src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy
author hoelzl
Fri, 08 Jan 2016 17:40:59 +0100
changeset 62101 26c0a70f78a3
parent 62087 44841d07ef1d
child 62131 1baed43f453e
permissions -rw-r--r--
add uniform spaces
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     1
(*  Author: John Harrison, Marco Maggesi, Graziano Gentili, Gianni Ciolli, Valentina Bruno
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     2
    Ported from "hol_light/Multivariate/canal.ml" by L C Paulson (2014)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     3
*)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     4
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
     5
section \<open>Complex Analysis Basics\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     6
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     7
theory Complex_Analysis_Basics
61560
7c985fd653c5 tuned imports;
wenzelm
parents: 61531
diff changeset
     8
imports Cartesian_Euclidean_Space
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     9
begin
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    10
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
    11
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
    12
lemma cmod_fact [simp]: "cmod (fact n) = fact n"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
    13
  by (metis norm_of_nat of_nat_fact)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
    14
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
    15
subsection\<open>General lemmas\<close>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    16
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    17
lemma has_derivative_mult_right:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    18
  fixes c:: "'a :: real_normed_algebra"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    19
  shows "((op * c) has_derivative (op * c)) F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    20
by (rule has_derivative_mult_right [OF has_derivative_id])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    21
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    22
lemma has_derivative_of_real[derivative_intros, simp]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    23
  "(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. of_real (f x)) has_derivative (\<lambda>x. of_real (f' x))) F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    24
  using bounded_linear.has_derivative[OF bounded_linear_of_real] .
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    25
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    26
lemma has_vector_derivative_real_complex:
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61610
diff changeset
    27
  "DERIV f (of_real a) :> f' \<Longrightarrow> ((\<lambda>x. f (of_real x)) has_vector_derivative f') (at a within s)"
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61610
diff changeset
    28
  using has_derivative_compose[of of_real of_real a _ f "op * f'"]
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    29
  by (simp add: scaleR_conv_of_real ac_simps has_vector_derivative_def has_field_derivative_def)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    30
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
    31
lemma fact_cancel:
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
    32
  fixes c :: "'a::real_field"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
    33
  shows "of_nat (Suc n) * c / (fact (Suc n)) = c / (fact n)"
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
    34
  by (simp add: of_nat_mult del: of_nat_Suc times_nat.simps)
56889
48a745e1bde7 avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
hoelzl
parents: 56479
diff changeset
    35
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    36
lemma bilinear_times:
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
    37
  fixes c::"'a::real_algebra" shows "bilinear (\<lambda>x y::'a. x*y)"
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
    38
  by (auto simp: bilinear_def distrib_left distrib_right intro!: linearI)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    39
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    40
lemma linear_cnj: "linear cnj"
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
    41
  using bounded_linear.linear[OF bounded_linear_cnj] .
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    42
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    43
lemma tendsto_Re_upper:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    44
  assumes "~ (trivial_limit F)"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
    45
          "(f \<longlongrightarrow> l) F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    46
          "eventually (\<lambda>x. Re(f x) \<le> b) F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    47
    shows  "Re(l) \<le> b"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    48
  by (metis assms tendsto_le [OF _ tendsto_const]  tendsto_Re)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    49
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    50
lemma tendsto_Re_lower:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    51
  assumes "~ (trivial_limit F)"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
    52
          "(f \<longlongrightarrow> l) F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    53
          "eventually (\<lambda>x. b \<le> Re(f x)) F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    54
    shows  "b \<le> Re(l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    55
  by (metis assms tendsto_le [OF _ _ tendsto_const]  tendsto_Re)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    56
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    57
lemma tendsto_Im_upper:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    58
  assumes "~ (trivial_limit F)"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
    59
          "(f \<longlongrightarrow> l) F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    60
          "eventually (\<lambda>x. Im(f x) \<le> b) F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    61
    shows  "Im(l) \<le> b"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    62
  by (metis assms tendsto_le [OF _ tendsto_const]  tendsto_Im)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    63
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    64
lemma tendsto_Im_lower:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    65
  assumes "~ (trivial_limit F)"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
    66
          "(f \<longlongrightarrow> l) F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    67
          "eventually (\<lambda>x. b \<le> Im(f x)) F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    68
    shows  "b \<le> Im(l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    69
  by (metis assms tendsto_le [OF _ _ tendsto_const]  tendsto_Im)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    70
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    71
lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = op * 0"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    72
  by auto
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    73
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    74
lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = op * 1"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    75
  by auto
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    76
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    77
lemma continuous_mult_left:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    78
  fixes c::"'a::real_normed_algebra"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    79
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. c * f x)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    80
by (rule continuous_mult [OF continuous_const])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    81
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    82
lemma continuous_mult_right:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    83
  fixes c::"'a::real_normed_algebra"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    84
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x * c)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    85
by (rule continuous_mult [OF _ continuous_const])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    86
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    87
lemma continuous_on_mult_left:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    88
  fixes c::"'a::real_normed_algebra"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    89
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. c * f x)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    90
by (rule continuous_on_mult [OF continuous_on_const])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    91
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    92
lemma continuous_on_mult_right:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    93
  fixes c::"'a::real_normed_algebra"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    94
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x * c)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    95
by (rule continuous_on_mult [OF _ continuous_on_const])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    96
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56370
diff changeset
    97
lemma uniformly_continuous_on_cmul_right [continuous_intros]:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    98
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
56332
289dd9166d04 tuned proofs
hoelzl
parents: 56261
diff changeset
    99
  shows "uniformly_continuous_on s f \<Longrightarrow> uniformly_continuous_on s (\<lambda>x. f x * c)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   100
  using bounded_linear.uniformly_continuous_on[OF bounded_linear_mult_left] .
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   101
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56370
diff changeset
   102
lemma uniformly_continuous_on_cmul_left[continuous_intros]:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   103
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   104
  assumes "uniformly_continuous_on s f"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   105
    shows "uniformly_continuous_on s (\<lambda>x. c * f x)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   106
by (metis assms bounded_linear.uniformly_continuous_on bounded_linear_mult_right)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   107
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   108
lemma continuous_within_norm_id [continuous_intros]: "continuous (at x within S) norm"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   109
  by (rule continuous_norm [OF continuous_ident])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   110
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   111
lemma continuous_on_norm_id [continuous_intros]: "continuous_on S norm"
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   112
  by (intro continuous_on_id continuous_on_norm)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   113
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   114
subsection\<open>DERIV stuff\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   115
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   116
lemma DERIV_zero_connected_constant:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   117
  fixes f :: "'a::{real_normed_field,euclidean_space} \<Rightarrow> 'a"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   118
  assumes "connected s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   119
      and "open s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   120
      and "finite k"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   121
      and "continuous_on s f"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   122
      and "\<forall>x\<in>(s - k). DERIV f x :> 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   123
    obtains c where "\<And>x. x \<in> s \<Longrightarrow> f(x) = c"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   124
using has_derivative_zero_connected_constant [OF assms(1-4)] assms
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   125
by (metis DERIV_const has_derivative_const Diff_iff at_within_open frechet_derivative_at has_field_derivative_def)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   126
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   127
lemma DERIV_zero_constant:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   128
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   129
  shows    "\<lbrakk>convex s;
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   130
             \<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)\<rbrakk>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   131
             \<Longrightarrow> \<exists>c. \<forall>x \<in> s. f(x) = c"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   132
  by (auto simp: has_field_derivative_def lambda_zero intro: has_derivative_zero_constant)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   133
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   134
lemma DERIV_zero_unique:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   135
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   136
  assumes "convex s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   137
      and d0: "\<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   138
      and "a \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   139
      and "x \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   140
    shows "f x = f a"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   141
  by (rule has_derivative_zero_unique [OF assms(1) _ assms(4,3)])
56332
289dd9166d04 tuned proofs
hoelzl
parents: 56261
diff changeset
   142
     (metis d0 has_field_derivative_imp_has_derivative lambda_zero)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   143
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   144
lemma DERIV_zero_connected_unique:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   145
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   146
  assumes "connected s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   147
      and "open s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   148
      and d0: "\<And>x. x\<in>s \<Longrightarrow> DERIV f x :> 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   149
      and "a \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   150
      and "x \<in> s"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   151
    shows "f x = f a"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   152
    by (rule has_derivative_zero_unique_connected [OF assms(2,1) _ assms(5,4)])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   153
       (metis has_field_derivative_def lambda_zero d0)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   154
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   155
lemma DERIV_transform_within:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   156
  assumes "(f has_field_derivative f') (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   157
      and "0 < d" "a \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   158
      and "\<And>x. x\<in>s \<Longrightarrow> dist x a < d \<Longrightarrow> f x = g x"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   159
    shows "(g has_field_derivative f') (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   160
  using assms unfolding has_field_derivative_def
56332
289dd9166d04 tuned proofs
hoelzl
parents: 56261
diff changeset
   161
  by (blast intro: has_derivative_transform_within)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   162
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   163
lemma DERIV_transform_within_open:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   164
  assumes "DERIV f a :> f'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   165
      and "open s" "a \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   166
      and "\<And>x. x\<in>s \<Longrightarrow> f x = g x"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   167
    shows "DERIV g a :> f'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   168
  using assms unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   169
by (metis has_derivative_transform_within_open)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   170
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   171
lemma DERIV_transform_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   172
  assumes "DERIV f a :> f'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   173
      and "0 < d"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   174
      and "\<And>x. dist x a < d \<Longrightarrow> f x = g x"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   175
    shows "DERIV g a :> f'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   176
  by (blast intro: assms DERIV_transform_within)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   177
59615
fdfdf89a83a6 A few new lemmas and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 59554
diff changeset
   178
(*generalising DERIV_isconst_all, which requires type real (using the ordering)*)
fdfdf89a83a6 A few new lemmas and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 59554
diff changeset
   179
lemma DERIV_zero_UNIV_unique:
fdfdf89a83a6 A few new lemmas and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 59554
diff changeset
   180
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   181
  shows "(\<And>x. DERIV f x :> 0) \<Longrightarrow> f x = f a"
59615
fdfdf89a83a6 A few new lemmas and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 59554
diff changeset
   182
by (metis DERIV_zero_unique UNIV_I assms convex_UNIV)
fdfdf89a83a6 A few new lemmas and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 59554
diff changeset
   183
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   184
subsection \<open>Some limit theorems about real part of real series etc.\<close>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   185
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   186
(*MOVE? But not to Finite_Cartesian_Product*)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   187
lemma sums_vec_nth :
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   188
  assumes "f sums a"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   189
  shows "(\<lambda>x. f x $ i) sums a $ i"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   190
using assms unfolding sums_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   191
by (auto dest: tendsto_vec_nth [where i=i])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   192
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   193
lemma summable_vec_nth :
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   194
  assumes "summable f"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   195
  shows "summable (\<lambda>x. f x $ i)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   196
using assms unfolding summable_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   197
by (blast intro: sums_vec_nth)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   198
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   199
subsection \<open>Complex number lemmas\<close>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   200
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   201
lemma
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   202
  shows open_halfspace_Re_lt: "open {z. Re(z) < b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   203
    and open_halfspace_Re_gt: "open {z. Re(z) > b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   204
    and closed_halfspace_Re_ge: "closed {z. Re(z) \<ge> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   205
    and closed_halfspace_Re_le: "closed {z. Re(z) \<le> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   206
    and closed_halfspace_Re_eq: "closed {z. Re(z) = b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   207
    and open_halfspace_Im_lt: "open {z. Im(z) < b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   208
    and open_halfspace_Im_gt: "open {z. Im(z) > b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   209
    and closed_halfspace_Im_ge: "closed {z. Im(z) \<ge> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   210
    and closed_halfspace_Im_le: "closed {z. Im(z) \<le> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   211
    and closed_halfspace_Im_eq: "closed {z. Im(z) = b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   212
  by (intro open_Collect_less closed_Collect_le closed_Collect_eq isCont_Re
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
   213
            isCont_Im continuous_ident continuous_const)+
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   214
61070
b72a990adfe2 prefer symbols;
wenzelm
parents: 60585
diff changeset
   215
lemma closed_complex_Reals: "closed (\<real> :: complex set)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   216
proof -
61070
b72a990adfe2 prefer symbols;
wenzelm
parents: 60585
diff changeset
   217
  have "(\<real> :: complex set) = {z. Im z = 0}"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   218
    by (auto simp: complex_is_Real_iff)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   219
  then show ?thesis
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   220
    by (metis closed_halfspace_Im_eq)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   221
qed
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   222
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   223
lemma closed_Real_halfspace_Re_le: "closed (\<real> \<inter> {w. Re w \<le> x})"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   224
  by (simp add: closed_Int closed_complex_Reals closed_halfspace_Re_le)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   225
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   226
lemma closed_Real_halfspace_Re_ge: "closed (\<real> \<inter> {w. x \<le> Re(w)})"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   227
  using closed_halfspace_Re_ge
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   228
  by (simp add: closed_Int closed_complex_Reals)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   229
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   230
lemma closed_real_abs_le: "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   231
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   232
  have "{w \<in> \<real>. \<bar>Re w\<bar> \<le> r} = (\<real> \<inter> {w. Re w \<le> r}) \<inter> (\<real> \<inter> {w. Re w \<ge> -r})"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   233
    by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   234
  then show "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   235
    by (simp add: closed_Int closed_Real_halfspace_Re_ge closed_Real_halfspace_Re_le)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   236
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   237
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   238
lemma real_lim:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   239
  fixes l::complex
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   240
  assumes "(f \<longlongrightarrow> l) F" and "~(trivial_limit F)" and "eventually P F" and "\<And>a. P a \<Longrightarrow> f a \<in> \<real>"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   241
  shows  "l \<in> \<real>"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   242
proof (rule Lim_in_closed_set[OF closed_complex_Reals _ assms(2,1)])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   243
  show "eventually (\<lambda>x. f x \<in> \<real>) F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   244
    using assms(3, 4) by (auto intro: eventually_mono)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   245
qed
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   246
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   247
lemma real_lim_sequentially:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   248
  fixes l::complex
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   249
  shows "(f \<longlongrightarrow> l) sequentially \<Longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   250
by (rule real_lim [where F=sequentially]) (auto simp: eventually_sequentially)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   251
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   252
lemma real_series:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   253
  fixes l::complex
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   254
  shows "f sums l \<Longrightarrow> (\<And>n. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   255
unfolding sums_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   256
by (metis real_lim_sequentially setsum_in_Reals)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   257
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   258
lemma Lim_null_comparison_Re:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   259
  assumes "eventually (\<lambda>x. norm(f x) \<le> Re(g x)) F" "(g \<longlongrightarrow> 0) F" shows "(f \<longlongrightarrow> 0) F"
56889
48a745e1bde7 avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
hoelzl
parents: 56479
diff changeset
   260
  by (rule Lim_null_comparison[OF assms(1)] tendsto_eq_intros assms(2))+ simp
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   261
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   262
subsection\<open>Holomorphic functions\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   263
61975
b4b11391c676 isabelle update_cartouches -c -t;
wenzelm
parents: 61973
diff changeset
   264
text\<open>Could be generalized to real normed fields, but in practice that would only include the reals\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   265
definition complex_differentiable :: "[complex \<Rightarrow> complex, complex filter] \<Rightarrow> bool"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   266
           (infixr "(complex'_differentiable)" 50)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   267
  where "f complex_differentiable F \<equiv> \<exists>f'. (f has_field_derivative f') F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   268
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   269
lemma complex_differentiable_imp_continuous_at:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   270
    "f complex_differentiable (at x within s) \<Longrightarrow> continuous (at x within s) f"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   271
  by (metis DERIV_continuous complex_differentiable_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   272
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   273
lemma complex_differentiable_within_subset:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   274
    "\<lbrakk>f complex_differentiable (at x within s); t \<subseteq> s\<rbrakk>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   275
     \<Longrightarrow> f complex_differentiable (at x within t)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   276
  by (metis DERIV_subset complex_differentiable_def)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   277
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   278
lemma complex_differentiable_at_within:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   279
    "\<lbrakk>f complex_differentiable (at x)\<rbrakk>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   280
     \<Longrightarrow> f complex_differentiable (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   281
  unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   282
  by (metis DERIV_subset top_greatest)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   283
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   284
lemma complex_differentiable_linear [derivative_intros]: "(op * c) complex_differentiable F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   285
proof -
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   286
  show ?thesis
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   287
    unfolding complex_differentiable_def has_field_derivative_def mult_commute_abs
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   288
    by (force intro: has_derivative_mult_right)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   289
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   290
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   291
lemma complex_differentiable_const [derivative_intros]: "(\<lambda>z. c) complex_differentiable F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   292
  unfolding complex_differentiable_def has_field_derivative_def
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   293
  by (rule exI [where x=0])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   294
     (metis has_derivative_const lambda_zero)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   295
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   296
lemma complex_differentiable_ident [derivative_intros]: "(\<lambda>z. z) complex_differentiable F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   297
  unfolding complex_differentiable_def has_field_derivative_def
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   298
  by (rule exI [where x=1])
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   299
     (simp add: lambda_one [symmetric])
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   300
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   301
lemma complex_differentiable_id [derivative_intros]: "id complex_differentiable F"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   302
  unfolding id_def by (rule complex_differentiable_ident)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   303
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   304
lemma complex_differentiable_minus [derivative_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   305
  "f complex_differentiable F \<Longrightarrow> (\<lambda>z. - (f z)) complex_differentiable F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   306
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   307
  by (metis field_differentiable_minus)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   308
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   309
lemma complex_differentiable_add [derivative_intros]:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   310
  assumes "f complex_differentiable F" "g complex_differentiable F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   311
    shows "(\<lambda>z. f z + g z) complex_differentiable F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   312
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   313
  by (metis field_differentiable_add)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   314
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   315
lemma complex_differentiable_setsum [derivative_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   316
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) complex_differentiable F) \<Longrightarrow> (\<lambda>z. \<Sum>i\<in>I. f i z) complex_differentiable F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   317
  by (induct I rule: infinite_finite_induct)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   318
     (auto intro: complex_differentiable_add complex_differentiable_const)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   319
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   320
lemma complex_differentiable_diff [derivative_intros]:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   321
  assumes "f complex_differentiable F" "g complex_differentiable F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   322
    shows "(\<lambda>z. f z - g z) complex_differentiable F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   323
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   324
  by (metis field_differentiable_diff)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   325
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   326
lemma complex_differentiable_inverse [derivative_intros]:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   327
  assumes "f complex_differentiable (at a within s)" "f a \<noteq> 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   328
  shows "(\<lambda>z. inverse (f z)) complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   329
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   330
  by (metis DERIV_inverse_fun)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   331
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   332
lemma complex_differentiable_mult [derivative_intros]:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   333
  assumes "f complex_differentiable (at a within s)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   334
          "g complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   335
    shows "(\<lambda>z. f z * g z) complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   336
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   337
  by (metis DERIV_mult [of f _ a s g])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   338
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   339
lemma complex_differentiable_divide [derivative_intros]:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   340
  assumes "f complex_differentiable (at a within s)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   341
          "g complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   342
          "g a \<noteq> 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   343
    shows "(\<lambda>z. f z / g z) complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   344
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   345
  by (metis DERIV_divide [of f _ a s g])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   346
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   347
lemma complex_differentiable_power [derivative_intros]:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   348
  assumes "f complex_differentiable (at a within s)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   349
    shows "(\<lambda>z. f z ^ n) complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   350
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   351
  by (metis DERIV_power)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   352
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   353
lemma complex_differentiable_transform_within:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   354
  "0 < d \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   355
        x \<in> s \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   356
        (\<And>x'. x' \<in> s \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x') \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   357
        f complex_differentiable (at x within s)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   358
        \<Longrightarrow> g complex_differentiable (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   359
  unfolding complex_differentiable_def has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   360
  by (blast intro: has_derivative_transform_within)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   361
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   362
lemma complex_differentiable_compose_within:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   363
  assumes "f complex_differentiable (at a within s)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   364
          "g complex_differentiable (at (f a) within f`s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   365
    shows "(g o f) complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   366
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   367
  by (metis DERIV_image_chain)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   368
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   369
lemma complex_differentiable_compose:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   370
  "f complex_differentiable at z \<Longrightarrow> g complex_differentiable at (f z)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   371
          \<Longrightarrow> (g o f) complex_differentiable at z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   372
by (metis complex_differentiable_at_within complex_differentiable_compose_within)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   373
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   374
lemma complex_differentiable_within_open:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   375
     "\<lbrakk>a \<in> s; open s\<rbrakk> \<Longrightarrow> f complex_differentiable at a within s \<longleftrightarrow>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   376
                          f complex_differentiable at a"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   377
  unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   378
  by (metis at_within_open)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   379
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   380
subsection\<open>Caratheodory characterization.\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   381
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   382
lemma complex_differentiable_caratheodory_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   383
  "f complex_differentiable (at z) \<longleftrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   384
         (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z) g)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   385
  using CARAT_DERIV [of f]
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   386
  by (simp add: complex_differentiable_def has_field_derivative_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   387
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   388
lemma complex_differentiable_caratheodory_within:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   389
  "f complex_differentiable (at z within s) \<longleftrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   390
         (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z within s) g)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   391
  using DERIV_caratheodory_within [of f]
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   392
  by (simp add: complex_differentiable_def has_field_derivative_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   393
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   394
subsection\<open>Holomorphic\<close>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   395
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   396
definition holomorphic_on :: "[complex \<Rightarrow> complex, complex set] \<Rightarrow> bool"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   397
           (infixl "(holomorphic'_on)" 50)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   398
  where "f holomorphic_on s \<equiv> \<forall>x\<in>s. f complex_differentiable (at x within s)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   399
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   400
named_theorems holomorphic_intros "structural introduction rules for holomorphic_on"
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   401
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   402
lemma holomorphic_on_empty [holomorphic_intros]: "f holomorphic_on {}"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   403
  by (simp add: holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   404
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   405
lemma holomorphic_on_open:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   406
    "open s \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>f'. DERIV f x :> f')"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   407
  by (auto simp: holomorphic_on_def complex_differentiable_def has_field_derivative_def at_within_open [of _ s])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   408
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   409
lemma holomorphic_on_imp_continuous_on:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   410
    "f holomorphic_on s \<Longrightarrow> continuous_on s f"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   411
  by (metis complex_differentiable_imp_continuous_at continuous_on_eq_continuous_within holomorphic_on_def)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   412
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   413
lemma holomorphic_on_subset:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   414
    "f holomorphic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f holomorphic_on t"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   415
  unfolding holomorphic_on_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   416
  by (metis complex_differentiable_within_subset subsetD)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   417
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   418
lemma holomorphic_transform: "\<lbrakk>f holomorphic_on s; \<And>x. x \<in> s \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   419
  by (metis complex_differentiable_transform_within linordered_field_no_ub holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   420
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   421
lemma holomorphic_cong: "s = t ==> (\<And>x. x \<in> s \<Longrightarrow> f x = g x) \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> g holomorphic_on t"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   422
  by (metis holomorphic_transform)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   423
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   424
lemma holomorphic_on_linear [holomorphic_intros]: "(op * c) holomorphic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   425
  unfolding holomorphic_on_def by (metis complex_differentiable_linear)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   426
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   427
lemma holomorphic_on_const [holomorphic_intros]: "(\<lambda>z. c) holomorphic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   428
  unfolding holomorphic_on_def by (metis complex_differentiable_const)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   429
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   430
lemma holomorphic_on_ident [holomorphic_intros]: "(\<lambda>x. x) holomorphic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   431
  unfolding holomorphic_on_def by (metis complex_differentiable_ident)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   432
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   433
lemma holomorphic_on_id [holomorphic_intros]: "id holomorphic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   434
  unfolding id_def by (rule holomorphic_on_ident)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   435
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   436
lemma holomorphic_on_compose:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   437
  "f holomorphic_on s \<Longrightarrow> g holomorphic_on (f ` s) \<Longrightarrow> (g o f) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   438
  using complex_differentiable_compose_within[of f _ s g]
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   439
  by (auto simp: holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   440
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   441
lemma holomorphic_on_compose_gen:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   442
  "f holomorphic_on s \<Longrightarrow> g holomorphic_on t \<Longrightarrow> f ` s \<subseteq> t \<Longrightarrow> (g o f) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   443
  by (metis holomorphic_on_compose holomorphic_on_subset)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   444
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   445
lemma holomorphic_on_minus [holomorphic_intros]: "f holomorphic_on s \<Longrightarrow> (\<lambda>z. -(f z)) holomorphic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   446
  by (metis complex_differentiable_minus holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   447
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   448
lemma holomorphic_on_add [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   449
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z + g z) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   450
  unfolding holomorphic_on_def by (metis complex_differentiable_add)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   451
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   452
lemma holomorphic_on_diff [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   453
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z - g z) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   454
  unfolding holomorphic_on_def by (metis complex_differentiable_diff)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   455
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   456
lemma holomorphic_on_mult [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   457
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z * g z) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   458
  unfolding holomorphic_on_def by (metis complex_differentiable_mult)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   459
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   460
lemma holomorphic_on_inverse [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   461
  "\<lbrakk>f holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. inverse (f z)) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   462
  unfolding holomorphic_on_def by (metis complex_differentiable_inverse)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   463
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   464
lemma holomorphic_on_divide [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   465
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. f z / g z) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   466
  unfolding holomorphic_on_def by (metis complex_differentiable_divide)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   467
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   468
lemma holomorphic_on_power [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   469
  "f holomorphic_on s \<Longrightarrow> (\<lambda>z. (f z)^n) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   470
  unfolding holomorphic_on_def by (metis complex_differentiable_power)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   471
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   472
lemma holomorphic_on_setsum [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   473
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) holomorphic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   474
  unfolding holomorphic_on_def by (metis complex_differentiable_setsum)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   475
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   476
lemma DERIV_deriv_iff_complex_differentiable:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   477
  "DERIV f x :> deriv f x \<longleftrightarrow> f complex_differentiable at x"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   478
  unfolding complex_differentiable_def by (metis DERIV_imp_deriv)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   479
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   480
lemma complex_derivative_chain:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   481
  "f complex_differentiable at x \<Longrightarrow> g complex_differentiable at (f x)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   482
    \<Longrightarrow> deriv (g o f) x = deriv g (f x) * deriv f x"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   483
  by (metis DERIV_deriv_iff_complex_differentiable DERIV_chain DERIV_imp_deriv)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   484
61848
9250e546ab23 New complex analysis material
paulson <lp15@cam.ac.uk>
parents: 61808
diff changeset
   485
lemma deriv_linear: "deriv (\<lambda>w. c * w) = (\<lambda>z. c)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   486
  by (metis DERIV_imp_deriv DERIV_cmult_Id)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   487
61848
9250e546ab23 New complex analysis material
paulson <lp15@cam.ac.uk>
parents: 61808
diff changeset
   488
lemma deriv_ident: "deriv (\<lambda>w. w) = (\<lambda>z. 1)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   489
  by (metis DERIV_imp_deriv DERIV_ident)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   490
61848
9250e546ab23 New complex analysis material
paulson <lp15@cam.ac.uk>
parents: 61808
diff changeset
   491
lemma deriv_const: "deriv (\<lambda>w. c) = (\<lambda>z. 0)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   492
  by (metis DERIV_imp_deriv DERIV_const)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   493
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   494
lemma complex_derivative_add:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   495
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   496
   \<Longrightarrow> deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   497
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   498
  by (auto intro!: DERIV_imp_deriv derivative_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   499
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   500
lemma complex_derivative_diff:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   501
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   502
   \<Longrightarrow> deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   503
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   504
  by (auto intro!: DERIV_imp_deriv derivative_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   505
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   506
lemma complex_derivative_mult:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   507
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   508
   \<Longrightarrow> deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   509
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   510
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   511
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   512
lemma complex_derivative_cmult:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   513
  "f complex_differentiable at z \<Longrightarrow> deriv (\<lambda>w. c * f w) z = c * deriv f z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   514
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   515
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   516
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   517
lemma complex_derivative_cmult_right:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   518
  "f complex_differentiable at z \<Longrightarrow> deriv (\<lambda>w. f w * c) z = deriv f z * c"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   519
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   520
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   521
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   522
lemma complex_derivative_transform_within_open:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   523
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s; open s; z \<in> s; \<And>w. w \<in> s \<Longrightarrow> f w = g w\<rbrakk>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   524
   \<Longrightarrow> deriv f z = deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   525
  unfolding holomorphic_on_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   526
  by (rule DERIV_imp_deriv)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   527
     (metis DERIV_deriv_iff_complex_differentiable DERIV_transform_within_open at_within_open)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   528
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   529
lemma complex_derivative_compose_linear:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   530
  "f complex_differentiable at (c * z) \<Longrightarrow> deriv (\<lambda>w. f (c * w)) z = c * deriv f (c * z)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   531
apply (rule DERIV_imp_deriv)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   532
apply (simp add: DERIV_deriv_iff_complex_differentiable [symmetric])
59554
4044f53326c9 inlined rules to free user-space from technical names
haftmann
parents: 58877
diff changeset
   533
apply (drule DERIV_chain' [of "times c" c z UNIV f "deriv f (c * z)", OF DERIV_cmult_Id])
4044f53326c9 inlined rules to free user-space from technical names
haftmann
parents: 58877
diff changeset
   534
apply (simp add: algebra_simps)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   535
done
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   536
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   537
subsection\<open>Analyticity on a set\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   538
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   539
definition analytic_on (infixl "(analytic'_on)" 50)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   540
  where
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   541
   "f analytic_on s \<equiv> \<forall>x \<in> s. \<exists>e. 0 < e \<and> f holomorphic_on (ball x e)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   542
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   543
lemma analytic_imp_holomorphic: "f analytic_on s \<Longrightarrow> f holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   544
  by (simp add: at_within_open [OF _ open_ball] analytic_on_def holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   545
     (metis centre_in_ball complex_differentiable_at_within)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   546
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   547
lemma analytic_on_open: "open s \<Longrightarrow> f analytic_on s \<longleftrightarrow> f holomorphic_on s"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   548
apply (auto simp: analytic_imp_holomorphic)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   549
apply (auto simp: analytic_on_def holomorphic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   550
by (metis holomorphic_on_def holomorphic_on_subset open_contains_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   551
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   552
lemma analytic_on_imp_differentiable_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   553
  "f analytic_on s \<Longrightarrow> x \<in> s \<Longrightarrow> f complex_differentiable (at x)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   554
 apply (auto simp: analytic_on_def holomorphic_on_def)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   555
by (metis Topology_Euclidean_Space.open_ball centre_in_ball complex_differentiable_within_open)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   556
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   557
lemma analytic_on_subset: "f analytic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f analytic_on t"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   558
  by (auto simp: analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   559
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   560
lemma analytic_on_Un: "f analytic_on (s \<union> t) \<longleftrightarrow> f analytic_on s \<and> f analytic_on t"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   561
  by (auto simp: analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   562
60585
48fdff264eb2 tuned whitespace;
wenzelm
parents: 60420
diff changeset
   563
lemma analytic_on_Union: "f analytic_on (\<Union>s) \<longleftrightarrow> (\<forall>t \<in> s. f analytic_on t)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   564
  by (auto simp: analytic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   565
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   566
lemma analytic_on_UN: "f analytic_on (\<Union>i\<in>I. s i) \<longleftrightarrow> (\<forall>i\<in>I. f analytic_on (s i))"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   567
  by (auto simp: analytic_on_def)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   568
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   569
lemma analytic_on_holomorphic:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   570
  "f analytic_on s \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f holomorphic_on t)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   571
  (is "?lhs = ?rhs")
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   572
proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   573
  have "?lhs \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   574
  proof safe
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   575
    assume "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   576
    then show "\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   577
      apply (simp add: analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   578
      apply (rule exI [where x="\<Union>{u. open u \<and> f analytic_on u}"], auto)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   579
      apply (metis Topology_Euclidean_Space.open_ball analytic_on_open centre_in_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   580
      by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   581
  next
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   582
    fix t
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   583
    assume "open t" "s \<subseteq> t" "f analytic_on t"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   584
    then show "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   585
        by (metis analytic_on_subset)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   586
  qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   587
  also have "... \<longleftrightarrow> ?rhs"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   588
    by (auto simp: analytic_on_open)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   589
  finally show ?thesis .
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   590
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   591
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   592
lemma analytic_on_linear: "(op * c) analytic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   593
  by (auto simp add: analytic_on_holomorphic holomorphic_on_linear)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   594
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   595
lemma analytic_on_const: "(\<lambda>z. c) analytic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   596
  by (metis analytic_on_def holomorphic_on_const zero_less_one)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   597
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   598
lemma analytic_on_ident: "(\<lambda>x. x) analytic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   599
  by (simp add: analytic_on_def holomorphic_on_ident gt_ex)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   600
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   601
lemma analytic_on_id: "id analytic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   602
  unfolding id_def by (rule analytic_on_ident)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   603
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   604
lemma analytic_on_compose:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   605
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   606
      and g: "g analytic_on (f ` s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   607
    shows "(g o f) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   608
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   609
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   610
  fix x
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   611
  assume x: "x \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   612
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball x e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   613
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   614
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball (f x) e'" using g
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   615
    by (metis analytic_on_def g image_eqI x)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   616
  have "isCont f x"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   617
    by (metis analytic_on_imp_differentiable_at complex_differentiable_imp_continuous_at f x)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   618
  with e' obtain d where d: "0 < d" and fd: "f ` ball x d \<subseteq> ball (f x) e'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   619
     by (auto simp: continuous_at_ball)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   620
  have "g \<circ> f holomorphic_on ball x (min d e)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   621
    apply (rule holomorphic_on_compose)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   622
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   623
    by (metis fd gh holomorphic_on_subset image_mono min.cobounded1 subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   624
  then show "\<exists>e>0. g \<circ> f holomorphic_on ball x e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   625
    by (metis d e min_less_iff_conj)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   626
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   627
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   628
lemma analytic_on_compose_gen:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   629
  "f analytic_on s \<Longrightarrow> g analytic_on t \<Longrightarrow> (\<And>z. z \<in> s \<Longrightarrow> f z \<in> t)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   630
             \<Longrightarrow> g o f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   631
by (metis analytic_on_compose analytic_on_subset image_subset_iff)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   632
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   633
lemma analytic_on_neg:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   634
  "f analytic_on s \<Longrightarrow> (\<lambda>z. -(f z)) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   635
by (metis analytic_on_holomorphic holomorphic_on_minus)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   636
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   637
lemma analytic_on_add:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   638
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   639
      and g: "g analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   640
    shows "(\<lambda>z. f z + g z) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   641
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   642
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   643
  fix z
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   644
  assume z: "z \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   645
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   646
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   647
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   648
    by (metis analytic_on_def g z)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   649
  have "(\<lambda>z. f z + g z) holomorphic_on ball z (min e e')"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   650
    apply (rule holomorphic_on_add)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   651
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   652
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   653
  then show "\<exists>e>0. (\<lambda>z. f z + g z) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   654
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   655
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   656
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   657
lemma analytic_on_diff:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   658
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   659
      and g: "g analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   660
    shows "(\<lambda>z. f z - g z) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   661
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   662
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   663
  fix z
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   664
  assume z: "z \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   665
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   666
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   667
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   668
    by (metis analytic_on_def g z)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   669
  have "(\<lambda>z. f z - g z) holomorphic_on ball z (min e e')"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   670
    apply (rule holomorphic_on_diff)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   671
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   672
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   673
  then show "\<exists>e>0. (\<lambda>z. f z - g z) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   674
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   675
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   676
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   677
lemma analytic_on_mult:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   678
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   679
      and g: "g analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   680
    shows "(\<lambda>z. f z * g z) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   681
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   682
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   683
  fix z
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   684
  assume z: "z \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   685
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   686
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   687
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   688
    by (metis analytic_on_def g z)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   689
  have "(\<lambda>z. f z * g z) holomorphic_on ball z (min e e')"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   690
    apply (rule holomorphic_on_mult)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   691
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   692
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   693
  then show "\<exists>e>0. (\<lambda>z. f z * g z) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   694
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   695
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   696
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   697
lemma analytic_on_inverse:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   698
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   699
      and nz: "(\<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   700
    shows "(\<lambda>z. inverse (f z)) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   701
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   702
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   703
  fix z
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   704
  assume z: "z \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   705
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   706
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   707
  have "continuous_on (ball z e) f"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   708
    by (metis fh holomorphic_on_imp_continuous_on)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   709
  then obtain e' where e': "0 < e'" and nz': "\<And>y. dist z y < e' \<Longrightarrow> f y \<noteq> 0"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   710
    by (metis Topology_Euclidean_Space.open_ball centre_in_ball continuous_on_open_avoid e z nz)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   711
  have "(\<lambda>z. inverse (f z)) holomorphic_on ball z (min e e')"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   712
    apply (rule holomorphic_on_inverse)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   713
    apply (metis fh holomorphic_on_subset min.cobounded2 min.commute subset_ball)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   714
    by (metis nz' mem_ball min_less_iff_conj)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   715
  then show "\<exists>e>0. (\<lambda>z. inverse (f z)) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   716
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   717
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   718
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   719
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   720
lemma analytic_on_divide:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   721
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   722
      and g: "g analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   723
      and nz: "(\<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   724
    shows "(\<lambda>z. f z / g z) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   725
unfolding divide_inverse
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   726
by (metis analytic_on_inverse analytic_on_mult f g nz)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   727
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   728
lemma analytic_on_power:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   729
  "f analytic_on s \<Longrightarrow> (\<lambda>z. (f z) ^ n) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   730
by (induct n) (auto simp: analytic_on_const analytic_on_mult)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   731
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   732
lemma analytic_on_setsum:
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   733
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) analytic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) analytic_on s"
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   734
  by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_const analytic_on_add)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   735
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   736
subsection\<open>analyticity at a point.\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   737
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   738
lemma analytic_at_ball:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   739
  "f analytic_on {z} \<longleftrightarrow> (\<exists>e. 0<e \<and> f holomorphic_on ball z e)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   740
by (metis analytic_on_def singleton_iff)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   741
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   742
lemma analytic_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   743
    "f analytic_on {z} \<longleftrightarrow> (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   744
by (metis analytic_on_holomorphic empty_subsetI insert_subset)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   745
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   746
lemma analytic_on_analytic_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   747
    "f analytic_on s \<longleftrightarrow> (\<forall>z \<in> s. f analytic_on {z})"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   748
by (metis analytic_at_ball analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   749
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   750
lemma analytic_at_two:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   751
  "f analytic_on {z} \<and> g analytic_on {z} \<longleftrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   752
   (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s \<and> g holomorphic_on s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   753
  (is "?lhs = ?rhs")
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   754
proof
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   755
  assume ?lhs
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   756
  then obtain s t
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   757
    where st: "open s" "z \<in> s" "f holomorphic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   758
              "open t" "z \<in> t" "g holomorphic_on t"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   759
    by (auto simp: analytic_at)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   760
  show ?rhs
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   761
    apply (rule_tac x="s \<inter> t" in exI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   762
    using st
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   763
    apply (auto simp: Diff_subset holomorphic_on_subset)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   764
    done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   765
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   766
  assume ?rhs
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   767
  then show ?lhs
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   768
    by (force simp add: analytic_at)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   769
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   770
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   771
subsection\<open>Combining theorems for derivative with ``analytic at'' hypotheses\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   772
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   773
lemma
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   774
  assumes "f analytic_on {z}" "g analytic_on {z}"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   775
  shows complex_derivative_add_at: "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   776
    and complex_derivative_diff_at: "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   777
    and complex_derivative_mult_at: "deriv (\<lambda>w. f w * g w) z =
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   778
           f z * deriv g z + deriv f z * g z"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   779
proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   780
  obtain s where s: "open s" "z \<in> s" "f holomorphic_on s" "g holomorphic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   781
    using assms by (metis analytic_at_two)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   782
  show "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   783
    apply (rule DERIV_imp_deriv [OF DERIV_add])
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   784
    using s
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   785
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   786
    done
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   787
  show "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   788
    apply (rule DERIV_imp_deriv [OF DERIV_diff])
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   789
    using s
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   790
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   791
    done
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   792
  show "deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   793
    apply (rule DERIV_imp_deriv [OF DERIV_mult'])
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   794
    using s
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   795
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   796
    done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   797
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   798
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   799
lemma complex_derivative_cmult_at:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   800
  "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. c * f w) z = c * deriv f z"
61848
9250e546ab23 New complex analysis material
paulson <lp15@cam.ac.uk>
parents: 61808
diff changeset
   801
by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   802
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   803
lemma complex_derivative_cmult_right_at:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   804
  "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. f w * c) z = deriv f z * c"
61848
9250e546ab23 New complex analysis material
paulson <lp15@cam.ac.uk>
parents: 61808
diff changeset
   805
by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   806
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   807
subsection\<open>Complex differentiation of sequences and series\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   808
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   809
(* TODO: Could probably be simplified using Uniform_Limit *)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   810
lemma has_complex_derivative_sequence:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   811
  fixes s :: "complex set"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   812
  assumes cvs: "convex s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   813
      and df:  "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   814
      and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s \<longrightarrow> norm (f' n x - g' x) \<le> e"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   815
      and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) \<longlongrightarrow> l) sequentially"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   816
    shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) \<longlongrightarrow> g x) sequentially \<and>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   817
                       (g has_field_derivative (g' x)) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   818
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   819
  from assms obtain x l where x: "x \<in> s" and tf: "((\<lambda>n. f n x) \<longlongrightarrow> l) sequentially"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   820
    by blast
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   821
  { fix e::real assume e: "e > 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   822
    then obtain N where N: "\<forall>n\<ge>N. \<forall>x. x \<in> s \<longrightarrow> cmod (f' n x - g' x) \<le> e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   823
      by (metis conv)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   824
    have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   825
    proof (rule exI [of _ N], clarify)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   826
      fix n y h
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   827
      assume "N \<le> n" "y \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   828
      then have "cmod (f' n y - g' y) \<le> e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   829
        by (metis N)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   830
      then have "cmod h * cmod (f' n y - g' y) \<le> cmod h * e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   831
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   832
      then show "cmod (f' n y * h - g' y * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   833
        by (simp add: norm_mult [symmetric] field_simps)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   834
    qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   835
  } note ** = this
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   836
  show ?thesis
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   837
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   838
  proof (rule has_derivative_sequence [OF cvs _ _ x])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   839
    show "\<forall>n. \<forall>x\<in>s. (f n has_derivative (op * (f' n x))) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   840
      by (metis has_field_derivative_def df)
61969
e01015e49041 more symbols;
wenzelm
parents: 61848
diff changeset
   841
  next show "(\<lambda>n. f n x) \<longlonglongrightarrow> l"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   842
    by (rule tf)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   843
  next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   844
    by (blast intro: **)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   845
  qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   846
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   847
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   848
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   849
lemma has_complex_derivative_series:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   850
  fixes s :: "complex set"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   851
  assumes cvs: "convex s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   852
      and df:  "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   853
      and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   854
                \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   855
      and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) sums l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   856
    shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) sums g x) \<and> ((g has_field_derivative g' x) (at x within s))"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   857
proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   858
  from assms obtain x l where x: "x \<in> s" and sf: "((\<lambda>n. f n x) sums l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   859
    by blast
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   860
  { fix e::real assume e: "e > 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   861
    then obtain N where N: "\<forall>n x. n \<ge> N \<longrightarrow> x \<in> s
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   862
            \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   863
      by (metis conv)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   864
    have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   865
    proof (rule exI [of _ N], clarify)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   866
      fix n y h
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   867
      assume "N \<le> n" "y \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   868
      then have "cmod ((\<Sum>i<n. f' i y) - g' y) \<le> e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   869
        by (metis N)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   870
      then have "cmod h * cmod ((\<Sum>i<n. f' i y) - g' y) \<le> cmod h * e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   871
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   872
      then show "cmod ((\<Sum>i<n. h * f' i y) - g' y * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   873
        by (simp add: norm_mult [symmetric] field_simps setsum_right_distrib)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   874
    qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   875
  } note ** = this
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   876
  show ?thesis
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   877
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   878
  proof (rule has_derivative_series [OF cvs _ _ x])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   879
    fix n x
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   880
    assume "x \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   881
    then show "((f n) has_derivative (\<lambda>z. z * f' n x)) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   882
      by (metis df has_field_derivative_def mult_commute_abs)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   883
  next show " ((\<lambda>n. f n x) sums l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   884
    by (rule sf)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   885
  next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   886
    by (blast intro: **)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   887
  qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   888
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   889
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   890
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   891
lemma complex_differentiable_series:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   892
  fixes f :: "nat \<Rightarrow> complex \<Rightarrow> complex"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   893
  assumes "convex s" "open s"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   894
  assumes "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   895
  assumes "uniformly_convergent_on s (\<lambda>n x. \<Sum>i<n. f' i x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   896
  assumes "x0 \<in> s" "summable (\<lambda>n. f n x0)" and x: "x \<in> s"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   897
  shows   "summable (\<lambda>n. f n x)" and "(\<lambda>x. \<Sum>n. f n x) complex_differentiable (at x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   898
proof -
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   899
  from assms(4) obtain g' where A: "uniform_limit s (\<lambda>n x. \<Sum>i<n. f' i x) g' sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   900
    unfolding uniformly_convergent_on_def by blast
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61806
diff changeset
   901
  from x and \<open>open s\<close> have s: "at x within s = at x" by (rule at_within_open)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   902
  have "\<exists>g. \<forall>x\<in>s. (\<lambda>n. f n x) sums g x \<and> (g has_field_derivative g' x) (at x within s)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   903
    by (intro has_field_derivative_series[of s f f' g' x0] assms A has_field_derivative_at_within)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   904
  then obtain g where g: "\<And>x. x \<in> s \<Longrightarrow> (\<lambda>n. f n x) sums g x"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   905
    "\<And>x. x \<in> s \<Longrightarrow> (g has_field_derivative g' x) (at x within s)" by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   906
  from g[OF x] show "summable (\<lambda>n. f n x)" by (auto simp: summable_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   907
  from g(2)[OF x] have g': "(g has_derivative op * (g' x)) (at x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   908
    by (simp add: has_field_derivative_def s)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   909
  have "((\<lambda>x. \<Sum>n. f n x) has_derivative op * (g' x)) (at x)"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61975
diff changeset
   910
    by (rule has_derivative_transform_within_open[OF g' \<open>open s\<close> x])
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   911
       (insert g, auto simp: sums_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   912
  thus "(\<lambda>x. \<Sum>n. f n x) complex_differentiable (at x)" unfolding differentiable_def
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   913
    by (auto simp: summable_def complex_differentiable_def has_field_derivative_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   914
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   915
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   916
lemma complex_differentiable_series':
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   917
  fixes f :: "nat \<Rightarrow> complex \<Rightarrow> complex"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   918
  assumes "convex s" "open s"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   919
  assumes "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   920
  assumes "uniformly_convergent_on s (\<lambda>n x. \<Sum>i<n. f' i x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   921
  assumes "x0 \<in> s" "summable (\<lambda>n. f n x0)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   922
  shows   "(\<lambda>x. \<Sum>n. f n x) complex_differentiable (at x0)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61806
diff changeset
   923
  using complex_differentiable_series[OF assms, of x0] \<open>x0 \<in> s\<close> by blast+
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   924
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   925
subsection\<open>Bound theorem\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   926
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   927
lemma complex_differentiable_bound:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   928
  fixes s :: "complex set"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   929
  assumes cvs: "convex s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   930
      and df:  "\<And>z. z \<in> s \<Longrightarrow> (f has_field_derivative f' z) (at z within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   931
      and dn:  "\<And>z. z \<in> s \<Longrightarrow> norm (f' z) \<le> B"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   932
      and "x \<in> s"  "y \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   933
    shows "norm(f x - f y) \<le> B * norm(x - y)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   934
  apply (rule differentiable_bound [OF cvs])
56223
7696903b9e61 generalize theory of operator norms to work with class real_normed_vector
huffman
parents: 56217
diff changeset
   935
  apply (rule ballI, erule df [unfolded has_field_derivative_def])
7696903b9e61 generalize theory of operator norms to work with class real_normed_vector
huffman
parents: 56217
diff changeset
   936
  apply (rule ballI, rule onorm_le, simp add: norm_mult mult_right_mono dn)
7696903b9e61 generalize theory of operator norms to work with class real_normed_vector
huffman
parents: 56217
diff changeset
   937
  apply fact
7696903b9e61 generalize theory of operator norms to work with class real_normed_vector
huffman
parents: 56217
diff changeset
   938
  apply fact
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   939
  done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   940
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   941
subsection\<open>Inverse function theorem for complex derivatives.\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   942
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   943
lemma has_complex_derivative_inverse_basic:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   944
  fixes f :: "complex \<Rightarrow> complex"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   945
  shows "DERIV f (g y) :> f' \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   946
        f' \<noteq> 0 \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   947
        continuous (at y) g \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   948
        open t \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   949
        y \<in> t \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   950
        (\<And>z. z \<in> t \<Longrightarrow> f (g z) = z)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   951
        \<Longrightarrow> DERIV g y :> inverse (f')"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   952
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   953
  apply (rule has_derivative_inverse_basic)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   954
  apply (auto simp:  bounded_linear_mult_right)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   955
  done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   956
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   957
(*Used only once, in Multivariate/cauchy.ml. *)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   958
lemma has_complex_derivative_inverse_strong:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   959
  fixes f :: "complex \<Rightarrow> complex"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   960
  shows "DERIV f x :> f' \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   961
         f' \<noteq> 0 \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   962
         open s \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   963
         x \<in> s \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   964
         continuous_on s f \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   965
         (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   966
         \<Longrightarrow> DERIV g (f x) :> inverse (f')"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   967
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   968
  apply (rule has_derivative_inverse_strong [of s x f g ])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   969
  using assms
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   970
  by auto
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   971
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   972
lemma has_complex_derivative_inverse_strong_x:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   973
  fixes f :: "complex \<Rightarrow> complex"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   974
  shows  "DERIV f (g y) :> f' \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   975
          f' \<noteq> 0 \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   976
          open s \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   977
          continuous_on s f \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   978
          g y \<in> s \<Longrightarrow> f(g y) = y \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   979
          (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   980
          \<Longrightarrow> DERIV g y :> inverse (f')"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   981
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   982
  apply (rule has_derivative_inverse_strong_x [of s g y f])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   983
  using assms
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   984
  by auto
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   985
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   986
subsection \<open>Taylor on Complex Numbers\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   987
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   988
lemma setsum_Suc_reindex:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   989
  fixes f :: "nat \<Rightarrow> 'a::ab_group_add"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   990
    shows  "setsum f {0..n} = f 0 - f (Suc n) + setsum (\<lambda>i. f (Suc i)) {0..n}"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   991
by (induct n) auto
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   992
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   993
lemma complex_taylor:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   994
  assumes s: "convex s"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   995
      and f: "\<And>i x. x \<in> s \<Longrightarrow> i \<le> n \<Longrightarrow> (f i has_field_derivative f (Suc i) x) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   996
      and B: "\<And>x. x \<in> s \<Longrightarrow> cmod (f (Suc n) x) \<le> B"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   997
      and w: "w \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   998
      and z: "z \<in> s"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   999
    shows "cmod(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / (fact i)))
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1000
          \<le> B * cmod(z - w)^(Suc n) / fact n"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1001
proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1002
  have wzs: "closed_segment w z \<subseteq> s" using assms
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1003
    by (metis convex_contains_segment)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1004
  { fix u
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1005
    assume "u \<in> closed_segment w z"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1006
    then have "u \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1007
      by (metis wzs subsetD)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1008
    have "(\<Sum>i\<le>n. f i u * (- of_nat i * (z-u)^(i - 1)) / (fact i) +
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1009
                      f (Suc i) u * (z-u)^i / (fact i)) =
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1010
              f (Suc n) u * (z-u) ^ n / (fact n)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1011
    proof (induction n)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1012
      case 0 show ?case by simp
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1013
    next
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1014
      case (Suc n)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1015
      have "(\<Sum>i\<le>Suc n. f i u * (- of_nat i * (z-u) ^ (i - 1)) / (fact i) +
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1016
                             f (Suc i) u * (z-u) ^ i / (fact i)) =
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1017
           f (Suc n) u * (z-u) ^ n / (fact n) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1018
           f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / (fact (Suc n)) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1019
           f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / (fact (Suc n))"
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  1020
        using Suc by simp
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1021
      also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n))"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1022
      proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1023
        have "(fact(Suc n)) *
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1024
             (f(Suc n) u *(z-u) ^ n / (fact n) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1025
               f(Suc(Suc n)) u *((z-u) *(z-u) ^ n) / (fact(Suc n)) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1026
               f(Suc n) u *((1 + of_nat n) *(z-u) ^ n) / (fact(Suc n))) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1027
            ((fact(Suc n)) *(f(Suc n) u *(z-u) ^ n)) / (fact n) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1028
            ((fact(Suc n)) *(f(Suc(Suc n)) u *((z-u) *(z-u) ^ n)) / (fact(Suc n))) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1029
            ((fact(Suc n)) *(f(Suc n) u *(of_nat(Suc n) *(z-u) ^ n))) / (fact(Suc n))"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1030
          by (simp add: algebra_simps del: fact.simps)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1031
        also have "... = ((fact (Suc n)) * (f (Suc n) u * (z-u) ^ n)) / (fact n) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1032
                         (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1033
                         (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1034
          by (simp del: fact.simps)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1035
        also have "... = (of_nat (Suc n) * (f (Suc n) u * (z-u) ^ n)) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1036
                         (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1037
                         (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1038
          by (simp only: fact.simps of_nat_mult ac_simps) simp
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1039
        also have "... = f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1040
          by (simp add: algebra_simps)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1041
        finally show ?thesis
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1042
        by (simp add: mult_left_cancel [where c = "(fact (Suc n))", THEN iffD1] del: fact.simps)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1043
      qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1044
      finally show ?case .
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1045
    qed
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1046
    then have "((\<lambda>v. (\<Sum>i\<le>n. f i v * (z - v)^i / (fact i)))
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1047
                has_field_derivative f (Suc n) u * (z-u) ^ n / (fact n))
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1048
               (at u within s)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1049
      apply (intro derivative_eq_intros)
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1050
      apply (blast intro: assms \<open>u \<in> s\<close>)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1051
      apply (rule refl)+
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1052
      apply (auto simp: field_simps)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1053
      done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1054
  } note sum_deriv = this
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1055
  { fix u
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1056
    assume u: "u \<in> closed_segment w z"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1057
    then have us: "u \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1058
      by (metis wzs subsetD)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1059
    have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> cmod (f (Suc n) u) * cmod (u - z) ^ n"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1060
      by (metis norm_minus_commute order_refl)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1061
    also have "... \<le> cmod (f (Suc n) u) * cmod (z - w) ^ n"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1062
      by (metis mult_left_mono norm_ge_zero power_mono segment_bound [OF u])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1063
    also have "... \<le> B * cmod (z - w) ^ n"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1064
      by (metis norm_ge_zero zero_le_power mult_right_mono  B [OF us])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1065
    finally have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> B * cmod (z - w) ^ n" .
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1066
  } note cmod_bound = this
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1067
  have "(\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)) = (\<Sum>i\<le>n. (f i z / (fact i)) * 0 ^ i)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1068
    by simp
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1069
  also have "\<dots> = f 0 z / (fact 0)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1070
    by (subst setsum_zero_power) simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1071
  finally have "cmod (f 0 z - (\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i)))
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1072
                \<le> cmod ((\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i)) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1073
                        (\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)))"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1074
    by (simp add: norm_minus_commute)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1075
  also have "... \<le> B * cmod (z - w) ^ n / (fact n) * cmod (w - z)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1076
    apply (rule complex_differentiable_bound
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1077
      [where f' = "\<lambda>w. f (Suc n) w * (z - w)^n / (fact n)"
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61235
diff changeset
  1078
         and s = "closed_segment w z", OF convex_closed_segment])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1079
    apply (auto simp: ends_in_segment DERIV_subset [OF sum_deriv wzs]
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1080
                  norm_divide norm_mult norm_power divide_le_cancel cmod_bound)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1081
    done
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1082
  also have "...  \<le> B * cmod (z - w) ^ Suc n / (fact n)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1083
    by (simp add: algebra_simps norm_minus_commute)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1084
  finally show ?thesis .
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1085
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1086
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1087
text\<open>Something more like the traditional MVT for real components.\<close>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
  1088
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1089
lemma complex_mvt_line:
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
  1090
  assumes "\<And>u. u \<in> closed_segment w z \<Longrightarrow> (f has_field_derivative f'(u)) (at u)"
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61235
diff changeset
  1091
    shows "\<exists>u. u \<in> closed_segment w z \<and> Re(f z) - Re(f w) = Re(f'(u) * (z - w))"
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1092
proof -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1093
  have twz: "\<And>t. (1 - t) *\<^sub>R w + t *\<^sub>R z = w + t *\<^sub>R (z - w)"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1094
    by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib)
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1095
  note assms[unfolded has_field_derivative_def, derivative_intros]
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1096
  show ?thesis
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1097
    apply (cut_tac mvt_simple
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1098
                     [of 0 1 "Re o f o (\<lambda>t. (1 - t) *\<^sub>R w +  t *\<^sub>R z)"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1099
                      "\<lambda>u. Re o (\<lambda>h. f'((1 - u) *\<^sub>R w + u *\<^sub>R z) * h) o (\<lambda>t. t *\<^sub>R (z - w))"])
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1100
    apply auto
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1101
    apply (rule_tac x="(1 - x) *\<^sub>R w + x *\<^sub>R z" in exI)
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61235
diff changeset
  1102
    apply (auto simp: closed_segment_def twz) []
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61235
diff changeset
  1103
    apply (intro derivative_eq_intros has_derivative_at_within, simp_all)
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
  1104
    apply (simp add: fun_eq_iff real_vector.scale_right_diff_distrib)
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61235
diff changeset
  1105
    apply (force simp: twz closed_segment_def)
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1106
    done
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1107
qed
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1108
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1109
lemma complex_taylor_mvt:
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1110
  assumes "\<And>i x. \<lbrakk>x \<in> closed_segment w z; i \<le> n\<rbrakk> \<Longrightarrow> ((f i) has_field_derivative f (Suc i) x) (at x)"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1111
    shows "\<exists>u. u \<in> closed_segment w z \<and>
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1112
            Re (f 0 z) =
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1113
            Re ((\<Sum>i = 0..n. f i w * (z - w) ^ i / (fact i)) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1114
                (f (Suc n) u * (z-u)^n / (fact n)) * (z - w))"
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1115
proof -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1116
  { fix u
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1117
    assume u: "u \<in> closed_segment w z"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1118
    have "(\<Sum>i = 0..n.
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1119
               (f (Suc i) u * (z-u) ^ i - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) /
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1120
               (fact i)) =
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1121
          f (Suc 0) u -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1122
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1123
             (fact (Suc n)) +
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1124
             (\<Sum>i = 0..n.
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1125
                 (f (Suc (Suc i)) u * ((z-u) ^ Suc i) - of_nat (Suc i) * (f (Suc i) u * (z-u) ^ i)) /
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1126
                 (fact (Suc i)))"
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1127
       by (subst setsum_Suc_reindex) simp
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1128
    also have "... = f (Suc 0) u -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1129
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1130
             (fact (Suc n)) +
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1131
             (\<Sum>i = 0..n.
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1132
                 f (Suc (Suc i)) u * ((z-u) ^ Suc i) / (fact (Suc i))  -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1133
                 f (Suc i) u * (z-u) ^ i / (fact i))"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 56889
diff changeset
  1134
      by (simp only: diff_divide_distrib fact_cancel ac_simps)
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1135
    also have "... = f (Suc 0) u -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1136
             (f (Suc (Suc n)) u * (z-u) ^ Suc n - of_nat (Suc n) * (z-u) ^ n * f (Suc n) u) /
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1137
             (fact (Suc n)) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1138
             f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n)) - f (Suc 0) u"
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1139
      by (subst setsum_Suc_diff) auto
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1140
    also have "... = f (Suc n) u * (z-u) ^ n / (fact n)"
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1141
      by (simp only: algebra_simps diff_divide_distrib fact_cancel)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1142
    finally have "(\<Sum>i = 0..n. (f (Suc i) u * (z - u) ^ i
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1143
                             - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / (fact i)) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1144
                  f (Suc n) u * (z - u) ^ n / (fact n)" .
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1145
    then have "((\<lambda>u. \<Sum>i = 0..n. f i u * (z - u) ^ i / (fact i)) has_field_derivative
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1146
                f (Suc n) u * (z - u) ^ n / (fact n))  (at u)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1147
      apply (intro derivative_eq_intros)+
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1148
      apply (force intro: u assms)
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1149
      apply (rule refl)+
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 56889
diff changeset
  1150
      apply (auto simp: ac_simps)
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1151
      done
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1152
  }
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1153
  then show ?thesis
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1154
    apply (cut_tac complex_mvt_line [of w z "\<lambda>u. \<Sum>i = 0..n. f i u * (z-u) ^ i / (fact i)"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1155
               "\<lambda>u. (f (Suc n) u * (z-u)^n / (fact n))"])
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1156
    apply (auto simp add: intro: open_closed_segment)
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1157
    done
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1158
qed
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1159
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1160
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1161
subsection \<open>Polynomal function extremal theorem, from HOL Light\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1162
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1163
lemma polyfun_extremal_lemma: (*COMPLEX_POLYFUN_EXTREMAL_LEMMA in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1164
    fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1165
  assumes "0 < e"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1166
    shows "\<exists>M. \<forall>z. M \<le> norm(z) \<longrightarrow> norm (\<Sum>i\<le>n. c(i) * z^i) \<le> e * norm(z) ^ (Suc n)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1167
proof (induct n)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1168
  case 0 with assms
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1169
  show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1170
    apply (rule_tac x="norm (c 0) / e" in exI)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1171
    apply (auto simp: field_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1172
    done
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1173
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1174
  case (Suc n)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1175
  obtain M where M: "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1176
    using Suc assms by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1177
  show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1178
  proof (rule exI [where x= "max M (1 + norm(c(Suc n)) / e)"], clarsimp simp del: power_Suc)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1179
    fix z::'a
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1180
    assume z1: "M \<le> norm z" and "1 + norm (c (Suc n)) / e \<le> norm z"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1181
    then have z2: "e + norm (c (Suc n)) \<le> e * norm z"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1182
      using assms by (simp add: field_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1183
    have "norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1184
      using M [OF z1] by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1185
    then have "norm (\<Sum>i\<le>n. c i * z^i) + norm (c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1186
      by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1187
    then have "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1188
      by (blast intro: norm_triangle_le elim: )
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1189
    also have "... \<le> (e + norm (c (Suc n))) * norm z ^ Suc n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1190
      by (simp add: norm_power norm_mult algebra_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1191
    also have "... \<le> (e * norm z) * norm z ^ Suc n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1192
      by (metis z2 mult.commute mult_left_mono norm_ge_zero norm_power)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1193
    finally show "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc (Suc n)"
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60150
diff changeset
  1194
      by simp
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1195
  qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1196
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1197
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1198
lemma polyfun_extremal: (*COMPLEX_POLYFUN_EXTREMAL in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1199
    fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1200
  assumes k: "c k \<noteq> 0" "1\<le>k" and kn: "k\<le>n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1201
    shows "eventually (\<lambda>z. norm (\<Sum>i\<le>n. c(i) * z^i) \<ge> B) at_infinity"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1202
using kn
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1203
proof (induction n)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1204
  case 0
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1205
  then show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1206
    using k  by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1207
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1208
  case (Suc m)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1209
  let ?even = ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1210
  show ?even
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1211
  proof (cases "c (Suc m) = 0")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1212
    case True
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1213
    then show ?even using Suc k
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1214
      by auto (metis antisym_conv less_eq_Suc_le not_le)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1215
  next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1216
    case False
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1217
    then obtain M where M:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1218
          "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>m. c i * z^i) \<le> norm (c (Suc m)) / 2 * norm z ^ Suc m"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1219
      using polyfun_extremal_lemma [of "norm(c (Suc m)) / 2" c m] Suc
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1220
      by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1221
    have "\<exists>b. \<forall>z. b \<le> norm z \<longrightarrow> B \<le> norm (\<Sum>i\<le>Suc m. c i * z^i)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1222
    proof (rule exI [where x="max M (max 1 (\<bar>B\<bar> / (norm(c (Suc m)) / 2)))"], clarsimp simp del: power_Suc)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1223
      fix z::'a
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1224
      assume z1: "M \<le> norm z" "1 \<le> norm z"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1225
         and "\<bar>B\<bar> * 2 / norm (c (Suc m)) \<le> norm z"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1226
      then have z2: "\<bar>B\<bar> \<le> norm (c (Suc m)) * norm z / 2"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1227
        using False by (simp add: field_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1228
      have nz: "norm z \<le> norm z ^ Suc m"
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1229
        by (metis \<open>1 \<le> norm z\<close> One_nat_def less_eq_Suc_le power_increasing power_one_right zero_less_Suc)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1230
      have *: "\<And>y x. norm (c (Suc m)) * norm z / 2 \<le> norm y - norm x \<Longrightarrow> B \<le> norm (x + y)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1231
        by (metis abs_le_iff add.commute norm_diff_ineq order_trans z2)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1232
      have "norm z * norm (c (Suc m)) + 2 * norm (\<Sum>i\<le>m. c i * z^i)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1233
            \<le> norm (c (Suc m)) * norm z + norm (c (Suc m)) * norm z ^ Suc m"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1234
        using M [of z] Suc z1  by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1235
      also have "... \<le> 2 * (norm (c (Suc m)) * norm z ^ Suc m)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1236
        using nz by (simp add: mult_mono del: power_Suc)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1237
      finally show "B \<le> norm ((\<Sum>i\<le>m. c i * z^i) + c (Suc m) * z ^ Suc m)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1238
        using Suc.IH
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1239
        apply (auto simp: eventually_at_infinity)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1240
        apply (rule *)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1241
        apply (simp add: field_simps norm_mult norm_power)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1242
        done
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1243
    qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1244
    then show ?even
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1245
      by (simp add: eventually_at_infinity)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1246
  qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1247
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1248
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1249
end