author | nipkow |
Wed, 18 Aug 2004 11:09:40 +0200 | |
changeset 15140 | 322485b816ac |
parent 15131 | c69542757a4d |
child 15251 | bb6f072c8d10 |
permissions | -rw-r--r-- |
3981 | 1 |
(* Title: HOL/Map.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, based on a theory by David von Oheimb |
|
13908 | 4 |
Copyright 1997-2003 TU Muenchen |
3981 | 5 |
|
6 |
The datatype of `maps' (written ~=>); strongly resembles maps in VDM. |
|
7 |
*) |
|
8 |
||
13914 | 9 |
header {* Maps *} |
10 |
||
15131 | 11 |
theory Map |
15140 | 12 |
imports List |
15131 | 13 |
begin |
3981 | 14 |
|
13908 | 15 |
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0) |
14100 | 16 |
translations (type) "a ~=> b " <= (type) "a => b option" |
3981 | 17 |
|
18 |
consts |
|
5300 | 19 |
chg_map :: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)" |
14100 | 20 |
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) |
21 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_|'__" [90, 91] 90) |
|
5300 | 22 |
dom :: "('a ~=> 'b) => 'a set" |
23 |
ran :: "('a ~=> 'b) => 'b set" |
|
24 |
map_of :: "('a * 'b)list => 'a ~=> 'b" |
|
25 |
map_upds:: "('a ~=> 'b) => 'a list => 'b list => |
|
14180 | 26 |
('a ~=> 'b)" |
14100 | 27 |
map_upd_s::"('a ~=> 'b) => 'a set => 'b => |
28 |
('a ~=> 'b)" ("_/'(_{|->}_/')" [900,0,0]900) |
|
29 |
map_subst::"('a ~=> 'b) => 'b => 'b => |
|
30 |
('a ~=> 'b)" ("_/'(_~>_/')" [900,0,0]900) |
|
13910 | 31 |
map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) |
32 |
||
14739 | 33 |
syntax |
34 |
fun_map_comp :: "('b => 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55) |
|
35 |
translations |
|
36 |
"f o_m m" == "option_map f o m" |
|
37 |
||
14180 | 38 |
nonterminals |
39 |
maplets maplet |
|
40 |
||
5300 | 41 |
syntax |
14180 | 42 |
empty :: "'a ~=> 'b" |
43 |
"_maplet" :: "['a, 'a] => maplet" ("_ /|->/ _") |
|
44 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[|->]/ _") |
|
45 |
"" :: "maplet => maplets" ("_") |
|
46 |
"_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _") |
|
47 |
"_MapUpd" :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900) |
|
48 |
"_Map" :: "maplets => 'a ~=> 'b" ("(1[_])") |
|
3981 | 49 |
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10137
diff
changeset
|
50 |
syntax (xsymbols) |
14739 | 51 |
"~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) |
52 |
||
53 |
fun_map_comp :: "('b => 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "\<circ>\<^sub>m" 55) |
|
54 |
||
14180 | 55 |
"_maplet" :: "['a, 'a] => maplet" ("_ /\<mapsto>/ _") |
56 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[\<mapsto>]/ _") |
|
57 |
||
14100 | 58 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_\<lfloor>_" [90, 91] 90) |
59 |
map_upd_s :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)" |
|
60 |
("_/'(_/{\<mapsto>}/_')" [900,0,0]900) |
|
61 |
map_subst :: "('a ~=> 'b) => 'b => 'b => |
|
62 |
('a ~=> 'b)" ("_/'(_\<leadsto>_/')" [900,0,0]900) |
|
63 |
"@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)" |
|
64 |
("_/'(_/\<mapsto>\<lambda>_. _')" [900,0,0,0] 900) |
|
5300 | 65 |
|
66 |
translations |
|
13890 | 67 |
"empty" => "_K None" |
68 |
"empty" <= "%x. None" |
|
5300 | 69 |
|
14100 | 70 |
"m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m" |
3981 | 71 |
|
14180 | 72 |
"_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" |
73 |
"_MapUpd m (_maplet x y)" == "m(x:=Some y)" |
|
74 |
"_MapUpd m (_maplets x y)" == "map_upds m x y" |
|
75 |
"_Map ms" == "_MapUpd empty ms" |
|
76 |
"_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" |
|
77 |
"_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" |
|
78 |
||
3981 | 79 |
defs |
13908 | 80 |
chg_map_def: "chg_map f a m == case m a of None => m | Some b => m(a|->f b)" |
3981 | 81 |
|
14100 | 82 |
map_add_def: "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y" |
83 |
restrict_map_def: "m|_A == %x. if x : A then m x else None" |
|
14025 | 84 |
|
85 |
map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" |
|
14100 | 86 |
map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x" |
87 |
map_subst_def: "m(a~>b) == %x. if m x = Some a then Some b else m x" |
|
3981 | 88 |
|
13908 | 89 |
dom_def: "dom(m) == {a. m a ~= None}" |
14025 | 90 |
ran_def: "ran(m) == {b. EX a. m a = Some b}" |
3981 | 91 |
|
14376 | 92 |
map_le_def: "m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2 == ALL a : dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a" |
13910 | 93 |
|
5183 | 94 |
primrec |
95 |
"map_of [] = empty" |
|
5300 | 96 |
"map_of (p#ps) = (map_of ps)(fst p |-> snd p)" |
97 |
||
13908 | 98 |
|
14100 | 99 |
subsection {* @{term empty} *} |
13908 | 100 |
|
13910 | 101 |
lemma empty_upd_none[simp]: "empty(x := None) = empty" |
13908 | 102 |
apply (rule ext) |
103 |
apply (simp (no_asm)) |
|
104 |
done |
|
13910 | 105 |
|
13908 | 106 |
|
107 |
(* FIXME: what is this sum_case nonsense?? *) |
|
13910 | 108 |
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty" |
13908 | 109 |
apply (rule ext) |
110 |
apply (simp (no_asm) split add: sum.split) |
|
111 |
done |
|
112 |
||
14100 | 113 |
subsection {* @{term map_upd} *} |
13908 | 114 |
|
115 |
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" |
|
116 |
apply (rule ext) |
|
117 |
apply (simp (no_asm_simp)) |
|
118 |
done |
|
119 |
||
13910 | 120 |
lemma map_upd_nonempty[simp]: "t(k|->x) ~= empty" |
13908 | 121 |
apply safe |
14208 | 122 |
apply (drule_tac x = k in fun_cong) |
13908 | 123 |
apply (simp (no_asm_use)) |
124 |
done |
|
125 |
||
14100 | 126 |
lemma map_upd_eqD1: "m(a\<mapsto>x) = n(a\<mapsto>y) \<Longrightarrow> x = y" |
127 |
by (drule fun_cong [of _ _ a], auto) |
|
128 |
||
129 |
lemma map_upd_Some_unfold: |
|
130 |
"((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" |
|
131 |
by auto |
|
132 |
||
13908 | 133 |
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" |
134 |
apply (unfold image_def) |
|
135 |
apply (simp (no_asm_use) add: full_SetCompr_eq) |
|
136 |
apply (rule finite_subset) |
|
14208 | 137 |
prefer 2 apply assumption |
13908 | 138 |
apply auto |
139 |
done |
|
140 |
||
141 |
||
142 |
(* FIXME: what is this sum_case nonsense?? *) |
|
14100 | 143 |
subsection {* @{term sum_case} and @{term empty}/@{term map_upd} *} |
13908 | 144 |
|
13910 | 145 |
lemma sum_case_map_upd_empty[simp]: |
146 |
"sum_case (m(k|->y)) empty = (sum_case m empty)(Inl k|->y)" |
|
13908 | 147 |
apply (rule ext) |
148 |
apply (simp (no_asm) split add: sum.split) |
|
149 |
done |
|
150 |
||
13910 | 151 |
lemma sum_case_empty_map_upd[simp]: |
152 |
"sum_case empty (m(k|->y)) = (sum_case empty m)(Inr k|->y)" |
|
13908 | 153 |
apply (rule ext) |
154 |
apply (simp (no_asm) split add: sum.split) |
|
155 |
done |
|
156 |
||
13910 | 157 |
lemma sum_case_map_upd_map_upd[simp]: |
158 |
"sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)" |
|
13908 | 159 |
apply (rule ext) |
160 |
apply (simp (no_asm) split add: sum.split) |
|
161 |
done |
|
162 |
||
163 |
||
14100 | 164 |
subsection {* @{term chg_map} *} |
13908 | 165 |
|
13910 | 166 |
lemma chg_map_new[simp]: "m a = None ==> chg_map f a m = m" |
14208 | 167 |
by (unfold chg_map_def, auto) |
13908 | 168 |
|
13910 | 169 |
lemma chg_map_upd[simp]: "m a = Some b ==> chg_map f a m = m(a|->f b)" |
14208 | 170 |
by (unfold chg_map_def, auto) |
13908 | 171 |
|
14537 | 172 |
lemma chg_map_other [simp]: "a \<noteq> b \<Longrightarrow> chg_map f a m b = m b" |
173 |
by (auto simp: chg_map_def split add: option.split) |
|
174 |
||
13908 | 175 |
|
14100 | 176 |
subsection {* @{term map_of} *} |
13908 | 177 |
|
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
178 |
lemma map_of_zip_is_None[simp]: |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
179 |
"length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
180 |
by (induct rule:list_induct2, simp_all) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
181 |
|
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
182 |
lemma finite_range_map_of: "finite (range (map_of xys))" |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
183 |
apply (induct_tac xys) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
184 |
apply (simp_all (no_asm) add: image_constant) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
185 |
apply (rule finite_subset) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
186 |
prefer 2 apply assumption |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
187 |
apply auto |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
188 |
done |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
189 |
|
13908 | 190 |
lemma map_of_SomeD [rule_format (no_asm)]: "map_of xs k = Some y --> (k,y):set xs" |
14208 | 191 |
by (induct_tac "xs", auto) |
13908 | 192 |
|
193 |
lemma map_of_mapk_SomeI [rule_format (no_asm)]: "inj f ==> map_of t k = Some x --> |
|
194 |
map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" |
|
195 |
apply (induct_tac "t") |
|
196 |
apply (auto simp add: inj_eq) |
|
197 |
done |
|
198 |
||
199 |
lemma weak_map_of_SomeI [rule_format (no_asm)]: "(k, x) : set l --> (? x. map_of l k = Some x)" |
|
14208 | 200 |
by (induct_tac "l", auto) |
13908 | 201 |
|
202 |
lemma map_of_filter_in: |
|
203 |
"[| map_of xs k = Some z; P k z |] ==> map_of (filter (split P) xs) k = Some z" |
|
204 |
apply (rule mp) |
|
14208 | 205 |
prefer 2 apply assumption |
13908 | 206 |
apply (erule thin_rl) |
14208 | 207 |
apply (induct_tac "xs", auto) |
13908 | 208 |
done |
209 |
||
210 |
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" |
|
14208 | 211 |
by (induct_tac "xs", auto) |
13908 | 212 |
|
213 |
||
14100 | 214 |
subsection {* @{term option_map} related *} |
13908 | 215 |
|
13910 | 216 |
lemma option_map_o_empty[simp]: "option_map f o empty = empty" |
13908 | 217 |
apply (rule ext) |
218 |
apply (simp (no_asm)) |
|
219 |
done |
|
220 |
||
13910 | 221 |
lemma option_map_o_map_upd[simp]: |
222 |
"option_map f o m(a|->b) = (option_map f o m)(a|->f b)" |
|
13908 | 223 |
apply (rule ext) |
224 |
apply (simp (no_asm)) |
|
225 |
done |
|
226 |
||
227 |
||
14100 | 228 |
subsection {* @{text "++"} *} |
13908 | 229 |
|
14025 | 230 |
lemma map_add_empty[simp]: "m ++ empty = m" |
231 |
apply (unfold map_add_def) |
|
13908 | 232 |
apply (simp (no_asm)) |
233 |
done |
|
234 |
||
14025 | 235 |
lemma empty_map_add[simp]: "empty ++ m = m" |
236 |
apply (unfold map_add_def) |
|
13908 | 237 |
apply (rule ext) |
238 |
apply (simp split add: option.split) |
|
239 |
done |
|
240 |
||
14025 | 241 |
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" |
242 |
apply(rule ext) |
|
243 |
apply(simp add: map_add_def split:option.split) |
|
244 |
done |
|
245 |
||
246 |
lemma map_add_Some_iff: |
|
13908 | 247 |
"((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" |
14025 | 248 |
apply (unfold map_add_def) |
13908 | 249 |
apply (simp (no_asm) split add: option.split) |
250 |
done |
|
251 |
||
14025 | 252 |
lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard] |
253 |
declare map_add_SomeD [dest!] |
|
13908 | 254 |
|
14025 | 255 |
lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" |
14208 | 256 |
by (subst map_add_Some_iff, fast) |
13908 | 257 |
|
14025 | 258 |
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" |
259 |
apply (unfold map_add_def) |
|
13908 | 260 |
apply (simp (no_asm) split add: option.split) |
261 |
done |
|
262 |
||
14025 | 263 |
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" |
264 |
apply (unfold map_add_def) |
|
14208 | 265 |
apply (rule ext, auto) |
13908 | 266 |
done |
267 |
||
14186 | 268 |
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" |
269 |
by(simp add:map_upds_def) |
|
270 |
||
14025 | 271 |
lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs" |
272 |
apply (unfold map_add_def) |
|
13908 | 273 |
apply (induct_tac "xs") |
274 |
apply (simp (no_asm)) |
|
275 |
apply (rule ext) |
|
276 |
apply (simp (no_asm_simp) split add: option.split) |
|
277 |
done |
|
278 |
||
279 |
declare fun_upd_apply [simp del] |
|
14025 | 280 |
lemma finite_range_map_of_map_add: |
281 |
"finite (range f) ==> finite (range (f ++ map_of l))" |
|
14208 | 282 |
apply (induct_tac "l", auto) |
13908 | 283 |
apply (erule finite_range_updI) |
284 |
done |
|
285 |
declare fun_upd_apply [simp] |
|
286 |
||
14100 | 287 |
subsection {* @{term restrict_map} *} |
288 |
||
14186 | 289 |
lemma restrict_map_to_empty[simp]: "m\<lfloor>{} = empty" |
290 |
by(simp add: restrict_map_def) |
|
291 |
||
292 |
lemma restrict_map_empty[simp]: "empty\<lfloor>D = empty" |
|
293 |
by(simp add: restrict_map_def) |
|
294 |
||
14100 | 295 |
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m\<lfloor>A) x = m x" |
296 |
by (auto simp: restrict_map_def) |
|
297 |
||
298 |
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m\<lfloor>A) x = None" |
|
299 |
by (auto simp: restrict_map_def) |
|
300 |
||
301 |
lemma ran_restrictD: "y \<in> ran (m\<lfloor>A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" |
|
302 |
by (auto simp: restrict_map_def ran_def split: split_if_asm) |
|
303 |
||
14186 | 304 |
lemma dom_restrict [simp]: "dom (m\<lfloor>A) = dom m \<inter> A" |
14100 | 305 |
by (auto simp: restrict_map_def dom_def split: split_if_asm) |
306 |
||
307 |
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)\<lfloor>(-{x}) = m\<lfloor>(-{x})" |
|
308 |
by (rule ext, auto simp: restrict_map_def) |
|
309 |
||
310 |
lemma restrict_restrict [simp]: "m\<lfloor>A\<lfloor>B = m\<lfloor>(A\<inter>B)" |
|
311 |
by (rule ext, auto simp: restrict_map_def) |
|
312 |
||
14186 | 313 |
lemma restrict_fun_upd[simp]: |
314 |
"m(x := y)\<lfloor>D = (if x \<in> D then (m\<lfloor>(D-{x}))(x := y) else m\<lfloor>D)" |
|
315 |
by(simp add: restrict_map_def expand_fun_eq) |
|
316 |
||
317 |
lemma fun_upd_None_restrict[simp]: |
|
318 |
"(m\<lfloor>D)(x := None) = (if x:D then m\<lfloor>(D - {x}) else m\<lfloor>D)" |
|
319 |
by(simp add: restrict_map_def expand_fun_eq) |
|
320 |
||
321 |
lemma fun_upd_restrict: |
|
322 |
"(m\<lfloor>D)(x := y) = (m\<lfloor>(D-{x}))(x := y)" |
|
323 |
by(simp add: restrict_map_def expand_fun_eq) |
|
324 |
||
325 |
lemma fun_upd_restrict_conv[simp]: |
|
326 |
"x \<in> D \<Longrightarrow> (m\<lfloor>D)(x := y) = (m\<lfloor>(D-{x}))(x := y)" |
|
327 |
by(simp add: restrict_map_def expand_fun_eq) |
|
328 |
||
14100 | 329 |
|
330 |
subsection {* @{term map_upds} *} |
|
14025 | 331 |
|
332 |
lemma map_upds_Nil1[simp]: "m([] [|->] bs) = m" |
|
333 |
by(simp add:map_upds_def) |
|
334 |
||
335 |
lemma map_upds_Nil2[simp]: "m(as [|->] []) = m" |
|
336 |
by(simp add:map_upds_def) |
|
337 |
||
338 |
lemma map_upds_Cons[simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" |
|
339 |
by(simp add:map_upds_def) |
|
340 |
||
14187 | 341 |
lemma map_upds_append1[simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> |
342 |
m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" |
|
343 |
apply(induct xs) |
|
344 |
apply(clarsimp simp add:neq_Nil_conv) |
|
14208 | 345 |
apply (case_tac ys, simp, simp) |
14187 | 346 |
done |
347 |
||
348 |
lemma map_upds_list_update2_drop[simp]: |
|
349 |
"\<And>m ys i. \<lbrakk>size xs \<le> i; i < size ys\<rbrakk> |
|
350 |
\<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" |
|
14208 | 351 |
apply (induct xs, simp) |
352 |
apply (case_tac ys, simp) |
|
14187 | 353 |
apply(simp split:nat.split) |
354 |
done |
|
14025 | 355 |
|
356 |
lemma map_upd_upds_conv_if: "!!x y ys f. |
|
357 |
(f(x|->y))(xs [|->] ys) = |
|
358 |
(if x : set(take (length ys) xs) then f(xs [|->] ys) |
|
359 |
else (f(xs [|->] ys))(x|->y))" |
|
14208 | 360 |
apply (induct xs, simp) |
14025 | 361 |
apply(case_tac ys) |
362 |
apply(auto split:split_if simp:fun_upd_twist) |
|
363 |
done |
|
364 |
||
365 |
lemma map_upds_twist [simp]: |
|
366 |
"a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" |
|
367 |
apply(insert set_take_subset) |
|
368 |
apply (fastsimp simp add: map_upd_upds_conv_if) |
|
369 |
done |
|
370 |
||
371 |
lemma map_upds_apply_nontin[simp]: |
|
372 |
"!!ys. x ~: set xs ==> (f(xs[|->]ys)) x = f x" |
|
14208 | 373 |
apply (induct xs, simp) |
14025 | 374 |
apply(case_tac ys) |
375 |
apply(auto simp: map_upd_upds_conv_if) |
|
376 |
done |
|
377 |
||
14300 | 378 |
lemma fun_upds_append_drop[simp]: |
379 |
"!!m ys. size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" |
|
380 |
apply(induct xs) |
|
381 |
apply (simp) |
|
382 |
apply(case_tac ys) |
|
383 |
apply simp_all |
|
384 |
done |
|
385 |
||
386 |
lemma fun_upds_append2_drop[simp]: |
|
387 |
"!!m ys. size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" |
|
388 |
apply(induct xs) |
|
389 |
apply (simp) |
|
390 |
apply(case_tac ys) |
|
391 |
apply simp_all |
|
392 |
done |
|
393 |
||
394 |
||
14186 | 395 |
lemma restrict_map_upds[simp]: "!!m ys. |
396 |
\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> |
|
397 |
\<Longrightarrow> m(xs [\<mapsto>] ys)\<lfloor>D = (m\<lfloor>(D - set xs))(xs [\<mapsto>] ys)" |
|
14208 | 398 |
apply (induct xs, simp) |
399 |
apply (case_tac ys, simp) |
|
14186 | 400 |
apply(simp add:Diff_insert[symmetric] insert_absorb) |
401 |
apply(simp add: map_upd_upds_conv_if) |
|
402 |
done |
|
403 |
||
404 |
||
14100 | 405 |
subsection {* @{term map_upd_s} *} |
406 |
||
407 |
lemma map_upd_s_apply [simp]: |
|
408 |
"(m(as{|->}b)) x = (if x : as then Some b else m x)" |
|
409 |
by (simp add: map_upd_s_def) |
|
410 |
||
411 |
lemma map_subst_apply [simp]: |
|
412 |
"(m(a~>b)) x = (if m x = Some a then Some b else m x)" |
|
413 |
by (simp add: map_subst_def) |
|
414 |
||
415 |
subsection {* @{term dom} *} |
|
13908 | 416 |
|
417 |
lemma domI: "m a = Some b ==> a : dom m" |
|
14208 | 418 |
by (unfold dom_def, auto) |
14100 | 419 |
(* declare domI [intro]? *) |
13908 | 420 |
|
421 |
lemma domD: "a : dom m ==> ? b. m a = Some b" |
|
14208 | 422 |
by (unfold dom_def, auto) |
13908 | 423 |
|
13910 | 424 |
lemma domIff[iff]: "(a : dom m) = (m a ~= None)" |
14208 | 425 |
by (unfold dom_def, auto) |
13908 | 426 |
declare domIff [simp del] |
427 |
||
13910 | 428 |
lemma dom_empty[simp]: "dom empty = {}" |
13908 | 429 |
apply (unfold dom_def) |
430 |
apply (simp (no_asm)) |
|
431 |
done |
|
432 |
||
13910 | 433 |
lemma dom_fun_upd[simp]: |
434 |
"dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))" |
|
435 |
by (simp add:dom_def) blast |
|
13908 | 436 |
|
13937 | 437 |
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}" |
438 |
apply(induct xys) |
|
439 |
apply(auto simp del:fun_upd_apply) |
|
440 |
done |
|
441 |
||
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
442 |
lemma dom_map_of_zip[simp]: "[| length xs = length ys; distinct xs |] ==> |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
443 |
dom(map_of(zip xs ys)) = set xs" |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
444 |
by(induct rule: list_induct2, simp_all) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
445 |
|
13908 | 446 |
lemma finite_dom_map_of: "finite (dom (map_of l))" |
447 |
apply (unfold dom_def) |
|
448 |
apply (induct_tac "l") |
|
449 |
apply (auto simp add: insert_Collect [symmetric]) |
|
450 |
done |
|
451 |
||
14025 | 452 |
lemma dom_map_upds[simp]: |
453 |
"!!m ys. dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" |
|
14208 | 454 |
apply (induct xs, simp) |
455 |
apply (case_tac ys, auto) |
|
14025 | 456 |
done |
13910 | 457 |
|
14025 | 458 |
lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m" |
14208 | 459 |
by (unfold dom_def, auto) |
13910 | 460 |
|
461 |
lemma dom_overwrite[simp]: |
|
462 |
"dom(f(g|A)) = (dom f - {a. a : A - dom g}) Un {a. a : A Int dom g}" |
|
463 |
by(auto simp add: dom_def overwrite_def) |
|
13908 | 464 |
|
14027 | 465 |
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1" |
466 |
apply(rule ext) |
|
467 |
apply(fastsimp simp:map_add_def split:option.split) |
|
468 |
done |
|
469 |
||
14100 | 470 |
subsection {* @{term ran} *} |
471 |
||
472 |
lemma ranI: "m a = Some b ==> b : ran m" |
|
473 |
by (auto simp add: ran_def) |
|
474 |
(* declare ranI [intro]? *) |
|
13908 | 475 |
|
13910 | 476 |
lemma ran_empty[simp]: "ran empty = {}" |
13908 | 477 |
apply (unfold ran_def) |
478 |
apply (simp (no_asm)) |
|
479 |
done |
|
480 |
||
13910 | 481 |
lemma ran_map_upd[simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" |
14208 | 482 |
apply (unfold ran_def, auto) |
13908 | 483 |
apply (subgoal_tac "~ (aa = a) ") |
484 |
apply auto |
|
485 |
done |
|
13910 | 486 |
|
14100 | 487 |
subsection {* @{text "map_le"} *} |
13910 | 488 |
|
13912 | 489 |
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" |
13910 | 490 |
by(simp add:map_le_def) |
491 |
||
14187 | 492 |
lemma [simp]: "f(x := None) \<subseteq>\<^sub>m f" |
493 |
by(force simp add:map_le_def) |
|
494 |
||
13910 | 495 |
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" |
496 |
by(fastsimp simp add:map_le_def) |
|
497 |
||
14187 | 498 |
lemma [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" |
499 |
by(force simp add:map_le_def) |
|
500 |
||
13910 | 501 |
lemma map_le_upds[simp]: |
502 |
"!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" |
|
14208 | 503 |
apply (induct as, simp) |
504 |
apply (case_tac bs, auto) |
|
14025 | 505 |
done |
13908 | 506 |
|
14033 | 507 |
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" |
508 |
by (fastsimp simp add: map_le_def dom_def) |
|
509 |
||
510 |
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" |
|
511 |
by (simp add: map_le_def) |
|
512 |
||
14187 | 513 |
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" |
514 |
by(force simp add:map_le_def) |
|
14033 | 515 |
|
516 |
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" |
|
517 |
apply (unfold map_le_def) |
|
518 |
apply (rule ext) |
|
14208 | 519 |
apply (case_tac "x \<in> dom f", simp) |
520 |
apply (case_tac "x \<in> dom g", simp, fastsimp) |
|
14033 | 521 |
done |
522 |
||
523 |
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" |
|
524 |
by (fastsimp simp add: map_le_def) |
|
525 |
||
3981 | 526 |
end |