src/HOL/Transcendental.thy
author wenzelm
Thu, 28 Jul 2016 20:39:46 +0200
changeset 63558 0aa33085c8b1
parent 63540 f8652d0534fa
child 63566 e5abbdee461a
permissions -rw-r--r--
misc tuning and modernization;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     1
(*  Title:      HOL/Transcendental.thy
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     2
    Author:     Jacques D. Fleuriot, University of Cambridge, University of Edinburgh
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     3
    Author:     Lawrence C Paulson
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
     4
    Author:     Jeremy Avigad
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     5
*)
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     6
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
     7
section \<open>Power Series, Transcendental Functions etc.\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
     8
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
     9
theory Transcendental
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
    10
imports Binomial Series Deriv NthRoot
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
    11
begin
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    12
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    13
text \<open>A fact theorem on reals.\<close>
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    14
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    15
lemma square_fact_le_2_fact: "fact n * fact n \<le> (fact (2 * n) :: real)"
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    16
proof (induct n)
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    17
  case 0
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    18
  then show ?case by simp
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    19
next
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    20
  case (Suc n)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    21
  have "(fact (Suc n)) * (fact (Suc n)) = of_nat (Suc n) * of_nat (Suc n) * (fact n * fact n :: real)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    22
    by (simp add: field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    23
  also have "\<dots> \<le> of_nat (Suc n) * of_nat (Suc n) * fact (2 * n)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    24
    by (rule mult_left_mono [OF Suc]) simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    25
  also have "\<dots> \<le> of_nat (Suc (Suc (2 * n))) * of_nat (Suc (2 * n)) * fact (2 * n)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    26
    by (rule mult_right_mono)+ (auto simp: field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    27
  also have "\<dots> = fact (2 * Suc n)" by (simp add: field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    28
  finally show ?case .
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    29
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    30
62347
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    31
lemma fact_in_Reals: "fact n \<in> \<real>"
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    32
  by (induction n) auto
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    33
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    34
lemma of_real_fact [simp]: "of_real (fact n) = fact n"
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    35
  by (metis of_nat_fact of_real_of_nat_eq)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
    36
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
    37
lemma pochhammer_of_real: "pochhammer (of_real x) n = of_real (pochhammer x n)"
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
    38
  by (simp add: pochhammer_setprod)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
    39
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    40
lemma norm_fact [simp]: "norm (fact n :: 'a::real_normed_algebra_1) = fact n"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    41
proof -
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    42
  have "(fact n :: 'a) = of_real (fact n)"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    43
    by simp
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    44
  also have "norm \<dots> = fact n"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    45
    by (subst norm_of_real) simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    46
  finally show ?thesis .
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    47
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    48
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    49
lemma root_test_convergence:
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    50
  fixes f :: "nat \<Rightarrow> 'a::banach"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
    51
  assumes f: "(\<lambda>n. root n (norm (f n))) \<longlonglongrightarrow> x" \<comment> "could be weakened to lim sup"
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    52
    and "x < 1"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    53
  shows "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    54
proof -
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    55
  have "0 \<le> x"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    56
    by (rule LIMSEQ_le[OF tendsto_const f]) (auto intro!: exI[of _ 1])
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    57
  from \<open>x < 1\<close> obtain z where z: "x < z" "z < 1"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    58
    by (metis dense)
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    59
  from f \<open>x < z\<close> have "eventually (\<lambda>n. root n (norm (f n)) < z) sequentially"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    60
    by (rule order_tendstoD)
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    61
  then have "eventually (\<lambda>n. norm (f n) \<le> z^n) sequentially"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    62
    using eventually_ge_at_top
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    63
  proof eventually_elim
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    64
    fix n
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    65
    assume less: "root n (norm (f n)) < z" and n: "1 \<le> n"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    66
    from power_strict_mono[OF less, of n] n show "norm (f n) \<le> z ^ n"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    67
      by simp
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    68
  qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    69
  then show "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    70
    unfolding eventually_sequentially
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    71
    using z \<open>0 \<le> x\<close> by (auto intro!: summable_comparison_test[OF _  summable_geometric])
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    72
qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    73
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    74
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    75
subsection \<open>Properties of Power Series\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    76
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    77
lemma powser_zero [simp]: "(\<Sum>n. f n * 0 ^ n) = f 0"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    78
  for f :: "nat \<Rightarrow> 'a::real_normed_algebra_1"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    79
proof -
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
    80
  have "(\<Sum>n<1. f n * 0 ^ n) = (\<Sum>n. f n * 0 ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
    81
    by (subst suminf_finite[where N="{0}"]) (auto simp: power_0_left)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
    82
  then show ?thesis by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    83
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    84
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    85
lemma powser_sums_zero: "(\<lambda>n. a n * 0^n) sums a 0"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    86
  for a :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    87
  using sums_finite [of "{0}" "\<lambda>n. a n * 0 ^ n"]
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    88
  by simp
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    89
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    90
lemma powser_sums_zero_iff [simp]: "(\<lambda>n. a n * 0^n) sums x \<longleftrightarrow> a 0 = x"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    91
  for a :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    92
  using powser_sums_zero sums_unique2 by blast
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    93
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    94
text \<open>
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    95
  Power series has a circle or radius of convergence: if it sums for \<open>x\<close>,
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    96
  then it sums absolutely for \<open>z\<close> with @{term "\<bar>z\<bar> < \<bar>x\<bar>"}.\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    97
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    98
lemma powser_insidea:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
    99
  fixes x z :: "'a::real_normed_div_algebra"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   100
  assumes 1: "summable (\<lambda>n. f n * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   101
    and 2: "norm z < norm x"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   102
  shows "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   103
proof -
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   104
  from 2 have x_neq_0: "x \<noteq> 0" by clarsimp
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   105
  from 1 have "(\<lambda>n. f n * x^n) \<longlonglongrightarrow> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   106
    by (rule summable_LIMSEQ_zero)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   107
  then have "convergent (\<lambda>n. f n * x^n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   108
    by (rule convergentI)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   109
  then have "Cauchy (\<lambda>n. f n * x^n)"
44726
8478eab380e9 generalize some lemmas
huffman
parents: 44725
diff changeset
   110
    by (rule convergent_Cauchy)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   111
  then have "Bseq (\<lambda>n. f n * x^n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   112
    by (rule Cauchy_Bseq)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   113
  then obtain K where 3: "0 < K" and 4: "\<forall>n. norm (f n * x^n) \<le> K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   114
    by (auto simp add: Bseq_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   115
  have "\<exists>N. \<forall>n\<ge>N. norm (norm (f n * z ^ n)) \<le> K * norm (z ^ n) * inverse (norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   116
  proof (intro exI allI impI)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   117
    fix n :: nat
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   118
    assume "0 \<le> n"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   119
    have "norm (norm (f n * z ^ n)) * norm (x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   120
          norm (f n * x^n) * norm (z ^ n)"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   121
      by (simp add: norm_mult abs_mult)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   122
    also have "\<dots> \<le> K * norm (z ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   123
      by (simp only: mult_right_mono 4 norm_ge_zero)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   124
    also have "\<dots> = K * norm (z ^ n) * (inverse (norm (x^n)) * norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   125
      by (simp add: x_neq_0)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   126
    also have "\<dots> = K * norm (z ^ n) * inverse (norm (x^n)) * norm (x^n)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   127
      by (simp only: mult.assoc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   128
    finally show "norm (norm (f n * z ^ n)) \<le> K * norm (z ^ n) * inverse (norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   129
      by (simp add: mult_le_cancel_right x_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   130
  qed
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   131
  moreover have "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x^n)))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   132
  proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   133
    from 2 have "norm (norm (z * inverse x)) < 1"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   134
      using x_neq_0
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   135
      by (simp add: norm_mult nonzero_norm_inverse divide_inverse [where 'a=real, symmetric])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   136
    then have "summable (\<lambda>n. norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   137
      by (rule summable_geometric)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   138
    then have "summable (\<lambda>n. K * norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   139
      by (rule summable_mult)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   140
    then show "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x^n)))"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   141
      using x_neq_0
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   142
      by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   143
          power_inverse norm_power mult.assoc)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   144
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   145
  ultimately show "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   146
    by (rule summable_comparison_test)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   147
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   148
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   149
lemma powser_inside:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   150
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   151
  shows
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   152
    "summable (\<lambda>n. f n * (x^n)) \<Longrightarrow> norm z < norm x \<Longrightarrow>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   153
      summable (\<lambda>n. f n * (z ^ n))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   154
  by (rule powser_insidea [THEN summable_norm_cancel])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   155
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   156
lemma powser_times_n_limit_0:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   157
  fixes x :: "'a::{real_normed_div_algebra,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   158
  assumes "norm x < 1"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   159
    shows "(\<lambda>n. of_nat n * x ^ n) \<longlonglongrightarrow> 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   160
proof -
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   161
  have "norm x / (1 - norm x) \<ge> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   162
    using assms by (auto simp: divide_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   163
  moreover obtain N where N: "norm x / (1 - norm x) < of_int N"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   164
    using ex_le_of_int by (meson ex_less_of_int)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   165
  ultimately have N0: "N>0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   166
    by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   167
  then have *: "real_of_int (N + 1) * norm x / real_of_int N < 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   168
    using N assms by (auto simp: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   169
  have **: "real_of_int N * (norm x * (real_of_nat (Suc n) * norm (x ^ n))) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   170
      real_of_nat n * (norm x * ((1 + N) * norm (x ^ n)))" if "N \<le> int n" for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   171
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   172
    from that have "real_of_int N * real_of_nat (Suc n) \<le> real_of_nat n * real_of_int (1 + N)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   173
      by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   174
    then have "(real_of_int N * real_of_nat (Suc n)) * (norm x * norm (x ^ n)) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   175
        (real_of_nat n *  (1 + N)) * (norm x * norm (x ^ n))"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   176
      using N0 mult_mono by fastforce
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   177
    then show ?thesis
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   178
      by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   179
  qed
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   180
  show ?thesis using *
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   181
    by (rule summable_LIMSEQ_zero [OF summable_ratio_test, where N1="nat N"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   182
      (simp add: N0 norm_mult field_simps ** del: of_nat_Suc of_int_add)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   183
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   184
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   185
corollary lim_n_over_pown:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   186
  fixes x :: "'a::{real_normed_field,banach}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   187
  shows "1 < norm x \<Longrightarrow> ((\<lambda>n. of_nat n / x^n) \<longlongrightarrow> 0) sequentially"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   188
  using powser_times_n_limit_0 [of "inverse x"]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   189
  by (simp add: norm_divide divide_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   190
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   191
lemma sum_split_even_odd:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   192
  fixes f :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   193
  shows "(\<Sum>i<2 * n. if even i then f i else g i) = (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1))"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   194
proof (induct n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   195
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   196
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   197
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   198
  case (Suc n)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   199
  have "(\<Sum>i<2 * Suc n. if even i then f i else g i) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   200
    (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1)) + (f (2 * n) + g (2 * n + 1))"
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
   201
    using Suc.hyps unfolding One_nat_def by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   202
  also have "\<dots> = (\<Sum>i<Suc n. f (2 * i)) + (\<Sum>i<Suc n. g (2 * i + 1))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   203
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   204
  finally show ?case .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   205
qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   206
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   207
lemma sums_if':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   208
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   209
  assumes "g sums x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   210
  shows "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   211
  unfolding sums_def
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   212
proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   213
  fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   214
  assume "0 < r"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   215
  from \<open>g sums x\<close>[unfolded sums_def, THEN LIMSEQ_D, OF this]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   216
  obtain no where no_eq: "\<And>n. n \<ge> no \<Longrightarrow> (norm (setsum g {..<n} - x) < r)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   217
    by blast
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   218
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   219
  let ?SUM = "\<lambda> m. \<Sum>i<m. if even i then 0 else g ((i - 1) div 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   220
  have "(norm (?SUM m - x) < r)" if "m \<ge> 2 * no" for m
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   221
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   222
    from that have "m div 2 \<ge> no" by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   223
    have sum_eq: "?SUM (2 * (m div 2)) = setsum g {..< m div 2}"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   224
      using sum_split_even_odd by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   225
    then have "(norm (?SUM (2 * (m div 2)) - x) < r)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   226
      using no_eq unfolding sum_eq using \<open>m div 2 \<ge> no\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   227
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   228
    have "?SUM (2 * (m div 2)) = ?SUM m"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   229
    proof (cases "even m")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   230
      case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   231
      then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   232
        by (auto simp add: even_two_times_div_two)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   233
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   234
      case False
58834
773b378d9313 more simp rules concerning dvd and even/odd
haftmann
parents: 58740
diff changeset
   235
      then have eq: "Suc (2 * (m div 2)) = m" by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   236
      then have "even (2 * (m div 2))" using \<open>odd m\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   237
      have "?SUM m = ?SUM (Suc (2 * (m div 2)))" unfolding eq ..
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   238
      also have "\<dots> = ?SUM (2 * (m div 2))" using \<open>even (2 * (m div 2))\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   239
      finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   240
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   241
    ultimately show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   242
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   243
  then show "\<exists>no. \<forall> m \<ge> no. norm (?SUM m - x) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   244
    by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   245
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   246
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   247
lemma sums_if:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   248
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   249
  assumes "g sums x" and "f sums y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   250
  shows "(\<lambda> n. if even n then f (n div 2) else g ((n - 1) div 2)) sums (x + y)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   251
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   252
  let ?s = "\<lambda> n. if even n then 0 else f ((n - 1) div 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   253
  have if_sum: "(if B then (0 :: real) else E) + (if B then T else 0) = (if B then T else E)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   254
    for B T E
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   255
    by (cases B) auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   256
  have g_sums: "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   257
    using sums_if'[OF \<open>g sums x\<close>] .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   258
  have if_eq: "\<And>B T E. (if \<not> B then T else E) = (if B then E else T)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   259
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   260
  have "?s sums y" using sums_if'[OF \<open>f sums y\<close>] .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   261
  from this[unfolded sums_def, THEN LIMSEQ_Suc]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   262
  have "(\<lambda>n. if even n then f (n div 2) else 0) sums y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   263
    by (simp add: lessThan_Suc_eq_insert_0 setsum_atLeast1_atMost_eq image_Suc_lessThan
63365
5340fb6633d0 more theorems
haftmann
parents: 63295
diff changeset
   264
        if_eq sums_def cong del: if_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   265
  from sums_add[OF g_sums this] show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   266
    by (simp only: if_sum)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   267
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   268
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   269
subsection \<open>Alternating series test / Leibniz formula\<close>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   270
(* FIXME: generalise these results from the reals via type classes? *)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   271
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   272
lemma sums_alternating_upper_lower:
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   273
  fixes a :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   274
  assumes mono: "\<And>n. a (Suc n) \<le> a n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   275
    and a_pos: "\<And>n. 0 \<le> a n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   276
    and "a \<longlonglongrightarrow> 0"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   277
  shows "\<exists>l. ((\<forall>n. (\<Sum>i<2*n. (- 1)^i*a i) \<le> l) \<and> (\<lambda> n. \<Sum>i<2*n. (- 1)^i*a i) \<longlonglongrightarrow> l) \<and>
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   278
             ((\<forall>n. l \<le> (\<Sum>i<2*n + 1. (- 1)^i*a i)) \<and> (\<lambda> n. \<Sum>i<2*n + 1. (- 1)^i*a i) \<longlonglongrightarrow> l)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   279
  (is "\<exists>l. ((\<forall>n. ?f n \<le> l) \<and> _) \<and> ((\<forall>n. l \<le> ?g n) \<and> _)")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   280
proof (rule nested_sequence_unique)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   281
  have fg_diff: "\<And>n. ?f n - ?g n = - a (2 * n)" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   282
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   283
  show "\<forall>n. ?f n \<le> ?f (Suc n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   284
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   285
    show "?f n \<le> ?f (Suc n)" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   286
      using mono[of "2*n"] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   287
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   288
  show "\<forall>n. ?g (Suc n) \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   289
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   290
    show "?g (Suc n) \<le> ?g n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   291
      using mono[of "Suc (2*n)"] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   292
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   293
  show "\<forall>n. ?f n \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   294
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   295
    show "?f n \<le> ?g n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   296
      using fg_diff a_pos by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   297
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   298
  show "(\<lambda>n. ?f n - ?g n) \<longlonglongrightarrow> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   299
    unfolding fg_diff
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   300
  proof (rule LIMSEQ_I)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   301
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   302
    assume "0 < r"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   303
    with \<open>a \<longlonglongrightarrow> 0\<close>[THEN LIMSEQ_D] obtain N where "\<And> n. n \<ge> N \<Longrightarrow> norm (a n - 0) < r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   304
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   305
    then have "\<forall>n \<ge> N. norm (- a (2 * n) - 0) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   306
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   307
    then show "\<exists>N. \<forall>n \<ge> N. norm (- a (2 * n) - 0) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   308
      by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   309
  qed
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   310
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   311
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   312
lemma summable_Leibniz':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   313
  fixes a :: "nat \<Rightarrow> real"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   314
  assumes a_zero: "a \<longlonglongrightarrow> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   315
    and a_pos: "\<And>n. 0 \<le> a n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   316
    and a_monotone: "\<And>n. a (Suc n) \<le> a n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   317
  shows summable: "summable (\<lambda> n. (-1)^n * a n)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   318
    and "\<And>n. (\<Sum>i<2*n. (-1)^i*a i) \<le> (\<Sum>i. (-1)^i*a i)"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   319
    and "(\<lambda>n. \<Sum>i<2*n. (-1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (-1)^i*a i)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   320
    and "\<And>n. (\<Sum>i. (-1)^i*a i) \<le> (\<Sum>i<2*n+1. (-1)^i*a i)"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   321
    and "(\<lambda>n. \<Sum>i<2*n+1. (-1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (-1)^i*a i)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   322
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   323
  let ?S = "\<lambda>n. (-1)^n * a n"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   324
  let ?P = "\<lambda>n. \<Sum>i<n. ?S i"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   325
  let ?f = "\<lambda>n. ?P (2 * n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   326
  let ?g = "\<lambda>n. ?P (2 * n + 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   327
  obtain l :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   328
    where below_l: "\<forall> n. ?f n \<le> l"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   329
      and "?f \<longlonglongrightarrow> l"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   330
      and above_l: "\<forall> n. l \<le> ?g n"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   331
      and "?g \<longlonglongrightarrow> l"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   332
    using sums_alternating_upper_lower[OF a_monotone a_pos a_zero] by blast
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   333
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   334
  let ?Sa = "\<lambda>m. \<Sum>n<m. ?S n"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   335
  have "?Sa \<longlonglongrightarrow> l"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   336
  proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   337
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   338
    assume "0 < r"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   339
    with \<open>?f \<longlonglongrightarrow> l\<close>[THEN LIMSEQ_D]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   340
    obtain f_no where f: "\<And>n. n \<ge> f_no \<Longrightarrow> norm (?f n - l) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   341
      by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   342
    from \<open>0 < r\<close> \<open>?g \<longlonglongrightarrow> l\<close>[THEN LIMSEQ_D]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   343
    obtain g_no where g: "\<And>n. n \<ge> g_no \<Longrightarrow> norm (?g n - l) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   344
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   345
    have "norm (?Sa n - l) < r" if "n \<ge> (max (2 * f_no) (2 * g_no))" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   346
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   347
      from that have "n \<ge> 2 * f_no" and "n \<ge> 2 * g_no" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   348
      show ?thesis
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   349
      proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   350
        case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   351
        then have n_eq: "2 * (n div 2) = n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   352
          by (simp add: even_two_times_div_two)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   353
        with \<open>n \<ge> 2 * f_no\<close> have "n div 2 \<ge> f_no"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   354
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   355
        from f[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   356
          unfolding n_eq atLeastLessThanSuc_atLeastAtMost .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   357
      next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   358
        case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   359
        then have "even (n - 1)" by simp
58710
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   360
        then have n_eq: "2 * ((n - 1) div 2) = n - 1"
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   361
          by (simp add: even_two_times_div_two)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   362
        then have range_eq: "n - 1 + 1 = n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   363
          using odd_pos[OF False] by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   364
        from n_eq \<open>n \<ge> 2 * g_no\<close> have "(n - 1) div 2 \<ge> g_no"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   365
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   366
        from g[OF this] show ?thesis
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   367
          by (simp only: n_eq range_eq)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   368
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   369
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   370
    then show "\<exists>no. \<forall>n \<ge> no. norm (?Sa n - l) < r" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   371
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   372
  then have sums_l: "(\<lambda>i. (-1)^i * a i) sums l"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   373
    by (simp only: sums_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   374
  then show "summable ?S"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   375
    by (auto simp: summable_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   376
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   377
  have "l = suminf ?S" by (rule sums_unique[OF sums_l])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   378
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   379
  fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   380
  show "suminf ?S \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   381
    unfolding sums_unique[OF sums_l, symmetric] using above_l by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   382
  show "?f n \<le> suminf ?S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   383
    unfolding sums_unique[OF sums_l, symmetric] using below_l by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   384
  show "?g \<longlonglongrightarrow> suminf ?S"
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   385
    using \<open>?g \<longlonglongrightarrow> l\<close> \<open>l = suminf ?S\<close> by auto
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   386
  show "?f \<longlonglongrightarrow> suminf ?S"
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   387
    using \<open>?f \<longlonglongrightarrow> l\<close> \<open>l = suminf ?S\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   388
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   389
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   390
theorem summable_Leibniz:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   391
  fixes a :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   392
  assumes a_zero: "a \<longlonglongrightarrow> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   393
    and "monoseq a"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   394
  shows "summable (\<lambda> n. (-1)^n * a n)" (is "?summable")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   395
    and "0 < a 0 \<longrightarrow>
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   396
      (\<forall>n. (\<Sum>i. (- 1)^i*a i) \<in> { \<Sum>i<2*n. (- 1)^i * a i .. \<Sum>i<2*n+1. (- 1)^i * a i})" (is "?pos")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   397
    and "a 0 < 0 \<longrightarrow>
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   398
      (\<forall>n. (\<Sum>i. (- 1)^i*a i) \<in> { \<Sum>i<2*n+1. (- 1)^i * a i .. \<Sum>i<2*n. (- 1)^i * a i})" (is "?neg")
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   399
    and "(\<lambda>n. \<Sum>i<2*n. (- 1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (- 1)^i*a i)" (is "?f")
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   400
    and "(\<lambda>n. \<Sum>i<2*n+1. (- 1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (- 1)^i*a i)" (is "?g")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   401
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   402
  have "?summable \<and> ?pos \<and> ?neg \<and> ?f \<and> ?g"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   403
  proof (cases "(\<forall>n. 0 \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   404
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   405
    then have ord: "\<And>n m. m \<le> n \<Longrightarrow> a n \<le> a m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   406
      and ge0: "\<And>n. 0 \<le> a n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   407
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   408
    have mono: "a (Suc n) \<le> a n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   409
      using ord[where n="Suc n" and m=n] by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   410
    note leibniz = summable_Leibniz'[OF \<open>a \<longlonglongrightarrow> 0\<close> ge0]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   411
    from leibniz[OF mono]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   412
    show ?thesis using \<open>0 \<le> a 0\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   413
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   414
    let ?a = "\<lambda>n. - a n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   415
    case False
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   416
    with monoseq_le[OF \<open>monoseq a\<close> \<open>a \<longlonglongrightarrow> 0\<close>]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   417
    have "(\<forall> n. a n \<le> 0) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)" by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   418
    then have ord: "\<And>n m. m \<le> n \<Longrightarrow> ?a n \<le> ?a m" and ge0: "\<And> n. 0 \<le> ?a n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   419
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   420
    have monotone: "?a (Suc n) \<le> ?a n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   421
      using ord[where n="Suc n" and m=n] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   422
    note leibniz =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   423
      summable_Leibniz'[OF _ ge0, of "\<lambda>x. x",
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   424
        OF tendsto_minus[OF \<open>a \<longlonglongrightarrow> 0\<close>, unfolded minus_zero] monotone]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   425
    have "summable (\<lambda> n. (-1)^n * ?a n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   426
      using leibniz(1) by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   427
    then obtain l where "(\<lambda> n. (-1)^n * ?a n) sums l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   428
      unfolding summable_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   429
    from this[THEN sums_minus] have "(\<lambda> n. (-1)^n * a n) sums -l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   430
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   431
    then have ?summable by (auto simp: summable_def)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   432
    moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   433
    have "\<bar>- a - - b\<bar> = \<bar>a - b\<bar>" for a b :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   434
      unfolding minus_diff_minus by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   435
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   436
    from suminf_minus[OF leibniz(1), unfolded mult_minus_right minus_minus]
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   437
    have move_minus: "(\<Sum>n. - ((- 1) ^ n * a n)) = - (\<Sum>n. (- 1) ^ n * a n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   438
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   439
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   440
    have ?pos using \<open>0 \<le> ?a 0\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   441
    moreover have ?neg
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   442
      using leibniz(2,4)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   443
      unfolding mult_minus_right setsum_negf move_minus neg_le_iff_le
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   444
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   445
    moreover have ?f and ?g
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   446
      using leibniz(3,5)[unfolded mult_minus_right setsum_negf move_minus, THEN tendsto_minus_cancel]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   447
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   448
    ultimately show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   449
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
   450
  then show ?summable and ?pos and ?neg and ?f and ?g
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   451
    by safe
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   452
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   453
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   454
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   455
subsection \<open>Term-by-Term Differentiability of Power Series\<close>
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   456
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   457
definition diffs :: "(nat \<Rightarrow> 'a::ring_1) \<Rightarrow> nat \<Rightarrow> 'a"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   458
  where "diffs c = (\<lambda>n. of_nat (Suc n) * c (Suc n))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   459
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   460
text \<open>Lemma about distributing negation over it.\<close>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   461
lemma diffs_minus: "diffs (\<lambda>n. - c n) = (\<lambda>n. - diffs c n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   462
  by (simp add: diffs_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   463
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   464
lemma diffs_equiv:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   465
  fixes x :: "'a::{real_normed_vector,ring_1}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   466
  shows "summable (\<lambda>n. diffs c n * x^n) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   467
    (\<lambda>n. of_nat n * c n * x^(n - Suc 0)) sums (\<Sum>n. diffs c n * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   468
  unfolding diffs_def
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   469
  by (simp add: summable_sums sums_Suc_imp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   470
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   471
lemma lemma_termdiff1:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   472
  fixes z :: "'a :: {monoid_mult,comm_ring}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   473
  shows "(\<Sum>p<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   474
    (\<Sum>p<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   475
  by (auto simp add: algebra_simps power_add [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   476
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   477
lemma sumr_diff_mult_const2: "setsum f {..<n} - of_nat n * r = (\<Sum>i<n. f i - r)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   478
  for r :: "'a::ring_1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   479
  by (simp add: setsum_subtractf)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   480
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
   481
lemma lemma_realpow_rev_sumr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   482
  "(\<Sum>p<Suc n. (x ^ p) * (y ^ (n - p))) = (\<Sum>p<Suc n. (x ^ (n - p)) * (y ^ p))"
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
   483
  by (subst nat_diff_setsum_reindex[symmetric]) simp
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
   484
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   485
lemma lemma_termdiff2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   486
  fixes h :: "'a::field"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   487
  assumes h: "h \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   488
  shows "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   489
    h * (\<Sum>p< n - Suc 0. \<Sum>q< n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   490
    (is "?lhs = ?rhs")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   491
  apply (subgoal_tac "h * ?lhs = h * ?rhs")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   492
   apply (simp add: h)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   493
  apply (simp add: right_diff_distrib diff_divide_distrib h)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   494
  apply (simp add: mult.assoc [symmetric])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   495
  apply (cases n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   496
  apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   497
  apply (simp add: diff_power_eq_setsum h right_diff_distrib [symmetric] mult.assoc
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   498
      del: power_Suc setsum_lessThan_Suc of_nat_Suc)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   499
  apply (subst lemma_realpow_rev_sumr)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   500
  apply (subst sumr_diff_mult_const2)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   501
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   502
  apply (simp only: lemma_termdiff1 setsum_right_distrib)
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 57275
diff changeset
   503
  apply (rule setsum.cong [OF refl])
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   504
  apply (simp add: less_iff_Suc_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   505
  apply clarify
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
   506
  apply (simp add: setsum_right_distrib diff_power_eq_setsum ac_simps
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   507
      del: setsum_lessThan_Suc power_Suc)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   508
  apply (subst mult.assoc [symmetric], subst power_add [symmetric])
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   509
  apply (simp add: ac_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   510
  done
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   511
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   512
lemma real_setsum_nat_ivl_bounded2:
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34974
diff changeset
   513
  fixes K :: "'a::linordered_semidom"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   514
  assumes f: "\<And>p::nat. p < n \<Longrightarrow> f p \<le> K"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   515
    and K: "0 \<le> K"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   516
  shows "setsum f {..<n-k} \<le> of_nat n * K"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   517
  apply (rule order_trans [OF setsum_mono])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   518
   apply (rule f)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   519
   apply simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   520
  apply (simp add: mult_right_mono K)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   521
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   522
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   523
lemma lemma_termdiff3:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   524
  fixes h z :: "'a::real_normed_field"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   525
  assumes 1: "h \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   526
    and 2: "norm z \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   527
    and 3: "norm (z + h) \<le> K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   528
  shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   529
    of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   530
proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   531
  have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) =
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   532
    norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   533
    by (metis (lifting, no_types) lemma_termdiff2 [OF 1] mult.commute norm_mult)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   534
  also have "\<dots> \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   535
  proof (rule mult_right_mono [OF _ norm_ge_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   536
    from norm_ge_zero 2 have K: "0 \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   537
      by (rule order_trans)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   538
    have le_Kn: "\<And>i j n. i + j = n \<Longrightarrow> norm ((z + h) ^ i * z ^ j) \<le> K ^ n"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   539
      apply (erule subst)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   540
      apply (simp only: norm_mult norm_power power_add)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   541
      apply (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   542
      done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   543
    show "norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   544
        of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   545
      apply (intro
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   546
          order_trans [OF norm_setsum]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   547
          real_setsum_nat_ivl_bounded2
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   548
          mult_nonneg_nonneg
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   549
          of_nat_0_le_iff
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   550
          zero_le_power K)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   551
      apply (rule le_Kn)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   552
      apply simp
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   553
      done
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   554
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   555
  also have "\<dots> = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   556
    by (simp only: mult.assoc)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   557
  finally show ?thesis .
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   558
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   559
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   560
lemma lemma_termdiff4:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   561
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   562
    and k :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   563
  assumes k: "0 < k"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   564
    and le: "\<And>h. h \<noteq> 0 \<Longrightarrow> norm h < k \<Longrightarrow> norm (f h) \<le> K * norm h"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   565
  shows "f \<midarrow>0\<rightarrow> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   566
proof (rule tendsto_norm_zero_cancel)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   567
  show "(\<lambda>h. norm (f h)) \<midarrow>0\<rightarrow> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   568
  proof (rule real_tendsto_sandwich)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   569
    show "eventually (\<lambda>h. 0 \<le> norm (f h)) (at 0)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   570
      by simp
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   571
    show "eventually (\<lambda>h. norm (f h) \<le> K * norm h) (at 0)"
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   572
      using k by (auto simp add: eventually_at dist_norm le)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   573
    show "(\<lambda>h. 0) \<midarrow>(0::'a)\<rightarrow> (0::real)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   574
      by (rule tendsto_const)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   575
    have "(\<lambda>h. K * norm h) \<midarrow>(0::'a)\<rightarrow> K * norm (0::'a)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   576
      by (intro tendsto_intros)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   577
    then show "(\<lambda>h. K * norm h) \<midarrow>(0::'a)\<rightarrow> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   578
      by simp
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   579
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   580
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   581
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   582
lemma lemma_termdiff5:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   583
  fixes g :: "'a::real_normed_vector \<Rightarrow> nat \<Rightarrow> 'b::banach"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   584
    and k :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   585
  assumes k: "0 < k"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   586
    and f: "summable f"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   587
    and le: "\<And>h n. h \<noteq> 0 \<Longrightarrow> norm h < k \<Longrightarrow> norm (g h n) \<le> f n * norm h"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   588
  shows "(\<lambda>h. suminf (g h)) \<midarrow>0\<rightarrow> 0"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   589
proof (rule lemma_termdiff4 [OF k])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   590
  fix h :: 'a
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   591
  assume "h \<noteq> 0" and "norm h < k"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   592
  then have 1: "\<forall>n. norm (g h n) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   593
    by (simp add: le)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   594
  then have "\<exists>N. \<forall>n\<ge>N. norm (norm (g h n)) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   595
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   596
  moreover from f have 2: "summable (\<lambda>n. f n * norm h)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   597
    by (rule summable_mult2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   598
  ultimately have 3: "summable (\<lambda>n. norm (g h n))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   599
    by (rule summable_comparison_test)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   600
  then have "norm (suminf (g h)) \<le> (\<Sum>n. norm (g h n))"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   601
    by (rule summable_norm)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   602
  also from 1 3 2 have "(\<Sum>n. norm (g h n)) \<le> (\<Sum>n. f n * norm h)"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
   603
    by (rule suminf_le)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   604
  also from f have "(\<Sum>n. f n * norm h) = suminf f * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   605
    by (rule suminf_mult2 [symmetric])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   606
  finally show "norm (suminf (g h)) \<le> suminf f * norm h" .
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   607
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   608
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   609
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   610
(* FIXME: Long proofs *)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   611
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   612
lemma termdiffs_aux:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   613
  fixes x :: "'a::{real_normed_field,banach}"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   614
  assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   615
    and 2: "norm x < norm K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   616
  shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) \<midarrow>0\<rightarrow> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   617
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   618
  from dense [OF 2] obtain r where r1: "norm x < r" and r2: "r < norm K"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   619
    by fast
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   620
  from norm_ge_zero r1 have r: "0 < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   621
    by (rule order_le_less_trans)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   622
  then have r_neq_0: "r \<noteq> 0" by simp
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   623
  show ?thesis
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   624
  proof (rule lemma_termdiff5)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   625
    show "0 < r - norm x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   626
      using r1 by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   627
    from r r2 have "norm (of_real r::'a) < norm K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   628
      by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   629
    with 1 have "summable (\<lambda>n. norm (diffs (diffs c) n * (of_real r ^ n)))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   630
      by (rule powser_insidea)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   631
    then have "summable (\<lambda>n. diffs (diffs (\<lambda>n. norm (c n))) n * r ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   632
      using r by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   633
    then have "summable (\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   634
      by (rule diffs_equiv [THEN sums_summable])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   635
    also have "(\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0)) =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   636
      (\<lambda>n. diffs (\<lambda>m. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   637
      apply (rule ext)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   638
      apply (simp add: diffs_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   639
      apply (case_tac n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   640
       apply (simp_all add: r_neq_0)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   641
      done
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   642
    finally have "summable
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   643
      (\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   644
      by (rule diffs_equiv [THEN sums_summable])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   645
    also have
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   646
      "(\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0)) =
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   647
       (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   648
      apply (rule ext)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   649
      apply (case_tac n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   650
       apply simp
55417
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 54576
diff changeset
   651
      apply (rename_tac nat)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   652
      apply (case_tac nat)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   653
       apply simp
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   654
      apply (simp add: r_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   655
      done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   656
    finally show "summable (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" .
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   657
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   658
    fix h :: 'a
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   659
    fix n :: nat
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   660
    assume h: "h \<noteq> 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   661
    assume "norm h < r - norm x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   662
    then have "norm x + norm h < r" by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   663
    with norm_triangle_ineq have xh: "norm (x + h) < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   664
      by (rule order_le_less_trans)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   665
    show "norm (c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   666
      norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   667
      apply (simp only: norm_mult mult.assoc)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   668
      apply (rule mult_left_mono [OF _ norm_ge_zero])
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   669
      apply (simp add: mult.assoc [symmetric])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   670
      apply (metis h lemma_termdiff3 less_eq_real_def r1 xh)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   671
      done
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   672
  qed
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   673
qed
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19765
diff changeset
   674
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   675
lemma termdiffs:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   676
  fixes K x :: "'a::{real_normed_field,banach}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   677
  assumes 1: "summable (\<lambda>n. c n * K ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   678
    and 2: "summable (\<lambda>n. (diffs c) n * K ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   679
    and 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   680
    and 4: "norm x < norm K"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   681
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x^n) x :> (\<Sum>n. (diffs c) n * x^n)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   682
  unfolding DERIV_def
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   683
proof (rule LIM_zero_cancel)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   684
  show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x^n)) / h
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   685
            - suminf (\<lambda>n. diffs c n * x^n)) \<midarrow>0\<rightarrow> 0"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   686
  proof (rule LIM_equal2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   687
    show "0 < norm K - norm x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   688
      using 4 by (simp add: less_diff_eq)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   689
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   690
    fix h :: 'a
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   691
    assume "norm (h - 0) < norm K - norm x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   692
    then have "norm x + norm h < norm K" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   693
    then have 5: "norm (x + h) < norm K"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   694
      by (rule norm_triangle_ineq [THEN order_le_less_trans])
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   695
    have "summable (\<lambda>n. c n * x^n)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   696
      and "summable (\<lambda>n. c n * (x + h) ^ n)"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   697
      and "summable (\<lambda>n. diffs c n * x^n)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   698
      using 1 2 4 5 by (auto elim: powser_inside)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   699
    then have "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x^n)) / h - (\<Sum>n. diffs c n * x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   700
          (\<Sum>n. (c n * (x + h) ^ n - c n * x^n) / h - of_nat n * c n * x ^ (n - Suc 0))"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   701
      by (intro sums_unique sums_diff sums_divide diffs_equiv summable_sums)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   702
    then show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x^n)) / h - (\<Sum>n. diffs c n * x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   703
          (\<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0)))"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   704
      by (simp add: algebra_simps)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   705
  next
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   706
    show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) \<midarrow>0\<rightarrow> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   707
      by (rule termdiffs_aux [OF 3 4])
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   708
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   709
qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   710
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   711
subsection \<open>The Derivative of a Power Series Has the Same Radius of Convergence\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   712
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   713
lemma termdiff_converges:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   714
  fixes x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   715
  assumes K: "norm x < K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   716
    and sm: "\<And>x. norm x < K \<Longrightarrow> summable(\<lambda>n. c n * x ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   717
  shows "summable (\<lambda>n. diffs c n * x ^ n)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   718
proof (cases "x = 0")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   719
  case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   720
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   721
    using powser_sums_zero sums_summable by auto
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   722
next
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   723
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   724
  then have "K > 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   725
    using K less_trans zero_less_norm_iff by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   726
  then obtain r :: real where r: "norm x < norm r" "norm r < K" "r > 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   727
    using K False
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
   728
    by (auto simp: field_simps abs_less_iff add_pos_pos intro: that [of "(norm x + K) / 2"])
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   729
  have "(\<lambda>n. of_nat n * (x / of_real r) ^ n) \<longlonglongrightarrow> 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   730
    using r by (simp add: norm_divide powser_times_n_limit_0 [of "x / of_real r"])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   731
  then obtain N where N: "\<And>n. n\<ge>N \<Longrightarrow> real_of_nat n * norm x ^ n < r ^ n"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   732
    using r unfolding LIMSEQ_iff
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   733
    apply (drule_tac x=1 in spec)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   734
    apply (auto simp: norm_divide norm_mult norm_power field_simps)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   735
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   736
  have "summable (\<lambda>n. (of_nat n * c n) * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   737
    apply (rule summable_comparison_test' [of "\<lambda>n. norm(c n * (of_real r) ^ n)" N])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   738
     apply (rule powser_insidea [OF sm [of "of_real ((r+K)/2)"]])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   739
    using N r norm_of_real [of "r + K", where 'a = 'a]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   740
      apply (auto simp add: norm_divide norm_mult norm_power field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   741
    apply (fastforce simp: less_eq_real_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   742
    done
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   743
  then have "summable (\<lambda>n. (of_nat (Suc n) * c(Suc n)) * x ^ Suc n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   744
    using summable_iff_shift [of "\<lambda>n. of_nat n * c n * x ^ n" 1]
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   745
    by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   746
  then have "summable (\<lambda>n. (of_nat (Suc n) * c(Suc n)) * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   747
    using False summable_mult2 [of "\<lambda>n. (of_nat (Suc n) * c(Suc n) * x ^ n) * x" "inverse x"]
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60762
diff changeset
   748
    by (simp add: mult.assoc) (auto simp: ac_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   749
  then show ?thesis
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   750
    by (simp add: diffs_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   751
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   752
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   753
lemma termdiff_converges_all:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   754
  fixes x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   755
  assumes "\<And>x. summable (\<lambda>n. c n * x^n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   756
  shows "summable (\<lambda>n. diffs c n * x^n)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   757
  apply (rule termdiff_converges [where K = "1 + norm x"])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   758
  using assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   759
   apply auto
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   760
  done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   761
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   762
lemma termdiffs_strong:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   763
  fixes K x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   764
  assumes sm: "summable (\<lambda>n. c n * K ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   765
    and K: "norm x < norm K"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   766
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x^n) x :> (\<Sum>n. diffs c n * x^n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   767
proof -
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   768
  have K2: "norm ((of_real (norm K) + of_real (norm x)) / 2 :: 'a) < norm K"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   769
    using K
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
   770
    apply (auto simp: norm_divide field_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   771
    apply (rule le_less_trans [of _ "of_real (norm K) + of_real (norm x)"])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   772
     apply (auto simp: mult_2_right norm_triangle_mono)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   773
    done
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   774
  then have [simp]: "norm ((of_real (norm K) + of_real (norm x)) :: 'a) < norm K * 2"
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   775
    by simp
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   776
  have "summable (\<lambda>n. c n * (of_real (norm x + norm K) / 2) ^ n)"
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   777
    by (metis K2 summable_norm_cancel [OF powser_insidea [OF sm]] add.commute of_real_add)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   778
  moreover have "\<And>x. norm x < norm K \<Longrightarrow> summable (\<lambda>n. diffs c n * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   779
    by (blast intro: sm termdiff_converges powser_inside)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   780
  moreover have "\<And>x. norm x < norm K \<Longrightarrow> summable (\<lambda>n. diffs(diffs c) n * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   781
    by (blast intro: sm termdiff_converges powser_inside)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   782
  ultimately show ?thesis
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   783
    apply (rule termdiffs [where K = "of_real (norm x + norm K) / 2"])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   784
      apply (auto simp: field_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   785
    using K
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   786
    apply (simp_all add: of_real_add [symmetric] del: of_real_add)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   787
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   788
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   789
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   790
lemma termdiffs_strong_converges_everywhere:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   791
  fixes K x :: "'a::{real_normed_field,banach}"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   792
  assumes "\<And>y. summable (\<lambda>n. c n * y ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   793
  shows "((\<lambda>x. \<Sum>n. c n * x^n) has_field_derivative (\<Sum>n. diffs c n * x^n)) (at x)"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   794
  using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   795
  by (force simp del: of_real_add)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   796
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   797
lemma isCont_powser:
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   798
  fixes K x :: "'a::{real_normed_field,banach}"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   799
  assumes "summable (\<lambda>n. c n * K ^ n)"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   800
  assumes "norm x < norm K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   801
  shows "isCont (\<lambda>x. \<Sum>n. c n * x^n) x"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   802
  using termdiffs_strong[OF assms] by (blast intro!: DERIV_isCont)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   803
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   804
lemmas isCont_powser' = isCont_o2[OF _ isCont_powser]
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   805
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   806
lemma isCont_powser_converges_everywhere:
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   807
  fixes K x :: "'a::{real_normed_field,banach}"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   808
  assumes "\<And>y. summable (\<lambda>n. c n * y ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   809
  shows "isCont (\<lambda>x. \<Sum>n. c n * x^n) x"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   810
  using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   811
  by (force intro!: DERIV_isCont simp del: of_real_add)
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   812
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   813
lemma powser_limit_0:
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   814
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   815
  assumes s: "0 < s"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   816
    and sm: "\<And>x. norm x < s \<Longrightarrow> (\<lambda>n. a n * x ^ n) sums (f x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   817
  shows "(f \<longlongrightarrow> a 0) (at 0)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   818
proof -
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   819
  have "summable (\<lambda>n. a n * (of_real s / 2) ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   820
    apply (rule sums_summable [where l = "f (of_real s / 2)", OF sm])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   821
    using s
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   822
    apply (auto simp: norm_divide)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   823
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   824
  then have "((\<lambda>x. \<Sum>n. a n * x ^ n) has_field_derivative (\<Sum>n. diffs a n * 0 ^ n)) (at 0)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   825
    apply (rule termdiffs_strong)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   826
    using s
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   827
    apply (auto simp: norm_divide)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   828
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   829
  then have "isCont (\<lambda>x. \<Sum>n. a n * x ^ n) 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   830
    by (blast intro: DERIV_continuous)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   831
  then have "((\<lambda>x. \<Sum>n. a n * x ^ n) \<longlongrightarrow> a 0) (at 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   832
    by (simp add: continuous_within)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   833
  then show ?thesis
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   834
    apply (rule Lim_transform)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   835
    apply (auto simp add: LIM_eq)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   836
    apply (rule_tac x="s" in exI)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   837
    using s
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   838
    apply (auto simp: sm [THEN sums_unique])
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   839
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   840
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   841
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   842
lemma powser_limit_0_strong:
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   843
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   844
  assumes s: "0 < s"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   845
    and sm: "\<And>x. x \<noteq> 0 \<Longrightarrow> norm x < s \<Longrightarrow> (\<lambda>n. a n * x ^ n) sums (f x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   846
  shows "(f \<longlongrightarrow> a 0) (at 0)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   847
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   848
  have *: "((\<lambda>x. if x = 0 then a 0 else f x) \<longlongrightarrow> a 0) (at 0)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   849
    apply (rule powser_limit_0 [OF s])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   850
    apply (case_tac "x = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   851
     apply (auto simp add: powser_sums_zero sm)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   852
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   853
  show ?thesis
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   854
    apply (subst LIM_equal [where g = "(\<lambda>x. if x = 0 then a 0 else f x)"])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   855
     apply (simp_all add: *)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   856
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   857
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   858
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   859
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   860
subsection \<open>Derivability of power series\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   861
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   862
lemma DERIV_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   863
  fixes f :: "real \<Rightarrow> nat \<Rightarrow> real"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   864
  assumes DERIV_f: "\<And> n. DERIV (\<lambda> x. f x n) x0 :> (f' x0 n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   865
    and allf_summable: "\<And> x. x \<in> {a <..< b} \<Longrightarrow> summable (f x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   866
    and x0_in_I: "x0 \<in> {a <..< b}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   867
    and "summable (f' x0)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   868
    and "summable L"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   869
    and L_def: "\<And>n x y. x \<in> {a <..< b} \<Longrightarrow> y \<in> {a <..< b} \<Longrightarrow> \<bar>f x n - f y n\<bar> \<le> L n * \<bar>x - y\<bar>"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   870
  shows "DERIV (\<lambda> x. suminf (f x)) x0 :> (suminf (f' x0))"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   871
  unfolding DERIV_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   872
proof (rule LIM_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   873
  fix r :: real
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   874
  assume "0 < r" then have "0 < r/3" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   875
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   876
  obtain N_L where N_L: "\<And> n. N_L \<le> n \<Longrightarrow> \<bar> \<Sum> i. L (i + n) \<bar> < r/3"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   877
    using suminf_exist_split[OF \<open>0 < r/3\<close> \<open>summable L\<close>] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   878
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   879
  obtain N_f' where N_f': "\<And> n. N_f' \<le> n \<Longrightarrow> \<bar> \<Sum> i. f' x0 (i + n) \<bar> < r/3"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   880
    using suminf_exist_split[OF \<open>0 < r/3\<close> \<open>summable (f' x0)\<close>] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   881
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   882
  let ?N = "Suc (max N_L N_f')"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   883
  have "\<bar> \<Sum> i. f' x0 (i + ?N) \<bar> < r/3" (is "?f'_part < r/3")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   884
    and L_estimate: "\<bar> \<Sum> i. L (i + ?N) \<bar> < r/3"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   885
    using N_L[of "?N"] and N_f' [of "?N"] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   886
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   887
  let ?diff = "\<lambda>i x. (f (x0 + x) i - f x0 i) / x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   888
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   889
  let ?r = "r / (3 * real ?N)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   890
  from \<open>0 < r\<close> have "0 < ?r" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   891
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   892
  let ?s = "\<lambda>n. SOME s. 0 < s \<and> (\<forall> x. x \<noteq> 0 \<and> \<bar> x \<bar> < s \<longrightarrow> \<bar> ?diff n x - f' x0 n \<bar> < ?r)"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
   893
  define S' where "S' = Min (?s ` {..< ?N })"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   894
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   895
  have "0 < S'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   896
    unfolding S'_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   897
  proof (rule iffD2[OF Min_gr_iff])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   898
    show "\<forall>x \<in> (?s ` {..< ?N }). 0 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   899
    proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   900
      fix x
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   901
      assume "x \<in> ?s ` {..<?N}"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   902
      then obtain n where "x = ?s n" and "n \<in> {..<?N}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   903
        using image_iff[THEN iffD1] by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   904
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF \<open>0 < ?r\<close>, unfolded real_norm_def]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   905
      obtain s where s_bound: "0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   906
        by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   907
      have "0 < ?s n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   908
        by (rule someI2[where a=s]) (auto simp add: s_bound simp del: of_nat_Suc)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   909
      then show "0 < x" by (simp only: \<open>x = ?s n\<close>)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   910
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   911
  qed auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   912
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
   913
  define S where "S = min (min (x0 - a) (b - x0)) S'"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   914
  then have "0 < S" and S_a: "S \<le> x0 - a" and S_b: "S \<le> b - x0"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   915
    and "S \<le> S'" using x0_in_I and \<open>0 < S'\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   916
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   917
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   918
  have "\<bar>(suminf (f (x0 + x)) - suminf (f x0)) / x - suminf (f' x0)\<bar> < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   919
    if "x \<noteq> 0" and "\<bar>x\<bar> < S" for x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   920
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   921
    from that have x_in_I: "x0 + x \<in> {a <..< b}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   922
      using S_a S_b by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   923
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   924
    note diff_smbl = summable_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   925
    note div_smbl = summable_divide[OF diff_smbl]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   926
    note all_smbl = summable_diff[OF div_smbl \<open>summable (f' x0)\<close>]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   927
    note ign = summable_ignore_initial_segment[where k="?N"]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   928
    note diff_shft_smbl = summable_diff[OF ign[OF allf_summable[OF x_in_I]] ign[OF allf_summable[OF x0_in_I]]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   929
    note div_shft_smbl = summable_divide[OF diff_shft_smbl]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   930
    note all_shft_smbl = summable_diff[OF div_smbl ign[OF \<open>summable (f' x0)\<close>]]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   931
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   932
    have 1: "\<bar>(\<bar>?diff (n + ?N) x\<bar>)\<bar> \<le> L (n + ?N)" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   933
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   934
      have "\<bar>?diff (n + ?N) x\<bar> \<le> L (n + ?N) * \<bar>(x0 + x) - x0\<bar> / \<bar>x\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   935
        using divide_right_mono[OF L_def[OF x_in_I x0_in_I] abs_ge_zero]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   936
        by (simp only: abs_divide)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   937
      with \<open>x \<noteq> 0\<close> show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   938
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   939
    note 2 = summable_rabs_comparison_test[OF _ ign[OF \<open>summable L\<close>]]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   940
    from 1 have "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> (\<Sum> i. L (i + ?N))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   941
      by (metis (lifting) abs_idempotent
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   942
          order_trans[OF summable_rabs[OF 2] suminf_le[OF _ 2 ign[OF \<open>summable L\<close>]]])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   943
    then have "\<bar>\<Sum>i. ?diff (i + ?N) x\<bar> \<le> r / 3" (is "?L_part \<le> r/3")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   944
      using L_estimate by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   945
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   946
    have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n\<bar> \<le> (\<Sum>n<?N. \<bar>?diff n x - f' x0 n\<bar>)" ..
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   947
    also have "\<dots> < (\<Sum>n<?N. ?r)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   948
    proof (rule setsum_strict_mono)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   949
      fix n
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   950
      assume "n \<in> {..< ?N}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   951
      have "\<bar>x\<bar> < S" using \<open>\<bar>x\<bar> < S\<close> .
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   952
      also have "S \<le> S'" using \<open>S \<le> S'\<close> .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   953
      also have "S' \<le> ?s n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   954
        unfolding S'_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   955
      proof (rule Min_le_iff[THEN iffD2])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   956
        have "?s n \<in> (?s ` {..<?N}) \<and> ?s n \<le> ?s n"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   957
          using \<open>n \<in> {..< ?N}\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   958
        then show "\<exists> a \<in> (?s ` {..<?N}). a \<le> ?s n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   959
          by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   960
      qed auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   961
      finally have "\<bar>x\<bar> < ?s n" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   962
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   963
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF \<open>0 < ?r\<close>,
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   964
          unfolded real_norm_def diff_0_right, unfolded some_eq_ex[symmetric], THEN conjunct2]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   965
      have "\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < ?s n \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r" .
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   966
      with \<open>x \<noteq> 0\<close> and \<open>\<bar>x\<bar> < ?s n\<close> show "\<bar>?diff n x - f' x0 n\<bar> < ?r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   967
        by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   968
    qed auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   969
    also have "\<dots> = of_nat (card {..<?N}) * ?r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   970
      by (rule setsum_constant)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   971
    also have "\<dots> = real ?N * ?r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   972
      by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   973
    also have "\<dots> = r/3"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   974
      by (auto simp del: of_nat_Suc)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   975
    finally have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n \<bar> < r / 3" (is "?diff_part < r / 3") .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   976
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   977
    from suminf_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   978
    have "\<bar>(suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0)\<bar> =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   979
        \<bar>\<Sum>n. ?diff n x - f' x0 n\<bar>"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   980
      unfolding suminf_diff[OF div_smbl \<open>summable (f' x0)\<close>, symmetric]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   981
      using suminf_divide[OF diff_smbl, symmetric] by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   982
    also have "\<dots> \<le> ?diff_part + \<bar>(\<Sum>n. ?diff (n + ?N) x) - (\<Sum> n. f' x0 (n + ?N))\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   983
      unfolding suminf_split_initial_segment[OF all_smbl, where k="?N"]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   984
      unfolding suminf_diff[OF div_shft_smbl ign[OF \<open>summable (f' x0)\<close>]]
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   985
      apply (subst (5) add.commute)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   986
      apply (rule abs_triangle_ineq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   987
      done
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   988
    also have "\<dots> \<le> ?diff_part + ?L_part + ?f'_part"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   989
      using abs_triangle_ineq4 by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   990
    also have "\<dots> < r /3 + r/3 + r/3"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   991
      using \<open>?diff_part < r/3\<close> \<open>?L_part \<le> r/3\<close> and \<open>?f'_part < r/3\<close>
36842
99745a4b9cc9 fix some linarith_split_limit warnings
huffman
parents: 36824
diff changeset
   992
      by (rule add_strict_mono [OF add_less_le_mono])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   993
    finally show ?thesis
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   994
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   995
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   996
  then show "\<exists>s > 0. \<forall> x. x \<noteq> 0 \<and> norm (x - 0) < s \<longrightarrow>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   997
      norm (((\<Sum>n. f (x0 + x) n) - (\<Sum>n. f x0 n)) / x - (\<Sum>n. f' x0 n)) < r"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   998
    using \<open>0 < S\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   999
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1000
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1001
lemma DERIV_power_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1002
  fixes f :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1003
  assumes converges: "\<And>x. x \<in> {-R <..< R} \<Longrightarrow> summable (\<lambda>n. f n * real (Suc n) * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1004
    and x0_in_I: "x0 \<in> {-R <..< R}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1005
    and "0 < R"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1006
  shows "DERIV (\<lambda>x. (\<Sum>n. f n * x^(Suc n))) x0 :> (\<Sum>n. f n * real (Suc n) * x0^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1007
    (is "DERIV (\<lambda>x. suminf (?f x)) x0 :> suminf (?f' x0)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1008
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1009
  have for_subinterval: "DERIV (\<lambda>x. suminf (?f x)) x0 :> suminf (?f' x0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1010
    if "0 < R'" and "R' < R" and "-R' < x0" and "x0 < R'" for R'
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1011
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1012
    from that have "x0 \<in> {-R' <..< R'}" and "R' \<in> {-R <..< R}" and "x0 \<in> {-R <..< R}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1013
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1014
    show ?thesis
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1015
    proof (rule DERIV_series')
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1016
      show "summable (\<lambda> n. \<bar>f n * real (Suc n) * R'^n\<bar>)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1017
      proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1018
        have "(R' + R) / 2 < R" and "0 < (R' + R) / 2"
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1019
          using \<open>0 < R'\<close> \<open>0 < R\<close> \<open>R' < R\<close> by (auto simp: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1020
        then have in_Rball: "(R' + R) / 2 \<in> {-R <..< R}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1021
          using \<open>R' < R\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1022
        have "norm R' < norm ((R' + R) / 2)"
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1023
          using \<open>0 < R'\<close> \<open>0 < R\<close> \<open>R' < R\<close> by (auto simp: field_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1024
        from powser_insidea[OF converges[OF in_Rball] this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1025
          by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1026
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1027
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1028
      fix n x y
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1029
      assume "x \<in> {-R' <..< R'}" and "y \<in> {-R' <..< R'}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1030
      show "\<bar>?f x n - ?f y n\<bar> \<le> \<bar>f n * real (Suc n) * R'^n\<bar> * \<bar>x-y\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1031
      proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1032
        have "\<bar>f n * x ^ (Suc n) - f n * y ^ (Suc n)\<bar> =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1033
          (\<bar>f n\<bar> * \<bar>x-y\<bar>) * \<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1034
          unfolding right_diff_distrib[symmetric] diff_power_eq_setsum abs_mult
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1035
          by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1036
        also have "\<dots> \<le> (\<bar>f n\<bar> * \<bar>x-y\<bar>) * (\<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1037
        proof (rule mult_left_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1038
          have "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> (\<Sum>p<Suc n. \<bar>x ^ p * y ^ (n - p)\<bar>)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1039
            by (rule setsum_abs)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1040
          also have "\<dots> \<le> (\<Sum>p<Suc n. R' ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1041
          proof (rule setsum_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1042
            fix p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1043
            assume "p \<in> {..<Suc n}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1044
            then have "p \<le> n" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1045
            have "\<bar>x^n\<bar> \<le> R'^n" if  "x \<in> {-R'<..<R'}" for n and x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1046
            proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1047
              from that have "\<bar>x\<bar> \<le> R'" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1048
              then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1049
                unfolding power_abs by (rule power_mono) auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1050
            qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1051
            from mult_mono[OF this[OF \<open>x \<in> {-R'<..<R'}\<close>, of p] this[OF \<open>y \<in> {-R'<..<R'}\<close>, of "n-p"]]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1052
              and \<open>0 < R'\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1053
            have "\<bar>x^p * y^(n - p)\<bar> \<le> R'^p * R'^(n - p)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1054
              unfolding abs_mult by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1055
            then show "\<bar>x^p * y^(n - p)\<bar> \<le> R'^n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1056
              unfolding power_add[symmetric] using \<open>p \<le> n\<close> by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1057
          qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1058
          also have "\<dots> = real (Suc n) * R' ^ n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1059
            unfolding setsum_constant card_atLeastLessThan by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1060
          finally show "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> \<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1061
            unfolding abs_of_nonneg[OF zero_le_power[OF less_imp_le[OF \<open>0 < R'\<close>]]]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1062
            by linarith
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1063
          show "0 \<le> \<bar>f n\<bar> * \<bar>x - y\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1064
            unfolding abs_mult[symmetric] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1065
        qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1066
        also have "\<dots> = \<bar>f n * real (Suc n) * R' ^ n\<bar> * \<bar>x - y\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1067
          unfolding abs_mult mult.assoc[symmetric] by algebra
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1068
        finally show ?thesis .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1069
      qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1070
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1071
      show "DERIV (\<lambda>x. ?f x n) x0 :> ?f' x0 n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1072
        by (auto intro!: derivative_eq_intros simp del: power_Suc)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1073
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1074
      fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1075
      assume "x \<in> {-R' <..< R'}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1076
      then have "R' \<in> {-R <..< R}" and "norm x < norm R'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1077
        using assms \<open>R' < R\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1078
      have "summable (\<lambda>n. f n * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1079
      proof (rule summable_comparison_test, intro exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1080
        fix n
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1081
        have le: "\<bar>f n\<bar> * 1 \<le> \<bar>f n\<bar> * real (Suc n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1082
          by (rule mult_left_mono) auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1083
        show "norm (f n * x^n) \<le> norm (f n * real (Suc n) * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1084
          unfolding real_norm_def abs_mult
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1085
          using le mult_right_mono by fastforce
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1086
      qed (rule powser_insidea[OF converges[OF \<open>R' \<in> {-R <..< R}\<close>] \<open>norm x < norm R'\<close>])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1087
      from this[THEN summable_mult2[where c=x], simplified mult.assoc, simplified mult.commute]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1088
      show "summable (?f x)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1089
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1090
      show "summable (?f' x0)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1091
        using converges[OF \<open>x0 \<in> {-R <..< R}\<close>] .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1092
      show "x0 \<in> {-R' <..< R'}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1093
        using \<open>x0 \<in> {-R' <..< R'}\<close> .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1094
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1095
  qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1096
  let ?R = "(R + \<bar>x0\<bar>) / 2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1097
  have "\<bar>x0\<bar> < ?R"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1098
    using assms by (auto simp: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1099
  then have "- ?R < x0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1100
  proof (cases "x0 < 0")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1101
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1102
    then have "- x0 < ?R"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1103
      using \<open>\<bar>x0\<bar> < ?R\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1104
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1105
      unfolding neg_less_iff_less[symmetric, of "- x0"] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1106
  next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1107
    case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1108
    have "- ?R < 0" using assms by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1109
    also have "\<dots> \<le> x0" using False by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1110
    finally show ?thesis .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1111
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1112
  then have "0 < ?R" "?R < R" "- ?R < x0" and "x0 < ?R"
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1113
    using assms by (auto simp: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1114
  from for_subinterval[OF this] show ?thesis .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1115
qed
29695
171146a93106 Added real related theorems from Fact.thy
chaieb
parents: 29667
diff changeset
  1116
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1117
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1118
lemma isCont_pochhammer [continuous_intros]: "isCont (\<lambda>z. pochhammer z n) z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1119
  for z :: "'a::real_normed_field"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1120
  by (induct n) (auto simp: pochhammer_rec')
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1121
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1122
lemma continuous_on_pochhammer [continuous_intros]: "continuous_on A (\<lambda>z. pochhammer z n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1123
  for A :: "'a::real_normed_field set"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1124
  by (intro continuous_at_imp_continuous_on ballI isCont_pochhammer)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1125
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1126
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1127
subsection \<open>Exponential Function\<close>
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1128
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1129
definition exp :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1130
  where "exp = (\<lambda>x. \<Sum>n. x^n /\<^sub>R fact n)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1131
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1132
lemma summable_exp_generic:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
  1133
  fixes x :: "'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1134
  defines S_def: "S \<equiv> \<lambda>n. x^n /\<^sub>R fact n"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1135
  shows "summable S"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1136
proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1137
  have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
  1138
    unfolding S_def by (simp del: mult_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1139
  obtain r :: real where r0: "0 < r" and r1: "r < 1"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1140
    using dense [OF zero_less_one] by fast
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1141
  obtain N :: nat where N: "norm x < real N * r"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1142
    using ex_less_of_nat_mult r0 by auto
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1143
  from r1 show ?thesis
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1144
  proof (rule summable_ratio_test [rule_format])
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1145
    fix n :: nat
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1146
    assume n: "N \<le> n"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1147
    have "norm x \<le> real N * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1148
      using N by (rule order_less_imp_le)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1149
    also have "real N * r \<le> real (Suc n) * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1150
      using r0 n by (simp add: mult_right_mono)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1151
    finally have "norm x * norm (S n) \<le> real (Suc n) * r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1152
      using norm_ge_zero by (rule mult_right_mono)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1153
    then have "norm (x * S n) \<le> real (Suc n) * r * norm (S n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1154
      by (rule order_trans [OF norm_mult_ineq])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1155
    then have "norm (x * S n) / real (Suc n) \<le> r * norm (S n)"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1156
      by (simp add: pos_divide_le_eq ac_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1157
    then show "norm (S (Suc n)) \<le> r * norm (S n)"
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1158
      by (simp add: S_Suc inverse_eq_divide)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1159
  qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1160
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1161
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1162
lemma summable_norm_exp: "summable (\<lambda>n. norm (x^n /\<^sub>R fact n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1163
  for x :: "'a::{real_normed_algebra_1,banach}"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1164
proof (rule summable_norm_comparison_test [OF exI, rule_format])
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1165
  show "summable (\<lambda>n. norm x^n /\<^sub>R fact n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1166
    by (rule summable_exp_generic)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1167
  show "norm (x^n /\<^sub>R fact n) \<le> norm x^n /\<^sub>R fact n" for n
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1168
    by (simp add: norm_power_ineq)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1169
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1170
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1171
lemma summable_exp: "summable (\<lambda>n. inverse (fact n) * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1172
  for x :: "'a::{real_normed_field,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1173
  using summable_exp_generic [where x=x]
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1174
  by (simp add: scaleR_conv_of_real nonzero_of_real_inverse)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1175
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1176
lemma exp_converges: "(\<lambda>n. x^n /\<^sub>R fact n) sums exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1177
  unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1178
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1179
lemma exp_fdiffs:
60241
wenzelm
parents: 60036
diff changeset
  1180
  "diffs (\<lambda>n. inverse (fact n)) = (\<lambda>n. inverse (fact n :: 'a::{real_normed_field,banach}))"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1181
  by (simp add: diffs_def mult_ac nonzero_inverse_mult_distrib nonzero_of_real_inverse
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1182
      del: mult_Suc of_nat_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1183
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1184
lemma diffs_of_real: "diffs (\<lambda>n. of_real (f n)) = (\<lambda>n. of_real (diffs f n))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1185
  by (simp add: diffs_def)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1186
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1187
lemma DERIV_exp [simp]: "DERIV exp x :> exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1188
  unfolding exp_def scaleR_conv_of_real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1189
  apply (rule DERIV_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1190
   apply (rule termdiffs [where K="of_real (1 + norm x)"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1191
      apply (simp_all only: diffs_of_real scaleR_conv_of_real exp_fdiffs)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1192
     apply (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])+
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1193
  apply (simp del: of_real_add)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1194
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1195
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1196
declare DERIV_exp[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1197
  and DERIV_exp[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1198
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1199
lemma norm_exp: "norm (exp x) \<le> exp (norm x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1200
proof -
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1201
  from summable_norm[OF summable_norm_exp, of x]
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1202
  have "norm (exp x) \<le> (\<Sum>n. inverse (fact n) * norm (x^n))"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1203
    by (simp add: exp_def)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1204
  also have "\<dots> \<le> exp (norm x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1205
    using summable_exp_generic[of "norm x"] summable_norm_exp[of x]
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1206
    by (auto simp: exp_def intro!: suminf_le norm_power_ineq)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1207
  finally show ?thesis .
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1208
qed
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1209
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1210
lemma isCont_exp: "isCont exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1211
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1212
  by (rule DERIV_exp [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1213
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1214
lemma isCont_exp' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. exp (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1215
  for f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1216
  by (rule isCont_o2 [OF _ isCont_exp])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1217
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1218
lemma tendsto_exp [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. exp (f x)) \<longlongrightarrow> exp a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1219
  for f:: "_ \<Rightarrow>'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1220
  by (rule isCont_tendsto_compose [OF isCont_exp])
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1221
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1222
lemma continuous_exp [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. exp (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1223
  for f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1224
  unfolding continuous_def by (rule tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1225
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1226
lemma continuous_on_exp [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. exp (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1227
  for f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1228
  unfolding continuous_on_def by (auto intro: tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1229
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1230
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1231
subsubsection \<open>Properties of the Exponential Function\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1232
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1233
lemma exp_zero [simp]: "exp 0 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1234
  unfolding exp_def by (simp add: scaleR_conv_of_real)
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1235
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1236
lemma exp_series_add_commuting:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1237
  fixes x y :: "'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1238
  defines S_def: "S \<equiv> \<lambda>x n. x^n /\<^sub>R fact n"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1239
  assumes comm: "x * y = y * x"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1240
  shows "S (x + y) n = (\<Sum>i\<le>n. S x i * S y (n - i))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1241
proof (induct n)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1242
  case 0
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1243
  show ?case
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1244
    unfolding S_def by simp
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1245
next
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1246
  case (Suc n)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1247
  have S_Suc: "\<And>x n. S x (Suc n) = (x * S x n) /\<^sub>R real (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
  1248
    unfolding S_def by (simp del: mult_Suc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1249
  then have times_S: "\<And>x n. x * S x n = real (Suc n) *\<^sub>R S x (Suc n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1250
    by simp
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1251
  have S_comm: "\<And>n. S x n * y = y * S x n"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1252
    by (simp add: power_commuting_commutes comm S_def)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1253
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1254
  have "real (Suc n) *\<^sub>R S (x + y) (Suc n) = (x + y) * S (x + y) n"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1255
    by (simp only: times_S)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1256
  also have "\<dots> = (x + y) * (\<Sum>i\<le>n. S x i * S y (n - i))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1257
    by (simp only: Suc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1258
  also have "\<dots> = x * (\<Sum>i\<le>n. S x i * S y (n - i)) + y * (\<Sum>i\<le>n. S x i * S y (n - i))"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  1259
    by (rule distrib_right)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1260
  also have "\<dots> = (\<Sum>i\<le>n. x * S x i * S y (n - i)) + (\<Sum>i\<le>n. S x i * y * S y (n - i))"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1261
    by (simp add: setsum_right_distrib ac_simps S_comm)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1262
  also have "\<dots> = (\<Sum>i\<le>n. x * S x i * S y (n - i)) + (\<Sum>i\<le>n. S x i * (y * S y (n - i)))"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1263
    by (simp add: ac_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1264
  also have "\<dots> = (\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n - i))) +
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1265
      (\<Sum>i\<le>n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1266
    by (simp add: times_S Suc_diff_le)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1267
  also have "(\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n - i))) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1268
      (\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n - i)))"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1269
    by (subst setsum_atMost_Suc_shift) simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1270
  also have "(\<Sum>i\<le>n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i))) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1271
      (\<Sum>i\<le>Suc n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i)))"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1272
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1273
  also have "(\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n - i))) +
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1274
        (\<Sum>i\<le>Suc n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i))) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1275
      (\<Sum>i\<le>Suc n. real (Suc n) *\<^sub>R (S x i * S y (Suc n - i)))"
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 57275
diff changeset
  1276
    by (simp only: setsum.distrib [symmetric] scaleR_left_distrib [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1277
        of_nat_add [symmetric]) simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1278
  also have "\<dots> = real (Suc n) *\<^sub>R (\<Sum>i\<le>Suc n. S x i * S y (Suc n - i))"
23127
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23115
diff changeset
  1279
    by (simp only: scaleR_right.setsum)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1280
  finally show "S (x + y) (Suc n) = (\<Sum>i\<le>Suc n. S x i * S y (Suc n - i))"
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1281
    by (simp del: setsum_cl_ivl_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1282
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1283
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1284
lemma exp_add_commuting: "x * y = y * x \<Longrightarrow> exp (x + y) = exp x * exp y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1285
  by (simp only: exp_def Cauchy_product summable_norm_exp exp_series_add_commuting)
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1286
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1287
lemma exp_times_arg_commute: "exp A * A = A * exp A"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1288
  by (simp add: exp_def suminf_mult[symmetric] summable_exp_generic power_commutes suminf_mult2)
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1289
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1290
lemma exp_add: "exp (x + y) = exp x * exp y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1291
  for x y :: "'a::{real_normed_field,banach}"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1292
  by (rule exp_add_commuting) (simp add: ac_simps)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1293
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1294
lemma exp_double: "exp(2 * z) = exp z ^ 2"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1295
  by (simp add: exp_add_commuting mult_2 power2_eq_square)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1296
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1297
lemmas mult_exp_exp = exp_add [symmetric]
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1298
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1299
lemma exp_of_real: "exp (of_real x) = of_real (exp x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1300
  unfolding exp_def
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1301
  apply (subst suminf_of_real)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1302
   apply (rule summable_exp_generic)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1303
  apply (simp add: scaleR_conv_of_real)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1304
  done
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1305
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1306
corollary exp_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> exp z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1307
  by (metis Reals_cases Reals_of_real exp_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1308
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1309
lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1310
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1311
  have "exp x * exp (- x) = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1312
    by (simp add: exp_add_commuting[symmetric])
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1313
  also assume "exp x = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1314
  finally show False by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1315
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1316
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1317
lemma exp_minus_inverse: "exp x * exp (- x) = 1"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1318
  by (simp add: exp_add_commuting[symmetric])
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1319
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1320
lemma exp_minus: "exp (- x) = inverse (exp x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1321
  for x :: "'a::{real_normed_field,banach}"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1322
  by (intro inverse_unique [symmetric] exp_minus_inverse)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1323
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1324
lemma exp_diff: "exp (x - y) = exp x / exp y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1325
  for x :: "'a::{real_normed_field,banach}"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  1326
  using exp_add [of x "- y"] by (simp add: exp_minus divide_inverse)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1327
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1328
lemma exp_of_nat_mult: "exp (of_nat n * x) = exp x ^ n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1329
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1330
  by (induct n) (auto simp add: distrib_left exp_add mult.commute)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1331
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1332
corollary exp_real_of_nat_mult: "exp (real n * x) = exp x ^ n"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1333
  by (simp add: exp_of_nat_mult)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1334
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1335
lemma exp_setsum: "finite I \<Longrightarrow> exp (setsum f I) = setprod (\<lambda>x. exp (f x)) I"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1336
  by (induct I rule: finite_induct) (auto simp: exp_add_commuting mult.commute)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1337
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1338
lemma exp_divide_power_eq:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1339
  fixes x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1340
  assumes "n > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1341
  shows "exp (x / of_nat n) ^ n = exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1342
  using assms
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1343
proof (induction n arbitrary: x)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1344
  case 0
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1345
  then show ?case by simp
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1346
next
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1347
  case (Suc n)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1348
  show ?case
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1349
  proof (cases "n = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1350
    case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1351
    then show ?thesis by simp
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1352
  next
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1353
    case False
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1354
    then have [simp]: "x * of_nat n / (1 + of_nat n) / of_nat n = x / (1 + of_nat n)"
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1355
      by simp
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1356
    have [simp]: "x / (1 + of_nat n) + x * of_nat n / (1 + of_nat n) = x"
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1357
      apply (simp add: divide_simps)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1358
      using of_nat_eq_0_iff apply (fastforce simp: distrib_left)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1359
      done
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1360
    show ?thesis
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1361
      using Suc.IH [of "x * of_nat n / (1 + of_nat n)"] False
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1362
      by (simp add: exp_add [symmetric])
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1363
  qed
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1364
qed
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1365
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1366
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1367
subsubsection \<open>Properties of the Exponential Function on Reals\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1368
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1369
text \<open>Comparisons of @{term "exp x"} with zero.\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1370
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1371
text \<open>Proof: because every exponential can be seen as a square.\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1372
lemma exp_ge_zero [simp]: "0 \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1373
  for x :: real
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1374
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1375
  have "0 \<le> exp (x/2) * exp (x/2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1376
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1377
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1378
    by (simp add: exp_add [symmetric])
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1379
qed
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1380
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1381
lemma exp_gt_zero [simp]: "0 < exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1382
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1383
  by (simp add: order_less_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1384
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1385
lemma not_exp_less_zero [simp]: "\<not> exp x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1386
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1387
  by (simp add: not_less)
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1388
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1389
lemma not_exp_le_zero [simp]: "\<not> exp x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1390
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1391
  by (simp add: not_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1392
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1393
lemma abs_exp_cancel [simp]: "\<bar>exp x\<bar> = exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1394
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1395
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1396
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1397
text \<open>Strict monotonicity of exponential.\<close>
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1398
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1399
lemma exp_ge_add_one_self_aux:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1400
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1401
  assumes "0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1402
  shows "1 + x \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1403
  using order_le_imp_less_or_eq [OF assms]
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1404
proof
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1405
  assume "0 < x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1406
  have "1 + x \<le> (\<Sum>n<2. inverse (fact n) * x^n)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1407
    by (auto simp add: numeral_2_eq_2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1408
  also have "\<dots> \<le> (\<Sum>n. inverse (fact n) * x^n)"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1409
    apply (rule setsum_le_suminf [OF summable_exp])
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1410
    using \<open>0 < x\<close>
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1411
    apply (auto  simp add:  zero_le_mult_iff)
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1412
    done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1413
  finally show "1 + x \<le> exp x"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1414
    by (simp add: exp_def)
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1415
next
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1416
  assume "0 = x"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1417
  then show "1 + x \<le> exp x"
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1418
    by auto
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1419
qed
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1420
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1421
lemma exp_gt_one: "0 < x \<Longrightarrow> 1 < exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1422
  for x :: real
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1423
proof -
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1424
  assume x: "0 < x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1425
  then have "1 < 1 + x" by simp
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1426
  also from x have "1 + x \<le> exp x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1427
    by (simp add: exp_ge_add_one_self_aux)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1428
  finally show ?thesis .
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1429
qed
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1430
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1431
lemma exp_less_mono:
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1432
  fixes x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1433
  assumes "x < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1434
  shows "exp x < exp y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1435
proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1436
  from \<open>x < y\<close> have "0 < y - x" by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1437
  then have "1 < exp (y - x)" by (rule exp_gt_one)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1438
  then have "1 < exp y / exp x" by (simp only: exp_diff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1439
  then show "exp x < exp y" by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1440
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1441
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1442
lemma exp_less_cancel: "exp x < exp y \<Longrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1443
  for x y :: real
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1444
  unfolding linorder_not_le [symmetric]
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1445
  by (auto simp add: order_le_less exp_less_mono)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1446
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1447
lemma exp_less_cancel_iff [iff]: "exp x < exp y \<longleftrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1448
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1449
  by (auto intro: exp_less_mono exp_less_cancel)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1450
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1451
lemma exp_le_cancel_iff [iff]: "exp x \<le> exp y \<longleftrightarrow> x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1452
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1453
  by (auto simp add: linorder_not_less [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1454
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1455
lemma exp_inj_iff [iff]: "exp x = exp y \<longleftrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1456
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1457
  by (simp add: order_eq_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1458
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1459
text \<open>Comparisons of @{term "exp x"} with one.\<close>
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1460
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1461
lemma one_less_exp_iff [simp]: "1 < exp x \<longleftrightarrow> 0 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1462
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1463
  using exp_less_cancel_iff [where x = 0 and y = x] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1464
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1465
lemma exp_less_one_iff [simp]: "exp x < 1 \<longleftrightarrow> x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1466
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1467
  using exp_less_cancel_iff [where x = x and y = 0] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1468
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1469
lemma one_le_exp_iff [simp]: "1 \<le> exp x \<longleftrightarrow> 0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1470
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1471
  using exp_le_cancel_iff [where x = 0 and y = x] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1472
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1473
lemma exp_le_one_iff [simp]: "exp x \<le> 1 \<longleftrightarrow> x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1474
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1475
  using exp_le_cancel_iff [where x = x and y = 0] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1476
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1477
lemma exp_eq_one_iff [simp]: "exp x = 1 \<longleftrightarrow> x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1478
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1479
  using exp_inj_iff [where x = x and y = 0] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1480
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1481
lemma lemma_exp_total: "1 \<le> y \<Longrightarrow> \<exists>x. 0 \<le> x \<and> x \<le> y - 1 \<and> exp x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1482
  for y :: real
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1483
proof (rule IVT)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1484
  assume "1 \<le> y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1485
  then have "0 \<le> y - 1" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1486
  then have "1 + (y - 1) \<le> exp (y - 1)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1487
    by (rule exp_ge_add_one_self_aux)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1488
  then show "y \<le> exp (y - 1)" by simp
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1489
qed (simp_all add: le_diff_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1490
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1491
lemma exp_total: "0 < y \<Longrightarrow> \<exists>x. exp x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1492
  for y :: real
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1493
proof (rule linorder_le_cases [of 1 y])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1494
  assume "1 \<le> y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1495
  then show "\<exists>x. exp x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1496
    by (fast dest: lemma_exp_total)
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1497
next
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1498
  assume "0 < y" and "y \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1499
  then have "1 \<le> inverse y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1500
    by (simp add: one_le_inverse_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1501
  then obtain x where "exp x = inverse y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1502
    by (fast dest: lemma_exp_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1503
  then have "exp (- x) = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1504
    by (simp add: exp_minus)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1505
  then show "\<exists>x. exp x = y" ..
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1506
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1507
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1508
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1509
subsection \<open>Natural Logarithm\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1510
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1511
class ln = real_normed_algebra_1 + banach +
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1512
  fixes ln :: "'a \<Rightarrow> 'a"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1513
  assumes ln_one [simp]: "ln 1 = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1514
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1515
definition powr :: "'a \<Rightarrow> 'a \<Rightarrow> 'a::ln"  (infixr "powr" 80)
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61762
diff changeset
  1516
  \<comment> \<open>exponentation via ln and exp\<close>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1517
  where  [code del]: "x powr a \<equiv> if x = 0 then 0 else exp (a * ln x)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1518
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1519
lemma powr_0 [simp]: "0 powr z = 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1520
  by (simp add: powr_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1521
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1522
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1523
instantiation real :: ln
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1524
begin
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1525
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1526
definition ln_real :: "real \<Rightarrow> real"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1527
  where "ln_real x = (THE u. exp u = x)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1528
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1529
instance
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1530
  by intro_classes (simp add: ln_real_def)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1531
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1532
end
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1533
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1534
lemma powr_eq_0_iff [simp]: "w powr z = 0 \<longleftrightarrow> w = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1535
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1536
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1537
lemma ln_exp [simp]: "ln (exp x) = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1538
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1539
  by (simp add: ln_real_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1540
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1541
lemma exp_ln [simp]: "0 < x \<Longrightarrow> exp (ln x) = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1542
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1543
  by (auto dest: exp_total)
22654
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
  1544
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1545
lemma exp_ln_iff [simp]: "exp (ln x) = x \<longleftrightarrow> 0 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1546
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1547
  by (metis exp_gt_zero exp_ln)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1548
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1549
lemma ln_unique: "exp y = x \<Longrightarrow> ln x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1550
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1551
  by (erule subst) (rule ln_exp)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1552
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1553
lemma ln_mult: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln (x * y) = ln x + ln y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1554
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1555
  by (rule ln_unique) (simp add: exp_add)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1556
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1557
lemma ln_setprod: "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i > 0) \<Longrightarrow> ln (setprod f I) = setsum (\<lambda>x. ln(f x)) I"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1558
  for f :: "'a \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1559
  by (induct I rule: finite_induct) (auto simp: ln_mult setprod_pos)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1560
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1561
lemma ln_inverse: "0 < x \<Longrightarrow> ln (inverse x) = - ln x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1562
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1563
  by (rule ln_unique) (simp add: exp_minus)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1564
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1565
lemma ln_div: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln (x / y) = ln x - ln y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1566
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1567
  by (rule ln_unique) (simp add: exp_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1568
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1569
lemma ln_realpow: "0 < x \<Longrightarrow> ln (x^n) = real n * ln x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1570
  by (rule ln_unique) (simp add: exp_real_of_nat_mult)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1571
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1572
lemma ln_less_cancel_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x < ln y \<longleftrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1573
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1574
  by (subst exp_less_cancel_iff [symmetric]) simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1575
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1576
lemma ln_le_cancel_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x \<le> ln y \<longleftrightarrow> x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1577
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1578
  by (simp add: linorder_not_less [symmetric])
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1579
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1580
lemma ln_inj_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x = ln y \<longleftrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1581
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1582
  by (simp add: order_eq_iff)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1583
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1584
lemma ln_add_one_self_le_self [simp]: "0 \<le> x \<Longrightarrow> ln (1 + x) \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1585
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1586
  by (rule exp_le_cancel_iff [THEN iffD1]) (simp add: exp_ge_add_one_self_aux)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1587
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1588
lemma ln_less_self [simp]: "0 < x \<Longrightarrow> ln x < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1589
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1590
  by (rule order_less_le_trans [where y = "ln (1 + x)"]) simp_all
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1591
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1592
lemma ln_ge_zero [simp]: "1 \<le> x \<Longrightarrow> 0 \<le> ln x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1593
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1594
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1595
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1596
lemma ln_ge_zero_imp_ge_one: "0 \<le> ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1597
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1598
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1599
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1600
lemma ln_ge_zero_iff [simp]: "0 < x \<Longrightarrow> 0 \<le> ln x \<longleftrightarrow> 1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1601
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1602
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1603
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1604
lemma ln_less_zero_iff [simp]: "0 < x \<Longrightarrow> ln x < 0 \<longleftrightarrow> x < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1605
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1606
  using ln_less_cancel_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1607
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1608
lemma ln_gt_zero: "1 < x \<Longrightarrow> 0 < ln x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1609
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1610
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1611
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1612
lemma ln_gt_zero_imp_gt_one: "0 < ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1613
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1614
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1615
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1616
lemma ln_gt_zero_iff [simp]: "0 < x \<Longrightarrow> 0 < ln x \<longleftrightarrow> 1 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1617
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1618
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1619
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1620
lemma ln_eq_zero_iff [simp]: "0 < x \<Longrightarrow> ln x = 0 \<longleftrightarrow> x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1621
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1622
  using ln_inj_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1623
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1624
lemma ln_less_zero: "0 < x \<Longrightarrow> x < 1 \<Longrightarrow> ln x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1625
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1626
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1627
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1628
lemma ln_neg_is_const: "x \<le> 0 \<Longrightarrow> ln x = (THE x. False)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1629
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1630
  by (auto simp: ln_real_def intro!: arg_cong[where f = The])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1631
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1632
lemma isCont_ln:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1633
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1634
  assumes "x \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1635
  shows "isCont ln x"
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1636
proof (cases "0 < x")
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1637
  case True
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1638
  then have "isCont ln (exp (ln x))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1639
    by (intro isCont_inv_fun[where d = "\<bar>x\<bar>" and f = exp]) auto
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1640
  with True show ?thesis
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1641
    by simp
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1642
next
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1643
  case False
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1644
  with \<open>x \<noteq> 0\<close> show "isCont ln x"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1645
    unfolding isCont_def
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1646
    by (subst filterlim_cong[OF _ refl, of _ "nhds (ln 0)" _ "\<lambda>_. ln 0"])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1647
       (auto simp: ln_neg_is_const not_less eventually_at dist_real_def
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1648
         intro!: exI[of _ "\<bar>x\<bar>"])
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1649
qed
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1650
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1651
lemma tendsto_ln [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. ln (f x)) \<longlongrightarrow> ln a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1652
  for a :: real
45915
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1653
  by (rule isCont_tendsto_compose [OF isCont_ln])
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1654
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1655
lemma continuous_ln:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1656
  "continuous F f \<Longrightarrow> f (Lim F (\<lambda>x. x)) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1657
  unfolding continuous_def by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1658
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1659
lemma isCont_ln' [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1660
  "continuous (at x) f \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> continuous (at x) (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1661
  unfolding continuous_at by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1662
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1663
lemma continuous_within_ln [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1664
  "continuous (at x within s) f \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1665
  unfolding continuous_within by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1666
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  1667
lemma continuous_on_ln [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1668
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. f x \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1669
  unfolding continuous_on_def by (auto intro: tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1670
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1671
lemma DERIV_ln: "0 < x \<Longrightarrow> DERIV ln x :> inverse x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1672
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1673
  by (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1674
    (auto intro: DERIV_cong [OF DERIV_exp exp_ln] isCont_ln)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1675
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1676
lemma DERIV_ln_divide: "0 < x \<Longrightarrow> DERIV ln x :> 1 / x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1677
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1678
  by (rule DERIV_ln[THEN DERIV_cong]) (simp_all add: divide_inverse)
33667
958dc9f03611 A little rationalisation
paulson
parents: 33549
diff changeset
  1679
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1680
declare DERIV_ln_divide[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1681
  and DERIV_ln_divide[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1682
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1683
lemma ln_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1684
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1685
  shows "ln x = (\<Sum> n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1686
    (is "ln x = suminf (?f (x - 1))")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1687
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1688
  let ?f' = "\<lambda>x n. (-1)^n * (x - 1)^n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1689
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1690
  have "ln x - suminf (?f (x - 1)) = ln 1 - suminf (?f (1 - 1))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1691
  proof (rule DERIV_isconst3 [where x = x])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1692
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1693
    assume "x \<in> {0 <..< 2}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1694
    then have "0 < x" and "x < 2" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1695
    have "norm (1 - x) < 1"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1696
      using \<open>0 < x\<close> and \<open>x < 2\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1697
    have "1 / x = 1 / (1 - (1 - x))" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1698
    also have "\<dots> = (\<Sum> n. (1 - x)^n)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1699
      using geometric_sums[OF \<open>norm (1 - x) < 1\<close>] by (rule sums_unique)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1700
    also have "\<dots> = suminf (?f' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1701
      unfolding power_mult_distrib[symmetric]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1702
      by (rule arg_cong[where f=suminf], rule arg_cong[where f="op ^"], auto)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1703
    finally have "DERIV ln x :> suminf (?f' x)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1704
      using DERIV_ln[OF \<open>0 < x\<close>] unfolding divide_inverse by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1705
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1706
    have repos: "\<And> h x :: real. h - 1 + x = h + x - 1" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1707
    have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1708
      (\<Sum>n. (-1)^n * (1 / real (n + 1)) * real (Suc n) * (x - 1) ^ n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1709
    proof (rule DERIV_power_series')
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1710
      show "x - 1 \<in> {- 1<..<1}" and "(0 :: real) < 1"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1711
        using \<open>0 < x\<close> \<open>x < 2\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1712
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1713
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1714
      assume "x \<in> {- 1<..<1}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1715
      then have "norm (-x) < 1" by auto
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1716
      show "summable (\<lambda>n. (- 1) ^ n * (1 / real (n + 1)) * real (Suc n) * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1717
        unfolding One_nat_def
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1718
        by (auto simp add: power_mult_distrib[symmetric] summable_geometric[OF \<open>norm (-x) < 1\<close>])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1719
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1720
    then have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :> suminf (?f' x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1721
      unfolding One_nat_def by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1722
    then have "DERIV (\<lambda>x. suminf (?f (x - 1))) x :> suminf (?f' x)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1723
      unfolding DERIV_def repos .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1724
    ultimately have "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> suminf (?f' x) - suminf (?f' x)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1725
      by (rule DERIV_diff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1726
    then show "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> 0" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1727
  qed (auto simp add: assms)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1728
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1729
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1730
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1731
lemma exp_first_terms:
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1732
  fixes x :: "'a::{real_normed_algebra_1,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1733
  shows "exp x = (\<Sum>n<k. inverse(fact n) *\<^sub>R (x ^ n)) + (\<Sum>n. inverse(fact (n + k)) *\<^sub>R (x ^ (n + k)))"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1734
proof -
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1735
  have "exp x = suminf (\<lambda>n. inverse(fact n) *\<^sub>R (x^n))"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1736
    by (simp add: exp_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1737
  also from summable_exp_generic have "\<dots> = (\<Sum> n. inverse(fact(n+k)) *\<^sub>R (x ^ (n + k))) +
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1738
    (\<Sum> n::nat<k. inverse(fact n) *\<^sub>R (x^n))" (is "_ = _ + ?a")
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1739
    by (rule suminf_split_initial_segment)
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1740
  finally show ?thesis by simp
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1741
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1742
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1743
lemma exp_first_term: "exp x = 1 + (\<Sum>n. inverse (fact (Suc n)) *\<^sub>R (x ^ Suc n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1744
  for x :: "'a::{real_normed_algebra_1,banach}"
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1745
  using exp_first_terms[of x 1] by simp
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1746
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1747
lemma exp_first_two_terms: "exp x = 1 + x + (\<Sum>n. inverse (fact (n + 2)) *\<^sub>R (x ^ (n + 2)))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1748
  for x :: "'a::{real_normed_algebra_1,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1749
  using exp_first_terms[of x 2] by (simp add: eval_nat_numeral)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1750
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1751
lemma exp_bound:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1752
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1753
  assumes a: "0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1754
    and b: "x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1755
  shows "exp x \<le> 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1756
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1757
  have aux1: "inverse (fact (n + 2)) * x ^ (n + 2) \<le> (x\<^sup>2/2) * ((1/2)^n)" for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1758
  proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1759
    have "(2::nat) * 2 ^ n \<le> fact (n + 2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1760
      by (induct n) simp_all
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1761
    then have "real ((2::nat) * 2 ^ n) \<le> real_of_nat (fact (n + 2))"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1762
      by (simp only: of_nat_le_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1763
    then have "((2::real) * 2 ^ n) \<le> fact (n + 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1764
      unfolding of_nat_fact by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1765
    then have "inverse (fact (n + 2)) \<le> inverse ((2::real) * 2 ^ n)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1766
      by (rule le_imp_inverse_le) simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1767
    then have "inverse (fact (n + 2)) \<le> 1/(2::real) * (1/2)^n"
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60762
diff changeset
  1768
      by (simp add: power_inverse [symmetric])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1769
    then have "inverse (fact (n + 2)) * (x^n * x\<^sup>2) \<le> 1/2 * (1/2)^n * (1 * x\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1770
      by (rule mult_mono) (rule mult_mono, simp_all add: power_le_one a b)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1771
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1772
      unfolding power_add by (simp add: ac_simps del: fact_Suc)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1773
  qed
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1774
  have "(\<lambda>n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums (x\<^sup>2 / 2 * (1 / (1 - 1 / 2)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1775
    by (intro sums_mult geometric_sums) simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1776
  then have aux2: "(\<lambda>n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1777
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1778
  have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n + 2))) \<le> x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1779
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1780
    have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n + 2))) \<le> suminf (\<lambda>n. (x\<^sup>2/2) * ((1/2)^n))"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1781
      apply (rule suminf_le)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1782
        apply (rule allI)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1783
        apply (rule aux1)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1784
       apply (rule summable_exp [THEN summable_ignore_initial_segment])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1785
      apply (rule sums_summable)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1786
      apply (rule aux2)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1787
      done
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1788
    also have "\<dots> = x\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1789
      by (rule sums_unique [THEN sym]) (rule aux2)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1790
    finally show ?thesis .
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1791
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1792
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1793
    unfolding exp_first_two_terms by auto
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1794
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1795
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1796
corollary exp_half_le2: "exp(1/2) \<le> (2::real)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1797
  using exp_bound [of "1/2"]
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1798
  by (simp add: field_simps)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1799
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1800
corollary exp_le: "exp 1 \<le> (3::real)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1801
  using exp_bound [of 1]
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1802
  by (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1803
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1804
lemma exp_bound_half: "norm z \<le> 1/2 \<Longrightarrow> norm (exp z) \<le> 2"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1805
  by (blast intro: order_trans intro!: exp_half_le2 norm_exp)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1806
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1807
lemma exp_bound_lemma:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1808
  assumes "norm z \<le> 1/2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1809
  shows "norm (exp z) \<le> 1 + 2 * norm z"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1810
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1811
  have *: "(norm z)\<^sup>2 \<le> norm z * 1"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1812
    unfolding power2_eq_square
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1813
    apply (rule mult_left_mono)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1814
    using assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1815
     apply auto
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1816
    done
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1817
  show ?thesis
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1818
    apply (rule order_trans [OF norm_exp])
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1819
    apply (rule order_trans [OF exp_bound])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1820
    using assms *
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1821
      apply auto
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1822
    done
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1823
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1824
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1825
lemma real_exp_bound_lemma: "0 \<le> x \<Longrightarrow> x \<le> 1/2 \<Longrightarrow> exp x \<le> 1 + 2 * x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1826
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1827
  using exp_bound_lemma [of x] by simp
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1828
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1829
lemma ln_one_minus_pos_upper_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1830
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1831
  assumes a: "0 \<le> x" and b: "x < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1832
  shows "ln (1 - x) \<le> - x"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1833
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1834
  have "(1 - x) * (1 + x + x\<^sup>2) = 1 - x^3"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1835
    by (simp add: algebra_simps power2_eq_square power3_eq_cube)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1836
  also have "\<dots> \<le> 1"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1837
    by (auto simp add: a)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1838
  finally have "(1 - x) * (1 + x + x\<^sup>2) \<le> 1" .
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1839
  moreover have c: "0 < 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1840
    by (simp add: add_pos_nonneg a)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1841
  ultimately have "1 - x \<le> 1 / (1 + x + x\<^sup>2)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1842
    by (elim mult_imp_le_div_pos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1843
  also have "\<dots> \<le> 1 / exp x"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1844
    by (metis a abs_one b exp_bound exp_gt_zero frac_le less_eq_real_def real_sqrt_abs
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1845
        real_sqrt_pow2_iff real_sqrt_power)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1846
  also have "\<dots> = exp (- x)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1847
    by (auto simp add: exp_minus divide_inverse)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1848
  finally have "1 - x \<le> exp (- x)" .
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1849
  also have "1 - x = exp (ln (1 - x))"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1850
    by (metis b diff_0 exp_ln_iff less_iff_diff_less_0 minus_diff_eq)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1851
  finally have "exp (ln (1 - x)) \<le> exp (- x)" .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1852
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1853
    by (auto simp only: exp_le_cancel_iff)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1854
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1855
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1856
lemma exp_ge_add_one_self [simp]: "1 + x \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1857
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1858
  apply (cases "0 \<le> x")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1859
   apply (erule exp_ge_add_one_self_aux)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1860
  apply (cases "x \<le> -1")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1861
   apply (subgoal_tac "1 + x \<le> 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1862
    apply (erule order_trans)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1863
    apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1864
   apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1865
  apply (subgoal_tac "1 + x = exp (ln (1 + x))")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1866
   apply (erule ssubst)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1867
   apply (subst exp_le_cancel_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1868
   apply (subgoal_tac "ln (1 - (- x)) \<le> - (- x)")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1869
    apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1870
   apply (rule ln_one_minus_pos_upper_bound)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1871
    apply auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1872
  done
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1873
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1874
lemma ln_one_plus_pos_lower_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1875
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1876
  assumes a: "0 \<le> x" and b: "x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1877
  shows "x - x\<^sup>2 \<le> ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1878
proof -
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1879
  have "exp (x - x\<^sup>2) = exp x / exp (x\<^sup>2)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1880
    by (rule exp_diff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1881
  also have "\<dots> \<le> (1 + x + x\<^sup>2) / exp (x \<^sup>2)"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1882
    by (metis a b divide_right_mono exp_bound exp_ge_zero)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1883
  also have "\<dots> \<le> (1 + x + x\<^sup>2) / (1 + x\<^sup>2)"
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56541
diff changeset
  1884
    by (simp add: a divide_left_mono add_pos_nonneg)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1885
  also from a have "\<dots> \<le> 1 + x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1886
    by (simp add: field_simps add_strict_increasing zero_le_mult_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1887
  finally have "exp (x - x\<^sup>2) \<le> 1 + x" .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1888
  also have "\<dots> = exp (ln (1 + x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1889
  proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1890
    from a have "0 < 1 + x" by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1891
    then show ?thesis
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1892
      by (auto simp only: exp_ln_iff [THEN sym])
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1893
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1894
  finally have "exp (x - x\<^sup>2) \<le> exp (ln (1 + x))" .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1895
  then show ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1896
    by (metis exp_le_cancel_iff)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1897
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1898
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1899
lemma ln_one_minus_pos_lower_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1900
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1901
  assumes a: "0 \<le> x" and b: "x \<le> 1 / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1902
  shows "- x - 2 * x\<^sup>2 \<le> ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1903
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1904
  from b have c: "x < 1" by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1905
  then have "ln (1 - x) = - ln (1 + x / (1 - x))"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1906
    apply (subst ln_inverse [symmetric])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1907
     apply (simp add: field_simps)
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1908
    apply (rule arg_cong [where f=ln])
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1909
    apply (simp add: field_simps)
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1910
    done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1911
  also have "- (x / (1 - x)) \<le> \<dots>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1912
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1913
    have "ln (1 + x / (1 - x)) \<le> x / (1 - x)"
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  1914
      using a c by (intro ln_add_one_self_le_self) auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1915
    then show ?thesis
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1916
      by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1917
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1918
  also have "- (x / (1 - x)) = - x / (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1919
    by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1920
  finally have d: "- x / (1 - x) \<le> ln (1 - x)" .
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1921
  have "0 < 1 - x" using a b by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1922
  then have e: "- x - 2 * x\<^sup>2 \<le> - x / (1 - x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1923
    using mult_right_le_one_le[of "x * x" "2 * x"] a b
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1924
    by (simp add: field_simps power2_eq_square)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1925
  from e d show "- x - 2 * x\<^sup>2 \<le> ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1926
    by (rule order_trans)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1927
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1928
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1929
lemma ln_add_one_self_le_self2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1930
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1931
  shows "-1 < x \<Longrightarrow> ln (1 + x) \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1932
  apply (subgoal_tac "ln (1 + x) \<le> ln (exp x)")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1933
   apply simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1934
  apply (subst ln_le_cancel_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1935
    apply auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1936
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1937
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1938
lemma abs_ln_one_plus_x_minus_x_bound_nonneg:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1939
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1940
  assumes x: "0 \<le> x" and x1: "x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1941
  shows "\<bar>ln (1 + x) - x\<bar> \<le> x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1942
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1943
  from x have "ln (1 + x) \<le> x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1944
    by (rule ln_add_one_self_le_self)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1945
  then have "ln (1 + x) - x \<le> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1946
    by simp
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  1947
  then have "\<bar>ln(1 + x) - x\<bar> = - (ln(1 + x) - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1948
    by (rule abs_of_nonpos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1949
  also have "\<dots> = x - ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1950
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1951
  also have "\<dots> \<le> x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1952
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1953
    from x x1 have "x - x\<^sup>2 \<le> ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1954
      by (intro ln_one_plus_pos_lower_bound)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1955
    then show ?thesis
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1956
      by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1957
  qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1958
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1959
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1960
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1961
lemma abs_ln_one_plus_x_minus_x_bound_nonpos:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1962
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1963
  assumes a: "-(1 / 2) \<le> x" and b: "x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1964
  shows "\<bar>ln (1 + x) - x\<bar> \<le> 2 * x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1965
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1966
  have "\<bar>ln (1 + x) - x\<bar> = x - ln (1 - (- x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1967
    apply (subst abs_of_nonpos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1968
     apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1969
     apply (rule ln_add_one_self_le_self2)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1970
    using a apply auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1971
    done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1972
  also have "\<dots> \<le> 2 * x\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1973
    apply (subgoal_tac "- (-x) - 2 * (-x)\<^sup>2 \<le> ln (1 - (- x))")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1974
     apply (simp add: algebra_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1975
    apply (rule ln_one_minus_pos_lower_bound)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1976
    using a b apply auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1977
    done
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1978
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1979
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1980
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1981
lemma abs_ln_one_plus_x_minus_x_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1982
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1983
  shows "\<bar>x\<bar> \<le> 1 / 2 \<Longrightarrow> \<bar>ln (1 + x) - x\<bar> \<le> 2 * x\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1984
  apply (cases "0 \<le> x")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1985
   apply (rule order_trans)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1986
    apply (rule abs_ln_one_plus_x_minus_x_bound_nonneg)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1987
     apply auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1988
  apply (rule abs_ln_one_plus_x_minus_x_bound_nonpos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1989
   apply auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1990
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1991
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1992
lemma ln_x_over_x_mono:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1993
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1994
  assumes x: "exp 1 \<le> x" "x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1995
  shows "ln y / y \<le> ln x / x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1996
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1997
  note x
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1998
  moreover have "0 < exp (1::real)" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1999
  ultimately have a: "0 < x" and b: "0 < y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2000
    by (fast intro: less_le_trans order_trans)+
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2001
  have "x * ln y - x * ln x = x * (ln y - ln x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2002
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2003
  also have "\<dots> = x * ln (y / x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2004
    by (simp only: ln_div a b)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2005
  also have "y / x = (x + (y - x)) / x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2006
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2007
  also have "\<dots> = 1 + (y - x) / x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2008
    using x a by (simp add: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2009
  also have "x * ln (1 + (y - x) / x) \<le> x * ((y - x) / x)"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2010
    using x a
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  2011
    by (intro mult_left_mono ln_add_one_self_le_self) simp_all
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2012
  also have "\<dots> = y - x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2013
    using a by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2014
  also have "\<dots> = (y - x) * ln (exp 1)" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2015
  also have "\<dots> \<le> (y - x) * ln x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2016
    apply (rule mult_left_mono)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2017
     apply (subst ln_le_cancel_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2018
       apply fact
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2019
      apply (rule a)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2020
     apply (rule x)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2021
    using x apply simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2022
    done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2023
  also have "\<dots> = y * ln x - x * ln x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2024
    by (rule left_diff_distrib)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2025
  finally have "x * ln y \<le> y * ln x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2026
    by arith
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2027
  then have "ln y \<le> (y * ln x) / x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2028
    using a by (simp add: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2029
  also have "\<dots> = y * (ln x / x)" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2030
  finally show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2031
    using b by (simp add: field_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2032
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2033
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2034
lemma ln_le_minus_one: "0 < x \<Longrightarrow> ln x \<le> x - 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2035
  for x :: real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2036
  using exp_ge_add_one_self[of "ln x"] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2037
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2038
corollary ln_diff_le: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x - ln y \<le> (x - y) / y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2039
  for x :: real
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2040
  by (simp add: ln_div [symmetric] diff_divide_distrib ln_le_minus_one)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2041
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2042
lemma ln_eq_minus_one:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2043
  fixes x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2044
  assumes "0 < x" "ln x = x - 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2045
  shows "x = 1"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2046
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2047
  let ?l = "\<lambda>y. ln y - y + 1"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2048
  have D: "\<And>x::real. 0 < x \<Longrightarrow> DERIV ?l x :> (1 / x - 1)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2049
    by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2050
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2051
  show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2052
  proof (cases rule: linorder_cases)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2053
    assume "x < 1"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2054
    from dense[OF \<open>x < 1\<close>] obtain a where "x < a" "a < 1" by blast
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2055
    from \<open>x < a\<close> have "?l x < ?l a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2056
    proof (rule DERIV_pos_imp_increasing, safe)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2057
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2058
      assume "x \<le> y" "y \<le> a"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2059
      with \<open>0 < x\<close> \<open>a < 1\<close> have "0 < 1 / y - 1" "0 < y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2060
        by (auto simp: field_simps)
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61738
diff changeset
  2061
      with D show "\<exists>z. DERIV ?l y :> z \<and> 0 < z" by blast
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2062
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2063
    also have "\<dots> \<le> 0"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2064
      using ln_le_minus_one \<open>0 < x\<close> \<open>x < a\<close> by (auto simp: field_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2065
    finally show "x = 1" using assms by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2066
  next
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2067
    assume "1 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2068
    from dense[OF this] obtain a where "1 < a" "a < x" by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2069
    from \<open>a < x\<close> have "?l x < ?l a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2070
    proof (rule DERIV_neg_imp_decreasing, safe)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2071
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2072
      assume "a \<le> y" "y \<le> x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2073
      with \<open>1 < a\<close> have "1 / y - 1 < 0" "0 < y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2074
        by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2075
      with D show "\<exists>z. DERIV ?l y :> z \<and> z < 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2076
        by blast
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2077
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2078
    also have "\<dots> \<le> 0"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2079
      using ln_le_minus_one \<open>1 < a\<close> by (auto simp: field_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2080
    finally show "x = 1" using assms by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2081
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2082
    assume "x = 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2083
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2084
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2085
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2086
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2087
lemma ln_x_over_x_tendsto_0: "((\<lambda>x::real. ln x / x) \<longlongrightarrow> 0) at_top"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2088
proof (rule lhospital_at_top_at_top[where f' = inverse and g' = "\<lambda>_. 1"])
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2089
  from eventually_gt_at_top[of "0::real"]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2090
  show "\<forall>\<^sub>F x in at_top. (ln has_real_derivative inverse x) (at x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2091
    by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2092
qed (use tendsto_inverse_0 in
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2093
      \<open>auto simp: filterlim_ident dest!: tendsto_mono[OF at_top_le_at_infinity]\<close>)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2094
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2095
lemma exp_ge_one_plus_x_over_n_power_n:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2096
  assumes "x \<ge> - real n" "n > 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2097
  shows "(1 + x / of_nat n) ^ n \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2098
proof (cases "x = - of_nat n")
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2099
  case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2100
  from assms False have "(1 + x / of_nat n) ^ n = exp (of_nat n * ln (1 + x / of_nat n))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2101
    by (subst exp_of_nat_mult, subst exp_ln) (simp_all add: field_simps)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2102
  also from assms False have "ln (1 + x / real n) \<le> x / real n"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2103
    by (intro ln_add_one_self_le_self2) (simp_all add: field_simps)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2104
  with assms have "exp (of_nat n * ln (1 + x / of_nat n)) \<le> exp x"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2105
    by (simp add: field_simps)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2106
  finally show ?thesis .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2107
next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2108
  case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2109
  then show ?thesis by (simp add: zero_power)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2110
qed
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2111
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2112
lemma exp_ge_one_minus_x_over_n_power_n:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2113
  assumes "x \<le> real n" "n > 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2114
  shows "(1 - x / of_nat n) ^ n \<le> exp (-x)"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2115
  using exp_ge_one_plus_x_over_n_power_n[of n "-x"] assms by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2116
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2117
lemma exp_at_bot: "(exp \<longlongrightarrow> (0::real)) at_bot"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2118
  unfolding tendsto_Zfun_iff
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2119
proof (rule ZfunI, simp add: eventually_at_bot_dense)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2120
  fix r :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2121
  assume "0 < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2122
  have "exp x < r" if "x < ln r" for x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2123
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2124
    from that have "exp x < exp (ln r)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2125
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2126
    with \<open>0 < r\<close> show ?thesis
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2127
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2128
  qed
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2129
  then show "\<exists>k. \<forall>n<k. exp n < r" by auto
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2130
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2131
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2132
lemma exp_at_top: "LIM x at_top. exp x :: real :> at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  2133
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. True" and P="\<lambda>x. 0 < x" and g="ln"])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2134
    (auto intro: eventually_gt_at_top)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2135
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2136
lemma lim_exp_minus_1: "((\<lambda>z::'a. (exp(z) - 1) / z) \<longlongrightarrow> 1) (at 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2137
  for x :: "'a::{real_normed_field,banach}"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2138
proof -
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2139
  have "((\<lambda>z::'a. exp(z) - 1) has_field_derivative 1) (at 0)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2140
    by (intro derivative_eq_intros | simp)+
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2141
  then show ?thesis
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2142
    by (simp add: Deriv.DERIV_iff2)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2143
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2144
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2145
lemma ln_at_0: "LIM x at_right 0. ln (x::real) :> at_bot"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  2146
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g="exp"])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51527
diff changeset
  2147
     (auto simp: eventually_at_filter)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2148
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2149
lemma ln_at_top: "LIM x at_top. ln (x::real) :> at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  2150
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g="exp"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  2151
     (auto intro: eventually_gt_at_top)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2152
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2153
lemma filtermap_ln_at_top: "filtermap (ln::real \<Rightarrow> real) at_top = at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2154
  by (intro filtermap_fun_inverse[of exp] exp_at_top ln_at_top) auto
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2155
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2156
lemma filtermap_exp_at_top: "filtermap (exp::real \<Rightarrow> real) at_top = at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2157
  by (intro filtermap_fun_inverse[of ln] exp_at_top ln_at_top)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2158
     (auto simp: eventually_at_top_dense)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2159
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2160
lemma tendsto_power_div_exp_0: "((\<lambda>x. x ^ k / exp x) \<longlongrightarrow> (0::real)) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2161
proof (induct k)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2162
  case 0
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2163
  show "((\<lambda>x. x ^ 0 / exp x) \<longlongrightarrow> (0::real)) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2164
    by (simp add: inverse_eq_divide[symmetric])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2165
       (metis filterlim_compose[OF tendsto_inverse_0] exp_at_top filterlim_mono
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2166
         at_top_le_at_infinity order_refl)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2167
next
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2168
  case (Suc k)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2169
  show ?case
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2170
  proof (rule lhospital_at_top_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2171
    show "eventually (\<lambda>x. DERIV (\<lambda>x. x ^ Suc k) x :> (real (Suc k) * x^k)) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2172
      by eventually_elim (intro derivative_eq_intros, auto)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2173
    show "eventually (\<lambda>x. DERIV exp x :> exp x) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2174
      by eventually_elim auto
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2175
    show "eventually (\<lambda>x. exp x \<noteq> 0) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2176
      by auto
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2177
    from tendsto_mult[OF tendsto_const Suc, of "real (Suc k)"]
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2178
    show "((\<lambda>x. real (Suc k) * x ^ k / exp x) \<longlongrightarrow> 0) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2179
      by simp
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2180
  qed (rule exp_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2181
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2182
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2183
definition log :: "real \<Rightarrow> real \<Rightarrow> real"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61762
diff changeset
  2184
  \<comment> \<open>logarithm of @{term x} to base @{term a}\<close>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2185
  where "log a x = ln x / ln a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2186
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2187
lemma tendsto_log [tendsto_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2188
  "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> 0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < b \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2189
    ((\<lambda>x. log (f x) (g x)) \<longlongrightarrow> log a b) F"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2190
  unfolding log_def by (intro tendsto_intros) auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2191
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2192
lemma continuous_log:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2193
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2194
    and "continuous F g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2195
    and "0 < f (Lim F (\<lambda>x. x))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2196
    and "f (Lim F (\<lambda>x. x)) \<noteq> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2197
    and "0 < g (Lim F (\<lambda>x. x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2198
  shows "continuous F (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2199
  using assms unfolding continuous_def by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2200
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2201
lemma continuous_at_within_log[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2202
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2203
    and "continuous (at a within s) g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2204
    and "0 < f a"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2205
    and "f a \<noteq> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2206
    and "0 < g a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2207
  shows "continuous (at a within s) (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2208
  using assms unfolding continuous_within by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2209
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2210
lemma isCont_log[continuous_intros, simp]:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2211
  assumes "isCont f a" "isCont g a" "0 < f a" "f a \<noteq> 1" "0 < g a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2212
  shows "isCont (\<lambda>x. log (f x) (g x)) a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2213
  using assms unfolding continuous_at by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2214
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2215
lemma continuous_on_log[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2216
  assumes "continuous_on s f" "continuous_on s g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2217
    and "\<forall>x\<in>s. 0 < f x" "\<forall>x\<in>s. f x \<noteq> 1" "\<forall>x\<in>s. 0 < g x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2218
  shows "continuous_on s (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2219
  using assms unfolding continuous_on_def by (fast intro: tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2220
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2221
lemma powr_one_eq_one [simp]: "1 powr a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2222
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2223
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2224
lemma powr_zero_eq_one [simp]: "x powr 0 = (if x = 0 then 0 else 1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2225
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2226
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2227
lemma powr_one_gt_zero_iff [simp]: "x powr 1 = x \<longleftrightarrow> 0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2228
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2229
  by (auto simp: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2230
declare powr_one_gt_zero_iff [THEN iffD2, simp]
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2231
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2232
lemma powr_mult: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> (x * y) powr a = (x powr a) * (y powr a)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2233
  for a x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2234
  by (simp add: powr_def exp_add [symmetric] ln_mult distrib_left)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2235
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2236
lemma powr_ge_pzero [simp]: "0 \<le> x powr y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2237
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2238
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2239
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2240
lemma powr_divide: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> (x / y) powr a = (x powr a) / (y powr a)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2241
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2242
  apply (simp add: divide_inverse positive_imp_inverse_positive powr_mult)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2243
  apply (simp add: powr_def exp_minus [symmetric] exp_add [symmetric] ln_inverse)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2244
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2245
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2246
lemma powr_divide2: "x powr a / x powr b = x powr (a - b)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2247
  for a b x :: real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2248
  apply (simp add: powr_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2249
  apply (subst exp_diff [THEN sym])
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2250
  apply (simp add: left_diff_distrib)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2251
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2252
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2253
lemma powr_add: "x powr (a + b) = (x powr a) * (x powr b)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2254
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2255
  by (simp add: powr_def exp_add [symmetric] distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2256
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2257
lemma powr_mult_base: "0 < x \<Longrightarrow>x * x powr y = x powr (1 + y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2258
  for x :: real
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63040
diff changeset
  2259
  by (auto simp: powr_add)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2260
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2261
lemma powr_powr: "(x powr a) powr b = x powr (a * b)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2262
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2263
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2264
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2265
lemma powr_powr_swap: "(x powr a) powr b = (x powr b) powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2266
  for a b x :: real
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2267
  by (simp add: powr_powr mult.commute)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2268
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2269
lemma powr_minus: "x powr (- a) = inverse (x powr a)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2270
  for x a :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2271
  by (simp add: powr_def exp_minus [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2272
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2273
lemma powr_minus_divide: "x powr (- a) = 1/(x powr a)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2274
  for x a :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2275
  by (simp add: divide_inverse powr_minus)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2276
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2277
lemma divide_powr_uminus: "a / b powr c = a * b powr (- c)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2278
  for a b c :: real
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2279
  by (simp add: powr_minus_divide)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2280
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2281
lemma powr_less_mono: "a < b \<Longrightarrow> 1 < x \<Longrightarrow> x powr a < x powr b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2282
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2283
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2284
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2285
lemma powr_less_cancel: "x powr a < x powr b \<Longrightarrow> 1 < x \<Longrightarrow> a < b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2286
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2287
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2288
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2289
lemma powr_less_cancel_iff [simp]: "1 < x \<Longrightarrow> x powr a < x powr b \<longleftrightarrow> a < b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2290
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2291
  by (blast intro: powr_less_cancel powr_less_mono)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2292
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2293
lemma powr_le_cancel_iff [simp]: "1 < x \<Longrightarrow> x powr a \<le> x powr b \<longleftrightarrow> a \<le> b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2294
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2295
  by (simp add: linorder_not_less [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2296
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2297
lemma log_ln: "ln x = log (exp(1)) x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2298
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2299
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2300
lemma DERIV_log:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2301
  assumes "x > 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2302
  shows "DERIV (\<lambda>y. log b y) x :> 1 / (ln b * x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2303
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
  2304
  define lb where "lb = 1 / ln b"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2305
  moreover have "DERIV (\<lambda>y. lb * ln y) x :> lb / x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2306
    using \<open>x > 0\<close> by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2307
  ultimately show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2308
    by (simp add: log_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2309
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2310
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2311
lemmas DERIV_log[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2312
  and DERIV_log[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2313
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2314
lemma powr_log_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> a powr (log a x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2315
  by (simp add: powr_def log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2316
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2317
lemma log_powr_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a (a powr y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2318
  by (simp add: log_def powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2319
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2320
lemma log_mult:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2321
  "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2322
    log a (x * y) = log a x + log a y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2323
  by (simp add: log_def ln_mult divide_inverse distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2324
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2325
lemma log_eq_div_ln_mult_log:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2326
  "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2327
    log a x = (ln b/ln a) * log b x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2328
  by (simp add: log_def divide_inverse)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2329
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2330
text\<open>Base 10 logarithms\<close>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2331
lemma log_base_10_eq1: "0 < x \<Longrightarrow> log 10 x = (ln (exp 1) / ln 10) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2332
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2333
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2334
lemma log_base_10_eq2: "0 < x \<Longrightarrow> log 10 x = (log 10 (exp 1)) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2335
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2336
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2337
lemma log_one [simp]: "log a 1 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2338
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2339
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2340
lemma log_eq_one [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2341
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2342
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2343
lemma log_inverse: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log a (inverse x) = - log a x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2344
  apply (rule add_left_cancel [THEN iffD1, where a1 = "log a x"])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2345
  apply (simp add: log_mult [symmetric])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2346
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2347
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2348
lemma log_divide: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a (x/y) = log a x - log a y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2349
  by (simp add: log_mult divide_inverse log_inverse)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2350
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2351
lemma powr_gt_zero [simp]: "0 < x powr a \<longleftrightarrow> x \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2352
  for a x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2353
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2354
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2355
lemma log_add_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log b x + y = log b (x * b powr y)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2356
  and add_log_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> y + log b x = log b (b powr y * x)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2357
  and log_minus_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log b x - y = log b (x * b powr -y)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2358
  and minus_log_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> y - log b x = log b (b powr y / x)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2359
  by (simp_all add: log_mult log_divide)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2360
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2361
lemma log_less_cancel_iff [simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a x < log a y \<longleftrightarrow> x < y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2362
  apply safe
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2363
   apply (rule_tac [2] powr_less_cancel)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2364
    apply (drule_tac a = "log a x" in powr_less_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2365
     apply auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2366
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2367
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2368
lemma log_inj:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2369
  assumes "1 < b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2370
  shows "inj_on (log b) {0 <..}"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2371
proof (rule inj_onI, simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2372
  fix x y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2373
  assume pos: "0 < x" "0 < y" and *: "log b x = log b y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2374
  show "x = y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2375
  proof (cases rule: linorder_cases)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2376
    assume "x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2377
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2378
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2379
    assume "x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2380
    then have "log b x < log b y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2381
      using log_less_cancel_iff[OF \<open>1 < b\<close>] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2382
    then show ?thesis using * by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2383
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2384
    assume "y < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2385
    then have "log b y < log b x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2386
      using log_less_cancel_iff[OF \<open>1 < b\<close>] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2387
    then show ?thesis using * by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2388
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2389
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2390
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2391
lemma log_le_cancel_iff [simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a x \<le> log a y \<longleftrightarrow> x \<le> y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2392
  by (simp add: linorder_not_less [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2393
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2394
lemma zero_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < log a x \<longleftrightarrow> 1 < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2395
  using log_less_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2396
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2397
lemma zero_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 \<le> log a x \<longleftrightarrow> 1 \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2398
  using log_le_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2399
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2400
lemma log_less_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 0 \<longleftrightarrow> x < 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2401
  using log_less_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2402
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2403
lemma log_le_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 0 \<longleftrightarrow> x \<le> 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2404
  using log_le_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2405
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2406
lemma one_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 < log a x \<longleftrightarrow> a < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2407
  using log_less_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2408
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2409
lemma one_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> log a x \<longleftrightarrow> a \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2410
  using log_le_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2411
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2412
lemma log_less_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 1 \<longleftrightarrow> x < a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2413
  using log_less_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2414
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2415
lemma log_le_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 1 \<longleftrightarrow> x \<le> a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2416
  using log_le_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2417
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2418
lemma le_log_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2419
  fixes b x y :: real
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2420
  assumes "1 < b" "x > 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2421
  shows "y \<le> log b x \<longleftrightarrow> b powr y \<le> x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  2422
  using assms
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2423
  apply auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2424
   apply (metis (no_types, hide_lams) less_irrefl less_le_trans linear powr_le_cancel_iff
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2425
      powr_log_cancel zero_less_one)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2426
  apply (metis not_less order.trans order_refl powr_le_cancel_iff powr_log_cancel zero_le_one)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2427
  done
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2428
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2429
lemma less_log_iff:
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2430
  assumes "1 < b" "x > 0"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2431
  shows "y < log b x \<longleftrightarrow> b powr y < x"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2432
  by (metis assms dual_order.strict_trans less_irrefl powr_less_cancel_iff
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2433
    powr_log_cancel zero_less_one)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2434
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2435
lemma
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2436
  assumes "1 < b" "x > 0"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2437
  shows log_less_iff: "log b x < y \<longleftrightarrow> x < b powr y"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2438
    and log_le_iff: "log b x \<le> y \<longleftrightarrow> x \<le> b powr y"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2439
  using le_log_iff[OF assms, of y] less_log_iff[OF assms, of y]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2440
  by auto
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2441
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2442
lemmas powr_le_iff = le_log_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2443
  and powr_less_iff = le_log_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2444
  and less_powr_iff = log_less_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2445
  and le_powr_iff = log_le_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2446
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2447
lemma floor_log_eq_powr_iff: "x > 0 \<Longrightarrow> b > 1 \<Longrightarrow> \<lfloor>log b x\<rfloor> = k \<longleftrightarrow> b powr k \<le> x \<and> x < b powr (k + 1)"
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2448
  by (auto simp add: floor_eq_iff powr_le_iff less_powr_iff)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2449
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2450
lemma powr_realpow: "0 < x \<Longrightarrow> x powr (real n) = x^n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2451
  by (induct n) (simp_all add: ac_simps powr_add)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2452
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  2453
lemma powr_numeral: "0 < x \<Longrightarrow> x powr (numeral n :: real) = x ^ (numeral n)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  2454
  by (metis of_nat_numeral powr_realpow)
52139
40fe6b80b481 add lemma
noschinl
parents: 51641
diff changeset
  2455
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2456
lemma powr_real_of_int:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2457
  "x > 0 \<Longrightarrow> x powr real_of_int n = (if n \<ge> 0 then x ^ nat n else inverse (x ^ nat (- n)))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61976
diff changeset
  2458
  using powr_realpow[of x "nat n"] powr_realpow[of x "nat (-n)"]
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2459
  by (auto simp: field_simps powr_minus)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61976
diff changeset
  2460
57180
74c81a5b5a34 added lemma
nipkow
parents: 57129
diff changeset
  2461
lemma powr2_sqrt[simp]: "0 < x \<Longrightarrow> sqrt x powr 2 = x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2462
  by (simp add: powr_numeral)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2463
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2464
lemma powr_realpow2: "0 \<le> x \<Longrightarrow> 0 < n \<Longrightarrow> x^n = (if (x = 0) then 0 else x powr (real n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2465
  apply (cases "x = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2466
   apply simp_all
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2467
  apply (rule powr_realpow [THEN sym])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2468
  apply simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2469
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2470
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2471
lemma powr_int:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2472
  assumes "x > 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2473
  shows "x powr i = (if i \<ge> 0 then x ^ nat i else 1 / x ^ nat (-i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2474
proof (cases "i < 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2475
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2476
  have r: "x powr i = 1 / x powr (- i)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2477
    by (simp add: powr_minus field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2478
  show ?thesis using \<open>i < 0\<close> \<open>x > 0\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2479
    by (simp add: r field_simps powr_realpow[symmetric])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2480
next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2481
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2482
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2483
    by (simp add: assms powr_realpow[symmetric])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2484
qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2485
58981
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2486
lemma compute_powr[code]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2487
  fixes i :: real
58981
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2488
  shows "b powr i =
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2489
    (if b \<le> 0 then Code.abort (STR ''op powr with nonpositive base'') (\<lambda>_. b powr i)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2490
     else if \<lfloor>i\<rfloor> = i then (if 0 \<le> i then b ^ nat \<lfloor>i\<rfloor> else 1 / b ^ nat \<lfloor>- i\<rfloor>)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2491
     else Code.abort (STR ''op powr with non-integer exponent'') (\<lambda>_. b powr i))"
59587
8ea7b22525cb Removed the obsolete functions "natfloor" and "natceiling"
nipkow
parents: 58984
diff changeset
  2492
  by (auto simp: powr_int)
58981
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2493
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2494
lemma powr_one: "0 \<le> x \<Longrightarrow> x powr 1 = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2495
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2496
  using powr_realpow [of x 1] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2497
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2498
lemma powr_neg_one: "0 < x \<Longrightarrow> x powr - 1 = 1 / x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2499
  for x :: real
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2500
  using powr_int [of x "- 1"] by simp
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2501
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2502
lemma powr_neg_numeral: "0 < x \<Longrightarrow> x powr - numeral n = 1 / x ^ numeral n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2503
  for x :: real
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2504
  using powr_int [of x "- numeral n"] by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2505
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2506
lemma root_powr_inverse: "0 < n \<Longrightarrow> 0 < x \<Longrightarrow> root n x = x powr (1/n)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2507
  by (rule real_root_pos_unique) (auto simp: powr_realpow[symmetric] powr_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2508
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2509
lemma ln_powr: "x \<noteq> 0 \<Longrightarrow> ln (x powr y) = y * ln x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2510
  for x :: real
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2511
  by (simp add: powr_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2512
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2513
lemma ln_root: "n > 0 \<Longrightarrow> b > 0 \<Longrightarrow> ln (root n b) =  ln b / n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2514
  by (simp add: root_powr_inverse ln_powr)
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2515
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2516
lemma ln_sqrt: "0 < x \<Longrightarrow> ln (sqrt x) = ln x / 2"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2517
  by (simp add: ln_powr powr_numeral ln_powr[symmetric] mult.commute)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2518
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2519
lemma log_root: "n > 0 \<Longrightarrow> a > 0 \<Longrightarrow> log b (root n a) =  log b a / n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2520
  by (simp add: log_def ln_root)
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2521
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2522
lemma log_powr: "x \<noteq> 0 \<Longrightarrow> log b (x powr y) = y * log b x"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2523
  by (simp add: log_def ln_powr)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2524
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2525
lemma log_nat_power: "0 < x \<Longrightarrow> log b (x^n) = real n * log b x"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2526
  by (simp add: log_powr powr_realpow [symmetric])
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2527
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2528
lemma le_log_of_power:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2529
  assumes "1 < b" "b ^ n \<le> m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2530
  shows "n \<le> log b m"
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2531
proof -
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2532
   from assms have "0 < m"
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2533
     by (metis less_trans zero_less_power less_le_trans zero_less_one)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2534
   have "n = log b (b ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2535
     using assms(1) by (simp add: log_nat_power)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2536
   also have "\<dots> \<le> log b m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2537
     using assms \<open>0 < m\<close> by simp
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2538
   finally show ?thesis .
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2539
qed
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2540
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2541
lemma le_log2_of_power: "2 ^ n \<le> m \<Longrightarrow> n \<le> log 2 m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2542
  for m n :: nat
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2543
  using le_log_of_power[of 2] by simp
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2544
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2545
lemma log_base_change: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log b x = log a x / log a b"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2546
  by (simp add: log_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2547
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2548
lemma log_base_pow: "0 < a \<Longrightarrow> log (a ^ n) x = log a x / n"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2549
  by (simp add: log_def ln_realpow)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2550
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2551
lemma log_base_powr: "a \<noteq> 0 \<Longrightarrow> log (a powr b) x = log a x / b"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2552
  by (simp add: log_def ln_powr)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2553
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2554
lemma log_base_root: "n > 0 \<Longrightarrow> b > 0 \<Longrightarrow> log (root n b) x = n * (log b x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2555
  by (simp add: log_def ln_root)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2556
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2557
lemma ln_bound: "1 \<le> x \<Longrightarrow> ln x \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2558
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2559
  apply (subgoal_tac "ln (1 + (x - 1)) \<le> x - 1")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2560
   apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2561
  apply (rule ln_add_one_self_le_self)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2562
  apply simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2563
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2564
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2565
lemma powr_mono: "a \<le> b \<Longrightarrow> 1 \<le> x \<Longrightarrow> x powr a \<le> x powr b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2566
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2567
  apply (cases "x = 1")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2568
   apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2569
  apply (cases "a = b")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2570
   apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2571
  apply (rule order_less_imp_le)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2572
  apply (rule powr_less_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2573
   apply auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2574
  done
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2575
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2576
lemma ge_one_powr_ge_zero: "1 \<le> x \<Longrightarrow> 0 \<le> a \<Longrightarrow> 1 \<le> x powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2577
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2578
  using powr_mono by fastforce
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2579
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2580
lemma powr_less_mono2: "0 < a \<Longrightarrow> 0 \<le> x \<Longrightarrow> x < y \<Longrightarrow> x powr a < y powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2581
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2582
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2583
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2584
lemma powr_less_mono2_neg: "a < 0 \<Longrightarrow> 0 < x \<Longrightarrow> x < y \<Longrightarrow> y powr a < x powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2585
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2586
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2587
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2588
lemma powr_mono2: "0 \<le> a \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> x powr a \<le> y powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2589
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2590
  apply (case_tac "a = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2591
   apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2592
  apply (case_tac "x = y")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2593
   apply simp
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2594
  apply (metis dual_order.strict_iff_order powr_less_mono2)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2595
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2596
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2597
lemma powr_mono2':
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2598
  fixes a x y :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2599
  assumes "a \<le> 0" "x > 0" "x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2600
  shows "x powr a \<ge> y powr a"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2601
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2602
  from assms have "x powr - a \<le> y powr - a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2603
    by (intro powr_mono2) simp_all
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2604
  with assms show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2605
    by (auto simp add: powr_minus field_simps)
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2606
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2607
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2608
lemma powr_inj: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> a powr x = a powr y \<longleftrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2609
  for x :: real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2610
  unfolding powr_def exp_inj_iff by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2611
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2612
lemma powr_half_sqrt: "0 \<le> x \<Longrightarrow> x powr (1/2) = sqrt x"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2613
  by (simp add: powr_def root_powr_inverse sqrt_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2614
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2615
lemma ln_powr_bound: "1 \<le> x \<Longrightarrow> 0 < a \<Longrightarrow> ln x \<le> (x powr a) / a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2616
  for x :: real
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2617
  by (metis exp_gt_zero linear ln_eq_zero_iff ln_exp ln_less_self ln_powr mult.commute
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2618
      mult_imp_le_div_pos not_less powr_gt_zero)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2619
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2620
lemma ln_powr_bound2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2621
  fixes x :: real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2622
  assumes "1 < x" and "0 < a"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2623
  shows "(ln x) powr a \<le> (a powr a) * x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2624
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2625
  from assms have "ln x \<le> (x powr (1 / a)) / (1 / a)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2626
    by (metis less_eq_real_def ln_powr_bound zero_less_divide_1_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2627
  also have "\<dots> = a * (x powr (1 / a))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2628
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2629
  finally have "(ln x) powr a \<le> (a * (x powr (1 / a))) powr a"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2630
    by (metis assms less_imp_le ln_gt_zero powr_mono2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2631
  also have "\<dots> = (a powr a) * ((x powr (1 / a)) powr a)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2632
    using assms powr_mult by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2633
  also have "(x powr (1 / a)) powr a = x powr ((1 / a) * a)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2634
    by (rule powr_powr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2635
  also have "\<dots> = x" using assms
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2636
    by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2637
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2638
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2639
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2640
lemma tendsto_powr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2641
  fixes a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2642
  assumes f: "(f \<longlongrightarrow> a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2643
    and g: "(g \<longlongrightarrow> b) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2644
    and a: "a \<noteq> 0"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2645
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> a powr b) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2646
  unfolding powr_def
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2647
proof (rule filterlim_If)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2648
  from f show "((\<lambda>x. 0) \<longlongrightarrow> (if a = 0 then 0 else exp (b * ln a))) (inf F (principal {x. f x = 0}))"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  2649
    by simp (auto simp: filterlim_iff eventually_inf_principal elim: eventually_mono dest: t1_space_nhds)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2650
  from f g a show "((\<lambda>x. exp (g x * ln (f x))) \<longlongrightarrow> (if a = 0 then 0 else exp (b * ln a)))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2651
      (inf F (principal {x. f x \<noteq> 0}))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2652
    by (auto intro!: tendsto_intros intro: tendsto_mono inf_le1)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2653
qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2654
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2655
lemma tendsto_powr'[tendsto_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2656
  fixes a :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2657
  assumes f: "(f \<longlongrightarrow> a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2658
    and g: "(g \<longlongrightarrow> b) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2659
    and a: "a \<noteq> 0 \<or> (b > 0 \<and> eventually (\<lambda>x. f x \<ge> 0) F)"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2660
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> a powr b) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2661
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2662
  from a consider "a \<noteq> 0" | "a = 0" "b > 0" "eventually (\<lambda>x. f x \<ge> 0) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2663
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2664
  then show ?thesis
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2665
  proof cases
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2666
    case 1
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2667
    with f g show ?thesis by (rule tendsto_powr)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2668
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2669
    case 2
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2670
    have "((\<lambda>x. if f x = 0 then 0 else exp (g x * ln (f x))) \<longlongrightarrow> 0) F"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2671
    proof (intro filterlim_If)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2672
      have "filterlim f (principal {0<..}) (inf F (principal {z. f z \<noteq> 0}))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2673
        using \<open>eventually (\<lambda>x. f x \<ge> 0) F\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2674
        by (auto simp add: filterlim_iff eventually_inf_principal
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2675
            eventually_principal elim: eventually_mono)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2676
      moreover have "filterlim f (nhds a) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2677
        by (rule tendsto_mono[OF _ f]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2678
      ultimately have f: "filterlim f (at_right 0) (inf F (principal {x. f x \<noteq> 0}))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2679
        by (simp add: at_within_def filterlim_inf \<open>a = 0\<close>)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2680
      have g: "(g \<longlongrightarrow> b) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2681
        by (rule tendsto_mono[OF _ g]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2682
      show "((\<lambda>x. exp (g x * ln (f x))) \<longlongrightarrow> 0) (inf F (principal {x. f x \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2683
        by (rule filterlim_compose[OF exp_at_bot] filterlim_tendsto_pos_mult_at_bot
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2684
                 filterlim_compose[OF ln_at_0] f g \<open>b > 0\<close>)+
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2685
    qed simp_all
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2686
    with \<open>a = 0\<close> show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2687
      by (simp add: powr_def)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2688
  qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2689
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2690
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2691
lemma continuous_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2692
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2693
    and "continuous F g"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2694
    and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2695
  shows "continuous F (\<lambda>x. (f x) powr (g x :: real))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2696
  using assms unfolding continuous_def by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2697
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2698
lemma continuous_at_within_powr[continuous_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2699
  fixes f g :: "_ \<Rightarrow> real"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2700
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2701
    and "continuous (at a within s) g"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2702
    and "f a \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2703
  shows "continuous (at a within s) (\<lambda>x. (f x) powr (g x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2704
  using assms unfolding continuous_within by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2705
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2706
lemma isCont_powr[continuous_intros, simp]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2707
  fixes f g :: "_ \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2708
  assumes "isCont f a" "isCont g a" "f a \<noteq> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2709
  shows "isCont (\<lambda>x. (f x) powr g x) a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2710
  using assms unfolding continuous_at by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2711
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2712
lemma continuous_on_powr[continuous_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2713
  fixes f g :: "_ \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2714
  assumes "continuous_on s f" "continuous_on s g" and "\<forall>x\<in>s. f x \<noteq> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2715
  shows "continuous_on s (\<lambda>x. (f x) powr (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2716
  using assms unfolding continuous_on_def by (fast intro: tendsto_powr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2717
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2718
lemma tendsto_powr2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2719
  fixes a :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2720
  assumes f: "(f \<longlongrightarrow> a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2721
    and g: "(g \<longlongrightarrow> b) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2722
    and "\<forall>\<^sub>F x in F. 0 \<le> f x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2723
    and b: "0 < b"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2724
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> a powr b) F"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2725
  using tendsto_powr'[of f a F g b] assms by auto
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2726
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2727
lemma DERIV_powr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2728
  fixes r :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2729
  assumes g: "DERIV g x :> m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2730
    and pos: "g x > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2731
    and f: "DERIV f x :> r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2732
  shows "DERIV (\<lambda>x. g x powr f x) x :> (g x powr f x) * (r * ln (g x) + m * f x / g x)"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2733
proof -
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2734
  have "DERIV (\<lambda>x. exp (f x * ln (g x))) x :> (g x powr f x) * (r * ln (g x) + m * f x / g x)"
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2735
    using pos
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2736
    by (auto intro!: derivative_eq_intros g pos f simp: powr_def field_simps exp_diff)
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2737
  then show ?thesis
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2738
  proof (rule DERIV_cong_ev[OF refl _ refl, THEN iffD1, rotated])
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2739
    from DERIV_isCont[OF g] pos have "\<forall>\<^sub>F x in at x. 0 < g x"
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2740
      unfolding isCont_def by (rule order_tendstoD(1))
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2741
    with pos show "\<forall>\<^sub>F x in nhds x. exp (f x * ln (g x)) = g x powr f x"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  2742
      by (auto simp: eventually_at_filter powr_def elim: eventually_mono)
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2743
  qed
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2744
qed
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2745
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2746
lemma DERIV_fun_powr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2747
  fixes r :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2748
  assumes g: "DERIV g x :> m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2749
    and pos: "g x > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2750
  shows "DERIV (\<lambda>x. (g x) powr r) x :> r * (g x) powr (r - of_nat 1) * m"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2751
  using DERIV_powr[OF g pos DERIV_const, of r] pos
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2752
  by (simp add: powr_divide2[symmetric] field_simps)
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2753
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2754
lemma has_real_derivative_powr:
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2755
  assumes "z > 0"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2756
  shows "((\<lambda>z. z powr r) has_real_derivative r * z powr (r - 1)) (at z)"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2757
proof (subst DERIV_cong_ev[OF refl _ refl])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2758
  from assms have "eventually (\<lambda>z. z \<noteq> 0) (nhds z)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2759
    by (intro t1_space_nhds) auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2760
  then show "eventually (\<lambda>z. z powr r = exp (r * ln z)) (nhds z)"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2761
    unfolding powr_def by eventually_elim simp
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2762
  from assms show "((\<lambda>z. exp (r * ln z)) has_real_derivative r * z powr (r - 1)) (at z)"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2763
    by (auto intro!: derivative_eq_intros simp: powr_def field_simps exp_diff)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2764
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2765
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2766
declare has_real_derivative_powr[THEN DERIV_chain2, derivative_intros]
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2767
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2768
lemma tendsto_zero_powrI:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2769
  assumes "(f \<longlongrightarrow> (0::real)) F" "(g \<longlongrightarrow> b) F" "\<forall>\<^sub>F x in F. 0 \<le> f x" "0 < b"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2770
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> 0) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2771
  using tendsto_powr2[OF assms] by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2772
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2773
lemma continuous_on_powr':
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2774
  fixes f g :: "_ \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2775
  assumes "continuous_on s f" "continuous_on s g"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2776
    and "\<forall>x\<in>s. f x \<ge> 0 \<and> (f x = 0 \<longrightarrow> g x > 0)"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2777
  shows "continuous_on s (\<lambda>x. (f x) powr (g x))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2778
  unfolding continuous_on_def
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2779
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2780
  fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2781
  assume x: "x \<in> s"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2782
  from assms x show "((\<lambda>x. f x powr g x) \<longlongrightarrow> f x powr g x) (at x within s)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2783
  proof (cases "f x = 0")
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2784
    case True
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2785
    from assms(3) have "eventually (\<lambda>x. f x \<ge> 0) (at x within s)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2786
      by (auto simp: at_within_def eventually_inf_principal)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2787
    with True x assms show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2788
      by (auto intro!: tendsto_zero_powrI[of f _ g "g x"] simp: continuous_on_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2789
  next
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2790
    case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2791
    with assms x show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2792
      by (auto intro!: tendsto_powr' simp: continuous_on_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2793
  qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2794
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2795
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2796
lemma tendsto_neg_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2797
  assumes "s < 0"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2798
    and f: "LIM x F. f x :> at_top"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2799
  shows "((\<lambda>x. f x powr s) \<longlongrightarrow> (0::real)) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2800
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2801
  have "((\<lambda>x. exp (s * ln (f x))) \<longlongrightarrow> (0::real)) F" (is "?X")
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2802
    by (auto intro!: filterlim_compose[OF exp_at_bot] filterlim_compose[OF ln_at_top]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2803
        filterlim_tendsto_neg_mult_at_bot assms)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2804
  also have "?X \<longleftrightarrow> ((\<lambda>x. f x powr s) \<longlongrightarrow> (0::real)) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2805
    using f filterlim_at_top_dense[of f F]
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  2806
    by (intro filterlim_cong[OF refl refl]) (auto simp: neq_iff powr_def elim: eventually_mono)
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2807
  finally show ?thesis .
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2808
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2809
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2810
lemma tendsto_exp_limit_at_right: "((\<lambda>y. (1 + x * y) powr (1 / y)) \<longlongrightarrow> exp x) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2811
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2812
proof (cases "x = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2813
  case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2814
  then show ?thesis by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2815
next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2816
  case False
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2817
  have "((\<lambda>y. ln (1 + x * y)::real) has_real_derivative 1 * x) (at 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2818
    by (auto intro!: derivative_eq_intros)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2819
  then have "((\<lambda>y. ln (1 + x * y) / y) \<longlongrightarrow> x) (at 0)"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2820
    by (auto simp add: has_field_derivative_def field_has_derivative_at)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2821
  then have *: "((\<lambda>y. exp (ln (1 + x * y) / y)) \<longlongrightarrow> exp x) (at 0)"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2822
    by (rule tendsto_intros)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2823
  then show ?thesis
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2824
  proof (rule filterlim_mono_eventually)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2825
    show "eventually (\<lambda>xa. exp (ln (1 + x * xa) / xa) = (1 + x * xa) powr (1 / xa)) (at_right 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2826
      unfolding eventually_at_right[OF zero_less_one]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2827
      using False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2828
      apply (intro exI[of _ "1 / \<bar>x\<bar>"])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2829
      apply (auto simp: field_simps powr_def abs_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2830
      apply (metis add_less_same_cancel1 mult_less_0_iff not_less_iff_gr_or_eq zero_less_one)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2831
      done
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2832
  qed (simp_all add: at_eq_sup_left_right)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2833
qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2834
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2835
lemma tendsto_exp_limit_at_top: "((\<lambda>y. (1 + x / y) powr y) \<longlongrightarrow> exp x) at_top"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2836
  for x :: real
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2837
  apply (subst filterlim_at_top_to_right)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2838
  apply (simp add: inverse_eq_divide)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2839
  apply (rule tendsto_exp_limit_at_right)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2840
  done
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2841
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2842
lemma tendsto_exp_limit_sequentially: "(\<lambda>n. (1 + x / n) ^ n) \<longlonglongrightarrow> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2843
  for x :: real
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2844
proof (rule filterlim_mono_eventually)
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  2845
  from reals_Archimedean2 [of "\<bar>x\<bar>"] obtain n :: nat where *: "real n > \<bar>x\<bar>" ..
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2846
  then have "eventually (\<lambda>n :: nat. 0 < 1 + x / real n) at_top"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2847
    apply (intro eventually_sequentiallyI [of n])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2848
    apply (cases "x \<ge> 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2849
     apply (rule add_pos_nonneg)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2850
      apply (auto intro: divide_nonneg_nonneg)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2851
    apply (subgoal_tac "x / real xa > - 1")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2852
     apply (auto simp add: field_simps)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2853
    done
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2854
  then show "eventually (\<lambda>n. (1 + x / n) powr n = (1 + x / n) ^ n) at_top"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  2855
    by (rule eventually_mono) (erule powr_realpow)
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  2856
  show "(\<lambda>n. (1 + x / real n) powr real n) \<longlonglongrightarrow> exp x"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2857
    by (rule filterlim_compose [OF tendsto_exp_limit_at_top filterlim_real_sequentially])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2858
qed auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2859
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2860
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2861
subsection \<open>Sine and Cosine\<close>
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2862
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2863
definition sin_coeff :: "nat \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2864
  where "sin_coeff = (\<lambda>n. if even n then 0 else (- 1) ^ ((n - Suc 0) div 2) / (fact n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2865
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2866
definition cos_coeff :: "nat \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2867
  where "cos_coeff = (\<lambda>n. if even n then ((- 1) ^ (n div 2)) / (fact n) else 0)"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2868
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2869
definition sin :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2870
  where "sin = (\<lambda>x. \<Sum>n. sin_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2871
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2872
definition cos :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2873
  where "cos = (\<lambda>x. \<Sum>n. cos_coeff n *\<^sub>R x^n)"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  2874
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2875
lemma sin_coeff_0 [simp]: "sin_coeff 0 = 0"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2876
  unfolding sin_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2877
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2878
lemma cos_coeff_0 [simp]: "cos_coeff 0 = 1"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2879
  unfolding cos_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2880
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2881
lemma sin_coeff_Suc: "sin_coeff (Suc n) = cos_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2882
  unfolding cos_coeff_def sin_coeff_def
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2883
  by (simp del: mult_Suc)
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2884
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2885
lemma cos_coeff_Suc: "cos_coeff (Suc n) = - sin_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2886
  unfolding cos_coeff_def sin_coeff_def
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  2887
  by (simp del: mult_Suc) (auto elim: oddE)
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2888
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2889
lemma summable_norm_sin: "summable (\<lambda>n. norm (sin_coeff n *\<^sub>R x^n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2890
  for x :: "'a::{real_normed_algebra_1,banach}"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2891
  unfolding sin_coeff_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2892
  apply (rule summable_comparison_test [OF _ summable_norm_exp [where x=x]])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2893
  apply (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2894
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2895
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2896
lemma summable_norm_cos: "summable (\<lambda>n. norm (cos_coeff n *\<^sub>R x^n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2897
  for x :: "'a::{real_normed_algebra_1,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2898
  unfolding cos_coeff_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2899
  apply (rule summable_comparison_test [OF _ summable_norm_exp [where x=x]])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2900
  apply (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2901
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2902
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2903
lemma sin_converges: "(\<lambda>n. sin_coeff n *\<^sub>R x^n) sums sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2904
  unfolding sin_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2905
  by (metis (full_types) summable_norm_cancel summable_norm_sin summable_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2906
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2907
lemma cos_converges: "(\<lambda>n. cos_coeff n *\<^sub>R x^n) sums cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2908
  unfolding cos_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2909
  by (metis (full_types) summable_norm_cancel summable_norm_cos summable_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2910
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2911
lemma sin_of_real: "sin (of_real x) = of_real (sin x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2912
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2913
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2914
  have "(\<lambda>n. of_real (sin_coeff n *\<^sub>R  x^n)) = (\<lambda>n. sin_coeff n *\<^sub>R  (of_real x)^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2915
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2916
    show "of_real (sin_coeff n *\<^sub>R  x^n) = sin_coeff n *\<^sub>R of_real x^n" for n
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2917
      by (simp add: scaleR_conv_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2918
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2919
  also have "\<dots> sums (sin (of_real x))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2920
    by (rule sin_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2921
  finally have "(\<lambda>n. of_real (sin_coeff n *\<^sub>R x^n)) sums (sin (of_real x))" .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2922
  then show ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2923
    using sums_unique2 sums_of_real [OF sin_converges]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2924
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2925
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2926
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2927
corollary sin_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> sin z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2928
  by (metis Reals_cases Reals_of_real sin_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2929
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2930
lemma cos_of_real: "cos (of_real x) = of_real (cos x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2931
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2932
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2933
  have "(\<lambda>n. of_real (cos_coeff n *\<^sub>R  x^n)) = (\<lambda>n. cos_coeff n *\<^sub>R  (of_real x)^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2934
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2935
    show "of_real (cos_coeff n *\<^sub>R  x^n) = cos_coeff n *\<^sub>R of_real x^n" for n
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2936
      by (simp add: scaleR_conv_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2937
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2938
  also have "\<dots> sums (cos (of_real x))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2939
    by (rule cos_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2940
  finally have "(\<lambda>n. of_real (cos_coeff n *\<^sub>R x^n)) sums (cos (of_real x))" .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2941
  then show ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2942
    using sums_unique2 sums_of_real [OF cos_converges]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2943
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2944
qed
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2945
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2946
corollary cos_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> cos z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2947
  by (metis Reals_cases Reals_of_real cos_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2948
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2949
lemma diffs_sin_coeff: "diffs sin_coeff = cos_coeff"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  2950
  by (simp add: diffs_def sin_coeff_Suc del: of_nat_Suc)
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2951
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2952
lemma diffs_cos_coeff: "diffs cos_coeff = (\<lambda>n. - sin_coeff n)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  2953
  by (simp add: diffs_def cos_coeff_Suc del: of_nat_Suc)
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2954
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2955
text \<open>Now at last we can get the derivatives of exp, sin and cos.\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2956
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2957
lemma DERIV_sin [simp]: "DERIV sin x :> cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2958
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2959
  unfolding sin_def cos_def scaleR_conv_of_real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2960
  apply (rule DERIV_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2961
   apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2962
      apply (simp_all add: norm_less_p1 diffs_of_real diffs_sin_coeff diffs_cos_coeff
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2963
              summable_minus_iff scaleR_conv_of_real [symmetric]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2964
              summable_norm_sin [THEN summable_norm_cancel]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2965
              summable_norm_cos [THEN summable_norm_cancel])
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2966
  done
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2967
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2968
declare DERIV_sin[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2969
  and DERIV_sin[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2970
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2971
lemma DERIV_cos [simp]: "DERIV cos x :> - sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2972
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2973
  unfolding sin_def cos_def scaleR_conv_of_real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2974
  apply (rule DERIV_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2975
   apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2976
      apply (simp_all add: norm_less_p1 diffs_of_real diffs_minus suminf_minus
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2977
              diffs_sin_coeff diffs_cos_coeff
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2978
              summable_minus_iff scaleR_conv_of_real [symmetric]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2979
              summable_norm_sin [THEN summable_norm_cancel]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  2980
              summable_norm_cos [THEN summable_norm_cancel])
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  2981
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  2982
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2983
declare DERIV_cos[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2984
  and DERIV_cos[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2985
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2986
lemma isCont_sin: "isCont sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2987
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2988
  by (rule DERIV_sin [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2989
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2990
lemma isCont_cos: "isCont cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2991
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2992
  by (rule DERIV_cos [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2993
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2994
lemma isCont_sin' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. sin (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2995
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2996
  by (rule isCont_o2 [OF _ isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  2997
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2998
(* FIXME a context for f would be better *)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2999
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3000
lemma isCont_cos' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. cos (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3001
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3002
  by (rule isCont_o2 [OF _ isCont_cos])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3003
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3004
lemma tendsto_sin [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. sin (f x)) \<longlongrightarrow> sin a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3005
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3006
  by (rule isCont_tendsto_compose [OF isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3007
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3008
lemma tendsto_cos [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. cos (f x)) \<longlongrightarrow> cos a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3009
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3010
  by (rule isCont_tendsto_compose [OF isCont_cos])
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3011
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3012
lemma continuous_sin [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. sin (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3013
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3014
  unfolding continuous_def by (rule tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3015
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3016
lemma continuous_on_sin [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. sin (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3017
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3018
  unfolding continuous_on_def by (auto intro: tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3019
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3020
lemma continuous_within_sin: "continuous (at z within s) sin"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3021
  for z :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3022
  by (simp add: continuous_within tendsto_sin)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3023
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3024
lemma continuous_cos [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. cos (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3025
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3026
  unfolding continuous_def by (rule tendsto_cos)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3027
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3028
lemma continuous_on_cos [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. cos (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3029
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3030
  unfolding continuous_on_def by (auto intro: tendsto_cos)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3031
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3032
lemma continuous_within_cos: "continuous (at z within s) cos"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3033
  for z :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3034
  by (simp add: continuous_within tendsto_cos)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3035
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3036
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3037
subsection \<open>Properties of Sine and Cosine\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3038
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3039
lemma sin_zero [simp]: "sin 0 = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3040
  by (simp add: sin_def sin_coeff_def scaleR_conv_of_real)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3041
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3042
lemma cos_zero [simp]: "cos 0 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3043
  by (simp add: cos_def cos_coeff_def scaleR_conv_of_real)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3044
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3045
lemma DERIV_fun_sin: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. sin (g x)) x :> cos (g x) * m"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3046
  by (auto intro!: derivative_intros)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3047
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3048
lemma DERIV_fun_cos: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. cos(g x)) x :> - sin (g x) * m"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3049
  by (auto intro!: derivative_eq_intros)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3050
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3051
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3052
subsection \<open>Deriving the Addition Formulas\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3053
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3054
text \<open>The product of two cosine series.\<close>
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3055
lemma cos_x_cos_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3056
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3057
  shows
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3058
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3059
        if even p \<and> even n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3060
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3061
      sums (cos x * cos y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3062
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3063
  have "(cos_coeff n * cos_coeff (p - n)) *\<^sub>R (x^n * y^(p - n)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3064
    (if even p \<and> even n then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p - n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3065
     else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3066
    if "n \<le> p" for n p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3067
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3068
    from that have *: "even n \<Longrightarrow> even p \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3069
        (-1) ^ (n div 2) * (-1) ^ ((p - n) div 2) = (-1 :: real) ^ (p div 2)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3070
      by (metis div_add power_add le_add_diff_inverse odd_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3071
    with that show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3072
      by (auto simp: algebra_simps cos_coeff_def binomial_fact)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3073
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3074
  then have "(\<lambda>p. \<Sum>n\<le>p. if even p \<and> even n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3075
                  then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3076
             (\<lambda>p. \<Sum>n\<le>p. (cos_coeff n * cos_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3077
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3078
  also have "\<dots> = (\<lambda>p. \<Sum>n\<le>p. (cos_coeff n *\<^sub>R x^n) * (cos_coeff (p - n) *\<^sub>R y^(p-n)))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3079
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3080
  also have "\<dots> sums (cos x * cos y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3081
    using summable_norm_cos
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3082
    by (auto simp: cos_def scaleR_conv_of_real intro!: Cauchy_product_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3083
  finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3084
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3085
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3086
text \<open>The product of two sine series.\<close>
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3087
lemma sin_x_sin_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3088
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3089
  shows
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3090
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3091
        if even p \<and> odd n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3092
        then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3093
        else 0)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3094
      sums (sin x * sin y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3095
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3096
  have "(sin_coeff n * sin_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3097
    (if even p \<and> odd n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3098
     then -((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3099
     else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3100
    if "n \<le> p" for n p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3101
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3102
    have "(-1) ^ ((n - Suc 0) div 2) * (-1) ^ ((p - Suc n) div 2) = - ((-1 :: real) ^ (p div 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3103
      if np: "odd n" "even p"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3104
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3105
      from \<open>n \<le> p\<close> np have *: "n - Suc 0 + (p - Suc n) = p - Suc (Suc 0)" "Suc (Suc 0) \<le> p"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3106
        by arith+
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3107
      have "(p - Suc (Suc 0)) div 2 = p div 2 - Suc 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3108
        by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3109
      with \<open>n \<le> p\<close> np * show ?thesis
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3110
        apply (simp add: power_add [symmetric] div_add [symmetric] del: div_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3111
        apply (metis (no_types) One_nat_def Suc_1 le_div_geq minus_minus
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3112
            mult.left_neutral mult_minus_left power.simps(2) zero_less_Suc)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3113
        done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3114
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3115
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3116
      using \<open>n\<le>p\<close> by (auto simp: algebra_simps sin_coeff_def binomial_fact)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3117
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3118
  then have "(\<lambda>p. \<Sum>n\<le>p. if even p \<and> odd n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3119
               then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3120
             (\<lambda>p. \<Sum>n\<le>p. (sin_coeff n * sin_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3121
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3122
  also have "\<dots> = (\<lambda>p. \<Sum>n\<le>p. (sin_coeff n *\<^sub>R x^n) * (sin_coeff (p - n) *\<^sub>R y^(p-n)))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3123
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3124
  also have "\<dots> sums (sin x * sin y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3125
    using summable_norm_sin
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3126
    by (auto simp: sin_def scaleR_conv_of_real intro!: Cauchy_product_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3127
  finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3128
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3129
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3130
lemma sums_cos_x_plus_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3131
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3132
  shows
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3133
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3134
        if even p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3135
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3136
        else 0)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3137
      sums cos (x + y)"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3138
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3139
  have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3140
    "(\<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3141
      if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3142
      else 0) = cos_coeff p *\<^sub>R ((x + y) ^ p)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3143
    for p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3144
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3145
    have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3146
      "(\<Sum>n\<le>p. if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3147
       (if even p then \<Sum>n\<le>p. ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3148
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3149
    also have "\<dots> =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3150
       (if even p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3151
        then of_real ((-1) ^ (p div 2) / (fact p)) * (\<Sum>n\<le>p. (p choose n) *\<^sub>R (x^n) * y^(p-n))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3152
        else 0)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3153
      by (auto simp: setsum_right_distrib field_simps scaleR_conv_of_real nonzero_of_real_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3154
    also have "\<dots> = cos_coeff p *\<^sub>R ((x + y) ^ p)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3155
      by (simp add: cos_coeff_def binomial_ring [of x y]  scaleR_conv_of_real atLeast0AtMost)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3156
    finally show ?thesis .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3157
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3158
  then have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3159
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3160
        if even p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3161
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3162
        else 0) = (\<lambda>p. cos_coeff p *\<^sub>R ((x+y)^p))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3163
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3164
   also have "\<dots> sums cos (x + y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3165
    by (rule cos_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3166
   finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3167
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3168
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3169
theorem cos_add:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3170
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3171
  shows "cos (x + y) = cos x * cos y - sin x * sin y"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3172
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3173
  have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3174
    "(if even p \<and> even n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3175
      then ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3176
     (if even p \<and> odd n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3177
      then - ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3178
     (if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3179
    if "n \<le> p" for n p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3180
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3181
  then have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3182
    "(\<lambda>p. \<Sum>n\<le>p. (if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3183
      sums (cos x * cos y - sin x * sin y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3184
    using sums_diff [OF cos_x_cos_y [of x y] sin_x_sin_y [of x y]]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3185
    by (simp add: setsum_subtractf [symmetric])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3186
  then show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3187
    by (blast intro: sums_cos_x_plus_y sums_unique2)
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3188
qed
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3189
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3190
lemma sin_minus_converges: "(\<lambda>n. - (sin_coeff n *\<^sub>R (-x)^n)) sums sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3191
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3192
  have [simp]: "\<And>n. - (sin_coeff n *\<^sub>R (-x)^n) = (sin_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3193
    by (auto simp: sin_coeff_def elim!: oddE)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3194
  show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3195
    by (simp add: sin_def summable_norm_sin [THEN summable_norm_cancel, THEN summable_sums])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3196
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3197
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3198
lemma sin_minus [simp]: "sin (- x) = - sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3199
  for x :: "'a::{real_normed_algebra_1,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3200
  using sin_minus_converges [of x]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3201
  by (auto simp: sin_def summable_norm_sin [THEN summable_norm_cancel]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3202
      suminf_minus sums_iff equation_minus_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3203
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3204
lemma cos_minus_converges: "(\<lambda>n. (cos_coeff n *\<^sub>R (-x)^n)) sums cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3205
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3206
  have [simp]: "\<And>n. (cos_coeff n *\<^sub>R (-x)^n) = (cos_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3207
    by (auto simp: Transcendental.cos_coeff_def elim!: evenE)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3208
  show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3209
    by (simp add: cos_def summable_norm_cos [THEN summable_norm_cancel, THEN summable_sums])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3210
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3211
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3212
lemma cos_minus [simp]: "cos (-x) = cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3213
  for x :: "'a::{real_normed_algebra_1,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3214
  using cos_minus_converges [of x]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3215
  by (simp add: cos_def summable_norm_cos [THEN summable_norm_cancel]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3216
      suminf_minus sums_iff equation_minus_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3217
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3218
lemma sin_cos_squared_add [simp]: "(sin x)\<^sup>2 + (cos x)\<^sup>2 = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3219
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3220
  using cos_add [of x "-x"]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3221
  by (simp add: power2_eq_square algebra_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3222
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3223
lemma sin_cos_squared_add2 [simp]: "(cos x)\<^sup>2 + (sin x)\<^sup>2 = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3224
  for x :: "'a::{real_normed_field,banach}"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3225
  by (subst add.commute, rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3226
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3227
lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3228
  for x :: "'a::{real_normed_field,banach}"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3229
  using sin_cos_squared_add2 [unfolded power2_eq_square] .
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3230
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3231
lemma sin_squared_eq: "(sin x)\<^sup>2 = 1 - (cos x)\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3232
  for x :: "'a::{real_normed_field,banach}"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3233
  unfolding eq_diff_eq by (rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3234
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3235
lemma cos_squared_eq: "(cos x)\<^sup>2 = 1 - (sin x)\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3236
  for x :: "'a::{real_normed_field,banach}"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3237
  unfolding eq_diff_eq by (rule sin_cos_squared_add2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3238
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3239
lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3240
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3241
  by (rule power2_le_imp_le) (simp_all add: sin_squared_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3242
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3243
lemma sin_ge_minus_one [simp]: "- 1 \<le> sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3244
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3245
  using abs_sin_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3246
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3247
lemma sin_le_one [simp]: "sin x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3248
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3249
  using abs_sin_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3250
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3251
lemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3252
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3253
  by (rule power2_le_imp_le) (simp_all add: cos_squared_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3254
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3255
lemma cos_ge_minus_one [simp]: "- 1 \<le> cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3256
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3257
  using abs_cos_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3258
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3259
lemma cos_le_one [simp]: "cos x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3260
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3261
  using abs_cos_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3262
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3263
lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3264
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3265
  using cos_add [of x "- y"] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3266
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3267
lemma cos_double: "cos(2*x) = (cos x)\<^sup>2 - (sin x)\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3268
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3269
  using cos_add [where x=x and y=x] by (simp add: power2_eq_square)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3270
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3271
lemma sin_cos_le1: "\<bar>sin x * sin y + cos x * cos y\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3272
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3273
  using cos_diff [of x y] by (metis abs_cos_le_one add.commute)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3274
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3275
lemma DERIV_fun_pow: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3276
  by (auto intro!: derivative_eq_intros simp:)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3277
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3278
lemma DERIV_fun_exp: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. exp (g x)) x :> exp (g x) * m"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3279
  by (auto intro!: derivative_intros)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3280
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3281
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3282
subsection \<open>The Constant Pi\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3283
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3284
definition pi :: real
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3285
  where "pi = 2 * (THE x. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3286
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3287
text \<open>Show that there's a least positive @{term x} with @{term "cos x = 0"};
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3288
   hence define pi.\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3289
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3290
lemma sin_paired: "(\<lambda>n. (- 1) ^ n / (fact (2 * n + 1)) * x ^ (2 * n + 1)) sums  sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3291
  for x :: real
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3292
proof -
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3293
  have "(\<lambda>n. \<Sum>k = n*2..<n * 2 + 2. sin_coeff k * x ^ k) sums sin x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3294
    by (rule sums_group) (use sin_converges [of x, unfolded scaleR_conv_of_real] in auto)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3295
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3296
    by (simp add: sin_coeff_def ac_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3297
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3298
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3299
lemma sin_gt_zero_02:
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3300
  fixes x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3301
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3302
  shows "0 < sin x"
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3303
proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3304
  let ?f = "\<lambda>n::nat. \<Sum>k = n*2..<n*2+2. (- 1) ^ k / (fact (2*k+1)) * x^(2*k+1)"
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3305
  have pos: "\<forall>n. 0 < ?f n"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3306
  proof
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3307
    fix n :: nat
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3308
    let ?k2 = "real (Suc (Suc (4 * n)))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3309
    let ?k3 = "real (Suc (Suc (Suc (4 * n))))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3310
    have "x * x < ?k2 * ?k3"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3311
      using assms by (intro mult_strict_mono', simp_all)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3312
    then have "x * x * x * x ^ (n * 4) < ?k2 * ?k3 * x * x ^ (n * 4)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3313
      by (intro mult_strict_right_mono zero_less_power \<open>0 < x\<close>)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3314
    then show "0 < ?f n"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3315
      by (simp add: divide_simps mult_ac del: mult_Suc)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3316
qed
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3317
  have sums: "?f sums sin x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3318
    by (rule sin_paired [THEN sums_group]) simp
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3319
  show "0 < sin x"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3320
    unfolding sums_unique [OF sums]
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3321
    using sums_summable [OF sums] pos
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  3322
    by (rule suminf_pos)
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3323
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3324
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3325
lemma cos_double_less_one: "0 < x \<Longrightarrow> x < 2 \<Longrightarrow> cos (2 * x) < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3326
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3327
  using sin_gt_zero_02 [where x = x] by (auto simp: cos_squared_eq cos_double)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3328
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3329
lemma cos_paired: "(\<lambda>n. (- 1) ^ n / (fact (2 * n)) * x ^ (2 * n)) sums cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3330
  for x :: real
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3331
proof -
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  3332
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. cos_coeff k * x ^ k) sums cos x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3333
    by (rule sums_group) (use cos_converges [of x, unfolded scaleR_conv_of_real] in auto)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3334
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3335
    by (simp add: cos_coeff_def ac_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3336
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3337
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3338
lemmas realpow_num_eq_if = power_eq_if
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3339
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3340
lemma sumr_pos_lt_pair:
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3341
  fixes f :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3342
  shows "summable f \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3343
    (\<And>d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc (Suc 0) * d) + 1))) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3344
    setsum f {..<k} < suminf f"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3345
  apply (simp only: One_nat_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3346
  apply (subst suminf_split_initial_segment [where k=k])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3347
   apply assumption
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3348
  apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3349
  apply (drule_tac k=k in summable_ignore_initial_segment)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3350
  apply (drule_tac k="Suc (Suc 0)" in sums_group [OF summable_sums])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3351
   apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3352
  apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3353
  apply (metis (no_types, lifting) add.commute suminf_pos summable_def sums_unique)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3354
  done
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3355
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3356
lemma cos_two_less_zero [simp]: "cos 2 < (0::real)"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3357
proof -
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63365
diff changeset
  3358
  note fact_Suc [simp del]
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3359
  from sums_minus [OF cos_paired]
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3360
  have *: "(\<lambda>n. - ((- 1) ^ n * 2 ^ (2 * n) / fact (2 * n))) sums - cos (2::real)"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3361
    by simp
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3362
  then have sm: "summable (\<lambda>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3363
    by (rule sums_summable)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3364
  have "0 < (\<Sum>n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3365
    by (simp add: fact_num_eq_if realpow_num_eq_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3366
  moreover have "(\<Sum>n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n  * 2 ^ (2 * n) / (fact (2 * n)))) <
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3367
    (\<Sum>n. - ((- 1) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3368
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3369
    {
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3370
      fix d
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3371
      let ?six4d = "Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))"
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3372
      have "(4::real) * (fact (?six4d)) < (Suc (Suc (?six4d)) * fact (Suc (?six4d)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3373
        unfolding of_nat_mult by (rule mult_strict_mono) (simp_all add: fact_less_mono)
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3374
      then have "(4::real) * (fact (?six4d)) < (fact (Suc (Suc (?six4d))))"
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63365
diff changeset
  3375
        by (simp only: fact_Suc [of "Suc (?six4d)"] of_nat_mult of_nat_fact)
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3376
      then have "(4::real) * inverse (fact (Suc (Suc (?six4d)))) < inverse (fact (?six4d))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3377
        by (simp add: inverse_eq_divide less_divide_eq)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3378
    }
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3379
    then show ?thesis
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60762
diff changeset
  3380
      by (force intro!: sumr_pos_lt_pair [OF sm] simp add: divide_inverse algebra_simps)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3381
  qed
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3382
  ultimately have "0 < (\<Sum>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3383
    by (rule order_less_trans)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3384
  moreover from * have "- cos 2 = (\<Sum>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3385
    by (rule sums_unique)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3386
  ultimately have "(0::real) < - cos 2" by simp
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3387
  then show ?thesis by simp
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3388
qed
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3389
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3390
lemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3391
lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3392
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3393
lemma cos_is_zero: "\<exists>!x::real. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0"
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3394
proof (rule ex_ex1I)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3395
  show "\<exists>x::real. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3396
    by (rule IVT2) simp_all
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3397
next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3398
  fix x y :: real
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3399
  assume x: "0 \<le> x \<and> x \<le> 2 \<and> cos x = 0"
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3400
  assume y: "0 \<le> y \<and> y \<le> 2 \<and> cos y = 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3401
  have [simp]: "\<forall>x::real. cos differentiable (at x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  3402
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3403
  from x y less_linear [of x y] show "x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3404
    apply auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3405
     apply (drule_tac f = cos in Rolle)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3406
        apply (drule_tac [5] f = cos in Rolle)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3407
           apply (auto dest!: DERIV_cos [THEN DERIV_unique])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3408
     apply (metis order_less_le_trans less_le sin_gt_zero_02)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3409
    apply (metis order_less_le_trans less_le sin_gt_zero_02)
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3410
    done
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3411
qed
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  3412
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3413
lemma pi_half: "pi/2 = (THE x. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3414
  by (simp add: pi_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3415
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3416
lemma cos_pi_half [simp]: "cos (pi / 2) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3417
  by (simp add: pi_half cos_is_zero [THEN theI'])
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3418
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3419
lemma cos_of_real_pi_half [simp]: "cos ((of_real pi / 2) :: 'a) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3420
  if "SORT_CONSTRAINT('a::{real_field,banach,real_normed_algebra_1})"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3421
  by (metis cos_pi_half cos_of_real eq_numeral_simps(4)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3422
      nonzero_of_real_divide of_real_0 of_real_numeral)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3423
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3424
lemma pi_half_gt_zero [simp]: "0 < pi / 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3425
  apply (rule order_le_neq_trans)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3426
   apply (simp add: pi_half cos_is_zero [THEN theI'])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  3427
  apply (metis cos_pi_half cos_zero zero_neq_one)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3428
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3429
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3430
lemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3431
lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3432
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3433
lemma pi_half_less_two [simp]: "pi / 2 < 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3434
  apply (rule order_le_neq_trans)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3435
   apply (simp add: pi_half cos_is_zero [THEN theI'])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  3436
  apply (metis cos_pi_half cos_two_neq_zero)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3437
  done
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3438
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3439
lemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3440
lemmas pi_half_le_two [simp] =  pi_half_less_two [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3441
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3442
lemma pi_gt_zero [simp]: "0 < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3443
  using pi_half_gt_zero by simp
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3444
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3445
lemma pi_ge_zero [simp]: "0 \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3446
  by (rule pi_gt_zero [THEN order_less_imp_le])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3447
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3448
lemma pi_neq_zero [simp]: "pi \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3449
  by (rule pi_gt_zero [THEN less_imp_neq, symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3450
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3451
lemma pi_not_less_zero [simp]: "\<not> pi < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3452
  by (simp add: linorder_not_less)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3453
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  3454
lemma minus_pi_half_less_zero: "-(pi/2) < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3455
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3456
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3457
lemma m2pi_less_pi: "- (2*pi) < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3458
  by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3459
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3460
lemma sin_pi_half [simp]: "sin(pi/2) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3461
  using sin_cos_squared_add2 [where x = "pi/2"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3462
  using sin_gt_zero_02 [OF pi_half_gt_zero pi_half_less_two]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3463
  by (simp add: power2_eq_1_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3464
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3465
lemma sin_of_real_pi_half [simp]: "sin ((of_real pi / 2) :: 'a) = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3466
  if "SORT_CONSTRAINT('a::{real_field,banach,real_normed_algebra_1})"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3467
  using sin_pi_half
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3468
  by (metis sin_pi_half eq_numeral_simps(4) nonzero_of_real_divide of_real_1 of_real_numeral sin_of_real)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3469
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3470
lemma sin_cos_eq: "sin x = cos (of_real pi / 2 - x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3471
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3472
  by (simp add: cos_diff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3473
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3474
lemma minus_sin_cos_eq: "- sin x = cos (x + of_real pi / 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3475
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3476
  by (simp add: cos_add nonzero_of_real_divide)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3477
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3478
lemma cos_sin_eq: "cos x = sin (of_real pi / 2 - x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3479
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3480
  using sin_cos_eq [of "of_real pi / 2 - x"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3481
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3482
lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3483
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3484
  using cos_add [of "of_real pi / 2 - x" "-y"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3485
  by (simp add: cos_sin_eq) (simp add: sin_cos_eq)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3486
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3487
lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3488
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3489
  using sin_add [of x "- y"] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3490
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3491
lemma sin_double: "sin(2 * x) = 2 * sin x * cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3492
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3493
  using sin_add [where x=x and y=x] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3494
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3495
lemma cos_of_real_pi [simp]: "cos (of_real pi) = -1"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3496
  using cos_add [where x = "pi/2" and y = "pi/2"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3497
  by (simp add: cos_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3498
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3499
lemma sin_of_real_pi [simp]: "sin (of_real pi) = 0"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3500
  using sin_add [where x = "pi/2" and y = "pi/2"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3501
  by (simp add: sin_of_real)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3502
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3503
lemma cos_pi [simp]: "cos pi = -1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3504
  using cos_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3505
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3506
lemma sin_pi [simp]: "sin pi = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3507
  using sin_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3508
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3509
lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3510
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3511
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3512
lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3513
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3514
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3515
lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3516
  by (simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3517
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3518
lemma cos_periodic_pi2 [simp]: "cos (pi + x) = - cos x"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3519
  by (simp add: cos_add)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3520
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3521
lemma sin_periodic [simp]: "sin (x + 2 * pi) = sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3522
  by (simp add: sin_add sin_double cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3523
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3524
lemma cos_periodic [simp]: "cos (x + 2 * pi) = cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3525
  by (simp add: cos_add sin_double cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3526
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3527
lemma cos_npi [simp]: "cos (real n * pi) = (- 1) ^ n"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3528
  by (induct n) (auto simp: distrib_right)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3529
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3530
lemma cos_npi2 [simp]: "cos (pi * real n) = (- 1) ^ n"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3531
  by (metis cos_npi mult.commute)
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3532
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3533
lemma sin_npi [simp]: "sin (real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3534
  for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3535
  by (induct n) (auto simp: distrib_right)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3536
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3537
lemma sin_npi2 [simp]: "sin (pi * real n) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3538
  for n :: nat
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3539
  by (simp add: mult.commute [of pi])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3540
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3541
lemma cos_two_pi [simp]: "cos (2 * pi) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3542
  by (simp add: cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3543
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3544
lemma sin_two_pi [simp]: "sin (2 * pi) = 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3545
  by (simp add: sin_double)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3546
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3547
lemma sin_times_sin: "sin w * sin z = (cos (w - z) - cos (w + z)) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3548
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3549
  by (simp add: cos_diff cos_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3550
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3551
lemma sin_times_cos: "sin w * cos z = (sin (w + z) + sin (w - z)) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3552
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3553
  by (simp add: sin_diff sin_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3554
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3555
lemma cos_times_sin: "cos w * sin z = (sin (w + z) - sin (w - z)) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3556
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3557
  by (simp add: sin_diff sin_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3558
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3559
lemma cos_times_cos: "cos w * cos z = (cos (w - z) + cos (w + z)) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3560
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3561
  by (simp add: cos_diff cos_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3562
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3563
lemma sin_plus_sin: "sin w + sin z = 2 * sin ((w + z) / 2) * cos ((w - z) / 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3564
  for w :: "'a::{real_normed_field,banach,field}"  (* FIXME field should not be necessary *)
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3565
  apply (simp add: mult.assoc sin_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3566
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3567
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3568
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3569
lemma sin_diff_sin: "sin w - sin z = 2 * sin ((w - z) / 2) * cos ((w + z) / 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3570
  for w :: "'a::{real_normed_field,banach,field}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3571
  apply (simp add: mult.assoc sin_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3572
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3573
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3574
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3575
lemma cos_plus_cos: "cos w + cos z = 2 * cos ((w + z) / 2) * cos ((w - z) / 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3576
  for w :: "'a::{real_normed_field,banach,field}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3577
  apply (simp add: mult.assoc cos_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3578
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3579
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3580
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3581
lemma cos_diff_cos: "cos w - cos z = 2 * sin ((w + z) / 2) * sin ((z - w) / 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3582
  for w :: "'a::{real_normed_field,banach,field}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3583
  apply (simp add: mult.assoc sin_times_sin)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3584
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3585
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3586
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3587
lemma cos_double_cos: "cos (2 * z) = 2 * cos z ^ 2 - 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3588
  for z :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3589
  by (simp add: cos_double sin_squared_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3590
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3591
lemma cos_double_sin: "cos (2 * z) = 1 - 2 * sin z ^ 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3592
  for z :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3593
  by (simp add: cos_double sin_squared_eq)
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3594
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3595
lemma sin_pi_minus [simp]: "sin (pi - x) = sin x"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3596
  by (metis sin_minus sin_periodic_pi minus_minus uminus_add_conv_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3597
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3598
lemma cos_pi_minus [simp]: "cos (pi - x) = - (cos x)"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3599
  by (metis cos_minus cos_periodic_pi uminus_add_conv_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3600
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3601
lemma sin_minus_pi [simp]: "sin (x - pi) = - (sin x)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3602
  by (simp add: sin_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3603
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3604
lemma cos_minus_pi [simp]: "cos (x - pi) = - (cos x)"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3605
  by (simp add: cos_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3606
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3607
lemma sin_2pi_minus [simp]: "sin (2 * pi - x) = - (sin x)"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3608
  by (metis sin_periodic_pi2 add_diff_eq mult_2 sin_pi_minus)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3609
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3610
lemma cos_2pi_minus [simp]: "cos (2 * pi - x) = cos x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3611
  by (metis (no_types, hide_lams) cos_add cos_minus cos_two_pi sin_minus sin_two_pi
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3612
      diff_0_right minus_diff_eq mult_1 mult_zero_left uminus_add_conv_diff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3613
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3614
lemma sin_gt_zero2: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3615
  by (metis sin_gt_zero_02 order_less_trans pi_half_less_two)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3616
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3617
lemma sin_less_zero:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3618
  assumes "- pi/2 < x" and "x < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3619
  shows "sin x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3620
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3621
  have "0 < sin (- x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3622
    using assms by (simp only: sin_gt_zero2)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3623
  then show ?thesis by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3624
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3625
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3626
lemma pi_less_4: "pi < 4"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3627
  using pi_half_less_two by auto
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3628
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3629
lemma cos_gt_zero: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3630
  by (simp add: cos_sin_eq sin_gt_zero2)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3631
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3632
lemma cos_gt_zero_pi: "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3633
  using cos_gt_zero [of x] cos_gt_zero [of "-x"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3634
  by (cases rule: linorder_cases [of x 0]) auto
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3635
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3636
lemma cos_ge_zero: "-(pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> 0 \<le> cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3637
  by (auto simp: order_le_less cos_gt_zero_pi)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3638
    (metis cos_pi_half eq_divide_eq eq_numeral_simps(4))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3639
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3640
lemma sin_gt_zero: "0 < x \<Longrightarrow> x < pi \<Longrightarrow> 0 < sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3641
  by (simp add: sin_cos_eq cos_gt_zero_pi)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3642
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3643
lemma sin_lt_zero: "pi < x \<Longrightarrow> x < 2 * pi \<Longrightarrow> sin x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3644
  using sin_gt_zero [of "x - pi"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3645
  by (simp add: sin_diff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3646
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3647
lemma pi_ge_two: "2 \<le> pi"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3648
proof (rule ccontr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3649
  assume "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3650
  then have "pi < 2" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3651
  have "\<exists>y > pi. y < 2 \<and> y < 2 * pi"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3652
  proof (cases "2 < 2 * pi")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3653
    case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3654
    with dense[OF \<open>pi < 2\<close>] show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3655
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3656
    case False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3657
    have "pi < 2 * pi" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3658
    from dense[OF this] and False show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3659
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3660
  then obtain y where "pi < y" and "y < 2" and "y < 2 * pi"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3661
    by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3662
  then have "0 < sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3663
    using sin_gt_zero_02 by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3664
  moreover have "sin y < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3665
    using sin_gt_zero[of "y - pi"] \<open>pi < y\<close> and \<open>y < 2 * pi\<close> sin_periodic_pi[of "y - pi"]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3666
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3667
  ultimately show False by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3668
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3669
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3670
lemma sin_ge_zero: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3671
  by (auto simp: order_le_less sin_gt_zero)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3672
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3673
lemma sin_le_zero: "pi \<le> x \<Longrightarrow> x < 2 * pi \<Longrightarrow> sin x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3674
  using sin_ge_zero [of "x - pi"] by (simp add: sin_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3675
62948
7700f467892b lots of new theorems for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 62679
diff changeset
  3676
lemma sin_pi_divide_n_ge_0 [simp]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3677
  assumes "n \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3678
  shows "0 \<le> sin (pi / real n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3679
  by (rule sin_ge_zero) (use assms in \<open>simp_all add: divide_simps\<close>)
62948
7700f467892b lots of new theorems for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 62679
diff changeset
  3680
7700f467892b lots of new theorems for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 62679
diff changeset
  3681
lemma sin_pi_divide_n_gt_0:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3682
  assumes "2 \<le> n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3683
  shows "0 < sin (pi / real n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3684
  by (rule sin_gt_zero) (use assms in \<open>simp_all add: divide_simps\<close>)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3685
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3686
(* FIXME: This proof is almost identical to lemma \<open>cos_is_zero\<close>.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3687
   It should be possible to factor out some of the common parts. *)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3688
lemma cos_total:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3689
  assumes y: "- 1 \<le> y" "y \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3690
  shows "\<exists>!x. 0 \<le> x \<and> x \<le> pi \<and> cos x = y"
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3691
proof (rule ex_ex1I)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3692
  show "\<exists>x. 0 \<le> x \<and> x \<le> pi \<and> cos x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3693
    by (rule IVT2) (simp_all add: y)
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3694
next
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3695
  fix a b
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3696
  assume a: "0 \<le> a \<and> a \<le> pi \<and> cos a = y"
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3697
  assume b: "0 \<le> b \<and> b \<le> pi \<and> cos b = y"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3698
  have [simp]: "\<forall>x::real. cos differentiable (at x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  3699
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3700
  from a b less_linear [of a b] show "a = b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3701
    apply auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3702
     apply (drule_tac f = cos in Rolle)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3703
        apply (drule_tac [5] f = cos in Rolle)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3704
           apply (auto dest!: DERIV_cos [THEN DERIV_unique])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3705
     apply (metis order_less_le_trans less_le sin_gt_zero)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3706
    apply (metis order_less_le_trans less_le sin_gt_zero)
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3707
    done
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  3708
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3709
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3710
lemma sin_total:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3711
  assumes y: "-1 \<le> y" "y \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3712
  shows "\<exists>!x. - (pi/2) \<le> x \<and> x \<le> pi/2 \<and> sin x = y"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3713
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3714
  from cos_total [OF y]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3715
  obtain x where x: "0 \<le> x" "x \<le> pi" "cos x = y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3716
    and uniq: "\<And>x'. 0 \<le> x' \<Longrightarrow> x' \<le> pi \<Longrightarrow> cos x' = y \<Longrightarrow> x' = x "
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3717
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3718
  show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3719
    apply (simp add: sin_cos_eq)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3720
    apply (rule ex1I [where a="pi/2 - x"])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3721
     apply (cut_tac [2] x'="pi/2 - xa" in uniq)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3722
    using x
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3723
        apply auto
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3724
    done
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3725
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3726
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  3727
lemma cos_zero_lemma:
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3728
  assumes "0 \<le> x" "cos x = 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3729
  shows "\<exists>n. odd n \<and> x = of_nat n * (pi/2) \<and> n > 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3730
proof -
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3731
  have xle: "x < (1 + real_of_int \<lfloor>x/pi\<rfloor>) * pi"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3732
    using floor_correct [of "x/pi"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3733
    by (simp add: add.commute divide_less_eq)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3734
  obtain n where "real n * pi \<le> x" "x < real (Suc n) * pi"
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61881
diff changeset
  3735
    apply (rule that [of "nat \<lfloor>x/pi\<rfloor>"])
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3736
    using assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3737
     apply (simp_all add: xle)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3738
    apply (metis floor_less_iff less_irrefl mult_imp_div_pos_less not_le pi_gt_zero)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3739
    done
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3740
  then have x: "0 \<le> x - n * pi" "(x - n * pi) \<le> pi" "cos (x - n * pi) = 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3741
    by (auto simp: algebra_simps cos_diff assms)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3742
  then have "\<exists>!x. 0 \<le> x \<and> x \<le> pi \<and> cos x = 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3743
    by (auto simp: intro!: cos_total)
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  3744
  then obtain \<theta> where \<theta>: "0 \<le> \<theta>" "\<theta> \<le> pi" "cos \<theta> = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3745
    and uniq: "\<And>\<phi>. 0 \<le> \<phi> \<Longrightarrow> \<phi> \<le> pi \<Longrightarrow> cos \<phi> = 0 \<Longrightarrow> \<phi> = \<theta>"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3746
    by blast
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3747
  then have "x - real n * pi = \<theta>"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3748
    using x by blast
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3749
  moreover have "pi/2 = \<theta>"
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  3750
    using pi_half_ge_zero uniq by fastforce
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3751
  ultimately show ?thesis
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3752
    by (rule_tac x = "Suc (2 * n)" in exI) (simp add: algebra_simps)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3753
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3754
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3755
lemma sin_zero_lemma: "0 \<le> x \<Longrightarrow> sin x = 0 \<Longrightarrow> \<exists>n::nat. even n \<and> x = real n * (pi/2)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3756
  using cos_zero_lemma [of "x + pi/2"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3757
  apply (clarsimp simp add: cos_add)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3758
  apply (rule_tac x = "n - 1" in exI)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3759
  apply (simp add: algebra_simps of_nat_diff)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3760
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3761
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  3762
lemma cos_zero_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3763
  "cos x = 0 \<longleftrightarrow> ((\<exists>n. odd n \<and> x = real n * (pi/2)) \<or> (\<exists>n. odd n \<and> x = - (real n * (pi/2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3764
  (is "?lhs = ?rhs")
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3765
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3766
  have *: "cos (real n * pi / 2) = 0" if "odd n" for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3767
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3768
    from that obtain m where "n = 2 * m + 1" ..
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3769
    then show ?thesis
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3770
      by (simp add: field_simps) (simp add: cos_add add_divide_distrib)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3771
  qed
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3772
  show ?thesis
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3773
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3774
    show ?rhs if ?lhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3775
      using that cos_zero_lemma [of x] cos_zero_lemma [of "-x"] by force
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3776
    show ?lhs if ?rhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3777
      using that by (auto dest: * simp del: eq_divide_eq_numeral1)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3778
  qed
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3779
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3780
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  3781
lemma sin_zero_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3782
  "sin x = 0 \<longleftrightarrow> ((\<exists>n. even n \<and> x = real n * (pi/2)) \<or> (\<exists>n. even n \<and> x = - (real n * (pi/2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3783
  (is "?lhs = ?rhs")
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3784
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3785
  show ?rhs if ?lhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3786
    using that sin_zero_lemma [of x] sin_zero_lemma [of "-x"] by force
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3787
  show ?lhs if ?rhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3788
    using that by (auto elim: evenE)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3789
qed
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3790
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3791
lemma cos_zero_iff_int: "cos x = 0 \<longleftrightarrow> (\<exists>n. odd n \<and> x = of_int n * (pi/2))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3792
proof safe
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3793
  assume "cos x = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3794
  then show "\<exists>n. odd n \<and> x = of_int n * (pi/2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3795
    apply (simp add: cos_zero_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3796
    apply safe
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3797
     apply (metis even_int_iff of_int_of_nat_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3798
    apply (rule_tac x="- (int n)" in exI)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3799
    apply simp
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3800
    done
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3801
next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3802
  fix n :: int
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3803
  assume "odd n"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3804
  then show "cos (of_int n * (pi / 2)) = 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3805
    apply (simp add: cos_zero_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3806
    apply (cases n rule: int_cases2)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3807
     apply simp_all
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3808
    done
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3809
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3810
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3811
lemma sin_zero_iff_int: "sin x = 0 \<longleftrightarrow> (\<exists>n. even n \<and> x = of_int n * (pi/2))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3812
proof safe
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3813
  assume "sin x = 0"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3814
  then show "\<exists>n. even n \<and> x = of_int n * (pi / 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3815
    apply (simp add: sin_zero_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3816
    apply safe
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3817
     apply (metis even_int_iff of_int_of_nat_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3818
    apply (rule_tac x="- (int n)" in exI)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3819
    apply simp
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3820
    done
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3821
next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3822
  fix n :: int
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3823
  assume "even n"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3824
  then show "sin (of_int n * (pi / 2)) = 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3825
    apply (simp add: sin_zero_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3826
    apply (cases n rule: int_cases2)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3827
     apply simp_all
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3828
    done
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3829
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3830
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3831
lemma sin_zero_iff_int2: "sin x = 0 \<longleftrightarrow> (\<exists>n::int. x = of_int n * pi)"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3832
  apply (simp only: sin_zero_iff_int)
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3833
  apply (safe elim!: evenE)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3834
   apply (simp_all add: field_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3835
  using dvd_triv_left apply fastforce
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60301
diff changeset
  3836
  done
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3837
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3838
lemma cos_monotone_0_pi:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3839
  assumes "0 \<le> y" and "y < x" and "x \<le> pi"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3840
  shows "cos x < cos y"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3841
proof -
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  3842
  have "- (x - y) < 0" using assms by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3843
  from MVT2[OF \<open>y < x\<close> DERIV_cos[THEN impI, THEN allI]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3844
  obtain z where "y < z" and "z < x" and cos_diff: "cos x - cos y = (x - y) * - sin z"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3845
    by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3846
  then have "0 < z" and "z < pi"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3847
    using assms by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3848
  then have "0 < sin z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3849
    using sin_gt_zero by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3850
  then have "cos x - cos y < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3851
    unfolding cos_diff minus_mult_commute[symmetric]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3852
    using \<open>- (x - y) < 0\<close> by (rule mult_pos_neg2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3853
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3854
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3855
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3856
lemma cos_monotone_0_pi_le:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3857
  assumes "0 \<le> y" and "y \<le> x" and "x \<le> pi"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3858
  shows "cos x \<le> cos y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3859
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3860
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3861
  show ?thesis
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3862
    using cos_monotone_0_pi[OF \<open>0 \<le> y\<close> True \<open>x \<le> pi\<close>] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3863
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3864
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3865
  then have "y = x" using \<open>y \<le> x\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3866
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3867
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3868
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3869
lemma cos_monotone_minus_pi_0:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3870
  assumes "- pi \<le> y" and "y < x" and "x \<le> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3871
  shows "cos y < cos x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3872
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3873
  have "0 \<le> - x" and "- x < - y" and "- y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3874
    using assms by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3875
  from cos_monotone_0_pi[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3876
    unfolding cos_minus .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3877
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3878
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3879
lemma cos_monotone_minus_pi_0':
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3880
  assumes "- pi \<le> y" and "y \<le> x" and "x \<le> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3881
  shows "cos y \<le> cos x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3882
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3883
  case True
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3884
  show ?thesis using cos_monotone_minus_pi_0[OF \<open>-pi \<le> y\<close> True \<open>x \<le> 0\<close>]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3885
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3886
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3887
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3888
  then have "y = x" using \<open>y \<le> x\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3889
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3890
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3891
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3892
lemma sin_monotone_2pi:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3893
  assumes "- (pi/2) \<le> y" and "y < x" and "x \<le> pi/2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3894
  shows "sin y < sin x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3895
  apply (simp add: sin_cos_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3896
  apply (rule cos_monotone_0_pi)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3897
  using assms
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3898
    apply auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3899
  done
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3900
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3901
lemma sin_monotone_2pi_le:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3902
  assumes "- (pi / 2) \<le> y" and "y \<le> x" and "x \<le> pi / 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3903
  shows "sin y \<le> sin x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3904
  by (metis assms le_less sin_monotone_2pi)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3905
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3906
lemma sin_x_le_x:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3907
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3908
  assumes x: "x \<ge> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3909
  shows "sin x \<le> x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3910
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3911
  let ?f = "\<lambda>x. x - sin x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3912
  from x have "?f x \<ge> ?f 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3913
    apply (rule DERIV_nonneg_imp_nondecreasing)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3914
    apply (intro allI impI exI[of _ "1 - cos x" for x])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3915
    apply (auto intro!: derivative_eq_intros simp: field_simps)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3916
    done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3917
  then show "sin x \<le> x" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3918
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3919
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3920
lemma sin_x_ge_neg_x:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3921
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3922
  assumes x: "x \<ge> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3923
  shows "sin x \<ge> - x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3924
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3925
  let ?f = "\<lambda>x. x + sin x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3926
  from x have "?f x \<ge> ?f 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3927
    apply (rule DERIV_nonneg_imp_nondecreasing)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3928
    apply (intro allI impI exI[of _ "1 + cos x" for x])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3929
    apply (auto intro!: derivative_eq_intros simp: field_simps real_0_le_add_iff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3930
    done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3931
  then show "sin x \<ge> -x" by simp
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3932
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3933
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3934
lemma abs_sin_x_le_abs_x: "\<bar>sin x\<bar> \<le> \<bar>x\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3935
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3936
  using sin_x_ge_neg_x [of x] sin_x_le_x [of x] sin_x_ge_neg_x [of "-x"] sin_x_le_x [of "-x"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3937
  by (auto simp: abs_real_def)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3938
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3939
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3940
subsection \<open>More Corollaries about Sine and Cosine\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3941
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3942
lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi / 2) = (-1) ^ n"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3943
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3944
  have "sin ((real n + 1/2) * pi) = cos (real n * pi)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3945
    by (auto simp: algebra_simps sin_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3946
  then show ?thesis
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3947
    by (simp add: distrib_right add_divide_distrib add.commute mult.commute [of pi])
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3948
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3949
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3950
lemma cos_2npi [simp]: "cos (2 * real n * pi) = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3951
  for n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3952
  by (cases "even n") (simp_all add: cos_double mult.assoc)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3953
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3954
lemma cos_3over2_pi [simp]: "cos (3/2*pi) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3955
  apply (subgoal_tac "cos (pi + pi/2) = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3956
   apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3957
  apply (subst cos_add)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3958
  apply simp
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3959
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3960
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3961
lemma sin_2npi [simp]: "sin (2 * real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3962
  for n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3963
  by (auto simp: mult.assoc sin_double)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3964
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3965
lemma sin_3over2_pi [simp]: "sin (3/2*pi) = - 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3966
  apply (subgoal_tac "sin (pi + pi/2) = - 1")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3967
   apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3968
  apply (subst sin_add)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3969
  apply simp
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3970
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3971
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3972
lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3973
  by (simp only: cos_add sin_add of_nat_Suc distrib_right distrib_left add_divide_distrib, auto)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3974
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3975
lemma DERIV_cos_add [simp]: "DERIV (\<lambda>x. cos (x + k)) xa :> - sin (xa + k)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3976
  by (auto intro!: derivative_eq_intros)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3977
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3978
lemma sin_zero_norm_cos_one:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3979
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3980
  assumes "sin x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3981
  shows "norm (cos x) = 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3982
  using sin_cos_squared_add [of x, unfolded assms]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3983
  by (simp add: square_norm_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3984
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3985
lemma sin_zero_abs_cos_one: "sin x = 0 \<Longrightarrow> \<bar>cos x\<bar> = (1::real)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3986
  using sin_zero_norm_cos_one by fastforce
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3987
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3988
lemma cos_one_sin_zero:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3989
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3990
  assumes "cos x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3991
  shows "sin x = 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3992
  using sin_cos_squared_add [of x, unfolded assms]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3993
  by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3994
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3995
lemma sin_times_pi_eq_0: "sin (x * pi) = 0 \<longleftrightarrow> x \<in> \<int>"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3996
  by (simp add: sin_zero_iff_int2) (metis Ints_cases Ints_of_int)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3997
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3998
lemma cos_one_2pi: "cos x = 1 \<longleftrightarrow> (\<exists>n::nat. x = n * 2 * pi) | (\<exists>n::nat. x = - (n * 2 * pi))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3999
  (is "?lhs = ?rhs")
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4000
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4001
  assume ?lhs
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4002
  then have "sin x = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4003
    by (simp add: cos_one_sin_zero)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4004
  then show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4005
  proof (simp only: sin_zero_iff, elim exE disjE conjE)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4006
    fix n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4007
    assume n: "even n" "x = real n * (pi/2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4008
    then obtain m where m: "n = 2 * m"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4009
      using dvdE by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4010
    then have me: "even m" using \<open>?lhs\<close> n
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4011
      by (auto simp: field_simps) (metis one_neq_neg_one  power_minus_odd power_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4012
    show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4013
      using m me n
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4014
      by (auto simp: field_simps elim!: evenE)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4015
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4016
    fix n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4017
    assume n: "even n" "x = - (real n * (pi/2))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4018
    then obtain m where m: "n = 2 * m"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4019
      using dvdE by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4020
    then have me: "even m" using \<open>?lhs\<close> n
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4021
      by (auto simp: field_simps) (metis one_neq_neg_one  power_minus_odd power_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4022
    show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4023
      using m me n
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4024
      by (auto simp: field_simps elim!: evenE)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4025
  qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4026
next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4027
  assume ?rhs
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4028
  then show "cos x = 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4029
    by (metis cos_2npi cos_minus mult.assoc mult.left_commute)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4030
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4031
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4032
lemma cos_one_2pi_int: "cos x = 1 \<longleftrightarrow> (\<exists>n::int. x = n * 2 * pi)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4033
  apply auto  (* FIXME simproc bug? *)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4034
   apply (auto simp: cos_one_2pi)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4035
    apply (metis of_int_of_nat_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4036
   apply (metis mult_minus_right of_int_minus of_int_of_nat_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4037
  apply (metis mult_minus_right of_int_of_nat)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4038
  done
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4039
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4040
lemma sin_cos_sqrt: "0 \<le> sin x \<Longrightarrow> sin x = sqrt (1 - (cos(x) ^ 2))"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4041
  using sin_squared_eq real_sqrt_unique by fastforce
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4042
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4043
lemma sin_eq_0_pi: "- pi < x \<Longrightarrow> x < pi \<Longrightarrow> sin x = 0 \<Longrightarrow> x = 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4044
  by (metis sin_gt_zero sin_minus minus_less_iff neg_0_less_iff_less not_less_iff_gr_or_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4045
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4046
lemma cos_treble_cos: "cos (3 * x) = 4 * cos x ^ 3 - 3 * cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4047
  for x :: "'a::{real_normed_field,banach}"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4048
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4049
  have *: "(sin x * (sin x * 3)) = 3 - (cos x * (cos x * 3))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4050
    by (simp add: mult.assoc [symmetric] sin_squared_eq [unfolded power2_eq_square])
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4051
  have "cos(3 * x) = cos(2*x + x)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4052
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4053
  also have "\<dots> = 4 * cos x ^ 3 - 3 * cos x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4054
    apply (simp only: cos_add cos_double sin_double)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4055
    apply (simp add: * field_simps power2_eq_square power3_eq_cube)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4056
    done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4057
  finally show ?thesis .
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4058
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4059
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4060
lemma cos_45: "cos (pi / 4) = sqrt 2 / 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4061
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4062
  let ?c = "cos (pi / 4)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4063
  let ?s = "sin (pi / 4)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4064
  have nonneg: "0 \<le> ?c"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4065
    by (simp add: cos_ge_zero)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4066
  have "0 = cos (pi / 4 + pi / 4)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4067
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4068
  also have "cos (pi / 4 + pi / 4) = ?c\<^sup>2 - ?s\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4069
    by (simp only: cos_add power2_eq_square)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4070
  also have "\<dots> = 2 * ?c\<^sup>2 - 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4071
    by (simp add: sin_squared_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4072
  finally have "?c\<^sup>2 = (sqrt 2 / 2)\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4073
    by (simp add: power_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4074
  then show ?thesis
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4075
    using nonneg by (rule power2_eq_imp_eq) simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4076
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4077
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4078
lemma cos_30: "cos (pi / 6) = sqrt 3/2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4079
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4080
  let ?c = "cos (pi / 6)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4081
  let ?s = "sin (pi / 6)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4082
  have pos_c: "0 < ?c"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4083
    by (rule cos_gt_zero) simp_all
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4084
  have "0 = cos (pi / 6 + pi / 6 + pi / 6)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4085
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4086
  also have "\<dots> = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4087
    by (simp only: cos_add sin_add)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4088
  also have "\<dots> = ?c * (?c\<^sup>2 - 3 * ?s\<^sup>2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4089
    by (simp add: algebra_simps power2_eq_square)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4090
  finally have "?c\<^sup>2 = (sqrt 3/2)\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4091
    using pos_c by (simp add: sin_squared_eq power_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4092
  then show ?thesis
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4093
    using pos_c [THEN order_less_imp_le]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4094
    by (rule power2_eq_imp_eq) simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4095
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4096
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4097
lemma sin_45: "sin (pi / 4) = sqrt 2 / 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4098
  by (simp add: sin_cos_eq cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4099
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4100
lemma sin_60: "sin (pi / 3) = sqrt 3/2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4101
  by (simp add: sin_cos_eq cos_30)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4102
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4103
lemma cos_60: "cos (pi / 3) = 1 / 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4104
  apply (rule power2_eq_imp_eq)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4105
    apply (simp add: cos_squared_eq sin_60 power_divide)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4106
   apply (rule cos_ge_zero)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4107
    apply (rule order_trans [where y=0])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4108
     apply simp_all
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4109
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4110
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4111
lemma sin_30: "sin (pi / 6) = 1 / 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4112
  by (simp add: sin_cos_eq cos_60)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4113
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4114
lemma cos_integer_2pi: "n \<in> \<int> \<Longrightarrow> cos(2 * pi * n) = 1"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4115
  by (metis Ints_cases cos_one_2pi_int mult.assoc mult.commute)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4116
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4117
lemma sin_integer_2pi: "n \<in> \<int> \<Longrightarrow> sin(2 * pi * n) = 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4118
  by (metis sin_two_pi Ints_mult mult.assoc mult.commute sin_times_pi_eq_0)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4119
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4120
lemma cos_int_2npi [simp]: "cos (2 * of_int n * pi) = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4121
  for n :: int
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4122
  by (simp add: cos_one_2pi_int)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4123
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4124
lemma sin_int_2npi [simp]: "sin (2 * of_int n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4125
  for n :: int
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4126
  by (metis Ints_of_int mult.assoc mult.commute sin_integer_2pi)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4127
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4128
lemma sincos_principal_value: "\<exists>y. (- pi < y \<and> y \<le> pi) \<and> (sin y = sin x \<and> cos y = cos x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4129
  apply (rule exI [where x="pi - (2 * pi) * frac ((pi - x) / (2 * pi))"])
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4130
  apply (auto simp: field_simps frac_lt_1)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4131
   apply (simp_all add: frac_def divide_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4132
   apply (simp_all add: add_divide_distrib diff_divide_distrib)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4133
   apply (simp_all add: sin_diff cos_diff mult.assoc [symmetric] cos_integer_2pi sin_integer_2pi)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4134
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4135
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4136
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4137
subsection \<open>Tangent\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4138
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4139
definition tan :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4140
  where "tan = (\<lambda>x. sin x / cos x)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4141
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4142
lemma tan_of_real: "of_real (tan x) = (tan (of_real x) :: 'a::{real_normed_field,banach})"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4143
  by (simp add: tan_def sin_of_real cos_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4144
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4145
lemma tan_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> tan z \<in> \<real>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4146
  for z :: "'a::{real_normed_field,banach}"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4147
  by (simp add: tan_def)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4148
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4149
lemma tan_zero [simp]: "tan 0 = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4150
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4151
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4152
lemma tan_pi [simp]: "tan pi = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4153
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4154
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4155
lemma tan_npi [simp]: "tan (real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4156
  for n :: nat
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4157
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4158
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4159
lemma tan_minus [simp]: "tan (- x) = - tan x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4160
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4161
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4162
lemma tan_periodic [simp]: "tan (x + 2 * pi) = tan x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4163
  by (simp add: tan_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4164
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4165
lemma lemma_tan_add1: "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> 1 - tan x * tan y = cos (x + y)/(cos x * cos y)"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4166
  by (simp add: tan_def cos_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4167
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4168
lemma add_tan_eq: "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> tan x + tan y = sin(x + y)/(cos x * cos y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4169
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4170
  by (simp add: tan_def sin_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4171
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4172
lemma tan_add:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4173
  "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> cos (x + y) \<noteq> 0 \<Longrightarrow> tan (x + y) = (tan x + tan y)/(1 - tan x * tan y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4174
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4175
  by (simp add: add_tan_eq lemma_tan_add1 field_simps) (simp add: tan_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4176
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4177
lemma tan_double: "cos x \<noteq> 0 \<Longrightarrow> cos (2 * x) \<noteq> 0 \<Longrightarrow> tan (2 * x) = (2 * tan x) / (1 - (tan x)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4178
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4179
  using tan_add [of x x] by (simp add: power2_eq_square)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4180
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4181
lemma tan_gt_zero: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < tan x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4182
  by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4183
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4184
lemma tan_less_zero:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4185
  assumes "- pi/2 < x" and "x < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4186
  shows "tan x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4187
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4188
  have "0 < tan (- x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4189
    using assms by (simp only: tan_gt_zero)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4190
  then show ?thesis by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4191
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4192
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4193
lemma tan_half: "tan x = sin (2 * x) / (cos (2 * x) + 1)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4194
  for x :: "'a::{real_normed_field,banach,field}"
44756
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  4195
  unfolding tan_def sin_double cos_double sin_squared_eq
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  4196
  by (simp add: power2_eq_square)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4197
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4198
lemma tan_30: "tan (pi / 6) = 1 / sqrt 3"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4199
  unfolding tan_def by (simp add: sin_30 cos_30)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4200
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4201
lemma tan_45: "tan (pi / 4) = 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4202
  unfolding tan_def by (simp add: sin_45 cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4203
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4204
lemma tan_60: "tan (pi / 3) = sqrt 3"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4205
  unfolding tan_def by (simp add: sin_60 cos_60)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4206
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4207
lemma DERIV_tan [simp]: "cos x \<noteq> 0 \<Longrightarrow> DERIV tan x :> inverse ((cos x)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4208
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4209
  unfolding tan_def
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  4210
  by (auto intro!: derivative_eq_intros, simp add: divide_inverse power2_eq_square)
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4211
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4212
lemma isCont_tan: "cos x \<noteq> 0 \<Longrightarrow> isCont tan x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4213
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4214
  by (rule DERIV_tan [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4215
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4216
lemma isCont_tan' [simp,continuous_intros]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4217
  fixes a :: "'a::{real_normed_field,banach}" and f :: "'a \<Rightarrow> 'a"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4218
  shows "isCont f a \<Longrightarrow> cos (f a) \<noteq> 0 \<Longrightarrow> isCont (\<lambda>x. tan (f x)) a"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4219
  by (rule isCont_o2 [OF _ isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4220
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4221
lemma tendsto_tan [tendsto_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4222
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4223
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> cos a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. tan (f x)) \<longlongrightarrow> tan a) F"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4224
  by (rule isCont_tendsto_compose [OF isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4225
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4226
lemma continuous_tan:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4227
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4228
  shows "continuous F f \<Longrightarrow> cos (f (Lim F (\<lambda>x. x))) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. tan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4229
  unfolding continuous_def by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4230
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4231
lemma continuous_on_tan [continuous_intros]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4232
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4233
  shows "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. cos (f x) \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. tan (f x))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4234
  unfolding continuous_on_def by (auto intro: tendsto_tan)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4235
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4236
lemma continuous_within_tan [continuous_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4237
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4238
  shows "continuous (at x within s) f \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4239
    cos (f x) \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. tan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4240
  unfolding continuous_within by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4241
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  4242
lemma LIM_cos_div_sin: "(\<lambda>x. cos(x)/sin(x)) \<midarrow>pi/2\<rightarrow> 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4243
  by (rule LIM_cong_limit, (rule tendsto_intros)+, simp_all)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4244
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4245
lemma lemma_tan_total: "0 < y \<Longrightarrow> \<exists>x. 0 < x \<and> x < pi/2 \<and> y < tan x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4246
  apply (insert LIM_cos_div_sin)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4247
  apply (simp only: LIM_eq)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4248
  apply (drule_tac x = "inverse y" in spec)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4249
  apply safe
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4250
   apply force
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4251
  apply (drule_tac ?d1.0 = s in pi_half_gt_zero [THEN [2] real_lbound_gt_zero])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4252
  apply safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4253
  apply (rule_tac x = "(pi/2) - e" in exI)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4254
  apply (simp (no_asm_simp))
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4255
  apply (drule_tac x = "(pi/2) - e" in spec)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4256
  apply (auto simp add: tan_def sin_diff cos_diff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4257
  apply (rule inverse_less_iff_less [THEN iffD1])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4258
    apply (auto simp add: divide_inverse)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4259
   apply (rule mult_pos_pos)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4260
    apply (subgoal_tac [3] "0 < sin e \<and> 0 < cos e")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4261
     apply (auto intro: cos_gt_zero sin_gt_zero2 simp: mult.commute)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4262
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4263
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4264
lemma tan_total_pos: "0 \<le> y \<Longrightarrow> \<exists>x. 0 \<le> x \<and> x < pi/2 \<and> tan x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4265
  apply (frule order_le_imp_less_or_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4266
  apply safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4267
   prefer 2 apply force
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4268
  apply (drule lemma_tan_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4269
  apply safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4270
  apply (cut_tac f = tan and a = 0 and b = x and y = y in IVT_objl)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4271
  apply (auto intro!: DERIV_tan [THEN DERIV_isCont])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4272
  apply (drule_tac y = xa in order_le_imp_less_or_eq)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4273
  apply (auto dest: cos_gt_zero)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4274
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4275
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4276
lemma lemma_tan_total1: "\<exists>x. -(pi/2) < x \<and> x < (pi/2) \<and> tan x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4277
  apply (insert linorder_linear [of 0 y])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4278
  apply safe
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4279
   apply (drule tan_total_pos)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4280
   apply (cut_tac [2] y="-y" in tan_total_pos)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4281
    apply safe
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4282
    apply (rule_tac [3] x = "-x" in exI)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4283
    apply (auto del: exI intro!: exI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4284
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4285
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4286
lemma tan_total: "\<exists>! x. -(pi/2) < x \<and> x < (pi/2) \<and> tan x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4287
  apply (insert lemma_tan_total1 [where y = y])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4288
  apply auto
57492
74bf65a1910a Hypsubst preserves equality hypotheses
Thomas Sewell <thomas.sewell@nicta.com.au>
parents: 57418
diff changeset
  4289
  apply hypsubst_thin
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4290
  apply (cut_tac x = xa and y = y in linorder_less_linear)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4291
  apply auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4292
   apply (subgoal_tac [2] "\<exists>z. y < z \<and> z < xa \<and> DERIV tan z :> 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4293
    apply (subgoal_tac "\<exists>z. xa < z \<and> z < y \<and> DERIV tan z :> 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4294
     apply (rule_tac [4] Rolle)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4295
        apply (rule_tac [2] Rolle)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4296
           apply (auto del: exI intro!: DERIV_tan DERIV_isCont exI
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4297
            simp add: real_differentiable_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4298
       apply (rule_tac [!] DERIV_tan asm_rl)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4299
       apply (auto dest!: DERIV_unique [OF _ DERIV_tan]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4300
        simp add: cos_gt_zero_pi [THEN less_imp_neq, THEN not_sym])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4301
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4302
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4303
lemma tan_monotone:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4304
  assumes "- (pi / 2) < y" and "y < x" and "x < pi / 2"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4305
  shows "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4306
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4307
  have "\<forall>x'. y \<le> x' \<and> x' \<le> x \<longrightarrow> DERIV tan x' :> inverse ((cos x')\<^sup>2)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4308
  proof (rule allI, rule impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4309
    fix x' :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4310
    assume "y \<le> x' \<and> x' \<le> x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4311
    then have "-(pi/2) < x'" and "x' < pi/2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4312
      using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4313
    from cos_gt_zero_pi[OF this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4314
    have "cos x' \<noteq> 0" by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4315
    then show "DERIV tan x' :> inverse ((cos x')\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4316
      by (rule DERIV_tan)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4317
  qed
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4318
  from MVT2[OF \<open>y < x\<close> this]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4319
  obtain z where "y < z" and "z < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4320
    and tan_diff: "tan x - tan y = (x - y) * inverse ((cos z)\<^sup>2)" by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4321
  then have "- (pi / 2) < z" and "z < pi / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4322
    using assms by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4323
  then have "0 < cos z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4324
    using cos_gt_zero_pi by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4325
  then have inv_pos: "0 < inverse ((cos z)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4326
    by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4327
  have "0 < x - y" using \<open>y < x\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4328
  with inv_pos have "0 < tan x - tan y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4329
    unfolding tan_diff by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4330
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4331
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4332
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4333
lemma tan_monotone':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4334
  assumes "- (pi / 2) < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4335
    and "y < pi / 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4336
    and "- (pi / 2) < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4337
    and "x < pi / 2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4338
  shows "y < x \<longleftrightarrow> tan y < tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4339
proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4340
  assume "y < x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4341
  then show "tan y < tan x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4342
    using tan_monotone and \<open>- (pi / 2) < y\<close> and \<open>x < pi / 2\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4343
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4344
  assume "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4345
  show "y < x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4346
  proof (rule ccontr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4347
    assume "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4348
    then have "x \<le> y" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4349
    then have "tan x \<le> tan y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4350
    proof (cases "x = y")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4351
      case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4352
      then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4353
    next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4354
      case False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4355
      then have "x < y" using \<open>x \<le> y\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4356
      from tan_monotone[OF \<open>- (pi/2) < x\<close> this \<open>y < pi / 2\<close>] show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4357
        by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4358
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4359
    then show False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4360
      using \<open>tan y < tan x\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4361
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4362
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4363
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4364
lemma tan_inverse: "1 / (tan y) = tan (pi / 2 - y)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4365
  unfolding tan_def sin_cos_eq[of y] cos_sin_eq[of y] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4366
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4367
lemma tan_periodic_pi[simp]: "tan (x + pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4368
  by (simp add: tan_def)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4369
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4370
lemma tan_periodic_nat[simp]: "tan (x + real n * pi) = tan x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4371
  for n :: nat
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4372
proof (induct n arbitrary: x)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4373
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4374
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4375
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4376
  case (Suc n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4377
  have split_pi_off: "x + real (Suc n) * pi = (x + real n * pi) + pi"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4378
    unfolding Suc_eq_plus1 of_nat_add  distrib_right by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4379
  show ?case
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4380
    unfolding split_pi_off using Suc by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4381
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4382
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4383
lemma tan_periodic_int[simp]: "tan (x + of_int i * pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4384
proof (cases "0 \<le> i")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4385
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4386
  then have i_nat: "of_int i = of_int (nat i)" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4387
  show ?thesis unfolding i_nat
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  4388
    by (metis of_int_of_nat_eq tan_periodic_nat)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4389
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4390
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4391
  then have i_nat: "of_int i = - of_int (nat (- i))" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4392
  have "tan x = tan (x + of_int i * pi - of_int i * pi)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4393
    by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4394
  also have "\<dots> = tan (x + of_int i * pi)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4395
    unfolding i_nat mult_minus_left diff_minus_eq_add
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  4396
    by (metis of_int_of_nat_eq tan_periodic_nat)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4397
  finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4398
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4399
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46240
diff changeset
  4400
lemma tan_periodic_n[simp]: "tan (x + numeral n * pi) = tan x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4401
  using tan_periodic_int[of _ "numeral n" ] by simp
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4402
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4403
lemma tan_minus_45: "tan (-(pi/4)) = -1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4404
  unfolding tan_def by (simp add: sin_45 cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4405
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4406
lemma tan_diff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4407
  "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> cos (x - y) \<noteq> 0 \<Longrightarrow> tan (x - y) = (tan x - tan y)/(1 + tan x * tan y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4408
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4409
  using tan_add [of x "-y"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4410
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4411
lemma tan_pos_pi2_le: "0 \<le> x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 \<le> tan x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4412
  using less_eq_real_def tan_gt_zero by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4413
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4414
lemma cos_tan: "\<bar>x\<bar> < pi/2 \<Longrightarrow> cos x = 1 / sqrt (1 + tan x ^ 2)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4415
  using cos_gt_zero_pi [of x]
62390
842917225d56 more canonical names
nipkow
parents: 62379
diff changeset
  4416
  by (simp add: divide_simps tan_def real_sqrt_divide abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4417
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4418
lemma sin_tan: "\<bar>x\<bar> < pi/2 \<Longrightarrow> sin x = tan x / sqrt (1 + tan x ^ 2)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4419
  using cos_gt_zero [of "x"] cos_gt_zero [of "-x"]
62390
842917225d56 more canonical names
nipkow
parents: 62379
diff changeset
  4420
  by (force simp add: divide_simps tan_def real_sqrt_divide abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4421
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4422
lemma tan_mono_le: "-(pi/2) < x \<Longrightarrow> x \<le> y \<Longrightarrow> y < pi/2 \<Longrightarrow> tan x \<le> tan y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4423
  using less_eq_real_def tan_monotone by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4424
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4425
lemma tan_mono_lt_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4426
  "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> -(pi/2) < y \<Longrightarrow> y < pi/2 \<Longrightarrow> tan x < tan y \<longleftrightarrow> x < y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4427
  using tan_monotone' by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4428
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4429
lemma tan_mono_le_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4430
  "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> -(pi/2) < y \<Longrightarrow> y < pi/2 \<Longrightarrow> tan x \<le> tan y \<longleftrightarrow> x \<le> y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4431
  by (meson tan_mono_le not_le tan_monotone)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4432
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  4433
lemma tan_bound_pi2: "\<bar>x\<bar> < pi/4 \<Longrightarrow> \<bar>tan x\<bar> < 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4434
  using tan_45 tan_monotone [of x "pi/4"] tan_monotone [of "-x" "pi/4"]
62390
842917225d56 more canonical names
nipkow
parents: 62379
diff changeset
  4435
  by (auto simp: abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4436
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4437
lemma tan_cot: "tan(pi/2 - x) = inverse(tan x)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4438
  by (simp add: tan_def sin_diff cos_diff)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4439
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4440
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4441
subsection \<open>Cotangent\<close>
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4442
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4443
definition cot :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4444
  where "cot = (\<lambda>x. cos x / sin x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4445
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4446
lemma cot_of_real: "of_real (cot x) = (cot (of_real x) :: 'a::{real_normed_field,banach})"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4447
  by (simp add: cot_def sin_of_real cos_of_real)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4448
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4449
lemma cot_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> cot z \<in> \<real>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4450
  for z :: "'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4451
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4452
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4453
lemma cot_zero [simp]: "cot 0 = 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4454
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4455
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4456
lemma cot_pi [simp]: "cot pi = 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4457
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4458
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4459
lemma cot_npi [simp]: "cot (real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4460
  for n :: nat
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4461
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4462
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4463
lemma cot_minus [simp]: "cot (- x) = - cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4464
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4465
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4466
lemma cot_periodic [simp]: "cot (x + 2 * pi) = cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4467
  by (simp add: cot_def)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4468
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4469
lemma cot_altdef: "cot x = inverse (tan x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4470
  by (simp add: cot_def tan_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4471
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4472
lemma tan_altdef: "tan x = inverse (cot x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4473
  by (simp add: cot_def tan_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4474
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4475
lemma tan_cot': "tan (pi/2 - x) = cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4476
  by (simp add: tan_cot cot_altdef)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4477
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4478
lemma cot_gt_zero: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4479
  by (simp add: cot_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4480
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4481
lemma cot_less_zero:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4482
  assumes lb: "- pi/2 < x" and "x < 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4483
  shows "cot x < 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4484
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4485
  have "0 < cot (- x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4486
    using assms by (simp only: cot_gt_zero)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4487
  then show ?thesis by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4488
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4489
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4490
lemma DERIV_cot [simp]: "sin x \<noteq> 0 \<Longrightarrow> DERIV cot x :> -inverse ((sin x)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4491
  for x :: "'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4492
  unfolding cot_def using cos_squared_eq[of x]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4493
  by (auto intro!: derivative_eq_intros) (simp add: divide_inverse power2_eq_square)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4494
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4495
lemma isCont_cot: "sin x \<noteq> 0 \<Longrightarrow> isCont cot x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4496
  for x :: "'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4497
  by (rule DERIV_cot [THEN DERIV_isCont])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4498
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4499
lemma isCont_cot' [simp,continuous_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4500
  "isCont f a \<Longrightarrow> sin (f a) \<noteq> 0 \<Longrightarrow> isCont (\<lambda>x. cot (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4501
  for a :: "'a::{real_normed_field,banach}" and f :: "'a \<Rightarrow> 'a"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4502
  by (rule isCont_o2 [OF _ isCont_cot])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4503
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4504
lemma tendsto_cot [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> sin a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. cot (f x)) \<longlongrightarrow> cot a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4505
  for f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4506
  by (rule isCont_tendsto_compose [OF isCont_cot])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4507
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4508
lemma continuous_cot:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4509
  "continuous F f \<Longrightarrow> sin (f (Lim F (\<lambda>x. x))) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. cot (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4510
  for f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4511
  unfolding continuous_def by (rule tendsto_cot)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4512
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4513
lemma continuous_on_cot [continuous_intros]:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4514
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4515
  shows "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. sin (f x) \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. cot (f x))"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4516
  unfolding continuous_on_def by (auto intro: tendsto_cot)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4517
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4518
lemma continuous_within_cot [continuous_intros]:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4519
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4520
  shows "continuous (at x within s) f \<Longrightarrow> sin (f x) \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. cot (f x))"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4521
  unfolding continuous_within by (rule tendsto_cot)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4522
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4523
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4524
subsection \<open>Inverse Trigonometric Functions\<close>
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4525
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4526
definition arcsin :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4527
  where "arcsin y = (THE x. -(pi/2) \<le> x \<and> x \<le> pi/2 \<and> sin x = y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4528
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4529
definition arccos :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4530
  where "arccos y = (THE x. 0 \<le> x \<and> x \<le> pi \<and> cos x = y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4531
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4532
definition arctan :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4533
  where "arctan y = (THE x. -(pi/2) < x \<and> x < pi/2 \<and> tan x = y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4534
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4535
lemma arcsin: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y \<and> arcsin y \<le> pi/2 \<and> sin (arcsin y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4536
  unfolding arcsin_def by (rule theI' [OF sin_total])
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  4537
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4538
lemma arcsin_pi: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y \<and> arcsin y \<le> pi \<and> sin (arcsin y) = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4539
  by (drule (1) arcsin) (force intro: order_trans)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4540
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4541
lemma sin_arcsin [simp]: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> sin (arcsin y) = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4542
  by (blast dest: arcsin)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4543
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4544
lemma arcsin_bounded: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y \<and> arcsin y \<le> pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4545
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4546
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4547
lemma arcsin_lbound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4548
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4549
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4550
lemma arcsin_ubound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin y \<le> pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4551
  by (blast dest: arcsin)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4552
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4553
lemma arcsin_lt_bounded: "- 1 < y \<Longrightarrow> y < 1 \<Longrightarrow> - (pi/2) < arcsin y \<and> arcsin y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4554
  apply (frule order_less_imp_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4555
  apply (frule_tac y = y in order_less_imp_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4556
  apply (frule arcsin_bounded)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4557
   apply safe
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4558
    apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4559
   apply (drule_tac y = "arcsin y" in order_le_imp_less_or_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4560
   apply (drule_tac [2] y = "pi/2" in order_le_imp_less_or_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4561
   apply safe
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4562
   apply (drule_tac [!] f = sin in arg_cong)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4563
   apply auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4564
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4565
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4566
lemma arcsin_sin: "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> arcsin (sin x) = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4567
  apply (unfold arcsin_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4568
  apply (rule the1_equality)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4569
   apply (rule sin_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4570
    apply auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4571
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4572
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4573
lemma arcsin_0 [simp]: "arcsin 0 = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4574
  using arcsin_sin [of 0] by simp
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4575
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4576
lemma arcsin_1 [simp]: "arcsin 1 = pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4577
  using arcsin_sin [of "pi/2"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4578
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4579
lemma arcsin_minus_1 [simp]: "arcsin (- 1) = - (pi/2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4580
  using arcsin_sin [of "- pi/2"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4581
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4582
lemma arcsin_minus: "- 1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arcsin (- x) = - arcsin x"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4583
  by (metis (no_types, hide_lams) arcsin arcsin_sin minus_minus neg_le_iff_le sin_minus)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4584
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4585
lemma arcsin_eq_iff: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arcsin x = arcsin y \<longleftrightarrow> x = y"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  4586
  by (metis abs_le_iff arcsin minus_le_iff)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4587
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4588
lemma cos_arcsin_nonzero: "- 1 < x \<Longrightarrow> x < 1 \<Longrightarrow> cos (arcsin x) \<noteq> 0"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4589
  using arcsin_lt_bounded cos_gt_zero_pi by force
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4590
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4591
lemma arccos: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> 0 \<le> arccos y \<and> arccos y \<le> pi \<and> cos (arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4592
  unfolding arccos_def by (rule theI' [OF cos_total])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4593
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4594
lemma cos_arccos [simp]: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> cos (arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4595
  by (blast dest: arccos)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4596
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4597
lemma arccos_bounded: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> 0 \<le> arccos y \<and> arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4598
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4599
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4600
lemma arccos_lbound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> 0 \<le> arccos y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4601
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4602
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4603
lemma arccos_ubound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4604
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4605
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4606
lemma arccos_lt_bounded: "- 1 < y \<Longrightarrow> y < 1 \<Longrightarrow> 0 < arccos y \<and> arccos y < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4607
  apply (frule order_less_imp_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4608
  apply (frule_tac y = y in order_less_imp_le)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4609
  apply (frule arccos_bounded)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4610
   apply auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4611
   apply (drule_tac y = "arccos y" in order_le_imp_less_or_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4612
   apply (drule_tac [2] y = pi in order_le_imp_less_or_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4613
   apply auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4614
   apply (drule_tac [!] f = cos in arg_cong)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4615
   apply auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4616
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4617
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4618
lemma arccos_cos: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> arccos (cos x) = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4619
  by (auto simp: arccos_def intro!: the1_equality cos_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4620
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4621
lemma arccos_cos2: "x \<le> 0 \<Longrightarrow> - pi \<le> x \<Longrightarrow> arccos (cos x) = -x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4622
  by (auto simp: arccos_def intro!: the1_equality cos_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4623
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4624
lemma cos_arcsin: "- 1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> cos (arcsin x) = sqrt (1 - x\<^sup>2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4625
  apply (subgoal_tac "x\<^sup>2 \<le> 1")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4626
   apply (rule power2_eq_imp_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4627
     apply (simp add: cos_squared_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4628
    apply (rule cos_ge_zero)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4629
     apply (erule (1) arcsin_lbound)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4630
    apply (erule (1) arcsin_ubound)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4631
   apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4632
  apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 \<le> 1\<^sup>2")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4633
   apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4634
  apply (rule power_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4635
   apply simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4636
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4637
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4638
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4639
lemma sin_arccos: "- 1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> sin (arccos x) = sqrt (1 - x\<^sup>2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4640
  apply (subgoal_tac "x\<^sup>2 \<le> 1")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4641
   apply (rule power2_eq_imp_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4642
     apply (simp add: sin_squared_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4643
    apply (rule sin_ge_zero)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4644
     apply (erule (1) arccos_lbound)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4645
    apply (erule (1) arccos_ubound)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4646
   apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4647
  apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 \<le> 1\<^sup>2")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4648
   apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4649
  apply (rule power_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4650
   apply simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4651
  apply simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4652
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4653
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4654
lemma arccos_0 [simp]: "arccos 0 = pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4655
  by (metis arccos_cos cos_gt_zero cos_pi cos_pi_half pi_gt_zero
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4656
      pi_half_ge_zero not_le not_zero_less_neg_numeral numeral_One)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4657
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4658
lemma arccos_1 [simp]: "arccos 1 = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4659
  using arccos_cos by force
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4660
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4661
lemma arccos_minus_1 [simp]: "arccos (- 1) = pi"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4662
  by (metis arccos_cos cos_pi order_refl pi_ge_zero)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4663
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4664
lemma arccos_minus: "-1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arccos (- x) = pi - arccos x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4665
  by (metis arccos_cos arccos_cos2 cos_minus_pi cos_total diff_le_0_iff_le le_add_same_cancel1
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4666
      minus_diff_eq uminus_add_conv_diff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4667
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4668
lemma sin_arccos_nonzero: "- 1 < x \<Longrightarrow> x < 1 \<Longrightarrow> \<not> sin (arccos x) = 0"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4669
  using arccos_lt_bounded sin_gt_zero by force
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4670
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4671
lemma arctan: "- (pi/2) < arctan y \<and> arctan y < pi/2 \<and> tan (arctan y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4672
  unfolding arctan_def by (rule theI' [OF tan_total])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4673
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4674
lemma tan_arctan: "tan (arctan y) = y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4675
  by (simp add: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4676
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4677
lemma arctan_bounded: "- (pi/2) < arctan y \<and> arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4678
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4679
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4680
lemma arctan_lbound: "- (pi/2) < arctan y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4681
  by (simp add: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4682
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4683
lemma arctan_ubound: "arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4684
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4685
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4686
lemma arctan_unique:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4687
  assumes "-(pi/2) < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4688
    and "x < pi/2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4689
    and "tan x = y"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4690
  shows "arctan y = x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4691
  using assms arctan [of y] tan_total [of y] by (fast elim: ex1E)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4692
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4693
lemma arctan_tan: "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> arctan (tan x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4694
  by (rule arctan_unique) simp_all
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4695
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4696
lemma arctan_zero_zero [simp]: "arctan 0 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4697
  by (rule arctan_unique) simp_all
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4698
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4699
lemma arctan_minus: "arctan (- x) = - arctan x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4700
  apply (rule arctan_unique)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4701
    apply (simp only: neg_less_iff_less arctan_ubound)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4702
   apply (metis minus_less_iff arctan_lbound)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4703
  apply (simp add: arctan)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4704
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4705
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4706
lemma cos_arctan_not_zero [simp]: "cos (arctan x) \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4707
  by (intro less_imp_neq [symmetric] cos_gt_zero_pi arctan_lbound arctan_ubound)
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4708
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4709
lemma cos_arctan: "cos (arctan x) = 1 / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4710
proof (rule power2_eq_imp_eq)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4711
  have "0 < 1 + x\<^sup>2" by (simp add: add_pos_nonneg)
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4712
  show "0 \<le> 1 / sqrt (1 + x\<^sup>2)" by simp
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4713
  show "0 \<le> cos (arctan x)"
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4714
    by (intro less_imp_le cos_gt_zero_pi arctan_lbound arctan_ubound)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4715
  have "(cos (arctan x))\<^sup>2 * (1 + (tan (arctan x))\<^sup>2) = 1"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  4716
    unfolding tan_def by (simp add: distrib_left power_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4717
  then show "(cos (arctan x))\<^sup>2 = (1 / sqrt (1 + x\<^sup>2))\<^sup>2"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4718
    using \<open>0 < 1 + x\<^sup>2\<close> by (simp add: arctan power_divide eq_divide_eq)
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4719
qed
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4720
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4721
lemma sin_arctan: "sin (arctan x) = x / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4722
  using add_pos_nonneg [OF zero_less_one zero_le_power2 [of x]]
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4723
  using tan_arctan [of x] unfolding tan_def cos_arctan
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  4724
  by (simp add: eq_divide_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4725
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4726
lemma tan_sec: "cos x \<noteq> 0 \<Longrightarrow> 1 + (tan x)\<^sup>2 = (inverse (cos x))\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4727
  for x :: "'a::{real_normed_field,banach,field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4728
  apply (rule power_inverse [THEN subst])
56217
dc429a5b13c4 Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents: 56213
diff changeset
  4729
  apply (rule_tac c1 = "(cos x)\<^sup>2" in mult_right_cancel [THEN iffD1])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4730
   apply (auto simp add: tan_def field_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4731
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4732
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4733
lemma arctan_less_iff: "arctan x < arctan y \<longleftrightarrow> x < y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4734
  by (metis tan_monotone' arctan_lbound arctan_ubound tan_arctan)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4735
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4736
lemma arctan_le_iff: "arctan x \<le> arctan y \<longleftrightarrow> x \<le> y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4737
  by (simp only: not_less [symmetric] arctan_less_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4738
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4739
lemma arctan_eq_iff: "arctan x = arctan y \<longleftrightarrow> x = y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4740
  by (simp only: eq_iff [where 'a=real] arctan_le_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4741
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4742
lemma zero_less_arctan_iff [simp]: "0 < arctan x \<longleftrightarrow> 0 < x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4743
  using arctan_less_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4744
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4745
lemma arctan_less_zero_iff [simp]: "arctan x < 0 \<longleftrightarrow> x < 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4746
  using arctan_less_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4747
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4748
lemma zero_le_arctan_iff [simp]: "0 \<le> arctan x \<longleftrightarrow> 0 \<le> x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4749
  using arctan_le_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4750
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4751
lemma arctan_le_zero_iff [simp]: "arctan x \<le> 0 \<longleftrightarrow> x \<le> 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4752
  using arctan_le_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4753
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4754
lemma arctan_eq_zero_iff [simp]: "arctan x = 0 \<longleftrightarrow> x = 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4755
  using arctan_eq_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  4756
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4757
lemma continuous_on_arcsin': "continuous_on {-1 .. 1} arcsin"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4758
proof -
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4759
  have "continuous_on (sin ` {- pi / 2 .. pi / 2}) arcsin"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  4760
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arcsin_sin)
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4761
  also have "sin ` {- pi / 2 .. pi / 2} = {-1 .. 1}"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4762
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4763
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4764
    assume "x \<in> {-1..1}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4765
    then show "x \<in> sin ` {- pi / 2..pi / 2}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4766
      using arcsin_lbound arcsin_ubound
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  4767
      by (intro image_eqI[where x="arcsin x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4768
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4769
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4770
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4771
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  4772
lemma continuous_on_arcsin [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4773
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arcsin (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4774
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arcsin']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4775
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4776
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4777
lemma isCont_arcsin: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arcsin x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4778
  using continuous_on_arcsin'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4779
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4780
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4781
lemma continuous_on_arccos': "continuous_on {-1 .. 1} arccos"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4782
proof -
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4783
  have "continuous_on (cos ` {0 .. pi}) arccos"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  4784
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arccos_cos)
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4785
  also have "cos ` {0 .. pi} = {-1 .. 1}"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4786
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4787
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4788
    assume "x \<in> {-1..1}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4789
    then show "x \<in> cos ` {0..pi}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4790
      using arccos_lbound arccos_ubound
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4791
      by (intro image_eqI[where x="arccos x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4792
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4793
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4794
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4795
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  4796
lemma continuous_on_arccos [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4797
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arccos (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4798
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arccos']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4799
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4800
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4801
lemma isCont_arccos: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arccos x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4802
  using continuous_on_arccos'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  4803
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4804
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4805
lemma isCont_arctan: "isCont arctan x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4806
  apply (rule arctan_lbound [of x, THEN dense, THEN exE])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4807
  apply clarify
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4808
  apply (rule arctan_ubound [of x, THEN dense, THEN exE])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4809
  apply clarify
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4810
  apply (subgoal_tac "isCont arctan (tan (arctan x))")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4811
   apply (simp add: arctan)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4812
  apply (erule (1) isCont_inverse_function2 [where f=tan])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4813
   apply (metis arctan_tan order_le_less_trans order_less_le_trans)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4814
  apply (metis cos_gt_zero_pi isCont_tan order_less_le_trans less_le)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4815
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4816
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  4817
lemma tendsto_arctan [tendsto_intros]: "(f \<longlongrightarrow> x) F \<Longrightarrow> ((\<lambda>x. arctan (f x)) \<longlongrightarrow> arctan x) F"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4818
  by (rule isCont_tendsto_compose [OF isCont_arctan])
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4819
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4820
lemma continuous_arctan [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. arctan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4821
  unfolding continuous_def by (rule tendsto_arctan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4822
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4823
lemma continuous_on_arctan [continuous_intros]:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4824
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. arctan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4825
  unfolding continuous_on_def by (auto intro: tendsto_arctan)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4826
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4827
lemma DERIV_arcsin: "- 1 < x \<Longrightarrow> x < 1 \<Longrightarrow> DERIV arcsin x :> inverse (sqrt (1 - x\<^sup>2))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4828
  apply (rule DERIV_inverse_function [where f=sin and a="-1" and b=1])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4829
       apply (rule DERIV_cong [OF DERIV_sin])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4830
       apply (simp add: cos_arcsin)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4831
      apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 < 1\<^sup>2")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4832
       apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4833
      apply (rule power_strict_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4834
        apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4835
       apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4836
      apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4837
     apply assumption
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4838
    apply assumption
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4839
   apply simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4840
  apply (erule (1) isCont_arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4841
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4842
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4843
lemma DERIV_arccos: "- 1 < x \<Longrightarrow> x < 1 \<Longrightarrow> DERIV arccos x :> inverse (- sqrt (1 - x\<^sup>2))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4844
  apply (rule DERIV_inverse_function [where f=cos and a="-1" and b=1])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4845
       apply (rule DERIV_cong [OF DERIV_cos])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4846
       apply (simp add: sin_arccos)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4847
      apply (subgoal_tac "\<bar>x\<bar>\<^sup>2 < 1\<^sup>2")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4848
       apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4849
      apply (rule power_strict_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4850
        apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4851
       apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4852
      apply simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4853
     apply assumption
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4854
    apply assumption
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4855
   apply simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4856
  apply (erule (1) isCont_arccos)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4857
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4858
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  4859
lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x\<^sup>2)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4860
  apply (rule DERIV_inverse_function [where f=tan and a="x - 1" and b="x + 1"])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4861
       apply (rule DERIV_cong [OF DERIV_tan])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4862
        apply (rule cos_arctan_not_zero)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4863
       apply (simp_all add: add_pos_nonneg arctan isCont_arctan)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4864
   apply (simp add: arctan power_inverse [symmetric] tan_sec [symmetric])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4865
  apply (subgoal_tac "0 < 1 + x\<^sup>2")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4866
   apply simp
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4867
  apply (simp_all add: add_pos_nonneg arctan isCont_arctan)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4868
  done
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  4869
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  4870
declare
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  4871
  DERIV_arcsin[THEN DERIV_chain2, derivative_intros]
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61284
diff changeset
  4872
  DERIV_arcsin[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  4873
  DERIV_arccos[THEN DERIV_chain2, derivative_intros]
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61284
diff changeset
  4874
  DERIV_arccos[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  4875
  DERIV_arctan[THEN DERIV_chain2, derivative_intros]
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61284
diff changeset
  4876
  DERIV_arctan[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  4877
61881
b4bfa62e799d Transcendental: use [simp]-canonical form - (pi/2)
hoelzl
parents: 61810
diff changeset
  4878
lemma filterlim_tan_at_right: "filterlim tan at_bot (at_right (- (pi/2)))"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4879
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4880
     (auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4881
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4882
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4883
lemma filterlim_tan_at_left: "filterlim tan at_top (at_left (pi/2))"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4884
  by (rule filterlim_at_top_at_left[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4885
     (auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4886
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4887
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  4888
lemma tendsto_arctan_at_top: "(arctan \<longlongrightarrow> (pi/2)) at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4889
proof (rule tendstoI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4890
  fix e :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4891
  assume "0 < e"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
  4892
  define y where "y = pi/2 - min (pi/2) e"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4893
  then have y: "0 \<le> y" "y < pi/2" "pi/2 \<le> e + y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4894
    using \<open>0 < e\<close> by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4895
  show "eventually (\<lambda>x. dist (arctan x) (pi / 2) < e) at_top"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4896
  proof (intro eventually_at_top_dense[THEN iffD2] exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4897
    fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4898
    assume "tan y < x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4899
    then have "arctan (tan y) < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4900
      by (simp add: arctan_less_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4901
    with y have "y < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4902
      by (subst (asm) arctan_tan) simp_all
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4903
    with arctan_ubound[of x, arith] y \<open>0 < e\<close>
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4904
    show "dist (arctan x) (pi / 2) < e"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4905
      by (simp add: dist_real_def)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4906
  qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4907
qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4908
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  4909
lemma tendsto_arctan_at_bot: "(arctan \<longlongrightarrow> - (pi/2)) at_bot"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4910
  unfolding filterlim_at_bot_mirror arctan_minus
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4911
  by (intro tendsto_minus tendsto_arctan_at_top)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4912
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  4913
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4914
subsection \<open>Prove Totality of the Trigonometric Functions\<close>
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4915
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4916
lemma cos_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> cos (arccos y) = y"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4917
  by (simp add: abs_le_iff)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4918
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4919
lemma sin_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> sin (arccos y) = sqrt (1 - y\<^sup>2)"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4920
  by (simp add: sin_arccos abs_le_iff)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4921
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4922
lemma sin_mono_less_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4923
  "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> - (pi/2) \<le> y \<Longrightarrow> y \<le> pi/2 \<Longrightarrow> sin x < sin y \<longleftrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4924
  by (metis not_less_iff_gr_or_eq sin_monotone_2pi)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4925
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4926
lemma sin_mono_le_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4927
  "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> - (pi/2) \<le> y \<Longrightarrow> y \<le> pi/2 \<Longrightarrow> sin x \<le> sin y \<longleftrightarrow> x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4928
  by (meson leD le_less_linear sin_monotone_2pi sin_monotone_2pi_le)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4929
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4930
lemma sin_inj_pi:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4931
  "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> - (pi/2) \<le> y \<Longrightarrow> y \<le> pi/2 \<Longrightarrow> sin x = sin y \<Longrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4932
  by (metis arcsin_sin)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4933
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4934
lemma cos_mono_less_eq: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> pi \<Longrightarrow> cos x < cos y \<longleftrightarrow> y < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4935
  by (meson cos_monotone_0_pi cos_monotone_0_pi_le leD le_less_linear)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4936
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4937
lemma cos_mono_le_eq: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> pi \<Longrightarrow> cos x \<le> cos y \<longleftrightarrow> y \<le> x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4938
  by (metis arccos_cos cos_monotone_0_pi_le eq_iff linear)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4939
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4940
lemma cos_inj_pi: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> pi \<Longrightarrow> cos x = cos y \<Longrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4941
  by (metis arccos_cos)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4942
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4943
lemma arccos_le_pi2: "\<lbrakk>0 \<le> y; y \<le> 1\<rbrakk> \<Longrightarrow> arccos y \<le> pi/2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4944
  by (metis (mono_tags) arccos_0 arccos cos_le_one cos_monotone_0_pi_le
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4945
      cos_pi cos_pi_half pi_half_ge_zero antisym_conv less_eq_neg_nonpos linear minus_minus order.trans order_refl)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4946
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4947
lemma sincos_total_pi_half:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4948
  assumes "0 \<le> x" "0 \<le> y" "x\<^sup>2 + y\<^sup>2 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4949
  shows "\<exists>t. 0 \<le> t \<and> t \<le> pi/2 \<and> x = cos t \<and> y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4950
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4951
  have x1: "x \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4952
    using assms by (metis le_add_same_cancel1 power2_le_imp_le power_one zero_le_power2)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4953
  with assms have *: "0 \<le> arccos x" "cos (arccos x) = x"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4954
    by (auto simp: arccos)
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  4955
  from assms have "y = sqrt (1 - x\<^sup>2)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4956
    by (metis abs_of_nonneg add.commute add_diff_cancel real_sqrt_abs)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4957
  with x1 * assms arccos_le_pi2 [of x] show ?thesis
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4958
    by (rule_tac x="arccos x" in exI) (auto simp: sin_arccos)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4959
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4960
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4961
lemma sincos_total_pi:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4962
  assumes "0 \<le> y" "x\<^sup>2 + y\<^sup>2 = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4963
  shows "\<exists>t. 0 \<le> t \<and> t \<le> pi \<and> x = cos t \<and> y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4964
proof (cases rule: le_cases [of 0 x])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4965
  case le
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4966
  from sincos_total_pi_half [OF le] show ?thesis
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4967
    by (metis pi_ge_two pi_half_le_two add.commute add_le_cancel_left add_mono assms)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4968
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4969
  case ge
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4970
  then have "0 \<le> -x"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4971
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4972
  then obtain t where t: "t\<ge>0" "t \<le> pi/2" "-x = cos t" "y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4973
    using sincos_total_pi_half assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4974
    by auto (metis \<open>0 \<le> - x\<close> power2_minus)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4975
  show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4976
    by (rule exI [where x = "pi -t"]) (use t in auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4977
qed
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4978
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4979
lemma sincos_total_2pi_le:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4980
  assumes "x\<^sup>2 + y\<^sup>2 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4981
  shows "\<exists>t. 0 \<le> t \<and> t \<le> 2 * pi \<and> x = cos t \<and> y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4982
proof (cases rule: le_cases [of 0 y])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4983
  case le
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4984
  from sincos_total_pi [OF le] show ?thesis
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4985
    by (metis assms le_add_same_cancel1 mult.commute mult_2_right order.trans)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4986
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4987
  case ge
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4988
  then have "0 \<le> -y"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4989
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4990
  then obtain t where t: "t\<ge>0" "t \<le> pi" "x = cos t" "-y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4991
    using sincos_total_pi assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4992
    by auto (metis \<open>0 \<le> - y\<close> power2_minus)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4993
  show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4994
    by (rule exI [where x = "2 * pi - t"]) (use t in auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4995
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4996
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4997
lemma sincos_total_2pi:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  4998
  assumes "x\<^sup>2 + y\<^sup>2 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4999
  obtains t where "0 \<le> t" "t < 2*pi" "x = cos t" "y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5000
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5001
  from sincos_total_2pi_le [OF assms]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5002
  obtain t where t: "0 \<le> t" "t \<le> 2*pi" "x = cos t" "y = sin t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5003
    by blast
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5004
  show ?thesis
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5005
    by (cases "t = 2 * pi") (use t that in \<open>force+\<close>)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5006
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5007
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  5008
lemma arcsin_less_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arcsin x < arcsin y \<longleftrightarrow> x < y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5009
  by (rule trans [OF sin_mono_less_eq [symmetric]]) (use arcsin_ubound arcsin_lbound in auto)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5010
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  5011
lemma arcsin_le_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arcsin x \<le> arcsin y \<longleftrightarrow> x \<le> y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5012
  using arcsin_less_mono not_le by blast
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5013
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5014
lemma arcsin_less_arcsin: "- 1 \<le> x \<Longrightarrow> x < y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin x < arcsin y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5015
  using arcsin_less_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5016
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5017
lemma arcsin_le_arcsin: "- 1 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin x \<le> arcsin y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5018
  using arcsin_le_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5019
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5020
lemma arccos_less_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arccos x < arccos y \<longleftrightarrow> y < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5021
  by (rule trans [OF cos_mono_less_eq [symmetric]]) (use arccos_ubound arccos_lbound in auto)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5022
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  5023
lemma arccos_le_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arccos x \<le> arccos y \<longleftrightarrow> y \<le> x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5024
  using arccos_less_mono [of y x] by (simp add: not_le [symmetric])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5025
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5026
lemma arccos_less_arccos: "- 1 \<le> x \<Longrightarrow> x < y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y < arccos x"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5027
  using arccos_less_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5028
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5029
lemma arccos_le_arccos: "- 1 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y \<le> arccos x"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5030
  using arccos_le_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5031
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5032
lemma arccos_eq_iff: "\<bar>x\<bar> \<le> 1 \<and> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arccos x = arccos y \<longleftrightarrow> x = y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5033
  using cos_arccos_abs by fastforce
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5034
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5035
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5036
subsection \<open>Machin's formula\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5037
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5038
lemma arctan_one: "arctan 1 = pi / 4"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5039
  by (rule arctan_unique) (simp_all add: tan_45 m2pi_less_pi)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5040
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5041
lemma tan_total_pi4:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5042
  assumes "\<bar>x\<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5043
  shows "\<exists>z. - (pi / 4) < z \<and> z < pi / 4 \<and> tan z = x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5044
proof
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5045
  show "- (pi / 4) < arctan x \<and> arctan x < pi / 4 \<and> tan (arctan x) = x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5046
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5047
    unfolding arctan_less_iff
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5048
    using assms by (auto simp add: arctan)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5049
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5050
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5051
lemma arctan_add:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5052
  assumes "\<bar>x\<bar> \<le> 1" "\<bar>y\<bar> < 1"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5053
  shows "arctan x + arctan y = arctan ((x + y) / (1 - x * y))"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5054
proof (rule arctan_unique [symmetric])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5055
  have "- (pi / 4) \<le> arctan x" "- (pi / 4) < arctan y"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5056
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5057
    unfolding arctan_le_iff arctan_less_iff
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5058
    using assms by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5059
  from add_le_less_mono [OF this] show 1: "- (pi / 2) < arctan x + arctan y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5060
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5061
  have "arctan x \<le> pi / 4" "arctan y < pi / 4"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5062
    unfolding arctan_one [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5063
    unfolding arctan_le_iff arctan_less_iff
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5064
    using assms by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5065
  from add_le_less_mono [OF this] show 2: "arctan x + arctan y < pi / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5066
    by simp
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5067
  show "tan (arctan x + arctan y) = (x + y) / (1 - x * y)"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5068
    using cos_gt_zero_pi [OF 1 2] by (simp add: arctan tan_add)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5069
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5070
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5071
lemma arctan_double: "\<bar>x\<bar> < 1 \<Longrightarrow> 2 * arctan x = arctan ((2 * x) / (1 - x\<^sup>2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5072
  by (metis arctan_add linear mult_2 not_less power2_eq_square)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5073
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5074
theorem machin: "pi / 4 = 4 * arctan (1 / 5) - arctan (1 / 239)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5075
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5076
  have "\<bar>1 / 5\<bar> < (1 :: real)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5077
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5078
  from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (1 / 5) = arctan (5 / 12)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5079
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5080
  moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5081
  have "\<bar>5 / 12\<bar> < (1 :: real)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5082
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5083
  from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (5 / 12) = arctan (120 / 119)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5084
    by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5085
  moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5086
  have "\<bar>1\<bar> \<le> (1::real)" and "\<bar>1 / 239\<bar> < (1::real)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5087
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5088
  from arctan_add[OF this] have "arctan 1 + arctan (1 / 239) = arctan (120 / 119)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5089
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5090
  ultimately have "arctan 1 + arctan (1 / 239) = 4 * arctan (1 / 5)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5091
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5092
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5093
    unfolding arctan_one by algebra
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5094
qed
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5095
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5096
lemma machin_Euler: "5 * arctan (1 / 7) + 2 * arctan (3 / 79) = pi / 4"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5097
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5098
  have 17: "\<bar>1 / 7\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5099
  with arctan_double have "2 * arctan (1 / 7) = arctan (7 / 24)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  5100
    by simp (simp add: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5101
  moreover
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5102
  have "\<bar>7 / 24\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5103
  with arctan_double have "2 * arctan (7 / 24) = arctan (336 / 527)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5104
    by simp (simp add: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5105
  moreover
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5106
  have "\<bar>336 / 527\<bar> < (1 :: real)" by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5107
  from arctan_add[OF less_imp_le[OF 17] this]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5108
  have "arctan(1/7) + arctan (336 / 527) = arctan (2879 / 3353)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5109
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5110
  ultimately have I: "5 * arctan (1 / 7) = arctan (2879 / 3353)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5111
  have 379: "\<bar>3 / 79\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5112
  with arctan_double have II: "2 * arctan (3 / 79) = arctan (237 / 3116)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5113
    by simp (simp add: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5114
  have *: "\<bar>2879 / 3353\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5115
  have "\<bar>237 / 3116\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5116
  from arctan_add[OF less_imp_le[OF *] this] have "arctan (2879/3353) + arctan (237/3116) = pi/4"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5117
    by (simp add: arctan_one)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5118
  with I II show ?thesis by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5119
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5120
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5121
(*But could also prove MACHIN_GAUSS:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5122
  12 * arctan(1/18) + 8 * arctan(1/57) - 5 * arctan(1/239) = pi/4*)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5123
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5124
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5125
subsection \<open>Introducing the inverse tangent power series\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5126
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5127
lemma monoseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5128
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5129
  assumes "\<bar>x\<bar> \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5130
  shows "monoseq (\<lambda>n. 1 / real (n * 2 + 1) * x^(n * 2 + 1))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5131
    (is "monoseq ?a")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5132
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5133
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5134
  then show ?thesis by (auto simp: monoseq_def)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5135
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5136
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5137
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5138
    using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5139
  show "monoseq ?a"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5140
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5141
    have mono: "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<le>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5142
        1 / real (Suc (n * 2)) * x ^ Suc (n * 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5143
      if "0 \<le> x" and "x \<le> 1" for n and x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5144
    proof (rule mult_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5145
      show "1 / real (Suc (Suc n * 2)) \<le> 1 / real (Suc (n * 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5146
        by (rule frac_le) simp_all
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5147
      show "0 \<le> 1 / real (Suc (n * 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5148
        by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5149
      show "x ^ Suc (Suc n * 2) \<le> x ^ Suc (n * 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5150
        by (rule power_decreasing) (simp_all add: \<open>0 \<le> x\<close> \<open>x \<le> 1\<close>)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5151
      show "0 \<le> x ^ Suc (Suc n * 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5152
        by (rule zero_le_power) (simp add: \<open>0 \<le> x\<close>)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5153
    qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5154
    show ?thesis
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5155
    proof (cases "0 \<le> x")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5156
      case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5157
      from mono[OF this \<open>x \<le> 1\<close>, THEN allI]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5158
      show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5159
        unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI2)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5160
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5161
      case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5162
      then have "0 \<le> - x" and "- x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5163
        using \<open>-1 \<le> x\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5164
      from mono[OF this]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5165
      have "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<ge>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5166
          1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5167
        using \<open>0 \<le> -x\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5168
      then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5169
        unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI1[OF allI])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5170
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5171
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5172
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5173
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5174
lemma zeroseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5175
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5176
  assumes "\<bar>x\<bar> \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5177
  shows "(\<lambda>n. 1 / real (n * 2 + 1) * x^(n * 2 + 1)) \<longlonglongrightarrow> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5178
    (is "?a \<longlonglongrightarrow> 0")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5179
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5180
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5181
  then show ?thesis by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5182
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5183
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5184
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5185
    using assms by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5186
  show "?a \<longlonglongrightarrow> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5187
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5188
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5189
    then have "norm x < 1" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5190
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_power_zero[OF \<open>norm x < 1\<close>, THEN LIMSEQ_Suc]]
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5191
    have "(\<lambda>n. 1 / real (n + 1) * x ^ (n + 1)) \<longlonglongrightarrow> 0"
31790
05c92381363c corrected and unified thm names
nipkow
parents: 31338
diff changeset
  5192
      unfolding inverse_eq_divide Suc_eq_plus1 by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5193
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5194
      using pos2 by (rule LIMSEQ_linear)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5195
  next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5196
    case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5197
    then have "x = -1 \<or> x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5198
      using \<open>\<bar>x\<bar> \<le> 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5199
    then have n_eq: "\<And> n. x ^ (n * 2 + 1) = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5200
      unfolding One_nat_def by auto
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  5201
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat[THEN LIMSEQ_linear, OF pos2, unfolded inverse_eq_divide] tendsto_const[of x]]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5202
    show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5203
      unfolding n_eq Suc_eq_plus1 by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5204
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5205
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5206
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5207
lemma summable_arctan_series:
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  5208
  fixes n :: nat
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5209
  assumes "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5210
  shows "summable (\<lambda> k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5211
    (is "summable (?c x)")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5212
  by (rule summable_Leibniz(1),
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5213
      rule zeroseq_arctan_series[OF assms],
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5214
      rule monoseq_arctan_series[OF assms])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5215
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5216
lemma DERIV_arctan_series:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5217
  assumes "\<bar>x\<bar> < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5218
  shows "DERIV (\<lambda>x'. \<Sum>k. (-1)^k * (1 / real (k * 2 + 1) * x' ^ (k * 2 + 1))) x :>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5219
      (\<Sum>k. (-1)^k * x^(k * 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5220
    (is "DERIV ?arctan _ :> ?Int")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5221
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5222
  let ?f = "\<lambda>n. if even n then (-1)^(n div 2) * 1 / real (Suc n) else 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5223
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5224
  have n_even: "even n \<Longrightarrow> 2 * (n div 2) = n" for n :: nat
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5225
    by presburger
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5226
  then have if_eq: "?f n * real (Suc n) * x'^n =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5227
      (if even n then (-1)^(n div 2) * x'^(2 * (n div 2)) else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5228
    for n x'
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5229
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5230
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5231
  have summable_Integral: "summable (\<lambda> n. (- 1) ^ n * x^(2 * n))" if "\<bar>x\<bar> < 1" for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5232
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5233
    from that have "x\<^sup>2 < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5234
      by (simp add: abs_square_less_1)
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5235
    have "summable (\<lambda> n. (- 1) ^ n * (x\<^sup>2) ^n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5236
      by (rule summable_Leibniz(1))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5237
        (auto intro!: LIMSEQ_realpow_zero monoseq_realpow \<open>x\<^sup>2 < 1\<close> order_less_imp_le[OF \<open>x\<^sup>2 < 1\<close>])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5238
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5239
      by (simp only: power_mult)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5240
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5241
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5242
  have sums_even: "op sums f = op sums (\<lambda> n. if even n then f (n div 2) else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5243
    for f :: "nat \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5244
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5245
    have "f sums x = (\<lambda> n. if even n then f (n div 2) else 0) sums x" for x :: real
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5246
    proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5247
      assume "f sums x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5248
      from sums_if[OF sums_zero this] show "(\<lambda>n. if even n then f (n div 2) else 0) sums x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5249
        by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5250
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5251
      assume "(\<lambda> n. if even n then f (n div 2) else 0) sums x"
63170
eae6549dbea2 tuned proofs, to allow unfold_abs_def;
wenzelm
parents: 63145
diff changeset
  5252
      from LIMSEQ_linear[OF this[simplified sums_def] pos2, simplified sum_split_even_odd[simplified mult.commute]]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5253
      show "f sums x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5254
        unfolding sums_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5255
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5256
    then show ?thesis ..
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5257
  qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5258
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5259
  have Int_eq: "(\<Sum>n. ?f n * real (Suc n) * x^n) = ?Int"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5260
    unfolding if_eq mult.commute[of _ 2]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5261
      suminf_def sums_even[of "\<lambda> n. (- 1) ^ n * x ^ (2 * n)", symmetric]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5262
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5263
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5264
  have arctan_eq: "(\<Sum>n. ?f n * x^(Suc n)) = ?arctan x" for x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5265
  proof -
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5266
    have if_eq': "\<And>n. (if even n then (- 1) ^ (n div 2) * 1 / real (Suc n) else 0) * x ^ Suc n =
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5267
      (if even n then (- 1) ^ (n div 2) * (1 / real (Suc (2 * (n div 2))) * x ^ Suc (2 * (n div 2))) else 0)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5268
      using n_even by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5269
    have idx_eq: "\<And>n. n * 2 + 1 = Suc (2 * n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5270
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5271
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5272
      unfolding if_eq' idx_eq suminf_def
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5273
        sums_even[of "\<lambda> n. (- 1) ^ n * (1 / real (Suc (2 * n)) * x ^ Suc (2 * n))", symmetric]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5274
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5275
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5276
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5277
  have "DERIV (\<lambda> x. \<Sum> n. ?f n * x^(Suc n)) x :> (\<Sum>n. ?f n * real (Suc n) * x^n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5278
  proof (rule DERIV_power_series')
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5279
    show "x \<in> {- 1 <..< 1}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5280
      using \<open>\<bar> x \<bar> < 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5281
    show "summable (\<lambda> n. ?f n * real (Suc n) * x'^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5282
      if x'_bounds: "x' \<in> {- 1 <..< 1}" for x' :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5283
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5284
      from that have "\<bar>x'\<bar> < 1" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5285
      then have *: "summable (\<lambda>n. (- 1) ^ n * x' ^ (2 * n))"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5286
        by (rule summable_Integral)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5287
      show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5288
        unfolding if_eq
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5289
        apply (rule sums_summable [where l="0 + (\<Sum>n. (-1)^n * x'^(2 * n))"])
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5290
        apply (rule sums_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5291
         apply (rule sums_zero)
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5292
        apply (rule summable_sums)
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5293
        apply (rule *)
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5294
        done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5295
    qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5296
  qed auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5297
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5298
    by (simp only: Int_eq arctan_eq)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5299
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5300
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5301
lemma arctan_series:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5302
  assumes "\<bar>x\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5303
  shows "arctan x = (\<Sum>k. (-1)^k * (1 / real (k * 2 + 1) * x ^ (k * 2 + 1)))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5304
    (is "_ = suminf (\<lambda> n. ?c x n)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5305
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5306
  let ?c' = "\<lambda>x n. (-1)^n * x^(n*2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5307
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5308
  have DERIV_arctan_suminf: "DERIV (\<lambda> x. suminf (?c x)) x :> (suminf (?c' x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5309
    if "0 < r" and "r < 1" and "\<bar>x\<bar> < r" for r x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5310
  proof (rule DERIV_arctan_series)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5311
    from that show "\<bar>x\<bar> < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5312
      using \<open>r < 1\<close> and \<open>\<bar>x\<bar> < r\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5313
  qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5314
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5315
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5316
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5317
    assume "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5318
    note summable_Leibniz[OF zeroseq_arctan_series[OF this] monoseq_arctan_series[OF this]]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5319
  } note arctan_series_borders = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5320
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5321
  have when_less_one: "arctan x = (\<Sum>k. ?c x k)" if "\<bar>x\<bar> < 1" for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5322
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5323
    obtain r where "\<bar>x\<bar> < r" and "r < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5324
      using dense[OF \<open>\<bar>x\<bar> < 1\<close>] by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5325
    then have "0 < r" and "- r < x" and "x < r" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5326
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5327
    have suminf_eq_arctan_bounded: "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5328
      if "-r < a" and "b < r" and "a < b" and "a \<le> x" and "x \<le> b" for x a b
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5329
    proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5330
      from that have "\<bar>x\<bar> < r" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5331
      show "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5332
      proof (rule DERIV_isconst2[of "a" "b"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5333
        show "a < b" and "a \<le> x" and "x \<le> b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5334
          using \<open>a < b\<close> \<open>a \<le> x\<close> \<open>x \<le> b\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5335
        have "\<forall>x. - r < x \<and> x < r \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5336
        proof (rule allI, rule impI)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5337
          fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5338
          assume "-r < x \<and> x < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5339
          then have "\<bar>x\<bar> < r" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5340
          with \<open>r < 1\<close> have "\<bar>x\<bar> < 1" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5341
          have "\<bar>- (x\<^sup>2)\<bar> < 1" using abs_square_less_1 \<open>\<bar>x\<bar> < 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5342
          then have "(\<lambda>n. (- (x\<^sup>2)) ^ n) sums (1 / (1 - (- (x\<^sup>2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5343
            unfolding real_norm_def[symmetric] by (rule geometric_sums)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5344
          then have "(?c' x) sums (1 / (1 - (- (x\<^sup>2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5345
            unfolding power_mult_distrib[symmetric] power_mult mult.commute[of _ 2] by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5346
          then have suminf_c'_eq_geom: "inverse (1 + x\<^sup>2) = suminf (?c' x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5347
            using sums_unique unfolding inverse_eq_divide by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5348
          have "DERIV (\<lambda> x. suminf (?c x)) x :> (inverse (1 + x\<^sup>2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5349
            unfolding suminf_c'_eq_geom
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5350
            by (rule DERIV_arctan_suminf[OF \<open>0 < r\<close> \<open>r < 1\<close> \<open>\<bar>x\<bar> < r\<close>])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5351
          from DERIV_diff [OF this DERIV_arctan] show "DERIV (\<lambda>x. suminf (?c x) - arctan x) x :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5352
            by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5353
        qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5354
        then have DERIV_in_rball: "\<forall>y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda>x. suminf (?c x) - arctan x) y :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5355
          using \<open>-r < a\<close> \<open>b < r\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5356
        then show "\<forall>y. a < y \<and> y < b \<longrightarrow> DERIV (\<lambda>x. suminf (?c x) - arctan x) y :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5357
          using \<open>\<bar>x\<bar> < r\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5358
        show "\<forall>y. a \<le> y \<and> y \<le> b \<longrightarrow> isCont (\<lambda>x. suminf (?c x) - arctan x) y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5359
          using DERIV_in_rball DERIV_isCont by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5360
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5361
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5362
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5363
    have suminf_arctan_zero: "suminf (?c 0) - arctan 0 = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5364
      unfolding Suc_eq_plus1[symmetric] power_Suc2 mult_zero_right arctan_zero_zero suminf_zero
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5365
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5366
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5367
    have "suminf (?c x) - arctan x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5368
    proof (cases "x = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5369
      case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5370
      then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5371
        using suminf_arctan_zero by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5372
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5373
      case False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5374
      then have "0 < \<bar>x\<bar>" and "- \<bar>x\<bar> < \<bar>x\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5375
        by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5376
      have "suminf (?c (- \<bar>x\<bar>)) - arctan (- \<bar>x\<bar>) = suminf (?c 0) - arctan 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5377
        by (rule suminf_eq_arctan_bounded[where x1="0" and a1="-\<bar>x\<bar>" and b1="\<bar>x\<bar>", symmetric])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5378
          (simp_all only: \<open>\<bar>x\<bar> < r\<close> \<open>-\<bar>x\<bar> < \<bar>x\<bar>\<close> neg_less_iff_less)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5379
      moreover
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5380
      have "suminf (?c x) - arctan x = suminf (?c (- \<bar>x\<bar>)) - arctan (- \<bar>x\<bar>)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5381
        by (rule suminf_eq_arctan_bounded[where x1="x" and a1="- \<bar>x\<bar>" and b1="\<bar>x\<bar>"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5382
           (simp_all only: \<open>\<bar>x\<bar> < r\<close> \<open>- \<bar>x\<bar> < \<bar>x\<bar>\<close> neg_less_iff_less)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5383
      ultimately show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5384
        using suminf_arctan_zero by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5385
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5386
    then show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5387
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5388
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5389
  show "arctan x = suminf (\<lambda>n. ?c x n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5390
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5391
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5392
    then show ?thesis by (rule when_less_one)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5393
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5394
    case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5395
    then have "\<bar>x\<bar> = 1" using \<open>\<bar>x\<bar> \<le> 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5396
    let ?a = "\<lambda>x n. \<bar>1 / real (n * 2 + 1) * x^(n * 2 + 1)\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5397
    let ?diff = "\<lambda>x n. \<bar>arctan x - (\<Sum>i<n. ?c x i)\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5398
    have "?diff 1 n \<le> ?a 1 n" for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5399
    proof -
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5400
      have "0 < (1 :: real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5401
      moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5402
      have "?diff x n \<le> ?a x n" if "0 < x" and "x < 1" for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5403
      proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5404
        from that have "\<bar>x\<bar> \<le> 1" and "\<bar>x\<bar> < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5405
          by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5406
        from \<open>0 < x\<close> have "0 < 1 / real (0 * 2 + (1::nat)) * x ^ (0 * 2 + 1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5407
          by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5408
        note bounds = mp[OF arctan_series_borders(2)[OF \<open>\<bar>x\<bar> \<le> 1\<close>] this, unfolded when_less_one[OF \<open>\<bar>x\<bar> < 1\<close>, symmetric], THEN spec]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5409
        have "0 < 1 / real (n*2+1) * x^(n*2+1)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5410
          by (rule mult_pos_pos) (simp_all only: zero_less_power[OF \<open>0 < x\<close>], auto)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5411
        then have a_pos: "?a x n = 1 / real (n*2+1) * x^(n*2+1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5412
          by (rule abs_of_pos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5413
        show ?thesis
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5414
        proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5415
          case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5416
          then have sgn_pos: "(-1)^n = (1::real)" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5417
          from \<open>even n\<close> obtain m where "n = 2 * m" ..
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  5418
          then have "2 * m = n" ..
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5419
          from bounds[of m, unfolded this atLeastAtMost_iff]
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  5420
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n + 1. (?c x i)) - (\<Sum>i<n. (?c x i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5421
            by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5422
          also have "\<dots> = ?c x n" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5423
          also have "\<dots> = ?a x n" unfolding sgn_pos a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5424
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5425
        next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5426
          case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5427
          then have sgn_neg: "(-1)^n = (-1::real)" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5428
          from \<open>odd n\<close> obtain m where "n = 2 * m + 1" ..
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  5429
          then have m_def: "2 * m + 1 = n" ..
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5430
          then have m_plus: "2 * (m + 1) = n + 1" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5431
          from bounds[of "m + 1", unfolded this atLeastAtMost_iff, THEN conjunct1] bounds[of m, unfolded m_def atLeastAtMost_iff, THEN conjunct2]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5432
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n. (?c x i)) - (\<Sum>i<n+1. (?c x i))" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5433
          also have "\<dots> = - ?c x n" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5434
          also have "\<dots> = ?a x n" unfolding sgn_neg a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5435
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5436
        qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5437
      qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5438
      hence "\<forall>x \<in> { 0 <..< 1 }. 0 \<le> ?a x n - ?diff x n" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5439
      moreover have "isCont (\<lambda> x. ?a x n - ?diff x n) x" for x
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  5440
        unfolding diff_conv_add_uminus divide_inverse
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5441
        by (auto intro!: isCont_add isCont_rabs continuous_ident isCont_minus isCont_arctan
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5442
          isCont_inverse isCont_mult isCont_power continuous_const isCont_setsum
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  5443
          simp del: add_uminus_conv_diff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5444
      ultimately have "0 \<le> ?a 1 n - ?diff 1 n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5445
        by (rule LIM_less_bound)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5446
      then show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5447
    qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5448
    have "?a 1 \<longlonglongrightarrow> 0"
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  5449
      unfolding tendsto_rabs_zero_iff power_one divide_inverse One_nat_def
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5450
      by (auto intro!: tendsto_mult LIMSEQ_linear LIMSEQ_inverse_real_of_nat simp del: of_nat_Suc)
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5451
    have "?diff 1 \<longlonglongrightarrow> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5452
    proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5453
      fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5454
      assume "0 < r"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5455
      obtain N :: nat where N_I: "N \<le> n \<Longrightarrow> ?a 1 n < r" for n
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5456
        using LIMSEQ_D[OF \<open>?a 1 \<longlonglongrightarrow> 0\<close> \<open>0 < r\<close>] by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5457
      have "norm (?diff 1 n - 0) < r" if "N \<le> n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5458
        using \<open>?diff 1 n \<le> ?a 1 n\<close> N_I[OF that] by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5459
      then show "\<exists>N. \<forall> n \<ge> N. norm (?diff 1 n - 0) < r" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5460
    qed
44710
9caf6883f1f4 remove redundant lemmas about LIMSEQ
huffman
parents: 44568
diff changeset
  5461
    from this [unfolded tendsto_rabs_zero_iff, THEN tendsto_add [OF _ tendsto_const], of "- arctan 1", THEN tendsto_minus]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5462
    have "(?c 1) sums (arctan 1)" unfolding sums_def by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5463
    then have "arctan 1 = (\<Sum>i. ?c 1 i)" by (rule sums_unique)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5464
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5465
    show ?thesis
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5466
    proof (cases "x = 1")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5467
      case True
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5468
      then show ?thesis by (simp add: \<open>arctan 1 = (\<Sum> i. ?c 1 i)\<close>)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5469
    next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5470
      case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5471
      then have "x = -1" using \<open>\<bar>x\<bar> = 1\<close> by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5472
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5473
      have "- (pi / 2) < 0" using pi_gt_zero by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5474
      have "- (2 * pi) < 0" using pi_gt_zero by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5475
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5476
      have c_minus_minus: "?c (- 1) i = - ?c 1 i" for i by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5477
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5478
      have "arctan (- 1) = arctan (tan (-(pi / 4)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5479
        unfolding tan_45 tan_minus ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5480
      also have "\<dots> = - (pi / 4)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5481
        by (rule arctan_tan) (auto simp: order_less_trans[OF \<open>- (pi / 2) < 0\<close> pi_gt_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5482
      also have "\<dots> = - (arctan (tan (pi / 4)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5483
        unfolding neg_equal_iff_equal
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5484
        by (rule arctan_tan[symmetric]) (auto simp: order_less_trans[OF \<open>- (2 * pi) < 0\<close> pi_gt_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5485
      also have "\<dots> = - (arctan 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5486
        unfolding tan_45 ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5487
      also have "\<dots> = - (\<Sum> i. ?c 1 i)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5488
        using \<open>arctan 1 = (\<Sum> i. ?c 1 i)\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5489
      also have "\<dots> = (\<Sum> i. ?c (- 1) i)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5490
        using suminf_minus[OF sums_summable[OF \<open>(?c 1) sums (arctan 1)\<close>]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5491
        unfolding c_minus_minus by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5492
      finally show ?thesis using \<open>x = -1\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5493
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5494
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5495
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5496
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5497
lemma arctan_half: "arctan x = 2 * arctan (x / (1 + sqrt(1 + x\<^sup>2)))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5498
  for x :: real
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5499
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5500
  obtain y where low: "- (pi / 2) < y" and high: "y < pi / 2" and y_eq: "tan y = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5501
    using tan_total by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5502
  then have low2: "- (pi / 2) < y / 2" and high2: "y / 2 < pi / 2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5503
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5504
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5505
  have "0 < cos y" by (rule cos_gt_zero_pi[OF low high])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5506
  then have "cos y \<noteq> 0" and cos_sqrt: "sqrt ((cos y)\<^sup>2) = cos y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5507
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5508
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5509
  have "1 + (tan y)\<^sup>2 = 1 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5510
    unfolding tan_def power_divide ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5511
  also have "\<dots> = (cos y)\<^sup>2 / (cos y)\<^sup>2 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5512
    using \<open>cos y \<noteq> 0\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5513
  also have "\<dots> = 1 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5514
    unfolding add_divide_distrib[symmetric] sin_cos_squared_add2 ..
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  5515
  finally have "1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5516
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5517
  have "sin y / (cos y + 1) = tan y / ((cos y + 1) / cos y)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5518
    unfolding tan_def using \<open>cos y \<noteq> 0\<close> by (simp add: field_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5519
  also have "\<dots> = tan y / (1 + 1 / cos y)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5520
    using \<open>cos y \<noteq> 0\<close> unfolding add_divide_distrib by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5521
  also have "\<dots> = tan y / (1 + 1 / sqrt ((cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5522
    unfolding cos_sqrt ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5523
  also have "\<dots> = tan y / (1 + sqrt (1 / (cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5524
    unfolding real_sqrt_divide by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5525
  finally have eq: "sin y / (cos y + 1) = tan y / (1 + sqrt(1 + (tan y)\<^sup>2))"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5526
    unfolding \<open>1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2\<close> .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5527
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5528
  have "arctan x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5529
    using arctan_tan low high y_eq by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5530
  also have "\<dots> = 2 * (arctan (tan (y/2)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5531
    using arctan_tan[OF low2 high2] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5532
  also have "\<dots> = 2 * (arctan (sin y / (cos y + 1)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5533
    unfolding tan_half by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5534
  finally show ?thesis
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5535
    unfolding eq \<open>tan y = x\<close> .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5536
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5537
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5538
lemma arctan_monotone: "x < y \<Longrightarrow> arctan x < arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5539
  by (simp only: arctan_less_iff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5540
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5541
lemma arctan_monotone': "x \<le> y \<Longrightarrow> arctan x \<le> arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5542
  by (simp only: arctan_le_iff)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5543
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5544
lemma arctan_inverse:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5545
  assumes "x \<noteq> 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5546
  shows "arctan (1 / x) = sgn x * pi / 2 - arctan x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5547
proof (rule arctan_unique)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5548
  show "- (pi / 2) < sgn x * pi / 2 - arctan x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5549
    using arctan_bounded [of x] assms
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5550
    unfolding sgn_real_def
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5551
    apply (auto simp add: arctan algebra_simps)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5552
    apply (drule zero_less_arctan_iff [THEN iffD2])
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5553
    apply arith
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5554
    done
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5555
  show "sgn x * pi / 2 - arctan x < pi / 2"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5556
    using arctan_bounded [of "- x"] assms
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5557
    unfolding sgn_real_def arctan_minus
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  5558
    by (auto simp add: algebra_simps)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5559
  show "tan (sgn x * pi / 2 - arctan x) = 1 / x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5560
    unfolding tan_inverse [of "arctan x", unfolded tan_arctan]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5561
    unfolding sgn_real_def
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  5562
    by (simp add: tan_def cos_arctan sin_arctan sin_diff cos_diff)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5563
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5564
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5565
theorem pi_series: "pi / 4 = (\<Sum>k. (-1)^k * 1 / real (k * 2 + 1))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5566
  (is "_ = ?SUM")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5567
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5568
  have "pi / 4 = arctan 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5569
    using arctan_one by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5570
  also have "\<dots> = ?SUM"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5571
    using arctan_series[of 1] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5572
  finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5573
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5574
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5575
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5576
subsection \<open>Existence of Polar Coordinates\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5577
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5578
lemma cos_x_y_le_one: "\<bar>x / sqrt (x\<^sup>2 + y\<^sup>2)\<bar> \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5579
  by (rule power2_le_imp_le [OF _ zero_le_one])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5580
    (simp add: power_divide divide_le_eq not_sum_power2_lt_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5581
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  5582
lemmas cos_arccos_lemma1 = cos_arccos_abs [OF cos_x_y_le_one]
15228
4d332d10fa3d revised simprules for division
paulson
parents: 15140
diff changeset
  5583
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5584
lemmas sin_arccos_lemma1 = sin_arccos_abs [OF cos_x_y_le_one]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5585
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5586
lemma polar_Ex: "\<exists>r::real. \<exists>a. x = r * cos a \<and> y = r * sin a"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5587
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5588
  have polar_ex1: "0 < y \<Longrightarrow> \<exists>r a. x = r * cos a \<and> y = r * sin a" for y
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5589
    apply (rule exI [where x = "sqrt (x\<^sup>2 + y\<^sup>2)"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5590
    apply (rule exI [where x = "arccos (x / sqrt (x\<^sup>2 + y\<^sup>2))"])
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5591
    apply (simp add: cos_arccos_lemma1 sin_arccos_lemma1 power_divide
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5592
        real_sqrt_mult [symmetric] right_diff_distrib)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5593
    done
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5594
  show ?thesis
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5595
  proof (cases "0::real" y rule: linorder_cases)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  5596
    case less
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5597
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5598
      by (rule polar_ex1)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5599
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5600
    case equal
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5601
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5602
      by (force simp add: intro!: cos_zero sin_zero)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5603
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5604
    case greater
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5605
    with polar_ex1 [where y="-y"] show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5606
      by auto (metis cos_minus minus_minus minus_mult_right sin_minus)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5607
  qed
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  5608
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5609
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5610
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5611
subsection \<open>Basics about polynomial functions: products, extremal behaviour and root counts\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5612
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5613
lemma pairs_le_eq_Sigma: "{(i, j). i + j \<le> m} = Sigma (atMost m) (\<lambda>r. atMost (m - r))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5614
  for m :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5615
  by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5616
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5617
lemma setsum_up_index_split: "(\<Sum>k\<le>m + n. f k) = (\<Sum>k\<le>m. f k) + (\<Sum>k = Suc m..m + n. f k)"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5618
  by (metis atLeast0AtMost Suc_eq_plus1 le0 setsum_ub_add_nat)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5619
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5620
lemma Sigma_interval_disjoint: "(SIGMA i:A. {..v i}) \<inter> (SIGMA i:A.{v i<..w}) = {}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5621
  for w :: "'a::order"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5622
  by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5623
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5624
lemma product_atMost_eq_Un: "A \<times> {..m} = (SIGMA i:A.{..m - i}) \<union> (SIGMA i:A.{m - i<..m})"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5625
  for m :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5626
  by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5627
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5628
lemma polynomial_product: (*with thanks to Chaitanya Mangla*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5629
  fixes x :: "'a::idom"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5630
  assumes m: "\<And>i. i > m \<Longrightarrow> a i = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5631
    and n: "\<And>j. j > n \<Longrightarrow> b j = 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5632
  shows "(\<Sum>i\<le>m. (a i) * x ^ i) * (\<Sum>j\<le>n. (b j) * x ^ j) =
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5633
    (\<Sum>r\<le>m + n. (\<Sum>k\<le>r. (a k) * (b (r - k))) * x ^ r)"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5634
proof -
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5635
  have "(\<Sum>i\<le>m. (a i) * x ^ i) * (\<Sum>j\<le>n. (b j) * x ^ j) = (\<Sum>i\<le>m. \<Sum>j\<le>n. (a i * x ^ i) * (b j * x ^ j))"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5636
    by (rule setsum_product)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5637
  also have "\<dots> = (\<Sum>i\<le>m + n. \<Sum>j\<le>n + m. a i * x ^ i * (b j * x ^ j))"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5638
    using assms by (auto simp: setsum_up_index_split)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5639
  also have "\<dots> = (\<Sum>r\<le>m + n. \<Sum>j\<le>m + n - r. a r * x ^ r * (b j * x ^ j))"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5640
    apply (simp add: add_ac setsum.Sigma product_atMost_eq_Un)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5641
    apply (clarsimp simp add: setsum_Un Sigma_interval_disjoint intro!: setsum.neutral)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5642
    apply (metis add_diff_assoc2 add.commute add_lessD1 leD m n nat_le_linear neqE)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5643
    done
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5644
  also have "\<dots> = (\<Sum>(i,j)\<in>{(i,j). i+j \<le> m+n}. (a i * x ^ i) * (b j * x ^ j))"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5645
    by (auto simp: pairs_le_eq_Sigma setsum.Sigma)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5646
  also have "\<dots> = (\<Sum>r\<le>m + n. (\<Sum>k\<le>r. (a k) * (b (r - k))) * x ^ r)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5647
    apply (subst setsum_triangle_reindex_eq)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5648
    apply (auto simp: algebra_simps setsum_right_distrib intro!: setsum.cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5649
    apply (metis le_add_diff_inverse power_add)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5650
    done
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5651
  finally show ?thesis .
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5652
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5653
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5654
lemma polynomial_product_nat:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5655
  fixes x :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5656
  assumes m: "\<And>i. i > m \<Longrightarrow> a i = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5657
    and n: "\<And>j. j > n \<Longrightarrow> b j = 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5658
  shows "(\<Sum>i\<le>m. (a i) * x ^ i) * (\<Sum>j\<le>n. (b j) * x ^ j) =
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5659
    (\<Sum>r\<le>m + n. (\<Sum>k\<le>r. (a k) * (b (r - k))) * x ^ r)"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5660
  using polynomial_product [of m a n b x] assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5661
  by (simp only: of_nat_mult [symmetric] of_nat_power [symmetric]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5662
      of_nat_eq_iff Int.int_setsum [symmetric])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5663
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5664
lemma polyfun_diff: (*COMPLEX_SUB_POLYFUN in HOL Light*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5665
  fixes x :: "'a::idom"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5666
  assumes "1 \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5667
  shows "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5668
    (x - y) * (\<Sum>j<n. (\<Sum>i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5669
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5670
  have h: "bij_betw (\<lambda>(i,j). (j,i)) ((SIGMA i : atMost n. lessThan i)) (SIGMA j : lessThan n. {Suc j..n})"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5671
    by (auto simp: bij_betw_def inj_on_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5672
  have "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) = (\<Sum>i\<le>n. a i * (x^i - y^i))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5673
    by (simp add: right_diff_distrib setsum_subtractf)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5674
  also have "\<dots> = (\<Sum>i\<le>n. a i * (x - y) * (\<Sum>j<i. y^(i - Suc j) * x^j))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5675
    by (simp add: power_diff_sumr2 mult.assoc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5676
  also have "\<dots> = (\<Sum>i\<le>n. \<Sum>j<i. a i * (x - y) * (y^(i - Suc j) * x^j))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5677
    by (simp add: setsum_right_distrib)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5678
  also have "\<dots> = (\<Sum>(i,j) \<in> (SIGMA i : atMost n. lessThan i). a i * (x - y) * (y^(i - Suc j) * x^j))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5679
    by (simp add: setsum.Sigma)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5680
  also have "\<dots> = (\<Sum>(j,i) \<in> (SIGMA j : lessThan n. {Suc j..n}). a i * (x - y) * (y^(i - Suc j) * x^j))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5681
    by (auto simp add: setsum.reindex_bij_betw [OF h, symmetric] intro: setsum.strong_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5682
  also have "\<dots> = (\<Sum>j<n. \<Sum>i=Suc j..n. a i * (x - y) * (y^(i - Suc j) * x^j))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5683
    by (simp add: setsum.Sigma)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5684
  also have "\<dots> = (x - y) * (\<Sum>j<n. (\<Sum>i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5685
    by (simp add: setsum_right_distrib mult_ac)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5686
  finally show ?thesis .
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5687
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5688
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5689
lemma polyfun_diff_alt: (*COMPLEX_SUB_POLYFUN_ALT in HOL Light*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5690
  fixes x :: "'a::idom"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5691
  assumes "1 \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5692
  shows "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5693
    (x - y) * ((\<Sum>j<n. \<Sum>k<n-j. a(j + k + 1) * y^k * x^j))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5694
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5695
  have "(\<Sum>i=Suc j..n. a i * y^(i - j - 1)) = (\<Sum>k<n-j. a(j+k+1) * y^k)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5696
    if "j < n" for j :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5697
  proof -
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5698
    have h: "bij_betw (\<lambda>i. i - (j + 1)) {Suc j..n} (lessThan (n-j))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5699
      apply (auto simp: bij_betw_def inj_on_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5700
      apply (rule_tac x="x + Suc j" in image_eqI)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5701
       apply (auto simp: )
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5702
      done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5703
    then show ?thesis
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5704
      by (auto simp add: setsum.reindex_bij_betw [OF h, symmetric] intro: setsum.strong_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5705
  qed
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5706
  then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5707
    by (simp add: polyfun_diff [OF assms] setsum_left_distrib)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5708
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5709
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5710
lemma polyfun_linear_factor:  (*COMPLEX_POLYFUN_LINEAR_FACTOR in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5711
  fixes a :: "'a::idom"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5712
  shows "\<exists>b. \<forall>z. (\<Sum>i\<le>n. c(i) * z^i) = (z - a) * (\<Sum>i<n. b(i) * z^i) + (\<Sum>i\<le>n. c(i) * a^i)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5713
proof (cases "n = 0")
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5714
  case True then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5715
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5716
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5717
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5718
  have "(\<exists>b. \<forall>z. (\<Sum>i\<le>n. c i * z^i) = (z - a) * (\<Sum>i<n. b i * z^i) + (\<Sum>i\<le>n. c i * a^i)) \<longleftrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5719
        (\<exists>b. \<forall>z. (\<Sum>i\<le>n. c i * z^i) - (\<Sum>i\<le>n. c i * a^i) = (z - a) * (\<Sum>i<n. b i * z^i))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5720
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5721
  also have "\<dots> \<longleftrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5722
    (\<exists>b. \<forall>z. (z - a) * (\<Sum>j<n. (\<Sum>i = Suc j..n. c i * a^(i - Suc j)) * z^j) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5723
      (z - a) * (\<Sum>i<n. b i * z^i))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5724
    using False by (simp add: polyfun_diff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5725
  also have "\<dots> = True" by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5726
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5727
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5728
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5729
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5730
lemma polyfun_linear_factor_root:  (*COMPLEX_POLYFUN_LINEAR_FACTOR_ROOT in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5731
  fixes a :: "'a::idom"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5732
  assumes "(\<Sum>i\<le>n. c(i) * a^i) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5733
  obtains b where "\<And>z. (\<Sum>i\<le>n. c i * z^i) = (z - a) * (\<Sum>i<n. b i * z^i)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5734
  using polyfun_linear_factor [of c n a] assms by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5735
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5736
(*The material of this section, up until this point, could go into a new theory of polynomials
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5737
  based on Main alone. The remaining material involves limits, continuity, series, etc.*)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5738
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5739
lemma isCont_polynom: "isCont (\<lambda>w. \<Sum>i\<le>n. c i * w^i) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5740
  for c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5741
  by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5742
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5743
lemma zero_polynom_imp_zero_coeffs:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5744
  fixes c :: "nat \<Rightarrow> 'a::{ab_semigroup_mult,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5745
  assumes "\<And>w. (\<Sum>i\<le>n. c i * w^i) = 0"  "k \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5746
  shows "c k = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5747
  using assms
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5748
proof (induction n arbitrary: c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5749
  case 0
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5750
  then show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5751
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5752
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5753
  case (Suc n c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5754
  have [simp]: "c 0 = 0" using Suc.prems(1) [of 0]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5755
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5756
  have "(\<Sum>i\<le>Suc n. c i * w^i) = w * (\<Sum>i\<le>n. c (Suc i) * w^i)" for w
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5757
  proof -
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5758
    have "(\<Sum>i\<le>Suc n. c i * w^i) = (\<Sum>i\<le>n. c (Suc i) * w ^ Suc i)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5759
      unfolding Set_Interval.setsum_atMost_Suc_shift
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5760
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5761
    also have "\<dots> = w * (\<Sum>i\<le>n. c (Suc i) * w^i)"
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60762
diff changeset
  5762
      by (simp add: setsum_right_distrib ac_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5763
    finally show ?thesis .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5764
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5765
  then have w: "\<And>w. w \<noteq> 0 \<Longrightarrow> (\<Sum>i\<le>n. c (Suc i) * w^i) = 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5766
    using Suc  by auto
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  5767
  then have "(\<lambda>h. \<Sum>i\<le>n. c (Suc i) * h^i) \<midarrow>0\<rightarrow> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5768
    by (simp cong: LIM_cong)  \<comment> \<open>the case \<open>w = 0\<close> by continuity\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5769
  then have "(\<Sum>i\<le>n. c (Suc i) * 0^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5770
    using isCont_polynom [of 0 "\<lambda>i. c (Suc i)" n] LIM_unique
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5771
    by (force simp add: Limits.isCont_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5772
  then have "\<And>w. (\<Sum>i\<le>n. c (Suc i) * w^i) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5773
    using w by metis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5774
  then have "\<And>i. i \<le> n \<Longrightarrow> c (Suc i) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5775
    using Suc.IH [of "\<lambda>i. c (Suc i)"] by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5776
  then show ?case using \<open>k \<le> Suc n\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5777
    by (cases k) auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5778
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5779
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5780
lemma polyfun_rootbound: (*COMPLEX_POLYFUN_ROOTBOUND in HOL Light*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5781
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5782
  assumes "c k \<noteq> 0" "k\<le>n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5783
  shows "finite {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<and> card {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<le> n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5784
  using assms
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5785
proof (induction n arbitrary: c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5786
  case 0
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5787
  then show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5788
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5789
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5790
  case (Suc m c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5791
  let ?succase = ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5792
  show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5793
  proof (cases "{z. (\<Sum>i\<le>Suc m. c(i) * z^i) = 0} = {}")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5794
    case True
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5795
    then show ?succase
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5796
      by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5797
  next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5798
    case False
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5799
    then obtain z0 where z0: "(\<Sum>i\<le>Suc m. c(i) * z0^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5800
      by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5801
    then obtain b where b: "\<And>w. (\<Sum>i\<le>Suc m. c i * w^i) = (w - z0) * (\<Sum>i\<le>m. b i * w^i)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5802
      using polyfun_linear_factor_root [OF z0, unfolded lessThan_Suc_atMost]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5803
      by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5804
    then have eq: "{z. (\<Sum>i\<le>Suc m. c i * z^i) = 0} = insert z0 {z. (\<Sum>i\<le>m. b i * z^i) = 0}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5805
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5806
    have "\<not> (\<forall>k\<le>m. b k = 0)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5807
    proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5808
      assume [simp]: "\<forall>k\<le>m. b k = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5809
      then have "\<And>w. (\<Sum>i\<le>m. b i * w^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5810
        by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5811
      then have "\<And>w. (\<Sum>i\<le>Suc m. c i * w^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5812
        using b by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5813
      then have "\<And>k. k \<le> Suc m \<Longrightarrow> c k = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5814
        using zero_polynom_imp_zero_coeffs by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5815
      then show False using Suc.prems by blast
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5816
    qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5817
    then obtain k' where bk': "b k' \<noteq> 0" "k' \<le> m"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5818
      by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5819
    show ?succase
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5820
      using Suc.IH [of b k'] bk'
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5821
      by (simp add: eq card_insert_if del: setsum_atMost_Suc)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5822
    qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5823
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5824
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5825
lemma
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5826
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5827
  assumes "c k \<noteq> 0" "k\<le>n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5828
  shows polyfun_roots_finite: "finite {z. (\<Sum>i\<le>n. c(i) * z^i) = 0}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5829
    and polyfun_roots_card: "card {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<le> n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5830
  using polyfun_rootbound assms by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5831
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5832
lemma polyfun_finite_roots: (*COMPLEX_POLYFUN_FINITE_ROOTS in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5833
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5834
  shows "finite {x. (\<Sum>i\<le>n. c i * x^i) = 0} \<longleftrightarrow> (\<exists>i\<le>n. c i \<noteq> 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5835
    (is "?lhs = ?rhs")
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5836
proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5837
  assume ?lhs
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5838
  moreover have "\<not> finite {x. (\<Sum>i\<le>n. c i * x^i) = 0}" if "\<forall>i\<le>n. c i = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5839
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5840
    from that have "\<And>x. (\<Sum>i\<le>n. c i * x^i) = 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5841
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5842
    then show ?thesis
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5843
      using ex_new_if_finite [OF infinite_UNIV_char_0 [where 'a='a]]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5844
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5845
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5846
  ultimately show ?rhs by metis
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5847
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5848
  assume ?rhs
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5849
  with polyfun_rootbound show ?lhs by blast
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5850
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5851
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5852
lemma polyfun_eq_0: "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = 0) \<longleftrightarrow> (\<forall>i\<le>n. c i = 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5853
  for c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5854
  (*COMPLEX_POLYFUN_EQ_0 in HOL Light*)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5855
  using zero_polynom_imp_zero_coeffs by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5856
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5857
lemma polyfun_eq_coeffs: "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = (\<Sum>i\<le>n. d i * x^i)) \<longleftrightarrow> (\<forall>i\<le>n. c i = d i)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5858
  for c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5859
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5860
  have "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = (\<Sum>i\<le>n. d i * x^i)) \<longleftrightarrow> (\<forall>x. (\<Sum>i\<le>n. (c i - d i) * x^i) = 0)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5861
    by (simp add: left_diff_distrib Groups_Big.setsum_subtractf)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5862
  also have "\<dots> \<longleftrightarrow> (\<forall>i\<le>n. c i - d i = 0)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5863
    by (rule polyfun_eq_0)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5864
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5865
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5866
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5867
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5868
lemma polyfun_eq_const: (*COMPLEX_POLYFUN_EQ_CONST in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5869
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5870
  shows "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = k) \<longleftrightarrow> c 0 = k \<and> (\<forall>i \<in> {1..n}. c i = 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5871
    (is "?lhs = ?rhs")
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5872
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5873
  have *: "\<forall>x. (\<Sum>i\<le>n. (if i=0 then k else 0) * x^i) = k"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5874
    by (induct n) auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5875
  show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5876
  proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5877
    assume ?lhs
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5878
    with * have "(\<forall>i\<le>n. c i = (if i=0 then k else 0))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5879
      by (simp add: polyfun_eq_coeffs [symmetric])
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  5880
    then show ?rhs by simp
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5881
  next
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  5882
    assume ?rhs
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  5883
    then show ?lhs by (induct n) auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5884
  qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5885
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5886
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5887
lemma root_polyfun:
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  5888
  fixes z :: "'a::idom"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5889
  assumes "1 \<le> n"
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  5890
  shows "z^n = a \<longleftrightarrow> (\<Sum>i\<le>n. (if i = 0 then -a else if i=n then 1 else 0) * z^i) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5891
  using assms by (cases n) (simp_all add: setsum_head_Suc atLeast0AtMost [symmetric])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5892
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5893
lemma
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5894
  assumes "SORT_CONSTRAINT('a::{idom,real_normed_div_algebra})"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5895
    and "1 \<le> n"
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  5896
  shows finite_roots_unity: "finite {z::'a. z^n = 1}"
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  5897
    and card_roots_unity: "card {z::'a. z^n = 1} \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5898
  using polyfun_rootbound [of "\<lambda>i. if i = 0 then -1 else if i=n then 1 else 0" n n] assms(2)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5899
  by (auto simp add: root_polyfun [OF assms(2)])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  5900
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  5901
end