author  wenzelm 
Sat, 30 Sep 2006 21:39:24 +0200  
changeset 20800  69c82605efcf 
parent 19947  29b376397cd5 
child 21210  c17fd2df4e9e 
permissions  rwrr 
3981  1 
(* Title: HOL/Map.thy 
2 
ID: $Id$ 

3 
Author: Tobias Nipkow, based on a theory by David von Oheimb 

13908  4 
Copyright 19972003 TU Muenchen 
3981  5 

6 
The datatype of `maps' (written ~=>); strongly resembles maps in VDM. 

7 
*) 

8 

13914  9 
header {* Maps *} 
10 

15131  11 
theory Map 
15140  12 
imports List 
15131  13 
begin 
3981  14 

20800  15 
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0) 
14100  16 
translations (type) "a ~=> b " <= (type) "a => b option" 
3981  17 

19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset

18 
syntax (xsymbols) 
20800  19 
"~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) 
19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset

20 

19378  21 
abbreviation 
20800  22 
empty :: "'a ~=> 'b" 
19378  23 
"empty == %x. None" 
24 

19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset

25 
definition 
20800  26 
map_comp :: "('b ~=> 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55) 
27 
"f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None  Some v \<Rightarrow> f v)" 

19378  28 

19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset

29 
const_syntax (xsymbols) 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset

30 
map_comp (infixl "\<circ>\<^sub>m" 55) 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset

31 

20800  32 
definition 
33 
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) 

34 
"m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x  Some y => Some y)" 

35 

36 
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" (infixl "`" 110) 

37 
"m`A = (\<lambda>x. if x : A then m x else None)" 

13910  38 

19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset

39 
const_syntax (latex output) 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset

40 
restrict_map ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110) 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19378
diff
changeset

41 

20800  42 
definition 
43 
dom :: "('a ~=> 'b) => 'a set" 

44 
"dom m = {a. m a ~= None}" 

45 

46 
ran :: "('a ~=> 'b) => 'b set" 

47 
"ran m = {b. EX a. m a = Some b}" 

48 

49 
map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) 

50 
"(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)" 

51 

52 
consts 

53 
map_of :: "('a * 'b) list => 'a ~=> 'b" 

54 
map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)" 

55 

14180  56 
nonterminals 
57 
maplets maplet 

58 

5300  59 
syntax 
14180  60 
"_maplet" :: "['a, 'a] => maplet" ("_ />/ _") 
61 
"_maplets" :: "['a, 'a] => maplet" ("_ /[>]/ _") 

62 
"" :: "maplet => maplets" ("_") 

63 
"_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _") 

64 
"_MapUpd" :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900) 

65 
"_Map" :: "maplets => 'a ~=> 'b" ("(1[_])") 

3981  66 

12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10137
diff
changeset

67 
syntax (xsymbols) 
14180  68 
"_maplet" :: "['a, 'a] => maplet" ("_ /\<mapsto>/ _") 
69 
"_maplets" :: "['a, 'a] => maplet" ("_ /[\<mapsto>]/ _") 

70 

5300  71 
translations 
14180  72 
"_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" 
73 
"_MapUpd m (_maplet x y)" == "m(x:=Some y)" 

74 
"_MapUpd m (_maplets x y)" == "map_upds m x y" 

19947  75 
"_Map ms" == "_MapUpd (CONST empty) ms" 
14180  76 
"_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" 
77 
"_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" 

78 

5183  79 
primrec 
80 
"map_of [] = empty" 

5300  81 
"map_of (p#ps) = (map_of ps)(fst p > snd p)" 
82 

20800  83 
defs 
84 
map_upds_def: "m(xs [>] ys) == m ++ map_of (rev(zip xs ys))" 

85 

19323  86 
(* special purpose constants that should be defined somewhere else and 
87 
whose syntax is a bit odd as well: 

88 

89 
"@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)" 

20800  90 
("_/'(_/\<mapsto>\<lambda>_. _')" [900,0,0,0] 900) 
19323  91 
"m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m" 
92 

20800  93 
map_upd_s::"('a ~=> 'b) => 'a set => 'b => 
94 
('a ~=> 'b)" ("_/'(_{>}_/')" [900,0,0]900) 

95 
map_subst::"('a ~=> 'b) => 'b => 'b => 

96 
('a ~=> 'b)" ("_/'(_~>_/')" [900,0,0]900) 

19323  97 

98 
map_upd_s_def: "m(as{>}b) == %x. if x : as then Some b else m x" 

99 
map_subst_def: "m(a~>b) == %x. if m x = Some a then Some b else m x" 

100 

101 
map_upd_s :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)" 

20800  102 
("_/'(_/{\<mapsto>}/_')" [900,0,0]900) 
103 
map_subst :: "('a ~=> 'b) => 'b => 'b => 

104 
('a ~=> 'b)" ("_/'(_\<leadsto>_/')" [900,0,0]900) 

19323  105 

106 

107 
subsection {* @{term [source] map_upd_s} *} 

108 

20800  109 
lemma map_upd_s_apply [simp]: 
19323  110 
"(m(as{>}b)) x = (if x : as then Some b else m x)" 
111 
by (simp add: map_upd_s_def) 

112 

20800  113 
lemma map_subst_apply [simp]: 
114 
"(m(a~>b)) x = (if m x = Some a then Some b else m x)" 

19323  115 
by (simp add: map_subst_def) 
116 

117 
*) 

13908  118 

20800  119 

17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset

120 
subsection {* @{term [source] empty} *} 
13908  121 

20800  122 
lemma empty_upd_none [simp]: "empty(x := None) = empty" 
123 
by (rule ext) simp 

13908  124 

125 
(* FIXME: what is this sum_case nonsense?? *) 

13910  126 
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty" 
20800  127 
by (rule ext) (simp split: sum.split) 
128 

13908  129 

17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset

130 
subsection {* @{term [source] map_upd} *} 
13908  131 

132 
lemma map_upd_triv: "t k = Some x ==> t(k>x) = t" 

20800  133 
by (rule ext) simp 
13908  134 

20800  135 
lemma map_upd_nonempty [simp]: "t(k>x) ~= empty" 
136 
proof 

137 
assume "t(k \<mapsto> x) = empty" 

138 
then have "(t(k \<mapsto> x)) k = None" by simp 

139 
then show False by simp 

140 
qed 

13908  141 

20800  142 
lemma map_upd_eqD1: 
143 
assumes "m(a\<mapsto>x) = n(a\<mapsto>y)" 

144 
shows "x = y" 

145 
proof  

146 
from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp 

147 
then show ?thesis by simp 

148 
qed 

14100  149 

20800  150 
lemma map_upd_Some_unfold: 
151 
"((m(a>b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" 

152 
by auto 

14100  153 

20800  154 
lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" 
155 
by auto 

15303  156 

13908  157 
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a>b)))" 
20800  158 
unfolding image_def 
159 
apply (simp (no_asm_use) add: full_SetCompr_eq) 

160 
apply (rule finite_subset) 

161 
prefer 2 apply assumption 

162 
apply auto 

163 
done 

13908  164 

165 

166 
(* FIXME: what is this sum_case nonsense?? *) 

17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset

167 
subsection {* @{term [source] sum_case} and @{term [source] empty}/@{term [source] map_upd} *} 
13908  168 

20800  169 
lemma sum_case_map_upd_empty [simp]: 
170 
"sum_case (m(k>y)) empty = (sum_case m empty)(Inl k>y)" 

171 
by (rule ext) (simp split: sum.split) 

13908  172 

20800  173 
lemma sum_case_empty_map_upd [simp]: 
174 
"sum_case empty (m(k>y)) = (sum_case empty m)(Inr k>y)" 

175 
by (rule ext) (simp split: sum.split) 

13908  176 

20800  177 
lemma sum_case_map_upd_map_upd [simp]: 
178 
"sum_case (m1(k1>y1)) (m2(k2>y2)) = (sum_case (m1(k1>y1)) m2)(Inr k2>y2)" 

179 
by (rule ext) (simp split: sum.split) 

13908  180 

181 

17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset

182 
subsection {* @{term [source] map_of} *} 
13908  183 

15304  184 
lemma map_of_eq_None_iff: 
20800  185 
"(map_of xys x = None) = (x \<notin> fst ` (set xys))" 
186 
by (induct xys) simp_all 

15304  187 

188 
lemma map_of_is_SomeD: 

20800  189 
"map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys" 
190 
apply (induct xys) 

191 
apply simp 

192 
apply (clarsimp split: if_splits) 

193 
done 

15304  194 

20800  195 
lemma map_of_eq_Some_iff [simp]: 
196 
"distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" 

197 
apply (induct xys) 

198 
apply simp 

199 
apply (auto simp: map_of_eq_None_iff [symmetric]) 

200 
done 

15304  201 

20800  202 
lemma Some_eq_map_of_iff [simp]: 
203 
"distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" 

204 
by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric]) 

15304  205 

17724  206 
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> 
20800  207 
\<Longrightarrow> map_of xys x = Some y" 
208 
apply (induct xys) 

209 
apply simp 

210 
apply force 

211 
done 

15304  212 

20800  213 
lemma map_of_zip_is_None [simp]: 
214 
"length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" 

215 
by (induct rule: list_induct2) simp_all 

15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset

216 

78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset

217 
lemma finite_range_map_of: "finite (range (map_of xys))" 
20800  218 
apply (induct xys) 
219 
apply (simp_all add: image_constant) 

220 
apply (rule finite_subset) 

221 
prefer 2 apply assumption 

222 
apply auto 

223 
done 

15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset

224 

20800  225 
lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs" 
226 
by (induct xs) (simp, atomize (full), auto) 

13908  227 

20800  228 
lemma map_of_mapk_SomeI: 
229 
assumes "inj f" 

230 
shows "map_of t k = Some x ==> 

231 
map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" 

232 
by (induct t) (auto simp add: `inj f` inj_eq) 

13908  233 

20800  234 
lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x" 
235 
by (induct l) auto 

13908  236 

20800  237 
lemma map_of_filter_in: 
238 
assumes 1: "map_of xs k = Some z" 

239 
and 2: "P k z" 

240 
shows "map_of (filter (split P) xs) k = Some z" 

241 
using 1 by (induct xs) (insert 2, auto) 

13908  242 

243 
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" 

20800  244 
by (induct xs) auto 
13908  245 

246 

17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset

247 
subsection {* @{term [source] option_map} related *} 
13908  248 

20800  249 
lemma option_map_o_empty [simp]: "option_map f o empty = empty" 
250 
by (rule ext) simp 

13908  251 

20800  252 
lemma option_map_o_map_upd [simp]: 
253 
"option_map f o m(a>b) = (option_map f o m)(a>f b)" 

254 
by (rule ext) simp 

255 

13908  256 

17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset

257 
subsection {* @{term [source] map_comp} related *} 
17391  258 

20800  259 
lemma map_comp_empty [simp]: 
260 
"m \<circ>\<^sub>m empty = empty" 

261 
"empty \<circ>\<^sub>m m = empty" 

17391  262 
by (auto simp add: map_comp_def intro: ext split: option.splits) 
263 

20800  264 
lemma map_comp_simps [simp]: 
265 
"m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None" 

266 
"m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" 

17391  267 
by (auto simp add: map_comp_def) 
268 

269 
lemma map_comp_Some_iff: 

20800  270 
"((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" 
17391  271 
by (auto simp add: map_comp_def split: option.splits) 
272 

273 
lemma map_comp_None_iff: 

20800  274 
"((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " 
17391  275 
by (auto simp add: map_comp_def split: option.splits) 
13908  276 

20800  277 

14100  278 
subsection {* @{text "++"} *} 
13908  279 

14025  280 
lemma map_add_empty[simp]: "m ++ empty = m" 
20800  281 
unfolding map_add_def by simp 
13908  282 

14025  283 
lemma empty_map_add[simp]: "empty ++ m = m" 
20800  284 
unfolding map_add_def by (rule ext) (simp split: option.split) 
13908  285 

14025  286 
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" 
20800  287 
unfolding map_add_def by (rule ext) (simp add: map_add_def split: option.split) 
288 

289 
lemma map_add_Some_iff: 

290 
"((m ++ n) k = Some x) = (n k = Some x  n k = None & m k = Some x)" 

291 
unfolding map_add_def by (simp split: option.split) 

14025  292 

20800  293 
lemma map_add_SomeD [dest!]: 
294 
"(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x" 

295 
by (rule map_add_Some_iff [THEN iffD1]) 

13908  296 

20800  297 
lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" 
298 
by (subst map_add_Some_iff) fast 

13908  299 

14025  300 
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" 
20800  301 
unfolding map_add_def by (simp split: option.split) 
13908  302 

14025  303 
lemma map_add_upd[simp]: "f ++ g(x>y) = (f ++ g)(x>y)" 
20800  304 
unfolding map_add_def by (rule ext) simp 
13908  305 

14186  306 
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" 
20800  307 
by (simp add: map_upds_def) 
14186  308 

20800  309 
lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs" 
310 
unfolding map_add_def 

311 
apply (induct xs) 

312 
apply simp 

313 
apply (rule ext) 

314 
apply (simp split add: option.split) 

315 
done 

13908  316 

14025  317 
lemma finite_range_map_of_map_add: 
20800  318 
"finite (range f) ==> finite (range (f ++ map_of l))" 
319 
apply (induct l) 

320 
apply (auto simp del: fun_upd_apply) 

321 
apply (erule finite_range_updI) 

322 
done 

13908  323 

20800  324 
lemma inj_on_map_add_dom [iff]: 
325 
"inj_on (m ++ m') (dom m') = inj_on m' (dom m')" 

326 
unfolding map_add_def dom_def inj_on_def 

327 
by (fastsimp split: option.splits) 

328 

15304  329 

17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset

330 
subsection {* @{term [source] restrict_map} *} 
14100  331 

20800  332 
lemma restrict_map_to_empty [simp]: "m`{} = empty" 
333 
by (simp add: restrict_map_def) 

14186  334 

20800  335 
lemma restrict_map_empty [simp]: "empty`D = empty" 
336 
by (simp add: restrict_map_def) 

14186  337 

15693  338 
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m`A) x = m x" 
20800  339 
by (simp add: restrict_map_def) 
14100  340 

15693  341 
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m`A) x = None" 
20800  342 
by (simp add: restrict_map_def) 
14100  343 

15693  344 
lemma ran_restrictD: "y \<in> ran (m`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" 
20800  345 
by (auto simp: restrict_map_def ran_def split: split_if_asm) 
14100  346 

15693  347 
lemma dom_restrict [simp]: "dom (m`A) = dom m \<inter> A" 
20800  348 
by (auto simp: restrict_map_def dom_def split: split_if_asm) 
14100  349 

15693  350 
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)`({x}) = m`({x})" 
20800  351 
by (rule ext) (auto simp: restrict_map_def) 
14100  352 

15693  353 
lemma restrict_restrict [simp]: "m`A`B = m`(A\<inter>B)" 
20800  354 
by (rule ext) (auto simp: restrict_map_def) 
14100  355 

20800  356 
lemma restrict_fun_upd [simp]: 
357 
"m(x := y)`D = (if x \<in> D then (m`(D{x}))(x := y) else m`D)" 

358 
by (simp add: restrict_map_def expand_fun_eq) 

14186  359 

20800  360 
lemma fun_upd_None_restrict [simp]: 
361 
"(m`D)(x := None) = (if x:D then m`(D  {x}) else m`D)" 

362 
by (simp add: restrict_map_def expand_fun_eq) 

14186  363 

20800  364 
lemma fun_upd_restrict: "(m`D)(x := y) = (m`(D{x}))(x := y)" 
365 
by (simp add: restrict_map_def expand_fun_eq) 

14186  366 

20800  367 
lemma fun_upd_restrict_conv [simp]: 
368 
"x \<in> D \<Longrightarrow> (m`D)(x := y) = (m`(D{x}))(x := y)" 

369 
by (simp add: restrict_map_def expand_fun_eq) 

14186  370 

14100  371 

17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset

372 
subsection {* @{term [source] map_upds} *} 
14025  373 

20800  374 
lemma map_upds_Nil1 [simp]: "m([] [>] bs) = m" 
375 
by (simp add: map_upds_def) 

14025  376 

20800  377 
lemma map_upds_Nil2 [simp]: "m(as [>] []) = m" 
378 
by (simp add:map_upds_def) 

379 

380 
lemma map_upds_Cons [simp]: "m(a#as [>] b#bs) = (m(a>b))(as[>]bs)" 

381 
by (simp add:map_upds_def) 

14025  382 

20800  383 
lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> 
384 
m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" 

385 
apply(induct xs) 

386 
apply (clarsimp simp add: neq_Nil_conv) 

387 
apply (case_tac ys) 

388 
apply simp 

389 
apply simp 

390 
done 

14187  391 

20800  392 
lemma map_upds_list_update2_drop [simp]: 
393 
"\<lbrakk>size xs \<le> i; i < size ys\<rbrakk> 

394 
\<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" 

395 
apply (induct xs arbitrary: m ys i) 

396 
apply simp 

397 
apply (case_tac ys) 

398 
apply simp 

399 
apply (simp split: nat.split) 

400 
done 

14025  401 

20800  402 
lemma map_upd_upds_conv_if: 
403 
"(f(x>y))(xs [>] ys) = 

404 
(if x : set(take (length ys) xs) then f(xs [>] ys) 

405 
else (f(xs [>] ys))(x>y))" 

406 
apply (induct xs arbitrary: x y ys f) 

407 
apply simp 

408 
apply (case_tac ys) 

409 
apply (auto split: split_if simp: fun_upd_twist) 

410 
done 

14025  411 

412 
lemma map_upds_twist [simp]: 

20800  413 
"a ~: set as ==> m(a>b)(as[>]bs) = m(as[>]bs)(a>b)" 
414 
using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if) 

14025  415 

20800  416 
lemma map_upds_apply_nontin [simp]: 
417 
"x ~: set xs ==> (f(xs[>]ys)) x = f x" 

418 
apply (induct xs arbitrary: ys) 

419 
apply simp 

420 
apply (case_tac ys) 

421 
apply (auto simp: map_upd_upds_conv_if) 

422 
done 

14025  423 

20800  424 
lemma fun_upds_append_drop [simp]: 
425 
"size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" 

426 
apply (induct xs arbitrary: m ys) 

427 
apply simp 

428 
apply (case_tac ys) 

429 
apply simp_all 

430 
done 

14300  431 

20800  432 
lemma fun_upds_append2_drop [simp]: 
433 
"size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" 

434 
apply (induct xs arbitrary: m ys) 

435 
apply simp 

436 
apply (case_tac ys) 

437 
apply simp_all 

438 
done 

14300  439 

440 

20800  441 
lemma restrict_map_upds[simp]: 
442 
"\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> 

443 
\<Longrightarrow> m(xs [\<mapsto>] ys)`D = (m`(D  set xs))(xs [\<mapsto>] ys)" 

444 
apply (induct xs arbitrary: m ys) 

445 
apply simp 

446 
apply (case_tac ys) 

447 
apply simp 

448 
apply (simp add: Diff_insert [symmetric] insert_absorb) 

449 
apply (simp add: map_upd_upds_conv_if) 

450 
done 

14186  451 

452 

17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset

453 
subsection {* @{term [source] dom} *} 
13908  454 

455 
lemma domI: "m a = Some b ==> a : dom m" 

20800  456 
unfolding dom_def by simp 
14100  457 
(* declare domI [intro]? *) 
13908  458 

15369  459 
lemma domD: "a : dom m ==> \<exists>b. m a = Some b" 
20800  460 
by (cases "m a") (auto simp add: dom_def) 
13908  461 

20800  462 
lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)" 
463 
unfolding dom_def by simp 

13908  464 

20800  465 
lemma dom_empty [simp]: "dom empty = {}" 
466 
unfolding dom_def by simp 

13908  467 

20800  468 
lemma dom_fun_upd [simp]: 
469 
"dom(f(x := y)) = (if y=None then dom f  {x} else insert x (dom f))" 

470 
unfolding dom_def by auto 

13908  471 

13937  472 
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}" 
20800  473 
by (induct xys) (auto simp del: fun_upd_apply) 
13937  474 

15304  475 
lemma dom_map_of_conv_image_fst: 
20800  476 
"dom(map_of xys) = fst ` (set xys)" 
477 
unfolding dom_map_of by force 

15304  478 

20800  479 
lemma dom_map_of_zip [simp]: "[ length xs = length ys; distinct xs ] ==> 
480 
dom(map_of(zip xs ys)) = set xs" 

481 
by (induct rule: list_induct2) simp_all 

15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset

482 

13908  483 
lemma finite_dom_map_of: "finite (dom (map_of l))" 
20800  484 
unfolding dom_def 
485 
by (induct l) (auto simp add: insert_Collect [symmetric]) 

13908  486 

20800  487 
lemma dom_map_upds [simp]: 
488 
"dom(m(xs[>]ys)) = set(take (length ys) xs) Un dom m" 

489 
apply (induct xs arbitrary: m ys) 

490 
apply simp 

491 
apply (case_tac ys) 

492 
apply auto 

493 
done 

13910  494 

20800  495 
lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m" 
496 
unfolding dom_def by auto 

13910  497 

20800  498 
lemma dom_override_on [simp]: 
499 
"dom(override_on f g A) = 

500 
(dom f  {a. a : A  dom g}) Un {a. a : A Int dom g}" 

501 
unfolding dom_def override_on_def by auto 

13908  502 

14027  503 
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1" 
20800  504 
by (rule ext) (force simp: map_add_def dom_def split: option.split) 
505 

14027  506 

17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset

507 
subsection {* @{term [source] ran} *} 
14100  508 

20800  509 
lemma ranI: "m a = Some b ==> b : ran m" 
510 
unfolding ran_def by auto 

14100  511 
(* declare ranI [intro]? *) 
13908  512 

20800  513 
lemma ran_empty [simp]: "ran empty = {}" 
514 
unfolding ran_def by simp 

13908  515 

20800  516 
lemma ran_map_upd [simp]: "m a = None ==> ran(m(a>b)) = insert b (ran m)" 
517 
unfolding ran_def 

518 
apply auto 

519 
apply (subgoal_tac "aa ~= a") 

520 
apply auto 

521 
done 

522 

13910  523 

14100  524 
subsection {* @{text "map_le"} *} 
13910  525 

13912  526 
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" 
20800  527 
by (simp add: map_le_def) 
13910  528 

17724  529 
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f" 
20800  530 
by (force simp add: map_le_def) 
14187  531 

13910  532 
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" 
20800  533 
by (fastsimp simp add: map_le_def) 
13910  534 

17724  535 
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" 
20800  536 
by (force simp add: map_le_def) 
14187  537 

20800  538 
lemma map_le_upds [simp]: 
539 
"f \<subseteq>\<^sub>m g ==> f(as [>] bs) \<subseteq>\<^sub>m g(as [>] bs)" 

540 
apply (induct as arbitrary: f g bs) 

541 
apply simp 

542 
apply (case_tac bs) 

543 
apply auto 

544 
done 

13908  545 

14033  546 
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" 
547 
by (fastsimp simp add: map_le_def dom_def) 

548 

549 
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" 

550 
by (simp add: map_le_def) 

551 

14187  552 
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" 
18447  553 
by (auto simp add: map_le_def dom_def) 
14033  554 

555 
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" 

20800  556 
unfolding map_le_def 
14033  557 
apply (rule ext) 
14208  558 
apply (case_tac "x \<in> dom f", simp) 
559 
apply (case_tac "x \<in> dom g", simp, fastsimp) 

20800  560 
done 
14033  561 

562 
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" 

18576  563 
by (fastsimp simp add: map_le_def) 
14033  564 

15304  565 
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)" 
20800  566 
by (fastsimp simp add: map_add_def map_le_def expand_fun_eq split: option.splits) 
15304  567 

15303  568 
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" 
20800  569 
by (fastsimp simp add: map_le_def map_add_def dom_def) 
15303  570 

571 
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h" 

20800  572 
by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits) 
15303  573 

3981  574 
end 