author | paulson <lp15@cam.ac.uk> |
Mon, 15 Apr 2024 22:23:40 +0100 | |
changeset 80105 | 2fa018321400 |
parent 69597 | ff784d5a5bfb |
permissions | -rw-r--r-- |
54220
0e6645622f22
more convenient place for a theory in solitariness
haftmann
parents:
50282
diff
changeset
|
1 |
(* Title: HOL/Decision_Procs/Rat_Pair.thy |
24197 | 2 |
Author: Amine Chaieb |
3 |
*) |
|
4 |
||
60533 | 5 |
section \<open>Rational numbers as pairs\<close> |
24197 | 6 |
|
54220
0e6645622f22
more convenient place for a theory in solitariness
haftmann
parents:
50282
diff
changeset
|
7 |
theory Rat_Pair |
67123 | 8 |
imports Complex_Main |
24197 | 9 |
begin |
10 |
||
42463 | 11 |
type_synonym Num = "int \<times> int" |
25005 | 12 |
|
69597 | 13 |
abbreviation Num0_syn :: Num (\<open>0\<^sub>N\<close>) |
44779 | 14 |
where "0\<^sub>N \<equiv> (0, 0)" |
25005 | 15 |
|
69597 | 16 |
abbreviation Numi_syn :: "int \<Rightarrow> Num" (\<open>'((_)')\<^sub>N\<close>) |
50282
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
wenzelm
parents:
47162
diff
changeset
|
17 |
where "(i)\<^sub>N \<equiv> (i, 1)" |
24197 | 18 |
|
60538 | 19 |
definition isnormNum :: "Num \<Rightarrow> bool" |
20 |
where "isnormNum = (\<lambda>(a, b). if a = 0 then b = 0 else b > 0 \<and> gcd a b = 1)" |
|
24197 | 21 |
|
60538 | 22 |
definition normNum :: "Num \<Rightarrow> Num" |
67123 | 23 |
where "normNum = (\<lambda>(a,b). |
60538 | 24 |
(if a = 0 \<or> b = 0 then (0, 0) |
25 |
else |
|
44780 | 26 |
(let g = gcd a b |
44779 | 27 |
in if b > 0 then (a div g, b div g) else (- (a div g), - (b div g)))))" |
24197 | 28 |
|
62348 | 29 |
declare gcd_dvd1[presburger] gcd_dvd2[presburger] |
44779 | 30 |
|
24197 | 31 |
lemma normNum_isnormNum [simp]: "isnormNum (normNum x)" |
32 |
proof - |
|
44780 | 33 |
obtain a b where x: "x = (a, b)" by (cases x) |
60567 | 34 |
consider "a = 0 \<or> b = 0" | "a \<noteq> 0" "b \<noteq> 0" |
35 |
by blast |
|
60538 | 36 |
then show ?thesis |
37 |
proof cases |
|
38 |
case 1 |
|
39 |
then show ?thesis |
|
40 |
by (simp add: x normNum_def isnormNum_def) |
|
41 |
next |
|
60567 | 42 |
case ab: 2 |
31706 | 43 |
let ?g = "gcd a b" |
24197 | 44 |
let ?a' = "a div ?g" |
45 |
let ?b' = "b div ?g" |
|
31706 | 46 |
let ?g' = "gcd ?a' ?b'" |
60567 | 47 |
from ab have "?g \<noteq> 0" by simp |
48 |
with gcd_ge_0_int[of a b] have gpos: "?g > 0" by arith |
|
44779 | 49 |
have gdvd: "?g dvd a" "?g dvd b" by arith+ |
60567 | 50 |
from dvd_mult_div_cancel[OF gdvd(1)] dvd_mult_div_cancel[OF gdvd(2)] ab |
44780 | 51 |
have nz': "?a' \<noteq> 0" "?b' \<noteq> 0" by - (rule notI, simp)+ |
60567 | 52 |
from ab have stupid: "a \<noteq> 0 \<or> b \<noteq> 0" by arith |
67051 | 53 |
from div_gcd_coprime[OF stupid] have gp1: "?g' = 1" |
54 |
by simp |
|
60567 | 55 |
from ab consider "b < 0" | "b > 0" by arith |
60538 | 56 |
then show ?thesis |
57 |
proof cases |
|
60567 | 58 |
case b: 1 |
60538 | 59 |
have False if b': "?b' \<ge> 0" |
60 |
proof - |
|
61 |
from gpos have th: "?g \<ge> 0" by arith |
|
62 |
from mult_nonneg_nonneg[OF th b'] dvd_mult_div_cancel[OF gdvd(2)] |
|
60567 | 63 |
show ?thesis using b by arith |
60538 | 64 |
qed |
65 |
then have b': "?b' < 0" by (presburger add: linorder_not_le[symmetric]) |
|
60567 | 66 |
from ab(1) nz' b b' gp1 show ?thesis |
60538 | 67 |
by (simp add: x isnormNum_def normNum_def Let_def split_def) |
68 |
next |
|
60567 | 69 |
case b: 2 |
60538 | 70 |
then have "?b' \<ge> 0" |
44779 | 71 |
by (presburger add: pos_imp_zdiv_nonneg_iff[OF gpos]) |
44780 | 72 |
with nz' have b': "?b' > 0" by arith |
60567 | 73 |
from b b' ab(1) nz' gp1 show ?thesis |
60538 | 74 |
by (simp add: x isnormNum_def normNum_def Let_def split_def) |
75 |
qed |
|
76 |
qed |
|
24197 | 77 |
qed |
78 |
||
60533 | 79 |
text \<open>Arithmetic over Num\<close> |
24197 | 80 |
|
69597 | 81 |
definition Nadd :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl \<open>+\<^sub>N\<close> 60) |
60538 | 82 |
where |
83 |
"Nadd = (\<lambda>(a, b) (a', b'). |
|
84 |
if a = 0 \<or> b = 0 then normNum (a', b') |
|
85 |
else if a' = 0 \<or> b' = 0 then normNum (a, b) |
|
86 |
else normNum (a * b' + b * a', b * b'))" |
|
24197 | 87 |
|
69597 | 88 |
definition Nmul :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl \<open>*\<^sub>N\<close> 60) |
60538 | 89 |
where |
90 |
"Nmul = (\<lambda>(a, b) (a', b'). |
|
91 |
let g = gcd (a * a') (b * b') |
|
92 |
in (a * a' div g, b * b' div g))" |
|
24197 | 93 |
|
69597 | 94 |
definition Nneg :: "Num \<Rightarrow> Num" (\<open>~\<^sub>N\<close>) |
60538 | 95 |
where "Nneg = (\<lambda>(a, b). (- a, b))" |
24197 | 96 |
|
69597 | 97 |
definition Nsub :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl \<open>-\<^sub>N\<close> 60) |
44779 | 98 |
where "Nsub = (\<lambda>a b. a +\<^sub>N ~\<^sub>N b)" |
24197 | 99 |
|
44779 | 100 |
definition Ninv :: "Num \<Rightarrow> Num" |
60538 | 101 |
where "Ninv = (\<lambda>(a, b). if a < 0 then (- b, \<bar>a\<bar>) else (b, a))" |
24197 | 102 |
|
69597 | 103 |
definition Ndiv :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl \<open>\<div>\<^sub>N\<close> 60) |
44779 | 104 |
where "Ndiv = (\<lambda>a b. a *\<^sub>N Ninv b)" |
24197 | 105 |
|
106 |
lemma Nneg_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (~\<^sub>N x)" |
|
44779 | 107 |
by (simp add: isnormNum_def Nneg_def split_def) |
108 |
||
24197 | 109 |
lemma Nadd_normN[simp]: "isnormNum (x +\<^sub>N y)" |
110 |
by (simp add: Nadd_def split_def) |
|
44779 | 111 |
|
60538 | 112 |
lemma Nsub_normN[simp]: "isnormNum y \<Longrightarrow> isnormNum (x -\<^sub>N y)" |
24197 | 113 |
by (simp add: Nsub_def split_def) |
44779 | 114 |
|
115 |
lemma Nmul_normN[simp]: |
|
60538 | 116 |
assumes xn: "isnormNum x" |
117 |
and yn: "isnormNum y" |
|
24197 | 118 |
shows "isnormNum (x *\<^sub>N y)" |
44779 | 119 |
proof - |
44780 | 120 |
obtain a b where x: "x = (a, b)" by (cases x) |
121 |
obtain a' b' where y: "y = (a', b')" by (cases y) |
|
60538 | 122 |
consider "a = 0" | "a' = 0" | "a \<noteq> 0" "a' \<noteq> 0" by blast |
123 |
then show ?thesis |
|
124 |
proof cases |
|
125 |
case 1 |
|
126 |
then show ?thesis |
|
127 |
using xn x y by (simp add: isnormNum_def Let_def Nmul_def split_def) |
|
128 |
next |
|
129 |
case 2 |
|
130 |
then show ?thesis |
|
131 |
using yn x y by (simp add: isnormNum_def Let_def Nmul_def split_def) |
|
132 |
next |
|
60567 | 133 |
case aa': 3 |
60538 | 134 |
then have bp: "b > 0" "b' > 0" |
135 |
using xn yn x y by (simp_all add: isnormNum_def) |
|
56544 | 136 |
from bp have "x *\<^sub>N y = normNum (a * a', b * b')" |
60567 | 137 |
using x y aa' bp by (simp add: Nmul_def Let_def split_def normNum_def) |
60538 | 138 |
then show ?thesis by simp |
139 |
qed |
|
24197 | 140 |
qed |
141 |
||
142 |
lemma Ninv_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (Ninv x)" |
|
80105
2fa018321400
Streamlining of many more archaic proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
143 |
by (simp add: Ninv_def isnormNum_def split_def gcd.commute split: if_split_asm) |
24197 | 144 |
|
60538 | 145 |
lemma isnormNum_int[simp]: "isnormNum 0\<^sub>N" "isnormNum ((1::int)\<^sub>N)" "i \<noteq> 0 \<Longrightarrow> isnormNum (i)\<^sub>N" |
31706 | 146 |
by (simp_all add: isnormNum_def) |
24197 | 147 |
|
148 |
||
60533 | 149 |
text \<open>Relations over Num\<close> |
24197 | 150 |
|
69597 | 151 |
definition Nlt0:: "Num \<Rightarrow> bool" (\<open>0>\<^sub>N\<close>) |
60538 | 152 |
where "Nlt0 = (\<lambda>(a, b). a < 0)" |
24197 | 153 |
|
69597 | 154 |
definition Nle0:: "Num \<Rightarrow> bool" (\<open>0\<ge>\<^sub>N\<close>) |
60538 | 155 |
where "Nle0 = (\<lambda>(a, b). a \<le> 0)" |
24197 | 156 |
|
69597 | 157 |
definition Ngt0:: "Num \<Rightarrow> bool" (\<open>0<\<^sub>N\<close>) |
60538 | 158 |
where "Ngt0 = (\<lambda>(a, b). a > 0)" |
24197 | 159 |
|
69597 | 160 |
definition Nge0:: "Num \<Rightarrow> bool" (\<open>0\<le>\<^sub>N\<close>) |
60538 | 161 |
where "Nge0 = (\<lambda>(a, b). a \<ge> 0)" |
24197 | 162 |
|
69597 | 163 |
definition Nlt :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix \<open><\<^sub>N\<close> 55) |
44779 | 164 |
where "Nlt = (\<lambda>a b. 0>\<^sub>N (a -\<^sub>N b))" |
24197 | 165 |
|
69597 | 166 |
definition Nle :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix \<open>\<le>\<^sub>N\<close> 55) |
44779 | 167 |
where "Nle = (\<lambda>a b. 0\<ge>\<^sub>N (a -\<^sub>N b))" |
24197 | 168 |
|
60538 | 169 |
definition "INum = (\<lambda>(a, b). of_int a / of_int b)" |
24197 | 170 |
|
60538 | 171 |
lemma INum_int [simp]: "INum (i)\<^sub>N = (of_int i ::'a::field)" "INum 0\<^sub>N = (0::'a::field)" |
24197 | 172 |
by (simp_all add: INum_def) |
173 |
||
44780 | 174 |
lemma isnormNum_unique[simp]: |
60538 | 175 |
assumes na: "isnormNum x" |
176 |
and nb: "isnormNum y" |
|
68442 | 177 |
shows "(INum x ::'a::field_char_0) = INum y \<longleftrightarrow> x = y" |
60538 | 178 |
(is "?lhs = ?rhs") |
24197 | 179 |
proof |
44780 | 180 |
obtain a b where x: "x = (a, b)" by (cases x) |
181 |
obtain a' b' where y: "y = (a', b')" by (cases y) |
|
60538 | 182 |
consider "a = 0 \<or> b = 0 \<or> a' = 0 \<or> b' = 0" | "a \<noteq> 0" "b \<noteq> 0" "a' \<noteq> 0" "b' \<noteq> 0" |
183 |
by blast |
|
184 |
then show ?rhs if H: ?lhs |
|
185 |
proof cases |
|
186 |
case 1 |
|
187 |
then show ?thesis |
|
62390 | 188 |
using na nb H by (simp add: x y INum_def split_def isnormNum_def split: if_split_asm) |
60538 | 189 |
next |
190 |
case 2 |
|
191 |
with na nb have pos: "b > 0" "b' > 0" |
|
192 |
by (simp_all add: x y isnormNum_def) |
|
60567 | 193 |
from H \<open>b \<noteq> 0\<close> \<open>b' \<noteq> 0\<close> have eq: "a * b' = a' * b" |
44780 | 194 |
by (simp add: x y INum_def eq_divide_eq divide_eq_eq of_int_mult[symmetric] del: of_int_mult) |
60538 | 195 |
from \<open>a \<noteq> 0\<close> \<open>a' \<noteq> 0\<close> na nb |
196 |
have gcd1: "gcd a b = 1" "gcd b a = 1" "gcd a' b' = 1" "gcd b' a' = 1" |
|
62348 | 197 |
by (simp_all add: x y isnormNum_def add: gcd.commute) |
67051 | 198 |
then have "coprime a b" "coprime b a" "coprime a' b'" "coprime b' a'" |
199 |
by (simp_all add: coprime_iff_gcd_eq_1) |
|
44780 | 200 |
from eq have raw_dvd: "a dvd a' * b" "b dvd b' * a" "a' dvd a * b'" "b' dvd b * a'" |
80105
2fa018321400
Streamlining of many more archaic proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
201 |
by (algebra|simp)+ |
67051 | 202 |
then have eq1: "b = b'" |
203 |
using pos \<open>coprime b a\<close> \<open>coprime b' a'\<close> |
|
204 |
by (auto simp add: coprime_dvd_mult_left_iff intro: associated_eqI) |
|
205 |
with eq have "a = a'" using pos by simp |
|
206 |
with \<open>b = b'\<close> show ?thesis by (simp add: x y) |
|
60538 | 207 |
qed |
208 |
show ?lhs if ?rhs |
|
209 |
using that by simp |
|
24197 | 210 |
qed |
211 |
||
68442 | 212 |
lemma isnormNum0[simp]: "isnormNum x \<Longrightarrow> INum x = (0::'a::field_char_0) \<longleftrightarrow> x = 0\<^sub>N" |
24197 | 213 |
unfolding INum_int(2)[symmetric] |
44779 | 214 |
by (rule isnormNum_unique) simp_all |
24197 | 215 |
|
60538 | 216 |
lemma of_int_div_aux: |
217 |
assumes "d \<noteq> 0" |
|
218 |
shows "(of_int x ::'a::field_char_0) / of_int d = |
|
219 |
of_int (x div d) + (of_int (x mod d)) / of_int d" |
|
24197 | 220 |
proof - |
60538 | 221 |
let ?t = "of_int (x div d) * (of_int d ::'a) + of_int (x mod d)" |
24197 | 222 |
let ?f = "\<lambda>x. x / of_int d" |
223 |
have "x = (x div d) * d + x mod d" |
|
224 |
by auto |
|
225 |
then have eq: "of_int x = ?t" |
|
226 |
by (simp only: of_int_mult[symmetric] of_int_add [symmetric]) |
|
44780 | 227 |
then have "of_int x / of_int d = ?t / of_int d" |
24197 | 228 |
using cong[OF refl[of ?f] eq] by simp |
60538 | 229 |
then show ?thesis |
230 |
by (simp add: add_divide_distrib algebra_simps \<open>d \<noteq> 0\<close>) |
|
24197 | 231 |
qed |
232 |
||
60538 | 233 |
lemma of_int_div: |
234 |
fixes d :: int |
|
235 |
assumes "d \<noteq> 0" "d dvd n" |
|
236 |
shows "(of_int (n div d) ::'a::field_char_0) = of_int n / of_int d" |
|
237 |
using assms of_int_div_aux [of d n, where ?'a = 'a] by simp |
|
24197 | 238 |
|
68442 | 239 |
lemma normNum[simp]: "INum (normNum x) = (INum x :: 'a::field_char_0)" |
44779 | 240 |
proof - |
44780 | 241 |
obtain a b where x: "x = (a, b)" by (cases x) |
60538 | 242 |
consider "a = 0 \<or> b = 0" | "a \<noteq> 0" "b \<noteq> 0" by blast |
243 |
then show ?thesis |
|
244 |
proof cases |
|
245 |
case 1 |
|
246 |
then show ?thesis |
|
247 |
by (simp add: x INum_def normNum_def split_def Let_def) |
|
248 |
next |
|
60567 | 249 |
case ab: 2 |
31706 | 250 |
let ?g = "gcd a b" |
60567 | 251 |
from ab have g: "?g \<noteq> 0"by simp |
60538 | 252 |
from of_int_div[OF g, where ?'a = 'a] show ?thesis |
253 |
by (auto simp add: x INum_def normNum_def split_def Let_def) |
|
254 |
qed |
|
24197 | 255 |
qed |
256 |
||
68442 | 257 |
lemma INum_normNum_iff: "(INum x ::'a::field_char_0) = INum y \<longleftrightarrow> normNum x = normNum y" |
60538 | 258 |
(is "?lhs \<longleftrightarrow> _") |
24197 | 259 |
proof - |
260 |
have "normNum x = normNum y \<longleftrightarrow> (INum (normNum x) :: 'a) = INum (normNum y)" |
|
261 |
by (simp del: normNum) |
|
262 |
also have "\<dots> = ?lhs" by simp |
|
263 |
finally show ?thesis by simp |
|
264 |
qed |
|
265 |
||
68442 | 266 |
lemma Nadd[simp]: "INum (x +\<^sub>N y) = INum x + (INum y :: 'a :: field_char_0)" |
44779 | 267 |
proof - |
24197 | 268 |
let ?z = "0::'a" |
44780 | 269 |
obtain a b where x: "x = (a, b)" by (cases x) |
270 |
obtain a' b' where y: "y = (a', b')" by (cases y) |
|
60538 | 271 |
consider "a = 0 \<or> a'= 0 \<or> b =0 \<or> b' = 0" | "a \<noteq> 0" "a'\<noteq> 0" "b \<noteq> 0" "b' \<noteq> 0" |
272 |
by blast |
|
273 |
then show ?thesis |
|
274 |
proof cases |
|
275 |
case 1 |
|
276 |
then show ?thesis |
|
80105
2fa018321400
Streamlining of many more archaic proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
277 |
by (auto simp: x y INum_def Nadd_def normNum_def Let_def of_int_div) |
60538 | 278 |
next |
60567 | 279 |
case neq: 2 |
60538 | 280 |
show ?thesis |
281 |
proof (cases "a * b' + b * a' = 0") |
|
282 |
case True |
|
283 |
then have "of_int (a * b' + b * a') / (of_int b * of_int b') = ?z" |
|
284 |
by simp |
|
285 |
then have "of_int b' * of_int a / (of_int b * of_int b') + |
|
286 |
of_int b * of_int a' / (of_int b * of_int b') = ?z" |
|
287 |
by (simp add: add_divide_distrib) |
|
288 |
then have th: "of_int a / of_int b + of_int a' / of_int b' = ?z" |
|
60567 | 289 |
using neq by simp |
290 |
from True neq show ?thesis |
|
60538 | 291 |
by (simp add: x y th Nadd_def normNum_def INum_def split_def) |
292 |
next |
|
293 |
case False |
|
294 |
let ?g = "gcd (a * b' + b * a') (b * b')" |
|
295 |
have gz: "?g \<noteq> 0" |
|
296 |
using False by simp |
|
297 |
show ?thesis |
|
60567 | 298 |
using neq False gz |
60538 | 299 |
of_int_div [where ?'a = 'a, OF gz gcd_dvd1 [of "a * b' + b * a'" "b * b'"]] |
300 |
of_int_div [where ?'a = 'a, OF gz gcd_dvd2 [of "a * b' + b * a'" "b * b'"]] |
|
301 |
by (simp add: x y Nadd_def INum_def normNum_def Let_def) (simp add: field_simps) |
|
302 |
qed |
|
303 |
qed |
|
24197 | 304 |
qed |
305 |
||
68442 | 306 |
lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a::field_char_0)" |
60538 | 307 |
proof - |
308 |
let ?z = "0::'a" |
|
309 |
obtain a b where x: "x = (a, b)" by (cases x) |
|
310 |
obtain a' b' where y: "y = (a', b')" by (cases y) |
|
311 |
consider "a = 0 \<or> a' = 0 \<or> b = 0 \<or> b' = 0" | "a \<noteq> 0" "a' \<noteq> 0" "b \<noteq> 0" "b' \<noteq> 0" |
|
312 |
by blast |
|
313 |
then show ?thesis |
|
314 |
proof cases |
|
315 |
case 1 |
|
316 |
then show ?thesis |
|
60698 | 317 |
by (auto simp add: x y Nmul_def INum_def) |
60538 | 318 |
next |
60567 | 319 |
case neq: 2 |
60538 | 320 |
let ?g = "gcd (a * a') (b * b')" |
321 |
have gz: "?g \<noteq> 0" |
|
60567 | 322 |
using neq by simp |
323 |
from neq of_int_div [where ?'a = 'a, OF gz gcd_dvd1 [of "a * a'" "b * b'"]] |
|
60538 | 324 |
of_int_div [where ?'a = 'a , OF gz gcd_dvd2 [of "a * a'" "b * b'"]] |
325 |
show ?thesis |
|
326 |
by (simp add: Nmul_def x y Let_def INum_def) |
|
327 |
qed |
|
328 |
qed |
|
329 |
||
60698 | 330 |
lemma Nneg[simp]: "INum (~\<^sub>N x) = - (INum x :: 'a::field)" |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
331 |
by (simp add: Nneg_def split_def INum_def) |
24197 | 332 |
|
68442 | 333 |
lemma Nsub[simp]: "INum (x -\<^sub>N y) = INum x - (INum y:: 'a::field_char_0)" |
44779 | 334 |
by (simp add: Nsub_def split_def) |
24197 | 335 |
|
60698 | 336 |
lemma Ninv[simp]: "INum (Ninv x) = (1 :: 'a::field) / INum x" |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56410
diff
changeset
|
337 |
by (simp add: Ninv_def INum_def split_def) |
24197 | 338 |
|
68442 | 339 |
lemma Ndiv[simp]: "INum (x \<div>\<^sub>N y) = INum x / (INum y :: 'a::field_char_0)" |
44779 | 340 |
by (simp add: Ndiv_def) |
24197 | 341 |
|
44779 | 342 |
lemma Nlt0_iff[simp]: |
44780 | 343 |
assumes nx: "isnormNum x" |
60698 | 344 |
shows "((INum x :: 'a::{field_char_0,linordered_field}) < 0) = 0>\<^sub>N x" |
44779 | 345 |
proof - |
44780 | 346 |
obtain a b where x: "x = (a, b)" by (cases x) |
60538 | 347 |
show ?thesis |
348 |
proof (cases "a = 0") |
|
349 |
case True |
|
350 |
then show ?thesis |
|
351 |
by (simp add: x Nlt0_def INum_def) |
|
352 |
next |
|
353 |
case False |
|
354 |
then have b: "(of_int b::'a) > 0" |
|
44780 | 355 |
using nx by (simp add: x isnormNum_def) |
24197 | 356 |
from pos_divide_less_eq[OF b, where b="of_int a" and a="0::'a"] |
60538 | 357 |
show ?thesis |
358 |
by (simp add: x Nlt0_def INum_def) |
|
359 |
qed |
|
24197 | 360 |
qed |
361 |
||
44779 | 362 |
lemma Nle0_iff[simp]: |
363 |
assumes nx: "isnormNum x" |
|
60538 | 364 |
shows "((INum x :: 'a::{field_char_0,linordered_field}) \<le> 0) = 0\<ge>\<^sub>N x" |
44779 | 365 |
proof - |
44780 | 366 |
obtain a b where x: "x = (a, b)" by (cases x) |
60538 | 367 |
show ?thesis |
368 |
proof (cases "a = 0") |
|
369 |
case True |
|
370 |
then show ?thesis |
|
371 |
by (simp add: x Nle0_def INum_def) |
|
372 |
next |
|
373 |
case False |
|
374 |
then have b: "(of_int b :: 'a) > 0" |
|
44780 | 375 |
using nx by (simp add: x isnormNum_def) |
24197 | 376 |
from pos_divide_le_eq[OF b, where b="of_int a" and a="0::'a"] |
60538 | 377 |
show ?thesis |
378 |
by (simp add: x Nle0_def INum_def) |
|
379 |
qed |
|
24197 | 380 |
qed |
381 |
||
44779 | 382 |
lemma Ngt0_iff[simp]: |
383 |
assumes nx: "isnormNum x" |
|
60698 | 384 |
shows "((INum x :: 'a::{field_char_0,linordered_field}) > 0) = 0<\<^sub>N x" |
44779 | 385 |
proof - |
44780 | 386 |
obtain a b where x: "x = (a, b)" by (cases x) |
60538 | 387 |
show ?thesis |
388 |
proof (cases "a = 0") |
|
389 |
case True |
|
390 |
then show ?thesis |
|
391 |
by (simp add: x Ngt0_def INum_def) |
|
392 |
next |
|
393 |
case False |
|
394 |
then have b: "(of_int b::'a) > 0" |
|
395 |
using nx by (simp add: x isnormNum_def) |
|
24197 | 396 |
from pos_less_divide_eq[OF b, where b="of_int a" and a="0::'a"] |
60538 | 397 |
show ?thesis |
398 |
by (simp add: x Ngt0_def INum_def) |
|
399 |
qed |
|
24197 | 400 |
qed |
401 |
||
44779 | 402 |
lemma Nge0_iff[simp]: |
403 |
assumes nx: "isnormNum x" |
|
60698 | 404 |
shows "(INum x :: 'a::{field_char_0,linordered_field}) \<ge> 0 \<longleftrightarrow> 0\<le>\<^sub>N x" |
44779 | 405 |
proof - |
44780 | 406 |
obtain a b where x: "x = (a, b)" by (cases x) |
60538 | 407 |
show ?thesis |
408 |
proof (cases "a = 0") |
|
409 |
case True |
|
410 |
then show ?thesis |
|
411 |
by (simp add: x Nge0_def INum_def) |
|
412 |
next |
|
413 |
case False |
|
414 |
then have b: "(of_int b::'a) > 0" |
|
415 |
using nx by (simp add: x isnormNum_def) |
|
44779 | 416 |
from pos_le_divide_eq[OF b, where b="of_int a" and a="0::'a"] |
60538 | 417 |
show ?thesis |
418 |
by (simp add: x Nge0_def INum_def) |
|
419 |
qed |
|
44779 | 420 |
qed |
421 |
||
422 |
lemma Nlt_iff[simp]: |
|
60538 | 423 |
assumes nx: "isnormNum x" |
424 |
and ny: "isnormNum y" |
|
60698 | 425 |
shows "((INum x :: 'a::{field_char_0,linordered_field}) < INum y) \<longleftrightarrow> x <\<^sub>N y" |
44779 | 426 |
proof - |
24197 | 427 |
let ?z = "0::'a" |
60698 | 428 |
have "((INum x ::'a) < INum y) \<longleftrightarrow> INum (x -\<^sub>N y) < ?z" |
44779 | 429 |
using nx ny by simp |
60698 | 430 |
also have "\<dots> \<longleftrightarrow> 0>\<^sub>N (x -\<^sub>N y)" |
44779 | 431 |
using Nlt0_iff[OF Nsub_normN[OF ny]] by simp |
60538 | 432 |
finally show ?thesis |
433 |
by (simp add: Nlt_def) |
|
24197 | 434 |
qed |
435 |
||
44779 | 436 |
lemma Nle_iff[simp]: |
60538 | 437 |
assumes nx: "isnormNum x" |
438 |
and ny: "isnormNum y" |
|
60698 | 439 |
shows "((INum x :: 'a::{field_char_0,linordered_field}) \<le> INum y) \<longleftrightarrow> x \<le>\<^sub>N y" |
44779 | 440 |
proof - |
60698 | 441 |
have "((INum x ::'a) \<le> INum y) \<longleftrightarrow> INum (x -\<^sub>N y) \<le> (0::'a)" |
44779 | 442 |
using nx ny by simp |
60698 | 443 |
also have "\<dots> \<longleftrightarrow> 0\<ge>\<^sub>N (x -\<^sub>N y)" |
44779 | 444 |
using Nle0_iff[OF Nsub_normN[OF ny]] by simp |
60538 | 445 |
finally show ?thesis |
446 |
by (simp add: Nle_def) |
|
24197 | 447 |
qed |
448 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
449 |
lemma Nadd_commute: |
68442 | 450 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
451 |
shows "x +\<^sub>N y = y +\<^sub>N x" |
44779 | 452 |
proof - |
60538 | 453 |
have n: "isnormNum (x +\<^sub>N y)" "isnormNum (y +\<^sub>N x)" |
454 |
by simp_all |
|
455 |
have "(INum (x +\<^sub>N y)::'a) = INum (y +\<^sub>N x)" |
|
456 |
by simp |
|
457 |
with isnormNum_unique[OF n] show ?thesis |
|
458 |
by simp |
|
24197 | 459 |
qed |
460 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
461 |
lemma [simp]: |
68442 | 462 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
463 |
shows "(0, b) +\<^sub>N y = normNum y" |
44780 | 464 |
and "(a, 0) +\<^sub>N y = normNum y" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
465 |
and "x +\<^sub>N (0, b) = normNum x" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
466 |
and "x +\<^sub>N (a, 0) = normNum x" |
80105
2fa018321400
Streamlining of many more archaic proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
467 |
by (simp_all add: Nadd_def normNum_def split_def) |
24197 | 468 |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
469 |
lemma normNum_nilpotent_aux[simp]: |
68442 | 470 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
44780 | 471 |
assumes nx: "isnormNum x" |
24197 | 472 |
shows "normNum x = x" |
44779 | 473 |
proof - |
24197 | 474 |
let ?a = "normNum x" |
475 |
have n: "isnormNum ?a" by simp |
|
44779 | 476 |
have th: "INum ?a = (INum x ::'a)" by simp |
477 |
with isnormNum_unique[OF n nx] show ?thesis by simp |
|
24197 | 478 |
qed |
479 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
480 |
lemma normNum_nilpotent[simp]: |
68442 | 481 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
482 |
shows "normNum (normNum x) = normNum x" |
24197 | 483 |
by simp |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
484 |
|
60698 | 485 |
lemma normNum0[simp]: "normNum (0, b) = 0\<^sub>N" "normNum (a, 0) = 0\<^sub>N" |
24197 | 486 |
by (simp_all add: normNum_def) |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
487 |
|
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
488 |
lemma normNum_Nadd: |
68442 | 489 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
60538 | 490 |
shows "normNum (x +\<^sub>N y) = x +\<^sub>N y" |
491 |
by simp |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
492 |
|
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
493 |
lemma Nadd_normNum1[simp]: |
68442 | 494 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
495 |
shows "normNum x +\<^sub>N y = x +\<^sub>N y" |
44779 | 496 |
proof - |
60698 | 497 |
have n: "isnormNum (normNum x +\<^sub>N y)" "isnormNum (x +\<^sub>N y)" |
498 |
by simp_all |
|
499 |
have "INum (normNum x +\<^sub>N y) = INum x + (INum y :: 'a)" |
|
500 |
by simp |
|
501 |
also have "\<dots> = INum (x +\<^sub>N y)" |
|
502 |
by simp |
|
503 |
finally show ?thesis |
|
504 |
using isnormNum_unique[OF n] by simp |
|
24197 | 505 |
qed |
506 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
507 |
lemma Nadd_normNum2[simp]: |
68442 | 508 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
509 |
shows "x +\<^sub>N normNum y = x +\<^sub>N y" |
44779 | 510 |
proof - |
60698 | 511 |
have n: "isnormNum (x +\<^sub>N normNum y)" "isnormNum (x +\<^sub>N y)" |
512 |
by simp_all |
|
513 |
have "INum (x +\<^sub>N normNum y) = INum x + (INum y :: 'a)" |
|
514 |
by simp |
|
515 |
also have "\<dots> = INum (x +\<^sub>N y)" |
|
516 |
by simp |
|
517 |
finally show ?thesis |
|
518 |
using isnormNum_unique[OF n] by simp |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
519 |
qed |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
520 |
|
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
521 |
lemma Nadd_assoc: |
68442 | 522 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
523 |
shows "x +\<^sub>N y +\<^sub>N z = x +\<^sub>N (y +\<^sub>N z)" |
44779 | 524 |
proof - |
60698 | 525 |
have n: "isnormNum (x +\<^sub>N y +\<^sub>N z)" "isnormNum (x +\<^sub>N (y +\<^sub>N z))" |
526 |
by simp_all |
|
527 |
have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" |
|
528 |
by simp |
|
529 |
with isnormNum_unique[OF n] show ?thesis |
|
530 |
by simp |
|
24197 | 531 |
qed |
532 |
||
533 |
lemma Nmul_commute: "isnormNum x \<Longrightarrow> isnormNum y \<Longrightarrow> x *\<^sub>N y = y *\<^sub>N x" |
|
62348 | 534 |
by (simp add: Nmul_def split_def Let_def gcd.commute mult.commute) |
24197 | 535 |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
536 |
lemma Nmul_assoc: |
68442 | 537 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
60538 | 538 |
assumes nx: "isnormNum x" |
539 |
and ny: "isnormNum y" |
|
540 |
and nz: "isnormNum z" |
|
24197 | 541 |
shows "x *\<^sub>N y *\<^sub>N z = x *\<^sub>N (y *\<^sub>N z)" |
44779 | 542 |
proof - |
44780 | 543 |
from nx ny nz have n: "isnormNum (x *\<^sub>N y *\<^sub>N z)" "isnormNum (x *\<^sub>N (y *\<^sub>N z))" |
24197 | 544 |
by simp_all |
60698 | 545 |
have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" |
546 |
by simp |
|
547 |
with isnormNum_unique[OF n] show ?thesis |
|
548 |
by simp |
|
24197 | 549 |
qed |
550 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
551 |
lemma Nsub0: |
68442 | 552 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
60538 | 553 |
assumes x: "isnormNum x" |
554 |
and y: "isnormNum y" |
|
44780 | 555 |
shows "x -\<^sub>N y = 0\<^sub>N \<longleftrightarrow> x = y" |
44779 | 556 |
proof - |
44780 | 557 |
from isnormNum_unique[where 'a = 'a, OF Nsub_normN[OF y], where y="0\<^sub>N"] |
60698 | 558 |
have "x -\<^sub>N y = 0\<^sub>N \<longleftrightarrow> INum (x -\<^sub>N y) = (INum 0\<^sub>N :: 'a)" |
559 |
by simp |
|
560 |
also have "\<dots> \<longleftrightarrow> INum x = (INum y :: 'a)" |
|
561 |
by simp |
|
562 |
also have "\<dots> \<longleftrightarrow> x = y" |
|
563 |
using x y by simp |
|
44779 | 564 |
finally show ?thesis . |
24197 | 565 |
qed |
566 |
||
567 |
lemma Nmul0[simp]: "c *\<^sub>N 0\<^sub>N = 0\<^sub>N" " 0\<^sub>N *\<^sub>N c = 0\<^sub>N" |
|
568 |
by (simp_all add: Nmul_def Let_def split_def) |
|
569 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
570 |
lemma Nmul_eq0[simp]: |
68442 | 571 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
60538 | 572 |
assumes nx: "isnormNum x" |
573 |
and ny: "isnormNum y" |
|
44780 | 574 |
shows "x*\<^sub>N y = 0\<^sub>N \<longleftrightarrow> x = 0\<^sub>N \<or> y = 0\<^sub>N" |
44779 | 575 |
proof - |
44780 | 576 |
obtain a b where x: "x = (a, b)" by (cases x) |
577 |
obtain a' b' where y: "y = (a', b')" by (cases y) |
|
44779 | 578 |
have n0: "isnormNum 0\<^sub>N" by simp |
44780 | 579 |
show ?thesis using nx ny |
80105
2fa018321400
Streamlining of many more archaic proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
580 |
by (metis (no_types, opaque_lifting) INum_int(2) Nmul Nmul0(1) Nmul0(2) isnormNum0 mult_eq_0_iff) |
24197 | 581 |
qed |
44779 | 582 |
|
24197 | 583 |
lemma Nneg_Nneg[simp]: "~\<^sub>N (~\<^sub>N c) = c" |
584 |
by (simp add: Nneg_def split_def) |
|
585 |
||
60538 | 586 |
lemma Nmul1[simp]: "isnormNum c \<Longrightarrow> (1)\<^sub>N *\<^sub>N c = c" "isnormNum c \<Longrightarrow> c *\<^sub>N (1)\<^sub>N = c" |
80105
2fa018321400
Streamlining of many more archaic proofs
paulson <lp15@cam.ac.uk>
parents:
69597
diff
changeset
|
587 |
by (simp add: Nmul_def Let_def split_def isnormNum_def, metis div_0 div_by_1 surjective_pairing)+ |
24197 | 588 |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
589 |
end |