| author | paulson <lp15@cam.ac.uk> | 
| Wed, 11 Apr 2018 16:34:44 +0100 | |
| changeset 67974 | 3f352a91b45a | 
| parent 67780 | 7655e6369c9f | 
| child 68450 | 41de07c7a0f3 | 
| permissions | -rw-r--r-- | 
| 3981 | 1 | (* Title: HOL/Map.thy | 
| 2 | Author: Tobias Nipkow, based on a theory by David von Oheimb | |
| 13908 | 3 | Copyright 1997-2003 TU Muenchen | 
| 3981 | 4 | |
| 60838 | 5 | The datatype of "maps"; strongly resembles maps in VDM. | 
| 3981 | 6 | *) | 
| 7 | ||
| 60758 | 8 | section \<open>Maps\<close> | 
| 13914 | 9 | |
| 15131 | 10 | theory Map | 
| 67780 
7655e6369c9f
more abbrevs -- this makes "(=" ambiguous and thus simplifies input of "(=)" (within the context of Main HOL);
 wenzelm parents: 
67091diff
changeset | 11 | imports List | 
| 
7655e6369c9f
more abbrevs -- this makes "(=" ambiguous and thus simplifies input of "(=)" (within the context of Main HOL);
 wenzelm parents: 
67091diff
changeset | 12 | abbrevs "(=" = "\<subseteq>\<^sub>m" | 
| 15131 | 13 | begin | 
| 3981 | 14 | |
| 61069 | 15 | type_synonym ('a, 'b) "map" = "'a \<Rightarrow> 'b option" (infixr "\<rightharpoonup>" 0)
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 16 | |
| 19378 | 17 | abbreviation | 
| 60838 | 18 | empty :: "'a \<rightharpoonup> 'b" where | 
| 60839 | 19 | "empty \<equiv> \<lambda>x. None" | 
| 19378 | 20 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 21 | definition | 
| 61069 | 22 |   map_comp :: "('b \<rightharpoonup> 'c) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'c)"  (infixl "\<circ>\<^sub>m" 55) where
 | 
| 23 | "f \<circ>\<^sub>m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)" | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 24 | |
| 20800 | 25 | definition | 
| 60839 | 26 |   map_add :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b)"  (infixl "++" 100) where
 | 
| 27 | "m1 ++ m2 = (\<lambda>x. case m2 x of None \<Rightarrow> m1 x | Some y \<Rightarrow> Some y)" | |
| 20800 | 28 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 29 | definition | 
| 60839 | 30 |   restrict_map :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a set \<Rightarrow> ('a \<rightharpoonup> 'b)"  (infixl "|`"  110) where
 | 
| 31 | "m|`A = (\<lambda>x. if x \<in> A then m x else None)" | |
| 13910 | 32 | |
| 21210 | 33 | notation (latex output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 34 |   restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19378diff
changeset | 35 | |
| 20800 | 36 | definition | 
| 60839 | 37 |   dom :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a set" where
 | 
| 38 |   "dom m = {a. m a \<noteq> None}"
 | |
| 20800 | 39 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 40 | definition | 
| 60839 | 41 |   ran :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'b set" where
 | 
| 42 |   "ran m = {b. \<exists>a. m a = Some b}"
 | |
| 20800 | 43 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 44 | definition | 
| 60839 | 45 |   map_le :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> bool"  (infix "\<subseteq>\<^sub>m" 50) where
 | 
| 46 | "(m\<^sub>1 \<subseteq>\<^sub>m m\<^sub>2) \<longleftrightarrow> (\<forall>a \<in> dom m\<^sub>1. m\<^sub>1 a = m\<^sub>2 a)" | |
| 20800 | 47 | |
| 41229 
d797baa3d57c
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
 wenzelm parents: 
39992diff
changeset | 48 | nonterminal maplets and maplet | 
| 14180 | 49 | |
| 5300 | 50 | syntax | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 51 |   "_maplet"  :: "['a, 'a] \<Rightarrow> maplet"             ("_ /\<mapsto>/ _")
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 52 |   "_maplets" :: "['a, 'a] \<Rightarrow> maplet"             ("_ /[\<mapsto>]/ _")
 | 
| 60839 | 53 |   ""         :: "maplet \<Rightarrow> maplets"             ("_")
 | 
| 54 |   "_Maplets" :: "[maplet, maplets] \<Rightarrow> maplets" ("_,/ _")
 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 55 |   "_MapUpd"  :: "['a \<rightharpoonup> 'b, maplets] \<Rightarrow> 'a \<rightharpoonup> 'b" ("_/'(_')" [900, 0] 900)
 | 
| 60839 | 56 |   "_Map"     :: "maplets \<Rightarrow> 'a \<rightharpoonup> 'b"            ("(1[_])")
 | 
| 3981 | 57 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 58 | syntax (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 59 |   "_maplet"  :: "['a, 'a] \<Rightarrow> maplet"             ("_ /|->/ _")
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 60 |   "_maplets" :: "['a, 'a] \<Rightarrow> maplet"             ("_ /[|->]/ _")
 | 
| 14180 | 61 | |
| 5300 | 62 | translations | 
| 60839 | 63 | "_MapUpd m (_Maplets xy ms)" \<rightleftharpoons> "_MapUpd (_MapUpd m xy) ms" | 
| 64 | "_MapUpd m (_maplet x y)" \<rightleftharpoons> "m(x := CONST Some y)" | |
| 65 | "_Map ms" \<rightleftharpoons> "_MapUpd (CONST empty) ms" | |
| 66 | "_Map (_Maplets ms1 ms2)" \<leftharpoondown> "_MapUpd (_Map ms1) ms2" | |
| 67 | "_Maplets ms1 (_Maplets ms2 ms3)" \<leftharpoondown> "_Maplets (_Maplets ms1 ms2) ms3" | |
| 14180 | 68 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 69 | primrec map_of :: "('a \<times> 'b) list \<Rightarrow> 'a \<rightharpoonup> 'b"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 70 | where | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 71 | "map_of [] = empty" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 72 | | "map_of (p # ps) = (map_of ps)(fst p \<mapsto> snd p)" | 
| 5300 | 73 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 74 | definition map_upds :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'a \<rightharpoonup> 'b"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 75 | where "map_upds m xs ys = m ++ map_of (rev (zip xs ys))" | 
| 34941 | 76 | translations | 
| 60839 | 77 | "_MapUpd m (_maplets x y)" \<rightleftharpoons> "CONST map_upds m x y" | 
| 25965 | 78 | |
| 60839 | 79 | lemma map_of_Cons_code [code]: | 
| 25965 | 80 | "map_of [] k = None" | 
| 81 | "map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)" | |
| 82 | by simp_all | |
| 83 | ||
| 20800 | 84 | |
| 60758 | 85 | subsection \<open>@{term [source] empty}\<close>
 | 
| 13908 | 86 | |
| 20800 | 87 | lemma empty_upd_none [simp]: "empty(x := None) = empty" | 
| 60839 | 88 | by (rule ext) simp | 
| 13908 | 89 | |
| 90 | ||
| 60758 | 91 | subsection \<open>@{term [source] map_upd}\<close>
 | 
| 13908 | 92 | |
| 60839 | 93 | lemma map_upd_triv: "t k = Some x \<Longrightarrow> t(k\<mapsto>x) = t" | 
| 94 | by (rule ext) simp | |
| 13908 | 95 | |
| 60839 | 96 | lemma map_upd_nonempty [simp]: "t(k\<mapsto>x) \<noteq> empty" | 
| 20800 | 97 | proof | 
| 98 | assume "t(k \<mapsto> x) = empty" | |
| 99 | then have "(t(k \<mapsto> x)) k = None" by simp | |
| 100 | then show False by simp | |
| 101 | qed | |
| 13908 | 102 | |
| 20800 | 103 | lemma map_upd_eqD1: | 
| 104 | assumes "m(a\<mapsto>x) = n(a\<mapsto>y)" | |
| 105 | shows "x = y" | |
| 106 | proof - | |
| 41550 | 107 | from assms have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp | 
| 20800 | 108 | then show ?thesis by simp | 
| 109 | qed | |
| 14100 | 110 | |
| 20800 | 111 | lemma map_upd_Some_unfold: | 
| 60838 | 112 | "((m(a\<mapsto>b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" | 
| 24331 | 113 | by auto | 
| 14100 | 114 | |
| 20800 | 115 | lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" | 
| 24331 | 116 | by auto | 
| 15303 | 117 | |
| 60839 | 118 | lemma finite_range_updI: "finite (range f) \<Longrightarrow> finite (range (f(a\<mapsto>b)))" | 
| 24331 | 119 | unfolding image_def | 
| 120 | apply (simp (no_asm_use) add:full_SetCompr_eq) | |
| 121 | apply (rule finite_subset) | |
| 122 | prefer 2 apply assumption | |
| 123 | apply (auto) | |
| 124 | done | |
| 13908 | 125 | |
| 126 | ||
| 60758 | 127 | subsection \<open>@{term [source] map_of}\<close>
 | 
| 13908 | 128 | |
| 15304 | 129 | lemma map_of_eq_None_iff: | 
| 24331 | 130 | "(map_of xys x = None) = (x \<notin> fst ` (set xys))" | 
| 131 | by (induct xys) simp_all | |
| 15304 | 132 | |
| 20800 | 133 | lemma map_of_eq_Some_iff [simp]: | 
| 24331 | 134 | "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" | 
| 135 | apply (induct xys) | |
| 136 | apply simp | |
| 137 | apply (auto simp: map_of_eq_None_iff [symmetric]) | |
| 138 | done | |
| 15304 | 139 | |
| 20800 | 140 | lemma Some_eq_map_of_iff [simp]: | 
| 24331 | 141 | "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" | 
| 60839 | 142 | by (auto simp del: map_of_eq_Some_iff simp: map_of_eq_Some_iff [symmetric]) | 
| 15304 | 143 | |
| 17724 | 144 | lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> | 
| 20800 | 145 | \<Longrightarrow> map_of xys x = Some y" | 
| 24331 | 146 | apply (induct xys) | 
| 147 | apply simp | |
| 148 | apply force | |
| 149 | done | |
| 15304 | 150 | |
| 20800 | 151 | lemma map_of_zip_is_None [simp]: | 
| 24331 | 152 | "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" | 
| 153 | by (induct rule: list_induct2) simp_all | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 154 | |
| 26443 | 155 | lemma map_of_zip_is_Some: | 
| 156 | assumes "length xs = length ys" | |
| 157 | shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)" | |
| 158 | using assms by (induct rule: list_induct2) simp_all | |
| 159 | ||
| 160 | lemma map_of_zip_upd: | |
| 161 | fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list" | |
| 162 | assumes "length ys = length xs" | |
| 163 | and "length zs = length xs" | |
| 164 | and "x \<notin> set xs" | |
| 165 | and "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" | |
| 166 | shows "map_of (zip xs ys) = map_of (zip xs zs)" | |
| 167 | proof | |
| 168 | fix x' :: 'a | |
| 169 | show "map_of (zip xs ys) x' = map_of (zip xs zs) x'" | |
| 170 | proof (cases "x = x'") | |
| 171 | case True | |
| 172 | from assms True map_of_zip_is_None [of xs ys x'] | |
| 173 | have "map_of (zip xs ys) x' = None" by simp | |
| 174 | moreover from assms True map_of_zip_is_None [of xs zs x'] | |
| 175 | have "map_of (zip xs zs) x' = None" by simp | |
| 176 | ultimately show ?thesis by simp | |
| 177 | next | |
| 178 | case False from assms | |
| 179 | have "(map_of (zip xs ys)(x \<mapsto> y)) x' = (map_of (zip xs zs)(x \<mapsto> z)) x'" by auto | |
| 180 | with False show ?thesis by simp | |
| 181 | qed | |
| 182 | qed | |
| 183 | ||
| 184 | lemma map_of_zip_inject: | |
| 185 | assumes "length ys = length xs" | |
| 186 | and "length zs = length xs" | |
| 187 | and dist: "distinct xs" | |
| 188 | and map_of: "map_of (zip xs ys) = map_of (zip xs zs)" | |
| 189 | shows "ys = zs" | |
| 60839 | 190 | using assms(1) assms(2)[symmetric] | 
| 191 | using dist map_of | |
| 192 | proof (induct ys xs zs rule: list_induct3) | |
| 26443 | 193 | case Nil show ?case by simp | 
| 194 | next | |
| 195 | case (Cons y ys x xs z zs) | |
| 60758 | 196 | from \<open>map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))\<close> | 
| 26443 | 197 | have map_of: "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" by simp | 
| 198 | from Cons have "length ys = length xs" and "length zs = length xs" | |
| 199 | and "x \<notin> set xs" by simp_all | |
| 200 | then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd) | |
| 60758 | 201 | with Cons.hyps \<open>distinct (x # xs)\<close> have "ys = zs" by simp | 
| 26443 | 202 | moreover from map_of have "y = z" by (rule map_upd_eqD1) | 
| 203 | ultimately show ?case by simp | |
| 204 | qed | |
| 205 | ||
| 66584 | 206 | lemma map_of_zip_nth: | 
| 207 | assumes "length xs = length ys" | |
| 208 | assumes "distinct xs" | |
| 209 | assumes "i < length ys" | |
| 210 | shows "map_of (zip xs ys) (xs ! i) = Some (ys ! i)" | |
| 211 | using assms proof (induct arbitrary: i rule: list_induct2) | |
| 212 | case Nil | |
| 213 | then show ?case by simp | |
| 214 | next | |
| 215 | case (Cons x xs y ys) | |
| 216 | then show ?case | |
| 217 | using less_Suc_eq_0_disj by auto | |
| 218 | qed | |
| 219 | ||
| 33635 | 220 | lemma map_of_zip_map: | 
| 221 | "map_of (zip xs (map f xs)) = (\<lambda>x. if x \<in> set xs then Some (f x) else None)" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 222 | by (induct xs) (simp_all add: fun_eq_iff) | 
| 33635 | 223 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 224 | lemma finite_range_map_of: "finite (range (map_of xys))" | 
| 24331 | 225 | apply (induct xys) | 
| 226 | apply (simp_all add: image_constant) | |
| 227 | apply (rule finite_subset) | |
| 228 | prefer 2 apply assumption | |
| 229 | apply auto | |
| 230 | done | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 231 | |
| 20800 | 232 | lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs" | 
| 60841 | 233 | by (induct xs) (auto split: if_splits) | 
| 13908 | 234 | |
| 20800 | 235 | lemma map_of_mapk_SomeI: | 
| 60839 | 236 | "inj f \<Longrightarrow> map_of t k = Some x \<Longrightarrow> | 
| 61032 
b57df8eecad6
standardized some occurences of ancient "split" alias
 haftmann parents: 
60841diff
changeset | 237 | map_of (map (case_prod (\<lambda>k. Pair (f k))) t) (f k) = Some x" | 
| 60839 | 238 | by (induct t) (auto simp: inj_eq) | 
| 13908 | 239 | |
| 60839 | 240 | lemma weak_map_of_SomeI: "(k, x) \<in> set l \<Longrightarrow> \<exists>x. map_of l k = Some x" | 
| 24331 | 241 | by (induct l) auto | 
| 13908 | 242 | |
| 20800 | 243 | lemma map_of_filter_in: | 
| 61032 
b57df8eecad6
standardized some occurences of ancient "split" alias
 haftmann parents: 
60841diff
changeset | 244 | "map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (case_prod P) xs) k = Some z" | 
| 24331 | 245 | by (induct xs) auto | 
| 13908 | 246 | |
| 35607 | 247 | lemma map_of_map: | 
| 55466 | 248 | "map_of (map (\<lambda>(k, v). (k, f v)) xs) = map_option f \<circ> map_of xs" | 
| 60839 | 249 | by (induct xs) (auto simp: fun_eq_iff) | 
| 35607 | 250 | |
| 55466 | 251 | lemma dom_map_option: | 
| 252 | "dom (\<lambda>k. map_option (f k) (m k)) = dom m" | |
| 35607 | 253 | by (simp add: dom_def) | 
| 13908 | 254 | |
| 56545 | 255 | lemma dom_map_option_comp [simp]: | 
| 256 | "dom (map_option g \<circ> m) = dom m" | |
| 257 | using dom_map_option [of "\<lambda>_. g" m] by (simp add: comp_def) | |
| 258 | ||
| 13908 | 259 | |
| 60758 | 260 | subsection \<open>@{const map_option} related\<close>
 | 
| 13908 | 261 | |
| 67091 | 262 | lemma map_option_o_empty [simp]: "map_option f \<circ> empty = empty" | 
| 24331 | 263 | by (rule ext) simp | 
| 13908 | 264 | |
| 55466 | 265 | lemma map_option_o_map_upd [simp]: | 
| 67091 | 266 | "map_option f \<circ> m(a\<mapsto>b) = (map_option f \<circ> m)(a\<mapsto>f b)" | 
| 24331 | 267 | by (rule ext) simp | 
| 20800 | 268 | |
| 13908 | 269 | |
| 60758 | 270 | subsection \<open>@{term [source] map_comp} related\<close>
 | 
| 17391 | 271 | |
| 20800 | 272 | lemma map_comp_empty [simp]: | 
| 24331 | 273 | "m \<circ>\<^sub>m empty = empty" | 
| 274 | "empty \<circ>\<^sub>m m = empty" | |
| 60839 | 275 | by (auto simp: map_comp_def split: option.splits) | 
| 17391 | 276 | |
| 20800 | 277 | lemma map_comp_simps [simp]: | 
| 24331 | 278 | "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None" | 
| 279 | "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" | |
| 60839 | 280 | by (auto simp: map_comp_def) | 
| 17391 | 281 | |
| 282 | lemma map_comp_Some_iff: | |
| 24331 | 283 | "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" | 
| 60839 | 284 | by (auto simp: map_comp_def split: option.splits) | 
| 17391 | 285 | |
| 286 | lemma map_comp_None_iff: | |
| 24331 | 287 | "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " | 
| 60839 | 288 | by (auto simp: map_comp_def split: option.splits) | 
| 13908 | 289 | |
| 20800 | 290 | |
| 61799 | 291 | subsection \<open>\<open>++\<close>\<close> | 
| 13908 | 292 | |
| 14025 | 293 | lemma map_add_empty[simp]: "m ++ empty = m" | 
| 24331 | 294 | by(simp add: map_add_def) | 
| 13908 | 295 | |
| 14025 | 296 | lemma empty_map_add[simp]: "empty ++ m = m" | 
| 24331 | 297 | by (rule ext) (simp add: map_add_def split: option.split) | 
| 13908 | 298 | |
| 14025 | 299 | lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" | 
| 24331 | 300 | by (rule ext) (simp add: map_add_def split: option.split) | 
| 20800 | 301 | |
| 302 | lemma map_add_Some_iff: | |
| 67091 | 303 | "((m ++ n) k = Some x) = (n k = Some x \<or> n k = None \<and> m k = Some x)" | 
| 24331 | 304 | by (simp add: map_add_def split: option.split) | 
| 14025 | 305 | |
| 20800 | 306 | lemma map_add_SomeD [dest!]: | 
| 24331 | 307 | "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x" | 
| 308 | by (rule map_add_Some_iff [THEN iffD1]) | |
| 13908 | 309 | |
| 60839 | 310 | lemma map_add_find_right [simp]: "n k = Some xx \<Longrightarrow> (m ++ n) k = Some xx" | 
| 24331 | 311 | by (subst map_add_Some_iff) fast | 
| 13908 | 312 | |
| 67091 | 313 | lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None \<and> m k = None)" | 
| 24331 | 314 | by (simp add: map_add_def split: option.split) | 
| 13908 | 315 | |
| 60838 | 316 | lemma map_add_upd[simp]: "f ++ g(x\<mapsto>y) = (f ++ g)(x\<mapsto>y)" | 
| 24331 | 317 | by (rule ext) (simp add: map_add_def) | 
| 13908 | 318 | |
| 14186 | 319 | lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" | 
| 24331 | 320 | by (simp add: map_upds_def) | 
| 14186 | 321 | |
| 32236 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 krauss parents: 
31380diff
changeset | 322 | lemma map_add_upd_left: "m\<notin>dom e2 \<Longrightarrow> e1(m \<mapsto> u1) ++ e2 = (e1 ++ e2)(m \<mapsto> u1)" | 
| 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 krauss parents: 
31380diff
changeset | 323 | by (rule ext) (auto simp: map_add_def dom_def split: option.split) | 
| 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 krauss parents: 
31380diff
changeset | 324 | |
| 20800 | 325 | lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs" | 
| 24331 | 326 | unfolding map_add_def | 
| 327 | apply (induct xs) | |
| 328 | apply simp | |
| 329 | apply (rule ext) | |
| 63648 | 330 | apply (simp split: option.split) | 
| 24331 | 331 | done | 
| 13908 | 332 | |
| 14025 | 333 | lemma finite_range_map_of_map_add: | 
| 60839 | 334 | "finite (range f) \<Longrightarrow> finite (range (f ++ map_of l))" | 
| 24331 | 335 | apply (induct l) | 
| 336 | apply (auto simp del: fun_upd_apply) | |
| 337 | apply (erule finite_range_updI) | |
| 338 | done | |
| 13908 | 339 | |
| 20800 | 340 | lemma inj_on_map_add_dom [iff]: | 
| 24331 | 341 | "inj_on (m ++ m') (dom m') = inj_on m' (dom m')" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
42163diff
changeset | 342 | by (fastforce simp: map_add_def dom_def inj_on_def split: option.splits) | 
| 20800 | 343 | |
| 34979 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 344 | lemma map_upds_fold_map_upd: | 
| 35552 | 345 | "m(ks[\<mapsto>]vs) = foldl (\<lambda>m (k, v). m(k \<mapsto> v)) m (zip ks vs)" | 
| 34979 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 346 | unfolding map_upds_def proof (rule sym, rule zip_obtain_same_length) | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 347 | fix ks :: "'a list" and vs :: "'b list" | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 348 | assume "length ks = length vs" | 
| 35552 | 349 | then show "foldl (\<lambda>m (k, v). m(k\<mapsto>v)) m (zip ks vs) = m ++ map_of (rev (zip ks vs))" | 
| 350 | by(induct arbitrary: m rule: list_induct2) simp_all | |
| 34979 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 351 | qed | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 352 | |
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 353 | lemma map_add_map_of_foldr: | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 354 | "m ++ map_of ps = foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m" | 
| 60839 | 355 | by (induct ps) (auto simp: fun_eq_iff map_add_def) | 
| 34979 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 356 | |
| 15304 | 357 | |
| 60758 | 358 | subsection \<open>@{term [source] restrict_map}\<close>
 | 
| 14100 | 359 | |
| 20800 | 360 | lemma restrict_map_to_empty [simp]: "m|`{} = empty"
 | 
| 24331 | 361 | by (simp add: restrict_map_def) | 
| 14186 | 362 | |
| 31380 | 363 | lemma restrict_map_insert: "f |` (insert a A) = (f |` A)(a := f a)" | 
| 60839 | 364 | by (auto simp: restrict_map_def) | 
| 31380 | 365 | |
| 20800 | 366 | lemma restrict_map_empty [simp]: "empty|`D = empty" | 
| 24331 | 367 | by (simp add: restrict_map_def) | 
| 14186 | 368 | |
| 15693 | 369 | lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x" | 
| 24331 | 370 | by (simp add: restrict_map_def) | 
| 14100 | 371 | |
| 15693 | 372 | lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None" | 
| 24331 | 373 | by (simp add: restrict_map_def) | 
| 14100 | 374 | |
| 15693 | 375 | lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" | 
| 62390 | 376 | by (auto simp: restrict_map_def ran_def split: if_split_asm) | 
| 14100 | 377 | |
| 15693 | 378 | lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A" | 
| 62390 | 379 | by (auto simp: restrict_map_def dom_def split: if_split_asm) | 
| 14100 | 380 | |
| 15693 | 381 | lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
 | 
| 24331 | 382 | by (rule ext) (auto simp: restrict_map_def) | 
| 14100 | 383 | |
| 15693 | 384 | lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)" | 
| 24331 | 385 | by (rule ext) (auto simp: restrict_map_def) | 
| 14100 | 386 | |
| 20800 | 387 | lemma restrict_fun_upd [simp]: | 
| 24331 | 388 |   "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 389 | by (simp add: restrict_map_def fun_eq_iff) | 
| 14186 | 390 | |
| 20800 | 391 | lemma fun_upd_None_restrict [simp]: | 
| 60839 | 392 |   "(m|`D)(x := None) = (if x \<in> D then m|`(D - {x}) else m|`D)"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 393 | by (simp add: restrict_map_def fun_eq_iff) | 
| 14186 | 394 | |
| 20800 | 395 | lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 396 | by (simp add: restrict_map_def fun_eq_iff) | 
| 14186 | 397 | |
| 20800 | 398 | lemma fun_upd_restrict_conv [simp]: | 
| 24331 | 399 |   "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 400 | by (simp add: restrict_map_def fun_eq_iff) | 
| 14186 | 401 | |
| 35159 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 haftmann parents: 
35115diff
changeset | 402 | lemma map_of_map_restrict: | 
| 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 haftmann parents: 
35115diff
changeset | 403 | "map_of (map (\<lambda>k. (k, f k)) ks) = (Some \<circ> f) |` set ks" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 404 | by (induct ks) (simp_all add: fun_eq_iff restrict_map_insert) | 
| 35159 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 haftmann parents: 
35115diff
changeset | 405 | |
| 35619 | 406 | lemma restrict_complement_singleton_eq: | 
| 407 |   "f |` (- {x}) = f(x := None)"
 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 408 | by (simp add: restrict_map_def fun_eq_iff) | 
| 35619 | 409 | |
| 14100 | 410 | |
| 60758 | 411 | subsection \<open>@{term [source] map_upds}\<close>
 | 
| 14025 | 412 | |
| 60838 | 413 | lemma map_upds_Nil1 [simp]: "m([] [\<mapsto>] bs) = m" | 
| 24331 | 414 | by (simp add: map_upds_def) | 
| 14025 | 415 | |
| 60838 | 416 | lemma map_upds_Nil2 [simp]: "m(as [\<mapsto>] []) = m" | 
| 24331 | 417 | by (simp add:map_upds_def) | 
| 20800 | 418 | |
| 60838 | 419 | lemma map_upds_Cons [simp]: "m(a#as [\<mapsto>] b#bs) = (m(a\<mapsto>b))(as[\<mapsto>]bs)" | 
| 24331 | 420 | by (simp add:map_upds_def) | 
| 14025 | 421 | |
| 60839 | 422 | lemma map_upds_append1 [simp]: "size xs < size ys \<Longrightarrow> | 
| 24331 | 423 | m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" | 
| 60839 | 424 | apply(induct xs arbitrary: ys m) | 
| 24331 | 425 | apply (clarsimp simp add: neq_Nil_conv) | 
| 426 | apply (case_tac ys) | |
| 427 | apply simp | |
| 428 | apply simp | |
| 429 | done | |
| 14187 | 430 | |
| 20800 | 431 | lemma map_upds_list_update2_drop [simp]: | 
| 46588 
4895d7f1be42
removing some unnecessary premises from Map theory
 bulwahn parents: 
44921diff
changeset | 432 | "size xs \<le> i \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" | 
| 24331 | 433 | apply (induct xs arbitrary: m ys i) | 
| 434 | apply simp | |
| 435 | apply (case_tac ys) | |
| 436 | apply simp | |
| 437 | apply (simp split: nat.split) | |
| 438 | done | |
| 14025 | 439 | |
| 20800 | 440 | lemma map_upd_upds_conv_if: | 
| 60838 | 441 | "(f(x\<mapsto>y))(xs [\<mapsto>] ys) = | 
| 60839 | 442 | (if x \<in> set(take (length ys) xs) then f(xs [\<mapsto>] ys) | 
| 60838 | 443 | else (f(xs [\<mapsto>] ys))(x\<mapsto>y))" | 
| 24331 | 444 | apply (induct xs arbitrary: x y ys f) | 
| 445 | apply simp | |
| 446 | apply (case_tac ys) | |
| 62390 | 447 | apply (auto split: if_split simp: fun_upd_twist) | 
| 24331 | 448 | done | 
| 14025 | 449 | |
| 450 | lemma map_upds_twist [simp]: | |
| 60839 | 451 | "a \<notin> set as \<Longrightarrow> m(a\<mapsto>b)(as[\<mapsto>]bs) = m(as[\<mapsto>]bs)(a\<mapsto>b)" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
42163diff
changeset | 452 | using set_take_subset by (fastforce simp add: map_upd_upds_conv_if) | 
| 14025 | 453 | |
| 20800 | 454 | lemma map_upds_apply_nontin [simp]: | 
| 60839 | 455 | "x \<notin> set xs \<Longrightarrow> (f(xs[\<mapsto>]ys)) x = f x" | 
| 24331 | 456 | apply (induct xs arbitrary: ys) | 
| 457 | apply simp | |
| 458 | apply (case_tac ys) | |
| 459 | apply (auto simp: map_upd_upds_conv_if) | |
| 460 | done | |
| 14025 | 461 | |
| 20800 | 462 | lemma fun_upds_append_drop [simp]: | 
| 24331 | 463 | "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" | 
| 464 | apply (induct xs arbitrary: m ys) | |
| 465 | apply simp | |
| 466 | apply (case_tac ys) | |
| 467 | apply simp_all | |
| 468 | done | |
| 14300 | 469 | |
| 20800 | 470 | lemma fun_upds_append2_drop [simp]: | 
| 24331 | 471 | "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" | 
| 472 | apply (induct xs arbitrary: m ys) | |
| 473 | apply simp | |
| 474 | apply (case_tac ys) | |
| 475 | apply simp_all | |
| 476 | done | |
| 14300 | 477 | |
| 478 | ||
| 20800 | 479 | lemma restrict_map_upds[simp]: | 
| 480 | "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> | |
| 481 | \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)" | |
| 24331 | 482 | apply (induct xs arbitrary: m ys) | 
| 483 | apply simp | |
| 484 | apply (case_tac ys) | |
| 485 | apply simp | |
| 486 | apply (simp add: Diff_insert [symmetric] insert_absorb) | |
| 487 | apply (simp add: map_upd_upds_conv_if) | |
| 488 | done | |
| 14186 | 489 | |
| 490 | ||
| 60758 | 491 | subsection \<open>@{term [source] dom}\<close>
 | 
| 13908 | 492 | |
| 31080 | 493 | lemma dom_eq_empty_conv [simp]: "dom f = {} \<longleftrightarrow> f = empty"
 | 
| 44921 | 494 | by (auto simp: dom_def) | 
| 31080 | 495 | |
| 60839 | 496 | lemma domI: "m a = Some b \<Longrightarrow> a \<in> dom m" | 
| 497 | by (simp add: dom_def) | |
| 14100 | 498 | (* declare domI [intro]? *) | 
| 13908 | 499 | |
| 60839 | 500 | lemma domD: "a \<in> dom m \<Longrightarrow> \<exists>b. m a = Some b" | 
| 501 | by (cases "m a") (auto simp add: dom_def) | |
| 13908 | 502 | |
| 66010 | 503 | lemma domIff [iff, simp del, code_unfold]: "a \<in> dom m \<longleftrightarrow> m a \<noteq> None" | 
| 60839 | 504 | by (simp add: dom_def) | 
| 13908 | 505 | |
| 20800 | 506 | lemma dom_empty [simp]: "dom empty = {}"
 | 
| 60839 | 507 | by (simp add: dom_def) | 
| 13908 | 508 | |
| 20800 | 509 | lemma dom_fun_upd [simp]: | 
| 60839 | 510 |   "dom(f(x := y)) = (if y = None then dom f - {x} else insert x (dom f))"
 | 
| 511 | by (auto simp: dom_def) | |
| 13908 | 512 | |
| 34979 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 513 | lemma dom_if: | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 514 |   "dom (\<lambda>x. if P x then f x else g x) = dom f \<inter> {x. P x} \<union> dom g \<inter> {x. \<not> P x}"
 | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 515 | by (auto split: if_splits) | 
| 13937 | 516 | |
| 15304 | 517 | lemma dom_map_of_conv_image_fst: | 
| 34979 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 518 | "dom (map_of xys) = fst ` set xys" | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 519 | by (induct xys) (auto simp add: dom_if) | 
| 15304 | 520 | |
| 60839 | 521 | lemma dom_map_of_zip [simp]: "length xs = length ys \<Longrightarrow> dom (map_of (zip xs ys)) = set xs" | 
| 522 | by (induct rule: list_induct2) (auto simp: dom_if) | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
14739diff
changeset | 523 | |
| 13908 | 524 | lemma finite_dom_map_of: "finite (dom (map_of l))" | 
| 60839 | 525 | by (induct l) (auto simp: dom_def insert_Collect [symmetric]) | 
| 13908 | 526 | |
| 20800 | 527 | lemma dom_map_upds [simp]: | 
| 60839 | 528 | "dom(m(xs[\<mapsto>]ys)) = set(take (length ys) xs) \<union> dom m" | 
| 24331 | 529 | apply (induct xs arbitrary: m ys) | 
| 530 | apply simp | |
| 531 | apply (case_tac ys) | |
| 532 | apply auto | |
| 533 | done | |
| 13910 | 534 | |
| 60839 | 535 | lemma dom_map_add [simp]: "dom (m ++ n) = dom n \<union> dom m" | 
| 536 | by (auto simp: dom_def) | |
| 13910 | 537 | |
| 20800 | 538 | lemma dom_override_on [simp]: | 
| 60839 | 539 | "dom (override_on f g A) = | 
| 540 |     (dom f  - {a. a \<in> A - dom g}) \<union> {a. a \<in> A \<inter> dom g}"
 | |
| 541 | by (auto simp: dom_def override_on_def) | |
| 13908 | 542 | |
| 60839 | 543 | lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1 ++ m2 = m2 ++ m1"
 | 
| 544 | by (rule ext) (force simp: map_add_def dom_def split: option.split) | |
| 20800 | 545 | |
| 32236 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 krauss parents: 
31380diff
changeset | 546 | lemma map_add_dom_app_simps: | 
| 60839 | 547 | "m \<in> dom l2 \<Longrightarrow> (l1 ++ l2) m = l2 m" | 
| 548 | "m \<notin> dom l1 \<Longrightarrow> (l1 ++ l2) m = l2 m" | |
| 549 | "m \<notin> dom l2 \<Longrightarrow> (l1 ++ l2) m = l1 m" | |
| 550 | by (auto simp add: map_add_def split: option.split_asm) | |
| 32236 
0203e1006f1b
some lemmas about maps (contributed by Peter Lammich)
 krauss parents: 
31380diff
changeset | 551 | |
| 29622 | 552 | lemma dom_const [simp]: | 
| 35159 
df38e92af926
added lemma map_of_map_restrict; generalized lemma dom_const
 haftmann parents: 
35115diff
changeset | 553 | "dom (\<lambda>x. Some (f x)) = UNIV" | 
| 29622 | 554 | by auto | 
| 555 | ||
| 22230 | 556 | (* Due to John Matthews - could be rephrased with dom *) | 
| 557 | lemma finite_map_freshness: | |
| 558 | "finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow> | |
| 559 | \<exists>x. f x = None" | |
| 60839 | 560 | by (bestsimp dest: ex_new_if_finite) | 
| 14027 | 561 | |
| 28790 | 562 | lemma dom_minus: | 
| 563 | "f x = None \<Longrightarrow> dom f - insert x A = dom f - A" | |
| 564 | unfolding dom_def by simp | |
| 565 | ||
| 566 | lemma insert_dom: | |
| 567 | "f x = Some y \<Longrightarrow> insert x (dom f) = dom f" | |
| 568 | unfolding dom_def by auto | |
| 569 | ||
| 35607 | 570 | lemma map_of_map_keys: | 
| 571 | "set xs = dom m \<Longrightarrow> map_of (map (\<lambda>k. (k, the (m k))) xs) = m" | |
| 572 | by (rule ext) (auto simp add: map_of_map_restrict restrict_map_def) | |
| 573 | ||
| 39379 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 574 | lemma map_of_eqI: | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 575 | assumes set_eq: "set (map fst xs) = set (map fst ys)" | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 576 | assumes map_eq: "\<forall>k\<in>set (map fst xs). map_of xs k = map_of ys k" | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 577 | shows "map_of xs = map_of ys" | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 578 | proof (rule ext) | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 579 | fix k show "map_of xs k = map_of ys k" | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 580 | proof (cases "map_of xs k") | 
| 60839 | 581 | case None | 
| 582 | then have "k \<notin> set (map fst xs)" by (simp add: map_of_eq_None_iff) | |
| 39379 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 583 | with set_eq have "k \<notin> set (map fst ys)" by simp | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 584 | then have "map_of ys k = None" by (simp add: map_of_eq_None_iff) | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 585 | with None show ?thesis by simp | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 586 | next | 
| 60839 | 587 | case (Some v) | 
| 588 | then have "k \<in> set (map fst xs)" by (auto simp add: dom_map_of_conv_image_fst [symmetric]) | |
| 39379 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 589 | with map_eq show ?thesis by auto | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 590 | qed | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 591 | qed | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 592 | |
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 593 | lemma map_of_eq_dom: | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 594 | assumes "map_of xs = map_of ys" | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 595 | shows "fst ` set xs = fst ` set ys" | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 596 | proof - | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 597 | from assms have "dom (map_of xs) = dom (map_of ys)" by simp | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 598 | then show ?thesis by (simp add: dom_map_of_conv_image_fst) | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 599 | qed | 
| 
ab1b070aa412
moved lemmas map_of_eqI and map_of_eq_dom to Map.thy
 haftmann parents: 
39302diff
changeset | 600 | |
| 53820 | 601 | lemma finite_set_of_finite_maps: | 
| 60839 | 602 | assumes "finite A" "finite B" | 
| 603 |   shows "finite {m. dom m = A \<and> ran m \<subseteq> B}" (is "finite ?S")
 | |
| 53820 | 604 | proof - | 
| 605 |   let ?S' = "{m. \<forall>x. (x \<in> A \<longrightarrow> m x \<in> Some ` B) \<and> (x \<notin> A \<longrightarrow> m x = None)}"
 | |
| 606 | have "?S = ?S'" | |
| 607 | proof | |
| 60839 | 608 | show "?S \<subseteq> ?S'" by (auto simp: dom_def ran_def image_def) | 
| 53820 | 609 | show "?S' \<subseteq> ?S" | 
| 610 | proof | |
| 611 | fix m assume "m \<in> ?S'" | |
| 612 | hence 1: "dom m = A" by force | |
| 60839 | 613 | hence 2: "ran m \<subseteq> B" using \<open>m \<in> ?S'\<close> by (auto simp: dom_def ran_def) | 
| 53820 | 614 | from 1 2 show "m \<in> ?S" by blast | 
| 615 | qed | |
| 616 | qed | |
| 617 | with assms show ?thesis by(simp add: finite_set_of_finite_funs) | |
| 618 | qed | |
| 28790 | 619 | |
| 60839 | 620 | |
| 60758 | 621 | subsection \<open>@{term [source] ran}\<close>
 | 
| 14100 | 622 | |
| 60839 | 623 | lemma ranI: "m a = Some b \<Longrightarrow> b \<in> ran m" | 
| 624 | by (auto simp: ran_def) | |
| 14100 | 625 | (* declare ranI [intro]? *) | 
| 13908 | 626 | |
| 20800 | 627 | lemma ran_empty [simp]: "ran empty = {}"
 | 
| 60839 | 628 | by (auto simp: ran_def) | 
| 13908 | 629 | |
| 60839 | 630 | lemma ran_map_upd [simp]: "m a = None \<Longrightarrow> ran(m(a\<mapsto>b)) = insert b (ran m)" | 
| 631 | unfolding ran_def | |
| 24331 | 632 | apply auto | 
| 60839 | 633 | apply (subgoal_tac "aa \<noteq> a") | 
| 24331 | 634 | apply auto | 
| 635 | done | |
| 20800 | 636 | |
| 66583 | 637 | lemma ran_map_add: | 
| 638 |   assumes "dom m1 \<inter> dom m2 = {}"
 | |
| 639 | shows "ran (m1 ++ m2) = ran m1 \<union> ran m2" | |
| 640 | proof | |
| 641 | show "ran (m1 ++ m2) \<subseteq> ran m1 \<union> ran m2" | |
| 642 | unfolding ran_def by auto | |
| 643 | next | |
| 644 | show "ran m1 \<union> ran m2 \<subseteq> ran (m1 ++ m2)" | |
| 645 | proof - | |
| 646 | have "(m1 ++ m2) x = Some y" if "m1 x = Some y" for x y | |
| 647 | using assms map_add_comm that by fastforce | |
| 648 | moreover have "(m1 ++ m2) x = Some y" if "m2 x = Some y" for x y | |
| 649 | using assms that by auto | |
| 650 | ultimately show ?thesis | |
| 651 | unfolding ran_def by blast | |
| 652 | qed | |
| 653 | qed | |
| 654 | ||
| 655 | lemma finite_ran: | |
| 656 | assumes "finite (dom p)" | |
| 657 | shows "finite (ran p)" | |
| 658 | proof - | |
| 659 | have "ran p = (\<lambda>x. the (p x)) ` dom p" | |
| 660 | unfolding ran_def by force | |
| 661 | from this \<open>finite (dom p)\<close> show ?thesis by auto | |
| 662 | qed | |
| 663 | ||
| 60839 | 664 | lemma ran_distinct: | 
| 665 | assumes dist: "distinct (map fst al)" | |
| 34979 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 666 | shows "ran (map_of al) = snd ` set al" | 
| 60839 | 667 | using assms | 
| 668 | proof (induct al) | |
| 669 | case Nil | |
| 670 | then show ?case by simp | |
| 34979 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 671 | next | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 672 | case (Cons kv al) | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 673 | then have "ran (map_of al) = snd ` set al" by simp | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 674 | moreover from Cons.prems have "map_of al (fst kv) = None" | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 675 | by (simp add: map_of_eq_None_iff) | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 676 | ultimately show ?case by (simp only: map_of.simps ran_map_upd) simp | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 677 | qed | 
| 
8cb6e7a42e9c
more correspondence lemmas between related operations
 haftmann parents: 
34941diff
changeset | 678 | |
| 66584 | 679 | lemma ran_map_of_zip: | 
| 680 | assumes "length xs = length ys" "distinct xs" | |
| 681 | shows "ran (map_of (zip xs ys)) = set ys" | |
| 682 | using assms by (simp add: ran_distinct set_map[symmetric]) | |
| 683 | ||
| 60057 | 684 | lemma ran_map_option: "ran (\<lambda>x. map_option f (m x)) = f ` ran m" | 
| 60839 | 685 | by (auto simp add: ran_def) | 
| 686 | ||
| 13910 | 687 | |
| 61799 | 688 | subsection \<open>\<open>map_le\<close>\<close> | 
| 13910 | 689 | |
| 13912 | 690 | lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" | 
| 60839 | 691 | by (simp add: map_le_def) | 
| 13910 | 692 | |
| 17724 | 693 | lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f" | 
| 60839 | 694 | by (force simp add: map_le_def) | 
| 14187 | 695 | |
| 13910 | 696 | lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" | 
| 60839 | 697 | by (fastforce simp add: map_le_def) | 
| 13910 | 698 | |
| 17724 | 699 | lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" | 
| 60839 | 700 | by (force simp add: map_le_def) | 
| 14187 | 701 | |
| 20800 | 702 | lemma map_le_upds [simp]: | 
| 60839 | 703 | "f \<subseteq>\<^sub>m g \<Longrightarrow> f(as [\<mapsto>] bs) \<subseteq>\<^sub>m g(as [\<mapsto>] bs)" | 
| 24331 | 704 | apply (induct as arbitrary: f g bs) | 
| 705 | apply simp | |
| 706 | apply (case_tac bs) | |
| 707 | apply auto | |
| 708 | done | |
| 13908 | 709 | |
| 14033 | 710 | lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" | 
| 60839 | 711 | by (fastforce simp add: map_le_def dom_def) | 
| 14033 | 712 | |
| 713 | lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" | |
| 60839 | 714 | by (simp add: map_le_def) | 
| 14033 | 715 | |
| 14187 | 716 | lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" | 
| 60839 | 717 | by (auto simp add: map_le_def dom_def) | 
| 14033 | 718 | |
| 719 | lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" | |
| 24331 | 720 | unfolding map_le_def | 
| 721 | apply (rule ext) | |
| 722 | apply (case_tac "x \<in> dom f", simp) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
42163diff
changeset | 723 | apply (case_tac "x \<in> dom g", simp, fastforce) | 
| 24331 | 724 | done | 
| 14033 | 725 | |
| 60839 | 726 | lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m g ++ f" | 
| 727 | by (fastforce simp: map_le_def) | |
| 14033 | 728 | |
| 60839 | 729 | lemma map_le_iff_map_add_commute: "f \<subseteq>\<^sub>m f ++ g \<longleftrightarrow> f ++ g = g ++ f" | 
| 730 | by (fastforce simp: map_add_def map_le_def fun_eq_iff split: option.splits) | |
| 15304 | 731 | |
| 60839 | 732 | lemma map_add_le_mapE: "f ++ g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" | 
| 733 | by (fastforce simp: map_le_def map_add_def dom_def) | |
| 15303 | 734 | |
| 60839 | 735 | lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h \<rbrakk> \<Longrightarrow> f ++ g \<subseteq>\<^sub>m h" | 
| 736 | by (auto simp: map_le_def map_add_def dom_def split: option.splits) | |
| 15303 | 737 | |
| 63828 | 738 | lemma map_add_subsumed1: "f \<subseteq>\<^sub>m g \<Longrightarrow> f++g = g" | 
| 739 | by (simp add: map_add_le_mapI map_le_antisym) | |
| 740 | ||
| 741 | lemma map_add_subsumed2: "f \<subseteq>\<^sub>m g \<Longrightarrow> g++f = g" | |
| 742 | by (metis map_add_subsumed1 map_le_iff_map_add_commute) | |
| 743 | ||
| 31080 | 744 | lemma dom_eq_singleton_conv: "dom f = {x} \<longleftrightarrow> (\<exists>v. f = [x \<mapsto> v])"
 | 
| 63834 | 745 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 746 | proof | |
| 747 | assume ?rhs | |
| 748 | then show ?lhs by (auto split: if_split_asm) | |
| 31080 | 749 | next | 
| 63834 | 750 | assume ?lhs | 
| 751 | then obtain v where v: "f x = Some v" by auto | |
| 752 | show ?rhs | |
| 753 | proof | |
| 754 | show "f = [x \<mapsto> v]" | |
| 755 | proof (rule map_le_antisym) | |
| 756 | show "[x \<mapsto> v] \<subseteq>\<^sub>m f" | |
| 757 | using v by (auto simp add: map_le_def) | |
| 758 | show "f \<subseteq>\<^sub>m [x \<mapsto> v]" | |
| 759 |         using \<open>dom f = {x}\<close> \<open>f x = Some v\<close> by (auto simp add: map_le_def)
 | |
| 760 | qed | |
| 761 | qed | |
| 31080 | 762 | qed | 
| 763 | ||
| 35565 | 764 | |
| 60758 | 765 | subsection \<open>Various\<close> | 
| 35565 | 766 | |
| 767 | lemma set_map_of_compr: | |
| 768 | assumes distinct: "distinct (map fst xs)" | |
| 769 |   shows "set xs = {(k, v). map_of xs k = Some v}"
 | |
| 60839 | 770 | using assms | 
| 771 | proof (induct xs) | |
| 772 | case Nil | |
| 773 | then show ?case by simp | |
| 35565 | 774 | next | 
| 775 | case (Cons x xs) | |
| 776 | obtain k v where "x = (k, v)" by (cases x) blast | |
| 777 | with Cons.prems have "k \<notin> dom (map_of xs)" | |
| 778 | by (simp add: dom_map_of_conv_image_fst) | |
| 779 |   then have *: "insert (k, v) {(k, v). map_of xs k = Some v} =
 | |
| 780 |     {(k', v'). (map_of xs(k \<mapsto> v)) k' = Some v'}"
 | |
| 781 | by (auto split: if_splits) | |
| 782 |   from Cons have "set xs = {(k, v). map_of xs k = Some v}" by simp
 | |
| 60758 | 783 | with * \<open>x = (k, v)\<close> show ?case by simp | 
| 35565 | 784 | qed | 
| 785 | ||
| 67051 | 786 | lemma eq_key_imp_eq_value: | 
| 787 | "v1 = v2" | |
| 788 | if "distinct (map fst xs)" "(k, v1) \<in> set xs" "(k, v2) \<in> set xs" | |
| 789 | proof - | |
| 790 | from that have "inj_on fst (set xs)" | |
| 791 | by (simp add: distinct_map) | |
| 792 | moreover have "fst (k, v1) = fst (k, v2)" | |
| 793 | by simp | |
| 794 | ultimately have "(k, v1) = (k, v2)" | |
| 795 | by (rule inj_onD) (fact that)+ | |
| 796 | then show ?thesis | |
| 797 | by simp | |
| 798 | qed | |
| 799 | ||
| 35565 | 800 | lemma map_of_inject_set: | 
| 801 | assumes distinct: "distinct (map fst xs)" "distinct (map fst ys)" | |
| 802 | shows "map_of xs = map_of ys \<longleftrightarrow> set xs = set ys" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 803 | proof | |
| 804 | assume ?lhs | |
| 60758 | 805 |   moreover from \<open>distinct (map fst xs)\<close> have "set xs = {(k, v). map_of xs k = Some v}"
 | 
| 35565 | 806 | by (rule set_map_of_compr) | 
| 60758 | 807 |   moreover from \<open>distinct (map fst ys)\<close> have "set ys = {(k, v). map_of ys k = Some v}"
 | 
| 35565 | 808 | by (rule set_map_of_compr) | 
| 809 | ultimately show ?rhs by simp | |
| 810 | next | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 811 | assume ?rhs show ?lhs | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 812 | proof | 
| 35565 | 813 | fix k | 
| 60839 | 814 | show "map_of xs k = map_of ys k" | 
| 815 | proof (cases "map_of xs k") | |
| 35565 | 816 | case None | 
| 60758 | 817 | with \<open>?rhs\<close> have "map_of ys k = None" | 
| 35565 | 818 | by (simp add: map_of_eq_None_iff) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 819 | with None show ?thesis by simp | 
| 35565 | 820 | next | 
| 821 | case (Some v) | |
| 60758 | 822 | with distinct \<open>?rhs\<close> have "map_of ys k = Some v" | 
| 35565 | 823 | by simp | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 824 | with Some show ?thesis by simp | 
| 35565 | 825 | qed | 
| 826 | qed | |
| 827 | qed | |
| 828 | ||
| 3981 | 829 | end |