src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy
author wenzelm
Mon, 07 Dec 2015 20:19:59 +0100
changeset 61808 fc1556774cfe
parent 61806 d2e62ae01cd8
child 61848 9250e546ab23
permissions -rw-r--r--
isabelle update_cartouches -c -t;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     1
(*  Author: John Harrison, Marco Maggesi, Graziano Gentili, Gianni Ciolli, Valentina Bruno
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     2
    Ported from "hol_light/Multivariate/canal.ml" by L C Paulson (2014)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     3
*)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     4
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
     5
section \<open>Complex Analysis Basics\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     6
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     7
theory Complex_Analysis_Basics
61560
7c985fd653c5 tuned imports;
wenzelm
parents: 61531
diff changeset
     8
imports Cartesian_Euclidean_Space
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     9
begin
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    10
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
    11
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
    12
lemma cmod_fact [simp]: "cmod (fact n) = fact n"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
    13
  by (metis norm_of_nat of_nat_fact)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
    14
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
    15
subsection\<open>General lemmas\<close>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    16
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    17
lemma has_derivative_mult_right:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    18
  fixes c:: "'a :: real_normed_algebra"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    19
  shows "((op * c) has_derivative (op * c)) F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    20
by (rule has_derivative_mult_right [OF has_derivative_id])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    21
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    22
lemma has_derivative_of_real[derivative_intros, simp]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    23
  "(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. of_real (f x)) has_derivative (\<lambda>x. of_real (f' x))) F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    24
  using bounded_linear.has_derivative[OF bounded_linear_of_real] .
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    25
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    26
lemma has_vector_derivative_real_complex:
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61610
diff changeset
    27
  "DERIV f (of_real a) :> f' \<Longrightarrow> ((\<lambda>x. f (of_real x)) has_vector_derivative f') (at a within s)"
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61610
diff changeset
    28
  using has_derivative_compose[of of_real of_real a _ f "op * f'"]
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    29
  by (simp add: scaleR_conv_of_real ac_simps has_vector_derivative_def has_field_derivative_def)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    30
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
    31
lemma fact_cancel:
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
    32
  fixes c :: "'a::real_field"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
    33
  shows "of_nat (Suc n) * c / (fact (Suc n)) = c / (fact n)"
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
    34
  by (simp add: of_nat_mult del: of_nat_Suc times_nat.simps)
56889
48a745e1bde7 avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
hoelzl
parents: 56479
diff changeset
    35
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    36
lemma bilinear_times:
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
    37
  fixes c::"'a::real_algebra" shows "bilinear (\<lambda>x y::'a. x*y)"
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
    38
  by (auto simp: bilinear_def distrib_left distrib_right intro!: linearI)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    39
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    40
lemma linear_cnj: "linear cnj"
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
    41
  using bounded_linear.linear[OF bounded_linear_cnj] .
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    42
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    43
lemma tendsto_Re_upper:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    44
  assumes "~ (trivial_limit F)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    45
          "(f ---> l) F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    46
          "eventually (\<lambda>x. Re(f x) \<le> b) F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    47
    shows  "Re(l) \<le> b"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    48
  by (metis assms tendsto_le [OF _ tendsto_const]  tendsto_Re)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    49
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    50
lemma tendsto_Re_lower:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    51
  assumes "~ (trivial_limit F)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    52
          "(f ---> l) F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    53
          "eventually (\<lambda>x. b \<le> Re(f x)) F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    54
    shows  "b \<le> Re(l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    55
  by (metis assms tendsto_le [OF _ _ tendsto_const]  tendsto_Re)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    56
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    57
lemma tendsto_Im_upper:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    58
  assumes "~ (trivial_limit F)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    59
          "(f ---> l) F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    60
          "eventually (\<lambda>x. Im(f x) \<le> b) F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    61
    shows  "Im(l) \<le> b"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    62
  by (metis assms tendsto_le [OF _ tendsto_const]  tendsto_Im)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    63
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    64
lemma tendsto_Im_lower:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    65
  assumes "~ (trivial_limit F)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    66
          "(f ---> l) F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    67
          "eventually (\<lambda>x. b \<le> Im(f x)) F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    68
    shows  "b \<le> Im(l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    69
  by (metis assms tendsto_le [OF _ _ tendsto_const]  tendsto_Im)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    70
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    71
lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = op * 0"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    72
  by auto
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    73
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    74
lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = op * 1"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    75
  by auto
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    76
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    77
lemma continuous_mult_left:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    78
  fixes c::"'a::real_normed_algebra"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    79
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. c * f x)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    80
by (rule continuous_mult [OF continuous_const])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    81
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    82
lemma continuous_mult_right:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    83
  fixes c::"'a::real_normed_algebra"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    84
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x * c)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    85
by (rule continuous_mult [OF _ continuous_const])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    86
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    87
lemma continuous_on_mult_left:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    88
  fixes c::"'a::real_normed_algebra"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    89
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. c * f x)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    90
by (rule continuous_on_mult [OF continuous_on_const])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    91
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    92
lemma continuous_on_mult_right:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
    93
  fixes c::"'a::real_normed_algebra"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    94
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x * c)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    95
by (rule continuous_on_mult [OF _ continuous_on_const])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    96
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56370
diff changeset
    97
lemma uniformly_continuous_on_cmul_right [continuous_intros]:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    98
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
56332
289dd9166d04 tuned proofs
hoelzl
parents: 56261
diff changeset
    99
  shows "uniformly_continuous_on s f \<Longrightarrow> uniformly_continuous_on s (\<lambda>x. f x * c)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   100
  using bounded_linear.uniformly_continuous_on[OF bounded_linear_mult_left] .
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   101
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56370
diff changeset
   102
lemma uniformly_continuous_on_cmul_left[continuous_intros]:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   103
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   104
  assumes "uniformly_continuous_on s f"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   105
    shows "uniformly_continuous_on s (\<lambda>x. c * f x)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   106
by (metis assms bounded_linear.uniformly_continuous_on bounded_linear_mult_right)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   107
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   108
lemma continuous_within_norm_id [continuous_intros]: "continuous (at x within S) norm"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   109
  by (rule continuous_norm [OF continuous_ident])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   110
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   111
lemma continuous_on_norm_id [continuous_intros]: "continuous_on S norm"
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   112
  by (intro continuous_on_id continuous_on_norm)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   113
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   114
subsection\<open>DERIV stuff\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   115
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   116
lemma DERIV_zero_connected_constant:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   117
  fixes f :: "'a::{real_normed_field,euclidean_space} \<Rightarrow> 'a"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   118
  assumes "connected s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   119
      and "open s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   120
      and "finite k"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   121
      and "continuous_on s f"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   122
      and "\<forall>x\<in>(s - k). DERIV f x :> 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   123
    obtains c where "\<And>x. x \<in> s \<Longrightarrow> f(x) = c"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   124
using has_derivative_zero_connected_constant [OF assms(1-4)] assms
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   125
by (metis DERIV_const has_derivative_const Diff_iff at_within_open frechet_derivative_at has_field_derivative_def)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   126
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   127
lemma DERIV_zero_constant:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   128
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   129
  shows    "\<lbrakk>convex s;
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   130
             \<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)\<rbrakk>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   131
             \<Longrightarrow> \<exists>c. \<forall>x \<in> s. f(x) = c"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   132
  by (auto simp: has_field_derivative_def lambda_zero intro: has_derivative_zero_constant)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   133
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   134
lemma DERIV_zero_unique:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   135
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   136
  assumes "convex s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   137
      and d0: "\<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   138
      and "a \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   139
      and "x \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   140
    shows "f x = f a"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   141
  by (rule has_derivative_zero_unique [OF assms(1) _ assms(4,3)])
56332
289dd9166d04 tuned proofs
hoelzl
parents: 56261
diff changeset
   142
     (metis d0 has_field_derivative_imp_has_derivative lambda_zero)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   143
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   144
lemma DERIV_zero_connected_unique:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   145
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   146
  assumes "connected s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   147
      and "open s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   148
      and d0: "\<And>x. x\<in>s \<Longrightarrow> DERIV f x :> 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   149
      and "a \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   150
      and "x \<in> s"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   151
    shows "f x = f a"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   152
    by (rule has_derivative_zero_unique_connected [OF assms(2,1) _ assms(5,4)])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   153
       (metis has_field_derivative_def lambda_zero d0)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   154
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   155
lemma DERIV_transform_within:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   156
  assumes "(f has_field_derivative f') (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   157
      and "0 < d" "a \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   158
      and "\<And>x. x\<in>s \<Longrightarrow> dist x a < d \<Longrightarrow> f x = g x"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   159
    shows "(g has_field_derivative f') (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   160
  using assms unfolding has_field_derivative_def
56332
289dd9166d04 tuned proofs
hoelzl
parents: 56261
diff changeset
   161
  by (blast intro: has_derivative_transform_within)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   162
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   163
lemma DERIV_transform_within_open:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   164
  assumes "DERIV f a :> f'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   165
      and "open s" "a \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   166
      and "\<And>x. x\<in>s \<Longrightarrow> f x = g x"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   167
    shows "DERIV g a :> f'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   168
  using assms unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   169
by (metis has_derivative_transform_within_open)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   170
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   171
lemma DERIV_transform_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   172
  assumes "DERIV f a :> f'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   173
      and "0 < d"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   174
      and "\<And>x. dist x a < d \<Longrightarrow> f x = g x"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   175
    shows "DERIV g a :> f'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   176
  by (blast intro: assms DERIV_transform_within)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   177
59615
fdfdf89a83a6 A few new lemmas and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 59554
diff changeset
   178
(*generalising DERIV_isconst_all, which requires type real (using the ordering)*)
fdfdf89a83a6 A few new lemmas and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 59554
diff changeset
   179
lemma DERIV_zero_UNIV_unique:
fdfdf89a83a6 A few new lemmas and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 59554
diff changeset
   180
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   181
  shows "(\<And>x. DERIV f x :> 0) \<Longrightarrow> f x = f a"
59615
fdfdf89a83a6 A few new lemmas and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 59554
diff changeset
   182
by (metis DERIV_zero_unique UNIV_I assms convex_UNIV)
fdfdf89a83a6 A few new lemmas and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 59554
diff changeset
   183
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   184
subsection \<open>Some limit theorems about real part of real series etc.\<close>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   185
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   186
(*MOVE? But not to Finite_Cartesian_Product*)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   187
lemma sums_vec_nth :
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   188
  assumes "f sums a"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   189
  shows "(\<lambda>x. f x $ i) sums a $ i"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   190
using assms unfolding sums_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   191
by (auto dest: tendsto_vec_nth [where i=i])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   192
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   193
lemma summable_vec_nth :
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   194
  assumes "summable f"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   195
  shows "summable (\<lambda>x. f x $ i)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   196
using assms unfolding summable_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   197
by (blast intro: sums_vec_nth)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   198
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   199
subsection \<open>Complex number lemmas\<close>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   200
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   201
lemma
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   202
  shows open_halfspace_Re_lt: "open {z. Re(z) < b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   203
    and open_halfspace_Re_gt: "open {z. Re(z) > b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   204
    and closed_halfspace_Re_ge: "closed {z. Re(z) \<ge> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   205
    and closed_halfspace_Re_le: "closed {z. Re(z) \<le> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   206
    and closed_halfspace_Re_eq: "closed {z. Re(z) = b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   207
    and open_halfspace_Im_lt: "open {z. Im(z) < b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   208
    and open_halfspace_Im_gt: "open {z. Im(z) > b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   209
    and closed_halfspace_Im_ge: "closed {z. Im(z) \<ge> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   210
    and closed_halfspace_Im_le: "closed {z. Im(z) \<le> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   211
    and closed_halfspace_Im_eq: "closed {z. Im(z) = b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   212
  by (intro open_Collect_less closed_Collect_le closed_Collect_eq isCont_Re
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
   213
            isCont_Im continuous_ident continuous_const)+
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   214
61070
b72a990adfe2 prefer symbols;
wenzelm
parents: 60585
diff changeset
   215
lemma closed_complex_Reals: "closed (\<real> :: complex set)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   216
proof -
61070
b72a990adfe2 prefer symbols;
wenzelm
parents: 60585
diff changeset
   217
  have "(\<real> :: complex set) = {z. Im z = 0}"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   218
    by (auto simp: complex_is_Real_iff)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   219
  then show ?thesis
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   220
    by (metis closed_halfspace_Im_eq)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   221
qed
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   222
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   223
lemma closed_Real_halfspace_Re_le: "closed (\<real> \<inter> {w. Re w \<le> x})"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   224
  by (simp add: closed_Int closed_complex_Reals closed_halfspace_Re_le)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   225
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   226
lemma closed_Real_halfspace_Re_ge: "closed (\<real> \<inter> {w. x \<le> Re(w)})"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   227
  using closed_halfspace_Re_ge
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   228
  by (simp add: closed_Int closed_complex_Reals)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   229
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   230
lemma closed_real_abs_le: "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   231
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   232
  have "{w \<in> \<real>. \<bar>Re w\<bar> \<le> r} = (\<real> \<inter> {w. Re w \<le> r}) \<inter> (\<real> \<inter> {w. Re w \<ge> -r})"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   233
    by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   234
  then show "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   235
    by (simp add: closed_Int closed_Real_halfspace_Re_ge closed_Real_halfspace_Re_le)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   236
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
   237
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   238
lemma real_lim:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   239
  fixes l::complex
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   240
  assumes "(f ---> l) F" and "~(trivial_limit F)" and "eventually P F" and "\<And>a. P a \<Longrightarrow> f a \<in> \<real>"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   241
  shows  "l \<in> \<real>"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   242
proof (rule Lim_in_closed_set[OF closed_complex_Reals _ assms(2,1)])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   243
  show "eventually (\<lambda>x. f x \<in> \<real>) F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   244
    using assms(3, 4) by (auto intro: eventually_mono)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   245
qed
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   246
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   247
lemma real_lim_sequentially:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   248
  fixes l::complex
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   249
  shows "(f ---> l) sequentially \<Longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   250
by (rule real_lim [where F=sequentially]) (auto simp: eventually_sequentially)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   251
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   252
lemma real_series:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   253
  fixes l::complex
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   254
  shows "f sums l \<Longrightarrow> (\<And>n. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   255
unfolding sums_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   256
by (metis real_lim_sequentially setsum_in_Reals)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   257
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   258
lemma Lim_null_comparison_Re:
56889
48a745e1bde7 avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
hoelzl
parents: 56479
diff changeset
   259
  assumes "eventually (\<lambda>x. norm(f x) \<le> Re(g x)) F" "(g ---> 0) F" shows "(f ---> 0) F"
48a745e1bde7 avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
hoelzl
parents: 56479
diff changeset
   260
  by (rule Lim_null_comparison[OF assms(1)] tendsto_eq_intros assms(2))+ simp
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   261
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   262
subsection\<open>Holomorphic functions\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   263
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   264
definition complex_differentiable :: "[complex \<Rightarrow> complex, complex filter] \<Rightarrow> bool"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   265
           (infixr "(complex'_differentiable)" 50)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   266
  where "f complex_differentiable F \<equiv> \<exists>f'. (f has_field_derivative f') F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   267
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   268
lemma complex_differentiable_imp_continuous_at:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   269
    "f complex_differentiable (at x within s) \<Longrightarrow> continuous (at x within s) f"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   270
  by (metis DERIV_continuous complex_differentiable_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   271
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   272
lemma complex_differentiable_within_subset:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   273
    "\<lbrakk>f complex_differentiable (at x within s); t \<subseteq> s\<rbrakk>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   274
     \<Longrightarrow> f complex_differentiable (at x within t)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   275
  by (metis DERIV_subset complex_differentiable_def)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   276
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   277
lemma complex_differentiable_at_within:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   278
    "\<lbrakk>f complex_differentiable (at x)\<rbrakk>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   279
     \<Longrightarrow> f complex_differentiable (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   280
  unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   281
  by (metis DERIV_subset top_greatest)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   282
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   283
lemma complex_differentiable_linear [derivative_intros]: "(op * c) complex_differentiable F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   284
proof -
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   285
  show ?thesis
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   286
    unfolding complex_differentiable_def has_field_derivative_def mult_commute_abs
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   287
    by (force intro: has_derivative_mult_right)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   288
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   289
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   290
lemma complex_differentiable_const [derivative_intros]: "(\<lambda>z. c) complex_differentiable F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   291
  unfolding complex_differentiable_def has_field_derivative_def
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   292
  by (rule exI [where x=0])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   293
     (metis has_derivative_const lambda_zero)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   294
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   295
lemma complex_differentiable_ident [derivative_intros]: "(\<lambda>z. z) complex_differentiable F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   296
  unfolding complex_differentiable_def has_field_derivative_def
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   297
  by (rule exI [where x=1])
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   298
     (simp add: lambda_one [symmetric])
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   299
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   300
lemma complex_differentiable_id [derivative_intros]: "id complex_differentiable F"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   301
  unfolding id_def by (rule complex_differentiable_ident)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   302
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   303
lemma complex_differentiable_minus [derivative_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   304
  "f complex_differentiable F \<Longrightarrow> (\<lambda>z. - (f z)) complex_differentiable F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   305
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   306
  by (metis field_differentiable_minus)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   307
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   308
lemma complex_differentiable_add [derivative_intros]:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   309
  assumes "f complex_differentiable F" "g complex_differentiable F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   310
    shows "(\<lambda>z. f z + g z) complex_differentiable F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   311
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   312
  by (metis field_differentiable_add)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   313
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   314
lemma complex_differentiable_setsum [derivative_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   315
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) complex_differentiable F) \<Longrightarrow> (\<lambda>z. \<Sum>i\<in>I. f i z) complex_differentiable F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   316
  by (induct I rule: infinite_finite_induct)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   317
     (auto intro: complex_differentiable_add complex_differentiable_const)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   318
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   319
lemma complex_differentiable_diff [derivative_intros]:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   320
  assumes "f complex_differentiable F" "g complex_differentiable F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   321
    shows "(\<lambda>z. f z - g z) complex_differentiable F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   322
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   323
  by (metis field_differentiable_diff)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   324
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   325
lemma complex_differentiable_inverse [derivative_intros]:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   326
  assumes "f complex_differentiable (at a within s)" "f a \<noteq> 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   327
  shows "(\<lambda>z. inverse (f z)) complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   328
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   329
  by (metis DERIV_inverse_fun)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   330
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   331
lemma complex_differentiable_mult [derivative_intros]:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   332
  assumes "f complex_differentiable (at a within s)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   333
          "g complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   334
    shows "(\<lambda>z. f z * g z) complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   335
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   336
  by (metis DERIV_mult [of f _ a s g])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   337
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   338
lemma complex_differentiable_divide [derivative_intros]:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   339
  assumes "f complex_differentiable (at a within s)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   340
          "g complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   341
          "g a \<noteq> 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   342
    shows "(\<lambda>z. f z / g z) complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   343
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   344
  by (metis DERIV_divide [of f _ a s g])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   345
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   346
lemma complex_differentiable_power [derivative_intros]:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   347
  assumes "f complex_differentiable (at a within s)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   348
    shows "(\<lambda>z. f z ^ n) complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   349
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   350
  by (metis DERIV_power)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   351
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   352
lemma complex_differentiable_transform_within:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   353
  "0 < d \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   354
        x \<in> s \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   355
        (\<And>x'. x' \<in> s \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x') \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   356
        f complex_differentiable (at x within s)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   357
        \<Longrightarrow> g complex_differentiable (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   358
  unfolding complex_differentiable_def has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   359
  by (blast intro: has_derivative_transform_within)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   360
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   361
lemma complex_differentiable_compose_within:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   362
  assumes "f complex_differentiable (at a within s)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   363
          "g complex_differentiable (at (f a) within f`s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   364
    shows "(g o f) complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   365
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   366
  by (metis DERIV_image_chain)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   367
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   368
lemma complex_differentiable_compose:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   369
  "f complex_differentiable at z \<Longrightarrow> g complex_differentiable at (f z)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   370
          \<Longrightarrow> (g o f) complex_differentiable at z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   371
by (metis complex_differentiable_at_within complex_differentiable_compose_within)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   372
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   373
lemma complex_differentiable_within_open:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   374
     "\<lbrakk>a \<in> s; open s\<rbrakk> \<Longrightarrow> f complex_differentiable at a within s \<longleftrightarrow>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   375
                          f complex_differentiable at a"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   376
  unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   377
  by (metis at_within_open)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   378
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   379
subsection\<open>Caratheodory characterization.\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   380
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   381
lemma complex_differentiable_caratheodory_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   382
  "f complex_differentiable (at z) \<longleftrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   383
         (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z) g)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   384
  using CARAT_DERIV [of f]
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   385
  by (simp add: complex_differentiable_def has_field_derivative_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   386
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   387
lemma complex_differentiable_caratheodory_within:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   388
  "f complex_differentiable (at z within s) \<longleftrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   389
         (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z within s) g)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   390
  using DERIV_caratheodory_within [of f]
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   391
  by (simp add: complex_differentiable_def has_field_derivative_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   392
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   393
subsection\<open>Holomorphic\<close>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   394
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   395
definition holomorphic_on :: "[complex \<Rightarrow> complex, complex set] \<Rightarrow> bool"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   396
           (infixl "(holomorphic'_on)" 50)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   397
  where "f holomorphic_on s \<equiv> \<forall>x\<in>s. f complex_differentiable (at x within s)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   398
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   399
named_theorems holomorphic_intros "structural introduction rules for holomorphic_on"
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   400
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   401
lemma holomorphic_on_empty [holomorphic_intros]: "f holomorphic_on {}"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   402
  by (simp add: holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   403
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   404
lemma holomorphic_on_open:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   405
    "open s \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>f'. DERIV f x :> f')"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   406
  by (auto simp: holomorphic_on_def complex_differentiable_def has_field_derivative_def at_within_open [of _ s])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   407
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   408
lemma holomorphic_on_imp_continuous_on:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   409
    "f holomorphic_on s \<Longrightarrow> continuous_on s f"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   410
  by (metis complex_differentiable_imp_continuous_at continuous_on_eq_continuous_within holomorphic_on_def)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   411
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   412
lemma holomorphic_on_subset:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   413
    "f holomorphic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f holomorphic_on t"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   414
  unfolding holomorphic_on_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   415
  by (metis complex_differentiable_within_subset subsetD)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   416
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   417
lemma holomorphic_transform: "\<lbrakk>f holomorphic_on s; \<And>x. x \<in> s \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   418
  by (metis complex_differentiable_transform_within linordered_field_no_ub holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   419
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   420
lemma holomorphic_cong: "s = t ==> (\<And>x. x \<in> s \<Longrightarrow> f x = g x) \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> g holomorphic_on t"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   421
  by (metis holomorphic_transform)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   422
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   423
lemma holomorphic_on_linear [holomorphic_intros]: "(op * c) holomorphic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   424
  unfolding holomorphic_on_def by (metis complex_differentiable_linear)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   425
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   426
lemma holomorphic_on_const [holomorphic_intros]: "(\<lambda>z. c) holomorphic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   427
  unfolding holomorphic_on_def by (metis complex_differentiable_const)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   428
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   429
lemma holomorphic_on_ident [holomorphic_intros]: "(\<lambda>x. x) holomorphic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   430
  unfolding holomorphic_on_def by (metis complex_differentiable_ident)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   431
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   432
lemma holomorphic_on_id [holomorphic_intros]: "id holomorphic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   433
  unfolding id_def by (rule holomorphic_on_ident)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   434
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   435
lemma holomorphic_on_compose:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   436
  "f holomorphic_on s \<Longrightarrow> g holomorphic_on (f ` s) \<Longrightarrow> (g o f) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   437
  using complex_differentiable_compose_within[of f _ s g]
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   438
  by (auto simp: holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   439
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   440
lemma holomorphic_on_compose_gen:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   441
  "f holomorphic_on s \<Longrightarrow> g holomorphic_on t \<Longrightarrow> f ` s \<subseteq> t \<Longrightarrow> (g o f) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   442
  by (metis holomorphic_on_compose holomorphic_on_subset)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   443
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   444
lemma holomorphic_on_minus [holomorphic_intros]: "f holomorphic_on s \<Longrightarrow> (\<lambda>z. -(f z)) holomorphic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   445
  by (metis complex_differentiable_minus holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   446
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   447
lemma holomorphic_on_add [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   448
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z + g z) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   449
  unfolding holomorphic_on_def by (metis complex_differentiable_add)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   450
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   451
lemma holomorphic_on_diff [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   452
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z - g z) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   453
  unfolding holomorphic_on_def by (metis complex_differentiable_diff)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   454
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   455
lemma holomorphic_on_mult [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   456
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z * g z) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   457
  unfolding holomorphic_on_def by (metis complex_differentiable_mult)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   458
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   459
lemma holomorphic_on_inverse [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   460
  "\<lbrakk>f holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. inverse (f z)) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   461
  unfolding holomorphic_on_def by (metis complex_differentiable_inverse)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   462
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   463
lemma holomorphic_on_divide [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   464
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. f z / g z) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   465
  unfolding holomorphic_on_def by (metis complex_differentiable_divide)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   466
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   467
lemma holomorphic_on_power [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   468
  "f holomorphic_on s \<Longrightarrow> (\<lambda>z. (f z)^n) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   469
  unfolding holomorphic_on_def by (metis complex_differentiable_power)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   470
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61518
diff changeset
   471
lemma holomorphic_on_setsum [holomorphic_intros]:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   472
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) holomorphic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   473
  unfolding holomorphic_on_def by (metis complex_differentiable_setsum)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   474
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   475
lemma DERIV_deriv_iff_complex_differentiable:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   476
  "DERIV f x :> deriv f x \<longleftrightarrow> f complex_differentiable at x"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   477
  unfolding complex_differentiable_def by (metis DERIV_imp_deriv)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   478
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   479
lemma complex_derivative_chain:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   480
  "f complex_differentiable at x \<Longrightarrow> g complex_differentiable at (f x)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   481
    \<Longrightarrow> deriv (g o f) x = deriv g (f x) * deriv f x"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   482
  by (metis DERIV_deriv_iff_complex_differentiable DERIV_chain DERIV_imp_deriv)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   483
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   484
lemma complex_derivative_linear: "deriv (\<lambda>w. c * w) = (\<lambda>z. c)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   485
  by (metis DERIV_imp_deriv DERIV_cmult_Id)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   486
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   487
lemma complex_derivative_ident: "deriv (\<lambda>w. w) = (\<lambda>z. 1)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   488
  by (metis DERIV_imp_deriv DERIV_ident)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   489
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   490
lemma complex_derivative_const: "deriv (\<lambda>w. c) = (\<lambda>z. 0)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   491
  by (metis DERIV_imp_deriv DERIV_const)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   492
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   493
lemma complex_derivative_add:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   494
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   495
   \<Longrightarrow> deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   496
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   497
  by (auto intro!: DERIV_imp_deriv derivative_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   498
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   499
lemma complex_derivative_diff:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   500
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   501
   \<Longrightarrow> deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   502
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   503
  by (auto intro!: DERIV_imp_deriv derivative_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   504
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   505
lemma complex_derivative_mult:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   506
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   507
   \<Longrightarrow> deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   508
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   509
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   510
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   511
lemma complex_derivative_cmult:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   512
  "f complex_differentiable at z \<Longrightarrow> deriv (\<lambda>w. c * f w) z = c * deriv f z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   513
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   514
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   515
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   516
lemma complex_derivative_cmult_right:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   517
  "f complex_differentiable at z \<Longrightarrow> deriv (\<lambda>w. f w * c) z = deriv f z * c"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   518
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   519
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   520
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   521
lemma complex_derivative_transform_within_open:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   522
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s; open s; z \<in> s; \<And>w. w \<in> s \<Longrightarrow> f w = g w\<rbrakk>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   523
   \<Longrightarrow> deriv f z = deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   524
  unfolding holomorphic_on_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   525
  by (rule DERIV_imp_deriv)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   526
     (metis DERIV_deriv_iff_complex_differentiable DERIV_transform_within_open at_within_open)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   527
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   528
lemma complex_derivative_compose_linear:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   529
  "f complex_differentiable at (c * z) \<Longrightarrow> deriv (\<lambda>w. f (c * w)) z = c * deriv f (c * z)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   530
apply (rule DERIV_imp_deriv)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   531
apply (simp add: DERIV_deriv_iff_complex_differentiable [symmetric])
59554
4044f53326c9 inlined rules to free user-space from technical names
haftmann
parents: 58877
diff changeset
   532
apply (drule DERIV_chain' [of "times c" c z UNIV f "deriv f (c * z)", OF DERIV_cmult_Id])
4044f53326c9 inlined rules to free user-space from technical names
haftmann
parents: 58877
diff changeset
   533
apply (simp add: algebra_simps)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   534
done
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   535
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   536
subsection\<open>Analyticity on a set\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   537
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   538
definition analytic_on (infixl "(analytic'_on)" 50)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   539
  where
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   540
   "f analytic_on s \<equiv> \<forall>x \<in> s. \<exists>e. 0 < e \<and> f holomorphic_on (ball x e)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   541
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   542
lemma analytic_imp_holomorphic: "f analytic_on s \<Longrightarrow> f holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   543
  by (simp add: at_within_open [OF _ open_ball] analytic_on_def holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   544
     (metis centre_in_ball complex_differentiable_at_within)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   545
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   546
lemma analytic_on_open: "open s \<Longrightarrow> f analytic_on s \<longleftrightarrow> f holomorphic_on s"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   547
apply (auto simp: analytic_imp_holomorphic)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   548
apply (auto simp: analytic_on_def holomorphic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   549
by (metis holomorphic_on_def holomorphic_on_subset open_contains_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   550
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   551
lemma analytic_on_imp_differentiable_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   552
  "f analytic_on s \<Longrightarrow> x \<in> s \<Longrightarrow> f complex_differentiable (at x)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   553
 apply (auto simp: analytic_on_def holomorphic_on_def)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   554
by (metis Topology_Euclidean_Space.open_ball centre_in_ball complex_differentiable_within_open)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   555
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   556
lemma analytic_on_subset: "f analytic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f analytic_on t"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   557
  by (auto simp: analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   558
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   559
lemma analytic_on_Un: "f analytic_on (s \<union> t) \<longleftrightarrow> f analytic_on s \<and> f analytic_on t"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   560
  by (auto simp: analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   561
60585
48fdff264eb2 tuned whitespace;
wenzelm
parents: 60420
diff changeset
   562
lemma analytic_on_Union: "f analytic_on (\<Union>s) \<longleftrightarrow> (\<forall>t \<in> s. f analytic_on t)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   563
  by (auto simp: analytic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   564
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   565
lemma analytic_on_UN: "f analytic_on (\<Union>i\<in>I. s i) \<longleftrightarrow> (\<forall>i\<in>I. f analytic_on (s i))"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   566
  by (auto simp: analytic_on_def)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   567
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   568
lemma analytic_on_holomorphic:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   569
  "f analytic_on s \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f holomorphic_on t)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   570
  (is "?lhs = ?rhs")
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   571
proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   572
  have "?lhs \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   573
  proof safe
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   574
    assume "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   575
    then show "\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   576
      apply (simp add: analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   577
      apply (rule exI [where x="\<Union>{u. open u \<and> f analytic_on u}"], auto)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   578
      apply (metis Topology_Euclidean_Space.open_ball analytic_on_open centre_in_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   579
      by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   580
  next
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   581
    fix t
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   582
    assume "open t" "s \<subseteq> t" "f analytic_on t"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   583
    then show "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   584
        by (metis analytic_on_subset)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   585
  qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   586
  also have "... \<longleftrightarrow> ?rhs"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   587
    by (auto simp: analytic_on_open)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   588
  finally show ?thesis .
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   589
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   590
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   591
lemma analytic_on_linear: "(op * c) analytic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   592
  by (auto simp add: analytic_on_holomorphic holomorphic_on_linear)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   593
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   594
lemma analytic_on_const: "(\<lambda>z. c) analytic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   595
  by (metis analytic_on_def holomorphic_on_const zero_less_one)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   596
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   597
lemma analytic_on_ident: "(\<lambda>x. x) analytic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   598
  by (simp add: analytic_on_def holomorphic_on_ident gt_ex)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   599
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   600
lemma analytic_on_id: "id analytic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   601
  unfolding id_def by (rule analytic_on_ident)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   602
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   603
lemma analytic_on_compose:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   604
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   605
      and g: "g analytic_on (f ` s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   606
    shows "(g o f) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   607
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   608
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   609
  fix x
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   610
  assume x: "x \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   611
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball x e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   612
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   613
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball (f x) e'" using g
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   614
    by (metis analytic_on_def g image_eqI x)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   615
  have "isCont f x"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   616
    by (metis analytic_on_imp_differentiable_at complex_differentiable_imp_continuous_at f x)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   617
  with e' obtain d where d: "0 < d" and fd: "f ` ball x d \<subseteq> ball (f x) e'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   618
     by (auto simp: continuous_at_ball)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   619
  have "g \<circ> f holomorphic_on ball x (min d e)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   620
    apply (rule holomorphic_on_compose)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   621
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   622
    by (metis fd gh holomorphic_on_subset image_mono min.cobounded1 subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   623
  then show "\<exists>e>0. g \<circ> f holomorphic_on ball x e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   624
    by (metis d e min_less_iff_conj)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   625
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   626
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   627
lemma analytic_on_compose_gen:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   628
  "f analytic_on s \<Longrightarrow> g analytic_on t \<Longrightarrow> (\<And>z. z \<in> s \<Longrightarrow> f z \<in> t)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   629
             \<Longrightarrow> g o f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   630
by (metis analytic_on_compose analytic_on_subset image_subset_iff)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   631
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   632
lemma analytic_on_neg:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   633
  "f analytic_on s \<Longrightarrow> (\<lambda>z. -(f z)) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   634
by (metis analytic_on_holomorphic holomorphic_on_minus)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   635
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   636
lemma analytic_on_add:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   637
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   638
      and g: "g analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   639
    shows "(\<lambda>z. f z + g z) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   640
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   641
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   642
  fix z
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   643
  assume z: "z \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   644
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   645
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   646
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   647
    by (metis analytic_on_def g z)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   648
  have "(\<lambda>z. f z + g z) holomorphic_on ball z (min e e')"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   649
    apply (rule holomorphic_on_add)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   650
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   651
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   652
  then show "\<exists>e>0. (\<lambda>z. f z + g z) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   653
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   654
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   655
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   656
lemma analytic_on_diff:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   657
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   658
      and g: "g analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   659
    shows "(\<lambda>z. f z - g z) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   660
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   661
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   662
  fix z
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   663
  assume z: "z \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   664
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   665
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   666
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   667
    by (metis analytic_on_def g z)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   668
  have "(\<lambda>z. f z - g z) holomorphic_on ball z (min e e')"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   669
    apply (rule holomorphic_on_diff)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   670
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   671
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   672
  then show "\<exists>e>0. (\<lambda>z. f z - g z) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   673
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   674
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   675
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   676
lemma analytic_on_mult:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   677
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   678
      and g: "g analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   679
    shows "(\<lambda>z. f z * g z) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   680
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   681
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   682
  fix z
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   683
  assume z: "z \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   684
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   685
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   686
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   687
    by (metis analytic_on_def g z)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   688
  have "(\<lambda>z. f z * g z) holomorphic_on ball z (min e e')"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   689
    apply (rule holomorphic_on_mult)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   690
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   691
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   692
  then show "\<exists>e>0. (\<lambda>z. f z * g z) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   693
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   694
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   695
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   696
lemma analytic_on_inverse:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   697
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   698
      and nz: "(\<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   699
    shows "(\<lambda>z. inverse (f z)) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   700
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   701
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   702
  fix z
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   703
  assume z: "z \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   704
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   705
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   706
  have "continuous_on (ball z e) f"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   707
    by (metis fh holomorphic_on_imp_continuous_on)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   708
  then obtain e' where e': "0 < e'" and nz': "\<And>y. dist z y < e' \<Longrightarrow> f y \<noteq> 0"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   709
    by (metis Topology_Euclidean_Space.open_ball centre_in_ball continuous_on_open_avoid e z nz)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   710
  have "(\<lambda>z. inverse (f z)) holomorphic_on ball z (min e e')"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   711
    apply (rule holomorphic_on_inverse)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   712
    apply (metis fh holomorphic_on_subset min.cobounded2 min.commute subset_ball)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   713
    by (metis nz' mem_ball min_less_iff_conj)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   714
  then show "\<exists>e>0. (\<lambda>z. inverse (f z)) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   715
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   716
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   717
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   718
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   719
lemma analytic_on_divide:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   720
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   721
      and g: "g analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   722
      and nz: "(\<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   723
    shows "(\<lambda>z. f z / g z) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   724
unfolding divide_inverse
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   725
by (metis analytic_on_inverse analytic_on_mult f g nz)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   726
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   727
lemma analytic_on_power:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   728
  "f analytic_on s \<Longrightarrow> (\<lambda>z. (f z) ^ n) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   729
by (induct n) (auto simp: analytic_on_const analytic_on_mult)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   730
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   731
lemma analytic_on_setsum:
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   732
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) analytic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) analytic_on s"
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   733
  by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_const analytic_on_add)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   734
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   735
subsection\<open>analyticity at a point.\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   736
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   737
lemma analytic_at_ball:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   738
  "f analytic_on {z} \<longleftrightarrow> (\<exists>e. 0<e \<and> f holomorphic_on ball z e)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   739
by (metis analytic_on_def singleton_iff)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   740
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   741
lemma analytic_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   742
    "f analytic_on {z} \<longleftrightarrow> (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   743
by (metis analytic_on_holomorphic empty_subsetI insert_subset)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   744
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   745
lemma analytic_on_analytic_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   746
    "f analytic_on s \<longleftrightarrow> (\<forall>z \<in> s. f analytic_on {z})"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   747
by (metis analytic_at_ball analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   748
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   749
lemma analytic_at_two:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   750
  "f analytic_on {z} \<and> g analytic_on {z} \<longleftrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   751
   (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s \<and> g holomorphic_on s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   752
  (is "?lhs = ?rhs")
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   753
proof
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   754
  assume ?lhs
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   755
  then obtain s t
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   756
    where st: "open s" "z \<in> s" "f holomorphic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   757
              "open t" "z \<in> t" "g holomorphic_on t"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   758
    by (auto simp: analytic_at)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   759
  show ?rhs
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   760
    apply (rule_tac x="s \<inter> t" in exI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   761
    using st
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   762
    apply (auto simp: Diff_subset holomorphic_on_subset)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   763
    done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   764
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   765
  assume ?rhs
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   766
  then show ?lhs
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   767
    by (force simp add: analytic_at)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   768
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   769
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   770
subsection\<open>Combining theorems for derivative with ``analytic at'' hypotheses\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   771
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   772
lemma
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   773
  assumes "f analytic_on {z}" "g analytic_on {z}"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   774
  shows complex_derivative_add_at: "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   775
    and complex_derivative_diff_at: "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   776
    and complex_derivative_mult_at: "deriv (\<lambda>w. f w * g w) z =
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   777
           f z * deriv g z + deriv f z * g z"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   778
proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   779
  obtain s where s: "open s" "z \<in> s" "f holomorphic_on s" "g holomorphic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   780
    using assms by (metis analytic_at_two)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   781
  show "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   782
    apply (rule DERIV_imp_deriv [OF DERIV_add])
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   783
    using s
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   784
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   785
    done
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   786
  show "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   787
    apply (rule DERIV_imp_deriv [OF DERIV_diff])
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   788
    using s
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   789
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   790
    done
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   791
  show "deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   792
    apply (rule DERIV_imp_deriv [OF DERIV_mult'])
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   793
    using s
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   794
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   795
    done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   796
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   797
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   798
lemma complex_derivative_cmult_at:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   799
  "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. c * f w) z = c * deriv f z"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   800
by (auto simp: complex_derivative_mult_at complex_derivative_const analytic_on_const)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   801
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   802
lemma complex_derivative_cmult_right_at:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   803
  "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. f w * c) z = deriv f z * c"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   804
by (auto simp: complex_derivative_mult_at complex_derivative_const analytic_on_const)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   805
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   806
subsection\<open>Complex differentiation of sequences and series\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   807
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   808
(* TODO: Could probably be simplified using Uniform_Limit *)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   809
lemma has_complex_derivative_sequence:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   810
  fixes s :: "complex set"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   811
  assumes cvs: "convex s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   812
      and df:  "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   813
      and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s \<longrightarrow> norm (f' n x - g' x) \<le> e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   814
      and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) ---> l) sequentially"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   815
    shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) ---> g x) sequentially \<and>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   816
                       (g has_field_derivative (g' x)) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   817
proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   818
  from assms obtain x l where x: "x \<in> s" and tf: "((\<lambda>n. f n x) ---> l) sequentially"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   819
    by blast
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   820
  { fix e::real assume e: "e > 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   821
    then obtain N where N: "\<forall>n\<ge>N. \<forall>x. x \<in> s \<longrightarrow> cmod (f' n x - g' x) \<le> e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   822
      by (metis conv)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   823
    have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   824
    proof (rule exI [of _ N], clarify)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   825
      fix n y h
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   826
      assume "N \<le> n" "y \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   827
      then have "cmod (f' n y - g' y) \<le> e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   828
        by (metis N)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   829
      then have "cmod h * cmod (f' n y - g' y) \<le> cmod h * e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   830
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   831
      then show "cmod (f' n y * h - g' y * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   832
        by (simp add: norm_mult [symmetric] field_simps)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   833
    qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   834
  } note ** = this
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   835
  show ?thesis
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   836
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   837
  proof (rule has_derivative_sequence [OF cvs _ _ x])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   838
    show "\<forall>n. \<forall>x\<in>s. (f n has_derivative (op * (f' n x))) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   839
      by (metis has_field_derivative_def df)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   840
  next show "(\<lambda>n. f n x) ----> l"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   841
    by (rule tf)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   842
  next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   843
    by (blast intro: **)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   844
  qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   845
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   846
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   847
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   848
lemma has_complex_derivative_series:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   849
  fixes s :: "complex set"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   850
  assumes cvs: "convex s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   851
      and df:  "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   852
      and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   853
                \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   854
      and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) sums l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   855
    shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) sums g x) \<and> ((g has_field_derivative g' x) (at x within s))"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   856
proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   857
  from assms obtain x l where x: "x \<in> s" and sf: "((\<lambda>n. f n x) sums l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   858
    by blast
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   859
  { fix e::real assume e: "e > 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   860
    then obtain N where N: "\<forall>n x. n \<ge> N \<longrightarrow> x \<in> s
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   861
            \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   862
      by (metis conv)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   863
    have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   864
    proof (rule exI [of _ N], clarify)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   865
      fix n y h
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   866
      assume "N \<le> n" "y \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   867
      then have "cmod ((\<Sum>i<n. f' i y) - g' y) \<le> e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   868
        by (metis N)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   869
      then have "cmod h * cmod ((\<Sum>i<n. f' i y) - g' y) \<le> cmod h * e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   870
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   871
      then show "cmod ((\<Sum>i<n. h * f' i y) - g' y * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   872
        by (simp add: norm_mult [symmetric] field_simps setsum_right_distrib)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   873
    qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   874
  } note ** = this
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   875
  show ?thesis
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   876
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   877
  proof (rule has_derivative_series [OF cvs _ _ x])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   878
    fix n x
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   879
    assume "x \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   880
    then show "((f n) has_derivative (\<lambda>z. z * f' n x)) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   881
      by (metis df has_field_derivative_def mult_commute_abs)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   882
  next show " ((\<lambda>n. f n x) sums l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   883
    by (rule sf)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   884
  next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   885
    by (blast intro: **)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   886
  qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   887
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   888
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   889
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   890
lemma complex_differentiable_series:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   891
  fixes f :: "nat \<Rightarrow> complex \<Rightarrow> complex"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   892
  assumes "convex s" "open s"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   893
  assumes "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   894
  assumes "uniformly_convergent_on s (\<lambda>n x. \<Sum>i<n. f' i x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   895
  assumes "x0 \<in> s" "summable (\<lambda>n. f n x0)" and x: "x \<in> s"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   896
  shows   "summable (\<lambda>n. f n x)" and "(\<lambda>x. \<Sum>n. f n x) complex_differentiable (at x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   897
proof -
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   898
  from assms(4) obtain g' where A: "uniform_limit s (\<lambda>n x. \<Sum>i<n. f' i x) g' sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   899
    unfolding uniformly_convergent_on_def by blast
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61806
diff changeset
   900
  from x and \<open>open s\<close> have s: "at x within s = at x" by (rule at_within_open)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   901
  have "\<exists>g. \<forall>x\<in>s. (\<lambda>n. f n x) sums g x \<and> (g has_field_derivative g' x) (at x within s)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   902
    by (intro has_field_derivative_series[of s f f' g' x0] assms A has_field_derivative_at_within)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   903
  then obtain g where g: "\<And>x. x \<in> s \<Longrightarrow> (\<lambda>n. f n x) sums g x"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   904
    "\<And>x. x \<in> s \<Longrightarrow> (g has_field_derivative g' x) (at x within s)" by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   905
  from g[OF x] show "summable (\<lambda>n. f n x)" by (auto simp: summable_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   906
  from g(2)[OF x] have g': "(g has_derivative op * (g' x)) (at x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   907
    by (simp add: has_field_derivative_def s)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   908
  have "((\<lambda>x. \<Sum>n. f n x) has_derivative op * (g' x)) (at x)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61806
diff changeset
   909
    by (rule has_derivative_transform_within_open[OF \<open>open s\<close> x _ g'])
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   910
       (insert g, auto simp: sums_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   911
  thus "(\<lambda>x. \<Sum>n. f n x) complex_differentiable (at x)" unfolding differentiable_def
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   912
    by (auto simp: summable_def complex_differentiable_def has_field_derivative_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   913
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   914
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   915
lemma complex_differentiable_series':
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   916
  fixes f :: "nat \<Rightarrow> complex \<Rightarrow> complex"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   917
  assumes "convex s" "open s"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   918
  assumes "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   919
  assumes "uniformly_convergent_on s (\<lambda>n x. \<Sum>i<n. f' i x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   920
  assumes "x0 \<in> s" "summable (\<lambda>n. f n x0)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   921
  shows   "(\<lambda>x. \<Sum>n. f n x) complex_differentiable (at x0)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61806
diff changeset
   922
  using complex_differentiable_series[OF assms, of x0] \<open>x0 \<in> s\<close> by blast+
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   923
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   924
subsection\<open>Bound theorem\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   925
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   926
lemma complex_differentiable_bound:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   927
  fixes s :: "complex set"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   928
  assumes cvs: "convex s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   929
      and df:  "\<And>z. z \<in> s \<Longrightarrow> (f has_field_derivative f' z) (at z within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   930
      and dn:  "\<And>z. z \<in> s \<Longrightarrow> norm (f' z) \<le> B"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   931
      and "x \<in> s"  "y \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   932
    shows "norm(f x - f y) \<le> B * norm(x - y)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   933
  apply (rule differentiable_bound [OF cvs])
56223
7696903b9e61 generalize theory of operator norms to work with class real_normed_vector
huffman
parents: 56217
diff changeset
   934
  apply (rule ballI, erule df [unfolded has_field_derivative_def])
7696903b9e61 generalize theory of operator norms to work with class real_normed_vector
huffman
parents: 56217
diff changeset
   935
  apply (rule ballI, rule onorm_le, simp add: norm_mult mult_right_mono dn)
7696903b9e61 generalize theory of operator norms to work with class real_normed_vector
huffman
parents: 56217
diff changeset
   936
  apply fact
7696903b9e61 generalize theory of operator norms to work with class real_normed_vector
huffman
parents: 56217
diff changeset
   937
  apply fact
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   938
  done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   939
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   940
subsection\<open>Inverse function theorem for complex derivatives.\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   941
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   942
lemma has_complex_derivative_inverse_basic:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   943
  fixes f :: "complex \<Rightarrow> complex"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   944
  shows "DERIV f (g y) :> f' \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   945
        f' \<noteq> 0 \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   946
        continuous (at y) g \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   947
        open t \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   948
        y \<in> t \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   949
        (\<And>z. z \<in> t \<Longrightarrow> f (g z) = z)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   950
        \<Longrightarrow> DERIV g y :> inverse (f')"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   951
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   952
  apply (rule has_derivative_inverse_basic)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   953
  apply (auto simp:  bounded_linear_mult_right)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   954
  done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   955
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   956
(*Used only once, in Multivariate/cauchy.ml. *)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   957
lemma has_complex_derivative_inverse_strong:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   958
  fixes f :: "complex \<Rightarrow> complex"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   959
  shows "DERIV f x :> f' \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   960
         f' \<noteq> 0 \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   961
         open s \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   962
         x \<in> s \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   963
         continuous_on s f \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   964
         (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   965
         \<Longrightarrow> DERIV g (f x) :> inverse (f')"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   966
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   967
  apply (rule has_derivative_inverse_strong [of s x f g ])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   968
  using assms
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   969
  by auto
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   970
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   971
lemma has_complex_derivative_inverse_strong_x:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   972
  fixes f :: "complex \<Rightarrow> complex"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   973
  shows  "DERIV f (g y) :> f' \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   974
          f' \<noteq> 0 \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   975
          open s \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   976
          continuous_on s f \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   977
          g y \<in> s \<Longrightarrow> f(g y) = y \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   978
          (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   979
          \<Longrightarrow> DERIV g y :> inverse (f')"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   980
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   981
  apply (rule has_derivative_inverse_strong_x [of s g y f])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   982
  using assms
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   983
  by auto
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   984
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   985
subsection \<open>Taylor on Complex Numbers\<close>
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   986
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   987
lemma setsum_Suc_reindex:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   988
  fixes f :: "nat \<Rightarrow> 'a::ab_group_add"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   989
    shows  "setsum f {0..n} = f 0 - f (Suc n) + setsum (\<lambda>i. f (Suc i)) {0..n}"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   990
by (induct n) auto
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   991
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   992
lemma complex_taylor:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
   993
  assumes s: "convex s"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   994
      and f: "\<And>i x. x \<in> s \<Longrightarrow> i \<le> n \<Longrightarrow> (f i has_field_derivative f (Suc i) x) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   995
      and B: "\<And>x. x \<in> s \<Longrightarrow> cmod (f (Suc n) x) \<le> B"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   996
      and w: "w \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   997
      and z: "z \<in> s"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   998
    shows "cmod(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / (fact i)))
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   999
          \<le> B * cmod(z - w)^(Suc n) / fact n"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1000
proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1001
  have wzs: "closed_segment w z \<subseteq> s" using assms
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1002
    by (metis convex_contains_segment)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1003
  { fix u
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1004
    assume "u \<in> closed_segment w z"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1005
    then have "u \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1006
      by (metis wzs subsetD)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1007
    have "(\<Sum>i\<le>n. f i u * (- of_nat i * (z-u)^(i - 1)) / (fact i) +
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1008
                      f (Suc i) u * (z-u)^i / (fact i)) =
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1009
              f (Suc n) u * (z-u) ^ n / (fact n)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1010
    proof (induction n)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1011
      case 0 show ?case by simp
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1012
    next
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1013
      case (Suc n)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1014
      have "(\<Sum>i\<le>Suc n. f i u * (- of_nat i * (z-u) ^ (i - 1)) / (fact i) +
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1015
                             f (Suc i) u * (z-u) ^ i / (fact i)) =
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1016
           f (Suc n) u * (z-u) ^ n / (fact n) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1017
           f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / (fact (Suc n)) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1018
           f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / (fact (Suc n))"
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  1019
        using Suc by simp
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1020
      also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n))"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1021
      proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1022
        have "(fact(Suc n)) *
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1023
             (f(Suc n) u *(z-u) ^ n / (fact n) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1024
               f(Suc(Suc n)) u *((z-u) *(z-u) ^ n) / (fact(Suc n)) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1025
               f(Suc n) u *((1 + of_nat n) *(z-u) ^ n) / (fact(Suc n))) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1026
            ((fact(Suc n)) *(f(Suc n) u *(z-u) ^ n)) / (fact n) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1027
            ((fact(Suc n)) *(f(Suc(Suc n)) u *((z-u) *(z-u) ^ n)) / (fact(Suc n))) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1028
            ((fact(Suc n)) *(f(Suc n) u *(of_nat(Suc n) *(z-u) ^ n))) / (fact(Suc n))"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1029
          by (simp add: algebra_simps del: fact.simps)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1030
        also have "... = ((fact (Suc n)) * (f (Suc n) u * (z-u) ^ n)) / (fact n) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1031
                         (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1032
                         (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1033
          by (simp del: fact.simps)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1034
        also have "... = (of_nat (Suc n) * (f (Suc n) u * (z-u) ^ n)) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1035
                         (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1036
                         (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1037
          by (simp only: fact.simps of_nat_mult ac_simps) simp
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1038
        also have "... = f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1039
          by (simp add: algebra_simps)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1040
        finally show ?thesis
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1041
        by (simp add: mult_left_cancel [where c = "(fact (Suc n))", THEN iffD1] del: fact.simps)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1042
      qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1043
      finally show ?case .
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1044
    qed
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1045
    then have "((\<lambda>v. (\<Sum>i\<le>n. f i v * (z - v)^i / (fact i)))
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1046
                has_field_derivative f (Suc n) u * (z-u) ^ n / (fact n))
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1047
               (at u within s)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1048
      apply (intro derivative_eq_intros)
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1049
      apply (blast intro: assms \<open>u \<in> s\<close>)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1050
      apply (rule refl)+
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1051
      apply (auto simp: field_simps)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1052
      done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1053
  } note sum_deriv = this
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1054
  { fix u
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1055
    assume u: "u \<in> closed_segment w z"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1056
    then have us: "u \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1057
      by (metis wzs subsetD)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1058
    have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> cmod (f (Suc n) u) * cmod (u - z) ^ n"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1059
      by (metis norm_minus_commute order_refl)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1060
    also have "... \<le> cmod (f (Suc n) u) * cmod (z - w) ^ n"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1061
      by (metis mult_left_mono norm_ge_zero power_mono segment_bound [OF u])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1062
    also have "... \<le> B * cmod (z - w) ^ n"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1063
      by (metis norm_ge_zero zero_le_power mult_right_mono  B [OF us])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1064
    finally have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> B * cmod (z - w) ^ n" .
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1065
  } note cmod_bound = this
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1066
  have "(\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)) = (\<Sum>i\<le>n. (f i z / (fact i)) * 0 ^ i)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1067
    by simp
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1068
  also have "\<dots> = f 0 z / (fact 0)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1069
    by (subst setsum_zero_power) simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1070
  finally have "cmod (f 0 z - (\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i)))
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1071
                \<le> cmod ((\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i)) -
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1072
                        (\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)))"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1073
    by (simp add: norm_minus_commute)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1074
  also have "... \<le> B * cmod (z - w) ^ n / (fact n) * cmod (w - z)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1075
    apply (rule complex_differentiable_bound
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1076
      [where f' = "\<lambda>w. f (Suc n) w * (z - w)^n / (fact n)"
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61235
diff changeset
  1077
         and s = "closed_segment w z", OF convex_closed_segment])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1078
    apply (auto simp: ends_in_segment DERIV_subset [OF sum_deriv wzs]
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1079
                  norm_divide norm_mult norm_power divide_le_cancel cmod_bound)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1080
    done
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1081
  also have "...  \<le> B * cmod (z - w) ^ Suc n / (fact n)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1082
    by (simp add: algebra_simps norm_minus_commute)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1083
  finally show ?thesis .
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1084
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1085
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1086
text\<open>Something more like the traditional MVT for real components.\<close>
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
  1087
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1088
lemma complex_mvt_line:
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
  1089
  assumes "\<And>u. u \<in> closed_segment w z \<Longrightarrow> (f has_field_derivative f'(u)) (at u)"
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61235
diff changeset
  1090
    shows "\<exists>u. u \<in> closed_segment w z \<and> Re(f z) - Re(f w) = Re(f'(u) * (z - w))"
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1091
proof -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1092
  have twz: "\<And>t. (1 - t) *\<^sub>R w + t *\<^sub>R z = w + t *\<^sub>R (z - w)"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1093
    by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib)
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1094
  note assms[unfolded has_field_derivative_def, derivative_intros]
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1095
  show ?thesis
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1096
    apply (cut_tac mvt_simple
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1097
                     [of 0 1 "Re o f o (\<lambda>t. (1 - t) *\<^sub>R w +  t *\<^sub>R z)"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1098
                      "\<lambda>u. Re o (\<lambda>h. f'((1 - u) *\<^sub>R w + u *\<^sub>R z) * h) o (\<lambda>t. t *\<^sub>R (z - w))"])
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1099
    apply auto
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1100
    apply (rule_tac x="(1 - x) *\<^sub>R w + x *\<^sub>R z" in exI)
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61235
diff changeset
  1101
    apply (auto simp: closed_segment_def twz) []
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61235
diff changeset
  1102
    apply (intro derivative_eq_intros has_derivative_at_within, simp_all)
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
  1103
    apply (simp add: fun_eq_iff real_vector.scale_right_diff_distrib)
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61235
diff changeset
  1104
    apply (force simp: twz closed_segment_def)
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1105
    done
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1106
qed
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1107
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1108
lemma complex_taylor_mvt:
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1109
  assumes "\<And>i x. \<lbrakk>x \<in> closed_segment w z; i \<le> n\<rbrakk> \<Longrightarrow> ((f i) has_field_derivative f (Suc i) x) (at x)"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1110
    shows "\<exists>u. u \<in> closed_segment w z \<and>
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1111
            Re (f 0 z) =
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1112
            Re ((\<Sum>i = 0..n. f i w * (z - w) ^ i / (fact i)) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1113
                (f (Suc n) u * (z-u)^n / (fact n)) * (z - w))"
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1114
proof -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1115
  { fix u
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1116
    assume u: "u \<in> closed_segment w z"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1117
    have "(\<Sum>i = 0..n.
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1118
               (f (Suc i) u * (z-u) ^ i - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) /
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1119
               (fact i)) =
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1120
          f (Suc 0) u -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1121
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1122
             (fact (Suc n)) +
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1123
             (\<Sum>i = 0..n.
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1124
                 (f (Suc (Suc i)) u * ((z-u) ^ Suc i) - of_nat (Suc i) * (f (Suc i) u * (z-u) ^ i)) /
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1125
                 (fact (Suc i)))"
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1126
       by (subst setsum_Suc_reindex) simp
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1127
    also have "... = f (Suc 0) u -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1128
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1129
             (fact (Suc n)) +
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1130
             (\<Sum>i = 0..n.
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1131
                 f (Suc (Suc i)) u * ((z-u) ^ Suc i) / (fact (Suc i))  -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1132
                 f (Suc i) u * (z-u) ^ i / (fact i))"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 56889
diff changeset
  1133
      by (simp only: diff_divide_distrib fact_cancel ac_simps)
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1134
    also have "... = f (Suc 0) u -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1135
             (f (Suc (Suc n)) u * (z-u) ^ Suc n - of_nat (Suc n) * (z-u) ^ n * f (Suc n) u) /
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1136
             (fact (Suc n)) +
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1137
             f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n)) - f (Suc 0) u"
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1138
      by (subst setsum_Suc_diff) auto
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1139
    also have "... = f (Suc n) u * (z-u) ^ n / (fact n)"
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1140
      by (simp only: algebra_simps diff_divide_distrib fact_cancel)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1141
    finally have "(\<Sum>i = 0..n. (f (Suc i) u * (z - u) ^ i
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1142
                             - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / (fact i)) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1143
                  f (Suc n) u * (z - u) ^ n / (fact n)" .
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1144
    then have "((\<lambda>u. \<Sum>i = 0..n. f i u * (z - u) ^ i / (fact i)) has_field_derivative
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1145
                f (Suc n) u * (z - u) ^ n / (fact n))  (at u)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1146
      apply (intro derivative_eq_intros)+
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1147
      apply (force intro: u assms)
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1148
      apply (rule refl)+
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 56889
diff changeset
  1149
      apply (auto simp: ac_simps)
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1150
      done
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1151
  }
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1152
  then show ?thesis
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1153
    apply (cut_tac complex_mvt_line [of w z "\<lambda>u. \<Sum>i = 0..n. f i u * (z-u) ^ i / (fact i)"
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
  1154
               "\<lambda>u. (f (Suc n) u * (z-u)^n / (fact n))"])
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1155
    apply (auto simp add: intro: open_closed_segment)
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1156
    done
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1157
qed
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1158
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1159
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1160
subsection \<open>Polynomal function extremal theorem, from HOL Light\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1161
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1162
lemma polyfun_extremal_lemma: (*COMPLEX_POLYFUN_EXTREMAL_LEMMA in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1163
    fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1164
  assumes "0 < e"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1165
    shows "\<exists>M. \<forall>z. M \<le> norm(z) \<longrightarrow> norm (\<Sum>i\<le>n. c(i) * z^i) \<le> e * norm(z) ^ (Suc n)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1166
proof (induct n)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1167
  case 0 with assms
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1168
  show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1169
    apply (rule_tac x="norm (c 0) / e" in exI)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1170
    apply (auto simp: field_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1171
    done
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1172
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1173
  case (Suc n)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1174
  obtain M where M: "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1175
    using Suc assms by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1176
  show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1177
  proof (rule exI [where x= "max M (1 + norm(c(Suc n)) / e)"], clarsimp simp del: power_Suc)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1178
    fix z::'a
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1179
    assume z1: "M \<le> norm z" and "1 + norm (c (Suc n)) / e \<le> norm z"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1180
    then have z2: "e + norm (c (Suc n)) \<le> e * norm z"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1181
      using assms by (simp add: field_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1182
    have "norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1183
      using M [OF z1] by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1184
    then have "norm (\<Sum>i\<le>n. c i * z^i) + norm (c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1185
      by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1186
    then have "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1187
      by (blast intro: norm_triangle_le elim: )
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1188
    also have "... \<le> (e + norm (c (Suc n))) * norm z ^ Suc n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1189
      by (simp add: norm_power norm_mult algebra_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1190
    also have "... \<le> (e * norm z) * norm z ^ Suc n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1191
      by (metis z2 mult.commute mult_left_mono norm_ge_zero norm_power)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1192
    finally show "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc (Suc n)"
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60150
diff changeset
  1193
      by simp
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1194
  qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1195
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1196
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1197
lemma polyfun_extremal: (*COMPLEX_POLYFUN_EXTREMAL in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1198
    fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1199
  assumes k: "c k \<noteq> 0" "1\<le>k" and kn: "k\<le>n"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1200
    shows "eventually (\<lambda>z. norm (\<Sum>i\<le>n. c(i) * z^i) \<ge> B) at_infinity"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1201
using kn
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1202
proof (induction n)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1203
  case 0
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1204
  then show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1205
    using k  by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1206
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1207
  case (Suc m)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1208
  let ?even = ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1209
  show ?even
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1210
  proof (cases "c (Suc m) = 0")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1211
    case True
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1212
    then show ?even using Suc k
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1213
      by auto (metis antisym_conv less_eq_Suc_le not_le)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1214
  next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1215
    case False
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1216
    then obtain M where M:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1217
          "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>m. c i * z^i) \<le> norm (c (Suc m)) / 2 * norm z ^ Suc m"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1218
      using polyfun_extremal_lemma [of "norm(c (Suc m)) / 2" c m] Suc
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1219
      by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1220
    have "\<exists>b. \<forall>z. b \<le> norm z \<longrightarrow> B \<le> norm (\<Sum>i\<le>Suc m. c i * z^i)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1221
    proof (rule exI [where x="max M (max 1 (\<bar>B\<bar> / (norm(c (Suc m)) / 2)))"], clarsimp simp del: power_Suc)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1222
      fix z::'a
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1223
      assume z1: "M \<le> norm z" "1 \<le> norm z"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1224
         and "\<bar>B\<bar> * 2 / norm (c (Suc m)) \<le> norm z"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1225
      then have z2: "\<bar>B\<bar> \<le> norm (c (Suc m)) * norm z / 2"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1226
        using False by (simp add: field_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1227
      have nz: "norm z \<le> norm z ^ Suc m"
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1228
        by (metis \<open>1 \<le> norm z\<close> One_nat_def less_eq_Suc_le power_increasing power_one_right zero_less_Suc)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1229
      have *: "\<And>y x. norm (c (Suc m)) * norm z / 2 \<le> norm y - norm x \<Longrightarrow> B \<le> norm (x + y)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1230
        by (metis abs_le_iff add.commute norm_diff_ineq order_trans z2)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1231
      have "norm z * norm (c (Suc m)) + 2 * norm (\<Sum>i\<le>m. c i * z^i)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1232
            \<le> norm (c (Suc m)) * norm z + norm (c (Suc m)) * norm z ^ Suc m"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1233
        using M [of z] Suc z1  by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1234
      also have "... \<le> 2 * (norm (c (Suc m)) * norm z ^ Suc m)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1235
        using nz by (simp add: mult_mono del: power_Suc)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1236
      finally show "B \<le> norm ((\<Sum>i\<le>m. c i * z^i) + c (Suc m) * z ^ Suc m)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1237
        using Suc.IH
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1238
        apply (auto simp: eventually_at_infinity)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1239
        apply (rule *)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1240
        apply (simp add: field_simps norm_mult norm_power)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1241
        done
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1242
    qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1243
    then show ?even
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1244
      by (simp add: eventually_at_infinity)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1245
  qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1246
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59730
diff changeset
  1247
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1248
end