| author | blanchet | 
| Sun, 12 Oct 2014 21:52:45 +0200 | |
| changeset 58654 | 3e1cad27fc2f | 
| parent 58310 | 91ea607a34d8 | 
| child 58710 | 7216a10d69ba | 
| permissions | -rw-r--r-- | 
| 33154 | 1 | (* Title: HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy | 
| 2 | Author: Amine Chaieb | |
| 3 | *) | |
| 4 | ||
| 35046 | 5 | header {* Implementation and verification of multivariate polynomials *}
 | 
| 33154 | 6 | |
| 7 | theory Reflected_Multivariate_Polynomial | |
| 54220 
0e6645622f22
more convenient place for a theory in solitariness
 haftmann parents: 
53374diff
changeset | 8 | imports Complex_Main Rat_Pair Polynomial_List | 
| 33154 | 9 | begin | 
| 10 | ||
| 52803 | 11 | subsection{* Datatype of polynomial expressions *}
 | 
| 33154 | 12 | |
| 58310 | 13 | datatype poly = C Num | Bound nat | Add poly poly | Sub poly poly | 
| 33154 | 14 | | Mul poly poly| Neg poly| Pw poly nat| CN poly nat poly | 
| 15 | ||
| 35054 | 16 | abbreviation poly_0 :: "poly" ("0\<^sub>p") where "0\<^sub>p \<equiv> C (0\<^sub>N)"
 | 
| 50282 
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
 wenzelm parents: 
49962diff
changeset | 17 | abbreviation poly_p :: "int \<Rightarrow> poly" ("'((_)')\<^sub>p") where "(i)\<^sub>p \<equiv> C (i)\<^sub>N"
 | 
| 33154 | 18 | |
| 52658 | 19 | |
| 33154 | 20 | subsection{* Boundedness, substitution and all that *}
 | 
| 52658 | 21 | |
| 22 | primrec polysize:: "poly \<Rightarrow> nat" | |
| 23 | where | |
| 33154 | 24 | "polysize (C c) = 1" | 
| 39246 | 25 | | "polysize (Bound n) = 1" | 
| 26 | | "polysize (Neg p) = 1 + polysize p" | |
| 27 | | "polysize (Add p q) = 1 + polysize p + polysize q" | |
| 28 | | "polysize (Sub p q) = 1 + polysize p + polysize q" | |
| 29 | | "polysize (Mul p q) = 1 + polysize p + polysize q" | |
| 30 | | "polysize (Pw p n) = 1 + polysize p" | |
| 31 | | "polysize (CN c n p) = 4 + polysize c + polysize p" | |
| 33154 | 32 | |
| 52658 | 33 | primrec polybound0:: "poly \<Rightarrow> bool" -- {* a poly is INDEPENDENT of Bound 0 *}
 | 
| 34 | where | |
| 56000 | 35 | "polybound0 (C c) \<longleftrightarrow> True" | 
| 36 | | "polybound0 (Bound n) \<longleftrightarrow> n > 0" | |
| 37 | | "polybound0 (Neg a) \<longleftrightarrow> polybound0 a" | |
| 38 | | "polybound0 (Add a b) \<longleftrightarrow> polybound0 a \<and> polybound0 b" | |
| 39 | | "polybound0 (Sub a b) \<longleftrightarrow> polybound0 a \<and> polybound0 b" | |
| 40 | | "polybound0 (Mul a b) \<longleftrightarrow> polybound0 a \<and> polybound0 b" | |
| 41 | | "polybound0 (Pw p n) \<longleftrightarrow> polybound0 p" | |
| 42 | | "polybound0 (CN c n p) \<longleftrightarrow> n \<noteq> 0 \<and> polybound0 c \<and> polybound0 p" | |
| 39246 | 43 | |
| 52658 | 44 | primrec polysubst0:: "poly \<Rightarrow> poly \<Rightarrow> poly" -- {* substitute a poly into a poly for Bound 0 *}
 | 
| 45 | where | |
| 56000 | 46 | "polysubst0 t (C c) = C c" | 
| 47 | | "polysubst0 t (Bound n) = (if n = 0 then t else Bound n)" | |
| 39246 | 48 | | "polysubst0 t (Neg a) = Neg (polysubst0 t a)" | 
| 49 | | "polysubst0 t (Add a b) = Add (polysubst0 t a) (polysubst0 t b)" | |
| 52803 | 50 | | "polysubst0 t (Sub a b) = Sub (polysubst0 t a) (polysubst0 t b)" | 
| 39246 | 51 | | "polysubst0 t (Mul a b) = Mul (polysubst0 t a) (polysubst0 t b)" | 
| 52 | | "polysubst0 t (Pw p n) = Pw (polysubst0 t p) n" | |
| 56000 | 53 | | "polysubst0 t (CN c n p) = | 
| 54 | (if n = 0 then Add (polysubst0 t c) (Mul t (polysubst0 t p)) | |
| 55 | else CN (polysubst0 t c) n (polysubst0 t p))" | |
| 33154 | 56 | |
| 52803 | 57 | fun decrpoly:: "poly \<Rightarrow> poly" | 
| 41808 | 58 | where | 
| 33154 | 59 | "decrpoly (Bound n) = Bound (n - 1)" | 
| 41808 | 60 | | "decrpoly (Neg a) = Neg (decrpoly a)" | 
| 61 | | "decrpoly (Add a b) = Add (decrpoly a) (decrpoly b)" | |
| 62 | | "decrpoly (Sub a b) = Sub (decrpoly a) (decrpoly b)" | |
| 63 | | "decrpoly (Mul a b) = Mul (decrpoly a) (decrpoly b)" | |
| 64 | | "decrpoly (Pw p n) = Pw (decrpoly p) n" | |
| 65 | | "decrpoly (CN c n p) = CN (decrpoly c) (n - 1) (decrpoly p)" | |
| 66 | | "decrpoly a = a" | |
| 33154 | 67 | |
| 52658 | 68 | |
| 33154 | 69 | subsection{* Degrees and heads and coefficients *}
 | 
| 70 | ||
| 56207 | 71 | fun degree :: "poly \<Rightarrow> nat" | 
| 41808 | 72 | where | 
| 33154 | 73 | "degree (CN c 0 p) = 1 + degree p" | 
| 41808 | 74 | | "degree p = 0" | 
| 33154 | 75 | |
| 56207 | 76 | fun head :: "poly \<Rightarrow> poly" | 
| 41808 | 77 | where | 
| 33154 | 78 | "head (CN c 0 p) = head p" | 
| 41808 | 79 | | "head p = p" | 
| 80 | ||
| 81 | (* More general notions of degree and head *) | |
| 56207 | 82 | fun degreen :: "poly \<Rightarrow> nat \<Rightarrow> nat" | 
| 41808 | 83 | where | 
| 56000 | 84 | "degreen (CN c n p) = (\<lambda>m. if n = m then 1 + degreen p n else 0)" | 
| 85 | | "degreen p = (\<lambda>m. 0)" | |
| 33154 | 86 | |
| 56207 | 87 | fun headn :: "poly \<Rightarrow> nat \<Rightarrow> poly" | 
| 41808 | 88 | where | 
| 89 | "headn (CN c n p) = (\<lambda>m. if n \<le> m then headn p m else CN c n p)" | |
| 90 | | "headn p = (\<lambda>m. p)" | |
| 33154 | 91 | |
| 56207 | 92 | fun coefficients :: "poly \<Rightarrow> poly list" | 
| 41808 | 93 | where | 
| 56000 | 94 | "coefficients (CN c 0 p) = c # coefficients p" | 
| 41808 | 95 | | "coefficients p = [p]" | 
| 33154 | 96 | |
| 56207 | 97 | fun isconstant :: "poly \<Rightarrow> bool" | 
| 41808 | 98 | where | 
| 99 | "isconstant (CN c 0 p) = False" | |
| 100 | | "isconstant p = True" | |
| 33154 | 101 | |
| 56207 | 102 | fun behead :: "poly \<Rightarrow> poly" | 
| 41808 | 103 | where | 
| 104 | "behead (CN c 0 p) = (let p' = behead p in if p' = 0\<^sub>p then c else CN c 0 p')" | |
| 105 | | "behead p = 0\<^sub>p" | |
| 106 | ||
| 56207 | 107 | fun headconst :: "poly \<Rightarrow> Num" | 
| 41808 | 108 | where | 
| 33154 | 109 | "headconst (CN c n p) = headconst p" | 
| 41808 | 110 | | "headconst (C n) = n" | 
| 33154 | 111 | |
| 52658 | 112 | |
| 33154 | 113 | subsection{* Operations for normalization *}
 | 
| 41812 | 114 | |
| 115 | declare if_cong[fundef_cong del] | |
| 116 | declare let_cong[fundef_cong del] | |
| 117 | ||
| 118 | fun polyadd :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "+\<^sub>p" 60) | |
| 119 | where | |
| 56000 | 120 | "polyadd (C c) (C c') = C (c +\<^sub>N c')" | 
| 52803 | 121 | | "polyadd (C c) (CN c' n' p') = CN (polyadd (C c) c') n' p'" | 
| 41812 | 122 | | "polyadd (CN c n p) (C c') = CN (polyadd c (C c')) n p" | 
| 123 | | "polyadd (CN c n p) (CN c' n' p') = | |
| 124 | (if n < n' then CN (polyadd c (CN c' n' p')) n p | |
| 56000 | 125 | else if n' < n then CN (polyadd (CN c n p) c') n' p' | 
| 126 | else | |
| 127 | let | |
| 128 | cc' = polyadd c c'; | |
| 129 | pp' = polyadd p p' | |
| 130 | in if pp' = 0\<^sub>p then cc' else CN cc' n pp')" | |
| 41812 | 131 | | "polyadd a b = Add a b" | 
| 132 | ||
| 33154 | 133 | |
| 41808 | 134 | fun polyneg :: "poly \<Rightarrow> poly" ("~\<^sub>p")
 | 
| 135 | where | |
| 33154 | 136 | "polyneg (C c) = C (~\<^sub>N c)" | 
| 41808 | 137 | | "polyneg (CN c n p) = CN (polyneg c) n (polyneg p)" | 
| 138 | | "polyneg a = Neg a" | |
| 33154 | 139 | |
| 41814 | 140 | definition polysub :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "-\<^sub>p" 60) | 
| 52658 | 141 | where "p -\<^sub>p q = polyadd p (polyneg q)" | 
| 41813 | 142 | |
| 143 | fun polymul :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "*\<^sub>p" 60) | |
| 144 | where | |
| 56043 | 145 | "polymul (C c) (C c') = C (c *\<^sub>N c')" | 
| 52803 | 146 | | "polymul (C c) (CN c' n' p') = | 
| 56000 | 147 | (if c = 0\<^sub>N then 0\<^sub>p else CN (polymul (C c) c') n' (polymul (C c) p'))" | 
| 52803 | 148 | | "polymul (CN c n p) (C c') = | 
| 56000 | 149 | (if c' = 0\<^sub>N then 0\<^sub>p else CN (polymul c (C c')) n (polymul p (C c')))" | 
| 52803 | 150 | | "polymul (CN c n p) (CN c' n' p') = | 
| 56000 | 151 | (if n < n' then CN (polymul c (CN c' n' p')) n (polymul p (CN c' n' p')) | 
| 152 | else if n' < n then CN (polymul (CN c n p) c') n' (polymul (CN c n p) p') | |
| 153 | else polyadd (polymul (CN c n p) c') (CN 0\<^sub>p n' (polymul (CN c n p) p')))" | |
| 41813 | 154 | | "polymul a b = Mul a b" | 
| 41808 | 155 | |
| 41812 | 156 | declare if_cong[fundef_cong] | 
| 157 | declare let_cong[fundef_cong] | |
| 158 | ||
| 41808 | 159 | fun polypow :: "nat \<Rightarrow> poly \<Rightarrow> poly" | 
| 160 | where | |
| 50282 
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
 wenzelm parents: 
49962diff
changeset | 161 | "polypow 0 = (\<lambda>p. (1)\<^sub>p)" | 
| 56000 | 162 | | "polypow n = | 
| 163 | (\<lambda>p. | |
| 164 | let | |
| 165 | q = polypow (n div 2) p; | |
| 166 | d = polymul q q | |
| 167 | in if even n then d else polymul p d)" | |
| 33154 | 168 | |
| 35054 | 169 | abbreviation poly_pow :: "poly \<Rightarrow> nat \<Rightarrow> poly" (infixl "^\<^sub>p" 60) | 
| 170 | where "a ^\<^sub>p k \<equiv> polypow k a" | |
| 33154 | 171 | |
| 41808 | 172 | function polynate :: "poly \<Rightarrow> poly" | 
| 173 | where | |
| 50282 
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
 wenzelm parents: 
49962diff
changeset | 174 | "polynate (Bound n) = CN 0\<^sub>p n (1)\<^sub>p" | 
| 56000 | 175 | | "polynate (Add p q) = polynate p +\<^sub>p polynate q" | 
| 176 | | "polynate (Sub p q) = polynate p -\<^sub>p polynate q" | |
| 177 | | "polynate (Mul p q) = polynate p *\<^sub>p polynate q" | |
| 178 | | "polynate (Neg p) = ~\<^sub>p (polynate p)" | |
| 179 | | "polynate (Pw p n) = polynate p ^\<^sub>p n" | |
| 41808 | 180 | | "polynate (CN c n p) = polynate (Add c (Mul (Bound n) p))" | 
| 181 | | "polynate (C c) = C (normNum c)" | |
| 182 | by pat_completeness auto | |
| 183 | termination by (relation "measure polysize") auto | |
| 33154 | 184 | |
| 52658 | 185 | fun poly_cmul :: "Num \<Rightarrow> poly \<Rightarrow> poly" | 
| 186 | where | |
| 33154 | 187 | "poly_cmul y (C x) = C (y *\<^sub>N x)" | 
| 188 | | "poly_cmul y (CN c n p) = CN (poly_cmul y c) n (poly_cmul y p)" | |
| 189 | | "poly_cmul y p = C y *\<^sub>p p" | |
| 190 | ||
| 56009 | 191 | definition monic :: "poly \<Rightarrow> poly \<times> bool" | 
| 56000 | 192 | where | 
| 193 | "monic p = | |
| 194 | (let h = headconst p | |
| 195 | in if h = 0\<^sub>N then (p, False) else (C (Ninv h) *\<^sub>p p, 0>\<^sub>N h))" | |
| 33154 | 196 | |
| 52658 | 197 | |
| 56000 | 198 | subsection {* Pseudo-division *}
 | 
| 33154 | 199 | |
| 52658 | 200 | definition shift1 :: "poly \<Rightarrow> poly" | 
| 56000 | 201 | where "shift1 p = CN 0\<^sub>p 0 p" | 
| 33154 | 202 | |
| 56009 | 203 | abbreviation funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
 | 
| 52658 | 204 | where "funpow \<equiv> compow" | 
| 39246 | 205 | |
| 41403 
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
 krauss parents: 
39246diff
changeset | 206 | partial_function (tailrec) polydivide_aux :: "poly \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> nat \<times> poly" | 
| 52658 | 207 | where | 
| 52803 | 208 | "polydivide_aux a n p k s = | 
| 56000 | 209 | (if s = 0\<^sub>p then (k, s) | 
| 52803 | 210 | else | 
| 56000 | 211 | let | 
| 212 | b = head s; | |
| 213 | m = degree s | |
| 214 | in | |
| 215 | if m < n then (k,s) | |
| 216 | else | |
| 217 | let p' = funpow (m - n) shift1 p | |
| 218 | in | |
| 219 | if a = b then polydivide_aux a n p k (s -\<^sub>p p') | |
| 220 | else polydivide_aux a n p (Suc k) ((a *\<^sub>p s) -\<^sub>p (b *\<^sub>p p')))" | |
| 33154 | 221 | |
| 56000 | 222 | definition polydivide :: "poly \<Rightarrow> poly \<Rightarrow> nat \<times> poly" | 
| 223 | where "polydivide s p = polydivide_aux (head p) (degree p) p 0 s" | |
| 33154 | 224 | |
| 52658 | 225 | fun poly_deriv_aux :: "nat \<Rightarrow> poly \<Rightarrow> poly" | 
| 226 | where | |
| 33154 | 227 | "poly_deriv_aux n (CN c 0 p) = CN (poly_cmul ((int n)\<^sub>N) c) 0 (poly_deriv_aux (n + 1) p)" | 
| 228 | | "poly_deriv_aux n p = poly_cmul ((int n)\<^sub>N) p" | |
| 229 | ||
| 52658 | 230 | fun poly_deriv :: "poly \<Rightarrow> poly" | 
| 231 | where | |
| 33154 | 232 | "poly_deriv (CN c 0 p) = poly_deriv_aux 1 p" | 
| 233 | | "poly_deriv p = 0\<^sub>p" | |
| 234 | ||
| 52658 | 235 | |
| 33154 | 236 | subsection{* Semantics of the polynomial representation *}
 | 
| 237 | ||
| 56000 | 238 | primrec Ipoly :: "'a list \<Rightarrow> poly \<Rightarrow> 'a::{field_char_0,field_inverse_zero,power}"
 | 
| 239 | where | |
| 33154 | 240 | "Ipoly bs (C c) = INum c" | 
| 39246 | 241 | | "Ipoly bs (Bound n) = bs!n" | 
| 242 | | "Ipoly bs (Neg a) = - Ipoly bs a" | |
| 243 | | "Ipoly bs (Add a b) = Ipoly bs a + Ipoly bs b" | |
| 244 | | "Ipoly bs (Sub a b) = Ipoly bs a - Ipoly bs b" | |
| 245 | | "Ipoly bs (Mul a b) = Ipoly bs a * Ipoly bs b" | |
| 56000 | 246 | | "Ipoly bs (Pw t n) = Ipoly bs t ^ n" | 
| 247 | | "Ipoly bs (CN c n p) = Ipoly bs c + (bs!n) * Ipoly bs p" | |
| 39246 | 248 | |
| 56000 | 249 | abbreviation Ipoly_syntax :: "poly \<Rightarrow> 'a list \<Rightarrow>'a::{field_char_0,field_inverse_zero,power}"
 | 
| 250 |     ("\<lparr>_\<rparr>\<^sub>p\<^bsup>_\<^esup>")
 | |
| 35054 | 251 | where "\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<equiv> Ipoly bs p" | 
| 33154 | 252 | |
| 56009 | 253 | lemma Ipoly_CInt: "Ipoly bs (C (i, 1)) = of_int i" | 
| 33154 | 254 | by (simp add: INum_def) | 
| 56000 | 255 | |
| 52803 | 256 | lemma Ipoly_CRat: "Ipoly bs (C (i, j)) = of_int i / of_int j" | 
| 33154 | 257 | by (simp add: INum_def) | 
| 258 | ||
| 259 | lemmas RIpoly_eqs = Ipoly.simps(2-7) Ipoly_CInt Ipoly_CRat | |
| 260 | ||
| 52658 | 261 | |
| 33154 | 262 | subsection {* Normal form and normalization *}
 | 
| 263 | ||
| 41808 | 264 | fun isnpolyh:: "poly \<Rightarrow> nat \<Rightarrow> bool" | 
| 265 | where | |
| 33154 | 266 | "isnpolyh (C c) = (\<lambda>k. isnormNum c)" | 
| 56000 | 267 | | "isnpolyh (CN c n p) = (\<lambda>k. n \<ge> k \<and> isnpolyh c (Suc n) \<and> isnpolyh p n \<and> p \<noteq> 0\<^sub>p)" | 
| 41808 | 268 | | "isnpolyh p = (\<lambda>k. False)" | 
| 33154 | 269 | |
| 56000 | 270 | lemma isnpolyh_mono: "n' \<le> n \<Longrightarrow> isnpolyh p n \<Longrightarrow> isnpolyh p n'" | 
| 52658 | 271 | by (induct p rule: isnpolyh.induct) auto | 
| 33154 | 272 | |
| 52658 | 273 | definition isnpoly :: "poly \<Rightarrow> bool" | 
| 56000 | 274 | where "isnpoly p = isnpolyh p 0" | 
| 33154 | 275 | |
| 276 | text{* polyadd preserves normal forms *}
 | |
| 277 | ||
| 56000 | 278 | lemma polyadd_normh: "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> isnpolyh (polyadd p q) (min n0 n1)" | 
| 52803 | 279 | proof (induct p q arbitrary: n0 n1 rule: polyadd.induct) | 
| 41812 | 280 | case (2 ab c' n' p' n0 n1) | 
| 56009 | 281 | from 2 have th1: "isnpolyh (C ab) (Suc n')" | 
| 282 | by simp | |
| 283 | from 2(3) have th2: "isnpolyh c' (Suc n')" and nplen1: "n' \<ge> n1" | |
| 284 | by simp_all | |
| 285 | with isnpolyh_mono have cp: "isnpolyh c' (Suc n')" | |
| 286 | by simp | |
| 287 | with 2(1)[OF th1 th2] have th3:"isnpolyh (C ab +\<^sub>p c') (Suc n')" | |
| 288 | by simp | |
| 289 | from nplen1 have n01len1: "min n0 n1 \<le> n'" | |
| 290 | by simp | |
| 291 | then show ?case using 2 th3 | |
| 292 | by simp | |
| 33154 | 293 | next | 
| 41812 | 294 | case (3 c' n' p' ab n1 n0) | 
| 56009 | 295 | from 3 have th1: "isnpolyh (C ab) (Suc n')" | 
| 296 | by simp | |
| 297 | from 3(2) have th2: "isnpolyh c' (Suc n')" and nplen1: "n' \<ge> n1" | |
| 298 | by simp_all | |
| 299 | with isnpolyh_mono have cp: "isnpolyh c' (Suc n')" | |
| 300 | by simp | |
| 301 | with 3(1)[OF th2 th1] have th3:"isnpolyh (c' +\<^sub>p C ab) (Suc n')" | |
| 302 | by simp | |
| 303 | from nplen1 have n01len1: "min n0 n1 \<le> n'" | |
| 304 | by simp | |
| 305 | then show ?case using 3 th3 | |
| 306 | by simp | |
| 33154 | 307 | next | 
| 308 | case (4 c n p c' n' p' n0 n1) | |
| 56009 | 309 | then have nc: "isnpolyh c (Suc n)" and np: "isnpolyh p n" | 
| 310 | by simp_all | |
| 311 | from 4 have nc': "isnpolyh c' (Suc n')" and np': "isnpolyh p' n'" | |
| 312 | by simp_all | |
| 313 | from 4 have ngen0: "n \<ge> n0" | |
| 314 | by simp | |
| 315 | from 4 have n'gen1: "n' \<ge> n1" | |
| 316 | by simp | |
| 317 | have "n < n' \<or> n' < n \<or> n = n'" | |
| 318 | by auto | |
| 319 | moreover | |
| 320 |   {
 | |
| 52803 | 321 | assume eq: "n = n'" | 
| 322 | with "4.hyps"(3)[OF nc nc'] | |
| 56009 | 323 | have ncc':"isnpolyh (c +\<^sub>p c') (Suc n)" | 
| 324 | by auto | |
| 325 | then have ncc'n01: "isnpolyh (c +\<^sub>p c') (min n0 n1)" | |
| 326 | using isnpolyh_mono[where n'="min n0 n1" and n="Suc n"] ngen0 n'gen1 | |
| 327 | by auto | |
| 328 | from eq "4.hyps"(4)[OF np np'] have npp': "isnpolyh (p +\<^sub>p p') n" | |
| 329 | by simp | |
| 330 | have minle: "min n0 n1 \<le> n'" | |
| 331 | using ngen0 n'gen1 eq by simp | |
| 332 | from minle npp' ncc'n01 4 eq ngen0 n'gen1 ncc' have ?case | |
| 333 | by (simp add: Let_def) | |
| 334 | } | |
| 335 | moreover | |
| 336 |   {
 | |
| 52803 | 337 | assume lt: "n < n'" | 
| 56009 | 338 | have "min n0 n1 \<le> n0" | 
| 339 | by simp | |
| 340 | with 4 lt have th1:"min n0 n1 \<le> n" | |
| 341 | by auto | |
| 342 | from 4 have th21: "isnpolyh c (Suc n)" | |
| 343 | by simp | |
| 344 | from 4 have th22: "isnpolyh (CN c' n' p') n'" | |
| 345 | by simp | |
| 346 | from lt have th23: "min (Suc n) n' = Suc n" | |
| 347 | by arith | |
| 348 | from "4.hyps"(1)[OF th21 th22] have "isnpolyh (polyadd c (CN c' n' p')) (Suc n)" | |
| 349 | using th23 by simp | |
| 350 | with 4 lt th1 have ?case | |
| 351 | by simp | |
| 352 | } | |
| 353 | moreover | |
| 354 |   {
 | |
| 355 | assume gt: "n' < n" | |
| 356 | then have gt': "n' < n \<and> \<not> n < n'" | |
| 357 | by simp | |
| 358 | have "min n0 n1 \<le> n1" | |
| 359 | by simp | |
| 360 | with 4 gt have th1: "min n0 n1 \<le> n'" | |
| 361 | by auto | |
| 362 | from 4 have th21: "isnpolyh c' (Suc n')" | |
| 363 | by simp_all | |
| 364 | from 4 have th22: "isnpolyh (CN c n p) n" | |
| 365 | by simp | |
| 366 | from gt have th23: "min n (Suc n') = Suc n'" | |
| 367 | by arith | |
| 368 | from "4.hyps"(2)[OF th22 th21] have "isnpolyh (polyadd (CN c n p) c') (Suc n')" | |
| 369 | using th23 by simp | |
| 370 | with 4 gt th1 have ?case | |
| 371 | by simp | |
| 372 | } | |
| 52803 | 373 | ultimately show ?case by blast | 
| 33154 | 374 | qed auto | 
| 375 | ||
| 41812 | 376 | lemma polyadd[simp]: "Ipoly bs (polyadd p q) = Ipoly bs p + Ipoly bs q" | 
| 52658 | 377 | by (induct p q rule: polyadd.induct) | 
| 378 | (auto simp add: Let_def field_simps distrib_left[symmetric] simp del: distrib_left) | |
| 33154 | 379 | |
| 56009 | 380 | lemma polyadd_norm: "isnpoly p \<Longrightarrow> isnpoly q \<Longrightarrow> isnpoly (polyadd p q)" | 
| 33154 | 381 | using polyadd_normh[of "p" "0" "q" "0"] isnpoly_def by simp | 
| 382 | ||
| 41404 | 383 | text{* The degree of addition and other general lemmas needed for the normal form of polymul *}
 | 
| 33154 | 384 | |
| 52803 | 385 | lemma polyadd_different_degreen: | 
| 56009 | 386 | assumes "isnpolyh p n0" | 
| 387 | and "isnpolyh q n1" | |
| 388 | and "degreen p m \<noteq> degreen q m" | |
| 389 | and "m \<le> min n0 n1" | |
| 390 | shows "degreen (polyadd p q) m = max (degreen p m) (degreen q m)" | |
| 391 | using assms | |
| 33154 | 392 | proof (induct p q arbitrary: m n0 n1 rule: polyadd.induct) | 
| 393 | case (4 c n p c' n' p' m n0 n1) | |
| 41763 | 394 | have "n' = n \<or> n < n' \<or> n' < n" by arith | 
| 56009 | 395 | then show ?case | 
| 41763 | 396 | proof (elim disjE) | 
| 397 | assume [simp]: "n' = n" | |
| 41812 | 398 | from 4(4)[of n n m] 4(3)[of "Suc n" "Suc n" m] 4(5-7) | 
| 41763 | 399 | show ?thesis by (auto simp: Let_def) | 
| 400 | next | |
| 401 | assume "n < n'" | |
| 402 | with 4 show ?thesis by auto | |
| 403 | next | |
| 404 | assume "n' < n" | |
| 405 | with 4 show ?thesis by auto | |
| 406 | qed | |
| 407 | qed auto | |
| 33154 | 408 | |
| 56009 | 409 | lemma headnz[simp]: "isnpolyh p n \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> headn p m \<noteq> 0\<^sub>p" | 
| 52658 | 410 | by (induct p arbitrary: n rule: headn.induct) auto | 
| 56009 | 411 | |
| 33154 | 412 | lemma degree_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> degree p = 0" | 
| 52658 | 413 | by (induct p arbitrary: n rule: degree.induct) auto | 
| 56009 | 414 | |
| 33154 | 415 | lemma degreen_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> degreen p m = 0" | 
| 52658 | 416 | by (induct p arbitrary: n rule: degreen.induct) auto | 
| 33154 | 417 | |
| 418 | lemma degree_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> degree p = 0" | |
| 52658 | 419 | by (induct p arbitrary: n rule: degree.induct) auto | 
| 33154 | 420 | |
| 421 | lemma degree_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degree c = 0" | |
| 422 | using degree_isnpolyh_Suc by auto | |
| 56009 | 423 | |
| 33154 | 424 | lemma degreen_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degreen c n = 0" | 
| 425 | using degreen_0 by auto | |
| 426 | ||
| 427 | ||
| 428 | lemma degreen_polyadd: | |
| 56009 | 429 | assumes np: "isnpolyh p n0" | 
| 430 | and nq: "isnpolyh q n1" | |
| 431 | and m: "m \<le> max n0 n1" | |
| 33154 | 432 | shows "degreen (p +\<^sub>p q) m \<le> max (degreen p m) (degreen q m)" | 
| 433 | using np nq m | |
| 434 | proof (induct p q arbitrary: n0 n1 m rule: polyadd.induct) | |
| 52803 | 435 | case (2 c c' n' p' n0 n1) | 
| 56009 | 436 | then show ?case | 
| 437 | by (cases n') simp_all | |
| 33154 | 438 | next | 
| 52803 | 439 | case (3 c n p c' n0 n1) | 
| 56009 | 440 | then show ?case | 
| 441 | by (cases n) auto | |
| 33154 | 442 | next | 
| 52803 | 443 | case (4 c n p c' n' p' n0 n1 m) | 
| 41763 | 444 | have "n' = n \<or> n < n' \<or> n' < n" by arith | 
| 56009 | 445 | then show ?case | 
| 41763 | 446 | proof (elim disjE) | 
| 447 | assume [simp]: "n' = n" | |
| 41812 | 448 | from 4(4)[of n n m] 4(3)[of "Suc n" "Suc n" m] 4(5-7) | 
| 41763 | 449 | show ?thesis by (auto simp: Let_def) | 
| 450 | qed simp_all | |
| 33154 | 451 | qed auto | 
| 452 | ||
| 56009 | 453 | lemma polyadd_eq_const_degreen: | 
| 454 | assumes "isnpolyh p n0" | |
| 455 | and "isnpolyh q n1" | |
| 456 | and "polyadd p q = C c" | |
| 457 | shows "degreen p m = degreen q m" | |
| 458 | using assms | |
| 33154 | 459 | proof (induct p q arbitrary: m n0 n1 c rule: polyadd.induct) | 
| 52803 | 460 | case (4 c n p c' n' p' m n0 n1 x) | 
| 56009 | 461 |   {
 | 
| 462 | assume nn': "n' < n" | |
| 463 | then have ?case using 4 by simp | |
| 464 | } | |
| 52803 | 465 | moreover | 
| 56009 | 466 |   {
 | 
| 467 | assume nn': "\<not> n' < n" | |
| 468 | then have "n < n' \<or> n = n'" by arith | |
| 52803 | 469 |     moreover { assume "n < n'" with 4 have ?case by simp }
 | 
| 56009 | 470 | moreover | 
| 471 |     {
 | |
| 472 | assume eq: "n = n'" | |
| 473 | then have ?case using 4 | |
| 41763 | 474 | apply (cases "p +\<^sub>p p' = 0\<^sub>p") | 
| 475 | apply (auto simp add: Let_def) | |
| 52658 | 476 | done | 
| 52803 | 477 | } | 
| 56009 | 478 | ultimately have ?case by blast | 
| 479 | } | |
| 33154 | 480 | ultimately show ?case by blast | 
| 481 | qed simp_all | |
| 482 | ||
| 483 | lemma polymul_properties: | |
| 56000 | 484 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 52658 | 485 | and np: "isnpolyh p n0" | 
| 486 | and nq: "isnpolyh q n1" | |
| 487 | and m: "m \<le> min n0 n1" | |
| 52803 | 488 | shows "isnpolyh (p *\<^sub>p q) (min n0 n1)" | 
| 56009 | 489 | and "p *\<^sub>p q = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p \<or> q = 0\<^sub>p" | 
| 490 | and "degreen (p *\<^sub>p q) m = (if p = 0\<^sub>p \<or> q = 0\<^sub>p then 0 else degreen p m + degreen q m)" | |
| 33154 | 491 | using np nq m | 
| 52658 | 492 | proof (induct p q arbitrary: n0 n1 m rule: polymul.induct) | 
| 52803 | 493 | case (2 c c' n' p') | 
| 56009 | 494 |   {
 | 
| 495 | case (1 n0 n1) | |
| 496 | with "2.hyps"(4-6)[of n' n' n'] and "2.hyps"(1-3)[of "Suc n'" "Suc n'" n'] | |
| 41811 | 497 | show ?case by (auto simp add: min_def) | 
| 33154 | 498 | next | 
| 56009 | 499 | case (2 n0 n1) | 
| 500 | then show ?case by auto | |
| 33154 | 501 | next | 
| 56009 | 502 | case (3 n0 n1) | 
| 503 | then show ?case using "2.hyps" by auto | |
| 504 | } | |
| 33154 | 505 | next | 
| 41813 | 506 | case (3 c n p c') | 
| 56009 | 507 |   {
 | 
| 508 | case (1 n0 n1) | |
| 509 | with "3.hyps"(4-6)[of n n n] and "3.hyps"(1-3)[of "Suc n" "Suc n" n] | |
| 41811 | 510 | show ?case by (auto simp add: min_def) | 
| 33154 | 511 | next | 
| 56009 | 512 | case (2 n0 n1) | 
| 513 | then show ?case by auto | |
| 33154 | 514 | next | 
| 56009 | 515 | case (3 n0 n1) | 
| 516 | then show ?case using "3.hyps" by auto | |
| 517 | } | |
| 33154 | 518 | next | 
| 519 | case (4 c n p c' n' p') | |
| 520 | let ?cnp = "CN c n p" let ?cnp' = "CN c' n' p'" | |
| 56009 | 521 |   {
 | 
| 522 | case (1 n0 n1) | |
| 523 | then have cnp: "isnpolyh ?cnp n" | |
| 524 | and cnp': "isnpolyh ?cnp' n'" | |
| 525 | and np: "isnpolyh p n" | |
| 526 | and nc: "isnpolyh c (Suc n)" | |
| 527 | and np': "isnpolyh p' n'" | |
| 528 | and nc': "isnpolyh c' (Suc n')" | |
| 529 | and nn0: "n \<ge> n0" | |
| 530 | and nn1: "n' \<ge> n1" | |
| 531 | by simp_all | |
| 41811 | 532 |     {
 | 
| 56009 | 533 | assume "n < n'" | 
| 534 | with "4.hyps"(4-5)[OF np cnp', of n] and "4.hyps"(1)[OF nc cnp', of n] nn0 cnp | |
| 535 | have ?case by (simp add: min_def) | |
| 536 |     } moreover {
 | |
| 537 | assume "n' < n" | |
| 538 | with "4.hyps"(16-17)[OF cnp np', of "n'"] and "4.hyps"(13)[OF cnp nc', of "Suc n'"] nn1 cnp' | |
| 539 | have ?case by (cases "Suc n' = n") (simp_all add: min_def) | |
| 540 |     } moreover {
 | |
| 541 | assume "n' = n" | |
| 542 | with "4.hyps"(16-17)[OF cnp np', of n] and "4.hyps"(13)[OF cnp nc', of n] cnp cnp' nn1 nn0 | |
| 543 | have ?case | |
| 544 | apply (auto intro!: polyadd_normh) | |
| 545 | apply (simp_all add: min_def isnpolyh_mono[OF nn0]) | |
| 546 | done | |
| 547 | } | |
| 548 | ultimately show ?case by arith | |
| 549 | next | |
| 550 | fix n0 n1 m | |
| 551 | assume np: "isnpolyh ?cnp n0" | |
| 552 | assume np':"isnpolyh ?cnp' n1" | |
| 553 | assume m: "m \<le> min n0 n1" | |
| 554 | let ?d = "degreen (?cnp *\<^sub>p ?cnp') m" | |
| 555 | let ?d1 = "degreen ?cnp m" | |
| 556 | let ?d2 = "degreen ?cnp' m" | |
| 557 | let ?eq = "?d = (if ?cnp = 0\<^sub>p \<or> ?cnp' = 0\<^sub>p then 0 else ?d1 + ?d2)" | |
| 56043 | 558 | have "n' < n \<or> n < n' \<or> n' = n" by auto | 
| 56009 | 559 | moreover | 
| 560 |     {
 | |
| 561 | assume "n' < n \<or> n < n'" | |
| 562 | with "4.hyps"(3,6,18) np np' m have ?eq | |
| 563 | by auto | |
| 564 | } | |
| 565 | moreover | |
| 566 |     {
 | |
| 567 | assume nn': "n' = n" | |
| 568 | then have nn: "\<not> n' < n \<and> \<not> n < n'" by arith | |
| 569 | from "4.hyps"(16,18)[of n n' n] | |
| 570 | "4.hyps"(13,14)[of n "Suc n'" n] | |
| 571 | np np' nn' | |
| 56043 | 572 | have norm: | 
| 573 | "isnpolyh ?cnp n" | |
| 574 | "isnpolyh c' (Suc n)" | |
| 575 | "isnpolyh (?cnp *\<^sub>p c') n" | |
| 576 | "isnpolyh p' n" | |
| 577 | "isnpolyh (?cnp *\<^sub>p p') n" | |
| 578 | "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" | |
| 579 | "?cnp *\<^sub>p c' = 0\<^sub>p \<longleftrightarrow> c' = 0\<^sub>p" | |
| 580 | "?cnp *\<^sub>p p' \<noteq> 0\<^sub>p" | |
| 581 | by (auto simp add: min_def) | |
| 56009 | 582 |       {
 | 
| 583 | assume mn: "m = n" | |
| 584 | from "4.hyps"(17,18)[OF norm(1,4), of n] | |
| 585 | "4.hyps"(13,15)[OF norm(1,2), of n] norm nn' mn | |
| 586 | have degs: | |
| 587 | "degreen (?cnp *\<^sub>p c') n = (if c' = 0\<^sub>p then 0 else ?d1 + degreen c' n)" | |
| 588 | "degreen (?cnp *\<^sub>p p') n = ?d1 + degreen p' n" | |
| 589 | by (simp_all add: min_def) | |
| 590 | from degs norm have th1: "degreen (?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" | |
| 591 | by simp | |
| 592 | then have neq: "degreen (?cnp *\<^sub>p c') n \<noteq> degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" | |
| 593 | by simp | |
| 594 | have nmin: "n \<le> min n n" | |
| 595 | by (simp add: min_def) | |
| 596 | from polyadd_different_degreen[OF norm(3,6) neq nmin] th1 | |
| 597 | have deg: "degreen (CN c n p *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n = | |
| 598 | degreen (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" | |
| 599 | by simp | |
| 600 | from "4.hyps"(16-18)[OF norm(1,4), of n] | |
| 601 | "4.hyps"(13-15)[OF norm(1,2), of n] | |
| 602 | mn norm m nn' deg | |
| 603 | have ?eq by simp | |
| 41811 | 604 | } | 
| 33154 | 605 | moreover | 
| 56009 | 606 |       {
 | 
| 607 | assume mn: "m \<noteq> n" | |
| 608 | then have mn': "m < n" | |
| 609 | using m np by auto | |
| 610 | from nn' m np have max1: "m \<le> max n n" | |
| 611 | by simp | |
| 612 | then have min1: "m \<le> min n n" | |
| 613 | by simp | |
| 614 | then have min2: "m \<le> min n (Suc n)" | |
| 615 | by simp | |
| 616 | from "4.hyps"(16-18)[OF norm(1,4) min1] | |
| 617 | "4.hyps"(13-15)[OF norm(1,2) min2] | |
| 618 | degreen_polyadd[OF norm(3,6) max1] | |
| 619 | have "degreen (?cnp *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (?cnp *\<^sub>p p')) m \<le> | |
| 620 | max (degreen (?cnp *\<^sub>p c') m) (degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) m)" | |
| 621 | using mn nn' np np' by simp | |
| 622 | with "4.hyps"(16-18)[OF norm(1,4) min1] | |
| 623 | "4.hyps"(13-15)[OF norm(1,2) min2] | |
| 624 | degreen_0[OF norm(3) mn'] | |
| 625 | have ?eq using nn' mn np np' by clarsimp | |
| 626 | } | |
| 627 | ultimately have ?eq by blast | |
| 628 | } | |
| 629 | ultimately show ?eq by blast | |
| 630 | } | |
| 631 |   {
 | |
| 632 | case (2 n0 n1) | |
| 633 | then have np: "isnpolyh ?cnp n0" | |
| 634 | and np': "isnpolyh ?cnp' n1" | |
| 56043 | 635 | and m: "m \<le> min n0 n1" | 
| 636 | by simp_all | |
| 56009 | 637 | then have mn: "m \<le> n" by simp | 
| 638 | let ?c0p = "CN 0\<^sub>p n (?cnp *\<^sub>p p')" | |
| 639 |     {
 | |
| 640 | assume C: "?cnp *\<^sub>p c' +\<^sub>p ?c0p = 0\<^sub>p" "n' = n" | |
| 641 | then have nn: "\<not> n' < n \<and> \<not> n < n'" | |
| 642 | by simp | |
| 643 | from "4.hyps"(16-18) [of n n n] | |
| 644 | "4.hyps"(13-15)[of n "Suc n" n] | |
| 645 | np np' C(2) mn | |
| 646 | have norm: | |
| 647 | "isnpolyh ?cnp n" | |
| 648 | "isnpolyh c' (Suc n)" | |
| 649 | "isnpolyh (?cnp *\<^sub>p c') n" | |
| 650 | "isnpolyh p' n" | |
| 651 | "isnpolyh (?cnp *\<^sub>p p') n" | |
| 652 | "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" | |
| 653 | "?cnp *\<^sub>p c' = 0\<^sub>p \<longleftrightarrow> c' = 0\<^sub>p" | |
| 654 | "?cnp *\<^sub>p p' \<noteq> 0\<^sub>p" | |
| 655 | "degreen (?cnp *\<^sub>p c') n = (if c' = 0\<^sub>p then 0 else degreen ?cnp n + degreen c' n)" | |
| 656 | "degreen (?cnp *\<^sub>p p') n = degreen ?cnp n + degreen p' n" | |
| 657 | by (simp_all add: min_def) | |
| 658 | from norm have cn: "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" | |
| 659 | by simp | |
| 660 | have degneq: "degreen (?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" | |
| 661 | using norm by simp | |
| 662 | from polyadd_eq_const_degreen[OF norm(3) cn C(1), where m="n"] degneq | |
| 663 | have False by simp | |
| 664 | } | |
| 665 | then show ?case using "4.hyps" by clarsimp | |
| 666 | } | |
| 33154 | 667 | qed auto | 
| 668 | ||
| 56009 | 669 | lemma polymul[simp]: "Ipoly bs (p *\<^sub>p q) = Ipoly bs p * Ipoly bs q" | 
| 52658 | 670 | by (induct p q rule: polymul.induct) (auto simp add: field_simps) | 
| 33154 | 671 | |
| 52803 | 672 | lemma polymul_normh: | 
| 56000 | 673 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 56009 | 674 | shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> isnpolyh (p *\<^sub>p q) (min n0 n1)" | 
| 52803 | 675 | using polymul_properties(1) by blast | 
| 52658 | 676 | |
| 52803 | 677 | lemma polymul_eq0_iff: | 
| 56000 | 678 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 56009 | 679 | shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> p *\<^sub>p q = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p \<or> q = 0\<^sub>p" | 
| 52803 | 680 | using polymul_properties(2) by blast | 
| 52658 | 681 | |
| 56207 | 682 | lemma polymul_degreen: | 
| 56000 | 683 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 56009 | 684 | shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> m \<le> min n0 n1 \<Longrightarrow> | 
| 685 | degreen (p *\<^sub>p q) m = (if p = 0\<^sub>p \<or> q = 0\<^sub>p then 0 else degreen p m + degreen q m)" | |
| 56207 | 686 | by (fact polymul_properties(3)) | 
| 52658 | 687 | |
| 52803 | 688 | lemma polymul_norm: | 
| 56000 | 689 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 56009 | 690 | shows "isnpoly p \<Longrightarrow> isnpoly q \<Longrightarrow> isnpoly (polymul p q)" | 
| 33154 | 691 | using polymul_normh[of "p" "0" "q" "0"] isnpoly_def by simp | 
| 692 | ||
| 693 | lemma headconst_zero: "isnpolyh p n0 \<Longrightarrow> headconst p = 0\<^sub>N \<longleftrightarrow> p = 0\<^sub>p" | |
| 52658 | 694 | by (induct p arbitrary: n0 rule: headconst.induct) auto | 
| 33154 | 695 | |
| 696 | lemma headconst_isnormNum: "isnpolyh p n0 \<Longrightarrow> isnormNum (headconst p)" | |
| 52658 | 697 | by (induct p arbitrary: n0) auto | 
| 33154 | 698 | |
| 52658 | 699 | lemma monic_eqI: | 
| 52803 | 700 | assumes np: "isnpolyh p n0" | 
| 52658 | 701 | shows "INum (headconst p) * Ipoly bs (fst (monic p)) = | 
| 56000 | 702 |     (Ipoly bs p ::'a::{field_char_0,field_inverse_zero, power})"
 | 
| 33154 | 703 | unfolding monic_def Let_def | 
| 52658 | 704 | proof (cases "headconst p = 0\<^sub>N", simp_all add: headconst_zero[OF np]) | 
| 33154 | 705 | let ?h = "headconst p" | 
| 706 | assume pz: "p \<noteq> 0\<^sub>p" | |
| 56000 | 707 |   {
 | 
| 708 | assume hz: "INum ?h = (0::'a)" | |
| 56043 | 709 | from headconst_isnormNum[OF np] have norm: "isnormNum ?h" "isnormNum 0\<^sub>N" | 
| 710 | by simp_all | |
| 711 | from isnormNum_unique[where ?'a = 'a, OF norm] hz have "?h = 0\<^sub>N" | |
| 712 | by simp | |
| 713 | with headconst_zero[OF np] have "p = 0\<^sub>p" | |
| 714 | by blast | |
| 715 | with pz have False | |
| 716 | by blast | |
| 717 | } | |
| 718 | then show "INum (headconst p) = (0::'a) \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0" | |
| 719 | by blast | |
| 33154 | 720 | qed | 
| 721 | ||
| 722 | ||
| 41404 | 723 | text{* polyneg is a negation and preserves normal forms *}
 | 
| 33154 | 724 | |
| 725 | lemma polyneg[simp]: "Ipoly bs (polyneg p) = - Ipoly bs p" | |
| 52658 | 726 | by (induct p rule: polyneg.induct) auto | 
| 33154 | 727 | |
| 56009 | 728 | lemma polyneg0: "isnpolyh p n \<Longrightarrow> (~\<^sub>p p) = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" | 
| 52658 | 729 | by (induct p arbitrary: n rule: polyneg.induct) (auto simp add: Nneg_def) | 
| 56009 | 730 | |
| 33154 | 731 | lemma polyneg_polyneg: "isnpolyh p n0 \<Longrightarrow> ~\<^sub>p (~\<^sub>p p) = p" | 
| 52658 | 732 | by (induct p arbitrary: n0 rule: polyneg.induct) auto | 
| 56009 | 733 | |
| 734 | lemma polyneg_normh: "isnpolyh p n \<Longrightarrow> isnpolyh (polyneg p) n" | |
| 735 | by (induct p arbitrary: n rule: polyneg.induct) (auto simp add: polyneg0) | |
| 33154 | 736 | |
| 737 | lemma polyneg_norm: "isnpoly p \<Longrightarrow> isnpoly (polyneg p)" | |
| 738 | using isnpoly_def polyneg_normh by simp | |
| 739 | ||
| 740 | ||
| 41404 | 741 | text{* polysub is a substraction and preserves normal forms *}
 | 
| 742 | ||
| 56009 | 743 | lemma polysub[simp]: "Ipoly bs (polysub p q) = Ipoly bs p - Ipoly bs q" | 
| 52658 | 744 | by (simp add: polysub_def) | 
| 56009 | 745 | |
| 746 | lemma polysub_normh: "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> isnpolyh (polysub p q) (min n0 n1)" | |
| 52658 | 747 | by (simp add: polysub_def polyneg_normh polyadd_normh) | 
| 33154 | 748 | |
| 56009 | 749 | lemma polysub_norm: "isnpoly p \<Longrightarrow> isnpoly q \<Longrightarrow> isnpoly (polysub p q)" | 
| 52803 | 750 | using polyadd_norm polyneg_norm by (simp add: polysub_def) | 
| 56009 | 751 | |
| 52658 | 752 | lemma polysub_same_0[simp]: | 
| 56000 | 753 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 41814 | 754 | shows "isnpolyh p n0 \<Longrightarrow> polysub p p = 0\<^sub>p" | 
| 52658 | 755 | unfolding polysub_def split_def fst_conv snd_conv | 
| 756 | by (induct p arbitrary: n0) (auto simp add: Let_def Nsub0[simplified Nsub_def]) | |
| 33154 | 757 | |
| 52803 | 758 | lemma polysub_0: | 
| 56000 | 759 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 56009 | 760 | shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> p -\<^sub>p q = 0\<^sub>p \<longleftrightarrow> p = q" | 
| 33154 | 761 | unfolding polysub_def split_def fst_conv snd_conv | 
| 41763 | 762 | by (induct p q arbitrary: n0 n1 rule:polyadd.induct) | 
| 52658 | 763 | (auto simp: Nsub0[simplified Nsub_def] Let_def) | 
| 33154 | 764 | |
| 765 | text{* polypow is a power function and preserves normal forms *}
 | |
| 41404 | 766 | |
| 56009 | 767 | lemma polypow[simp]: | 
| 768 |   "Ipoly bs (polypow n p) = (Ipoly bs p :: 'a::{field_char_0,field_inverse_zero}) ^ n"
 | |
| 52658 | 769 | proof (induct n rule: polypow.induct) | 
| 770 | case 1 | |
| 56043 | 771 | then show ?case | 
| 772 | by simp | |
| 33154 | 773 | next | 
| 774 | case (2 n) | |
| 775 | let ?q = "polypow ((Suc n) div 2) p" | |
| 41813 | 776 | let ?d = "polymul ?q ?q" | 
| 56043 | 777 | have "odd (Suc n) \<or> even (Suc n)" | 
| 778 | by simp | |
| 52803 | 779 | moreover | 
| 56043 | 780 |   {
 | 
| 781 | assume odd: "odd (Suc n)" | |
| 56000 | 782 | have th: "(Suc (Suc (Suc 0) * (Suc n div Suc (Suc 0)))) = Suc n div 2 + Suc n div 2 + 1" | 
| 52658 | 783 | by arith | 
| 56043 | 784 | from odd have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs (polymul p ?d)" | 
| 785 | by (simp add: Let_def) | |
| 786 | also have "\<dots> = (Ipoly bs p) * (Ipoly bs p)^(Suc n div 2) * (Ipoly bs p)^(Suc n div 2)" | |
| 33154 | 787 | using "2.hyps" by simp | 
| 788 | also have "\<dots> = (Ipoly bs p) ^ (Suc n div 2 + Suc n div 2 + 1)" | |
| 52658 | 789 | by (simp only: power_add power_one_right) simp | 
| 56000 | 790 | also have "\<dots> = (Ipoly bs p) ^ (Suc (Suc (Suc 0) * (Suc n div Suc (Suc 0))))" | 
| 33154 | 791 | by (simp only: th) | 
| 52803 | 792 | finally have ?case | 
| 56043 | 793 | using odd_nat_div_two_times_two_plus_one[OF odd, symmetric] by simp | 
| 794 | } | |
| 52803 | 795 | moreover | 
| 56043 | 796 |   {
 | 
| 797 | assume even: "even (Suc n)" | |
| 56000 | 798 | have th: "(Suc (Suc 0)) * (Suc n div Suc (Suc 0)) = Suc n div 2 + Suc n div 2" | 
| 52658 | 799 | by arith | 
| 56043 | 800 | from even have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs ?d" | 
| 801 | by (simp add: Let_def) | |
| 33154 | 802 | also have "\<dots> = (Ipoly bs p) ^ (Suc n div 2 + Suc n div 2)" | 
| 56043 | 803 | using "2.hyps" by (simp only: power_add) simp | 
| 804 | finally have ?case using even_nat_div_two_times_two[OF even] | |
| 805 | by (simp only: th) | |
| 806 | } | |
| 33154 | 807 | ultimately show ?case by blast | 
| 808 | qed | |
| 809 | ||
| 52803 | 810 | lemma polypow_normh: | 
| 56000 | 811 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 33154 | 812 | shows "isnpolyh p n \<Longrightarrow> isnpolyh (polypow k p) n" | 
| 813 | proof (induct k arbitrary: n rule: polypow.induct) | |
| 56043 | 814 | case 1 | 
| 815 | then show ?case by auto | |
| 816 | next | |
| 33154 | 817 | case (2 k n) | 
| 818 | let ?q = "polypow (Suc k div 2) p" | |
| 41813 | 819 | let ?d = "polymul ?q ?q" | 
| 56043 | 820 | from 2 have th1: "isnpolyh ?q n" and th2: "isnpolyh p n" | 
| 821 | by blast+ | |
| 822 | from polymul_normh[OF th1 th1] have dn: "isnpolyh ?d n" | |
| 823 | by simp | |
| 824 | from polymul_normh[OF th2 dn] have on: "isnpolyh (polymul p ?d) n" | |
| 825 | by simp | |
| 826 | from dn on show ?case | |
| 827 | by (simp add: Let_def) | |
| 828 | qed | |
| 33154 | 829 | |
| 52803 | 830 | lemma polypow_norm: | 
| 56000 | 831 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 33154 | 832 | shows "isnpoly p \<Longrightarrow> isnpoly (polypow k p)" | 
| 833 | by (simp add: polypow_normh isnpoly_def) | |
| 834 | ||
| 41404 | 835 | text{* Finally the whole normalization *}
 | 
| 33154 | 836 | |
| 52658 | 837 | lemma polynate [simp]: | 
| 56000 | 838 |   "Ipoly bs (polynate p) = (Ipoly bs p :: 'a ::{field_char_0,field_inverse_zero})"
 | 
| 52658 | 839 | by (induct p rule:polynate.induct) auto | 
| 33154 | 840 | |
| 52803 | 841 | lemma polynate_norm[simp]: | 
| 56000 | 842 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 33154 | 843 | shows "isnpoly (polynate p)" | 
| 52658 | 844 | by (induct p rule: polynate.induct) | 
| 845 | (simp_all add: polyadd_norm polymul_norm polysub_norm polyneg_norm polypow_norm, | |
| 846 | simp_all add: isnpoly_def) | |
| 33154 | 847 | |
| 848 | text{* shift1 *}
 | |
| 849 | ||
| 850 | ||
| 851 | lemma shift1: "Ipoly bs (shift1 p) = Ipoly bs (Mul (Bound 0) p)" | |
| 52658 | 852 | by (simp add: shift1_def) | 
| 33154 | 853 | |
| 52803 | 854 | lemma shift1_isnpoly: | 
| 56207 | 855 | assumes "isnpoly p" | 
| 856 | and "p \<noteq> 0\<^sub>p" | |
| 52658 | 857 | shows "isnpoly (shift1 p) " | 
| 56207 | 858 | using assms by (simp add: shift1_def isnpoly_def) | 
| 33154 | 859 | |
| 860 | lemma shift1_nz[simp]:"shift1 p \<noteq> 0\<^sub>p" | |
| 861 | by (simp add: shift1_def) | |
| 56043 | 862 | |
| 863 | lemma funpow_shift1_isnpoly: "isnpoly p \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> isnpoly (funpow n shift1 p)" | |
| 39246 | 864 | by (induct n arbitrary: p) (auto simp add: shift1_isnpoly funpow_swap1) | 
| 33154 | 865 | |
| 52803 | 866 | lemma funpow_isnpolyh: | 
| 56207 | 867 | assumes "\<And>p. isnpolyh p n \<Longrightarrow> isnpolyh (f p) n" | 
| 868 | and "isnpolyh p n" | |
| 33154 | 869 | shows "isnpolyh (funpow k f p) n" | 
| 56207 | 870 | using assms by (induct k arbitrary: p) auto | 
| 33154 | 871 | |
| 52658 | 872 | lemma funpow_shift1: | 
| 56000 | 873 |   "(Ipoly bs (funpow n shift1 p) :: 'a :: {field_char_0,field_inverse_zero}) =
 | 
| 52658 | 874 | Ipoly bs (Mul (Pw (Bound 0) n) p)" | 
| 875 | by (induct n arbitrary: p) (simp_all add: shift1_isnpoly shift1) | |
| 33154 | 876 | |
| 56043 | 877 | lemma shift1_isnpolyh: "isnpolyh p n0 \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> isnpolyh (shift1 p) 0" | 
| 33154 | 878 | using isnpolyh_mono[where n="n0" and n'="0" and p="p"] by (simp add: shift1_def) | 
| 879 | ||
| 52803 | 880 | lemma funpow_shift1_1: | 
| 56000 | 881 |   "(Ipoly bs (funpow n shift1 p) :: 'a :: {field_char_0,field_inverse_zero}) =
 | 
| 52658 | 882 | Ipoly bs (funpow n shift1 (1)\<^sub>p *\<^sub>p p)" | 
| 33154 | 883 | by (simp add: funpow_shift1) | 
| 884 | ||
| 885 | lemma poly_cmul[simp]: "Ipoly bs (poly_cmul c p) = Ipoly bs (Mul (C c) p)" | |
| 45129 
1fce03e3e8ad
tuned proofs -- eliminated vacuous "induct arbitrary: ..." situations;
 wenzelm parents: 
41842diff
changeset | 886 | by (induct p rule: poly_cmul.induct) (auto simp add: field_simps) | 
| 33154 | 887 | |
| 888 | lemma behead: | |
| 56207 | 889 | assumes "isnpolyh p n" | 
| 52658 | 890 | shows "Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) = | 
| 56000 | 891 |     (Ipoly bs p :: 'a :: {field_char_0,field_inverse_zero})"
 | 
| 56207 | 892 | using assms | 
| 33154 | 893 | proof (induct p arbitrary: n rule: behead.induct) | 
| 56009 | 894 | case (1 c p n) | 
| 895 | then have pn: "isnpolyh p n" by simp | |
| 52803 | 896 | from 1(1)[OF pn] | 
| 897 | have th:"Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) = Ipoly bs p" . | |
| 52658 | 898 | then show ?case using "1.hyps" | 
| 899 | apply (simp add: Let_def,cases "behead p = 0\<^sub>p") | |
| 900 | apply (simp_all add: th[symmetric] field_simps) | |
| 901 | done | |
| 33154 | 902 | qed (auto simp add: Let_def) | 
| 903 | ||
| 904 | lemma behead_isnpolyh: | |
| 56207 | 905 | assumes "isnpolyh p n" | 
| 52658 | 906 | shows "isnpolyh (behead p) n" | 
| 56207 | 907 | using assms by (induct p rule: behead.induct) (auto simp add: Let_def isnpolyh_mono) | 
| 52658 | 908 | |
| 33154 | 909 | |
| 56207 | 910 | subsection {* Miscellaneous lemmas about indexes, decrementation, substitution  etc ... *}
 | 
| 52658 | 911 | |
| 33154 | 912 | lemma isnpolyh_polybound0: "isnpolyh p (Suc n) \<Longrightarrow> polybound0 p" | 
| 52658 | 913 | proof (induct p arbitrary: n rule: poly.induct, auto) | 
| 33154 | 914 | case (goal1 c n p n') | 
| 56009 | 915 | then have "n = Suc (n - 1)" | 
| 916 | by simp | |
| 917 | then have "isnpolyh p (Suc (n - 1))" | |
| 918 | using `isnpolyh p n` by simp | |
| 919 | with goal1(2) show ?case | |
| 920 | by simp | |
| 33154 | 921 | qed | 
| 922 | ||
| 923 | lemma isconstant_polybound0: "isnpolyh p n0 \<Longrightarrow> isconstant p \<longleftrightarrow> polybound0 p" | |
| 52658 | 924 | by (induct p arbitrary: n0 rule: isconstant.induct) (auto simp add: isnpolyh_polybound0) | 
| 33154 | 925 | |
| 52658 | 926 | lemma decrpoly_zero[simp]: "decrpoly p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" | 
| 927 | by (induct p) auto | |
| 33154 | 928 | |
| 929 | lemma decrpoly_normh: "isnpolyh p n0 \<Longrightarrow> polybound0 p \<Longrightarrow> isnpolyh (decrpoly p) (n0 - 1)" | |
| 52658 | 930 | apply (induct p arbitrary: n0) | 
| 931 | apply auto | |
| 56043 | 932 | apply atomize | 
| 58259 | 933 | apply (rename_tac nat a b, erule_tac x = "Suc nat" in allE) | 
| 33154 | 934 | apply auto | 
| 935 | done | |
| 936 | ||
| 937 | lemma head_polybound0: "isnpolyh p n0 \<Longrightarrow> polybound0 (head p)" | |
| 52658 | 938 | by (induct p arbitrary: n0 rule: head.induct) (auto intro: isnpolyh_polybound0) | 
| 33154 | 939 | |
| 940 | lemma polybound0_I: | |
| 56207 | 941 | assumes "polybound0 a" | 
| 56009 | 942 | shows "Ipoly (b # bs) a = Ipoly (b' # bs) a" | 
| 56207 | 943 | using assms by (induct a rule: poly.induct) auto | 
| 52658 | 944 | |
| 56009 | 945 | lemma polysubst0_I: "Ipoly (b # bs) (polysubst0 a t) = Ipoly ((Ipoly (b # bs) a) # bs) t" | 
| 33154 | 946 | by (induct t) simp_all | 
| 947 | ||
| 948 | lemma polysubst0_I': | |
| 56207 | 949 | assumes "polybound0 a" | 
| 56009 | 950 | shows "Ipoly (b # bs) (polysubst0 a t) = Ipoly ((Ipoly (b' # bs) a) # bs) t" | 
| 56207 | 951 | by (induct t) (simp_all add: polybound0_I[OF assms, where b="b" and b'="b'"]) | 
| 33154 | 952 | |
| 52658 | 953 | lemma decrpoly: | 
| 56207 | 954 | assumes "polybound0 t" | 
| 56043 | 955 | shows "Ipoly (x # bs) t = Ipoly bs (decrpoly t)" | 
| 56207 | 956 | using assms by (induct t rule: decrpoly.induct) simp_all | 
| 33154 | 957 | |
| 52658 | 958 | lemma polysubst0_polybound0: | 
| 56207 | 959 | assumes "polybound0 t" | 
| 33154 | 960 | shows "polybound0 (polysubst0 t a)" | 
| 56207 | 961 | using assms by (induct a rule: poly.induct) auto | 
| 33154 | 962 | |
| 963 | lemma degree0_polybound0: "isnpolyh p n \<Longrightarrow> degree p = 0 \<Longrightarrow> polybound0 p" | |
| 52658 | 964 | by (induct p arbitrary: n rule: degree.induct) (auto simp add: isnpolyh_polybound0) | 
| 33154 | 965 | |
| 56043 | 966 | primrec maxindex :: "poly \<Rightarrow> nat" | 
| 967 | where | |
| 33154 | 968 | "maxindex (Bound n) = n + 1" | 
| 969 | | "maxindex (CN c n p) = max (n + 1) (max (maxindex c) (maxindex p))" | |
| 970 | | "maxindex (Add p q) = max (maxindex p) (maxindex q)" | |
| 971 | | "maxindex (Sub p q) = max (maxindex p) (maxindex q)" | |
| 972 | | "maxindex (Mul p q) = max (maxindex p) (maxindex q)" | |
| 973 | | "maxindex (Neg p) = maxindex p" | |
| 974 | | "maxindex (Pw p n) = maxindex p" | |
| 975 | | "maxindex (C x) = 0" | |
| 976 | ||
| 52658 | 977 | definition wf_bs :: "'a list \<Rightarrow> poly \<Rightarrow> bool" | 
| 56000 | 978 | where "wf_bs bs p \<longleftrightarrow> length bs \<ge> maxindex p" | 
| 33154 | 979 | |
| 56043 | 980 | lemma wf_bs_coefficients: "wf_bs bs p \<Longrightarrow> \<forall>c \<in> set (coefficients p). wf_bs bs c" | 
| 52658 | 981 | proof (induct p rule: coefficients.induct) | 
| 52803 | 982 | case (1 c p) | 
| 983 | show ?case | |
| 33154 | 984 | proof | 
| 56009 | 985 | fix x | 
| 986 | assume xc: "x \<in> set (coefficients (CN c 0 p))" | |
| 987 | then have "x = c \<or> x \<in> set (coefficients p)" | |
| 988 | by simp | |
| 52803 | 989 | moreover | 
| 56009 | 990 |     {
 | 
| 991 | assume "x = c" | |
| 992 | then have "wf_bs bs x" | |
| 56043 | 993 | using "1.prems" unfolding wf_bs_def by simp | 
| 56009 | 994 | } | 
| 995 | moreover | |
| 996 |     {
 | |
| 997 | assume H: "x \<in> set (coefficients p)" | |
| 998 | from "1.prems" have "wf_bs bs p" | |
| 999 | unfolding wf_bs_def by simp | |
| 1000 | with "1.hyps" H have "wf_bs bs x" | |
| 1001 | by blast | |
| 1002 | } | |
| 56066 | 1003 | ultimately show "wf_bs bs x" | 
| 56009 | 1004 | by blast | 
| 33154 | 1005 | qed | 
| 1006 | qed simp_all | |
| 1007 | ||
| 56043 | 1008 | lemma maxindex_coefficients: "\<forall>c \<in> set (coefficients p). maxindex c \<le> maxindex p" | 
| 52658 | 1009 | by (induct p rule: coefficients.induct) auto | 
| 33154 | 1010 | |
| 56000 | 1011 | lemma wf_bs_I: "wf_bs bs p \<Longrightarrow> Ipoly (bs @ bs') p = Ipoly bs p" | 
| 52658 | 1012 | unfolding wf_bs_def by (induct p) (auto simp add: nth_append) | 
| 33154 | 1013 | |
| 52658 | 1014 | lemma take_maxindex_wf: | 
| 52803 | 1015 | assumes wf: "wf_bs bs p" | 
| 33154 | 1016 | shows "Ipoly (take (maxindex p) bs) p = Ipoly bs p" | 
| 56009 | 1017 | proof - | 
| 33154 | 1018 | let ?ip = "maxindex p" | 
| 1019 | let ?tbs = "take ?ip bs" | |
| 56009 | 1020 | from wf have "length ?tbs = ?ip" | 
| 1021 | unfolding wf_bs_def by simp | |
| 1022 | then have wf': "wf_bs ?tbs p" | |
| 1023 | unfolding wf_bs_def by simp | |
| 56043 | 1024 | have eq: "bs = ?tbs @ drop ?ip bs" | 
| 56009 | 1025 | by simp | 
| 1026 | from wf_bs_I[OF wf', of "drop ?ip bs"] show ?thesis | |
| 1027 | using eq by simp | |
| 33154 | 1028 | qed | 
| 1029 | ||
| 1030 | lemma decr_maxindex: "polybound0 p \<Longrightarrow> maxindex (decrpoly p) = maxindex p - 1" | |
| 52658 | 1031 | by (induct p) auto | 
| 33154 | 1032 | |
| 1033 | lemma wf_bs_insensitive: "length bs = length bs' \<Longrightarrow> wf_bs bs p = wf_bs bs' p" | |
| 1034 | unfolding wf_bs_def by simp | |
| 1035 | ||
| 56207 | 1036 | lemma wf_bs_insensitive': "wf_bs (x # bs) p = wf_bs (y # bs) p" | 
| 33154 | 1037 | unfolding wf_bs_def by simp | 
| 1038 | ||
| 56207 | 1039 | lemma wf_bs_coefficients': "\<forall>c \<in> set (coefficients p). wf_bs bs c \<Longrightarrow> wf_bs (x # bs) p" | 
| 52658 | 1040 | by (induct p rule: coefficients.induct) (auto simp add: wf_bs_def) | 
| 56043 | 1041 | |
| 33154 | 1042 | lemma coefficients_Nil[simp]: "coefficients p \<noteq> []" | 
| 52658 | 1043 | by (induct p rule: coefficients.induct) simp_all | 
| 33154 | 1044 | |
| 1045 | lemma coefficients_head: "last (coefficients p) = head p" | |
| 52658 | 1046 | by (induct p rule: coefficients.induct) auto | 
| 33154 | 1047 | |
| 56207 | 1048 | lemma wf_bs_decrpoly: "wf_bs bs (decrpoly p) \<Longrightarrow> wf_bs (x # bs) p" | 
| 52658 | 1049 | unfolding wf_bs_def by (induct p rule: decrpoly.induct) auto | 
| 33154 | 1050 | |
| 56043 | 1051 | lemma length_le_list_ex: "length xs \<le> n \<Longrightarrow> \<exists>ys. length (xs @ ys) = n" | 
| 56207 | 1052 | apply (rule exI[where x="replicate (n - length xs) z" for z]) | 
| 52658 | 1053 | apply simp | 
| 1054 | done | |
| 1055 | ||
| 56043 | 1056 | lemma isnpolyh_Suc_const: "isnpolyh p (Suc n) \<Longrightarrow> isconstant p" | 
| 52658 | 1057 | apply (cases p) | 
| 1058 | apply auto | |
| 58259 | 1059 | apply (rename_tac nat a, case_tac "nat") | 
| 52658 | 1060 | apply simp_all | 
| 1061 | done | |
| 33154 | 1062 | |
| 1063 | lemma wf_bs_polyadd: "wf_bs bs p \<and> wf_bs bs q \<longrightarrow> wf_bs bs (p +\<^sub>p q)" | |
| 56066 | 1064 | unfolding wf_bs_def by (induct p q rule: polyadd.induct) (auto simp add: Let_def) | 
| 33154 | 1065 | |
| 1066 | lemma wf_bs_polyul: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p *\<^sub>p q)" | |
| 52803 | 1067 | unfolding wf_bs_def | 
| 1068 | apply (induct p q arbitrary: bs rule: polymul.induct) | |
| 33154 | 1069 | apply (simp_all add: wf_bs_polyadd) | 
| 1070 | apply clarsimp | |
| 1071 | apply (rule wf_bs_polyadd[unfolded wf_bs_def, rule_format]) | |
| 1072 | apply auto | |
| 1073 | done | |
| 1074 | ||
| 1075 | lemma wf_bs_polyneg: "wf_bs bs p \<Longrightarrow> wf_bs bs (~\<^sub>p p)" | |
| 52658 | 1076 | unfolding wf_bs_def by (induct p rule: polyneg.induct) auto | 
| 33154 | 1077 | |
| 1078 | lemma wf_bs_polysub: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p -\<^sub>p q)" | |
| 56043 | 1079 | unfolding polysub_def split_def fst_conv snd_conv | 
| 1080 | using wf_bs_polyadd wf_bs_polyneg by blast | |
| 33154 | 1081 | |
| 52658 | 1082 | |
| 56043 | 1083 | subsection {* Canonicity of polynomial representation, see lemma isnpolyh_unique *}
 | 
| 33154 | 1084 | |
| 1085 | definition "polypoly bs p = map (Ipoly bs) (coefficients p)" | |
| 56043 | 1086 | definition "polypoly' bs p = map (Ipoly bs \<circ> decrpoly) (coefficients p)" | 
| 1087 | definition "poly_nate bs p = map (Ipoly bs \<circ> decrpoly) (coefficients (polynate p))" | |
| 33154 | 1088 | |
| 56043 | 1089 | lemma coefficients_normh: "isnpolyh p n0 \<Longrightarrow> \<forall>q \<in> set (coefficients p). isnpolyh q n0" | 
| 33154 | 1090 | proof (induct p arbitrary: n0 rule: coefficients.induct) | 
| 1091 | case (1 c p n0) | |
| 56009 | 1092 | have cp: "isnpolyh (CN c 0 p) n0" | 
| 1093 | by fact | |
| 1094 | then have norm: "isnpolyh c 0" "isnpolyh p 0" "p \<noteq> 0\<^sub>p" "n0 = 0" | |
| 33154 | 1095 | by (auto simp add: isnpolyh_mono[where n'=0]) | 
| 56009 | 1096 | from "1.hyps"[OF norm(2)] norm(1) norm(4) show ?case | 
| 1097 | by simp | |
| 33154 | 1098 | qed auto | 
| 1099 | ||
| 56043 | 1100 | lemma coefficients_isconst: "isnpolyh p n \<Longrightarrow> \<forall>q \<in> set (coefficients p). isconstant q" | 
| 1101 | by (induct p arbitrary: n rule: coefficients.induct) (auto simp add: isnpolyh_Suc_const) | |
| 33154 | 1102 | |
| 1103 | lemma polypoly_polypoly': | |
| 1104 | assumes np: "isnpolyh p n0" | |
| 56043 | 1105 | shows "polypoly (x # bs) p = polypoly' bs p" | 
| 1106 | proof - | |
| 33154 | 1107 | let ?cf = "set (coefficients p)" | 
| 1108 | from coefficients_normh[OF np] have cn_norm: "\<forall> q\<in> ?cf. isnpolyh q n0" . | |
| 56043 | 1109 |   {
 | 
| 1110 | fix q | |
| 1111 | assume q: "q \<in> ?cf" | |
| 1112 | from q cn_norm have th: "isnpolyh q n0" | |
| 1113 | by blast | |
| 1114 | from coefficients_isconst[OF np] q have "isconstant q" | |
| 1115 | by blast | |
| 1116 | with isconstant_polybound0[OF th] have "polybound0 q" | |
| 1117 | by blast | |
| 1118 | } | |
| 56009 | 1119 | then have "\<forall>q \<in> ?cf. polybound0 q" .. | 
| 56043 | 1120 | then have "\<forall>q \<in> ?cf. Ipoly (x # bs) q = Ipoly bs (decrpoly q)" | 
| 33154 | 1121 | using polybound0_I[where b=x and bs=bs and b'=y] decrpoly[where x=x and bs=bs] | 
| 1122 | by auto | |
| 56043 | 1123 | then show ?thesis | 
| 1124 | unfolding polypoly_def polypoly'_def by simp | |
| 33154 | 1125 | qed | 
| 1126 | ||
| 1127 | lemma polypoly_poly: | |
| 56043 | 1128 | assumes "isnpolyh p n0" | 
| 1129 | shows "Ipoly (x # bs) p = poly (polypoly (x # bs) p) x" | |
| 1130 | using assms | |
| 52658 | 1131 | by (induct p arbitrary: n0 bs rule: coefficients.induct) (auto simp add: polypoly_def) | 
| 33154 | 1132 | |
| 52803 | 1133 | lemma polypoly'_poly: | 
| 56043 | 1134 | assumes "isnpolyh p n0" | 
| 52658 | 1135 | shows "\<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup> = poly (polypoly' bs p) x" | 
| 56043 | 1136 | using polypoly_poly[OF assms, simplified polypoly_polypoly'[OF assms]] . | 
| 33154 | 1137 | |
| 1138 | ||
| 1139 | lemma polypoly_poly_polybound0: | |
| 56043 | 1140 | assumes "isnpolyh p n0" | 
| 1141 | and "polybound0 p" | |
| 33154 | 1142 | shows "polypoly bs p = [Ipoly bs p]" | 
| 56043 | 1143 | using assms | 
| 1144 | unfolding polypoly_def | |
| 52658 | 1145 | apply (cases p) | 
| 1146 | apply auto | |
| 58259 | 1147 | apply (rename_tac nat a, case_tac nat) | 
| 52658 | 1148 | apply auto | 
| 1149 | done | |
| 33154 | 1150 | |
| 52803 | 1151 | lemma head_isnpolyh: "isnpolyh p n0 \<Longrightarrow> isnpolyh (head p) n0" | 
| 52658 | 1152 | by (induct p rule: head.induct) auto | 
| 33154 | 1153 | |
| 56043 | 1154 | lemma headn_nz[simp]: "isnpolyh p n0 \<Longrightarrow> headn p m = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" | 
| 52658 | 1155 | by (cases p) auto | 
| 33154 | 1156 | |
| 1157 | lemma head_eq_headn0: "head p = headn p 0" | |
| 52658 | 1158 | by (induct p rule: head.induct) simp_all | 
| 33154 | 1159 | |
| 56043 | 1160 | lemma head_nz[simp]: "isnpolyh p n0 \<Longrightarrow> head p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" | 
| 33154 | 1161 | by (simp add: head_eq_headn0) | 
| 1162 | ||
| 52803 | 1163 | lemma isnpolyh_zero_iff: | 
| 52658 | 1164 | assumes nq: "isnpolyh p n0" | 
| 56000 | 1165 |     and eq :"\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a::{field_char_0,field_inverse_zero, power})"
 | 
| 33154 | 1166 | shows "p = 0\<^sub>p" | 
| 52658 | 1167 | using nq eq | 
| 34915 | 1168 | proof (induct "maxindex p" arbitrary: p n0 rule: less_induct) | 
| 1169 | case less | |
| 1170 | note np = `isnpolyh p n0` and zp = `\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)` | |
| 56000 | 1171 |   {
 | 
| 1172 | assume nz: "maxindex p = 0" | |
| 1173 | then obtain c where "p = C c" | |
| 1174 | using np by (cases p) auto | |
| 1175 | with zp np have "p = 0\<^sub>p" | |
| 1176 | unfolding wf_bs_def by simp | |
| 1177 | } | |
| 33154 | 1178 | moreover | 
| 56000 | 1179 |   {
 | 
| 1180 | assume nz: "maxindex p \<noteq> 0" | |
| 33154 | 1181 | let ?h = "head p" | 
| 1182 | let ?hd = "decrpoly ?h" | |
| 1183 | let ?ihd = "maxindex ?hd" | |
| 56000 | 1184 | from head_isnpolyh[OF np] head_polybound0[OF np] | 
| 1185 | have h: "isnpolyh ?h n0" "polybound0 ?h" | |
| 33154 | 1186 | by simp_all | 
| 56000 | 1187 | then have nhd: "isnpolyh ?hd (n0 - 1)" | 
| 1188 | using decrpoly_normh by blast | |
| 52803 | 1189 | |
| 33154 | 1190 | from maxindex_coefficients[of p] coefficients_head[of p, symmetric] | 
| 56000 | 1191 | have mihn: "maxindex ?h \<le> maxindex p" | 
| 1192 | by auto | |
| 1193 | with decr_maxindex[OF h(2)] nz have ihd_lt_n: "?ihd < maxindex p" | |
| 1194 | by auto | |
| 1195 |     {
 | |
| 1196 | fix bs :: "'a list" | |
| 1197 | assume bs: "wf_bs bs ?hd" | |
| 33154 | 1198 | let ?ts = "take ?ihd bs" | 
| 1199 | let ?rs = "drop ?ihd bs" | |
| 56000 | 1200 | have ts: "wf_bs ?ts ?hd" | 
| 1201 | using bs unfolding wf_bs_def by simp | |
| 1202 | have bs_ts_eq: "?ts @ ?rs = bs" | |
| 1203 | by simp | |
| 1204 | from wf_bs_decrpoly[OF ts] have tsh: " \<forall>x. wf_bs (x # ?ts) ?h" | |
| 1205 | by simp | |
| 1206 | from ihd_lt_n have "\<forall>x. length (x # ?ts) \<le> maxindex p" | |
| 1207 | by simp | |
| 1208 | with length_le_list_ex obtain xs where xs: "length ((x # ?ts) @ xs) = maxindex p" | |
| 1209 | by blast | |
| 1210 | then have "\<forall>x. wf_bs ((x # ?ts) @ xs) p" | |
| 1211 | unfolding wf_bs_def by simp | |
| 1212 | with zp have "\<forall>x. Ipoly ((x # ?ts) @ xs) p = 0" | |
| 1213 | by blast | |
| 1214 | then have "\<forall>x. Ipoly (x # (?ts @ xs)) p = 0" | |
| 1215 | by simp | |
| 33154 | 1216 | with polypoly_poly[OF np, where ?'a = 'a] polypoly_polypoly'[OF np, where ?'a = 'a] | 
| 56000 | 1217 | have "\<forall>x. poly (polypoly' (?ts @ xs) p) x = poly [] x" | 
| 1218 | by simp | |
| 1219 | then have "poly (polypoly' (?ts @ xs) p) = poly []" | |
| 1220 | by auto | |
| 1221 | then have "\<forall>c \<in> set (coefficients p). Ipoly (?ts @ xs) (decrpoly c) = 0" | |
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1222 | using poly_zero[where ?'a='a] by (simp add: polypoly'_def list_all_iff) | 
| 33154 | 1223 | with coefficients_head[of p, symmetric] | 
| 56000 | 1224 | have th0: "Ipoly (?ts @ xs) ?hd = 0" | 
| 1225 | by simp | |
| 1226 | from bs have wf'': "wf_bs ?ts ?hd" | |
| 1227 | unfolding wf_bs_def by simp | |
| 1228 | with th0 wf_bs_I[of ?ts ?hd xs] have "Ipoly ?ts ?hd = 0" | |
| 1229 | by simp | |
| 1230 | with wf'' wf_bs_I[of ?ts ?hd ?rs] bs_ts_eq have "\<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0" | |
| 1231 | by simp | |
| 1232 | } | |
| 1233 | then have hdz: "\<forall>bs. wf_bs bs ?hd \<longrightarrow> \<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)" | |
| 1234 | by blast | |
| 1235 | from less(1)[OF ihd_lt_n nhd] hdz have "?hd = 0\<^sub>p" | |
| 1236 | by blast | |
| 1237 | then have "?h = 0\<^sub>p" by simp | |
| 1238 | with head_nz[OF np] have "p = 0\<^sub>p" by simp | |
| 1239 | } | |
| 1240 | ultimately show "p = 0\<^sub>p" | |
| 1241 | by blast | |
| 33154 | 1242 | qed | 
| 1243 | ||
| 52803 | 1244 | lemma isnpolyh_unique: | 
| 56000 | 1245 | assumes np: "isnpolyh p n0" | 
| 52658 | 1246 | and nq: "isnpolyh q n1" | 
| 56000 | 1247 |   shows "(\<forall>bs. \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (\<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup> :: 'a::{field_char_0,field_inverse_zero,power})) \<longleftrightarrow> p = q"
 | 
| 1248 | proof auto | |
| 1249 | assume H: "\<forall>bs. (\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> ::'a) = \<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup>" | |
| 1250 | then have "\<forall>bs.\<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup>= (0::'a)" | |
| 1251 | by simp | |
| 1252 | then have "\<forall>bs. wf_bs bs (p -\<^sub>p q) \<longrightarrow> \<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)" | |
| 33154 | 1253 | using wf_bs_polysub[where p=p and q=q] by auto | 
| 56000 | 1254 | with isnpolyh_zero_iff[OF polysub_normh[OF np nq]] polysub_0[OF np nq] show "p = q" | 
| 1255 | by blast | |
| 33154 | 1256 | qed | 
| 1257 | ||
| 1258 | ||
| 41404 | 1259 | text{* consequences of unicity on the algorithms for polynomial normalization *}
 | 
| 33154 | 1260 | |
| 52658 | 1261 | lemma polyadd_commute: | 
| 56000 | 1262 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 52658 | 1263 | and np: "isnpolyh p n0" | 
| 1264 | and nq: "isnpolyh q n1" | |
| 1265 | shows "p +\<^sub>p q = q +\<^sub>p p" | |
| 56000 | 1266 | using isnpolyh_unique[OF polyadd_normh[OF np nq] polyadd_normh[OF nq np]] | 
| 1267 | by simp | |
| 33154 | 1268 | |
| 56000 | 1269 | lemma zero_normh: "isnpolyh 0\<^sub>p n" | 
| 1270 | by simp | |
| 1271 | ||
| 1272 | lemma one_normh: "isnpolyh (1)\<^sub>p n" | |
| 1273 | by simp | |
| 52658 | 1274 | |
| 52803 | 1275 | lemma polyadd_0[simp]: | 
| 56000 | 1276 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 52658 | 1277 | and np: "isnpolyh p n0" | 
| 56000 | 1278 | shows "p +\<^sub>p 0\<^sub>p = p" | 
| 1279 | and "0\<^sub>p +\<^sub>p p = p" | |
| 52803 | 1280 | using isnpolyh_unique[OF polyadd_normh[OF np zero_normh] np] | 
| 33154 | 1281 | isnpolyh_unique[OF polyadd_normh[OF zero_normh np] np] by simp_all | 
| 1282 | ||
| 52803 | 1283 | lemma polymul_1[simp]: | 
| 56000 | 1284 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 52658 | 1285 | and np: "isnpolyh p n0" | 
| 56000 | 1286 | shows "p *\<^sub>p (1)\<^sub>p = p" | 
| 1287 | and "(1)\<^sub>p *\<^sub>p p = p" | |
| 52803 | 1288 | using isnpolyh_unique[OF polymul_normh[OF np one_normh] np] | 
| 33154 | 1289 | isnpolyh_unique[OF polymul_normh[OF one_normh np] np] by simp_all | 
| 52658 | 1290 | |
| 52803 | 1291 | lemma polymul_0[simp]: | 
| 56000 | 1292 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 52658 | 1293 | and np: "isnpolyh p n0" | 
| 56000 | 1294 | shows "p *\<^sub>p 0\<^sub>p = 0\<^sub>p" | 
| 1295 | and "0\<^sub>p *\<^sub>p p = 0\<^sub>p" | |
| 52803 | 1296 | using isnpolyh_unique[OF polymul_normh[OF np zero_normh] zero_normh] | 
| 33154 | 1297 | isnpolyh_unique[OF polymul_normh[OF zero_normh np] zero_normh] by simp_all | 
| 1298 | ||
| 52803 | 1299 | lemma polymul_commute: | 
| 56000 | 1300 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 1301 | and np: "isnpolyh p n0" | |
| 52658 | 1302 | and nq: "isnpolyh q n1" | 
| 33154 | 1303 | shows "p *\<^sub>p q = q *\<^sub>p p" | 
| 56043 | 1304 | using isnpolyh_unique[OF polymul_normh[OF np nq] polymul_normh[OF nq np], | 
| 1305 |     where ?'a = "'a::{field_char_0,field_inverse_zero, power}"]
 | |
| 52658 | 1306 | by simp | 
| 33154 | 1307 | |
| 52658 | 1308 | declare polyneg_polyneg [simp] | 
| 52803 | 1309 | |
| 1310 | lemma isnpolyh_polynate_id [simp]: | |
| 56000 | 1311 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 1312 | and np: "isnpolyh p n0" | |
| 52658 | 1313 | shows "polynate p = p" | 
| 56043 | 1314 |   using isnpolyh_unique[where ?'a= "'a::{field_char_0,field_inverse_zero}",
 | 
| 1315 | OF polynate_norm[of p, unfolded isnpoly_def] np] | |
| 1316 |     polynate[where ?'a = "'a::{field_char_0,field_inverse_zero}"]
 | |
| 52658 | 1317 | by simp | 
| 33154 | 1318 | |
| 52803 | 1319 | lemma polynate_idempotent[simp]: | 
| 56000 | 1320 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 33154 | 1321 | shows "polynate (polynate p) = polynate p" | 
| 1322 | using isnpolyh_polynate_id[OF polynate_norm[of p, unfolded isnpoly_def]] . | |
| 1323 | ||
| 1324 | lemma poly_nate_polypoly': "poly_nate bs p = polypoly' bs (polynate p)" | |
| 1325 | unfolding poly_nate_def polypoly'_def .. | |
| 52658 | 1326 | |
| 1327 | lemma poly_nate_poly: | |
| 56000 | 1328 |   "poly (poly_nate bs p) = (\<lambda>x:: 'a ::{field_char_0,field_inverse_zero}. \<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup>)"
 | 
| 33154 | 1329 | using polypoly'_poly[OF polynate_norm[unfolded isnpoly_def], symmetric, of bs p] | 
| 52658 | 1330 | unfolding poly_nate_polypoly' by auto | 
| 1331 | ||
| 33154 | 1332 | |
| 1333 | subsection{* heads, degrees and all that *}
 | |
| 52658 | 1334 | |
| 33154 | 1335 | lemma degree_eq_degreen0: "degree p = degreen p 0" | 
| 52658 | 1336 | by (induct p rule: degree.induct) simp_all | 
| 33154 | 1337 | |
| 52658 | 1338 | lemma degree_polyneg: | 
| 56043 | 1339 | assumes "isnpolyh p n" | 
| 33154 | 1340 | shows "degree (polyneg p) = degree p" | 
| 56043 | 1341 | apply (induct p rule: polyneg.induct) | 
| 1342 | using assms | |
| 1343 | apply simp_all | |
| 52658 | 1344 | apply (case_tac na) | 
| 1345 | apply auto | |
| 1346 | done | |
| 33154 | 1347 | |
| 1348 | lemma degree_polyadd: | |
| 56043 | 1349 | assumes np: "isnpolyh p n0" | 
| 1350 | and nq: "isnpolyh q n1" | |
| 33154 | 1351 | shows "degree (p +\<^sub>p q) \<le> max (degree p) (degree q)" | 
| 52658 | 1352 | using degreen_polyadd[OF np nq, where m= "0"] degree_eq_degreen0 by simp | 
| 33154 | 1353 | |
| 1354 | ||
| 52658 | 1355 | lemma degree_polysub: | 
| 1356 | assumes np: "isnpolyh p n0" | |
| 1357 | and nq: "isnpolyh q n1" | |
| 33154 | 1358 | shows "degree (p -\<^sub>p q) \<le> max (degree p) (degree q)" | 
| 1359 | proof- | |
| 56043 | 1360 | from nq have nq': "isnpolyh (~\<^sub>p q) n1" | 
| 1361 | using polyneg_normh by simp | |
| 1362 | from degree_polyadd[OF np nq'] show ?thesis | |
| 1363 | by (simp add: polysub_def degree_polyneg[OF nq]) | |
| 33154 | 1364 | qed | 
| 1365 | ||
| 52803 | 1366 | lemma degree_polysub_samehead: | 
| 56000 | 1367 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 56043 | 1368 | and np: "isnpolyh p n0" | 
| 1369 | and nq: "isnpolyh q n1" | |
| 1370 | and h: "head p = head q" | |
| 52658 | 1371 | and d: "degree p = degree q" | 
| 33154 | 1372 | shows "degree (p -\<^sub>p q) < degree p \<or> (p -\<^sub>p q = 0\<^sub>p)" | 
| 52658 | 1373 | unfolding polysub_def split_def fst_conv snd_conv | 
| 1374 | using np nq h d | |
| 1375 | proof (induct p q rule: polyadd.induct) | |
| 1376 | case (1 c c') | |
| 56009 | 1377 | then show ?case | 
| 1378 | by (simp add: Nsub_def Nsub0[simplified Nsub_def]) | |
| 33154 | 1379 | next | 
| 52803 | 1380 | case (2 c c' n' p') | 
| 56009 | 1381 | from 2 have "degree (C c) = degree (CN c' n' p')" | 
| 1382 | by simp | |
| 1383 | then have nz: "n' > 0" | |
| 1384 | by (cases n') auto | |
| 1385 | then have "head (CN c' n' p') = CN c' n' p'" | |
| 1386 | by (cases n') auto | |
| 1387 | with 2 show ?case | |
| 1388 | by simp | |
| 33154 | 1389 | next | 
| 52803 | 1390 | case (3 c n p c') | 
| 56009 | 1391 | then have "degree (C c') = degree (CN c n p)" | 
| 1392 | by simp | |
| 1393 | then have nz: "n > 0" | |
| 1394 | by (cases n) auto | |
| 1395 | then have "head (CN c n p) = CN c n p" | |
| 1396 | by (cases n) auto | |
| 41807 | 1397 | with 3 show ?case by simp | 
| 33154 | 1398 | next | 
| 1399 | case (4 c n p c' n' p') | |
| 56009 | 1400 | then have H: | 
| 1401 | "isnpolyh (CN c n p) n0" | |
| 1402 | "isnpolyh (CN c' n' p') n1" | |
| 1403 | "head (CN c n p) = head (CN c' n' p')" | |
| 1404 | "degree (CN c n p) = degree (CN c' n' p')" | |
| 1405 | by simp_all | |
| 1406 | then have degc: "degree c = 0" and degc': "degree c' = 0" | |
| 1407 | by simp_all | |
| 1408 | then have degnc: "degree (~\<^sub>p c) = 0" and degnc': "degree (~\<^sub>p c') = 0" | |
| 33154 | 1409 | using H(1-2) degree_polyneg by auto | 
| 56009 | 1410 | from H have cnh: "isnpolyh c (Suc n)" and c'nh: "isnpolyh c' (Suc n')" | 
| 1411 | by simp_all | |
| 1412 | from degree_polysub[OF cnh c'nh, simplified polysub_def] degc degc' | |
| 1413 | have degcmc': "degree (c +\<^sub>p ~\<^sub>pc') = 0" | |
| 1414 | by simp | |
| 1415 | from H have pnh: "isnpolyh p n" and p'nh: "isnpolyh p' n'" | |
| 1416 | by auto | |
| 1417 | have "n = n' \<or> n < n' \<or> n > n'" | |
| 1418 | by arith | |
| 33154 | 1419 | moreover | 
| 56009 | 1420 |   {
 | 
| 1421 | assume nn': "n = n'" | |
| 1422 | have "n = 0 \<or> n > 0" by arith | |
| 56066 | 1423 | moreover | 
| 1424 |     {
 | |
| 56009 | 1425 | assume nz: "n = 0" | 
| 1426 | then have ?case using 4 nn' | |
| 1427 | by (auto simp add: Let_def degcmc') | |
| 1428 | } | |
| 56066 | 1429 | moreover | 
| 1430 |     {
 | |
| 56009 | 1431 | assume nz: "n > 0" | 
| 1432 | with nn' H(3) have cc': "c = c'" and pp': "p = p'" | |
| 1433 | by (cases n, auto)+ | |
| 1434 | then have ?case | |
| 1435 | using polysub_same_0[OF p'nh, simplified polysub_def split_def fst_conv snd_conv] | |
| 1436 | using polysub_same_0[OF c'nh, simplified polysub_def] | |
| 1437 | using nn' 4 by (simp add: Let_def) | |
| 1438 | } | |
| 1439 | ultimately have ?case by blast | |
| 1440 | } | |
| 33154 | 1441 | moreover | 
| 56009 | 1442 |   {
 | 
| 1443 | assume nn': "n < n'" | |
| 1444 | then have n'p: "n' > 0" | |
| 1445 | by simp | |
| 1446 | then have headcnp':"head (CN c' n' p') = CN c' n' p'" | |
| 1447 | by (cases n') simp_all | |
| 1448 | have degcnp': "degree (CN c' n' p') = 0" | |
| 1449 | and degcnpeq: "degree (CN c n p) = degree (CN c' n' p')" | |
| 52658 | 1450 | using 4 nn' by (cases n', simp_all) | 
| 56009 | 1451 | then have "n > 0" | 
| 1452 | by (cases n) simp_all | |
| 1453 | then have headcnp: "head (CN c n p) = CN c n p" | |
| 1454 | by (cases n) auto | |
| 1455 | from H(3) headcnp headcnp' nn' have ?case | |
| 1456 | by auto | |
| 1457 | } | |
| 33154 | 1458 | moreover | 
| 56009 | 1459 |   {
 | 
| 1460 | assume nn': "n > n'" | |
| 1461 | then have np: "n > 0" by simp | |
| 1462 | then have headcnp:"head (CN c n p) = CN c n p" | |
| 1463 | by (cases n) simp_all | |
| 1464 | from 4 have degcnpeq: "degree (CN c' n' p') = degree (CN c n p)" | |
| 1465 | by simp | |
| 1466 | from np have degcnp: "degree (CN c n p) = 0" | |
| 1467 | by (cases n) simp_all | |
| 1468 | with degcnpeq have "n' > 0" | |
| 1469 | by (cases n') simp_all | |
| 1470 | then have headcnp': "head (CN c' n' p') = CN c' n' p'" | |
| 1471 | by (cases n') auto | |
| 1472 | from H(3) headcnp headcnp' nn' have ?case by auto | |
| 1473 | } | |
| 1474 | ultimately show ?case by blast | |
| 41812 | 1475 | qed auto | 
| 52803 | 1476 | |
| 33154 | 1477 | lemma shift1_head : "isnpolyh p n0 \<Longrightarrow> head (shift1 p) = head p" | 
| 52658 | 1478 | by (induct p arbitrary: n0 rule: head.induct) (simp_all add: shift1_def) | 
| 33154 | 1479 | |
| 1480 | lemma funpow_shift1_head: "isnpolyh p n0 \<Longrightarrow> p\<noteq> 0\<^sub>p \<Longrightarrow> head (funpow k shift1 p) = head p" | |
| 52658 | 1481 | proof (induct k arbitrary: n0 p) | 
| 1482 | case 0 | |
| 56198 | 1483 | then show ?case | 
| 1484 | by auto | |
| 52658 | 1485 | next | 
| 1486 | case (Suc k n0 p) | |
| 56066 | 1487 | then have "isnpolyh (shift1 p) 0" | 
| 1488 | by (simp add: shift1_isnpolyh) | |
| 41807 | 1489 | with Suc have "head (funpow k shift1 (shift1 p)) = head (shift1 p)" | 
| 56066 | 1490 | and "head (shift1 p) = head p" | 
| 1491 | by (simp_all add: shift1_head) | |
| 1492 | then show ?case | |
| 1493 | by (simp add: funpow_swap1) | |
| 52658 | 1494 | qed | 
| 33154 | 1495 | |
| 1496 | lemma shift1_degree: "degree (shift1 p) = 1 + degree p" | |
| 1497 | by (simp add: shift1_def) | |
| 56009 | 1498 | |
| 33154 | 1499 | lemma funpow_shift1_degree: "degree (funpow k shift1 p) = k + degree p " | 
| 46991 | 1500 | by (induct k arbitrary: p) (auto simp add: shift1_degree) | 
| 33154 | 1501 | |
| 1502 | lemma funpow_shift1_nz: "p \<noteq> 0\<^sub>p \<Longrightarrow> funpow n shift1 p \<noteq> 0\<^sub>p" | |
| 52658 | 1503 | by (induct n arbitrary: p) simp_all | 
| 33154 | 1504 | |
| 1505 | lemma head_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> head p = p" | |
| 52658 | 1506 | by (induct p arbitrary: n rule: degree.induct) auto | 
| 33154 | 1507 | lemma headn_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> headn p m = p" | 
| 52658 | 1508 | by (induct p arbitrary: n rule: degreen.induct) auto | 
| 33154 | 1509 | lemma head_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> head p = p" | 
| 52658 | 1510 | by (induct p arbitrary: n rule: degree.induct) auto | 
| 33154 | 1511 | lemma head_head[simp]: "isnpolyh p n0 \<Longrightarrow> head (head p) = head p" | 
| 52658 | 1512 | by (induct p rule: head.induct) auto | 
| 33154 | 1513 | |
| 52803 | 1514 | lemma polyadd_eq_const_degree: | 
| 52658 | 1515 | "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> polyadd p q = C c \<Longrightarrow> degree p = degree q" | 
| 33154 | 1516 | using polyadd_eq_const_degreen degree_eq_degreen0 by simp | 
| 1517 | ||
| 52658 | 1518 | lemma polyadd_head: | 
| 1519 | assumes np: "isnpolyh p n0" | |
| 1520 | and nq: "isnpolyh q n1" | |
| 1521 | and deg: "degree p \<noteq> degree q" | |
| 33154 | 1522 | shows "head (p +\<^sub>p q) = (if degree p < degree q then head q else head p)" | 
| 52658 | 1523 | using np nq deg | 
| 1524 | apply (induct p q arbitrary: n0 n1 rule: polyadd.induct) | |
| 1525 | apply simp_all | |
| 1526 | apply (case_tac n', simp, simp) | |
| 1527 | apply (case_tac n, simp, simp) | |
| 1528 | apply (case_tac n, case_tac n', simp add: Let_def) | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54220diff
changeset | 1529 | apply (auto simp add: polyadd_eq_const_degree)[2] | 
| 52658 | 1530 | apply (metis head_nz) | 
| 1531 | apply (metis head_nz) | |
| 1532 | apply (metis degree.simps(9) gr0_conv_Suc head.simps(1) less_Suc0 not_less_eq) | |
| 1533 | done | |
| 33154 | 1534 | |
| 52803 | 1535 | lemma polymul_head_polyeq: | 
| 56000 | 1536 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 56066 | 1537 | shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> q \<noteq> 0\<^sub>p \<Longrightarrow> head (p *\<^sub>p q) = head p *\<^sub>p head q" | 
| 33154 | 1538 | proof (induct p q arbitrary: n0 n1 rule: polymul.induct) | 
| 41813 | 1539 | case (2 c c' n' p' n0 n1) | 
| 56009 | 1540 | then have "isnpolyh (head (CN c' n' p')) n1" "isnormNum c" | 
| 1541 | by (simp_all add: head_isnpolyh) | |
| 1542 | then show ?case | |
| 1543 | using 2 by (cases n') auto | |
| 52803 | 1544 | next | 
| 1545 | case (3 c n p c' n0 n1) | |
| 56009 | 1546 | then have "isnpolyh (head (CN c n p)) n0" "isnormNum c'" | 
| 1547 | by (simp_all add: head_isnpolyh) | |
| 56066 | 1548 | then show ?case | 
| 1549 | using 3 by (cases n) auto | |
| 33154 | 1550 | next | 
| 1551 | case (4 c n p c' n' p' n0 n1) | |
| 56066 | 1552 | then have norm: "isnpolyh p n" "isnpolyh c (Suc n)" "isnpolyh p' n'" "isnpolyh c' (Suc n')" | 
| 33154 | 1553 | "isnpolyh (CN c n p) n" "isnpolyh (CN c' n' p') n'" | 
| 1554 | by simp_all | |
| 1555 | have "n < n' \<or> n' < n \<or> n = n'" by arith | |
| 52803 | 1556 | moreover | 
| 56009 | 1557 |   {
 | 
| 1558 | assume nn': "n < n'" | |
| 1559 | then have ?case | |
| 52658 | 1560 | using norm "4.hyps"(2)[OF norm(1,6)] "4.hyps"(1)[OF norm(2,6)] | 
| 1561 | apply simp | |
| 1562 | apply (cases n) | |
| 1563 | apply simp | |
| 1564 | apply (cases n') | |
| 1565 | apply simp_all | |
| 56009 | 1566 | done | 
| 1567 | } | |
| 1568 |   moreover {
 | |
| 1569 | assume nn': "n'< n" | |
| 1570 | then have ?case | |
| 52803 | 1571 | using norm "4.hyps"(6) [OF norm(5,3)] "4.hyps"(5)[OF norm(5,4)] | 
| 52658 | 1572 | apply simp | 
| 1573 | apply (cases n') | |
| 1574 | apply simp | |
| 1575 | apply (cases n) | |
| 1576 | apply auto | |
| 56009 | 1577 | done | 
| 1578 | } | |
| 56066 | 1579 | moreover | 
| 1580 |   {
 | |
| 56009 | 1581 | assume nn': "n' = n" | 
| 52803 | 1582 | from nn' polymul_normh[OF norm(5,4)] | 
| 33154 | 1583 | have ncnpc':"isnpolyh (CN c n p *\<^sub>p c') n" by (simp add: min_def) | 
| 52803 | 1584 | from nn' polymul_normh[OF norm(5,3)] norm | 
| 33154 | 1585 | have ncnpp':"isnpolyh (CN c n p *\<^sub>p p') n" by simp | 
| 1586 | from nn' ncnpp' polymul_eq0_iff[OF norm(5,3)] norm(6) | |
| 52803 | 1587 | have ncnpp0':"isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp | 
| 1588 | from polyadd_normh[OF ncnpc' ncnpp0'] | |
| 1589 | have nth: "isnpolyh ((CN c n p *\<^sub>p c') +\<^sub>p (CN 0\<^sub>p n (CN c n p *\<^sub>p p'))) n" | |
| 33154 | 1590 | by (simp add: min_def) | 
| 56009 | 1591 |     {
 | 
| 1592 | assume np: "n > 0" | |
| 33154 | 1593 | with nn' head_isnpolyh_Suc'[OF np nth] | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1594 | head_isnpolyh_Suc'[OF np norm(5)] head_isnpolyh_Suc'[OF np norm(6)[simplified nn']] | 
| 56009 | 1595 | have ?case by simp | 
| 1596 | } | |
| 33154 | 1597 | moreover | 
| 56009 | 1598 |     {
 | 
| 1599 | assume nz: "n = 0" | |
| 33154 | 1600 | from polymul_degreen[OF norm(5,4), where m="0"] | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1601 | polymul_degreen[OF norm(5,3), where m="0"] nn' nz degree_eq_degreen0 | 
| 33154 | 1602 | norm(5,6) degree_npolyhCN[OF norm(6)] | 
| 56066 | 1603 | have dth: "degree (CN c 0 p *\<^sub>p c') < degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))" | 
| 1604 | by simp | |
| 1605 | then have dth': "degree (CN c 0 p *\<^sub>p c') \<noteq> degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))" | |
| 1606 | by simp | |
| 33154 | 1607 | from polyadd_head[OF ncnpc'[simplified nz] ncnpp0'[simplified nz] dth'] dth | 
| 56066 | 1608 | have ?case | 
| 1609 | using norm "4.hyps"(6)[OF norm(5,3)] "4.hyps"(5)[OF norm(5,4)] nn' nz | |
| 1610 | by simp | |
| 56009 | 1611 | } | 
| 56066 | 1612 | ultimately have ?case | 
| 1613 | by (cases n) auto | |
| 56009 | 1614 | } | 
| 33154 | 1615 | ultimately show ?case by blast | 
| 1616 | qed simp_all | |
| 1617 | ||
| 1618 | lemma degree_coefficients: "degree p = length (coefficients p) - 1" | |
| 52658 | 1619 | by (induct p rule: degree.induct) auto | 
| 33154 | 1620 | |
| 1621 | lemma degree_head[simp]: "degree (head p) = 0" | |
| 52658 | 1622 | by (induct p rule: head.induct) auto | 
| 33154 | 1623 | |
| 41812 | 1624 | lemma degree_CN: "isnpolyh p n \<Longrightarrow> degree (CN c n p) \<le> 1 + degree p" | 
| 52658 | 1625 | by (cases n) simp_all | 
| 56066 | 1626 | |
| 33154 | 1627 | lemma degree_CN': "isnpolyh p n \<Longrightarrow> degree (CN c n p) \<ge> degree p" | 
| 52658 | 1628 | by (cases n) simp_all | 
| 33154 | 1629 | |
| 52658 | 1630 | lemma polyadd_different_degree: | 
| 56066 | 1631 | "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> degree p \<noteq> degree q \<Longrightarrow> | 
| 52658 | 1632 | degree (polyadd p q) = max (degree p) (degree q)" | 
| 33154 | 1633 | using polyadd_different_degreen degree_eq_degreen0 by simp | 
| 1634 | ||
| 1635 | lemma degreen_polyneg: "isnpolyh p n0 \<Longrightarrow> degreen (~\<^sub>p p) m = degreen p m" | |
| 52658 | 1636 | by (induct p arbitrary: n0 rule: polyneg.induct) auto | 
| 33154 | 1637 | |
| 1638 | lemma degree_polymul: | |
| 56000 | 1639 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 52658 | 1640 | and np: "isnpolyh p n0" | 
| 1641 | and nq: "isnpolyh q n1" | |
| 33154 | 1642 | shows "degree (p *\<^sub>p q) \<le> degree p + degree q" | 
| 1643 | using polymul_degreen[OF np nq, where m="0"] degree_eq_degreen0 by simp | |
| 1644 | ||
| 1645 | lemma polyneg_degree: "isnpolyh p n \<Longrightarrow> degree (polyneg p) = degree p" | |
| 52658 | 1646 | by (induct p arbitrary: n rule: degree.induct) auto | 
| 33154 | 1647 | |
| 56207 | 1648 | lemma polyneg_head: "isnpolyh p n \<Longrightarrow> head (polyneg p) = polyneg (head p)" | 
| 52658 | 1649 | by (induct p arbitrary: n rule: degree.induct) auto | 
| 1650 | ||
| 33154 | 1651 | |
| 1652 | subsection {* Correctness of polynomial pseudo division *}
 | |
| 1653 | ||
| 1654 | lemma polydivide_aux_properties: | |
| 56000 | 1655 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 52658 | 1656 | and np: "isnpolyh p n0" | 
| 1657 | and ns: "isnpolyh s n1" | |
| 1658 | and ap: "head p = a" | |
| 56198 | 1659 | and ndp: "degree p = n" | 
| 1660 | and pnz: "p \<noteq> 0\<^sub>p" | |
| 1661 | shows "polydivide_aux a n p k s = (k', r) \<longrightarrow> k' \<ge> k \<and> (degree r = 0 \<or> degree r < degree p) \<and> | |
| 56066 | 1662 | (\<exists>nr. isnpolyh r nr) \<and> (\<exists>q n1. isnpolyh q n1 \<and> (polypow (k' - k) a) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)" | 
| 33154 | 1663 | using ns | 
| 52658 | 1664 | proof (induct "degree s" arbitrary: s k k' r n1 rule: less_induct) | 
| 34915 | 1665 | case less | 
| 33154 | 1666 | let ?qths = "\<exists>q n1. isnpolyh q n1 \<and> (a ^\<^sub>p (k' - k) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)" | 
| 56066 | 1667 | let ?ths = "polydivide_aux a n p k s = (k', r) \<longrightarrow> k \<le> k' \<and> | 
| 1668 | (degree r = 0 \<or> degree r < degree p) \<and> (\<exists>nr. isnpolyh r nr) \<and> ?qths" | |
| 33154 | 1669 | let ?b = "head s" | 
| 34915 | 1670 | let ?p' = "funpow (degree s - n) shift1 p" | 
| 50282 
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
 wenzelm parents: 
49962diff
changeset | 1671 | let ?xdn = "funpow (degree s - n) shift1 (1)\<^sub>p" | 
| 33154 | 1672 | let ?akk' = "a ^\<^sub>p (k' - k)" | 
| 34915 | 1673 | note ns = `isnpolyh s n1` | 
| 52803 | 1674 | from np have np0: "isnpolyh p 0" | 
| 1675 | using isnpolyh_mono[where n="n0" and n'="0" and p="p"] by simp | |
| 1676 | have np': "isnpolyh ?p' 0" | |
| 1677 | using funpow_shift1_isnpoly[OF np0[simplified isnpoly_def[symmetric]] pnz, where n="degree s - n"] isnpoly_def | |
| 1678 | by simp | |
| 1679 | have headp': "head ?p' = head p" | |
| 1680 | using funpow_shift1_head[OF np pnz] by simp | |
| 1681 | from funpow_shift1_isnpoly[where p="(1)\<^sub>p"] have nxdn: "isnpolyh ?xdn 0" | |
| 1682 | by (simp add: isnpoly_def) | |
| 1683 | from polypow_normh [OF head_isnpolyh[OF np0], where k="k' - k"] ap | |
| 33154 | 1684 | have nakk':"isnpolyh ?akk' 0" by blast | 
| 56066 | 1685 |   {
 | 
| 1686 | assume sz: "s = 0\<^sub>p" | |
| 1687 | then have ?ths | |
| 1688 | using np polydivide_aux.simps | |
| 52658 | 1689 | apply clarsimp | 
| 1690 | apply (rule exI[where x="0\<^sub>p"]) | |
| 1691 | apply simp | |
| 56066 | 1692 | done | 
| 1693 | } | |
| 33154 | 1694 | moreover | 
| 56066 | 1695 |   {
 | 
| 1696 | assume sz: "s \<noteq> 0\<^sub>p" | |
| 1697 |     {
 | |
| 1698 | assume dn: "degree s < n" | |
| 1699 | then have "?ths" | |
| 1700 | using ns ndp np polydivide_aux.simps | |
| 52658 | 1701 | apply auto | 
| 1702 | apply (rule exI[where x="0\<^sub>p"]) | |
| 1703 | apply simp | |
| 56066 | 1704 | done | 
| 1705 | } | |
| 52803 | 1706 | moreover | 
| 56066 | 1707 |     {
 | 
| 1708 | assume dn': "\<not> degree s < n" | |
| 1709 | then have dn: "degree s \<ge> n" | |
| 1710 | by arith | |
| 52803 | 1711 | have degsp': "degree s = degree ?p'" | 
| 56066 | 1712 | using dn ndp funpow_shift1_degree[where k = "degree s - n" and p="p"] | 
| 1713 | by simp | |
| 1714 |       {
 | |
| 1715 | assume ba: "?b = a" | |
| 1716 | then have headsp': "head s = head ?p'" | |
| 52803 | 1717 | using ap headp' by simp | 
| 1718 | have nr: "isnpolyh (s -\<^sub>p ?p') 0" | |
| 1719 | using polysub_normh[OF ns np'] by simp | |
| 34915 | 1720 | from degree_polysub_samehead[OF ns np' headsp' degsp'] | 
| 56207 | 1721 | have "degree (s -\<^sub>p ?p') < degree s \<or> s -\<^sub>p ?p' = 0\<^sub>p" | 
| 1722 | by simp | |
| 52803 | 1723 | moreover | 
| 56066 | 1724 |         {
 | 
| 1725 | assume deglt:"degree (s -\<^sub>p ?p') < degree s" | |
| 41403 
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
 krauss parents: 
39246diff
changeset | 1726 | from polydivide_aux.simps sz dn' ba | 
| 
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
 krauss parents: 
39246diff
changeset | 1727 | have eq: "polydivide_aux a n p k s = polydivide_aux a n p k (s -\<^sub>p ?p')" | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1728 | by (simp add: Let_def) | 
| 56066 | 1729 |           {
 | 
| 1730 | assume h1: "polydivide_aux a n p k s = (k', r)" | |
| 52803 | 1731 | from less(1)[OF deglt nr, of k k' r] trans[OF eq[symmetric] h1] | 
| 1732 | have kk': "k \<le> k'" | |
| 56066 | 1733 | and nr: "\<exists>nr. isnpolyh r nr" | 
| 52803 | 1734 | and dr: "degree r = 0 \<or> degree r < degree p" | 
| 56066 | 1735 | and q1: "\<exists>q nq. isnpolyh q nq \<and> a ^\<^sub>p k' - k *\<^sub>p (s -\<^sub>p ?p') = p *\<^sub>p q +\<^sub>p r" | 
| 52803 | 1736 | by auto | 
| 1737 | from q1 obtain q n1 where nq: "isnpolyh q n1" | |
| 56066 | 1738 | and asp: "a^\<^sub>p (k' - k) *\<^sub>p (s -\<^sub>p ?p') = p *\<^sub>p q +\<^sub>p r" | 
| 1739 | by blast | |
| 1740 | from nr obtain nr where nr': "isnpolyh r nr" | |
| 1741 | by blast | |
| 52803 | 1742 | from polymul_normh[OF nakk' ns] have nakks': "isnpolyh (a ^\<^sub>p (k' - k) *\<^sub>p s) 0" | 
| 1743 | by simp | |
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1744 | from polyadd_normh[OF polymul_normh[OF nakk' nxdn] nq] | 
| 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1745 | have nq': "isnpolyh (?akk' *\<^sub>p ?xdn +\<^sub>p q) 0" by simp | 
| 52803 | 1746 | from polyadd_normh[OF polymul_normh[OF np | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1747 | polyadd_normh[OF polymul_normh[OF nakk' nxdn] nq]] nr'] | 
| 52803 | 1748 | have nqr': "isnpolyh (p *\<^sub>p (?akk' *\<^sub>p ?xdn +\<^sub>p q) +\<^sub>p r) 0" | 
| 1749 | by simp | |
| 56066 | 1750 |             from asp have "\<forall>bs :: 'a::{field_char_0,field_inverse_zero} list.
 | 
| 1751 | Ipoly bs (a^\<^sub>p (k' - k) *\<^sub>p (s -\<^sub>p ?p')) = Ipoly bs (p *\<^sub>p q +\<^sub>p r)" | |
| 1752 | by simp | |
| 1753 |             then have "\<forall>bs :: 'a::{field_char_0,field_inverse_zero} list.
 | |
| 1754 | Ipoly bs (a^\<^sub>p (k' - k)*\<^sub>p s) = | |
| 52803 | 1755 | Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs ?p' + Ipoly bs p * Ipoly bs q + Ipoly bs r" | 
| 36349 | 1756 | by (simp add: field_simps) | 
| 56066 | 1757 |             then have "\<forall>bs :: 'a::{field_char_0,field_inverse_zero} list.
 | 
| 1758 | Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = | |
| 52803 | 1759 | Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs (funpow (degree s - n) shift1 (1)\<^sub>p *\<^sub>p p) + | 
| 1760 | Ipoly bs p * Ipoly bs q + Ipoly bs r" | |
| 1761 | by (auto simp only: funpow_shift1_1) | |
| 56066 | 1762 |             then have "\<forall>bs:: 'a::{field_char_0,field_inverse_zero} list.
 | 
| 1763 | Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = | |
| 52803 | 1764 | Ipoly bs p * (Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs (funpow (degree s - n) shift1 (1)\<^sub>p) + | 
| 1765 | Ipoly bs q) + Ipoly bs r" | |
| 1766 | by (simp add: field_simps) | |
| 56066 | 1767 |             then have "\<forall>bs:: 'a::{field_char_0,field_inverse_zero} list.
 | 
| 1768 | Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = | |
| 52803 | 1769 | Ipoly bs (p *\<^sub>p ((a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 (1)\<^sub>p) +\<^sub>p q) +\<^sub>p r)" | 
| 1770 | by simp | |
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1771 | with isnpolyh_unique[OF nakks' nqr'] | 
| 52803 | 1772 | have "a ^\<^sub>p (k' - k) *\<^sub>p s = | 
| 1773 | p *\<^sub>p ((a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 (1)\<^sub>p) +\<^sub>p q) +\<^sub>p r" | |
| 1774 | by blast | |
| 56066 | 1775 | then have ?qths using nq' | 
| 50282 
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
 wenzelm parents: 
49962diff
changeset | 1776 | apply (rule_tac x="(a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 (1)\<^sub>p) +\<^sub>p q" in exI) | 
| 52803 | 1777 | apply (rule_tac x="0" in exI) | 
| 1778 | apply simp | |
| 1779 | done | |
| 56066 | 1780 | with kk' nr dr have "k \<le> k' \<and> (degree r = 0 \<or> degree r < degree p) \<and> | 
| 1781 | (\<exists>nr. isnpolyh r nr) \<and> ?qths" | |
| 52803 | 1782 | by blast | 
| 1783 | } | |
| 56066 | 1784 | then have ?ths by blast | 
| 52803 | 1785 | } | 
| 1786 | moreover | |
| 56066 | 1787 |         {
 | 
| 1788 | assume spz:"s -\<^sub>p ?p' = 0\<^sub>p" | |
| 56000 | 1789 |           from spz isnpolyh_unique[OF polysub_normh[OF ns np'], where q="0\<^sub>p", symmetric, where ?'a = "'a::{field_char_0,field_inverse_zero}"]
 | 
| 56066 | 1790 |           have "\<forall>bs:: 'a::{field_char_0,field_inverse_zero} list. Ipoly bs s = Ipoly bs ?p'"
 | 
| 52803 | 1791 | by simp | 
| 56066 | 1792 |           then have "\<forall>bs:: 'a::{field_char_0,field_inverse_zero} list. Ipoly bs s = Ipoly bs (?xdn *\<^sub>p p)"
 | 
| 52658 | 1793 | using np nxdn | 
| 1794 | apply simp | |
| 1795 | apply (simp only: funpow_shift1_1) | |
| 1796 | apply simp | |
| 1797 | done | |
| 56066 | 1798 | then have sp': "s = ?xdn *\<^sub>p p" | 
| 1799 | using isnpolyh_unique[OF ns polymul_normh[OF nxdn np]] | |
| 52658 | 1800 | by blast | 
| 56066 | 1801 |           {
 | 
| 56207 | 1802 | assume h1: "polydivide_aux a n p k s = (k', r)" | 
| 41403 
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
 krauss parents: 
39246diff
changeset | 1803 | from polydivide_aux.simps sz dn' ba | 
| 
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
 krauss parents: 
39246diff
changeset | 1804 | have eq: "polydivide_aux a n p k s = polydivide_aux a n p k (s -\<^sub>p ?p')" | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1805 | by (simp add: Let_def) | 
| 52803 | 1806 | also have "\<dots> = (k,0\<^sub>p)" | 
| 1807 | using polydivide_aux.simps spz by simp | |
| 56066 | 1808 | finally have "(k', r) = (k, 0\<^sub>p)" | 
| 1809 | using h1 by simp | |
| 34915 | 1810 | with sp'[symmetric] ns np nxdn polyadd_0(1)[OF polymul_normh[OF np nxdn]] | 
| 41403 
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
 krauss parents: 
39246diff
changeset | 1811 | polyadd_0(2)[OF polymul_normh[OF np nxdn]] have ?ths | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1812 | apply auto | 
| 52803 | 1813 | apply (rule exI[where x="?xdn"]) | 
| 34915 | 1814 | apply (auto simp add: polymul_commute[of p]) | 
| 52803 | 1815 | done | 
| 1816 | } | |
| 1817 | } | |
| 1818 | ultimately have ?ths by blast | |
| 1819 | } | |
| 33154 | 1820 | moreover | 
| 56066 | 1821 |       {
 | 
| 1822 | assume ba: "?b \<noteq> a" | |
| 52803 | 1823 | from polysub_normh[OF polymul_normh[OF head_isnpolyh[OF np0, simplified ap] ns] | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1824 | polymul_normh[OF head_isnpolyh[OF ns] np']] | 
| 52803 | 1825 | have nth: "isnpolyh ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) 0" | 
| 1826 | by (simp add: min_def) | |
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1827 | have nzths: "a *\<^sub>p s \<noteq> 0\<^sub>p" "?b *\<^sub>p ?p' \<noteq> 0\<^sub>p" | 
| 52803 | 1828 | using polymul_eq0_iff[OF head_isnpolyh[OF np0, simplified ap] ns] | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1829 | polymul_eq0_iff[OF head_isnpolyh[OF ns] np']head_nz[OF np0] ap pnz sz head_nz[OF ns] | 
| 52803 | 1830 | funpow_shift1_nz[OF pnz] | 
| 1831 | by simp_all | |
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1832 | from polymul_head_polyeq[OF head_isnpolyh[OF np] ns] head_nz[OF np] sz ap head_head[OF np] pnz | 
| 34915 | 1833 | polymul_head_polyeq[OF head_isnpolyh[OF ns] np'] head_nz [OF ns] sz funpow_shift1_nz[OF pnz, where n="degree s - n"] | 
| 52803 | 1834 | have hdth: "head (a *\<^sub>p s) = head (?b *\<^sub>p ?p')" | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1835 | using head_head[OF ns] funpow_shift1_head[OF np pnz] | 
| 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1836 | polymul_commute[OF head_isnpolyh[OF np] head_isnpolyh[OF ns]] | 
| 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1837 | by (simp add: ap) | 
| 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1838 | from polymul_degreen[OF head_isnpolyh[OF np] ns, where m="0"] | 
| 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1839 | head_nz[OF np] pnz sz ap[symmetric] | 
| 34915 | 1840 | funpow_shift1_nz[OF pnz, where n="degree s - n"] | 
| 52803 | 1841 | polymul_degreen[OF head_isnpolyh[OF ns] np', where m="0"] head_nz[OF ns] | 
| 34915 | 1842 | ndp dn | 
| 52803 | 1843 | have degth: "degree (a *\<^sub>p s) = degree (?b *\<^sub>p ?p')" | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1844 | by (simp add: degree_eq_degreen0[symmetric] funpow_shift1_degree) | 
| 56066 | 1845 |         {
 | 
| 1846 | assume dth: "degree ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) < degree s" | |
| 52803 | 1847 | from polysub_normh[OF polymul_normh[OF head_isnpolyh[OF np] ns] | 
| 1848 | polymul_normh[OF head_isnpolyh[OF ns]np']] ap | |
| 1849 | have nasbp': "isnpolyh ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) 0" | |
| 1850 | by simp | |
| 56066 | 1851 |           {
 | 
| 1852 | assume h1:"polydivide_aux a n p k s = (k', r)" | |
| 41403 
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
 krauss parents: 
39246diff
changeset | 1853 | from h1 polydivide_aux.simps sz dn' ba | 
| 
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
 krauss parents: 
39246diff
changeset | 1854 | have eq:"polydivide_aux a n p (Suc k) ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) = (k',r)" | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1855 | by (simp add: Let_def) | 
| 34915 | 1856 | with less(1)[OF dth nasbp', of "Suc k" k' r] | 
| 52803 | 1857 | obtain q nq nr where kk': "Suc k \<le> k'" | 
| 1858 | and nr: "isnpolyh r nr" | |
| 1859 | and nq: "isnpolyh q nq" | |
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1860 | and dr: "degree r = 0 \<or> degree r < degree p" | 
| 52803 | 1861 | and qr: "a ^\<^sub>p (k' - Suc k) *\<^sub>p ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) = p *\<^sub>p q +\<^sub>p r" | 
| 1862 | by auto | |
| 56066 | 1863 | from kk' have kk'': "Suc (k' - Suc k) = k' - k" | 
| 1864 | by arith | |
| 52803 | 1865 |             {
 | 
| 56066 | 1866 |               fix bs :: "'a::{field_char_0,field_inverse_zero} list"
 | 
| 52803 | 1867 | from qr isnpolyh_unique[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - Suc k", simplified ap] nasbp', symmetric] | 
| 1868 | have "Ipoly bs (a ^\<^sub>p (k' - Suc k) *\<^sub>p ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p'))) = Ipoly bs (p *\<^sub>p q +\<^sub>p r)" | |
| 1869 | by simp | |
| 56066 | 1870 | then have "Ipoly bs a ^ (Suc (k' - Suc k)) * Ipoly bs s = | 
| 52803 | 1871 | Ipoly bs p * Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?p' + Ipoly bs r" | 
| 1872 | by (simp add: field_simps) | |
| 56066 | 1873 | then have "Ipoly bs a ^ (k' - k) * Ipoly bs s = | 
| 52803 | 1874 | Ipoly bs p * Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?xdn * Ipoly bs p + Ipoly bs r" | 
| 1875 | by (simp add: kk'' funpow_shift1_1[where n="degree s - n" and p="p"]) | |
| 56066 | 1876 | then have "Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = | 
| 52803 | 1877 | Ipoly bs p * (Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?xdn) + Ipoly bs r" | 
| 1878 | by (simp add: field_simps) | |
| 1879 | } | |
| 56066 | 1880 |             then have ieq:"\<forall>bs :: 'a::{field_char_0,field_inverse_zero} list.
 | 
| 56207 | 1881 | Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = | 
| 1882 | Ipoly bs (p *\<^sub>p (q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)) +\<^sub>p r)" | |
| 52803 | 1883 | by auto | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1884 | let ?q = "q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)" | 
| 56207 | 1885 | from polyadd_normh[OF nq polymul_normh[OF polymul_normh[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - Suc k"] head_isnpolyh[OF ns], simplified ap] nxdn]] | 
| 52803 | 1886 | have nqw: "isnpolyh ?q 0" | 
| 1887 | by simp | |
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1888 | from ieq isnpolyh_unique[OF polymul_normh[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - k"] ns, simplified ap] polyadd_normh[OF polymul_normh[OF np nqw] nr]] | 
| 52803 | 1889 | have asth: "(a ^\<^sub>p (k' - k) *\<^sub>p s) = p *\<^sub>p (q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)) +\<^sub>p r" | 
| 1890 | by blast | |
| 1891 | from dr kk' nr h1 asth nqw have ?ths | |
| 1892 | apply simp | |
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1893 | apply (rule conjI) | 
| 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1894 | apply (rule exI[where x="nr"], simp) | 
| 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1895 | apply (rule exI[where x="(q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn))"], simp) | 
| 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1896 | apply (rule exI[where x="0"], simp) | 
| 52803 | 1897 | done | 
| 1898 | } | |
| 56066 | 1899 | then have ?ths by blast | 
| 52803 | 1900 | } | 
| 1901 | moreover | |
| 56066 | 1902 |         {
 | 
| 1903 | assume spz: "a *\<^sub>p s -\<^sub>p (?b *\<^sub>p ?p') = 0\<^sub>p" | |
| 52803 | 1904 |           {
 | 
| 56000 | 1905 |             fix bs :: "'a::{field_char_0,field_inverse_zero} list"
 | 
| 33268 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
33154diff
changeset | 1906 | from isnpolyh_unique[OF nth, where ?'a="'a" and q="0\<^sub>p",simplified,symmetric] spz | 
| 52803 | 1907 | have "Ipoly bs (a*\<^sub>p s) = Ipoly bs ?b * Ipoly bs ?p'" | 
| 1908 | by simp | |
| 56066 | 1909 | then have "Ipoly bs (a*\<^sub>p s) = Ipoly bs (?b *\<^sub>p ?xdn) * Ipoly bs p" | 
| 52803 | 1910 | by (simp add: funpow_shift1_1[where n="degree s - n" and p="p"]) | 
| 56066 | 1911 | then have "Ipoly bs (a*\<^sub>p s) = Ipoly bs (p *\<^sub>p (?b *\<^sub>p ?xdn))" | 
| 52803 | 1912 | by simp | 
| 1913 | } | |
| 56066 | 1914 |           then have hth: "\<forall>bs :: 'a::{field_char_0,field_inverse_zero} list.
 | 
| 1915 | Ipoly bs (a *\<^sub>p s) = Ipoly bs (p *\<^sub>p (?b *\<^sub>p ?xdn))" .. | |
| 52803 | 1916 | from hth have asq: "a *\<^sub>p s = p *\<^sub>p (?b *\<^sub>p ?xdn)" | 
| 56000 | 1917 |             using isnpolyh_unique[where ?'a = "'a::{field_char_0,field_inverse_zero}", OF polymul_normh[OF head_isnpolyh[OF np] ns]
 | 
| 33154 | 1918 | polymul_normh[OF np polymul_normh[OF head_isnpolyh[OF ns] nxdn]], | 
| 56066 | 1919 | simplified ap] | 
| 1920 | by simp | |
| 1921 |           {
 | |
| 1922 | assume h1: "polydivide_aux a n p k s = (k', r)" | |
| 52803 | 1923 | from h1 sz ba dn' spz polydivide_aux.simps polydivide_aux.simps | 
| 56066 | 1924 | have "(k', r) = (Suc k, 0\<^sub>p)" | 
| 1925 | by (simp add: Let_def) | |
| 52803 | 1926 | with h1 np head_isnpolyh[OF np, simplified ap] ns polymul_normh[OF head_isnpolyh[OF ns] nxdn] | 
| 1927 | polymul_normh[OF np polymul_normh[OF head_isnpolyh[OF ns] nxdn]] asq | |
| 1928 | have ?ths | |
| 1929 | apply (clarsimp simp add: Let_def) | |
| 1930 | apply (rule exI[where x="?b *\<^sub>p ?xdn"]) | |
| 1931 | apply simp | |
| 1932 | apply (rule exI[where x="0"], simp) | |
| 1933 | done | |
| 1934 | } | |
| 56066 | 1935 | then have ?ths by blast | 
| 52803 | 1936 | } | 
| 52658 | 1937 | ultimately have ?ths | 
| 56066 | 1938 | using degree_polysub_samehead[OF polymul_normh[OF head_isnpolyh[OF np0, simplified ap] ns] polymul_normh[OF head_isnpolyh[OF ns] np'] hdth degth] polymul_degreen[OF head_isnpolyh[OF np] ns, where m="0"] | 
| 52658 | 1939 | head_nz[OF np] pnz sz ap[symmetric] | 
| 56066 | 1940 | by (auto simp add: degree_eq_degreen0[symmetric]) | 
| 52803 | 1941 | } | 
| 33154 | 1942 | ultimately have ?ths by blast | 
| 1943 | } | |
| 52803 | 1944 | ultimately have ?ths by blast | 
| 1945 | } | |
| 33154 | 1946 | ultimately show ?ths by blast | 
| 1947 | qed | |
| 1948 | ||
| 52803 | 1949 | lemma polydivide_properties: | 
| 56000 | 1950 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 56066 | 1951 | and np: "isnpolyh p n0" | 
| 1952 | and ns: "isnpolyh s n1" | |
| 1953 | and pnz: "p \<noteq> 0\<^sub>p" | |
| 1954 | shows "\<exists>k r. polydivide s p = (k, r) \<and> | |
| 52803 | 1955 | (\<exists>nr. isnpolyh r nr) \<and> (degree r = 0 \<or> degree r < degree p) \<and> | 
| 56066 | 1956 | (\<exists>q n1. isnpolyh q n1 \<and> polypow k (head p) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)" | 
| 52803 | 1957 | proof - | 
| 1958 | have trv: "head p = head p" "degree p = degree p" | |
| 1959 | by simp_all | |
| 1960 | from polydivide_def[where s="s" and p="p"] have ex: "\<exists> k r. polydivide s p = (k,r)" | |
| 1961 | by auto | |
| 1962 | then obtain k r where kr: "polydivide s p = (k,r)" | |
| 1963 | by blast | |
| 56000 | 1964 | from trans[OF polydivide_def[where s="s"and p="p", symmetric] kr] | 
| 33154 | 1965 | polydivide_aux_properties[OF np ns trv pnz, where k="0" and k'="k" and r="r"] | 
| 1966 | have "(degree r = 0 \<or> degree r < degree p) \<and> | |
| 52803 | 1967 | (\<exists>nr. isnpolyh r nr) \<and> (\<exists>q n1. isnpolyh q n1 \<and> head p ^\<^sub>p k - 0 *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)" | 
| 1968 | by blast | |
| 1969 | with kr show ?thesis | |
| 33154 | 1970 | apply - | 
| 1971 | apply (rule exI[where x="k"]) | |
| 1972 | apply (rule exI[where x="r"]) | |
| 1973 | apply simp | |
| 1974 | done | |
| 1975 | qed | |
| 1976 | ||
| 52658 | 1977 | |
| 56066 | 1978 | subsection {* More about polypoly and pnormal etc *}
 | 
| 33154 | 1979 | |
| 56000 | 1980 | definition "isnonconstant p \<longleftrightarrow> \<not> isconstant p" | 
| 33154 | 1981 | |
| 52658 | 1982 | lemma isnonconstant_pnormal_iff: | 
| 56198 | 1983 | assumes "isnonconstant p" | 
| 52803 | 1984 | shows "pnormal (polypoly bs p) \<longleftrightarrow> Ipoly bs (head p) \<noteq> 0" | 
| 33154 | 1985 | proof | 
| 52803 | 1986 | let ?p = "polypoly bs p" | 
| 33154 | 1987 | assume H: "pnormal ?p" | 
| 56066 | 1988 | have csz: "coefficients p \<noteq> []" | 
| 56198 | 1989 | using assms by (cases p) auto | 
| 56066 | 1990 | from coefficients_head[of p] last_map[OF csz, of "Ipoly bs"] pnormal_last_nonzero[OF H] | 
| 1991 | show "Ipoly bs (head p) \<noteq> 0" | |
| 1992 | by (simp add: polypoly_def) | |
| 33154 | 1993 | next | 
| 1994 | assume h: "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" | |
| 1995 | let ?p = "polypoly bs p" | |
| 56066 | 1996 | have csz: "coefficients p \<noteq> []" | 
| 56198 | 1997 | using assms by (cases p) auto | 
| 56066 | 1998 | then have pz: "?p \<noteq> []" | 
| 1999 | by (simp add: polypoly_def) | |
| 2000 | then have lg: "length ?p > 0" | |
| 2001 | by simp | |
| 52803 | 2002 | from h coefficients_head[of p] last_map[OF csz, of "Ipoly bs"] | 
| 56066 | 2003 | have lz: "last ?p \<noteq> 0" | 
| 2004 | by (simp add: polypoly_def) | |
| 33154 | 2005 | from pnormal_last_length[OF lg lz] show "pnormal ?p" . | 
| 2006 | qed | |
| 2007 | ||
| 2008 | lemma isnonconstant_coefficients_length: "isnonconstant p \<Longrightarrow> length (coefficients p) > 1" | |
| 2009 | unfolding isnonconstant_def | |
| 52658 | 2010 | apply (cases p) | 
| 2011 | apply simp_all | |
| 58259 | 2012 | apply (rename_tac nat a, case_tac nat) | 
| 52658 | 2013 | apply auto | 
| 33154 | 2014 | done | 
| 52658 | 2015 | |
| 2016 | lemma isnonconstant_nonconstant: | |
| 56198 | 2017 | assumes "isnonconstant p" | 
| 33154 | 2018 | shows "nonconstant (polypoly bs p) \<longleftrightarrow> Ipoly bs (head p) \<noteq> 0" | 
| 2019 | proof | |
| 2020 | let ?p = "polypoly bs p" | |
| 2021 | assume nc: "nonconstant ?p" | |
| 56198 | 2022 | from isnonconstant_pnormal_iff[OF assms, of bs] nc | 
| 56066 | 2023 | show "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" | 
| 2024 | unfolding nonconstant_def by blast | |
| 33154 | 2025 | next | 
| 2026 | let ?p = "polypoly bs p" | |
| 2027 | assume h: "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" | |
| 56198 | 2028 | from isnonconstant_pnormal_iff[OF assms, of bs] h | 
| 56066 | 2029 | have pn: "pnormal ?p" | 
| 2030 | by blast | |
| 56009 | 2031 |   {
 | 
| 2032 | fix x | |
| 2033 | assume H: "?p = [x]" | |
| 2034 | from H have "length (coefficients p) = 1" | |
| 2035 | unfolding polypoly_def by auto | |
| 56198 | 2036 | with isnonconstant_coefficients_length[OF assms] | 
| 2037 | have False by arith | |
| 56009 | 2038 | } | 
| 2039 | then show "nonconstant ?p" | |
| 2040 | using pn unfolding nonconstant_def by blast | |
| 33154 | 2041 | qed | 
| 2042 | ||
| 56066 | 2043 | lemma pnormal_length: "p \<noteq> [] \<Longrightarrow> pnormal p \<longleftrightarrow> length (pnormalize p) = length p" | 
| 52658 | 2044 | apply (induct p) | 
| 2045 | apply (simp_all add: pnormal_def) | |
| 2046 | apply (case_tac "p = []") | |
| 2047 | apply simp_all | |
| 2048 | done | |
| 33154 | 2049 | |
| 52658 | 2050 | lemma degree_degree: | 
| 56207 | 2051 | assumes "isnonconstant p" | 
| 33154 | 2052 | shows "degree p = Polynomial_List.degree (polypoly bs p) \<longleftrightarrow> \<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" | 
| 2053 | proof | |
| 52803 | 2054 | let ?p = "polypoly bs p" | 
| 33154 | 2055 | assume H: "degree p = Polynomial_List.degree ?p" | 
| 56207 | 2056 | from isnonconstant_coefficients_length[OF assms] have pz: "?p \<noteq> []" | 
| 33154 | 2057 | unfolding polypoly_def by auto | 
| 56207 | 2058 | from H degree_coefficients[of p] isnonconstant_coefficients_length[OF assms] | 
| 56066 | 2059 | have lg: "length (pnormalize ?p) = length ?p" | 
| 33154 | 2060 | unfolding Polynomial_List.degree_def polypoly_def by simp | 
| 56066 | 2061 | then have "pnormal ?p" | 
| 2062 | using pnormal_length[OF pz] by blast | |
| 56207 | 2063 | with isnonconstant_pnormal_iff[OF assms] show "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" | 
| 56066 | 2064 | by blast | 
| 33154 | 2065 | next | 
| 56066 | 2066 | let ?p = "polypoly bs p" | 
| 33154 | 2067 | assume H: "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" | 
| 56207 | 2068 | with isnonconstant_pnormal_iff[OF assms] have "pnormal ?p" | 
| 56066 | 2069 | by blast | 
| 56207 | 2070 | with degree_coefficients[of p] isnonconstant_coefficients_length[OF assms] | 
| 52803 | 2071 | show "degree p = Polynomial_List.degree ?p" | 
| 33154 | 2072 | unfolding polypoly_def pnormal_def Polynomial_List.degree_def by auto | 
| 2073 | qed | |
| 2074 | ||
| 52658 | 2075 | |
| 52803 | 2076 | section {* Swaps ; Division by a certain variable *}
 | 
| 52658 | 2077 | |
| 56066 | 2078 | primrec swap :: "nat \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> poly" | 
| 2079 | where | |
| 33154 | 2080 | "swap n m (C x) = C x" | 
| 56198 | 2081 | | "swap n m (Bound k) = Bound (if k = n then m else if k = m then n else k)" | 
| 39246 | 2082 | | "swap n m (Neg t) = Neg (swap n m t)" | 
| 2083 | | "swap n m (Add s t) = Add (swap n m s) (swap n m t)" | |
| 2084 | | "swap n m (Sub s t) = Sub (swap n m s) (swap n m t)" | |
| 2085 | | "swap n m (Mul s t) = Mul (swap n m s) (swap n m t)" | |
| 2086 | | "swap n m (Pw t k) = Pw (swap n m t) k" | |
| 56066 | 2087 | | "swap n m (CN c k p) = CN (swap n m c) (if k = n then m else if k=m then n else k) (swap n m p)" | 
| 33154 | 2088 | |
| 52658 | 2089 | lemma swap: | 
| 56066 | 2090 | assumes "n < length bs" | 
| 2091 | and "m < length bs" | |
| 33154 | 2092 | shows "Ipoly bs (swap n m t) = Ipoly ((bs[n:= bs!m])[m:= bs!n]) t" | 
| 2093 | proof (induct t) | |
| 52658 | 2094 | case (Bound k) | 
| 56066 | 2095 | then show ?case | 
| 2096 | using assms by simp | |
| 33154 | 2097 | next | 
| 52658 | 2098 | case (CN c k p) | 
| 56066 | 2099 | then show ?case | 
| 2100 | using assms by simp | |
| 33154 | 2101 | qed simp_all | 
| 2102 | ||
| 52658 | 2103 | lemma swap_swap_id [simp]: "swap n m (swap m n t) = t" | 
| 2104 | by (induct t) simp_all | |
| 2105 | ||
| 2106 | lemma swap_commute: "swap n m p = swap m n p" | |
| 2107 | by (induct p) simp_all | |
| 33154 | 2108 | |
| 2109 | lemma swap_same_id[simp]: "swap n n t = t" | |
| 52658 | 2110 | by (induct t) simp_all | 
| 33154 | 2111 | |
| 2112 | definition "swapnorm n m t = polynate (swap n m t)" | |
| 2113 | ||
| 52658 | 2114 | lemma swapnorm: | 
| 2115 | assumes nbs: "n < length bs" | |
| 2116 | and mbs: "m < length bs" | |
| 56000 | 2117 |   shows "((Ipoly bs (swapnorm n m t) :: 'a::{field_char_0,field_inverse_zero})) =
 | 
| 52658 | 2118 | Ipoly ((bs[n:= bs!m])[m:= bs!n]) t" | 
| 41807 | 2119 | using swap[OF assms] swapnorm_def by simp | 
| 33154 | 2120 | |
| 52658 | 2121 | lemma swapnorm_isnpoly [simp]: | 
| 56000 | 2122 |   assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
 | 
| 33154 | 2123 | shows "isnpoly (swapnorm n m p)" | 
| 2124 | unfolding swapnorm_def by simp | |
| 2125 | ||
| 52803 | 2126 | definition "polydivideby n s p = | 
| 56000 | 2127 | (let | 
| 2128 | ss = swapnorm 0 n s; | |
| 2129 | sp = swapnorm 0 n p; | |
| 2130 | h = head sp; | |
| 2131 | (k, r) = polydivide ss sp | |
| 2132 | in (k, swapnorm 0 n h, swapnorm 0 n r))" | |
| 33154 | 2133 | |
| 56000 | 2134 | lemma swap_nz [simp]: "swap n m p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" | 
| 52658 | 2135 | by (induct p) simp_all | 
| 33154 | 2136 | |
| 41808 | 2137 | fun isweaknpoly :: "poly \<Rightarrow> bool" | 
| 2138 | where | |
| 33154 | 2139 | "isweaknpoly (C c) = True" | 
| 41808 | 2140 | | "isweaknpoly (CN c n p) \<longleftrightarrow> isweaknpoly c \<and> isweaknpoly p" | 
| 2141 | | "isweaknpoly p = False" | |
| 33154 | 2142 | |
| 52803 | 2143 | lemma isnpolyh_isweaknpoly: "isnpolyh p n0 \<Longrightarrow> isweaknpoly p" | 
| 52658 | 2144 | by (induct p arbitrary: n0) auto | 
| 33154 | 2145 | |
| 52803 | 2146 | lemma swap_isweanpoly: "isweaknpoly p \<Longrightarrow> isweaknpoly (swap n m p)" | 
| 52658 | 2147 | by (induct p) auto | 
| 33154 | 2148 | |
| 2149 | end |