z > 0" by (intro mult_pos_pos) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6675
  finally show "cosh x < cosh y" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6676
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6677
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6678
lemma tanh_real_strict_mono: "strict_mono (tanh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6679
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6680
  have *: "tanh x ^ 2 < 1" for x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6681
    using tanh_real_bounds[of x] by (simp add: abs_square_less_1 abs_if)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6682
  show ?thesis
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6683
    by (rule pos_deriv_imp_strict_mono) (insert *, auto intro!: derivative_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6684
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6685
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6686
lemma sinh_real_abs [simp]: "sinh (abs x :: real) = abs (sinh x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6687
  by (simp add: abs_if)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6688
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6689
lemma cosh_real_abs [simp]: "cosh (abs x :: real) = cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6690
  by (simp add: abs_if)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6691
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6692
lemma tanh_real_abs [simp]: "tanh (abs x :: real) = abs (tanh x)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6693
  by (auto simp: abs_if)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6694
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6695
lemma sinh_real_eq_iff [simp]: "sinh x = sinh y \<longleftrightarrow> x = (y :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6696
  using sinh_real_strict_mono by (simp add: strict_mono_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6697
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6698
lemma tanh_real_eq_iff [simp]: "tanh x = tanh y \<longleftrightarrow> x = (y :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6699
  using tanh_real_strict_mono by (simp add: strict_mono_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6700
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6701
lemma cosh_real_eq_iff [simp]: "cosh x = cosh y \<longleftrightarrow> abs x = abs (y :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6702
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6703
  have "cosh x = cosh y \<longleftrightarrow> x = y" if "x \<ge> 0" "y \<ge> 0" for x y :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6704
    using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x] that
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6705
    by (cases x y rule: linorder_cases) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6706
  from this[of "abs x" "abs y"] show ?thesis by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6707
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6708
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6709
lemma sinh_real_le_iff [simp]: "sinh x \<le> sinh y \<longleftrightarrow> x \<le> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6710
  using sinh_real_strict_mono by (simp add: strict_mono_less_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6711
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6712
lemma cosh_real_nonneg_le_iff: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> cosh x \<le> cosh y \<longleftrightarrow> x \<le> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6713
  using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6714
  by (cases x y rule: linorder_cases) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6715
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6716
lemma cosh_real_nonpos_le_iff: "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> cosh x \<le> cosh y \<longleftrightarrow> x \<ge> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6717
  using cosh_real_nonneg_le_iff[of "-x" "-y"] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6718
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6719
lemma tanh_real_le_iff [simp]: "tanh x \<le> tanh y \<longleftrightarrow> x \<le> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6720
  using tanh_real_strict_mono by (simp add: strict_mono_less_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6721
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6722
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6723
lemma sinh_real_less_iff [simp]: "sinh x < sinh y \<longleftrightarrow> x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6724
  using sinh_real_strict_mono by (simp add: strict_mono_less)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6725
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6726
lemma cosh_real_nonneg_less_iff: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> cosh x < cosh y \<longleftrightarrow> x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6727
  using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6728
  by (cases x y rule: linorder_cases) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6729
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6730
lemma cosh_real_nonpos_less_iff: "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> cosh x < cosh y \<longleftrightarrow> x > (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6731
  using cosh_real_nonneg_less_iff[of "-x" "-y"] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6732
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6733
lemma tanh_real_less_iff [simp]: "tanh x < tanh y \<longleftrightarrow> x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6734
  using tanh_real_strict_mono by (simp add: strict_mono_less)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6735
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6736
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6737
subsubsection \<open>Limits\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6738
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6739
lemma sinh_real_at_top: "filterlim (sinh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6740
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6741
  have *: "((\<lambda>x. - exp (- x)) \<longlongrightarrow> (-0::real)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6742
    by (intro tendsto_minus filterlim_compose[OF exp_at_bot] filterlim_uminus_at_bot_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6743
  have "filterlim (\<lambda>x. (1 / 2) * (-exp (-x) + exp x) :: real) at_top at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6744
    by (rule filterlim_tendsto_pos_mult_at_top[OF _ _
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6745
               filterlim_tendsto_add_at_top[OF *]] tendsto_const)+ (auto simp: exp_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6746
  also have "(\<lambda>x. (1 / 2) * (-exp (-x) + exp x) :: real) = sinh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6747
    by (simp add: fun_eq_iff sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6748
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6749
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6750
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6751
lemma sinh_real_at_bot: "filterlim (sinh :: real \<Rightarrow> real) at_bot at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6752
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6753
  have "filterlim (\<lambda>x. -sinh x :: real) at_bot at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6754
    by (simp add: filterlim_uminus_at_top [symmetric] sinh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6755
  also have "(\<lambda>x. -sinh x :: real) = (\<lambda>x. sinh (-x))" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6756
  finally show ?thesis by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6757
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6758
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6759
lemma cosh_real_at_top: "filterlim (cosh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6760
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6761
  have *: "((\<lambda>x. exp (- x)) \<longlongrightarrow> (0::real)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6762
    by (intro filterlim_compose[OF exp_at_bot] filterlim_uminus_at_bot_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6763
  have "filterlim (\<lambda>x. (1 / 2) * (exp (-x) + exp x) :: real) at_top at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6764
    by (rule filterlim_tendsto_pos_mult_at_top[OF _ _
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6765
               filterlim_tendsto_add_at_top[OF *]] tendsto_const)+ (auto simp: exp_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6766
  also have "(\<lambda>x. (1 / 2) * (exp (-x) + exp x) :: real) = cosh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6767
    by (simp add: fun_eq_iff cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6768
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6769
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6770
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6771
lemma cosh_real_at_bot: "filterlim (cosh :: real \<Rightarrow> real) at_top at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6772
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6773
  have "filterlim (\<lambda>x. cosh (-x) :: real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6774
    by (simp add: cosh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6775
  thus ?thesis by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6776
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6777
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6778
lemma tanh_real_at_top: "(tanh \<longlongrightarrow> (1::real)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6779
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6780
  have "((\<lambda>x::real. (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))) \<longlongrightarrow> (1 - 0) / (1 + 0)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6781
    by (intro tendsto_intros filterlim_compose[OF exp_at_bot]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6782
              filterlim_tendsto_neg_mult_at_bot[OF tendsto_const] filterlim_ident) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6783
  also have "(\<lambda>x::real. (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))) = tanh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6784
    by (rule ext) (simp add: tanh_real_altdef)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6785
  finally show ?thesis by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6786
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6787
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6788
lemma tanh_real_at_bot: "(tanh \<longlongrightarrow> (-1::real)) at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6789
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6790
  have "((\<lambda>x::real. -tanh x) \<longlongrightarrow> -1) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6791
    by (intro tendsto_minus tanh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6792
  also have "(\<lambda>x. -tanh x :: real) = (\<lambda>x. tanh (-x))" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6793
  finally show ?thesis by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6794
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6795
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6796
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6797
subsubsection \<open>Properties of the inverse hyperbolic functions\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6798
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6799
lemma isCont_sinh: "isCont sinh (x :: 'a :: {real_normed_field, banach})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6800
  unfolding sinh_def [abs_def] by (auto intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6801
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6802
lemma isCont_cosh: "isCont cosh (x :: 'a :: {real_normed_field, banach})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6803
  unfolding cosh_def [abs_def] by (auto intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6804
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6805
lemma isCont_tanh: "cosh x \<noteq> 0 \<Longrightarrow> isCont tanh (x :: 'a :: {real_normed_field, banach})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6806
  unfolding tanh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6807
  by (auto intro!: continuous_intros isCont_divide isCont_sinh isCont_cosh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6808
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6809
lemma continuous_on_sinh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6810
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6811
  assumes "continuous_on A f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6812
  shows   "continuous_on A (\<lambda>x. sinh (f x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6813
  unfolding sinh_def using assms by (intro continuous_intros)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6814
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6815
lemma continuous_on_cosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6816
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6817
  assumes "continuous_on A f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6818
  shows   "continuous_on A (\<lambda>x. cosh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6819
  unfolding cosh_def using assms by (intro continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6820
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6821
lemma continuous_sinh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6822
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6823
  assumes "continuous F f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6824
  shows   "continuous F (\<lambda>x. sinh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6825
  unfolding sinh_def using assms by (intro continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6826
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6827
lemma continuous_cosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6828
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6829
  assumes "continuous F f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6830
  shows   "continuous F (\<lambda>x. cosh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6831
  unfolding cosh_def using assms by (intro continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6832
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6833
lemma continuous_on_tanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6834
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6835
  assumes "continuous_on A f" "\<And>x. x \<in> A \<Longrightarrow> cosh (f x) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6836
  shows   "continuous_on A (\<lambda>x. tanh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6837
  unfolding tanh_def using assms by (intro continuous_intros) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6838
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6839
lemma continuous_at_within_tanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6840
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6841
  assumes "continuous (at x within A) f" "cosh (f x) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6842
  shows   "continuous (at x within A) (\<lambda>x. tanh (f x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6843
  unfolding tanh_def using assms by (intro continuous_intros continuous_divide) auto
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6844
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6845
lemma continuous_tanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6846
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6847
  assumes "continuous F f" "cosh (f (Lim F (\<lambda>x. x))) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6848
  shows   "continuous F (\<lambda>x. tanh (f x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6849
  unfolding tanh_def using assms by (intro continuous_intros continuous_divide) auto
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6850
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6851
lemma tendsto_sinh [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6852
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6853
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. sinh (f x)) \<longlongrightarrow> sinh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6854
  by (rule isCont_tendsto_compose [OF isCont_sinh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6855
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6856
lemma tendsto_cosh [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6857
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6858
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. cosh (f x)) \<longlongrightarrow> cosh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6859
  by (rule isCont_tendsto_compose [OF isCont_cosh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6860
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6861
lemma tendsto_tanh [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6862
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6863
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> cosh a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. tanh (f x)) \<longlongrightarrow> tanh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6864
  by (rule isCont_tendsto_compose [OF isCont_tanh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6865
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6866
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6867
lemma arsinh_real_has_field_derivative [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6868
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6869
  shows "(arsinh has_field_derivative (1 / (sqrt (x ^ 2 + 1)))) (at x within A)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6870
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6871
  have pos: "1 + x ^ 2 > 0" by (intro add_pos_nonneg) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6872
  from pos arsinh_real_aux[of x] show ?thesis unfolding arsinh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6873
    by (auto intro!: derivative_eq_intros simp: powr_minus powr_half_sqrt divide_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6874
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6875
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6876
lemma arcosh_real_has_field_derivative [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6877
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6878
  assumes "x > 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6879
  shows   "(arcosh has_field_derivative (1 / (sqrt (x ^ 2 - 1)))) (at x within A)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6880
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6881
  from assms have "x + sqrt (x\<^sup>2 - 1) > 0" by (simp add: add_pos_pos)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6882
  thus ?thesis using assms unfolding arcosh_def [abs_def]
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6883
    by (auto intro!: derivative_eq_intros
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6884
             simp: powr_minus powr_half_sqrt divide_simps power2_eq_1_iff)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6885
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6886
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6887
lemma artanh_real_has_field_derivative [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6888
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6889
  assumes "abs x < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6890
  shows   "(artanh has_field_derivative (1 / (1 - x ^ 2))) (at x within A)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6891
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6892
  from assms have "x > -1" "x < 1" by linarith+
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6893
  hence "(artanh has_field_derivative (4 - 4 * x) / ((1 + x) * (1 - x) * (1 - x) * 4))
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6894
           (at x within A)" unfolding artanh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6895
    by (auto intro!: derivative_eq_intros simp: powr_minus powr_half_sqrt)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6896
  also have "(4 - 4 * x) / ((1 + x) * (1 - x) * (1 - x) * 4) = 1 / ((1 + x) * (1 - x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6897
    by (simp add: divide_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6898
  also have "(1 + x) * (1 - x) = 1 - x ^ 2" by (simp add: algebra_simps power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6899
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6900
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6901
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6902
lemma continuous_on_arsinh [continuous_intros]: "continuous_on A (arsinh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6903
  by (rule DERIV_continuous_on derivative_intros)+
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6904
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6905
lemma continuous_on_arcosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6906
  assumes "A \<subseteq> {1..}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6907
  shows   "continuous_on A (arcosh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6908
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6909
  have pos: "x + sqrt (x ^ 2 - 1) > 0" if "x \<ge> 1" for x
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6910
    using that by (intro add_pos_nonneg) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6911
  show ?thesis
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6912
  unfolding arcosh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6913
  by (intro continuous_on_subset [OF _ assms] continuous_on_ln continuous_on_add
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6914
               continuous_on_id continuous_on_powr')
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6915
     (auto dest: pos simp: powr_half_sqrt intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6916
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6917
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6918
lemma continuous_on_artanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6919
  assumes "A \<subseteq> {-1<..<1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6920
  shows   "continuous_on A (artanh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6921
  unfolding artanh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6922
  by (intro continuous_on_subset [OF _ assms]) (auto intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6923
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6924
lemma continuous_on_arsinh' [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6925
  fixes f :: "real \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6926
  assumes "continuous_on A f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6927
  shows   "continuous_on A (\<lambda>x. arsinh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6928
  by (rule continuous_on_compose2[OF continuous_on_arsinh assms]) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6929
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6930
lemma continuous_on_arcosh' [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6931
  fixes f :: "real \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6932
  assumes "continuous_on A f" "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6933
  shows   "continuous_on A (\<lambda>x. arcosh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6934
  by (rule continuous_on_compose2[OF continuous_on_arcosh assms(1) order.refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6935
     (use assms(2) in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6936
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6937
lemma continuous_on_artanh' [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6938
  fixes f :: "real \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6939
  assumes "continuous_on A f" "\<And>x. x \<in> A \<Longrightarrow> f x \<in> {-1<..<1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6940
  shows   "continuous_on A (\<lambda>x. artanh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6941
  by (rule continuous_on_compose2[OF continuous_on_artanh assms(1) order.refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6942
     (use assms(2) in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6943
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6944
lemma isCont_arsinh [continuous_intros]: "isCont arsinh (x :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6945
  using continuous_on_arsinh[of UNIV] by (auto simp: continuous_on_eq_continuous_at)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6946
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6947
lemma isCont_arcosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6948
  assumes "x > 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6949
  shows   "isCont arcosh (x :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6950
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6951
  have "continuous_on {1::real<..} arcosh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6952
    by (rule continuous_on_arcosh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6953
  with assms show ?thesis by (auto simp: continuous_on_eq_continuous_at)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6954
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6955
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6956
lemma isCont_artanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6957
  assumes "x > -1" "x < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6958
  shows   "isCont artanh (x :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6959
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6960
  have "continuous_on {-1<..<(1::real)} artanh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6961
    by (rule continuous_on_artanh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6962
  with assms show ?thesis by (auto simp: continuous_on_eq_continuous_at)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6963
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6964
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6965
lemma tendsto_arsinh [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. arsinh (f x)) \<longlongrightarrow> arsinh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6966
  for f :: "_ \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6967
  by (rule isCont_tendsto_compose [OF isCont_arsinh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6968
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6969
lemma tendsto_arcosh_strong [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6970
  fixes f :: "_ \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6971
  assumes "(f \<longlongrightarrow> a) F" "a \<ge> 1" "eventually (\<lambda>x. f x \<ge> 1) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6972
  shows   "((\<lambda>x. arcosh (f x)) \<longlongrightarrow> arcosh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6973
  by (rule continuous_on_tendsto_compose[OF continuous_on_arcosh[OF order.refl]])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6974
     (use assms in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6975
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6976
lemma tendsto_arcosh:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6977
  fixes f :: "_ \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6978
  assumes "(f \<longlongrightarrow> a) F" "a > 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6979
  shows "((\<lambda>x. arcosh (f x)) \<longlongrightarrow> arcosh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6980
  by (rule isCont_tendsto_compose [OF isCont_arcosh]) (use assms in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6981
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6982
lemma tendsto_arcosh_at_left_1: "(arcosh \<longlongrightarrow> 0) (at_right (1::real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6983
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6984
  have "(arcosh \<longlongrightarrow> arcosh 1) (at_right (1::real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6985
    by (rule tendsto_arcosh_strong) (auto simp: eventually_at intro!: exI[of _ 1])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6986
  thus ?thesis by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6987
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6988
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6989
lemma tendsto_artanh [tendsto_intros]:
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6990
  fixes f :: "'a \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6991
  assumes "(f \<longlongrightarrow> a) F" "a > -1" "a < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6992
  shows   "((\<lambda>x. artanh (f x)) \<longlongrightarrow> artanh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6993
  by (rule isCont_tendsto_compose [OF isCont_artanh]) (use assms in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6994
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6995
lemma continuous_arsinh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6996
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. arsinh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6997
  unfolding continuous_def by (rule tendsto_arsinh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6998
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6999
(* TODO: This rule does not work for one-sided continuity at 1 *)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7000
lemma continuous_arcosh_strong [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7001
  assumes "continuous F f" "eventually (\<lambda>x. f x \<ge> 1) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7002
  shows   "continuous F (\<lambda>x. arcosh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7003
proof (cases "F = bot")
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7004
  case False
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7005
  show ?thesis
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7006
    unfolding continuous_def
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7007
  proof (intro tendsto_arcosh_strong)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7008
    show "1 \<le> f (Lim F (\<lambda>x. x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7009
      using assms False unfolding continuous_def by (rule tendsto_lowerbound)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7010
  qed (insert assms, auto simp: continuous_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7011
qed auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7012
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7013
lemma continuous_arcosh:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7014
  "continuous F f \<Longrightarrow> f (Lim F (\<lambda>x. x)) > 1 \<Longrightarrow> continuous F (\<lambda>x. arcosh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7015
  unfolding continuous_def by (rule tendsto_arcosh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7016
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7017
lemma continuous_artanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7018
  "continuous F f \<Longrightarrow> f (Lim F (\<lambda>x. x)) \<in> {-1<..<1} \<Longrightarrow> continuous F (\<lambda>x. artanh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7019
  unfolding continuous_def by (rule tendsto_artanh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7020
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7021
lemma arsinh_real_at_top:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7022
  "filterlim (arsinh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7023
proof (subst filterlim_cong[OF refl refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7024
  show "filterlim (\<lambda>x. ln (x + sqrt (1 + x\<^sup>2))) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7025
    by (intro filterlim_compose[OF ln_at_top filterlim_at_top_add_at_top] filterlim_ident
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7026
              filterlim_compose[OF sqrt_at_top] filterlim_tendsto_add_at_top[OF tendsto_const]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7027
              filterlim_pow_at_top) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7028
qed (auto intro!: eventually_mono[OF eventually_ge_at_top[of 1]] simp: arsinh_real_def add_ac)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7029
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7030
lemma arsinh_real_at_bot:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7031
  "filterlim (arsinh :: real \<Rightarrow> real) at_bot at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7032
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7033
  have "filterlim (\<lambda>x::real. -arsinh x) at_bot at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7034
    by (subst filterlim_uminus_at_top [symmetric]) (rule arsinh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7035
  also have "(\<lambda>x::real. -arsinh x) = (\<lambda>x. arsinh (-x))" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7036
  finally show ?thesis
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7037
    by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7038
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7039
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7040
lemma arcosh_real_at_top:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7041
  "filterlim (arcosh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7042
proof (subst filterlim_cong[OF refl refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7043
  show "filterlim (\<lambda>x. ln (x + sqrt (-1 + x\<^sup>2))) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7044
    by (intro filterlim_compose[OF ln_at_top filterlim_at_top_add_at_top] filterlim_ident
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7045
              filterlim_compose[OF sqrt_at_top] filterlim_tendsto_add_at_top[OF tendsto_const]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7046
              filterlim_pow_at_top) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7047
qed (auto intro!: eventually_mono[OF eventually_ge_at_top[of 1]] simp: arcosh_real_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7048
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7049
lemma artanh_real_at_left_1:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7050
  "filterlim (artanh :: real \<Rightarrow> real) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7051
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7052
  have *: "filterlim (\<lambda>x::real. (1 + x) / (1 - x)) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7053
    by (rule LIM_at_top_divide)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7054
       (auto intro!: tendsto_eq_intros eventually_mono[OF eventually_at_left_real[of 0]])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7055
  have "filterlim (\<lambda>x::real. (1/2) * ln ((1 + x) / (1 - x))) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7056
    by (intro filterlim_tendsto_pos_mult_at_top[OF tendsto_const] *
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7057
                 filterlim_compose[OF ln_at_top]) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7058
  also have "(\<lambda>x::real. (1/2) * ln ((1 + x) / (1 - x))) = artanh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7059
    by (simp add: artanh_def [abs_def])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7060
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7061
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7062
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7063
lemma artanh_real_at_right_1:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7064
  "filterlim (artanh :: real \<Rightarrow> real) at_bot (at_right (-1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7065
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7066
  have "?thesis \<longleftrightarrow> filterlim (\<lambda>x::real. -artanh x) at_top (at_right (-1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7067
    by (simp add: filterlim_uminus_at_bot)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7068
  also have "\<dots> \<longleftrightarrow> filterlim (\<lambda>x::real. artanh (-x)) at_top (at_right (-1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7069
    by (intro filterlim_cong refl eventually_mono[OF eventually_at_right_real[of "-1" "1"]]) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7070
  also have "\<dots> \<longleftrightarrow> filterlim (artanh :: real \<Rightarrow> real) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7071
    by (simp add: filterlim_at_left_to_right)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7072
  also have \<dots> by (rule artanh_real_at_left_1)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7073
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7074
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7075
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7076
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7077
subsection \<open>Simprocs for root and power literals\<close>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7078
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7079
lemma numeral_powr_numeral_real [simp]:
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7080
  "numeral m powr numeral n = (numeral m ^ numeral n :: real)"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7081
  by (simp add: powr_numeral)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7082
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7083
context
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7084
begin
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7085
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7086
private lemma sqrt_numeral_simproc_aux:
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7087
  assumes "m * m \<equiv> n"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7088
  shows   "sqrt (numeral n :: real) \<equiv> numeral m"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7089
proof -
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7090
  have "numeral n \<equiv> numeral m * (numeral m :: real)" by (simp add: assms [symmetric])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7091
  moreover have "sqrt \<dots> \<equiv> numeral m" by (subst real_sqrt_abs2) simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7092
  ultimately show "sqrt (numeral n :: real) \<equiv> numeral m" by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7093
qed
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7094
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7095
private lemma root_numeral_simproc_aux:
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7096
  assumes "Num.pow m n \<equiv> x"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7097
  shows   "root (numeral n) (numeral x :: real) \<equiv> numeral m"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7098
  by (subst assms [symmetric], subst numeral_pow, subst real_root_pos2) simp_all
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7099
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7100
private lemma powr_numeral_simproc_aux:
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7101
  assumes "Num.pow y n = x"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7102
  shows   "numeral x powr (m / numeral n :: real) \<equiv> numeral y powr m"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7103
  by (subst assms [symmetric], subst numeral_pow, subst powr_numeral [symmetric])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7104
     (simp, subst powr_powr, simp_all)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7105
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7106
private lemma numeral_powr_inverse_eq:
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7107
  "numeral x powr (inverse (numeral n)) = numeral x powr (1 / numeral n :: real)"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7108
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7109
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7110
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7111
ML \<open>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7112
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7113
signature ROOT_NUMERAL_SIMPROC = sig
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7114
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7115
val sqrt : int option -> int -> int option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7116
val sqrt' : int option -> int -> int option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7117
val nth_root : int option -> int -> int -> int option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7118
val nth_root' : int option -> int -> int -> int option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7119
val sqrt_simproc : Proof.context -> cterm -> thm option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7120
val root_simproc : int * int -> Proof.context -> cterm -> thm option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7121
val powr_simproc : int * int -> Proof.context -> cterm -> thm option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7122
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  7123
end
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7124
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7125
structure Root_Numeral_Simproc : ROOT_NUMERAL_SIMPROC = struct
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7126
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7127
fun iterate NONE p f x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7128
      let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7129
        fun go x = if p x then x else go (f x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7130
      in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7131
        SOME (go x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7132
      end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7133
  | iterate (SOME threshold) p f x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7134
      let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7135
        fun go (threshold, x) = 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7136
          if p x then SOME x else if threshold = 0 then NONE else go (threshold - 1, f x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7137
      in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7138
        go (threshold, x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7139
      end  
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7140
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7141
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7142
fun nth_root _ 1 x = SOME x
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7143
  | nth_root _ _ 0 = SOME 0
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7144
  | nth_root _ _ 1 = SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7145
  | nth_root threshold n x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7146
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7147
    fun newton_step y = ((n - 1) * y + x div Integer.pow (n - 1) y) div n
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7148
    fun is_root y = Integer.pow n y <= x andalso x < Integer.pow n (y + 1)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7149
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7150
    if x < n then
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7151
      SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7152
    else if x < Integer.pow n 2 then 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7153
      SOME 1 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7154
    else 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7155
      let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7156
        val y = Real.floor (Math.pow (Real.fromInt x, Real.fromInt 1 / Real.fromInt n))
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7157
      in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7158
        if is_root y then
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7159
          SOME y
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7160
        else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7161
          iterate threshold is_root newton_step ((x + n - 1) div n)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7162
      end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7163
  end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7164
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7165
fun nth_root' _ 1 x = SOME x
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7166
  | nth_root' _ _ 0 = SOME 0
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7167
  | nth_root' _ _ 1 = SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7168
  | nth_root' threshold n x = if x < n then NONE else if x < Integer.pow n 2 then NONE else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7169
      case nth_root threshold n x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7170
        NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7171
      | SOME y => if Integer.pow n y = x then SOME y else NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7172
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7173
fun sqrt _ 0 = SOME 0
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7174
  | sqrt _ 1 = SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7175
  | sqrt threshold n =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7176
    let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7177
      fun aux (a, b) = if n >= b * b then aux (b, b * b) else (a, b)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7178
      val (lower_root, lower_n) = aux (1, 2)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7179
      fun newton_step x = (x + n div x) div 2
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7180
      fun is_sqrt r = r*r <= n andalso n < (r+1)*(r+1)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7181
      val y = Real.floor (Math.sqrt (Real.fromInt n))
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7182
    in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7183
      if is_sqrt y then 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7184
        SOME y
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7185
      else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7186
        Option.mapPartial (iterate threshold is_sqrt newton_step o (fn x => x * lower_root)) 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7187
          (sqrt threshold (n div lower_n))
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7188
    end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7189
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7190
fun sqrt' threshold x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7191
  case sqrt threshold x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7192
    NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7193
  | SOME y => if y * y = x then SOME y else NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7194
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7195
fun sqrt_simproc ctxt ct =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7196
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7197
    val n = ct |> Thm.term_of |> dest_comb |> snd |> dest_comb |> snd |> HOLogic.dest_numeral
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7198
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7199
    case sqrt' (SOME 10000) n of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7200
      NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7201
    | SOME m => 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7202
        SOME (Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt o HOLogic.mk_numeral) [m, n])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7203
                  @{thm sqrt_numeral_simproc_aux})
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7204
  end
68642
d812b6ee711b Made simproc for sqrt/root of numeral more robust
Manuel Eberl <eberlm@in.tum.de>
parents: 68638
diff changeset
  7205
    handle TERM _ => NONE
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7206
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7207
fun root_simproc (threshold1, threshold2) ctxt ct =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7208
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7209
    val [n, x] = 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7210
      ct |> Thm.term_of |> strip_comb |> snd |> map (dest_comb #> snd #> HOLogic.dest_numeral)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7211
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7212
    if n > threshold1 orelse x > threshold2 then NONE else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7213
      case nth_root' (SOME 100) n x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7214
        NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7215
      | SOME m => 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7216
          SOME (Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt o HOLogic.mk_numeral) [m, n, x])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7217
            @{thm root_numeral_simproc_aux})
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7218
  end
68642
d812b6ee711b Made simproc for sqrt/root of numeral more robust
Manuel Eberl <eberlm@in.tum.de>
parents: 68638
diff changeset
  7219
    handle TERM _ => NONE
d812b6ee711b Made simproc for sqrt/root of numeral more robust
Manuel Eberl <eberlm@in.tum.de>
parents: 68638
diff changeset
  7220
         | Match => NONE
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7221
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7222
fun powr_simproc (threshold1, threshold2) ctxt ct =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7223
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7224
    val eq_thm = Conv.try_conv (Conv.rewr_conv @{thm numeral_powr_inverse_eq}) ct
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7225
    val ct = Thm.dest_equals_rhs (Thm.cprop_of eq_thm)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7226
    val (_, [x, t]) = strip_comb (Thm.term_of ct)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7227
    val (_, [m, n]) = strip_comb t
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7228
    val [x, n] = map (dest_comb #> snd #> HOLogic.dest_numeral) [x, n]
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7229
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7230
    if n > threshold1 orelse x > threshold2 then NONE else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7231
      case nth_root' (SOME 100) n x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7232
        NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7233
      | SOME y => 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7234
          let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7235
            val [y, n, x] = map HOLogic.mk_numeral [y, n, x]
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7236
            val thm = Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt) [y, n, x, m])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7237
              @{thm powr_numeral_simproc_aux}
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7238
          in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7239
            SOME (@{thm transitive} OF [eq_thm, thm])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7240
          end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7241
  end
68642
d812b6ee711b Made simproc for sqrt/root of numeral more robust
Manuel Eberl <eberlm@in.tum.de>
parents: 68638
diff changeset
  7242
    handle TERM _ => NONE
d812b6ee711b Made simproc for sqrt/root of numeral more robust
Manuel Eberl <eberlm@in.tum.de>
parents: 68638
diff changeset
  7243
         | Match => NONE
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7244
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7245
end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7246
\<close>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7247
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7248
end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7249
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7250
simproc_setup sqrt_numeral ("sqrt (numeral n)") = 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7251
  \<open>K Root_Numeral_Simproc.sqrt_simproc\<close>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7252
  
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7253
simproc_setup root_numeral ("root (numeral n) (numeral x)") = 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7254
  \<open>K (Root_Numeral_Simproc.root_simproc (200, Integer.pow 200 2))\<close>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7255
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7256
simproc_setup powr_divide_numeral 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7257
  ("numeral x powr (m / numeral n :: real)" | "numeral x powr (inverse (numeral n) :: real)") = 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7258
    \<open>K (Root_Numeral_Simproc.powr_simproc (200, Integer.pow 200 2))\<close>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7259
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7260
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7261
lemma "root 100 1267650600228229401496703205376 = 2"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7262
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7263
    
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7264
lemma "sqrt 196 = 14" 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7265
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7266
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7267
lemma "256 powr (7 / 4 :: real) = 16384"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7268
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7269
    
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7270
lemma "27 powr (inverse 3) = (3::real)"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7271
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7272
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7273
end