author | nipkow |
Sun, 21 Nov 2004 18:39:25 +0100 | |
changeset 15304 | 3514ca74ac54 |
parent 15303 | eedbb8d22ca2 |
child 15369 | 090b16d6c6e0 |
permissions | -rw-r--r-- |
3981 | 1 |
(* Title: HOL/Map.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, based on a theory by David von Oheimb |
|
13908 | 4 |
Copyright 1997-2003 TU Muenchen |
3981 | 5 |
|
6 |
The datatype of `maps' (written ~=>); strongly resembles maps in VDM. |
|
7 |
*) |
|
8 |
||
13914 | 9 |
header {* Maps *} |
10 |
||
15131 | 11 |
theory Map |
15140 | 12 |
imports List |
15131 | 13 |
begin |
3981 | 14 |
|
13908 | 15 |
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0) |
14100 | 16 |
translations (type) "a ~=> b " <= (type) "a => b option" |
3981 | 17 |
|
18 |
consts |
|
5300 | 19 |
chg_map :: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)" |
14100 | 20 |
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) |
21 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_|'__" [90, 91] 90) |
|
5300 | 22 |
dom :: "('a ~=> 'b) => 'a set" |
23 |
ran :: "('a ~=> 'b) => 'b set" |
|
24 |
map_of :: "('a * 'b)list => 'a ~=> 'b" |
|
25 |
map_upds:: "('a ~=> 'b) => 'a list => 'b list => |
|
14180 | 26 |
('a ~=> 'b)" |
14100 | 27 |
map_upd_s::"('a ~=> 'b) => 'a set => 'b => |
28 |
('a ~=> 'b)" ("_/'(_{|->}_/')" [900,0,0]900) |
|
29 |
map_subst::"('a ~=> 'b) => 'b => 'b => |
|
30 |
('a ~=> 'b)" ("_/'(_~>_/')" [900,0,0]900) |
|
13910 | 31 |
map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) |
32 |
||
14739 | 33 |
syntax |
34 |
fun_map_comp :: "('b => 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55) |
|
35 |
translations |
|
36 |
"f o_m m" == "option_map f o m" |
|
37 |
||
14180 | 38 |
nonterminals |
39 |
maplets maplet |
|
40 |
||
5300 | 41 |
syntax |
14180 | 42 |
empty :: "'a ~=> 'b" |
43 |
"_maplet" :: "['a, 'a] => maplet" ("_ /|->/ _") |
|
44 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[|->]/ _") |
|
45 |
"" :: "maplet => maplets" ("_") |
|
46 |
"_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _") |
|
47 |
"_MapUpd" :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900) |
|
48 |
"_Map" :: "maplets => 'a ~=> 'b" ("(1[_])") |
|
3981 | 49 |
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10137
diff
changeset
|
50 |
syntax (xsymbols) |
14739 | 51 |
"~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) |
52 |
||
53 |
fun_map_comp :: "('b => 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "\<circ>\<^sub>m" 55) |
|
54 |
||
14180 | 55 |
"_maplet" :: "['a, 'a] => maplet" ("_ /\<mapsto>/ _") |
56 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[\<mapsto>]/ _") |
|
57 |
||
14100 | 58 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_\<lfloor>_" [90, 91] 90) |
59 |
map_upd_s :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)" |
|
60 |
("_/'(_/{\<mapsto>}/_')" [900,0,0]900) |
|
61 |
map_subst :: "('a ~=> 'b) => 'b => 'b => |
|
62 |
('a ~=> 'b)" ("_/'(_\<leadsto>_/')" [900,0,0]900) |
|
63 |
"@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)" |
|
64 |
("_/'(_/\<mapsto>\<lambda>_. _')" [900,0,0,0] 900) |
|
5300 | 65 |
|
66 |
translations |
|
13890 | 67 |
"empty" => "_K None" |
68 |
"empty" <= "%x. None" |
|
5300 | 69 |
|
14100 | 70 |
"m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m" |
3981 | 71 |
|
14180 | 72 |
"_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" |
73 |
"_MapUpd m (_maplet x y)" == "m(x:=Some y)" |
|
74 |
"_MapUpd m (_maplets x y)" == "map_upds m x y" |
|
75 |
"_Map ms" == "_MapUpd empty ms" |
|
76 |
"_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" |
|
77 |
"_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" |
|
78 |
||
3981 | 79 |
defs |
13908 | 80 |
chg_map_def: "chg_map f a m == case m a of None => m | Some b => m(a|->f b)" |
3981 | 81 |
|
14100 | 82 |
map_add_def: "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y" |
83 |
restrict_map_def: "m|_A == %x. if x : A then m x else None" |
|
14025 | 84 |
|
85 |
map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" |
|
14100 | 86 |
map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x" |
87 |
map_subst_def: "m(a~>b) == %x. if m x = Some a then Some b else m x" |
|
3981 | 88 |
|
13908 | 89 |
dom_def: "dom(m) == {a. m a ~= None}" |
14025 | 90 |
ran_def: "ran(m) == {b. EX a. m a = Some b}" |
3981 | 91 |
|
14376 | 92 |
map_le_def: "m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2 == ALL a : dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a" |
13910 | 93 |
|
5183 | 94 |
primrec |
95 |
"map_of [] = empty" |
|
5300 | 96 |
"map_of (p#ps) = (map_of ps)(fst p |-> snd p)" |
97 |
||
13908 | 98 |
|
14100 | 99 |
subsection {* @{term empty} *} |
13908 | 100 |
|
13910 | 101 |
lemma empty_upd_none[simp]: "empty(x := None) = empty" |
13908 | 102 |
apply (rule ext) |
103 |
apply (simp (no_asm)) |
|
104 |
done |
|
13910 | 105 |
|
13908 | 106 |
|
107 |
(* FIXME: what is this sum_case nonsense?? *) |
|
13910 | 108 |
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty" |
13908 | 109 |
apply (rule ext) |
110 |
apply (simp (no_asm) split add: sum.split) |
|
111 |
done |
|
112 |
||
14100 | 113 |
subsection {* @{term map_upd} *} |
13908 | 114 |
|
115 |
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" |
|
116 |
apply (rule ext) |
|
117 |
apply (simp (no_asm_simp)) |
|
118 |
done |
|
119 |
||
13910 | 120 |
lemma map_upd_nonempty[simp]: "t(k|->x) ~= empty" |
13908 | 121 |
apply safe |
14208 | 122 |
apply (drule_tac x = k in fun_cong) |
13908 | 123 |
apply (simp (no_asm_use)) |
124 |
done |
|
125 |
||
14100 | 126 |
lemma map_upd_eqD1: "m(a\<mapsto>x) = n(a\<mapsto>y) \<Longrightarrow> x = y" |
127 |
by (drule fun_cong [of _ _ a], auto) |
|
128 |
||
129 |
lemma map_upd_Some_unfold: |
|
130 |
"((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" |
|
131 |
by auto |
|
132 |
||
15303 | 133 |
lemma image_map_upd[simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" |
134 |
by fastsimp |
|
135 |
||
13908 | 136 |
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" |
137 |
apply (unfold image_def) |
|
138 |
apply (simp (no_asm_use) add: full_SetCompr_eq) |
|
139 |
apply (rule finite_subset) |
|
14208 | 140 |
prefer 2 apply assumption |
13908 | 141 |
apply auto |
142 |
done |
|
143 |
||
144 |
||
145 |
(* FIXME: what is this sum_case nonsense?? *) |
|
14100 | 146 |
subsection {* @{term sum_case} and @{term empty}/@{term map_upd} *} |
13908 | 147 |
|
13910 | 148 |
lemma sum_case_map_upd_empty[simp]: |
149 |
"sum_case (m(k|->y)) empty = (sum_case m empty)(Inl k|->y)" |
|
13908 | 150 |
apply (rule ext) |
151 |
apply (simp (no_asm) split add: sum.split) |
|
152 |
done |
|
153 |
||
13910 | 154 |
lemma sum_case_empty_map_upd[simp]: |
155 |
"sum_case empty (m(k|->y)) = (sum_case empty m)(Inr k|->y)" |
|
13908 | 156 |
apply (rule ext) |
157 |
apply (simp (no_asm) split add: sum.split) |
|
158 |
done |
|
159 |
||
13910 | 160 |
lemma sum_case_map_upd_map_upd[simp]: |
161 |
"sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)" |
|
13908 | 162 |
apply (rule ext) |
163 |
apply (simp (no_asm) split add: sum.split) |
|
164 |
done |
|
165 |
||
166 |
||
14100 | 167 |
subsection {* @{term chg_map} *} |
13908 | 168 |
|
13910 | 169 |
lemma chg_map_new[simp]: "m a = None ==> chg_map f a m = m" |
14208 | 170 |
by (unfold chg_map_def, auto) |
13908 | 171 |
|
13910 | 172 |
lemma chg_map_upd[simp]: "m a = Some b ==> chg_map f a m = m(a|->f b)" |
14208 | 173 |
by (unfold chg_map_def, auto) |
13908 | 174 |
|
14537 | 175 |
lemma chg_map_other [simp]: "a \<noteq> b \<Longrightarrow> chg_map f a m b = m b" |
176 |
by (auto simp: chg_map_def split add: option.split) |
|
177 |
||
13908 | 178 |
|
14100 | 179 |
subsection {* @{term map_of} *} |
13908 | 180 |
|
15304 | 181 |
lemma map_of_eq_None_iff: |
182 |
"(map_of xys x = None) = (x \<notin> fst ` (set xys))" |
|
183 |
by (induct xys) simp_all |
|
184 |
||
185 |
lemma map_of_is_SomeD: |
|
186 |
"map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys" |
|
187 |
apply(induct xys) |
|
188 |
apply simp |
|
189 |
apply(clarsimp split:if_splits) |
|
190 |
done |
|
191 |
||
192 |
lemma map_of_eq_Some_iff[simp]: |
|
193 |
"distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" |
|
194 |
apply(induct xys) |
|
195 |
apply(simp) |
|
196 |
apply(auto simp:map_of_eq_None_iff[symmetric]) |
|
197 |
done |
|
198 |
||
199 |
lemma Some_eq_map_of_iff[simp]: |
|
200 |
"distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" |
|
201 |
by(auto simp del:map_of_eq_Some_iff simp add:map_of_eq_Some_iff[symmetric]) |
|
202 |
||
203 |
lemma [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> |
|
204 |
\<Longrightarrow> map_of xys x = Some y" |
|
205 |
apply (induct xys) |
|
206 |
apply simp |
|
207 |
apply force |
|
208 |
done |
|
209 |
||
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
210 |
lemma map_of_zip_is_None[simp]: |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
211 |
"length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
212 |
by (induct rule:list_induct2, simp_all) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
213 |
|
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
214 |
lemma finite_range_map_of: "finite (range (map_of xys))" |
15251 | 215 |
apply (induct xys) |
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
216 |
apply (simp_all (no_asm) add: image_constant) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
217 |
apply (rule finite_subset) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
218 |
prefer 2 apply assumption |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
219 |
apply auto |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
220 |
done |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
221 |
|
13908 | 222 |
lemma map_of_SomeD [rule_format (no_asm)]: "map_of xs k = Some y --> (k,y):set xs" |
15251 | 223 |
by (induct "xs", auto) |
13908 | 224 |
|
225 |
lemma map_of_mapk_SomeI [rule_format (no_asm)]: "inj f ==> map_of t k = Some x --> |
|
226 |
map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" |
|
15251 | 227 |
apply (induct "t") |
13908 | 228 |
apply (auto simp add: inj_eq) |
229 |
done |
|
230 |
||
231 |
lemma weak_map_of_SomeI [rule_format (no_asm)]: "(k, x) : set l --> (? x. map_of l k = Some x)" |
|
15251 | 232 |
by (induct "l", auto) |
13908 | 233 |
|
234 |
lemma map_of_filter_in: |
|
235 |
"[| map_of xs k = Some z; P k z |] ==> map_of (filter (split P) xs) k = Some z" |
|
236 |
apply (rule mp) |
|
14208 | 237 |
prefer 2 apply assumption |
13908 | 238 |
apply (erule thin_rl) |
15251 | 239 |
apply (induct "xs", auto) |
13908 | 240 |
done |
241 |
||
242 |
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" |
|
15251 | 243 |
by (induct "xs", auto) |
13908 | 244 |
|
245 |
||
14100 | 246 |
subsection {* @{term option_map} related *} |
13908 | 247 |
|
13910 | 248 |
lemma option_map_o_empty[simp]: "option_map f o empty = empty" |
13908 | 249 |
apply (rule ext) |
250 |
apply (simp (no_asm)) |
|
251 |
done |
|
252 |
||
13910 | 253 |
lemma option_map_o_map_upd[simp]: |
254 |
"option_map f o m(a|->b) = (option_map f o m)(a|->f b)" |
|
13908 | 255 |
apply (rule ext) |
256 |
apply (simp (no_asm)) |
|
257 |
done |
|
258 |
||
259 |
||
14100 | 260 |
subsection {* @{text "++"} *} |
13908 | 261 |
|
14025 | 262 |
lemma map_add_empty[simp]: "m ++ empty = m" |
263 |
apply (unfold map_add_def) |
|
13908 | 264 |
apply (simp (no_asm)) |
265 |
done |
|
266 |
||
14025 | 267 |
lemma empty_map_add[simp]: "empty ++ m = m" |
268 |
apply (unfold map_add_def) |
|
13908 | 269 |
apply (rule ext) |
270 |
apply (simp split add: option.split) |
|
271 |
done |
|
272 |
||
14025 | 273 |
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" |
274 |
apply(rule ext) |
|
275 |
apply(simp add: map_add_def split:option.split) |
|
276 |
done |
|
277 |
||
278 |
lemma map_add_Some_iff: |
|
13908 | 279 |
"((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" |
14025 | 280 |
apply (unfold map_add_def) |
13908 | 281 |
apply (simp (no_asm) split add: option.split) |
282 |
done |
|
283 |
||
14025 | 284 |
lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard] |
285 |
declare map_add_SomeD [dest!] |
|
13908 | 286 |
|
14025 | 287 |
lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" |
14208 | 288 |
by (subst map_add_Some_iff, fast) |
13908 | 289 |
|
14025 | 290 |
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" |
291 |
apply (unfold map_add_def) |
|
13908 | 292 |
apply (simp (no_asm) split add: option.split) |
293 |
done |
|
294 |
||
14025 | 295 |
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" |
296 |
apply (unfold map_add_def) |
|
14208 | 297 |
apply (rule ext, auto) |
13908 | 298 |
done |
299 |
||
14186 | 300 |
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" |
301 |
by(simp add:map_upds_def) |
|
302 |
||
14025 | 303 |
lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs" |
304 |
apply (unfold map_add_def) |
|
15251 | 305 |
apply (induct "xs") |
13908 | 306 |
apply (simp (no_asm)) |
307 |
apply (rule ext) |
|
308 |
apply (simp (no_asm_simp) split add: option.split) |
|
309 |
done |
|
310 |
||
311 |
declare fun_upd_apply [simp del] |
|
14025 | 312 |
lemma finite_range_map_of_map_add: |
313 |
"finite (range f) ==> finite (range (f ++ map_of l))" |
|
15251 | 314 |
apply (induct "l", auto) |
13908 | 315 |
apply (erule finite_range_updI) |
316 |
done |
|
317 |
declare fun_upd_apply [simp] |
|
318 |
||
15304 | 319 |
lemma inj_on_map_add_dom[iff]: |
320 |
"inj_on (m ++ m') (dom m') = inj_on m' (dom m')" |
|
321 |
by(fastsimp simp add:map_add_def dom_def inj_on_def split:option.splits) |
|
322 |
||
14100 | 323 |
subsection {* @{term restrict_map} *} |
324 |
||
14186 | 325 |
lemma restrict_map_to_empty[simp]: "m\<lfloor>{} = empty" |
326 |
by(simp add: restrict_map_def) |
|
327 |
||
328 |
lemma restrict_map_empty[simp]: "empty\<lfloor>D = empty" |
|
329 |
by(simp add: restrict_map_def) |
|
330 |
||
14100 | 331 |
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m\<lfloor>A) x = m x" |
332 |
by (auto simp: restrict_map_def) |
|
333 |
||
334 |
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m\<lfloor>A) x = None" |
|
335 |
by (auto simp: restrict_map_def) |
|
336 |
||
337 |
lemma ran_restrictD: "y \<in> ran (m\<lfloor>A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" |
|
338 |
by (auto simp: restrict_map_def ran_def split: split_if_asm) |
|
339 |
||
14186 | 340 |
lemma dom_restrict [simp]: "dom (m\<lfloor>A) = dom m \<inter> A" |
14100 | 341 |
by (auto simp: restrict_map_def dom_def split: split_if_asm) |
342 |
||
343 |
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)\<lfloor>(-{x}) = m\<lfloor>(-{x})" |
|
344 |
by (rule ext, auto simp: restrict_map_def) |
|
345 |
||
346 |
lemma restrict_restrict [simp]: "m\<lfloor>A\<lfloor>B = m\<lfloor>(A\<inter>B)" |
|
347 |
by (rule ext, auto simp: restrict_map_def) |
|
348 |
||
14186 | 349 |
lemma restrict_fun_upd[simp]: |
350 |
"m(x := y)\<lfloor>D = (if x \<in> D then (m\<lfloor>(D-{x}))(x := y) else m\<lfloor>D)" |
|
351 |
by(simp add: restrict_map_def expand_fun_eq) |
|
352 |
||
353 |
lemma fun_upd_None_restrict[simp]: |
|
354 |
"(m\<lfloor>D)(x := None) = (if x:D then m\<lfloor>(D - {x}) else m\<lfloor>D)" |
|
355 |
by(simp add: restrict_map_def expand_fun_eq) |
|
356 |
||
357 |
lemma fun_upd_restrict: |
|
358 |
"(m\<lfloor>D)(x := y) = (m\<lfloor>(D-{x}))(x := y)" |
|
359 |
by(simp add: restrict_map_def expand_fun_eq) |
|
360 |
||
361 |
lemma fun_upd_restrict_conv[simp]: |
|
362 |
"x \<in> D \<Longrightarrow> (m\<lfloor>D)(x := y) = (m\<lfloor>(D-{x}))(x := y)" |
|
363 |
by(simp add: restrict_map_def expand_fun_eq) |
|
364 |
||
14100 | 365 |
|
366 |
subsection {* @{term map_upds} *} |
|
14025 | 367 |
|
368 |
lemma map_upds_Nil1[simp]: "m([] [|->] bs) = m" |
|
369 |
by(simp add:map_upds_def) |
|
370 |
||
371 |
lemma map_upds_Nil2[simp]: "m(as [|->] []) = m" |
|
372 |
by(simp add:map_upds_def) |
|
373 |
||
374 |
lemma map_upds_Cons[simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" |
|
375 |
by(simp add:map_upds_def) |
|
376 |
||
14187 | 377 |
lemma map_upds_append1[simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> |
378 |
m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" |
|
379 |
apply(induct xs) |
|
380 |
apply(clarsimp simp add:neq_Nil_conv) |
|
14208 | 381 |
apply (case_tac ys, simp, simp) |
14187 | 382 |
done |
383 |
||
384 |
lemma map_upds_list_update2_drop[simp]: |
|
385 |
"\<And>m ys i. \<lbrakk>size xs \<le> i; i < size ys\<rbrakk> |
|
386 |
\<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" |
|
14208 | 387 |
apply (induct xs, simp) |
388 |
apply (case_tac ys, simp) |
|
14187 | 389 |
apply(simp split:nat.split) |
390 |
done |
|
14025 | 391 |
|
392 |
lemma map_upd_upds_conv_if: "!!x y ys f. |
|
393 |
(f(x|->y))(xs [|->] ys) = |
|
394 |
(if x : set(take (length ys) xs) then f(xs [|->] ys) |
|
395 |
else (f(xs [|->] ys))(x|->y))" |
|
14208 | 396 |
apply (induct xs, simp) |
14025 | 397 |
apply(case_tac ys) |
398 |
apply(auto split:split_if simp:fun_upd_twist) |
|
399 |
done |
|
400 |
||
401 |
lemma map_upds_twist [simp]: |
|
402 |
"a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" |
|
403 |
apply(insert set_take_subset) |
|
404 |
apply (fastsimp simp add: map_upd_upds_conv_if) |
|
405 |
done |
|
406 |
||
407 |
lemma map_upds_apply_nontin[simp]: |
|
408 |
"!!ys. x ~: set xs ==> (f(xs[|->]ys)) x = f x" |
|
14208 | 409 |
apply (induct xs, simp) |
14025 | 410 |
apply(case_tac ys) |
411 |
apply(auto simp: map_upd_upds_conv_if) |
|
412 |
done |
|
413 |
||
14300 | 414 |
lemma fun_upds_append_drop[simp]: |
415 |
"!!m ys. size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" |
|
416 |
apply(induct xs) |
|
417 |
apply (simp) |
|
418 |
apply(case_tac ys) |
|
419 |
apply simp_all |
|
420 |
done |
|
421 |
||
422 |
lemma fun_upds_append2_drop[simp]: |
|
423 |
"!!m ys. size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" |
|
424 |
apply(induct xs) |
|
425 |
apply (simp) |
|
426 |
apply(case_tac ys) |
|
427 |
apply simp_all |
|
428 |
done |
|
429 |
||
430 |
||
14186 | 431 |
lemma restrict_map_upds[simp]: "!!m ys. |
432 |
\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> |
|
433 |
\<Longrightarrow> m(xs [\<mapsto>] ys)\<lfloor>D = (m\<lfloor>(D - set xs))(xs [\<mapsto>] ys)" |
|
14208 | 434 |
apply (induct xs, simp) |
435 |
apply (case_tac ys, simp) |
|
14186 | 436 |
apply(simp add:Diff_insert[symmetric] insert_absorb) |
437 |
apply(simp add: map_upd_upds_conv_if) |
|
438 |
done |
|
439 |
||
440 |
||
14100 | 441 |
subsection {* @{term map_upd_s} *} |
442 |
||
443 |
lemma map_upd_s_apply [simp]: |
|
444 |
"(m(as{|->}b)) x = (if x : as then Some b else m x)" |
|
445 |
by (simp add: map_upd_s_def) |
|
446 |
||
447 |
lemma map_subst_apply [simp]: |
|
448 |
"(m(a~>b)) x = (if m x = Some a then Some b else m x)" |
|
449 |
by (simp add: map_subst_def) |
|
450 |
||
451 |
subsection {* @{term dom} *} |
|
13908 | 452 |
|
453 |
lemma domI: "m a = Some b ==> a : dom m" |
|
14208 | 454 |
by (unfold dom_def, auto) |
14100 | 455 |
(* declare domI [intro]? *) |
13908 | 456 |
|
457 |
lemma domD: "a : dom m ==> ? b. m a = Some b" |
|
14208 | 458 |
by (unfold dom_def, auto) |
13908 | 459 |
|
13910 | 460 |
lemma domIff[iff]: "(a : dom m) = (m a ~= None)" |
14208 | 461 |
by (unfold dom_def, auto) |
13908 | 462 |
declare domIff [simp del] |
463 |
||
13910 | 464 |
lemma dom_empty[simp]: "dom empty = {}" |
13908 | 465 |
apply (unfold dom_def) |
466 |
apply (simp (no_asm)) |
|
467 |
done |
|
468 |
||
13910 | 469 |
lemma dom_fun_upd[simp]: |
470 |
"dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))" |
|
471 |
by (simp add:dom_def) blast |
|
13908 | 472 |
|
13937 | 473 |
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}" |
474 |
apply(induct xys) |
|
475 |
apply(auto simp del:fun_upd_apply) |
|
476 |
done |
|
477 |
||
15304 | 478 |
lemma dom_map_of_conv_image_fst: |
479 |
"dom(map_of xys) = fst ` (set xys)" |
|
480 |
by(force simp: dom_map_of) |
|
481 |
||
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
482 |
lemma dom_map_of_zip[simp]: "[| length xs = length ys; distinct xs |] ==> |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
483 |
dom(map_of(zip xs ys)) = set xs" |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
484 |
by(induct rule: list_induct2, simp_all) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
485 |
|
13908 | 486 |
lemma finite_dom_map_of: "finite (dom (map_of l))" |
487 |
apply (unfold dom_def) |
|
15251 | 488 |
apply (induct "l") |
13908 | 489 |
apply (auto simp add: insert_Collect [symmetric]) |
490 |
done |
|
491 |
||
14025 | 492 |
lemma dom_map_upds[simp]: |
493 |
"!!m ys. dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" |
|
14208 | 494 |
apply (induct xs, simp) |
495 |
apply (case_tac ys, auto) |
|
14025 | 496 |
done |
13910 | 497 |
|
14025 | 498 |
lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m" |
14208 | 499 |
by (unfold dom_def, auto) |
13910 | 500 |
|
501 |
lemma dom_overwrite[simp]: |
|
502 |
"dom(f(g|A)) = (dom f - {a. a : A - dom g}) Un {a. a : A Int dom g}" |
|
503 |
by(auto simp add: dom_def overwrite_def) |
|
13908 | 504 |
|
14027 | 505 |
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1" |
506 |
apply(rule ext) |
|
507 |
apply(fastsimp simp:map_add_def split:option.split) |
|
508 |
done |
|
509 |
||
14100 | 510 |
subsection {* @{term ran} *} |
511 |
||
512 |
lemma ranI: "m a = Some b ==> b : ran m" |
|
513 |
by (auto simp add: ran_def) |
|
514 |
(* declare ranI [intro]? *) |
|
13908 | 515 |
|
13910 | 516 |
lemma ran_empty[simp]: "ran empty = {}" |
13908 | 517 |
apply (unfold ran_def) |
518 |
apply (simp (no_asm)) |
|
519 |
done |
|
520 |
||
13910 | 521 |
lemma ran_map_upd[simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" |
14208 | 522 |
apply (unfold ran_def, auto) |
13908 | 523 |
apply (subgoal_tac "~ (aa = a) ") |
524 |
apply auto |
|
525 |
done |
|
13910 | 526 |
|
14100 | 527 |
subsection {* @{text "map_le"} *} |
13910 | 528 |
|
13912 | 529 |
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" |
13910 | 530 |
by(simp add:map_le_def) |
531 |
||
14187 | 532 |
lemma [simp]: "f(x := None) \<subseteq>\<^sub>m f" |
533 |
by(force simp add:map_le_def) |
|
534 |
||
13910 | 535 |
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" |
536 |
by(fastsimp simp add:map_le_def) |
|
537 |
||
14187 | 538 |
lemma [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" |
539 |
by(force simp add:map_le_def) |
|
540 |
||
13910 | 541 |
lemma map_le_upds[simp]: |
542 |
"!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" |
|
14208 | 543 |
apply (induct as, simp) |
544 |
apply (case_tac bs, auto) |
|
14025 | 545 |
done |
13908 | 546 |
|
14033 | 547 |
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" |
548 |
by (fastsimp simp add: map_le_def dom_def) |
|
549 |
||
550 |
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" |
|
551 |
by (simp add: map_le_def) |
|
552 |
||
14187 | 553 |
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" |
554 |
by(force simp add:map_le_def) |
|
14033 | 555 |
|
556 |
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" |
|
557 |
apply (unfold map_le_def) |
|
558 |
apply (rule ext) |
|
14208 | 559 |
apply (case_tac "x \<in> dom f", simp) |
560 |
apply (case_tac "x \<in> dom g", simp, fastsimp) |
|
14033 | 561 |
done |
562 |
||
563 |
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" |
|
564 |
by (fastsimp simp add: map_le_def) |
|
565 |
||
15304 | 566 |
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)" |
567 |
by(fastsimp simp add:map_add_def map_le_def expand_fun_eq split:option.splits) |
|
568 |
||
15303 | 569 |
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" |
570 |
by (fastsimp simp add: map_le_def map_add_def dom_def) |
|
571 |
||
572 |
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h" |
|
573 |
by (clarsimp simp add: map_le_def map_add_def dom_def split:option.splits) |
|
574 |
||
3981 | 575 |
end |