src/HOL/Transcendental.thy
author wenzelm
Fri, 05 Jul 2024 13:46:13 +0200
changeset 80514 482897a69699
parent 80241 92a66f1df06e
child 80519 d757f0f98447
permissions -rw-r--r--
tuned signature: expose internal limits for testing or add-on implementations;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     1
(*  Title:      HOL/Transcendental.thy
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     2
    Author:     Jacques D. Fleuriot, University of Cambridge, University of Edinburgh
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     3
    Author:     Lawrence C Paulson
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
     4
    Author:     Jeremy Avigad
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     5
*)
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     6
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
     7
section \<open>Power Series, Transcendental Functions etc.\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
     8
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
     9
theory Transcendental
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
    10
imports Series Deriv NthRoot
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
    11
begin
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    12
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
    13
text \<open>A theorem about the factcorial function on the reals.\<close>
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    14
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    15
lemma square_fact_le_2_fact: "fact n * fact n \<le> (fact (2 * n) :: real)"
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    16
proof (induct n)
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    17
  case 0
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    18
  then show ?case by simp
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    19
next
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    20
  case (Suc n)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    21
  have "(fact (Suc n)) * (fact (Suc n)) = of_nat (Suc n) * of_nat (Suc n) * (fact n * fact n :: real)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    22
    by (simp add: field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    23
  also have "\<dots> \<le> of_nat (Suc n) * of_nat (Suc n) * fact (2 * n)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    24
    by (rule mult_left_mono [OF Suc]) simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    25
  also have "\<dots> \<le> of_nat (Suc (Suc (2 * n))) * of_nat (Suc (2 * n)) * fact (2 * n)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    26
    by (rule mult_right_mono)+ (auto simp: field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    27
  also have "\<dots> = fact (2 * Suc n)" by (simp add: field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    28
  finally show ?case .
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    29
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    30
62347
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    31
lemma fact_in_Reals: "fact n \<in> \<real>"
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    32
  by (induction n) auto
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    33
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    34
lemma of_real_fact [simp]: "of_real (fact n) = fact n"
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    35
  by (metis of_nat_fact of_real_of_nat_eq)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
    36
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
    37
lemma pochhammer_of_real: "pochhammer (of_real x) n = of_real (pochhammer x n)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
    38
  by (simp add: pochhammer_prod)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
    39
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    40
lemma norm_fact [simp]: "norm (fact n :: 'a::real_normed_algebra_1) = fact n"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    41
proof -
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    42
  have "(fact n :: 'a) = of_real (fact n)"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    43
    by simp
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    44
  also have "norm \<dots> = fact n"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    45
    by (subst norm_of_real) simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    46
  finally show ?thesis .
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    47
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    48
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    49
lemma root_test_convergence:
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    50
  fixes f :: "nat \<Rightarrow> 'a::banach"
67443
3abf6a722518 standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents: 67399
diff changeset
    51
  assumes f: "(\<lambda>n. root n (norm (f n))) \<longlonglongrightarrow> x" \<comment> \<open>could be weakened to lim sup\<close>
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    52
    and "x < 1"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    53
  shows "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    54
proof -
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    55
  have "0 \<le> x"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    56
    by (rule LIMSEQ_le[OF tendsto_const f]) (auto intro!: exI[of _ 1])
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    57
  from \<open>x < 1\<close> obtain z where z: "x < z" "z < 1"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    58
    by (metis dense)
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    59
  from f \<open>x < z\<close> have "eventually (\<lambda>n. root n (norm (f n)) < z) sequentially"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    60
    by (rule order_tendstoD)
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    61
  then have "eventually (\<lambda>n. norm (f n) \<le> z^n) sequentially"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    62
    using eventually_ge_at_top
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    63
  proof eventually_elim
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    64
    fix n
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    65
    assume less: "root n (norm (f n)) < z" and n: "1 \<le> n"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    66
    from power_strict_mono[OF less, of n] n show "norm (f n) \<le> z ^ n"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    67
      by simp
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    68
  qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    69
  then show "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    70
    unfolding eventually_sequentially
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    71
    using z \<open>0 \<le> x\<close> by (auto intro!: summable_comparison_test[OF _  summable_geometric])
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    72
qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    73
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    74
subsection \<open>Properties of Power Series\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    75
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    76
lemma powser_zero [simp]: "(\<Sum>n. f n * 0 ^ n) = f 0"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    77
  for f :: "nat \<Rightarrow> 'a::real_normed_algebra_1"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    78
proof -
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
    79
  have "(\<Sum>n<1. f n * 0 ^ n) = (\<Sum>n. f n * 0 ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
    80
    by (subst suminf_finite[where N="{0}"]) (auto simp: power_0_left)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
    81
  then show ?thesis by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    82
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    83
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    84
lemma powser_sums_zero: "(\<lambda>n. a n * 0^n) sums a 0"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    85
  for a :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    86
  using sums_finite [of "{0}" "\<lambda>n. a n * 0 ^ n"]
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    87
  by simp
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    88
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    89
lemma powser_sums_zero_iff [simp]: "(\<lambda>n. a n * 0^n) sums x \<longleftrightarrow> a 0 = x"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    90
  for a :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    91
  using powser_sums_zero sums_unique2 by blast
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    92
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    93
text \<open>
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    94
  Power series has a circle or radius of convergence: if it sums for \<open>x\<close>,
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
    95
  then it sums absolutely for \<open>z\<close> with \<^term>\<open>\<bar>z\<bar> < \<bar>x\<bar>\<close>.\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    96
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    97
lemma powser_insidea:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
    98
  fixes x z :: "'a::real_normed_div_algebra"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
    99
  assumes 1: "summable (\<lambda>n. f n * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   100
    and 2: "norm z < norm x"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   101
  shows "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   102
proof -
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   103
  from 2 have x_neq_0: "x \<noteq> 0" by clarsimp
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   104
  from 1 have "(\<lambda>n. f n * x^n) \<longlonglongrightarrow> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   105
    by (rule summable_LIMSEQ_zero)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   106
  then have "convergent (\<lambda>n. f n * x^n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   107
    by (rule convergentI)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   108
  then have "Cauchy (\<lambda>n. f n * x^n)"
44726
8478eab380e9 generalize some lemmas
huffman
parents: 44725
diff changeset
   109
    by (rule convergent_Cauchy)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   110
  then have "Bseq (\<lambda>n. f n * x^n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   111
    by (rule Cauchy_Bseq)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   112
  then obtain K where 3: "0 < K" and 4: "\<forall>n. norm (f n * x^n) \<le> K"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   113
    by (auto simp: Bseq_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   114
  have "\<exists>N. \<forall>n\<ge>N. norm (norm (f n * z ^ n)) \<le> K * norm (z ^ n) * inverse (norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   115
  proof (intro exI allI impI)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   116
    fix n :: nat
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   117
    assume "0 \<le> n"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   118
    have "norm (norm (f n * z ^ n)) * norm (x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   119
          norm (f n * x^n) * norm (z ^ n)"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   120
      by (simp add: norm_mult abs_mult)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   121
    also have "\<dots> \<le> K * norm (z ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   122
      by (simp only: mult_right_mono 4 norm_ge_zero)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   123
    also have "\<dots> = K * norm (z ^ n) * (inverse (norm (x^n)) * norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   124
      by (simp add: x_neq_0)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   125
    also have "\<dots> = K * norm (z ^ n) * inverse (norm (x^n)) * norm (x^n)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   126
      by (simp only: mult.assoc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   127
    finally show "norm (norm (f n * z ^ n)) \<le> K * norm (z ^ n) * inverse (norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   128
      by (simp add: mult_le_cancel_right x_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   129
  qed
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   130
  moreover have "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x^n)))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   131
  proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   132
    from 2 have "norm (norm (z * inverse x)) < 1"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   133
      using x_neq_0
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   134
      by (simp add: norm_mult nonzero_norm_inverse divide_inverse [where 'a=real, symmetric])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   135
    then have "summable (\<lambda>n. norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   136
      by (rule summable_geometric)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   137
    then have "summable (\<lambda>n. K * norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   138
      by (rule summable_mult)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   139
    then show "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x^n)))"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   140
      using x_neq_0
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   141
      by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   142
          power_inverse norm_power mult.assoc)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   143
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   144
  ultimately show "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   145
    by (rule summable_comparison_test)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   146
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   147
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   148
lemma powser_inside:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   149
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   150
  shows
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   151
    "summable (\<lambda>n. f n * (x^n)) \<Longrightarrow> norm z < norm x \<Longrightarrow>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   152
      summable (\<lambda>n. f n * (z ^ n))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   153
  by (rule powser_insidea [THEN summable_norm_cancel])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   154
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   155
lemma powser_times_n_limit_0:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   156
  fixes x :: "'a::{real_normed_div_algebra,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   157
  assumes "norm x < 1"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   158
    shows "(\<lambda>n. of_nat n * x ^ n) \<longlonglongrightarrow> 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   159
proof -
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   160
  have "norm x / (1 - norm x) \<ge> 0"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
   161
    using assms by (auto simp: field_split_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   162
  moreover obtain N where N: "norm x / (1 - norm x) < of_int N"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   163
    using ex_le_of_int by (meson ex_less_of_int)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   164
  ultimately have N0: "N>0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   165
    by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   166
  then have *: "real_of_int (N + 1) * norm x / real_of_int N < 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   167
    using N assms by (auto simp: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   168
  have **: "real_of_int N * (norm x * (real_of_nat (Suc n) * norm (x ^ n))) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   169
      real_of_nat n * (norm x * ((1 + N) * norm (x ^ n)))" if "N \<le> int n" for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   170
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   171
    from that have "real_of_int N * real_of_nat (Suc n) \<le> real_of_nat n * real_of_int (1 + N)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   172
      by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   173
    then have "(real_of_int N * real_of_nat (Suc n)) * (norm x * norm (x ^ n)) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   174
        (real_of_nat n *  (1 + N)) * (norm x * norm (x ^ n))"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   175
      using N0 mult_mono by fastforce
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   176
    then show ?thesis
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   177
      by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   178
  qed
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   179
  show ?thesis using *
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   180
    by (rule summable_LIMSEQ_zero [OF summable_ratio_test, where N1="nat N"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   181
      (simp add: N0 norm_mult field_simps ** del: of_nat_Suc of_int_add)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   182
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   183
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   184
corollary lim_n_over_pown:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   185
  fixes x :: "'a::{real_normed_field,banach}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   186
  shows "1 < norm x \<Longrightarrow> ((\<lambda>n. of_nat n / x^n) \<longlongrightarrow> 0) sequentially"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   187
  using powser_times_n_limit_0 [of "inverse x"]
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
   188
  by (simp add: norm_divide field_split_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   189
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   190
lemma sum_split_even_odd:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   191
  fixes f :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   192
  shows "(\<Sum>i<2 * n. if even i then f i else g i) = (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1))"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   193
proof (induct n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   194
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   195
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   196
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   197
  case (Suc n)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   198
  have "(\<Sum>i<2 * Suc n. if even i then f i else g i) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   199
    (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1)) + (f (2 * n) + g (2 * n + 1))"
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
   200
    using Suc.hyps unfolding One_nat_def by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   201
  also have "\<dots> = (\<Sum>i<Suc n. f (2 * i)) + (\<Sum>i<Suc n. g (2 * i + 1))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   202
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   203
  finally show ?case .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   204
qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   205
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   206
lemma sums_if':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   207
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   208
  assumes "g sums x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   209
  shows "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   210
  unfolding sums_def
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   211
proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   212
  fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   213
  assume "0 < r"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   214
  from \<open>g sums x\<close>[unfolded sums_def, THEN LIMSEQ_D, OF this]
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   215
  obtain no where no_eq: "\<And>n. n \<ge> no \<Longrightarrow> (norm (sum g {..<n} - x) < r)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   216
    by blast
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   217
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   218
  let ?SUM = "\<lambda> m. \<Sum>i<m. if even i then 0 else g ((i - 1) div 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   219
  have "(norm (?SUM m - x) < r)" if "m \<ge> 2 * no" for m
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   220
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   221
    from that have "m div 2 \<ge> no" by auto
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   222
    have sum_eq: "?SUM (2 * (m div 2)) = sum g {..< m div 2}"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   223
      using sum_split_even_odd by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   224
    then have "(norm (?SUM (2 * (m div 2)) - x) < r)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   225
      using no_eq unfolding sum_eq using \<open>m div 2 \<ge> no\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   226
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   227
    have "?SUM (2 * (m div 2)) = ?SUM m"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   228
    proof (cases "even m")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   229
      case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   230
      then show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   231
        by (auto simp: even_two_times_div_two)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   232
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   233
      case False
58834
773b378d9313 more simp rules concerning dvd and even/odd
haftmann
parents: 58740
diff changeset
   234
      then have eq: "Suc (2 * (m div 2)) = m" by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   235
      then have "even (2 * (m div 2))" using \<open>odd m\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   236
      have "?SUM m = ?SUM (Suc (2 * (m div 2)))" unfolding eq ..
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   237
      also have "\<dots> = ?SUM (2 * (m div 2))" using \<open>even (2 * (m div 2))\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   238
      finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   239
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   240
    ultimately show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   241
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   242
  then show "\<exists>no. \<forall> m \<ge> no. norm (?SUM m - x) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   243
    by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   244
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   245
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   246
lemma sums_if:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   247
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   248
  assumes "g sums x" and "f sums y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   249
  shows "(\<lambda> n. if even n then f (n div 2) else g ((n - 1) div 2)) sums (x + y)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   250
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   251
  let ?s = "\<lambda> n. if even n then 0 else f ((n - 1) div 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   252
  have if_sum: "(if B then (0 :: real) else E) + (if B then T else 0) = (if B then T else E)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   253
    for B T E
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   254
    by (cases B) auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   255
  have g_sums: "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   256
    using sums_if'[OF \<open>g sums x\<close>] .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   257
  have if_eq: "\<And>B T E. (if \<not> B then T else E) = (if B then E else T)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   258
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   259
  have "?s sums y" using sums_if'[OF \<open>f sums y\<close>] .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   260
  from this[unfolded sums_def, THEN LIMSEQ_Suc]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   261
  have "(\<lambda>n. if even n then f (n div 2) else 0) sums y"
70113
c8deb8ba6d05 Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
paulson <lp15@cam.ac.uk>
parents: 70097
diff changeset
   262
    by (simp add: lessThan_Suc_eq_insert_0 sum.atLeast1_atMost_eq image_Suc_lessThan
63566
e5abbdee461a more accurate cong del;
wenzelm
parents: 63558
diff changeset
   263
        if_eq sums_def cong del: if_weak_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   264
  from sums_add[OF g_sums this] show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   265
    by (simp only: if_sum)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   266
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   267
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   268
subsection \<open>Alternating series test / Leibniz formula\<close>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   269
(* FIXME: generalise these results from the reals via type classes? *)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   270
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   271
lemma sums_alternating_upper_lower:
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   272
  fixes a :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   273
  assumes mono: "\<And>n. a (Suc n) \<le> a n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   274
    and a_pos: "\<And>n. 0 \<le> a n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   275
    and "a \<longlonglongrightarrow> 0"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   276
  shows "\<exists>l. ((\<forall>n. (\<Sum>i<2*n. (- 1)^i*a i) \<le> l) \<and> (\<lambda> n. \<Sum>i<2*n. (- 1)^i*a i) \<longlonglongrightarrow> l) \<and>
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   277
             ((\<forall>n. l \<le> (\<Sum>i<2*n + 1. (- 1)^i*a i)) \<and> (\<lambda> n. \<Sum>i<2*n + 1. (- 1)^i*a i) \<longlonglongrightarrow> l)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   278
  (is "\<exists>l. ((\<forall>n. ?f n \<le> l) \<and> _) \<and> ((\<forall>n. l \<le> ?g n) \<and> _)")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   279
proof (rule nested_sequence_unique)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   280
  have fg_diff: "\<And>n. ?f n - ?g n = - a (2 * n)" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   281
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   282
  show "\<forall>n. ?f n \<le> ?f (Suc n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   283
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   284
    show "?f n \<le> ?f (Suc n)" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   285
      using mono[of "2*n"] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   286
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   287
  show "\<forall>n. ?g (Suc n) \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   288
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   289
    show "?g (Suc n) \<le> ?g n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   290
      using mono[of "Suc (2*n)"] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   291
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   292
  show "\<forall>n. ?f n \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   293
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   294
    show "?f n \<le> ?g n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   295
      using fg_diff a_pos by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   296
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   297
  show "(\<lambda>n. ?f n - ?g n) \<longlonglongrightarrow> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   298
    unfolding fg_diff
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   299
  proof (rule LIMSEQ_I)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   300
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   301
    assume "0 < r"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   302
    with \<open>a \<longlonglongrightarrow> 0\<close>[THEN LIMSEQ_D] obtain N where "\<And> n. n \<ge> N \<Longrightarrow> norm (a n - 0) < r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   303
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   304
    then have "\<forall>n \<ge> N. norm (- a (2 * n) - 0) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   305
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   306
    then show "\<exists>N. \<forall>n \<ge> N. norm (- a (2 * n) - 0) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   307
      by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   308
  qed
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   309
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   310
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   311
lemma summable_Leibniz':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   312
  fixes a :: "nat \<Rightarrow> real"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   313
  assumes a_zero: "a \<longlonglongrightarrow> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   314
    and a_pos: "\<And>n. 0 \<le> a n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   315
    and a_monotone: "\<And>n. a (Suc n) \<le> a n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   316
  shows summable: "summable (\<lambda> n. (-1)^n * a n)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   317
    and "\<And>n. (\<Sum>i<2*n. (-1)^i*a i) \<le> (\<Sum>i. (-1)^i*a i)"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   318
    and "(\<lambda>n. \<Sum>i<2*n. (-1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (-1)^i*a i)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   319
    and "\<And>n. (\<Sum>i. (-1)^i*a i) \<le> (\<Sum>i<2*n+1. (-1)^i*a i)"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   320
    and "(\<lambda>n. \<Sum>i<2*n+1. (-1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (-1)^i*a i)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   321
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   322
  let ?S = "\<lambda>n. (-1)^n * a n"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   323
  let ?P = "\<lambda>n. \<Sum>i<n. ?S i"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   324
  let ?f = "\<lambda>n. ?P (2 * n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   325
  let ?g = "\<lambda>n. ?P (2 * n + 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   326
  obtain l :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   327
    where below_l: "\<forall> n. ?f n \<le> l"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   328
      and "?f \<longlonglongrightarrow> l"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   329
      and above_l: "\<forall> n. l \<le> ?g n"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   330
      and "?g \<longlonglongrightarrow> l"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   331
    using sums_alternating_upper_lower[OF a_monotone a_pos a_zero] by blast
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   332
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   333
  let ?Sa = "\<lambda>m. \<Sum>n<m. ?S n"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   334
  have "?Sa \<longlonglongrightarrow> l"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   335
  proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   336
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   337
    assume "0 < r"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   338
    with \<open>?f \<longlonglongrightarrow> l\<close>[THEN LIMSEQ_D]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   339
    obtain f_no where f: "\<And>n. n \<ge> f_no \<Longrightarrow> norm (?f n - l) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   340
      by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   341
    from \<open>0 < r\<close> \<open>?g \<longlonglongrightarrow> l\<close>[THEN LIMSEQ_D]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   342
    obtain g_no where g: "\<And>n. n \<ge> g_no \<Longrightarrow> norm (?g n - l) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   343
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   344
    have "norm (?Sa n - l) < r" if "n \<ge> (max (2 * f_no) (2 * g_no))" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   345
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   346
      from that have "n \<ge> 2 * f_no" and "n \<ge> 2 * g_no" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   347
      show ?thesis
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   348
      proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   349
        case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   350
        then have n_eq: "2 * (n div 2) = n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   351
          by (simp add: even_two_times_div_two)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   352
        with \<open>n \<ge> 2 * f_no\<close> have "n div 2 \<ge> f_no"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   353
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   354
        from f[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   355
          unfolding n_eq atLeastLessThanSuc_atLeastAtMost .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   356
      next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   357
        case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   358
        then have "even (n - 1)" by simp
58710
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   359
        then have n_eq: "2 * ((n - 1) div 2) = n - 1"
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   360
          by (simp add: even_two_times_div_two)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   361
        then have range_eq: "n - 1 + 1 = n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   362
          using odd_pos[OF False] by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   363
        from n_eq \<open>n \<ge> 2 * g_no\<close> have "(n - 1) div 2 \<ge> g_no"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   364
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   365
        from g[OF this] show ?thesis
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   366
          by (simp only: n_eq range_eq)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   367
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   368
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   369
    then show "\<exists>no. \<forall>n \<ge> no. norm (?Sa n - l) < r" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   370
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   371
  then have sums_l: "(\<lambda>i. (-1)^i * a i) sums l"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   372
    by (simp only: sums_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   373
  then show "summable ?S"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   374
    by (auto simp: summable_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   375
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   376
  have "l = suminf ?S" by (rule sums_unique[OF sums_l])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   377
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   378
  fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   379
  show "suminf ?S \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   380
    unfolding sums_unique[OF sums_l, symmetric] using above_l by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   381
  show "?f n \<le> suminf ?S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   382
    unfolding sums_unique[OF sums_l, symmetric] using below_l by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   383
  show "?g \<longlonglongrightarrow> suminf ?S"
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   384
    using \<open>?g \<longlonglongrightarrow> l\<close> \<open>l = suminf ?S\<close> by auto
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   385
  show "?f \<longlonglongrightarrow> suminf ?S"
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   386
    using \<open>?f \<longlonglongrightarrow> l\<close> \<open>l = suminf ?S\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   387
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   388
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   389
theorem summable_Leibniz:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   390
  fixes a :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   391
  assumes a_zero: "a \<longlonglongrightarrow> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   392
    and "monoseq a"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   393
  shows "summable (\<lambda> n. (-1)^n * a n)" (is "?summable")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   394
    and "0 < a 0 \<longrightarrow>
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   395
      (\<forall>n. (\<Sum>i. (- 1)^i*a i) \<in> { \<Sum>i<2*n. (- 1)^i * a i .. \<Sum>i<2*n+1. (- 1)^i * a i})" (is "?pos")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   396
    and "a 0 < 0 \<longrightarrow>
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   397
      (\<forall>n. (\<Sum>i. (- 1)^i*a i) \<in> { \<Sum>i<2*n+1. (- 1)^i * a i .. \<Sum>i<2*n. (- 1)^i * a i})" (is "?neg")
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   398
    and "(\<lambda>n. \<Sum>i<2*n. (- 1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (- 1)^i*a i)" (is "?f")
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   399
    and "(\<lambda>n. \<Sum>i<2*n+1. (- 1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (- 1)^i*a i)" (is "?g")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   400
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   401
  have "?summable \<and> ?pos \<and> ?neg \<and> ?f \<and> ?g"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   402
  proof (cases "(\<forall>n. 0 \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   403
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   404
    then have ord: "\<And>n m. m \<le> n \<Longrightarrow> a n \<le> a m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   405
      and ge0: "\<And>n. 0 \<le> a n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   406
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   407
    have mono: "a (Suc n) \<le> a n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   408
      using ord[where n="Suc n" and m=n] by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   409
    note leibniz = summable_Leibniz'[OF \<open>a \<longlonglongrightarrow> 0\<close> ge0]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   410
    from leibniz[OF mono]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   411
    show ?thesis using \<open>0 \<le> a 0\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   412
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   413
    let ?a = "\<lambda>n. - a n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   414
    case False
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   415
    with monoseq_le[OF \<open>monoseq a\<close> \<open>a \<longlonglongrightarrow> 0\<close>]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   416
    have "(\<forall> n. a n \<le> 0) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)" by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   417
    then have ord: "\<And>n m. m \<le> n \<Longrightarrow> ?a n \<le> ?a m" and ge0: "\<And> n. 0 \<le> ?a n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   418
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   419
    have monotone: "?a (Suc n) \<le> ?a n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   420
      using ord[where n="Suc n" and m=n] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   421
    note leibniz =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   422
      summable_Leibniz'[OF _ ge0, of "\<lambda>x. x",
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   423
        OF tendsto_minus[OF \<open>a \<longlonglongrightarrow> 0\<close>, unfolded minus_zero] monotone]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   424
    have "summable (\<lambda> n. (-1)^n * ?a n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   425
      using leibniz(1) by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   426
    then obtain l where "(\<lambda> n. (-1)^n * ?a n) sums l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   427
      unfolding summable_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   428
    from this[THEN sums_minus] have "(\<lambda> n. (-1)^n * a n) sums -l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   429
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   430
    then have ?summable by (auto simp: summable_def)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   431
    moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   432
    have "\<bar>- a - - b\<bar> = \<bar>a - b\<bar>" for a b :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   433
      unfolding minus_diff_minus by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   434
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   435
    from suminf_minus[OF leibniz(1), unfolded mult_minus_right minus_minus]
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   436
    have move_minus: "(\<Sum>n. - ((- 1) ^ n * a n)) = - (\<Sum>n. (- 1) ^ n * a n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   437
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   438
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   439
    have ?pos using \<open>0 \<le> ?a 0\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   440
    moreover have ?neg
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   441
      using leibniz(2,4)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   442
      unfolding mult_minus_right sum_negf move_minus neg_le_iff_le
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   443
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   444
    moreover have ?f and ?g
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   445
      using leibniz(3,5)[unfolded mult_minus_right sum_negf move_minus, THEN tendsto_minus_cancel]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   446
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   447
    ultimately show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   448
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
   449
  then show ?summable and ?pos and ?neg and ?f and ?g
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   450
    by safe
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   451
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   452
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   453
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   454
subsection \<open>Term-by-Term Differentiability of Power Series\<close>
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   455
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   456
definition diffs :: "(nat \<Rightarrow> 'a::ring_1) \<Rightarrow> nat \<Rightarrow> 'a"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   457
  where "diffs c = (\<lambda>n. of_nat (Suc n) * c (Suc n))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   458
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   459
text \<open>Lemma about distributing negation over it.\<close>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   460
lemma diffs_minus: "diffs (\<lambda>n. - c n) = (\<lambda>n. - diffs c n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   461
  by (simp add: diffs_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   462
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   463
lemma diffs_equiv:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   464
  fixes x :: "'a::{real_normed_vector,ring_1}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   465
  shows "summable (\<lambda>n. diffs c n * x^n) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   466
    (\<lambda>n. of_nat n * c n * x^(n - Suc 0)) sums (\<Sum>n. diffs c n * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   467
  unfolding diffs_def
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   468
  by (simp add: summable_sums sums_Suc_imp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   469
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   470
lemma lemma_termdiff1:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   471
  fixes z :: "'a :: {monoid_mult,comm_ring}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   472
  shows "(\<Sum>p<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   473
    (\<Sum>p<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   474
  by (auto simp: algebra_simps power_add [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   475
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   476
lemma sumr_diff_mult_const2: "sum f {..<n} - of_nat n * r = (\<Sum>i<n. f i - r)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   477
  for r :: "'a::ring_1"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   478
  by (simp add: sum_subtractf)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   479
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   480
lemma lemma_termdiff2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   481
  fixes h :: "'a::field"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   482
  assumes h: "h \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   483
  shows "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) =
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   484
         h * (\<Sum>p< n - Suc 0. \<Sum>q< n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   485
    (is "?lhs = ?rhs")
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   486
proof (cases n)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   487
  case (Suc m)
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   488
  have 0: "\<And>x k. (\<Sum>n<Suc k. h * (z ^ x * (z ^ (k - n) * (h + z) ^ n))) =
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   489
                 (\<Sum>j<Suc k.  h * ((h + z) ^ j * z ^ (x + k - j)))"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   490
    by (auto simp add: power_add [symmetric] mult.commute intro: sum.cong)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   491
  have *: "(\<Sum>i<m. z ^ i * ((z + h) ^ (m - i) - z ^ (m - i))) =
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   492
           (\<Sum>i<m. \<Sum>j<m - i. h * ((z + h) ^ j * z ^ (m - Suc j)))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   493
    by (force simp add: less_iff_Suc_add sum_distrib_left diff_power_eq_sum ac_simps 0
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   494
        simp del: sum.lessThan_Suc power_Suc intro: sum.cong)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   495
  have "h * ?lhs = (z + h) ^ n - z ^ n - h * of_nat n * z ^ (n - Suc 0)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   496
    by (simp add: right_diff_distrib diff_divide_distrib h mult.assoc [symmetric])
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   497
  also have "... = h * ((\<Sum>p<Suc m. (z + h) ^ p * z ^ (m - p)) - of_nat (Suc m) * z ^ m)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   498
    by (simp add: Suc diff_power_eq_sum h right_diff_distrib [symmetric] mult.assoc
70097
4005298550a6 The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
paulson <lp15@cam.ac.uk>
parents: 69654
diff changeset
   499
        del: power_Suc sum.lessThan_Suc of_nat_Suc)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   500
  also have "... = h * ((\<Sum>p<Suc m. (z + h) ^ (m - p) * z ^ p) - of_nat (Suc m) * z ^ m)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   501
    by (subst sum.nat_diff_reindex[symmetric]) simp
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   502
  also have "... = h * (\<Sum>i<Suc m. (z + h) ^ (m - i) * z ^ i - z ^ m)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   503
    by (simp add: sum_subtractf)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   504
  also have "... = h * ?rhs"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   505
    by (simp add: lemma_termdiff1 sum_distrib_left Suc *)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   506
  finally have "h * ?lhs = h * ?rhs" .
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   507
  then show ?thesis
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   508
    by (simp add: h)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   509
qed auto
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   510
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   511
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   512
lemma real_sum_nat_ivl_bounded2:
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34974
diff changeset
   513
  fixes K :: "'a::linordered_semidom"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   514
  assumes f: "\<And>p::nat. p < n \<Longrightarrow> f p \<le> K" and K: "0 \<le> K"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   515
  shows "sum f {..<n-k} \<le> of_nat n * K"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   516
proof -
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   517
  have "sum f {..<n-k} \<le> (\<Sum>i<n - k. K)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   518
    by (rule sum_mono [OF f]) auto
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   519
  also have "... \<le> of_nat n * K"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   520
    by (auto simp: mult_right_mono K)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   521
  finally show ?thesis .
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   522
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   523
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   524
lemma lemma_termdiff3:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   525
  fixes h z :: "'a::real_normed_field"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   526
  assumes 1: "h \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   527
    and 2: "norm z \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   528
    and 3: "norm (z + h) \<le> K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   529
  shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   530
    of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   531
proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   532
  have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) =
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   533
    norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   534
    by (metis (lifting, no_types) lemma_termdiff2 [OF 1] mult.commute norm_mult)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   535
  also have "\<dots> \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   536
  proof (rule mult_right_mono [OF _ norm_ge_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   537
    from norm_ge_zero 2 have K: "0 \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   538
      by (rule order_trans)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   539
    have le_Kn: "norm ((z + h) ^ i * z ^ j) \<le> K ^ n" if "i + j = n" for i j n
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   540
    proof -
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   541
      have "norm (z + h) ^ i * norm z ^ j \<le> K ^ i * K ^ j"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   542
        by (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   543
      also have "... = K^n"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   544
        by (metis power_add that)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   545
      finally show ?thesis
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   546
        by (simp add: norm_mult norm_power) 
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   547
    qed
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   548
    then have "\<And>p q.
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   549
       \<lbrakk>p < n; q < n - Suc 0\<rbrakk> \<Longrightarrow> norm ((z + h) ^ q * z ^ (n - 2 - q)) \<le> K ^ (n - 2)"
71959
ee2c7f0dd1be prefer single name
haftmann
parents: 71918
diff changeset
   550
      by (simp del: subst_all)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   551
    then
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   552
    show "norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   553
        of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   554
      by (intro order_trans [OF norm_sum]
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   555
          real_sum_nat_ivl_bounded2 mult_nonneg_nonneg of_nat_0_le_iff zero_le_power K)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   556
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   557
  also have "\<dots> = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   558
    by (simp only: mult.assoc)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   559
  finally show ?thesis .
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   560
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   561
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   562
lemma lemma_termdiff4:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   563
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   564
    and k :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   565
  assumes k: "0 < k"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   566
    and le: "\<And>h. h \<noteq> 0 \<Longrightarrow> norm h < k \<Longrightarrow> norm (f h) \<le> K * norm h"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   567
  shows "f \<midarrow>0\<rightarrow> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   568
proof (rule tendsto_norm_zero_cancel)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   569
  show "(\<lambda>h. norm (f h)) \<midarrow>0\<rightarrow> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   570
  proof (rule real_tendsto_sandwich)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   571
    show "eventually (\<lambda>h. 0 \<le> norm (f h)) (at 0)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   572
      by simp
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   573
    show "eventually (\<lambda>h. norm (f h) \<le> K * norm h) (at 0)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   574
      using k by (auto simp: eventually_at dist_norm le)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   575
    show "(\<lambda>h. 0) \<midarrow>(0::'a)\<rightarrow> (0::real)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   576
      by (rule tendsto_const)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   577
    have "(\<lambda>h. K * norm h) \<midarrow>(0::'a)\<rightarrow> K * norm (0::'a)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   578
      by (intro tendsto_intros)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   579
    then show "(\<lambda>h. K * norm h) \<midarrow>(0::'a)\<rightarrow> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   580
      by simp
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   581
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   582
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   583
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   584
lemma lemma_termdiff5:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   585
  fixes g :: "'a::real_normed_vector \<Rightarrow> nat \<Rightarrow> 'b::banach"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   586
    and k :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   587
  assumes k: "0 < k"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   588
    and f: "summable f"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   589
    and le: "\<And>h n. h \<noteq> 0 \<Longrightarrow> norm h < k \<Longrightarrow> norm (g h n) \<le> f n * norm h"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   590
  shows "(\<lambda>h. suminf (g h)) \<midarrow>0\<rightarrow> 0"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   591
proof (rule lemma_termdiff4 [OF k])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   592
  fix h :: 'a
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   593
  assume "h \<noteq> 0" and "norm h < k"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   594
  then have 1: "\<forall>n. norm (g h n) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   595
    by (simp add: le)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   596
  then have "\<exists>N. \<forall>n\<ge>N. norm (norm (g h n)) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   597
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   598
  moreover from f have 2: "summable (\<lambda>n. f n * norm h)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   599
    by (rule summable_mult2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   600
  ultimately have 3: "summable (\<lambda>n. norm (g h n))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   601
    by (rule summable_comparison_test)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   602
  then have "norm (suminf (g h)) \<le> (\<Sum>n. norm (g h n))"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   603
    by (rule summable_norm)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   604
  also from 1 3 2 have "(\<Sum>n. norm (g h n)) \<le> (\<Sum>n. f n * norm h)"
72219
0f38c96a0a74 tidying up some theorem statements
paulson <lp15@cam.ac.uk>
parents: 72211
diff changeset
   605
    by (simp add: suminf_le)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   606
  also from f have "(\<Sum>n. f n * norm h) = suminf f * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   607
    by (rule suminf_mult2 [symmetric])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   608
  finally show "norm (suminf (g h)) \<le> suminf f * norm h" .
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   609
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   610
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   611
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   612
(* FIXME: Long proofs *)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   613
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   614
lemma termdiffs_aux:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   615
  fixes x :: "'a::{real_normed_field,banach}"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   616
  assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   617
    and 2: "norm x < norm K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   618
  shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) \<midarrow>0\<rightarrow> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   619
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   620
  from dense [OF 2] obtain r where r1: "norm x < r" and r2: "r < norm K"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   621
    by fast
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   622
  from norm_ge_zero r1 have r: "0 < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   623
    by (rule order_le_less_trans)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   624
  then have r_neq_0: "r \<noteq> 0" by simp
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   625
  show ?thesis
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   626
  proof (rule lemma_termdiff5)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   627
    show "0 < r - norm x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   628
      using r1 by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   629
    from r r2 have "norm (of_real r::'a) < norm K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   630
      by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   631
    with 1 have "summable (\<lambda>n. norm (diffs (diffs c) n * (of_real r ^ n)))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   632
      by (rule powser_insidea)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   633
    then have "summable (\<lambda>n. diffs (diffs (\<lambda>n. norm (c n))) n * r ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   634
      using r by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   635
    then have "summable (\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   636
      by (rule diffs_equiv [THEN sums_summable])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   637
    also have "(\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0)) =
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   638
               (\<lambda>n. diffs (\<lambda>m. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   639
      by (simp add: diffs_def r_neq_0 fun_eq_iff split: nat_diff_split)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   640
    finally have "summable
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   641
      (\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   642
      by (rule diffs_equiv [THEN sums_summable])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   643
    also have
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   644
      "(\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0)) =
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   645
       (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   646
      by (rule ext) (simp add: r_neq_0 split: nat_diff_split)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   647
    finally show "summable (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" .
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   648
  next
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   649
    fix h :: 'a and n
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   650
    assume h: "h \<noteq> 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   651
    assume "norm h < r - norm x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   652
    then have "norm x + norm h < r" by simp
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   653
    with norm_triangle_ineq 
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   654
    have xh: "norm (x + h) < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   655
      by (rule order_le_less_trans)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   656
    have "norm (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0))
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   657
    \<le> real n * (real (n - Suc 0) * (r ^ (n - 2) * norm h))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   658
      by (metis (mono_tags, lifting) h mult.assoc lemma_termdiff3 less_eq_real_def r1 xh)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   659
    then show "norm (c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) \<le>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   660
      norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   661
      by (simp only: norm_mult mult.assoc mult_left_mono [OF _ norm_ge_zero])
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   662
  qed
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   663
qed
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19765
diff changeset
   664
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   665
lemma termdiffs:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   666
  fixes K x :: "'a::{real_normed_field,banach}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   667
  assumes 1: "summable (\<lambda>n. c n * K ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   668
    and 2: "summable (\<lambda>n. (diffs c) n * K ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   669
    and 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   670
    and 4: "norm x < norm K"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   671
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x^n) x :> (\<Sum>n. (diffs c) n * x^n)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   672
  unfolding DERIV_def
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   673
proof (rule LIM_zero_cancel)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   674
  show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x^n)) / h
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   675
            - suminf (\<lambda>n. diffs c n * x^n)) \<midarrow>0\<rightarrow> 0"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   676
  proof (rule LIM_equal2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   677
    show "0 < norm K - norm x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   678
      using 4 by (simp add: less_diff_eq)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   679
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   680
    fix h :: 'a
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   681
    assume "norm (h - 0) < norm K - norm x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   682
    then have "norm x + norm h < norm K" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   683
    then have 5: "norm (x + h) < norm K"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   684
      by (rule norm_triangle_ineq [THEN order_le_less_trans])
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   685
    have "summable (\<lambda>n. c n * x^n)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   686
      and "summable (\<lambda>n. c n * (x + h) ^ n)"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   687
      and "summable (\<lambda>n. diffs c n * x^n)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   688
      using 1 2 4 5 by (auto elim: powser_inside)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   689
    then have "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x^n)) / h - (\<Sum>n. diffs c n * x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   690
          (\<Sum>n. (c n * (x + h) ^ n - c n * x^n) / h - of_nat n * c n * x ^ (n - Suc 0))"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   691
      by (intro sums_unique sums_diff sums_divide diffs_equiv summable_sums)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   692
    then show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x^n)) / h - (\<Sum>n. diffs c n * x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   693
          (\<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0)))"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   694
      by (simp add: algebra_simps)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   695
  next
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   696
    show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) \<midarrow>0\<rightarrow> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   697
      by (rule termdiffs_aux [OF 3 4])
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   698
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   699
qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   700
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   701
subsection \<open>The Derivative of a Power Series Has the Same Radius of Convergence\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   702
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   703
lemma termdiff_converges:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   704
  fixes x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   705
  assumes K: "norm x < K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   706
    and sm: "\<And>x. norm x < K \<Longrightarrow> summable(\<lambda>n. c n * x ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   707
  shows "summable (\<lambda>n. diffs c n * x ^ n)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   708
proof (cases "x = 0")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   709
  case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   710
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   711
    using powser_sums_zero sums_summable by auto
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   712
next
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   713
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   714
  then have "K > 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   715
    using K less_trans zero_less_norm_iff by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   716
  then obtain r :: real where r: "norm x < norm r" "norm r < K" "r > 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   717
    using K False
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
   718
    by (auto simp: field_simps abs_less_iff add_pos_pos intro: that [of "(norm x + K) / 2"])
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   719
  have to0: "(\<lambda>n. of_nat n * (x / of_real r) ^ n) \<longlonglongrightarrow> 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   720
    using r by (simp add: norm_divide powser_times_n_limit_0 [of "x / of_real r"])
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   721
  obtain N where N: "\<And>n. n\<ge>N \<Longrightarrow> real_of_nat n * norm x ^ n < r ^ n"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   722
    using r LIMSEQ_D [OF to0, of 1]
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   723
    by (auto simp: norm_divide norm_mult norm_power field_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   724
  have "summable (\<lambda>n. (of_nat n * c n) * x ^ n)"
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   725
  proof (rule summable_comparison_test')
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   726
    show "summable (\<lambda>n. norm (c n * of_real r ^ n))"
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   727
      apply (rule powser_insidea [OF sm [of "of_real ((r+K)/2)"]])
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   728
      using N r norm_of_real [of "r + K", where 'a = 'a] by auto
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   729
    show "\<And>n. N \<le> n \<Longrightarrow> norm (of_nat n * c n * x ^ n) \<le> norm (c n * of_real r ^ n)"
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   730
      using N r by (fastforce simp add: norm_mult norm_power less_eq_real_def)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   731
  qed
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   732
  then have "summable (\<lambda>n. (of_nat (Suc n) * c(Suc n)) * x ^ Suc n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   733
    using summable_iff_shift [of "\<lambda>n. of_nat n * c n * x ^ n" 1]
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   734
    by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   735
  then have "summable (\<lambda>n. (of_nat (Suc n) * c(Suc n)) * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   736
    using False summable_mult2 [of "\<lambda>n. (of_nat (Suc n) * c(Suc n) * x ^ n) * x" "inverse x"]
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60762
diff changeset
   737
    by (simp add: mult.assoc) (auto simp: ac_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   738
  then show ?thesis
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   739
    by (simp add: diffs_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   740
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   741
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   742
lemma termdiff_converges_all:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   743
  fixes x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   744
  assumes "\<And>x. summable (\<lambda>n. c n * x^n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   745
  shows "summable (\<lambda>n. diffs c n * x^n)"
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   746
  by (rule termdiff_converges [where K = "1 + norm x"]) (use assms in auto)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   747
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   748
lemma termdiffs_strong:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   749
  fixes K x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   750
  assumes sm: "summable (\<lambda>n. c n * K ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   751
    and K: "norm x < norm K"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   752
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x^n) x :> (\<Sum>n. diffs c n * x^n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   753
proof -
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   754
  have "norm K + norm x < norm K + norm K"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   755
    using K by force
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   756
  then have K2: "norm ((of_real (norm K) + of_real (norm x)) / 2 :: 'a) < norm K"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   757
    by (auto simp: norm_triangle_lt norm_divide field_simps)
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   758
  then have [simp]: "norm ((of_real (norm K) + of_real (norm x)) :: 'a) < norm K * 2"
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   759
    by simp
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   760
  have "summable (\<lambda>n. c n * (of_real (norm x + norm K) / 2) ^ n)"
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   761
    by (metis K2 summable_norm_cancel [OF powser_insidea [OF sm]] add.commute of_real_add)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   762
  moreover have "\<And>x. norm x < norm K \<Longrightarrow> summable (\<lambda>n. diffs c n * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   763
    by (blast intro: sm termdiff_converges powser_inside)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   764
  moreover have "\<And>x. norm x < norm K \<Longrightarrow> summable (\<lambda>n. diffs(diffs c) n * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   765
    by (blast intro: sm termdiff_converges powser_inside)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   766
  ultimately show ?thesis
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   767
    by (rule termdiffs [where K = "of_real (norm x + norm K) / 2"])
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   768
       (use K in \<open>auto simp: field_simps simp flip: of_real_add\<close>)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   769
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   770
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   771
lemma termdiffs_strong_converges_everywhere:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   772
  fixes K x :: "'a::{real_normed_field,banach}"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   773
  assumes "\<And>y. summable (\<lambda>n. c n * y ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   774
  shows "((\<lambda>x. \<Sum>n. c n * x^n) has_field_derivative (\<Sum>n. diffs c n * x^n)) (at x)"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   775
  using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   776
  by (force simp del: of_real_add)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   777
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   778
lemma termdiffs_strong':
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   779
  fixes z :: "'a :: {real_normed_field,banach}"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   780
  assumes "\<And>z. norm z < K \<Longrightarrow> summable (\<lambda>n. c n * z ^ n)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   781
  assumes "norm z < K"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   782
  shows   "((\<lambda>z. \<Sum>n. c n * z^n) has_field_derivative (\<Sum>n. diffs c n * z^n)) (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   783
proof (rule termdiffs_strong)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   784
  define L :: real where "L =  (norm z + K) / 2"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   785
  have "0 \<le> norm z" by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   786
  also note \<open>norm z < K\<close>
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   787
  finally have K: "K \<ge> 0" by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   788
  from assms K have L: "L \<ge> 0" "norm z < L" "L < K" by (simp_all add: L_def)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   789
  from L show "norm z < norm (of_real L :: 'a)" by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   790
  from L show "summable (\<lambda>n. c n * of_real L ^ n)" by (intro assms(1)) simp_all
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   791
qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   792
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   793
lemma termdiffs_sums_strong:
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   794
  fixes z :: "'a :: {banach,real_normed_field}"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   795
  assumes sums: "\<And>z. norm z < K \<Longrightarrow> (\<lambda>n. c n * z ^ n) sums f z"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   796
  assumes deriv: "(f has_field_derivative f') (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   797
  assumes norm: "norm z < K"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   798
  shows   "(\<lambda>n. diffs c n * z ^ n) sums f'"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   799
proof -
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   800
  have summable: "summable (\<lambda>n. diffs c n * z^n)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   801
    by (intro termdiff_converges[OF norm] sums_summable[OF sums])
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   802
  from norm have "eventually (\<lambda>z. z \<in> norm -` {..<K}) (nhds z)"
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   803
    by (intro eventually_nhds_in_open open_vimage)
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
   804
       (simp_all add: continuous_on_norm)
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   805
  hence eq: "eventually (\<lambda>z. (\<Sum>n. c n * z^n) = f z) (nhds z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   806
    by eventually_elim (insert sums, simp add: sums_iff)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   807
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   808
  have "((\<lambda>z. \<Sum>n. c n * z^n) has_field_derivative (\<Sum>n. diffs c n * z^n)) (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   809
    by (intro termdiffs_strong'[OF _ norm] sums_summable[OF sums])
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   810
  hence "(f has_field_derivative (\<Sum>n. diffs c n * z^n)) (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   811
    by (subst (asm) DERIV_cong_ev[OF refl eq refl])
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   812
  from this and deriv have "(\<Sum>n. diffs c n * z^n) = f'" by (rule DERIV_unique)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   813
  with summable show ?thesis by (simp add: sums_iff)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   814
qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   815
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   816
lemma isCont_powser:
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   817
  fixes K x :: "'a::{real_normed_field,banach}"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   818
  assumes "summable (\<lambda>n. c n * K ^ n)"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   819
  assumes "norm x < norm K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   820
  shows "isCont (\<lambda>x. \<Sum>n. c n * x^n) x"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   821
  using termdiffs_strong[OF assms] by (blast intro!: DERIV_isCont)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   822
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   823
lemmas isCont_powser' = isCont_o2[OF _ isCont_powser]
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   824
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   825
lemma isCont_powser_converges_everywhere:
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   826
  fixes K x :: "'a::{real_normed_field,banach}"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   827
  assumes "\<And>y. summable (\<lambda>n. c n * y ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   828
  shows "isCont (\<lambda>x. \<Sum>n. c n * x^n) x"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   829
  using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   830
  by (force intro!: DERIV_isCont simp del: of_real_add)
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   831
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   832
lemma powser_limit_0:
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   833
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   834
  assumes s: "0 < s"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   835
    and sm: "\<And>x. norm x < s \<Longrightarrow> (\<lambda>n. a n * x ^ n) sums (f x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   836
  shows "(f \<longlongrightarrow> a 0) (at 0)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   837
proof -
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   838
  have "norm (of_real s / 2 :: 'a) < s"
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   839
    using s  by (auto simp: norm_divide)
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   840
  then have "summable (\<lambda>n. a n * (of_real s / 2) ^ n)"
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   841
    by (rule sums_summable [OF sm])
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   842
  then have "((\<lambda>x. \<Sum>n. a n * x ^ n) has_field_derivative (\<Sum>n. diffs a n * 0 ^ n)) (at 0)"
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   843
    by (rule termdiffs_strong) (use s in \<open>auto simp: norm_divide\<close>)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   844
  then have "isCont (\<lambda>x. \<Sum>n. a n * x ^ n) 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   845
    by (blast intro: DERIV_continuous)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   846
  then have "((\<lambda>x. \<Sum>n. a n * x ^ n) \<longlongrightarrow> a 0) (at 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   847
    by (simp add: continuous_within)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   848
  moreover have "(\<lambda>x. f x - (\<Sum>n. a n * x ^ n)) \<midarrow>0\<rightarrow> 0"
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   849
    apply (clarsimp simp: LIM_eq)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   850
    apply (rule_tac x=s in exI)
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   851
    using s sm sums_unique by fastforce
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   852
  ultimately show ?thesis
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   853
    by (rule Lim_transform)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   854
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   855
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   856
lemma powser_limit_0_strong:
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   857
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   858
  assumes s: "0 < s"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   859
    and sm: "\<And>x. x \<noteq> 0 \<Longrightarrow> norm x < s \<Longrightarrow> (\<lambda>n. a n * x ^ n) sums (f x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   860
  shows "(f \<longlongrightarrow> a 0) (at 0)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   861
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   862
  have *: "((\<lambda>x. if x = 0 then a 0 else f x) \<longlongrightarrow> a 0) (at 0)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   863
    by (rule powser_limit_0 [OF s]) (auto simp: powser_sums_zero sm)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   864
  show ?thesis
72220
bb29e4eb938d but not the [cong] rule
paulson <lp15@cam.ac.uk>
parents: 72219
diff changeset
   865
    using "*" by (auto cong: Lim_cong_within)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   866
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   867
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   868
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   869
subsection \<open>Derivability of power series\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   870
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   871
lemma DERIV_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   872
  fixes f :: "real \<Rightarrow> nat \<Rightarrow> real"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   873
  assumes DERIV_f: "\<And> n. DERIV (\<lambda> x. f x n) x0 :> (f' x0 n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   874
    and allf_summable: "\<And> x. x \<in> {a <..< b} \<Longrightarrow> summable (f x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   875
    and x0_in_I: "x0 \<in> {a <..< b}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   876
    and "summable (f' x0)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   877
    and "summable L"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   878
    and L_def: "\<And>n x y. x \<in> {a <..< b} \<Longrightarrow> y \<in> {a <..< b} \<Longrightarrow> \<bar>f x n - f y n\<bar> \<le> L n * \<bar>x - y\<bar>"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   879
  shows "DERIV (\<lambda> x. suminf (f x)) x0 :> (suminf (f' x0))"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   880
  unfolding DERIV_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   881
proof (rule LIM_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   882
  fix r :: real
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   883
  assume "0 < r" then have "0 < r/3" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   884
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   885
  obtain N_L where N_L: "\<And> n. N_L \<le> n \<Longrightarrow> \<bar> \<Sum> i. L (i + n) \<bar> < r/3"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   886
    using suminf_exist_split[OF \<open>0 < r/3\<close> \<open>summable L\<close>] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   887
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   888
  obtain N_f' where N_f': "\<And> n. N_f' \<le> n \<Longrightarrow> \<bar> \<Sum> i. f' x0 (i + n) \<bar> < r/3"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   889
    using suminf_exist_split[OF \<open>0 < r/3\<close> \<open>summable (f' x0)\<close>] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   890
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   891
  let ?N = "Suc (max N_L N_f')"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   892
  have "\<bar> \<Sum> i. f' x0 (i + ?N) \<bar> < r/3" (is "?f'_part < r/3")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   893
    and L_estimate: "\<bar> \<Sum> i. L (i + ?N) \<bar> < r/3"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   894
    using N_L[of "?N"] and N_f' [of "?N"] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   895
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   896
  let ?diff = "\<lambda>i x. (f (x0 + x) i - f x0 i) / x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   897
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   898
  let ?r = "r / (3 * real ?N)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   899
  from \<open>0 < r\<close> have "0 < ?r" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   900
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   901
  let ?s = "\<lambda>n. SOME s. 0 < s \<and> (\<forall> x. x \<noteq> 0 \<and> \<bar> x \<bar> < s \<longrightarrow> \<bar> ?diff n x - f' x0 n \<bar> < ?r)"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
   902
  define S' where "S' = Min (?s ` {..< ?N })"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   903
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   904
  have "0 < S'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   905
    unfolding S'_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   906
  proof (rule iffD2[OF Min_gr_iff])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   907
    show "\<forall>x \<in> (?s ` {..< ?N }). 0 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   908
    proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   909
      fix x
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   910
      assume "x \<in> ?s ` {..<?N}"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   911
      then obtain n where "x = ?s n" and "n \<in> {..<?N}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   912
        using image_iff[THEN iffD1] by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   913
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF \<open>0 < ?r\<close>, unfolded real_norm_def]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   914
      obtain s where s_bound: "0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   915
        by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   916
      have "0 < ?s n"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   917
        by (rule someI2[where a=s]) (auto simp: s_bound simp del: of_nat_Suc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   918
      then show "0 < x" by (simp only: \<open>x = ?s n\<close>)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   919
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   920
  qed auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   921
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
   922
  define S where "S = min (min (x0 - a) (b - x0)) S'"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   923
  then have "0 < S" and S_a: "S \<le> x0 - a" and S_b: "S \<le> b - x0"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   924
    and "S \<le> S'" using x0_in_I and \<open>0 < S'\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   925
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   926
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   927
  have "\<bar>(suminf (f (x0 + x)) - suminf (f x0)) / x - suminf (f' x0)\<bar> < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   928
    if "x \<noteq> 0" and "\<bar>x\<bar> < S" for x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   929
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   930
    from that have x_in_I: "x0 + x \<in> {a <..< b}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   931
      using S_a S_b by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   932
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   933
    note diff_smbl = summable_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   934
    note div_smbl = summable_divide[OF diff_smbl]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   935
    note all_smbl = summable_diff[OF div_smbl \<open>summable (f' x0)\<close>]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   936
    note ign = summable_ignore_initial_segment[where k="?N"]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   937
    note diff_shft_smbl = summable_diff[OF ign[OF allf_summable[OF x_in_I]] ign[OF allf_summable[OF x0_in_I]]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   938
    note div_shft_smbl = summable_divide[OF diff_shft_smbl]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   939
    note all_shft_smbl = summable_diff[OF div_smbl ign[OF \<open>summable (f' x0)\<close>]]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   940
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   941
    have 1: "\<bar>(\<bar>?diff (n + ?N) x\<bar>)\<bar> \<le> L (n + ?N)" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   942
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   943
      have "\<bar>?diff (n + ?N) x\<bar> \<le> L (n + ?N) * \<bar>(x0 + x) - x0\<bar> / \<bar>x\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   944
        using divide_right_mono[OF L_def[OF x_in_I x0_in_I] abs_ge_zero]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   945
        by (simp only: abs_divide)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   946
      with \<open>x \<noteq> 0\<close> show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   947
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   948
    note 2 = summable_rabs_comparison_test[OF _ ign[OF \<open>summable L\<close>]]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   949
    from 1 have "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> (\<Sum> i. L (i + ?N))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   950
      by (metis (lifting) abs_idempotent
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   951
          order_trans[OF summable_rabs[OF 2] suminf_le[OF _ 2 ign[OF \<open>summable L\<close>]]])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   952
    then have "\<bar>\<Sum>i. ?diff (i + ?N) x\<bar> \<le> r / 3" (is "?L_part \<le> r/3")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   953
      using L_estimate by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   954
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   955
    have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n\<bar> \<le> (\<Sum>n<?N. \<bar>?diff n x - f' x0 n\<bar>)" ..
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   956
    also have "\<dots> < (\<Sum>n<?N. ?r)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   957
    proof (rule sum_strict_mono)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   958
      fix n
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   959
      assume "n \<in> {..< ?N}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   960
      have "\<bar>x\<bar> < S" using \<open>\<bar>x\<bar> < S\<close> .
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   961
      also have "S \<le> S'" using \<open>S \<le> S'\<close> .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   962
      also have "S' \<le> ?s n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   963
        unfolding S'_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   964
      proof (rule Min_le_iff[THEN iffD2])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   965
        have "?s n \<in> (?s ` {..<?N}) \<and> ?s n \<le> ?s n"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   966
          using \<open>n \<in> {..< ?N}\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   967
        then show "\<exists> a \<in> (?s ` {..<?N}). a \<le> ?s n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   968
          by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   969
      qed auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   970
      finally have "\<bar>x\<bar> < ?s n" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   971
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   972
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF \<open>0 < ?r\<close>,
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   973
          unfolded real_norm_def diff_0_right, unfolded some_eq_ex[symmetric], THEN conjunct2]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   974
      have "\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < ?s n \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r" .
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   975
      with \<open>x \<noteq> 0\<close> and \<open>\<bar>x\<bar> < ?s n\<close> show "\<bar>?diff n x - f' x0 n\<bar> < ?r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   976
        by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   977
    qed auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   978
    also have "\<dots> = of_nat (card {..<?N}) * ?r"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   979
      by (rule sum_constant)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   980
    also have "\<dots> = real ?N * ?r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   981
      by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   982
    also have "\<dots> = r/3"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   983
      by (auto simp del: of_nat_Suc)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   984
    finally have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n \<bar> < r / 3" (is "?diff_part < r / 3") .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   985
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   986
    from suminf_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   987
    have "\<bar>(suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0)\<bar> =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   988
        \<bar>\<Sum>n. ?diff n x - f' x0 n\<bar>"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   989
      unfolding suminf_diff[OF div_smbl \<open>summable (f' x0)\<close>, symmetric]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   990
      using suminf_divide[OF diff_smbl, symmetric] by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   991
    also have "\<dots> \<le> ?diff_part + \<bar>(\<Sum>n. ?diff (n + ?N) x) - (\<Sum> n. f' x0 (n + ?N))\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   992
      unfolding suminf_split_initial_segment[OF all_smbl, where k="?N"]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   993
      unfolding suminf_diff[OF div_shft_smbl ign[OF \<open>summable (f' x0)\<close>]]
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   994
      apply (simp only: add.commute)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   995
      using abs_triangle_ineq by blast
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   996
    also have "\<dots> \<le> ?diff_part + ?L_part + ?f'_part"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   997
      using abs_triangle_ineq4 by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   998
    also have "\<dots> < r /3 + r/3 + r/3"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   999
      using \<open>?diff_part < r/3\<close> \<open>?L_part \<le> r/3\<close> and \<open>?f'_part < r/3\<close>
36842
99745a4b9cc9 fix some linarith_split_limit warnings
huffman
parents: 36824
diff changeset
  1000
      by (rule add_strict_mono [OF add_less_le_mono])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1001
    finally show ?thesis
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1002
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1003
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1004
  then show "\<exists>s > 0. \<forall> x. x \<noteq> 0 \<and> norm (x - 0) < s \<longrightarrow>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1005
      norm (((\<Sum>n. f (x0 + x) n) - (\<Sum>n. f x0 n)) / x - (\<Sum>n. f' x0 n)) < r"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1006
    using \<open>0 < S\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1007
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1008
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1009
lemma DERIV_power_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1010
  fixes f :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1011
  assumes converges: "\<And>x. x \<in> {-R <..< R} \<Longrightarrow> summable (\<lambda>n. f n * real (Suc n) * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1012
    and x0_in_I: "x0 \<in> {-R <..< R}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1013
    and "0 < R"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1014
  shows "DERIV (\<lambda>x. (\<Sum>n. f n * x^(Suc n))) x0 :> (\<Sum>n. f n * real (Suc n) * x0^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1015
    (is "DERIV (\<lambda>x. suminf (?f x)) x0 :> suminf (?f' x0)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1016
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1017
  have for_subinterval: "DERIV (\<lambda>x. suminf (?f x)) x0 :> suminf (?f' x0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1018
    if "0 < R'" and "R' < R" and "-R' < x0" and "x0 < R'" for R'
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1019
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1020
    from that have "x0 \<in> {-R' <..< R'}" and "R' \<in> {-R <..< R}" and "x0 \<in> {-R <..< R}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1021
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1022
    show ?thesis
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1023
    proof (rule DERIV_series')
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1024
      show "summable (\<lambda> n. \<bar>f n * real (Suc n) * R'^n\<bar>)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1025
      proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1026
        have "(R' + R) / 2 < R" and "0 < (R' + R) / 2"
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1027
          using \<open>0 < R'\<close> \<open>0 < R\<close> \<open>R' < R\<close> by (auto simp: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1028
        then have in_Rball: "(R' + R) / 2 \<in> {-R <..< R}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1029
          using \<open>R' < R\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1030
        have "norm R' < norm ((R' + R) / 2)"
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1031
          using \<open>0 < R'\<close> \<open>0 < R\<close> \<open>R' < R\<close> by (auto simp: field_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1032
        from powser_insidea[OF converges[OF in_Rball] this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1033
          by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1034
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1035
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1036
      fix n x y
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1037
      assume "x \<in> {-R' <..< R'}" and "y \<in> {-R' <..< R'}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1038
      show "\<bar>?f x n - ?f y n\<bar> \<le> \<bar>f n * real (Suc n) * R'^n\<bar> * \<bar>x-y\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1039
      proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1040
        have "\<bar>f n * x ^ (Suc n) - f n * y ^ (Suc n)\<bar> =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1041
          (\<bar>f n\<bar> * \<bar>x-y\<bar>) * \<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar>"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1042
          unfolding right_diff_distrib[symmetric] diff_power_eq_sum abs_mult
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1043
          by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1044
        also have "\<dots> \<le> (\<bar>f n\<bar> * \<bar>x-y\<bar>) * (\<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1045
        proof (rule mult_left_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1046
          have "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> (\<Sum>p<Suc n. \<bar>x ^ p * y ^ (n - p)\<bar>)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1047
            by (rule sum_abs)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1048
          also have "\<dots> \<le> (\<Sum>p<Suc n. R' ^ n)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1049
          proof (rule sum_mono)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1050
            fix p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1051
            assume "p \<in> {..<Suc n}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1052
            then have "p \<le> n" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1053
            have "\<bar>x^n\<bar> \<le> R'^n" if  "x \<in> {-R'<..<R'}" for n and x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1054
            proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1055
              from that have "\<bar>x\<bar> \<le> R'" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1056
              then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1057
                unfolding power_abs by (rule power_mono) auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1058
            qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1059
            from mult_mono[OF this[OF \<open>x \<in> {-R'<..<R'}\<close>, of p] this[OF \<open>y \<in> {-R'<..<R'}\<close>, of "n-p"]]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1060
              and \<open>0 < R'\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1061
            have "\<bar>x^p * y^(n - p)\<bar> \<le> R'^p * R'^(n - p)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1062
              unfolding abs_mult by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1063
            then show "\<bar>x^p * y^(n - p)\<bar> \<le> R'^n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1064
              unfolding power_add[symmetric] using \<open>p \<le> n\<close> by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1065
          qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1066
          also have "\<dots> = real (Suc n) * R' ^ n"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1067
            unfolding sum_constant card_atLeastLessThan by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1068
          finally show "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> \<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1069
            unfolding abs_of_nonneg[OF zero_le_power[OF less_imp_le[OF \<open>0 < R'\<close>]]]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1070
            by linarith
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1071
          show "0 \<le> \<bar>f n\<bar> * \<bar>x - y\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1072
            unfolding abs_mult[symmetric] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1073
        qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1074
        also have "\<dots> = \<bar>f n * real (Suc n) * R' ^ n\<bar> * \<bar>x - y\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1075
          unfolding abs_mult mult.assoc[symmetric] by algebra
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1076
        finally show ?thesis .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1077
      qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1078
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1079
      show "DERIV (\<lambda>x. ?f x n) x0 :> ?f' x0 n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1080
        by (auto intro!: derivative_eq_intros simp del: power_Suc)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1081
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1082
      fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1083
      assume "x \<in> {-R' <..< R'}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1084
      then have "R' \<in> {-R <..< R}" and "norm x < norm R'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1085
        using assms \<open>R' < R\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1086
      have "summable (\<lambda>n. f n * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1087
      proof (rule summable_comparison_test, intro exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1088
        fix n
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1089
        have le: "\<bar>f n\<bar> * 1 \<le> \<bar>f n\<bar> * real (Suc n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1090
          by (rule mult_left_mono) auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1091
        show "norm (f n * x^n) \<le> norm (f n * real (Suc n) * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1092
          unfolding real_norm_def abs_mult
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1093
          using le mult_right_mono by fastforce
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1094
      qed (rule powser_insidea[OF converges[OF \<open>R' \<in> {-R <..< R}\<close>] \<open>norm x < norm R'\<close>])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1095
      from this[THEN summable_mult2[where c=x], simplified mult.assoc, simplified mult.commute]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1096
      show "summable (?f x)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1097
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1098
      show "summable (?f' x0)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1099
        using converges[OF \<open>x0 \<in> {-R <..< R}\<close>] .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1100
      show "x0 \<in> {-R' <..< R'}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1101
        using \<open>x0 \<in> {-R' <..< R'}\<close> .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1102
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1103
  qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1104
  let ?R = "(R + \<bar>x0\<bar>) / 2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1105
  have "\<bar>x0\<bar> < ?R"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1106
    using assms by (auto simp: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1107
  then have "- ?R < x0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1108
  proof (cases "x0 < 0")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1109
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1110
    then have "- x0 < ?R"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1111
      using \<open>\<bar>x0\<bar> < ?R\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1112
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1113
      unfolding neg_less_iff_less[symmetric, of "- x0"] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1114
  next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1115
    case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1116
    have "- ?R < 0" using assms by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1117
    also have "\<dots> \<le> x0" using False by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1118
    finally show ?thesis .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1119
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1120
  then have "0 < ?R" "?R < R" "- ?R < x0" and "x0 < ?R"
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1121
    using assms by (auto simp: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1122
  from for_subinterval[OF this] show ?thesis .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1123
qed
29695
171146a93106 Added real related theorems from Fact.thy
chaieb
parents: 29667
diff changeset
  1124
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1125
lemma geometric_deriv_sums:
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1126
  fixes z :: "'a :: {real_normed_field,banach}"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1127
  assumes "norm z < 1"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1128
  shows   "(\<lambda>n. of_nat (Suc n) * z ^ n) sums (1 / (1 - z)^2)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1129
proof -
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1130
  have "(\<lambda>n. diffs (\<lambda>n. 1) n * z^n) sums (1 / (1 - z)^2)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1131
  proof (rule termdiffs_sums_strong)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1132
    fix z :: 'a assume "norm z < 1"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1133
    thus "(\<lambda>n. 1 * z^n) sums (1 / (1 - z))" by (simp add: geometric_sums)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1134
  qed (insert assms, auto intro!: derivative_eq_intros simp: power2_eq_square)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1135
  thus ?thesis unfolding diffs_def by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1136
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1137
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1138
lemma isCont_pochhammer [continuous_intros]: "isCont (\<lambda>z. pochhammer z n) z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1139
  for z :: "'a::real_normed_field"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1140
  by (induct n) (auto simp: pochhammer_rec')
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1141
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1142
lemma continuous_on_pochhammer [continuous_intros]: "continuous_on A (\<lambda>z. pochhammer z n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1143
  for A :: "'a::real_normed_field set"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1144
  by (intro continuous_at_imp_continuous_on ballI isCont_pochhammer)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1145
66486
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66279
diff changeset
  1146
lemmas continuous_on_pochhammer' [continuous_intros] =
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66279
diff changeset
  1147
  continuous_on_compose2[OF continuous_on_pochhammer _ subset_UNIV]
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66279
diff changeset
  1148
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1149
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1150
subsection \<open>Exponential Function\<close>
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1151
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1152
definition exp :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1153
  where "exp = (\<lambda>x. \<Sum>n. x^n /\<^sub>R fact n)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1154
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1155
lemma summable_exp_generic:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
  1156
  fixes x :: "'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1157
  defines S_def: "S \<equiv> \<lambda>n. x^n /\<^sub>R fact n"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1158
  shows "summable S"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1159
proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1160
  have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
  1161
    unfolding S_def by (simp del: mult_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1162
  obtain r :: real where r0: "0 < r" and r1: "r < 1"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1163
    using dense [OF zero_less_one] by fast
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1164
  obtain N :: nat where N: "norm x < real N * r"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1165
    using ex_less_of_nat_mult r0 by auto
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1166
  from r1 show ?thesis
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1167
  proof (rule summable_ratio_test [rule_format])
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1168
    fix n :: nat
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1169
    assume n: "N \<le> n"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1170
    have "norm x \<le> real N * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1171
      using N by (rule order_less_imp_le)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1172
    also have "real N * r \<le> real (Suc n) * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1173
      using r0 n by (simp add: mult_right_mono)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1174
    finally have "norm x * norm (S n) \<le> real (Suc n) * r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1175
      using norm_ge_zero by (rule mult_right_mono)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1176
    then have "norm (x * S n) \<le> real (Suc n) * r * norm (S n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1177
      by (rule order_trans [OF norm_mult_ineq])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1178
    then have "norm (x * S n) / real (Suc n) \<le> r * norm (S n)"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1179
      by (simp add: pos_divide_le_eq ac_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1180
    then show "norm (S (Suc n)) \<le> r * norm (S n)"
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1181
      by (simp add: S_Suc inverse_eq_divide)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1182
  qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1183
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1184
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1185
lemma summable_norm_exp: "summable (\<lambda>n. norm (x^n /\<^sub>R fact n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1186
  for x :: "'a::{real_normed_algebra_1,banach}"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1187
proof (rule summable_norm_comparison_test [OF exI, rule_format])
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1188
  show "summable (\<lambda>n. norm x^n /\<^sub>R fact n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1189
    by (rule summable_exp_generic)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1190
  show "norm (x^n /\<^sub>R fact n) \<le> norm x^n /\<^sub>R fact n" for n
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1191
    by (simp add: norm_power_ineq)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1192
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1193
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1194
lemma summable_exp: "summable (\<lambda>n. inverse (fact n) * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1195
  for x :: "'a::{real_normed_field,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1196
  using summable_exp_generic [where x=x]
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1197
  by (simp add: scaleR_conv_of_real nonzero_of_real_inverse)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1198
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1199
lemma exp_converges: "(\<lambda>n. x^n /\<^sub>R fact n) sums exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1200
  unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1201
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1202
lemma exp_fdiffs:
60241
wenzelm
parents: 60036
diff changeset
  1203
  "diffs (\<lambda>n. inverse (fact n)) = (\<lambda>n. inverse (fact n :: 'a::{real_normed_field,banach}))"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1204
  by (simp add: diffs_def mult_ac nonzero_inverse_mult_distrib nonzero_of_real_inverse
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1205
      del: mult_Suc of_nat_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1206
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1207
lemma diffs_of_real: "diffs (\<lambda>n. of_real (f n)) = (\<lambda>n. of_real (diffs f n))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1208
  by (simp add: diffs_def)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1209
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1210
lemma DERIV_exp [simp]: "DERIV exp x :> exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1211
  unfolding exp_def scaleR_conv_of_real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1212
proof (rule DERIV_cong)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1213
  have sinv: "summable (\<lambda>n. of_real (inverse (fact n)) * x ^ n)" for x::'a
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1214
    by (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1215
  note xx = exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real]
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1216
  show "((\<lambda>x. \<Sum>n. of_real (inverse (fact n)) * x ^ n) has_field_derivative
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1217
        (\<Sum>n. diffs (\<lambda>n. of_real (inverse (fact n))) n * x ^ n))  (at x)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1218
    by (rule termdiffs [where K="of_real (1 + norm x)"]) (simp_all only: diffs_of_real exp_fdiffs sinv norm_of_real)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1219
  show "(\<Sum>n. diffs (\<lambda>n. of_real (inverse (fact n))) n * x ^ n) = (\<Sum>n. of_real (inverse (fact n)) * x ^ n)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1220
    by (simp add: diffs_of_real exp_fdiffs)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1221
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1222
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1223
declare DERIV_exp[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1224
  and DERIV_exp[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1225
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1226
lemmas has_derivative_exp[derivative_intros] = DERIV_exp[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1227
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1228
lemma norm_exp: "norm (exp x) \<le> exp (norm x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1229
proof -
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1230
  from summable_norm[OF summable_norm_exp, of x]
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1231
  have "norm (exp x) \<le> (\<Sum>n. inverse (fact n) * norm (x^n))"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1232
    by (simp add: exp_def)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1233
  also have "\<dots> \<le> exp (norm x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1234
    using summable_exp_generic[of "norm x"] summable_norm_exp[of x]
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1235
    by (auto simp: exp_def intro!: suminf_le norm_power_ineq)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1236
  finally show ?thesis .
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1237
qed
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1238
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1239
lemma isCont_exp: "isCont exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1240
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1241
  by (rule DERIV_exp [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1242
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1243
lemma isCont_exp' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. exp (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1244
  for f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1245
  by (rule isCont_o2 [OF _ isCont_exp])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1246
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1247
lemma tendsto_exp [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. exp (f x)) \<longlongrightarrow> exp a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1248
  for f:: "_ \<Rightarrow>'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1249
  by (rule isCont_tendsto_compose [OF isCont_exp])
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1250
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1251
lemma continuous_exp [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. exp (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1252
  for f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1253
  unfolding continuous_def by (rule tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1254
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1255
lemma continuous_on_exp [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. exp (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1256
  for f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1257
  unfolding continuous_on_def by (auto intro: tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1258
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1259
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1260
subsubsection \<open>Properties of the Exponential Function\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1261
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1262
lemma exp_zero [simp]: "exp 0 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1263
  unfolding exp_def by (simp add: scaleR_conv_of_real)
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1264
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1265
lemma exp_series_add_commuting:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1266
  fixes x y :: "'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1267
  defines S_def: "S \<equiv> \<lambda>x n. x^n /\<^sub>R fact n"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1268
  assumes comm: "x * y = y * x"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1269
  shows "S (x + y) n = (\<Sum>i\<le>n. S x i * S y (n - i))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1270
proof (induct n)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1271
  case 0
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1272
  show ?case
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1273
    unfolding S_def by simp
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1274
next
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1275
  case (Suc n)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1276
  have S_Suc: "\<And>x n. S x (Suc n) = (x * S x n) /\<^sub>R real (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
  1277
    unfolding S_def by (simp del: mult_Suc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1278
  then have times_S: "\<And>x n. x * S x n = real (Suc n) *\<^sub>R S x (Suc n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1279
    by simp
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1280
  have S_comm: "\<And>n. S x n * y = y * S x n"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1281
    by (simp add: power_commuting_commutes comm S_def)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1282
72211
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1283
  have "real (Suc n) *\<^sub>R S (x + y) (Suc n) = (x + y) * (\<Sum>i\<le>n. S x i * S y (n - i))"
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1284
    by (metis Suc.hyps times_S)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1285
  also have "\<dots> = x * (\<Sum>i\<le>n. S x i * S y (n - i)) + y * (\<Sum>i\<le>n. S x i * S y (n - i))"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  1286
    by (rule distrib_right)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1287
  also have "\<dots> = (\<Sum>i\<le>n. x * S x i * S y (n - i)) + (\<Sum>i\<le>n. S x i * y * S y (n - i))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1288
    by (simp add: sum_distrib_left ac_simps S_comm)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1289
  also have "\<dots> = (\<Sum>i\<le>n. x * S x i * S y (n - i)) + (\<Sum>i\<le>n. S x i * (y * S y (n - i)))"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1290
    by (simp add: ac_simps)
72211
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1291
  also have "\<dots> = (\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n - i))) 
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1292
                + (\<Sum>i\<le>n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1293
    by (simp add: times_S Suc_diff_le)
72211
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1294
  also have "(\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n - i)))
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1295
           = (\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n - i)))"
70113
c8deb8ba6d05 Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
paulson <lp15@cam.ac.uk>
parents: 70097
diff changeset
  1296
    by (subst sum.atMost_Suc_shift) simp
72211
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1297
  also have "(\<Sum>i\<le>n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i)))
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1298
           = (\<Sum>i\<le>Suc n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i)))"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1299
    by simp
72211
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1300
  also have "(\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n - i)))
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1301
           + (\<Sum>i\<le>Suc n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i))) 
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1302
           = (\<Sum>i\<le>Suc n. real (Suc n) *\<^sub>R (S x i * S y (Suc n - i)))"
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1303
    by (simp flip: sum.distrib scaleR_add_left of_nat_add) 
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1304
  also have "\<dots> = real (Suc n) *\<^sub>R (\<Sum>i\<le>Suc n. S x i * S y (Suc n - i))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1305
    by (simp only: scaleR_right.sum)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1306
  finally show "S (x + y) (Suc n) = (\<Sum>i\<le>Suc n. S x i * S y (Suc n - i))"
70113
c8deb8ba6d05 Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
paulson <lp15@cam.ac.uk>
parents: 70097
diff changeset
  1307
    by (simp del: sum.cl_ivl_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1308
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1309
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1310
lemma exp_add_commuting: "x * y = y * x \<Longrightarrow> exp (x + y) = exp x * exp y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1311
  by (simp only: exp_def Cauchy_product summable_norm_exp exp_series_add_commuting)
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1312
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1313
lemma exp_times_arg_commute: "exp A * A = A * exp A"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1314
  by (simp add: exp_def suminf_mult[symmetric] summable_exp_generic power_commutes suminf_mult2)
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1315
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1316
lemma exp_add: "exp (x + y) = exp x * exp y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1317
  for x y :: "'a::{real_normed_field,banach}"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1318
  by (rule exp_add_commuting) (simp add: ac_simps)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1319
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1320
lemma exp_double: "exp(2 * z) = exp z ^ 2"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1321
  by (simp add: exp_add_commuting mult_2 power2_eq_square)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1322
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1323
lemmas mult_exp_exp = exp_add [symmetric]
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1324
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1325
lemma exp_of_real: "exp (of_real x) = of_real (exp x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1326
  unfolding exp_def
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1327
  apply (subst suminf_of_real [OF summable_exp_generic])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1328
  apply (simp add: scaleR_conv_of_real)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1329
  done
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1330
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1331
lemmas of_real_exp = exp_of_real[symmetric]
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1332
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1333
corollary exp_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> exp z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1334
  by (metis Reals_cases Reals_of_real exp_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1335
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1336
lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1337
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1338
  have "exp x * exp (- x) = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1339
    by (simp add: exp_add_commuting[symmetric])
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1340
  also assume "exp x = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1341
  finally show False by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1342
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1343
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1344
lemma exp_minus_inverse: "exp x * exp (- x) = 1"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1345
  by (simp add: exp_add_commuting[symmetric])
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1346
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1347
lemma exp_minus: "exp (- x) = inverse (exp x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1348
  for x :: "'a::{real_normed_field,banach}"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1349
  by (intro inverse_unique [symmetric] exp_minus_inverse)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1350
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1351
lemma exp_diff: "exp (x - y) = exp x / exp y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1352
  for x :: "'a::{real_normed_field,banach}"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  1353
  using exp_add [of x "- y"] by (simp add: exp_minus divide_inverse)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1354
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1355
lemma exp_of_nat_mult: "exp (of_nat n * x) = exp x ^ n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1356
  for x :: "'a::{real_normed_field,banach}"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1357
  by (induct n) (auto simp: distrib_left exp_add mult.commute)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1358
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1359
corollary exp_of_nat2_mult: "exp (x * of_nat n) = exp x ^ n"
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1360
  for x :: "'a::{real_normed_field,banach}"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1361
  by (metis exp_of_nat_mult mult_of_nat_commute)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1362
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1363
lemma exp_sum: "finite I \<Longrightarrow> exp (sum f I) = prod (\<lambda>x. exp (f x)) I"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1364
  by (induct I rule: finite_induct) (auto simp: exp_add_commuting mult.commute)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1365
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1366
lemma exp_divide_power_eq:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1367
  fixes x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1368
  assumes "n > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1369
  shows "exp (x / of_nat n) ^ n = exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1370
  using assms
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1371
proof (induction n arbitrary: x)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1372
  case (Suc n)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1373
  show ?case
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1374
  proof (cases "n = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1375
    case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1376
    then show ?thesis by simp
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1377
  next
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1378
    case False
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  1379
    have [simp]: "1 + (of_nat n * of_nat n + of_nat n * 2) \<noteq> (0::'a)"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  1380
      using of_nat_eq_iff [of "1 + n * n + n * 2" "0"]
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  1381
      by simp
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  1382
    from False have [simp]: "x * of_nat n / (1 + of_nat n) / of_nat n = x / (1 + of_nat n)"
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1383
      by simp
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1384
    have [simp]: "x / (1 + of_nat n) + x * of_nat n / (1 + of_nat n) = x"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  1385
      using of_nat_neq_0
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  1386
      by (auto simp add: field_split_simps)
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1387
    show ?thesis
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1388
      using Suc.IH [of "x * of_nat n / (1 + of_nat n)"] False
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1389
      by (simp add: exp_add [symmetric])
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1390
  qed
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1391
qed simp
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1392
77140
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1393
lemma exp_power_int:
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1394
  fixes  x :: "'a::{real_normed_field,banach}"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1395
  shows "exp x powi n = exp (of_int n * x)"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1396
proof (cases "n \<ge> 0")
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1397
  case True
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1398
  have "exp x powi n = exp x ^ nat n"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1399
    using True by (simp add: power_int_def)
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1400
  thus ?thesis
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1401
    using True by (subst (asm) exp_of_nat_mult [symmetric]) auto
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1402
next
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1403
  case False
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1404
  have "exp x powi n = inverse (exp x ^ nat (-n))"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1405
    using False by (simp add: power_int_def field_simps)
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1406
  also have "exp x ^ nat (-n) = exp (of_nat (nat (-n)) * x)"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1407
    using False by (subst exp_of_nat_mult) auto
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1408
  also have "inverse \<dots> = exp (-(of_nat (nat (-n)) * x))"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1409
    by (subst exp_minus) (auto simp: field_simps)
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1410
  also have "-(of_nat (nat (-n)) * x) = of_int n * x"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1411
    using False by simp
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1412
  finally show ?thesis .
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1413
qed
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1414
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1415
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1416
subsubsection \<open>Properties of the Exponential Function on Reals\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1417
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  1418
text \<open>Comparisons of \<^term>\<open>exp x\<close> with zero.\<close>
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1419
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1420
text \<open>Proof: because every exponential can be seen as a square.\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1421
lemma exp_ge_zero [simp]: "0 \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1422
  for x :: real
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1423
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1424
  have "0 \<le> exp (x/2) * exp (x/2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1425
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1426
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1427
    by (simp add: exp_add [symmetric])
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1428
qed
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1429
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1430
lemma exp_gt_zero [simp]: "0 < exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1431
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1432
  by (simp add: order_less_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1433
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1434
lemma not_exp_less_zero [simp]: "\<not> exp x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1435
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1436
  by (simp add: not_less)
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1437
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1438
lemma not_exp_le_zero [simp]: "\<not> exp x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1439
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1440
  by (simp add: not_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1441
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1442
lemma abs_exp_cancel [simp]: "\<bar>exp x\<bar> = exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1443
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1444
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1445
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1446
text \<open>Strict monotonicity of exponential.\<close>
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1447
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1448
lemma exp_ge_add_one_self_aux:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1449
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1450
  assumes "0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1451
  shows "1 + x \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1452
  using order_le_imp_less_or_eq [OF assms]
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1453
proof
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1454
  assume "0 < x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1455
  have "1 + x \<le> (\<Sum>n<2. inverse (fact n) * x^n)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1456
    by (auto simp: numeral_2_eq_2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1457
  also have "\<dots> \<le> (\<Sum>n. inverse (fact n) * x^n)"
72219
0f38c96a0a74 tidying up some theorem statements
paulson <lp15@cam.ac.uk>
parents: 72211
diff changeset
  1458
    using \<open>0 < x\<close> by (auto  simp add: zero_le_mult_iff intro: sum_le_suminf [OF summable_exp])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1459
  finally show "1 + x \<le> exp x"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1460
    by (simp add: exp_def)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1461
qed auto
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1462
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1463
lemma exp_gt_one: "0 < x \<Longrightarrow> 1 < exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1464
  for x :: real
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1465
proof -
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1466
  assume x: "0 < x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1467
  then have "1 < 1 + x" by simp
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1468
  also from x have "1 + x \<le> exp x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1469
    by (simp add: exp_ge_add_one_self_aux)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1470
  finally show ?thesis .
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1471
qed
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1472
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1473
lemma exp_less_mono:
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1474
  fixes x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1475
  assumes "x < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1476
  shows "exp x < exp y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1477
proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1478
  from \<open>x < y\<close> have "0 < y - x" by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1479
  then have "1 < exp (y - x)" by (rule exp_gt_one)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1480
  then have "1 < exp y / exp x" by (simp only: exp_diff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1481
  then show "exp x < exp y" by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1482
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1483
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1484
lemma exp_less_cancel: "exp x < exp y \<Longrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1485
  for x y :: real
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1486
  unfolding linorder_not_le [symmetric]
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1487
  by (auto simp: order_le_less exp_less_mono)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1488
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1489
lemma exp_less_cancel_iff [iff]: "exp x < exp y \<longleftrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1490
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1491
  by (auto intro: exp_less_mono exp_less_cancel)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1492
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1493
lemma exp_le_cancel_iff [iff]: "exp x \<le> exp y \<longleftrightarrow> x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1494
  for x y :: real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1495
  by (auto simp: linorder_not_less [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1496
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1497
lemma exp_inj_iff [iff]: "exp x = exp y \<longleftrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1498
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1499
  by (simp add: order_eq_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1500
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  1501
text \<open>Comparisons of \<^term>\<open>exp x\<close> with one.\<close>
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1502
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1503
lemma one_less_exp_iff [simp]: "1 < exp x \<longleftrightarrow> 0 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1504
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1505
  using exp_less_cancel_iff [where x = 0 and y = x] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1506
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1507
lemma exp_less_one_iff [simp]: "exp x < 1 \<longleftrightarrow> x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1508
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1509
  using exp_less_cancel_iff [where x = x and y = 0] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1510
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1511
lemma one_le_exp_iff [simp]: "1 \<le> exp x \<longleftrightarrow> 0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1512
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1513
  using exp_le_cancel_iff [where x = 0 and y = x] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1514
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1515
lemma exp_le_one_iff [simp]: "exp x \<le> 1 \<longleftrightarrow> x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1516
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1517
  using exp_le_cancel_iff [where x = x and y = 0] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1518
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1519
lemma exp_eq_one_iff [simp]: "exp x = 1 \<longleftrightarrow> x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1520
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1521
  using exp_inj_iff [where x = x and y = 0] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1522
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1523
lemma lemma_exp_total: "1 \<le> y \<Longrightarrow> \<exists>x. 0 \<le> x \<and> x \<le> y - 1 \<and> exp x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1524
  for y :: real
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1525
proof (rule IVT)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1526
  assume "1 \<le> y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1527
  then have "0 \<le> y - 1" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1528
  then have "1 + (y - 1) \<le> exp (y - 1)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1529
    by (rule exp_ge_add_one_self_aux)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1530
  then show "y \<le> exp (y - 1)" by simp
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1531
qed (simp_all add: le_diff_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1532
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1533
lemma exp_total: "0 < y \<Longrightarrow> \<exists>x. exp x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1534
  for y :: real
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1535
proof (rule linorder_le_cases [of 1 y])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1536
  assume "1 \<le> y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1537
  then show "\<exists>x. exp x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1538
    by (fast dest: lemma_exp_total)
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1539
next
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1540
  assume "0 < y" and "y \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1541
  then have "1 \<le> inverse y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1542
    by (simp add: one_le_inverse_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1543
  then obtain x where "exp x = inverse y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1544
    by (fast dest: lemma_exp_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1545
  then have "exp (- x) = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1546
    by (simp add: exp_minus)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1547
  then show "\<exists>x. exp x = y" ..
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1548
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1549
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1550
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1551
subsection \<open>Natural Logarithm\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1552
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1553
class ln = real_normed_algebra_1 + banach +
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1554
  fixes ln :: "'a \<Rightarrow> 'a"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1555
  assumes ln_one [simp]: "ln 1 = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1556
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1557
definition powr :: "'a \<Rightarrow> 'a \<Rightarrow> 'a::ln"  (infixr "powr" 80)
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61762
diff changeset
  1558
  \<comment> \<open>exponentation via ln and exp\<close>
68774
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  1559
  where "x powr a \<equiv> if x = 0 then 0 else exp (a * ln x)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1560
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1561
lemma powr_0 [simp]: "0 powr z = 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1562
  by (simp add: powr_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1563
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1564
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1565
instantiation real :: ln
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1566
begin
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1567
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1568
definition ln_real :: "real \<Rightarrow> real"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1569
  where "ln_real x = (THE u. exp u = x)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1570
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1571
instance
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1572
  by intro_classes (simp add: ln_real_def)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1573
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1574
end
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1575
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1576
lemma powr_eq_0_iff [simp]: "w powr z = 0 \<longleftrightarrow> w = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1577
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1578
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1579
lemma ln_exp [simp]: "ln (exp x) = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1580
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1581
  by (simp add: ln_real_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1582
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1583
lemma exp_ln [simp]: "0 < x \<Longrightarrow> exp (ln x) = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1584
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1585
  by (auto dest: exp_total)
22654
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
  1586
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1587
lemma exp_ln_iff [simp]: "exp (ln x) = x \<longleftrightarrow> 0 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1588
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1589
  by (metis exp_gt_zero exp_ln)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1590
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1591
lemma ln_unique: "exp y = x \<Longrightarrow> ln x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1592
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1593
  by (erule subst) (rule ln_exp)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1594
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1595
lemma ln_mult: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln (x * y) = ln x + ln y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1596
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1597
  by (rule ln_unique) (simp add: exp_add)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1598
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1599
lemma ln_prod: "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i > 0) \<Longrightarrow> ln (prod f I) = sum (\<lambda>x. ln(f x)) I"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1600
  for f :: "'a \<Rightarrow> real"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1601
  by (induct I rule: finite_induct) (auto simp: ln_mult prod_pos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1602
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1603
lemma ln_inverse: "0 < x \<Longrightarrow> ln (inverse x) = - ln x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1604
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1605
  by (rule ln_unique) (simp add: exp_minus)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1606
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1607
lemma ln_div: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln (x / y) = ln x - ln y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1608
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1609
  by (rule ln_unique) (simp add: exp_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1610
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1611
lemma ln_realpow: "0 < x \<Longrightarrow> ln (x^n) = real n * ln x"
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1612
  by (rule ln_unique) (simp add: exp_of_nat_mult)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1613
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1614
lemma ln_less_cancel_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x < ln y \<longleftrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1615
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1616
  by (subst exp_less_cancel_iff [symmetric]) simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1617
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1618
lemma ln_le_cancel_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x \<le> ln y \<longleftrightarrow> x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1619
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1620
  by (simp add: linorder_not_less [symmetric])
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1621
79945
ca004ccf2352 New material from a variety of sources (including AFP)
paulson <lp15@cam.ac.uk>
parents: 79772
diff changeset
  1622
lemma ln_mono: "\<And>x::real. \<lbrakk>x \<le> y; 0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln x \<le> ln y"
ca004ccf2352 New material from a variety of sources (including AFP)
paulson <lp15@cam.ac.uk>
parents: 79772
diff changeset
  1623
  using ln_le_cancel_iff by presburger
ca004ccf2352 New material from a variety of sources (including AFP)
paulson <lp15@cam.ac.uk>
parents: 79772
diff changeset
  1624
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1625
lemma ln_inj_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x = ln y \<longleftrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1626
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1627
  by (simp add: order_eq_iff)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1628
65680
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1629
lemma ln_add_one_self_le_self: "0 \<le> x \<Longrightarrow> ln (1 + x) \<le> x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1630
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1631
  by (rule exp_le_cancel_iff [THEN iffD1]) (simp add: exp_ge_add_one_self_aux)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1632
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1633
lemma ln_less_self [simp]: "0 < x \<Longrightarrow> ln x < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1634
  for x :: real
65680
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1635
  by (rule order_less_le_trans [where y = "ln (1 + x)"]) (simp_all add: ln_add_one_self_le_self)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1636
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1637
lemma ln_ge_iff: "\<And>x::real. 0 < x \<Longrightarrow> y \<le> ln x \<longleftrightarrow> exp y \<le> x"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1638
  using exp_le_cancel_iff exp_total by force
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1639
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1640
lemma ln_ge_zero [simp]: "1 \<le> x \<Longrightarrow> 0 \<le> ln x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1641
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1642
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1643
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1644
lemma ln_ge_zero_imp_ge_one: "0 \<le> ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1645
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1646
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1647
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1648
lemma ln_ge_zero_iff [simp]: "0 < x \<Longrightarrow> 0 \<le> ln x \<longleftrightarrow> 1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1649
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1650
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1651
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1652
lemma ln_less_zero_iff [simp]: "0 < x \<Longrightarrow> ln x < 0 \<longleftrightarrow> x < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1653
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1654
  using ln_less_cancel_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1655
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1656
lemma ln_le_zero_iff [simp]: "0 < x \<Longrightarrow> ln x \<le> 0 \<longleftrightarrow> x \<le> 1"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1657
  for x :: real
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1658
  by (metis less_numeral_extra(1) ln_le_cancel_iff ln_one)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1659
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1660
lemma ln_gt_zero: "1 < x \<Longrightarrow> 0 < ln x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1661
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1662
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1663
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1664
lemma ln_gt_zero_imp_gt_one: "0 < ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1665
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1666
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1667
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1668
lemma ln_gt_zero_iff [simp]: "0 < x \<Longrightarrow> 0 < ln x \<longleftrightarrow> 1 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1669
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1670
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1671
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1672
lemma ln_eq_zero_iff [simp]: "0 < x \<Longrightarrow> ln x = 0 \<longleftrightarrow> x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1673
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1674
  using ln_inj_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1675
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1676
lemma ln_less_zero: "0 < x \<Longrightarrow> x < 1 \<Longrightarrow> ln x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1677
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1678
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1679
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1680
lemma ln_neg_is_const: "x \<le> 0 \<Longrightarrow> ln x = (THE x. False)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1681
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1682
  by (auto simp: ln_real_def intro!: arg_cong[where f = The])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1683
70350
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  1684
lemma powr_eq_one_iff [simp]:
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  1685
  "a powr x = 1 \<longleftrightarrow> x = 0" if "a > 1" for a x :: real
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  1686
  using that by (auto simp: powr_def split: if_splits)
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  1687
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1688
lemma isCont_ln:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1689
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1690
  assumes "x \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1691
  shows "isCont ln x"
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1692
proof (cases "0 < x")
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1693
  case True
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1694
  then have "isCont ln (exp (ln x))"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  1695
    by (intro isCont_inverse_function[where d = "\<bar>x\<bar>" and f = exp]) auto
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1696
  with True show ?thesis
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1697
    by simp
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1698
next
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1699
  case False
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1700
  with \<open>x \<noteq> 0\<close> show "isCont ln x"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1701
    unfolding isCont_def
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1702
    by (subst filterlim_cong[OF _ refl, of _ "nhds (ln 0)" _ "\<lambda>_. ln 0"])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1703
       (auto simp: ln_neg_is_const not_less eventually_at dist_real_def
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1704
         intro!: exI[of _ "\<bar>x\<bar>"])
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1705
qed
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1706
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1707
lemma tendsto_ln [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. ln (f x)) \<longlongrightarrow> ln a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1708
  for a :: real
45915
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1709
  by (rule isCont_tendsto_compose [OF isCont_ln])
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1710
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1711
lemma continuous_ln:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1712
  "continuous F f \<Longrightarrow> f (Lim F (\<lambda>x. x)) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1713
  unfolding continuous_def by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1714
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1715
lemma isCont_ln' [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1716
  "continuous (at x) f \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> continuous (at x) (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1717
  unfolding continuous_at by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1718
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1719
lemma continuous_within_ln [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1720
  "continuous (at x within s) f \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1721
  unfolding continuous_within by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1722
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  1723
lemma continuous_on_ln [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1724
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. f x \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1725
  unfolding continuous_on_def by (auto intro: tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1726
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1727
lemma DERIV_ln: "0 < x \<Longrightarrow> DERIV ln x :> inverse x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1728
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1729
  by (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1730
    (auto intro: DERIV_cong [OF DERIV_exp exp_ln] isCont_ln)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1731
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  1732
lemma DERIV_ln_divide: "0 < x \<Longrightarrow> DERIV ln x :> 1/x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1733
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1734
  by (rule DERIV_ln[THEN DERIV_cong]) (simp_all add: divide_inverse)
33667
958dc9f03611 A little rationalisation
paulson
parents: 33549
diff changeset
  1735
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1736
declare DERIV_ln_divide[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1737
  and DERIV_ln_divide[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1738
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1739
lemmas has_derivative_ln[derivative_intros] = DERIV_ln[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1740
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1741
lemma ln_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1742
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1743
  shows "ln x = (\<Sum> n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1744
    (is "ln x = suminf (?f (x - 1))")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1745
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1746
  let ?f' = "\<lambda>x n. (-1)^n * (x - 1)^n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1747
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1748
  have "ln x - suminf (?f (x - 1)) = ln 1 - suminf (?f (1 - 1))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1749
  proof (rule DERIV_isconst3 [where x = x])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1750
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1751
    assume "x \<in> {0 <..< 2}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1752
    then have "0 < x" and "x < 2" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1753
    have "norm (1 - x) < 1"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1754
      using \<open>0 < x\<close> and \<open>x < 2\<close> by auto
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  1755
    have "1/x = 1 / (1 - (1 - x))" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1756
    also have "\<dots> = (\<Sum> n. (1 - x)^n)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1757
      using geometric_sums[OF \<open>norm (1 - x) < 1\<close>] by (rule sums_unique)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1758
    also have "\<dots> = suminf (?f' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1759
      unfolding power_mult_distrib[symmetric]
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67268
diff changeset
  1760
      by (rule arg_cong[where f=suminf], rule arg_cong[where f="(^)"], auto)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1761
    finally have "DERIV ln x :> suminf (?f' x)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1762
      using DERIV_ln[OF \<open>0 < x\<close>] unfolding divide_inverse by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1763
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1764
    have repos: "\<And> h x :: real. h - 1 + x = h + x - 1" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1765
    have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1766
      (\<Sum>n. (-1)^n * (1 / real (n + 1)) * real (Suc n) * (x - 1) ^ n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1767
    proof (rule DERIV_power_series')
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1768
      show "x - 1 \<in> {- 1<..<1}" and "(0 :: real) < 1"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1769
        using \<open>0 < x\<close> \<open>x < 2\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1770
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1771
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1772
      assume "x \<in> {- 1<..<1}"
72980
4fc3dc37f406 default simprule for geometric series
paulson <lp15@cam.ac.uk>
parents: 72220
diff changeset
  1773
      then show "summable (\<lambda>n. (- 1) ^ n * (1 / real (n + 1)) * real (Suc n) * x^n)"
4fc3dc37f406 default simprule for geometric series
paulson <lp15@cam.ac.uk>
parents: 72220
diff changeset
  1774
        by (simp add: abs_if flip: power_mult_distrib)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1775
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1776
    then have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :> suminf (?f' x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1777
      unfolding One_nat_def by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1778
    then have "DERIV (\<lambda>x. suminf (?f (x - 1))) x :> suminf (?f' x)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1779
      unfolding DERIV_def repos .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1780
    ultimately have "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> suminf (?f' x) - suminf (?f' x)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1781
      by (rule DERIV_diff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1782
    then show "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> 0" by auto
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1783
  qed (auto simp: assms)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1784
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1785
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1786
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1787
lemma exp_first_terms:
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1788
  fixes x :: "'a::{real_normed_algebra_1,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1789
  shows "exp x = (\<Sum>n<k. inverse(fact n) *\<^sub>R (x ^ n)) + (\<Sum>n. inverse(fact (n + k)) *\<^sub>R (x ^ (n + k)))"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1790
proof -
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1791
  have "exp x = suminf (\<lambda>n. inverse(fact n) *\<^sub>R (x^n))"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1792
    by (simp add: exp_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1793
  also from summable_exp_generic have "\<dots> = (\<Sum> n. inverse(fact(n+k)) *\<^sub>R (x ^ (n + k))) +
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1794
    (\<Sum> n::nat<k. inverse(fact n) *\<^sub>R (x^n))" (is "_ = _ + ?a")
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1795
    by (rule suminf_split_initial_segment)
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1796
  finally show ?thesis by simp
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1797
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1798
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1799
lemma exp_first_term: "exp x = 1 + (\<Sum>n. inverse (fact (Suc n)) *\<^sub>R (x ^ Suc n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1800
  for x :: "'a::{real_normed_algebra_1,banach}"
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1801
  using exp_first_terms[of x 1] by simp
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1802
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1803
lemma exp_first_two_terms: "exp x = 1 + x + (\<Sum>n. inverse (fact (n + 2)) *\<^sub>R (x ^ (n + 2)))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1804
  for x :: "'a::{real_normed_algebra_1,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1805
  using exp_first_terms[of x 2] by (simp add: eval_nat_numeral)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1806
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1807
lemma exp_bound:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1808
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1809
  assumes a: "0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1810
    and b: "x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1811
  shows "exp x \<le> 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1812
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1813
  have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n + 2))) \<le> x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1814
  proof -
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  1815
    have "(\<lambda>n. x\<^sup>2 / 2 * (1/2) ^ n) sums (x\<^sup>2 / 2 * (1 / (1 - 1/2)))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1816
      by (intro sums_mult geometric_sums) simp
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  1817
    then have sumsx: "(\<lambda>n. x\<^sup>2 / 2 * (1/2) ^ n) sums x\<^sup>2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1818
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1819
    have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n + 2))) \<le> suminf (\<lambda>n. (x\<^sup>2/2) * ((1/2)^n))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1820
    proof (intro suminf_le allI)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1821
      show "inverse (fact (n + 2)) * x ^ (n + 2) \<le> (x\<^sup>2/2) * ((1/2)^n)" for n :: nat
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1822
      proof -
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1823
        have "(2::nat) * 2 ^ n \<le> fact (n + 2)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1824
          by (induct n) simp_all
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1825
        then have "real ((2::nat) * 2 ^ n) \<le> real_of_nat (fact (n + 2))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1826
          by (simp only: of_nat_le_iff)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1827
        then have "((2::real) * 2 ^ n) \<le> fact (n + 2)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1828
          unfolding of_nat_fact by simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1829
        then have "inverse (fact (n + 2)) \<le> inverse ((2::real) * 2 ^ n)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1830
          by (rule le_imp_inverse_le) simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1831
        then have "inverse (fact (n + 2)) \<le> 1/(2::real) * (1/2)^n"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1832
          by (simp add: power_inverse [symmetric])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1833
        then have "inverse (fact (n + 2)) * (x^n * x\<^sup>2) \<le> 1/2 * (1/2)^n * (1 * x\<^sup>2)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1834
          by (rule mult_mono) (rule mult_mono, simp_all add: power_le_one a b)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1835
        then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1836
          unfolding power_add by (simp add: ac_simps del: fact_Suc)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1837
      qed
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1838
      show "summable (\<lambda>n. inverse (fact (n + 2)) * x ^ (n + 2))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1839
        by (rule summable_exp [THEN summable_ignore_initial_segment])
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  1840
      show "summable (\<lambda>n. x\<^sup>2 / 2 * (1/2) ^ n)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1841
        by (rule sums_summable [OF sumsx])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1842
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1843
    also have "\<dots> = x\<^sup>2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1844
      by (rule sums_unique [THEN sym]) (rule sumsx)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1845
    finally show ?thesis .
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1846
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1847
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1848
    unfolding exp_first_two_terms by auto
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1849
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1850
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1851
corollary exp_half_le2: "exp(1/2) \<le> (2::real)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1852
  using exp_bound [of "1/2"]
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1853
  by (simp add: field_simps)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1854
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1855
corollary exp_le: "exp 1 \<le> (3::real)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1856
  using exp_bound [of 1]
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1857
  by (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1858
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1859
lemma exp_bound_half: "norm z \<le> 1/2 \<Longrightarrow> norm (exp z) \<le> 2"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1860
  by (blast intro: order_trans intro!: exp_half_le2 norm_exp)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1861
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1862
lemma exp_bound_lemma:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1863
  assumes "norm z \<le> 1/2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1864
  shows "norm (exp z) \<le> 1 + 2 * norm z"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1865
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1866
  have *: "(norm z)\<^sup>2 \<le> norm z * 1"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1867
    unfolding power2_eq_square
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1868
    by (rule mult_left_mono) (use assms in auto)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1869
  have "norm (exp z) \<le> exp (norm z)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1870
    by (rule norm_exp)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1871
  also have "\<dots> \<le> 1 + (norm z) + (norm z)\<^sup>2"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1872
    using assms exp_bound by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1873
  also have "\<dots> \<le> 1 + 2 * norm z"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1874
    using * by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1875
  finally show ?thesis .
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1876
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1877
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1878
lemma real_exp_bound_lemma: "0 \<le> x \<Longrightarrow> x \<le> 1/2 \<Longrightarrow> exp x \<le> 1 + 2 * x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1879
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1880
  using exp_bound_lemma [of x] by simp
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1881
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1882
lemma ln_one_minus_pos_upper_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1883
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1884
  assumes a: "0 \<le> x" and b: "x < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1885
  shows "ln (1 - x) \<le> - x"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1886
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1887
  have "(1 - x) * (1 + x + x\<^sup>2) = 1 - x^3"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1888
    by (simp add: algebra_simps power2_eq_square power3_eq_cube)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1889
  also have "\<dots> \<le> 1"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1890
    by (auto simp: a)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1891
  finally have "(1 - x) * (1 + x + x\<^sup>2) \<le> 1" .
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1892
  moreover have c: "0 < 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1893
    by (simp add: add_pos_nonneg a)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1894
  ultimately have "1 - x \<le> 1 / (1 + x + x\<^sup>2)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1895
    by (elim mult_imp_le_div_pos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1896
  also have "\<dots> \<le> 1 / exp x"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1897
    by (metis a abs_one b exp_bound exp_gt_zero frac_le less_eq_real_def real_sqrt_abs
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1898
        real_sqrt_pow2_iff real_sqrt_power)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1899
  also have "\<dots> = exp (- x)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1900
    by (auto simp: exp_minus divide_inverse)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1901
  finally have "1 - x \<le> exp (- x)" .
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1902
  also have "1 - x = exp (ln (1 - x))"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1903
    by (metis b diff_0 exp_ln_iff less_iff_diff_less_0 minus_diff_eq)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1904
  finally have "exp (ln (1 - x)) \<le> exp (- x)" .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1905
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1906
    by (auto simp only: exp_le_cancel_iff)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1907
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1908
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1909
lemma exp_ge_add_one_self [simp]: "1 + x \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1910
  for x :: real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1911
proof (cases "0 \<le> x \<or> x \<le> -1")
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1912
  case True
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1913
  then show ?thesis
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  1914
    by (meson exp_ge_add_one_self_aux exp_ge_zero order.trans real_add_le_0_iff)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1915
next
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1916
  case False
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1917
  then have ln1: "ln (1 + x) \<le> x"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1918
    using ln_one_minus_pos_upper_bound [of "-x"] by simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1919
  have "1 + x = exp (ln (1 + x))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1920
    using False by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1921
  also have "\<dots> \<le> exp x"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1922
    by (simp add: ln1)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1923
  finally show ?thesis .
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1924
qed
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1925
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1926
lemma ln_one_plus_pos_lower_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1927
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1928
  assumes a: "0 \<le> x" and b: "x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1929
  shows "x - x\<^sup>2 \<le> ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1930
proof -
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1931
  have "exp (x - x\<^sup>2) = exp x / exp (x\<^sup>2)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1932
    by (rule exp_diff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1933
  also have "\<dots> \<le> (1 + x + x\<^sup>2) / exp (x \<^sup>2)"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1934
    by (metis a b divide_right_mono exp_bound exp_ge_zero)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1935
  also have "\<dots> \<le> (1 + x + x\<^sup>2) / (1 + x\<^sup>2)"
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56541
diff changeset
  1936
    by (simp add: a divide_left_mono add_pos_nonneg)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1937
  also from a have "\<dots> \<le> 1 + x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1938
    by (simp add: field_simps add_strict_increasing zero_le_mult_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1939
  finally have "exp (x - x\<^sup>2) \<le> 1 + x" .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1940
  also have "\<dots> = exp (ln (1 + x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1941
  proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1942
    from a have "0 < 1 + x" by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1943
    then show ?thesis
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1944
      by (auto simp only: exp_ln_iff [THEN sym])
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1945
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1946
  finally have "exp (x - x\<^sup>2) \<le> exp (ln (1 + x))" .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1947
  then show ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1948
    by (metis exp_le_cancel_iff)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1949
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1950
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1951
lemma ln_one_minus_pos_lower_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1952
  fixes x :: real
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  1953
  assumes a: "0 \<le> x" and b: "x \<le> 1/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1954
  shows "- x - 2 * x\<^sup>2 \<le> ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1955
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1956
  from b have c: "x < 1" by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1957
  then have "ln (1 - x) = - ln (1 + x / (1 - x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1958
    by (auto simp: ln_inverse [symmetric] field_simps intro: arg_cong [where f=ln])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1959
  also have "- (x / (1 - x)) \<le> \<dots>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1960
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1961
    have "ln (1 + x / (1 - x)) \<le> x / (1 - x)"
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  1962
      using a c by (intro ln_add_one_self_le_self) auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1963
    then show ?thesis
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1964
      by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1965
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1966
  also have "- (x / (1 - x)) = - x / (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1967
    by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1968
  finally have d: "- x / (1 - x) \<le> ln (1 - x)" .
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1969
  have "0 < 1 - x" using a b by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1970
  then have e: "- x - 2 * x\<^sup>2 \<le> - x / (1 - x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1971
    using mult_right_le_one_le[of "x * x" "2 * x"] a b
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1972
    by (simp add: field_simps power2_eq_square)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1973
  from e d show "- x - 2 * x\<^sup>2 \<le> ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1974
    by (rule order_trans)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1975
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1976
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1977
lemma ln_add_one_self_le_self2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1978
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1979
  shows "-1 < x \<Longrightarrow> ln (1 + x) \<le> x"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1980
  by (metis diff_gt_0_iff_gt diff_minus_eq_add exp_ge_add_one_self exp_le_cancel_iff exp_ln minus_less_iff)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1981
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1982
lemma abs_ln_one_plus_x_minus_x_bound_nonneg:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1983
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1984
  assumes x: "0 \<le> x" and x1: "x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1985
  shows "\<bar>ln (1 + x) - x\<bar> \<le> x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1986
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1987
  from x have "ln (1 + x) \<le> x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1988
    by (rule ln_add_one_self_le_self)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1989
  then have "ln (1 + x) - x \<le> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1990
    by simp
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  1991
  then have "\<bar>ln(1 + x) - x\<bar> = - (ln(1 + x) - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1992
    by (rule abs_of_nonpos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1993
  also have "\<dots> = x - ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1994
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1995
  also have "\<dots> \<le> x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1996
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1997
    from x x1 have "x - x\<^sup>2 \<le> ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1998
      by (intro ln_one_plus_pos_lower_bound)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1999
    then show ?thesis
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2000
      by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2001
  qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2002
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2003
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2004
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2005
lemma abs_ln_one_plus_x_minus_x_bound_nonpos:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2006
  fixes x :: real
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  2007
  assumes a: "-(1/2) \<le> x" and b: "x \<le> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2008
  shows "\<bar>ln (1 + x) - x\<bar> \<le> 2 * x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2009
proof -
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2010
  have *: "- (-x) - 2 * (-x)\<^sup>2 \<le> ln (1 - (- x))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2011
    by (metis a b diff_zero ln_one_minus_pos_lower_bound minus_diff_eq neg_le_iff_le) 
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2012
  have "\<bar>ln (1 + x) - x\<bar> = x - ln (1 - (- x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2013
    using a ln_add_one_self_le_self2 [of x] by (simp add: abs_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2014
  also have "\<dots> \<le> 2 * x\<^sup>2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2015
    using * by (simp add: algebra_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2016
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2017
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2018
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2019
lemma abs_ln_one_plus_x_minus_x_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2020
  fixes x :: real
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  2021
  assumes "\<bar>x\<bar> \<le> 1/2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2022
  shows "\<bar>ln (1 + x) - x\<bar> \<le> 2 * x\<^sup>2"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2023
proof (cases "0 \<le> x")
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2024
  case True
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2025
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2026
    using abs_ln_one_plus_x_minus_x_bound_nonneg assms by fastforce
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2027
next
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2028
  case False
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2029
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2030
    using abs_ln_one_plus_x_minus_x_bound_nonpos assms by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2031
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2032
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2033
lemma ln_x_over_x_mono:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2034
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2035
  assumes x: "exp 1 \<le> x" "x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2036
  shows "ln y / y \<le> ln x / x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2037
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2038
  note x
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2039
  moreover have "0 < exp (1::real)" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2040
  ultimately have a: "0 < x" and b: "0 < y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2041
    by (fast intro: less_le_trans order_trans)+
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2042
  have "x * ln y - x * ln x = x * (ln y - ln x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2043
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2044
  also have "\<dots> = x * ln (y / x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2045
    by (simp only: ln_div a b)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2046
  also have "y / x = (x + (y - x)) / x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2047
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2048
  also have "\<dots> = 1 + (y - x) / x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2049
    using x a by (simp add: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2050
  also have "x * ln (1 + (y - x) / x) \<le> x * ((y - x) / x)"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2051
    using x a
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  2052
    by (intro mult_left_mono ln_add_one_self_le_self) simp_all
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2053
  also have "\<dots> = y - x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2054
    using a by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2055
  also have "\<dots> = (y - x) * ln (exp 1)" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2056
  also have "\<dots> \<le> (y - x) * ln x"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2057
    using a x exp_total of_nat_1 x(1)  by (fastforce intro: mult_left_mono)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2058
  also have "\<dots> = y * ln x - x * ln x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2059
    by (rule left_diff_distrib)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2060
  finally have "x * ln y \<le> y * ln x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2061
    by arith
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2062
  then have "ln y \<le> (y * ln x) / x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2063
    using a by (simp add: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2064
  also have "\<dots> = y * (ln x / x)" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2065
  finally show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2066
    using b by (simp add: field_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2067
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2068
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2069
lemma ln_le_minus_one: "0 < x \<Longrightarrow> ln x \<le> x - 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2070
  for x :: real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2071
  using exp_ge_add_one_self[of "ln x"] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2072
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2073
corollary ln_diff_le: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x - ln y \<le> (x - y) / y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2074
  for x :: real
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2075
  by (simp add: ln_div [symmetric] diff_divide_distrib ln_le_minus_one)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2076
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2077
lemma ln_eq_minus_one:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2078
  fixes x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2079
  assumes "0 < x" "ln x = x - 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2080
  shows "x = 1"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2081
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2082
  let ?l = "\<lambda>y. ln y - y + 1"
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2083
  have D: "\<And>x::real. 0 < x \<Longrightarrow> DERIV ?l x :> (1/x - 1)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2084
    by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2085
  show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2086
  proof (cases rule: linorder_cases)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2087
    assume "x < 1"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2088
    from dense[OF \<open>x < 1\<close>] obtain a where "x < a" "a < 1" by blast
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2089
    from \<open>x < a\<close> have "?l x < ?l a"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  2090
    proof (rule DERIV_pos_imp_increasing)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2091
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2092
      assume "x \<le> y" "y \<le> a"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2093
      with \<open>0 < x\<close> \<open>a < 1\<close> have "0 < 1 / y - 1" "0 < y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2094
        by (auto simp: field_simps)
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61738
diff changeset
  2095
      with D show "\<exists>z. DERIV ?l y :> z \<and> 0 < z" by blast
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2096
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2097
    also have "\<dots> \<le> 0"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2098
      using ln_le_minus_one \<open>0 < x\<close> \<open>x < a\<close> by (auto simp: field_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2099
    finally show "x = 1" using assms by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2100
  next
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2101
    assume "1 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2102
    from dense[OF this] obtain a where "1 < a" "a < x" by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2103
    from \<open>a < x\<close> have "?l x < ?l a"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  2104
    proof (rule DERIV_neg_imp_decreasing)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2105
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2106
      assume "a \<le> y" "y \<le> x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2107
      with \<open>1 < a\<close> have "1 / y - 1 < 0" "0 < y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2108
        by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2109
      with D show "\<exists>z. DERIV ?l y :> z \<and> z < 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2110
        by blast
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2111
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2112
    also have "\<dots> \<le> 0"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2113
      using ln_le_minus_one \<open>1 < a\<close> by (auto simp: field_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2114
    finally show "x = 1" using assms by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2115
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2116
    assume "x = 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2117
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2118
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2119
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2120
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2121
lemma ln_add_one_self_less_self:
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2122
  fixes x :: real
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2123
  assumes "x > 0" 
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2124
  shows "ln (1 + x) < x"
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2125
  by (smt (verit, best) assms ln_eq_minus_one ln_le_minus_one)
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2126
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2127
lemma ln_x_over_x_tendsto_0: "((\<lambda>x::real. ln x / x) \<longlongrightarrow> 0) at_top"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2128
proof (rule lhospital_at_top_at_top[where f' = inverse and g' = "\<lambda>_. 1"])
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2129
  from eventually_gt_at_top[of "0::real"]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2130
  show "\<forall>\<^sub>F x in at_top. (ln has_real_derivative inverse x) (at x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2131
    by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2132
qed (use tendsto_inverse_0 in
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2133
      \<open>auto simp: filterlim_ident dest!: tendsto_mono[OF at_top_le_at_infinity]\<close>)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2134
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2135
corollary exp_1_gt_powr:
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2136
  assumes "x > (0::real)"
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2137
  shows   "exp 1 > (1 + 1/x) powr x" 
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2138
proof -
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2139
  have "ln (1 + 1/x) < 1/x"
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2140
    using ln_add_one_self_less_self assms by simp
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2141
  thus "exp 1 > (1 + 1/x) powr x" using assms
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2142
    by (simp add: field_simps powr_def)
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2143
qed
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2144
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2145
lemma exp_ge_one_plus_x_over_n_power_n:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2146
  assumes "x \<ge> - real n" "n > 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2147
  shows "(1 + x / of_nat n) ^ n \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2148
proof (cases "x = - of_nat n")
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2149
  case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2150
  from assms False have "(1 + x / of_nat n) ^ n = exp (of_nat n * ln (1 + x / of_nat n))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2151
    by (subst exp_of_nat_mult, subst exp_ln) (simp_all add: field_simps)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2152
  also from assms False have "ln (1 + x / real n) \<le> x / real n"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2153
    by (intro ln_add_one_self_le_self2) (simp_all add: field_simps)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2154
  with assms have "exp (of_nat n * ln (1 + x / of_nat n)) \<le> exp x"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2155
    by (simp add: field_simps)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2156
  finally show ?thesis .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2157
next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2158
  case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2159
  then show ?thesis by (simp add: zero_power)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2160
qed
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2161
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2162
lemma exp_ge_one_minus_x_over_n_power_n:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2163
  assumes "x \<le> real n" "n > 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2164
  shows "(1 - x / of_nat n) ^ n \<le> exp (-x)"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2165
  using exp_ge_one_plus_x_over_n_power_n[of n "-x"] assms by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2166
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2167
lemma exp_at_bot: "(exp \<longlongrightarrow> (0::real)) at_bot"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2168
  unfolding tendsto_Zfun_iff
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2169
proof (rule ZfunI, simp add: eventually_at_bot_dense)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2170
  fix r :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2171
  assume "0 < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2172
  have "exp x < r" if "x < ln r" for x
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2173
    by (metis \<open>0 < r\<close> exp_less_mono exp_ln that)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2174
  then show "\<exists>k. \<forall>n<k. exp n < r" by auto
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2175
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2176
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2177
lemma exp_at_top: "LIM x at_top. exp x :: real :> at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2178
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. True" and P="\<lambda>x. 0 < x" and g=ln])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2179
    (auto intro: eventually_gt_at_top)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2180
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2181
lemma lim_exp_minus_1: "((\<lambda>z::'a. (exp(z) - 1) / z) \<longlongrightarrow> 1) (at 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2182
  for x :: "'a::{real_normed_field,banach}"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2183
proof -
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2184
  have "((\<lambda>z::'a. exp(z) - 1) has_field_derivative 1) (at 0)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2185
    by (intro derivative_eq_intros | simp)+
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2186
  then show ?thesis
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2187
    by (simp add: Deriv.has_field_derivative_iff)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2188
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2189
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2190
lemma ln_at_0: "LIM x at_right 0. ln (x::real) :> at_bot"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2191
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g=exp])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51527
diff changeset
  2192
     (auto simp: eventually_at_filter)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2193
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2194
lemma ln_at_top: "LIM x at_top. ln (x::real) :> at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2195
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g=exp])
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  2196
     (auto intro: eventually_gt_at_top)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2197
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2198
lemma filtermap_ln_at_top: "filtermap (ln::real \<Rightarrow> real) at_top = at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2199
  by (intro filtermap_fun_inverse[of exp] exp_at_top ln_at_top) auto
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2200
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2201
lemma filtermap_exp_at_top: "filtermap (exp::real \<Rightarrow> real) at_top = at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2202
  by (intro filtermap_fun_inverse[of ln] exp_at_top ln_at_top)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2203
     (auto simp: eventually_at_top_dense)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2204
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2205
lemma filtermap_ln_at_right: "filtermap ln (at_right (0::real)) = at_bot"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2206
  by (auto intro!: filtermap_fun_inverse[where g="\<lambda>x. exp x"] ln_at_0
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2207
      simp: filterlim_at exp_at_bot)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2208
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2209
lemma tendsto_power_div_exp_0: "((\<lambda>x. x ^ k / exp x) \<longlongrightarrow> (0::real)) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2210
proof (induct k)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2211
  case 0
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2212
  show "((\<lambda>x. x ^ 0 / exp x) \<longlongrightarrow> (0::real)) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2213
    by (simp add: inverse_eq_divide[symmetric])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2214
       (metis filterlim_compose[OF tendsto_inverse_0] exp_at_top filterlim_mono
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2215
         at_top_le_at_infinity order_refl)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2216
next
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2217
  case (Suc k)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2218
  show ?case
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2219
  proof (rule lhospital_at_top_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2220
    show "eventually (\<lambda>x. DERIV (\<lambda>x. x ^ Suc k) x :> (real (Suc k) * x^k)) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2221
      by eventually_elim (intro derivative_eq_intros, auto)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2222
    show "eventually (\<lambda>x. DERIV exp x :> exp x) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2223
      by eventually_elim auto
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2224
    show "eventually (\<lambda>x. exp x \<noteq> 0) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2225
      by auto
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2226
    from tendsto_mult[OF tendsto_const Suc, of "real (Suc k)"]
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2227
    show "((\<lambda>x. real (Suc k) * x ^ k / exp x) \<longlongrightarrow> 0) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2228
      by simp
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2229
  qed (rule exp_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2230
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2231
64758
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2232
subsubsection\<open> A couple of simple bounds\<close>
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2233
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2234
lemma exp_plus_inverse_exp:
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2235
  fixes x::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2236
  shows "2 \<le> exp x + inverse (exp x)"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2237
proof -
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2238
  have "2 \<le> exp x + exp (-x)"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2239
    using exp_ge_add_one_self [of x] exp_ge_add_one_self [of "-x"]
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2240
    by linarith
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2241
  then show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2242
    by (simp add: exp_minus)
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2243
qed
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2244
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2245
lemma real_le_x_sinh:
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2246
  fixes x::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2247
  assumes "0 \<le> x"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2248
  shows "x \<le> (exp x - inverse(exp x)) / 2"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2249
proof -
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2250
  have *: "exp a - inverse(exp a) - 2*a \<le> exp b - inverse(exp b) - 2*b" if "a \<le> b" for a b::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2251
    using exp_plus_inverse_exp
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  2252
    by (fastforce intro: derivative_eq_intros DERIV_nonneg_imp_nondecreasing [OF that])
64758
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2253
  show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2254
    using*[OF assms] by simp
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2255
qed
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2256
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2257
lemma real_le_abs_sinh:
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2258
  fixes x::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2259
  shows "abs x \<le> abs((exp x - inverse(exp x)) / 2)"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2260
proof (cases "0 \<le> x")
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2261
  case True
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2262
  show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2263
    using real_le_x_sinh [OF True] True by (simp add: abs_if)
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2264
next
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2265
  case False
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2266
  have "-x \<le> (exp(-x) - inverse(exp(-x))) / 2"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2267
    by (meson False linear neg_le_0_iff_le real_le_x_sinh)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2268
  also have "\<dots> \<le> \<bar>(exp x - inverse (exp x)) / 2\<bar>"
73932
fd21b4a93043 added opaque_combs and renamed hide_lams to opaque_lifting
desharna
parents: 72980
diff changeset
  2269
    by (metis (no_types, opaque_lifting) abs_divide abs_le_iff abs_minus_cancel
64758
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2270
       add.inverse_inverse exp_minus minus_diff_eq order_refl)
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2271
  finally show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2272
    using False by linarith
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2273
qed
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2274
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2275
subsection\<open>The general logarithm\<close>
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2276
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2277
definition log :: "real \<Rightarrow> real \<Rightarrow> real"
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  2278
  \<comment> \<open>logarithm of \<^term>\<open>x\<close> to base \<^term>\<open>a\<close>\<close>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2279
  where "log a x = ln x / ln a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2280
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2281
lemma tendsto_log [tendsto_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2282
  "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> 0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < b \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2283
    ((\<lambda>x. log (f x) (g x)) \<longlongrightarrow> log a b) F"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2284
  unfolding log_def by (intro tendsto_intros) auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2285
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2286
lemma continuous_log:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2287
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2288
    and "continuous F g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2289
    and "0 < f (Lim F (\<lambda>x. x))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2290
    and "f (Lim F (\<lambda>x. x)) \<noteq> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2291
    and "0 < g (Lim F (\<lambda>x. x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2292
  shows "continuous F (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2293
  using assms unfolding continuous_def by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2294
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2295
lemma continuous_at_within_log[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2296
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2297
    and "continuous (at a within s) g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2298
    and "0 < f a"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2299
    and "f a \<noteq> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2300
    and "0 < g a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2301
  shows "continuous (at a within s) (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2302
  using assms unfolding continuous_within by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2303
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2304
lemma isCont_log[continuous_intros, simp]:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2305
  assumes "isCont f a" "isCont g a" "0 < f a" "f a \<noteq> 1" "0 < g a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2306
  shows "isCont (\<lambda>x. log (f x) (g x)) a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2307
  using assms unfolding continuous_at by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2308
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2309
lemma continuous_on_log[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2310
  assumes "continuous_on s f" "continuous_on s g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2311
    and "\<forall>x\<in>s. 0 < f x" "\<forall>x\<in>s. f x \<noteq> 1" "\<forall>x\<in>s. 0 < g x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2312
  shows "continuous_on s (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2313
  using assms unfolding continuous_on_def by (fast intro: tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2314
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2315
lemma exp_powr_real:
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2316
  fixes x::real shows "exp x powr y = exp (x*y)"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2317
  by (simp add: powr_def)
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2318
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2319
lemma powr_one_eq_one [simp]: "1 powr a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2320
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2321
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2322
lemma powr_zero_eq_one [simp]: "x powr 0 = (if x = 0 then 0 else 1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2323
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2324
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2325
lemma powr_one_gt_zero_iff [simp]: "x powr 1 = x \<longleftrightarrow> 0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2326
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2327
  by (auto simp: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2328
declare powr_one_gt_zero_iff [THEN iffD2, simp]
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2329
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2330
lemma powr_diff:
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2331
  fixes w:: "'a::{ln,real_normed_field}" shows  "w powr (z1 - z2) = w powr z1 / w powr z2"
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2332
  by (simp add: powr_def algebra_simps exp_diff)
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2333
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2334
lemma powr_mult: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> (x * y) powr a = (x powr a) * (y powr a)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2335
  for a x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2336
  by (simp add: powr_def exp_add [symmetric] ln_mult distrib_left)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2337
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2338
lemma prod_powr_distrib:
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2339
  fixes  x :: "'a \<Rightarrow> real"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2340
  assumes "\<And>i. i\<in>I \<Longrightarrow> x i \<ge> 0"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2341
  shows "(prod x I) powr r = (\<Prod>i\<in>I. x i powr r)"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2342
  using assms
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2343
  by (induction I rule: infinite_finite_induct) (auto simp add: powr_mult prod_nonneg)
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2344
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2345
lemma powr_ge_pzero [simp]: "0 \<le> x powr y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2346
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2347
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2348
67573
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2349
lemma powr_non_neg[simp]: "\<not>a powr x < 0" for a x::real
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2350
  using powr_ge_pzero[of a x] by arith
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2351
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2352
lemma inverse_powr: "\<And>y::real. 0 \<le> y \<Longrightarrow> inverse y powr a = inverse (y powr a)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2353
    by (simp add: exp_minus ln_inverse powr_def)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2354
70723
4e39d87c9737 imported new material mostly due to Sébastien Gouëzel
paulson <lp15@cam.ac.uk>
parents: 70722
diff changeset
  2355
lemma powr_divide: "\<lbrakk>0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> (x / y) powr a = (x powr a) / (y powr a)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2356
  for a b x :: real
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2357
    by (simp add: divide_inverse powr_mult inverse_powr)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2358
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2359
lemma powr_add: "x powr (a + b) = (x powr a) * (x powr b)"
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2360
  for a b x :: "'a::{ln,real_normed_field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2361
  by (simp add: powr_def exp_add [symmetric] distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2362
70723
4e39d87c9737 imported new material mostly due to Sébastien Gouëzel
paulson <lp15@cam.ac.uk>
parents: 70722
diff changeset
  2363
lemma powr_mult_base: "0 \<le> x \<Longrightarrow>x * x powr y = x powr (1 + y)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2364
  for x :: real
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63040
diff changeset
  2365
  by (auto simp: powr_add)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2366
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2367
lemma powr_powr: "(x powr a) powr b = x powr (a * b)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2368
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2369
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2370
78685
07c35dec9dac A few new or simplified proofs
paulson <lp15@cam.ac.uk>
parents: 78663
diff changeset
  2371
lemma powr_power: 
07c35dec9dac A few new or simplified proofs
paulson <lp15@cam.ac.uk>
parents: 78663
diff changeset
  2372
  fixes z:: "'a::{real_normed_field,ln}"
07c35dec9dac A few new or simplified proofs
paulson <lp15@cam.ac.uk>
parents: 78663
diff changeset
  2373
  shows "z \<noteq> 0 \<or> n \<noteq> 0 \<Longrightarrow> (z powr u) ^ n = z powr (of_nat n * u)"
07c35dec9dac A few new or simplified proofs
paulson <lp15@cam.ac.uk>
parents: 78663
diff changeset
  2374
  by (induction n) (auto simp: algebra_simps powr_add)
07c35dec9dac A few new or simplified proofs
paulson <lp15@cam.ac.uk>
parents: 78663
diff changeset
  2375
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2376
lemma powr_powr_swap: "(x powr a) powr b = (x powr b) powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2377
  for a b x :: real
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2378
  by (simp add: powr_powr mult.commute)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2379
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2380
lemma powr_minus: "x powr (- a) = inverse (x powr a)"
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2381
      for a x :: "'a::{ln,real_normed_field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2382
  by (simp add: powr_def exp_minus [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2383
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2384
lemma powr_minus_divide: "x powr (- a) = 1/(x powr a)"
67268
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  2385
      for a x :: "'a::{ln,real_normed_field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2386
  by (simp add: divide_inverse powr_minus)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2387
77490
2c86ea8961b5 Some new lemmas. Some tidying up
paulson <lp15@cam.ac.uk>
parents: 77230
diff changeset
  2388
lemma powr_sum: "x \<noteq> 0 \<Longrightarrow> finite A \<Longrightarrow> x powr sum f A = (\<Prod>y\<in>A. x powr f y)"
2c86ea8961b5 Some new lemmas. Some tidying up
paulson <lp15@cam.ac.uk>
parents: 77230
diff changeset
  2389
  by (simp add: powr_def exp_sum sum_distrib_right)
2c86ea8961b5 Some new lemmas. Some tidying up
paulson <lp15@cam.ac.uk>
parents: 77230
diff changeset
  2390
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2391
lemma divide_powr_uminus: "a / b powr c = a * b powr (- c)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2392
  for a b c :: real
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2393
  by (simp add: powr_minus_divide)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2394
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2395
lemma powr_less_mono: "a < b \<Longrightarrow> 1 < x \<Longrightarrow> x powr a < x powr b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2396
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2397
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2398
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2399
lemma powr_less_cancel: "x powr a < x powr b \<Longrightarrow> 1 < x \<Longrightarrow> a < b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2400
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2401
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2402
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2403
lemma powr_less_cancel_iff [simp]: "1 < x \<Longrightarrow> x powr a < x powr b \<longleftrightarrow> a < b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2404
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2405
  by (blast intro: powr_less_cancel powr_less_mono)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2406
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2407
lemma powr_le_cancel_iff [simp]: "1 < x \<Longrightarrow> x powr a \<le> x powr b \<longleftrightarrow> a \<le> b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2408
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2409
  by (simp add: linorder_not_less [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2410
66511
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2411
lemma powr_realpow: "0 < x \<Longrightarrow> x powr (real n) = x^n"
71837
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71585
diff changeset
  2412
  by (induction n) (simp_all add: ac_simps powr_add)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71585
diff changeset
  2413
77140
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  2414
lemma powr_realpow': "(z :: real) \<ge> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> z powr of_nat n = z ^ n"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  2415
  by (cases "z = 0") (auto simp: powr_realpow)
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  2416
71837
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71585
diff changeset
  2417
lemma powr_real_of_int':
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71585
diff changeset
  2418
  assumes "x \<ge> 0" "x \<noteq> 0 \<or> n > 0"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71585
diff changeset
  2419
  shows   "x powr real_of_int n = power_int x n"
77200
8f2e6186408f Some more new material and some tidying of existing proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
  2420
  by (metis assms exp_ln_iff exp_power_int nless_le power_int_eq_0_iff powr_def)
66511
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2421
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2422
lemma exp_minus_ge: 
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2423
  fixes x::real shows "1 - x \<le> exp (-x)"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2424
  by (smt (verit) exp_ge_add_one_self)
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2425
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2426
lemma exp_minus_greater: 
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2427
  fixes x::real shows "1 - x < exp (-x) \<longleftrightarrow> x \<noteq> 0"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2428
  by (smt (verit) exp_minus_ge exp_eq_one_iff exp_gt_zero ln_eq_minus_one ln_exp)
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2429
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2430
lemma log_ln: "ln x = log (exp(1)) x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2431
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2432
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2433
lemma DERIV_log:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2434
  assumes "x > 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2435
  shows "DERIV (\<lambda>y. log b y) x :> 1 / (ln b * x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2436
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
  2437
  define lb where "lb = 1 / ln b"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2438
  moreover have "DERIV (\<lambda>y. lb * ln y) x :> lb / x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2439
    using \<open>x > 0\<close> by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2440
  ultimately show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2441
    by (simp add: log_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2442
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2443
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2444
lemmas DERIV_log[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2445
  and DERIV_log[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2446
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2447
lemma powr_log_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> a powr (log a x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2448
  by (simp add: powr_def log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2449
79772
817d33f8aa7f Moving valuable library material from Martingales into the distribution
paulson <lp15@cam.ac.uk>
parents: 79672
diff changeset
  2450
lemma log_powr_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a (a powr x) = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2451
  by (simp add: log_def powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2452
79772
817d33f8aa7f Moving valuable library material from Martingales into the distribution
paulson <lp15@cam.ac.uk>
parents: 79672
diff changeset
  2453
lemma powr_eq_iff: "\<lbrakk>y>0; a>1\<rbrakk> \<Longrightarrow> a powr x = y \<longleftrightarrow> log a y = x"
817d33f8aa7f Moving valuable library material from Martingales into the distribution
paulson <lp15@cam.ac.uk>
parents: 79672
diff changeset
  2454
  by auto
817d33f8aa7f Moving valuable library material from Martingales into the distribution
paulson <lp15@cam.ac.uk>
parents: 79672
diff changeset
  2455
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2456
lemma log_mult:
79772
817d33f8aa7f Moving valuable library material from Martingales into the distribution
paulson <lp15@cam.ac.uk>
parents: 79672
diff changeset
  2457
  "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a (x * y) = log a x + log a y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2458
  by (simp add: log_def ln_mult divide_inverse distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2459
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2460
lemma log_eq_div_ln_mult_log:
79772
817d33f8aa7f Moving valuable library material from Martingales into the distribution
paulson <lp15@cam.ac.uk>
parents: 79672
diff changeset
  2461
  "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log a x = (ln b/ln a) * log b x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2462
  by (simp add: log_def divide_inverse)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2463
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2464
text\<open>Base 10 logarithms\<close>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2465
lemma log_base_10_eq1: "0 < x \<Longrightarrow> log 10 x = (ln (exp 1) / ln 10) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2466
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2467
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2468
lemma log_base_10_eq2: "0 < x \<Longrightarrow> log 10 x = (log 10 (exp 1)) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2469
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2470
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2471
lemma log_one [simp]: "log a 1 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2472
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2473
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2474
lemma log_eq_one [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2475
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2476
79772
817d33f8aa7f Moving valuable library material from Martingales into the distribution
paulson <lp15@cam.ac.uk>
parents: 79672
diff changeset
  2477
lemma log_inverse: "0 < x \<Longrightarrow> log a (inverse x) = - log a x"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  2478
  using ln_inverse log_def by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2479
79772
817d33f8aa7f Moving valuable library material from Martingales into the distribution
paulson <lp15@cam.ac.uk>
parents: 79672
diff changeset
  2480
lemma log_divide: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a (x/y) = log a x - log a y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2481
  by (simp add: log_mult divide_inverse log_inverse)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2482
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2483
lemma powr_gt_zero [simp]: "0 < x powr a \<longleftrightarrow> x \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2484
  for a x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2485
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2486
67573
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2487
lemma powr_nonneg_iff[simp]: "a powr x \<le> 0 \<longleftrightarrow> a = 0"
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2488
  for a x::real
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2489
  by (meson not_less powr_gt_zero)
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2490
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2491
lemma log_add_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log b x + y = log b (x * b powr y)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2492
  and add_log_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> y + log b x = log b (b powr y * x)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2493
  and log_minus_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log b x - y = log b (x * b powr -y)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2494
  and minus_log_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> y - log b x = log b (b powr y / x)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2495
  by (simp_all add: log_mult log_divide)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2496
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2497
lemma log_less_cancel_iff [simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a x < log a y \<longleftrightarrow> x < y"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  2498
  using powr_less_cancel_iff [of a] powr_log_cancel [of a x] powr_log_cancel [of a y]
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  2499
  by (metis less_eq_real_def less_trans not_le zero_less_one)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2500
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2501
lemma log_inj:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2502
  assumes "1 < b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2503
  shows "inj_on (log b) {0 <..}"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2504
proof (rule inj_onI, simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2505
  fix x y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2506
  assume pos: "0 < x" "0 < y" and *: "log b x = log b y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2507
  show "x = y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2508
  proof (cases rule: linorder_cases)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2509
    assume "x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2510
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2511
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2512
    assume "x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2513
    then have "log b x < log b y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2514
      using log_less_cancel_iff[OF \<open>1 < b\<close>] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2515
    then show ?thesis using * by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2516
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2517
    assume "y < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2518
    then have "log b y < log b x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2519
      using log_less_cancel_iff[OF \<open>1 < b\<close>] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2520
    then show ?thesis using * by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2521
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2522
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2523
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2524
lemma log_le_cancel_iff [simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a x \<le> log a y \<longleftrightarrow> x \<le> y"
79492
c1b0f64eb865 A few new results (mostly brought in from other developments)
paulson <lp15@cam.ac.uk>
parents: 78890
diff changeset
  2525
  by (simp flip: linorder_not_less)
c1b0f64eb865 A few new results (mostly brought in from other developments)
paulson <lp15@cam.ac.uk>
parents: 78890
diff changeset
  2526
80034
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  2527
lemma log_mono: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x \<le> y \<Longrightarrow> log a x \<le> log a y"
79492
c1b0f64eb865 A few new results (mostly brought in from other developments)
paulson <lp15@cam.ac.uk>
parents: 78890
diff changeset
  2528
  by simp
c1b0f64eb865 A few new results (mostly brought in from other developments)
paulson <lp15@cam.ac.uk>
parents: 78890
diff changeset
  2529
c1b0f64eb865 A few new results (mostly brought in from other developments)
paulson <lp15@cam.ac.uk>
parents: 78890
diff changeset
  2530
lemma log_less: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x < y \<Longrightarrow> log a x < log a y"
c1b0f64eb865 A few new results (mostly brought in from other developments)
paulson <lp15@cam.ac.uk>
parents: 78890
diff changeset
  2531
  by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2532
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2533
lemma zero_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < log a x \<longleftrightarrow> 1 < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2534
  using log_less_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2535
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2536
lemma zero_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 \<le> log a x \<longleftrightarrow> 1 \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2537
  using log_le_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2538
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2539
lemma log_less_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 0 \<longleftrightarrow> x < 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2540
  using log_less_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2541
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2542
lemma log_le_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 0 \<longleftrightarrow> x \<le> 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2543
  using log_le_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2544
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2545
lemma one_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 < log a x \<longleftrightarrow> a < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2546
  using log_less_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2547
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2548
lemma one_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> log a x \<longleftrightarrow> a \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2549
  using log_le_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2550
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2551
lemma log_less_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 1 \<longleftrightarrow> x < a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2552
  using log_less_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2553
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2554
lemma log_le_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 1 \<longleftrightarrow> x \<le> a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2555
  using log_le_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2556
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2557
lemma le_log_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2558
  fixes b x y :: real
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2559
  assumes "1 < b" "x > 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2560
  shows "y \<le> log b x \<longleftrightarrow> b powr y \<le> x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  2561
  using assms
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  2562
  by (metis less_irrefl less_trans powr_le_cancel_iff powr_log_cancel zero_less_one)
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2563
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2564
lemma less_log_iff:
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2565
  assumes "1 < b" "x > 0"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2566
  shows "y < log b x \<longleftrightarrow> b powr y < x"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2567
  by (metis assms dual_order.strict_trans less_irrefl powr_less_cancel_iff
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2568
    powr_log_cancel zero_less_one)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2569
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2570
lemma
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2571
  assumes "1 < b" "x > 0"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2572
  shows log_less_iff: "log b x < y \<longleftrightarrow> x < b powr y"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2573
    and log_le_iff: "log b x \<le> y \<longleftrightarrow> x \<le> b powr y"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2574
  using le_log_iff[OF assms, of y] less_log_iff[OF assms, of y]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2575
  by auto
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2576
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2577
lemmas powr_le_iff = le_log_iff[symmetric]
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2578
  and powr_less_iff = less_log_iff[symmetric]
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2579
  and less_powr_iff = log_less_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2580
  and le_powr_iff = log_le_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2581
66511
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2582
lemma le_log_of_power:
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2583
  assumes "b ^ n \<le> m" "1 < b"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2584
  shows "n \<le> log b m"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2585
proof -
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2586
  from assms have "0 < m" by (metis less_trans zero_less_power less_le_trans zero_less_one)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2587
  thus ?thesis using assms by (simp add: le_log_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2588
qed
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2589
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2590
lemma le_log2_of_power: "2 ^ n \<le> m \<Longrightarrow> n \<le> log 2 m" for m n :: nat
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2591
using le_log_of_power[of 2] by simp
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2592
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2593
lemma log_of_power_le: "\<lbrakk> m \<le> b ^ n; b > 1; m > 0 \<rbrakk> \<Longrightarrow> log b (real m) \<le> n"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2594
by (simp add: log_le_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2595
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2596
lemma log2_of_power_le: "\<lbrakk> m \<le> 2 ^ n; m > 0 \<rbrakk> \<Longrightarrow> log 2 m \<le> n" for m n :: nat
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2597
using log_of_power_le[of _ 2] by simp
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2598
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2599
lemma log_of_power_less: "\<lbrakk> m < b ^ n; b > 1; m > 0 \<rbrakk> \<Longrightarrow> log b (real m) < n"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2600
by (simp add: log_less_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2601
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2602
lemma log2_of_power_less: "\<lbrakk> m < 2 ^ n; m > 0 \<rbrakk> \<Longrightarrow> log 2 m < n" for m n :: nat
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2603
using log_of_power_less[of _ 2] by simp
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2604
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2605
lemma less_log_of_power:
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2606
  assumes "b ^ n < m" "1 < b"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2607
  shows "n < log b m"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2608
proof -
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2609
  have "0 < m" by (metis assms less_trans zero_less_power zero_less_one)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2610
  thus ?thesis using assms by (simp add: less_log_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2611
qed
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2612
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2613
lemma less_log2_of_power: "2 ^ n < m \<Longrightarrow> n < log 2 m" for m n :: nat
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2614
using less_log_of_power[of 2] by simp
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2615
64446
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2616
lemma gr_one_powr[simp]:
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2617
  fixes x y :: real shows "\<lbrakk> x > 1; y > 0 \<rbrakk> \<Longrightarrow> 1 < x powr y"
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2618
by(simp add: less_powr_iff)
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2619
70350
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  2620
lemma log_pow_cancel [simp]:
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  2621
  "a > 0 \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a (a ^ b) = b"
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  2622
  by (simp add: ln_realpow log_def)
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  2623
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2624
lemma floor_log_eq_powr_iff: "x > 0 \<Longrightarrow> b > 1 \<Longrightarrow> \<lfloor>log b x\<rfloor> = k \<longleftrightarrow> b powr k \<le> x \<and> x < b powr (k + 1)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2625
  by (auto simp: floor_eq_iff powr_le_iff less_powr_iff)
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2626
78250
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2627
lemma floor_log_nat_eq_powr_iff: 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2628
  fixes b n k :: nat
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2629
  shows "\<lbrakk> b \<ge> 2; k > 0 \<rbrakk> \<Longrightarrow> floor (log b (real k)) = n \<longleftrightarrow> b^n \<le> k \<and> k < b^(n+1)"
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2630
by (auto simp: floor_log_eq_powr_iff powr_add powr_realpow
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2631
               of_nat_power[symmetric] of_nat_mult[symmetric] ac_simps
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2632
         simp del: of_nat_power of_nat_mult)
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2633
78250
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2634
lemma floor_log_nat_eq_if: 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2635
  fixes b n k :: nat
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2636
  assumes "b^n \<le> k" "k < b^(n+1)" "b \<ge> 2"
78250
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2637
  shows "floor (log b (real k)) = n" 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2638
proof -
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2639
  have "k \<ge> 1"
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2640
    using assms linorder_le_less_linear by force
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2641
  with assms show ?thesis 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2642
    by(simp add: floor_log_nat_eq_powr_iff)
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2643
qed
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2644
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2645
lemma ceiling_log_eq_powr_iff: 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2646
  "\<lbrakk> x > 0; b > 1 \<rbrakk> \<Longrightarrow> \<lceil>log b x\<rceil> = int k + 1 \<longleftrightarrow> b powr k < x \<and> x \<le> b powr (k + 1)"
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2647
  by (auto simp: ceiling_eq_iff powr_less_iff le_powr_iff)
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2648
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2649
lemma ceiling_log_nat_eq_powr_iff: 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2650
  fixes b n k :: nat
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2651
  shows "\<lbrakk> b \<ge> 2; k > 0 \<rbrakk> \<Longrightarrow> ceiling (log b (real k)) = int n + 1 \<longleftrightarrow> (b^n < k \<and> k \<le> b^(n+1))"
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2652
  using ceiling_log_eq_powr_iff
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2653
  by (auto simp: powr_add powr_realpow of_nat_power[symmetric] of_nat_mult[symmetric] ac_simps
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2654
      simp del: of_nat_power of_nat_mult)
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2655
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2656
lemma ceiling_log_nat_eq_if: 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2657
  fixes b n k :: nat
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2658
  assumes "b^n < k" "k \<le> b^(n+1)" "b \<ge> 2"
78250
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2659
  shows "\<lceil>log (real b) (real k)\<rceil> = int n + 1"
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2660
  using assms ceiling_log_nat_eq_powr_iff by force
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2661
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2662
lemma floor_log2_div2: 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2663
  fixes n :: nat 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2664
  assumes "n \<ge> 2"
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2665
  shows "\<lfloor>log 2 (real n)\<rfloor> = \<lfloor>log 2 (n div 2)\<rfloor> + 1"
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2666
proof cases
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2667
  assume "n=2" thus ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2668
next
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2669
  let ?m = "n div 2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2670
  assume "n\<noteq>2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2671
  hence "1 \<le> ?m" using assms by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2672
  then obtain i where i: "2 ^ i \<le> ?m" "?m < 2 ^ (i + 1)"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2673
    using ex_power_ivl1[of 2 ?m] by auto
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2674
  have "2^(i+1) \<le> 2*?m" using i(1) by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2675
  also have "2*?m \<le> n" by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2676
  finally have *: "2^(i+1) \<le> \<dots>" .
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2677
  have "n < 2^(i+1+1)" using i(2) by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2678
  from floor_log_nat_eq_if[OF * this] floor_log_nat_eq_if[OF i]
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2679
  show ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2680
qed
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2681
78250
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2682
lemma ceiling_log2_div2: 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2683
  assumes "n \<ge> 2"
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2684
  shows "ceiling(log 2 (real n)) = ceiling(log 2 ((n-1) div 2 + 1)) + 1"
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2685
proof cases
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2686
  assume "n=2" thus ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2687
next
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2688
  let ?m = "(n-1) div 2 + 1"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2689
  assume "n\<noteq>2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2690
  hence "2 \<le> ?m" using assms by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2691
  then obtain i where i: "2 ^ i < ?m" "?m \<le> 2 ^ (i + 1)"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2692
    using ex_power_ivl2[of 2 ?m] by auto
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2693
  have "n \<le> 2*?m" by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2694
  also have "2*?m \<le> 2 ^ ((i+1)+1)" using i(2) by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2695
  finally have *: "n \<le> \<dots>" .
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2696
  have "2^(i+1) < n" using i(1) by (auto simp: less_Suc_eq_0_disj)
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2697
  from ceiling_log_nat_eq_if[OF this *] ceiling_log_nat_eq_if[OF i]
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2698
  show ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2699
qed
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2700
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2701
lemma powr_real_of_int:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2702
  "x > 0 \<Longrightarrow> x powr real_of_int n = (if n \<ge> 0 then x ^ nat n else inverse (x ^ nat (- n)))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61976
diff changeset
  2703
  using powr_realpow[of x "nat n"] powr_realpow[of x "nat (-n)"]
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2704
  by (auto simp: field_simps powr_minus)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61976
diff changeset
  2705
70270
4065e3b0e5bf Generalisations involving numerals; comparisons should now work for ennreal
paulson <lp15@cam.ac.uk>
parents: 70113
diff changeset
  2706
lemma powr_numeral [simp]: "0 \<le> x \<Longrightarrow> x powr (numeral n :: real) = x ^ (numeral n)"
4065e3b0e5bf Generalisations involving numerals; comparisons should now work for ennreal
paulson <lp15@cam.ac.uk>
parents: 70113
diff changeset
  2707
  by (metis less_le power_zero_numeral powr_0 of_nat_numeral powr_realpow)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2708
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2709
lemma powr_int:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2710
  assumes "x > 0"
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2711
  shows "x powr i = (if i \<ge> 0 then x ^ nat i else 1/x ^ nat (-i))"
78250
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2712
  by (simp add: assms inverse_eq_divide powr_real_of_int)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2713
78274
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2714
lemma power_of_nat_log_ge: "b > 1 \<Longrightarrow> b ^ nat \<lceil>log b x\<rceil> \<ge> x"
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2715
  by (smt (verit) less_log_of_power of_nat_ceiling)
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2716
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2717
lemma power_of_nat_log_le:
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2718
  assumes "b > 1" "x\<ge>1"
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2719
  shows "b ^ nat \<lfloor>log b x\<rfloor> \<le> x"
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2720
proof -
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2721
  have "\<lfloor>log b x\<rfloor> \<ge> 0"
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2722
    using assms by auto
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2723
  then show ?thesis
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2724
    by (smt (verit) assms le_log_iff of_int_floor_le powr_int)
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2725
qed
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2726
68774
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2727
definition powr_real :: "real \<Rightarrow> real \<Rightarrow> real"
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2728
  where [code_abbrev, simp]: "powr_real = Transcendental.powr"
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2729
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2730
lemma compute_powr_real [code]:
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2731
  "powr_real b i =
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2732
    (if b \<le> 0 then Code.abort (STR ''powr_real with nonpositive base'') (\<lambda>_. powr_real b i)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2733
     else if \<lfloor>i\<rfloor> = i then (if 0 \<le> i then b ^ nat \<lfloor>i\<rfloor> else 1 / b ^ nat \<lfloor>- i\<rfloor>)
68774
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2734
     else Code.abort (STR ''powr_real with non-integer exponent'') (\<lambda>_. powr_real b i))"
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2735
    for b i :: real
59587
8ea7b22525cb Removed the obsolete functions "natfloor" and "natceiling"
nipkow
parents: 58984
diff changeset
  2736
  by (auto simp: powr_int)
58981
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2737
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2738
lemma powr_one: "0 \<le> x \<Longrightarrow> x powr 1 = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2739
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2740
  using powr_realpow [of x 1] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2741
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2742
lemma powr_neg_one: "0 < x \<Longrightarrow> x powr - 1 = 1/x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2743
  for x :: real
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2744
  using powr_int [of x "- 1"] by simp
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2745
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2746
lemma powr_neg_numeral: "0 < x \<Longrightarrow> x powr - numeral n = 1/x ^ numeral n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2747
  for x :: real
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2748
  using powr_int [of x "- numeral n"] by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2749
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2750
lemma root_powr_inverse: "0 < n \<Longrightarrow> 0 < x \<Longrightarrow> root n x = x powr (1/n)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2751
  by (rule real_root_pos_unique) (auto simp: powr_realpow[symmetric] powr_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2752
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2753
lemma ln_powr: "x \<noteq> 0 \<Longrightarrow> ln (x powr y) = y * ln x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2754
  for x :: real
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2755
  by (simp add: powr_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2756
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2757
lemma ln_root: "n > 0 \<Longrightarrow> b > 0 \<Longrightarrow> ln (root n b) =  ln b / n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2758
  by (simp add: root_powr_inverse ln_powr)
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2759
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2760
lemma ln_sqrt: "0 < x \<Longrightarrow> ln (sqrt x) = ln x / 2"
65109
a79c1080f1e9 added numeral_powr_numeral
nipkow
parents: 65057
diff changeset
  2761
  by (simp add: ln_powr ln_powr[symmetric] mult.commute)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2762
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2763
lemma log_root: "n > 0 \<Longrightarrow> a > 0 \<Longrightarrow> log b (root n a) =  log b a / n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2764
  by (simp add: log_def ln_root)
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2765
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2766
lemma log_powr: "x \<noteq> 0 \<Longrightarrow> log b (x powr y) = y * log b x"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2767
  by (simp add: log_def ln_powr)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2768
64446
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2769
(* [simp] is not worth it, interferes with some proofs *)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2770
lemma log_nat_power: "0 < x \<Longrightarrow> log b (x^n) = real n * log b x"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2771
  by (simp add: log_powr powr_realpow [symmetric])
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2772
66510
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2773
lemma log_of_power_eq:
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2774
  assumes "m = b ^ n" "b > 1"
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2775
  shows "n = log b (real m)"
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2776
proof -
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2777
  have "n = log b (b ^ n)" using assms(2) by (simp add: log_nat_power)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2778
  also have "\<dots> = log b m" using assms by simp
66510
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2779
  finally show ?thesis .
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2780
qed
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2781
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2782
lemma log2_of_power_eq: "m = 2 ^ n \<Longrightarrow> n = log 2 m" for m n :: nat
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2783
using log_of_power_eq[of _ 2] by simp
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2784
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2785
lemma log_base_change: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log b x = log a x / log a b"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2786
  by (simp add: log_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2787
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2788
lemma log_base_pow: "0 < a \<Longrightarrow> log (a ^ n) x = log a x / n"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2789
  by (simp add: log_def ln_realpow)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2790
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2791
lemma log_base_powr: "a \<noteq> 0 \<Longrightarrow> log (a powr b) x = log a x / b"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2792
  by (simp add: log_def ln_powr)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2793
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2794
lemma log_base_root: "n > 0 \<Longrightarrow> b > 0 \<Longrightarrow> log (root n b) x = n * (log b x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2795
  by (simp add: log_def ln_root)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2796
67727
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67685
diff changeset
  2797
lemma ln_bound: "0 < x \<Longrightarrow> ln x \<le> x" for x :: real
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67685
diff changeset
  2798
  using ln_le_minus_one by force
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2799
79530
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2800
lemma powr_less_one:
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2801
  fixes x::real
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2802
  assumes "1 < x" "y < 0"
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2803
  shows "x powr y < 1"
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2804
using assms less_log_iff by force
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2805
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2806
lemma powr_le_one_le: "\<And>x y::real. 0 < x \<Longrightarrow> x \<le> 1 \<Longrightarrow> 1 \<le> y \<Longrightarrow> x powr y \<le> x"
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2807
  by (smt (verit) ln_gt_zero_imp_gt_one ln_le_cancel_iff ln_powr mult_le_cancel_right2)
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2808
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2809
lemma powr_mono:
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2810
  fixes x :: real
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2811
  assumes "a \<le> b" and "1 \<le> x" shows "x powr a \<le> x powr b"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2812
  using assms less_eq_real_def by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2813
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2814
lemma ge_one_powr_ge_zero: "1 \<le> x \<Longrightarrow> 0 \<le> a \<Longrightarrow> 1 \<le> x powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2815
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2816
  using powr_mono by fastforce
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2817
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2818
lemma powr_less_mono2: "0 < a \<Longrightarrow> 0 \<le> x \<Longrightarrow> x < y \<Longrightarrow> x powr a < y powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2819
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2820
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2821
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2822
lemma powr_less_mono2_neg: "a < 0 \<Longrightarrow> 0 < x \<Longrightarrow> x < y \<Longrightarrow> y powr a < x powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2823
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2824
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2825
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2826
lemma powr_mono2: "x powr a \<le> y powr a" if "0 \<le> a" "0 \<le> x" "x \<le> y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2827
  for x :: real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2828
  using less_eq_real_def powr_less_mono2 that by auto
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2829
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2830
lemma powr01_less_one: 
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2831
  fixes a::real 
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2832
  assumes "0 < a" "a < 1"  
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2833
  shows "a powr e < 1 \<longleftrightarrow> e>0"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2834
proof
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2835
  show "a powr e < 1 \<Longrightarrow> e>0"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2836
    using assms not_less_iff_gr_or_eq powr_less_mono2_neg by fastforce
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2837
  show "e>0 \<Longrightarrow> a powr e < 1"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2838
    by (metis assms less_eq_real_def powr_less_mono2 powr_one_eq_one)
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2839
qed
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2840
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2841
lemma powr_le1: "0 \<le> a \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> x powr a \<le> 1"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2842
  for x :: real
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2843
  using powr_mono2 by fastforce
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2844
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2845
lemma powr_mono2':
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2846
  fixes a x y :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2847
  assumes "a \<le> 0" "x > 0" "x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2848
  shows "x powr a \<ge> y powr a"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2849
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2850
  from assms have "x powr - a \<le> y powr - a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2851
    by (intro powr_mono2) simp_all
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2852
  with assms show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2853
    by (auto simp: powr_minus field_simps)
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2854
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2855
80052
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2856
lemma powr_mono': "a \<le> (b::real) \<Longrightarrow> x \<ge> 0 \<Longrightarrow> x \<le> 1 \<Longrightarrow> x powr b \<le> x powr a"
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2857
  using powr_mono[of "-b" "-a" "inverse x"] by (auto simp: powr_def ln_inverse ln_div field_split_simps)
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2858
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2859
lemma powr_mono_both:
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2860
  fixes x :: real
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2861
  assumes "0 \<le> a" "a \<le> b" "1 \<le> x" "x \<le> y"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2862
    shows "x powr a \<le> y powr b"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2863
  by (meson assms order.trans powr_mono powr_mono2 zero_le_one)
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2864
80052
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2865
lemma powr_mono_both':
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2866
  fixes x :: real
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2867
  assumes "a \<ge> b" "b\<ge>0" "0 < x" "x \<le> y" "y \<le> 1"
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2868
    shows "x powr a \<le> y powr b"
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2869
  by (meson assms nless_le order.trans powr_mono' powr_mono2)
79672
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  2870
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  2871
lemma powr_less_mono':
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  2872
  assumes "(x::real) > 0" "x < 1" "a < b"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  2873
  shows   "x powr b < x powr a"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  2874
  by (metis assms log_powr_cancel order.strict_iff_order powr_mono')
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  2875
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2876
lemma powr_inj: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> a powr x = a powr y \<longleftrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2877
  for x :: real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2878
  unfolding powr_def exp_inj_iff by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2879
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2880
lemma powr_half_sqrt: "0 \<le> x \<Longrightarrow> x powr (1/2) = sqrt x"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2881
  by (simp add: powr_def root_powr_inverse sqrt_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2882
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2883
lemma powr_half_sqrt_powr: "0 \<le> x \<Longrightarrow> x powr (a/2) = sqrt(x powr a)"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2884
  by (metis divide_inverse mult.left_neutral powr_ge_pzero powr_half_sqrt powr_powr)
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2885
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70350
diff changeset
  2886
lemma square_powr_half [simp]:
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70350
diff changeset
  2887
  fixes x::real shows "x\<^sup>2 powr (1/2) = \<bar>x\<bar>"
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70350
diff changeset
  2888
  by (simp add: powr_half_sqrt)
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70350
diff changeset
  2889
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2890
lemma ln_powr_bound: "1 \<le> x \<Longrightarrow> 0 < a \<Longrightarrow> ln x \<le> (x powr a) / a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2891
  for x :: real
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2892
  by (metis exp_gt_zero linear ln_eq_zero_iff ln_exp ln_less_self ln_powr mult.commute
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2893
      mult_imp_le_div_pos not_less powr_gt_zero)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2894
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2895
lemma ln_powr_bound2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2896
  fixes x :: real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2897
  assumes "1 < x" and "0 < a"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2898
  shows "(ln x) powr a \<le> (a powr a) * x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2899
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2900
  from assms have "ln x \<le> (x powr (1 / a)) / (1 / a)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2901
    by (metis less_eq_real_def ln_powr_bound zero_less_divide_1_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2902
  also have "\<dots> = a * (x powr (1 / a))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2903
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2904
  finally have "(ln x) powr a \<le> (a * (x powr (1 / a))) powr a"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2905
    by (metis assms less_imp_le ln_gt_zero powr_mono2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2906
  also have "\<dots> = (a powr a) * ((x powr (1 / a)) powr a)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2907
    using assms powr_mult by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2908
  also have "(x powr (1 / a)) powr a = x powr ((1 / a) * a)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2909
    by (rule powr_powr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2910
  also have "\<dots> = x" using assms
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2911
    by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2912
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2913
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2914
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2915
lemma tendsto_powr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2916
  fixes a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2917
  assumes f: "(f \<longlongrightarrow> a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2918
    and g: "(g \<longlongrightarrow> b) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2919
    and a: "a \<noteq> 0"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2920
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> a powr b) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2921
  unfolding powr_def
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2922
proof (rule filterlim_If)
80175
200107cdd3ac Some new simprules – and patches for proofs
paulson <lp15@cam.ac.uk>
parents: 80052
diff changeset
  2923
  show "((\<lambda>x. 0) \<longlongrightarrow> (if a = 0 then 0 else exp (b * ln a))) (inf F (principal {x. f x = 0}))"
200107cdd3ac Some new simprules – and patches for proofs
paulson <lp15@cam.ac.uk>
parents: 80052
diff changeset
  2924
    using tendsto_imp_eventually_ne [OF f] a
200107cdd3ac Some new simprules – and patches for proofs
paulson <lp15@cam.ac.uk>
parents: 80052
diff changeset
  2925
    by (simp add: filterlim_iff eventually_inf_principal frequently_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2926
  from f g a show "((\<lambda>x. exp (g x * ln (f x))) \<longlongrightarrow> (if a = 0 then 0 else exp (b * ln a)))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2927
      (inf F (principal {x. f x \<noteq> 0}))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2928
    by (auto intro!: tendsto_intros intro: tendsto_mono inf_le1)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2929
qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2930
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2931
lemma tendsto_powr'[tendsto_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2932
  fixes a :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2933
  assumes f: "(f \<longlongrightarrow> a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2934
    and g: "(g \<longlongrightarrow> b) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2935
    and a: "a \<noteq> 0 \<or> (b > 0 \<and> eventually (\<lambda>x. f x \<ge> 0) F)"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2936
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> a powr b) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2937
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2938
  from a consider "a \<noteq> 0" | "a = 0" "b > 0" "eventually (\<lambda>x. f x \<ge> 0) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2939
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2940
  then show ?thesis
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2941
  proof cases
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2942
    case 1
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2943
    with f g show ?thesis by (rule tendsto_powr)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2944
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2945
    case 2
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2946
    have "((\<lambda>x. if f x = 0 then 0 else exp (g x * ln (f x))) \<longlongrightarrow> 0) F"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2947
    proof (intro filterlim_If)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2948
      have "filterlim f (principal {0<..}) (inf F (principal {z. f z \<noteq> 0}))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2949
        using \<open>eventually (\<lambda>x. f x \<ge> 0) F\<close>
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2950
        by (auto simp: filterlim_iff eventually_inf_principal
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2951
            eventually_principal elim: eventually_mono)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2952
      moreover have "filterlim f (nhds a) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2953
        by (rule tendsto_mono[OF _ f]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2954
      ultimately have f: "filterlim f (at_right 0) (inf F (principal {x. f x \<noteq> 0}))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2955
        by (simp add: at_within_def filterlim_inf \<open>a = 0\<close>)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2956
      have g: "(g \<longlongrightarrow> b) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2957
        by (rule tendsto_mono[OF _ g]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2958
      show "((\<lambda>x. exp (g x * ln (f x))) \<longlongrightarrow> 0) (inf F (principal {x. f x \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2959
        by (rule filterlim_compose[OF exp_at_bot] filterlim_tendsto_pos_mult_at_bot
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2960
                 filterlim_compose[OF ln_at_0] f g \<open>b > 0\<close>)+
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2961
    qed simp_all
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2962
    with \<open>a = 0\<close> show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2963
      by (simp add: powr_def)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2964
  qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2965
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2966
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2967
lemma continuous_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2968
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2969
    and "continuous F g"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2970
    and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2971
  shows "continuous F (\<lambda>x. (f x) powr (g x :: real))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2972
  using assms unfolding continuous_def by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2973
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2974
lemma continuous_at_within_powr[continuous_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2975
  fixes f g :: "_ \<Rightarrow> real"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2976
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2977
    and "continuous (at a within s) g"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2978
    and "f a \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2979
  shows "continuous (at a within s) (\<lambda>x. (f x) powr (g x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2980
  using assms unfolding continuous_within by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2981
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2982
lemma isCont_powr[continuous_intros, simp]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2983
  fixes f g :: "_ \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2984
  assumes "isCont f a" "isCont g a" "f a \<noteq> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2985
  shows "isCont (\<lambda>x. (f x) powr g x) a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2986
  using assms unfolding continuous_at by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2987
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2988
lemma continuous_on_powr[continuous_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2989
  fixes f g :: "_ \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2990
  assumes "continuous_on s f" "continuous_on s g" and "\<forall>x\<in>s. f x \<noteq> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2991
  shows "continuous_on s (\<lambda>x. (f x) powr (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2992
  using assms unfolding continuous_on_def by (fast intro: tendsto_powr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2993
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2994
lemma tendsto_powr2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2995
  fixes a :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2996
  assumes f: "(f \<longlongrightarrow> a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2997
    and g: "(g \<longlongrightarrow> b) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2998
    and "\<forall>\<^sub>F x in F. 0 \<le> f x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2999
    and b: "0 < b"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3000
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> a powr b) F"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3001
  using tendsto_powr'[of f a F g b] assms by auto
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3002
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3003
lemma has_derivative_powr[derivative_intros]:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3004
  assumes g[derivative_intros]: "(g has_derivative g') (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3005
    and f[derivative_intros]:"(f has_derivative f') (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3006
  assumes pos: "0 < g x" and "x \<in> X"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3007
  shows "((\<lambda>x. g x powr f x::real) has_derivative (\<lambda>h. (g x powr f x) * (f' h * ln (g x) + g' h * f x / g x))) (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3008
proof -
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3009
  have "\<forall>\<^sub>F x in at x within X. g x > 0"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3010
    by (rule order_tendstoD[OF _ pos])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3011
      (rule has_derivative_continuous[OF g, unfolded continuous_within])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3012
  then obtain d where "d > 0" and pos': "\<And>x'. x' \<in> X \<Longrightarrow> dist x' x < d \<Longrightarrow> 0 < g x'"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3013
    using pos unfolding eventually_at by force
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3014
  have "((\<lambda>x. exp (f x * ln (g x))) has_derivative
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3015
    (\<lambda>h. (g x powr f x) * (f' h * ln (g x) + g' h * f x / g x))) (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3016
    using pos
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  3017
    by (auto intro!: derivative_eq_intros simp: field_split_simps powr_def)
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3018
  then show ?thesis
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3019
    by (rule has_derivative_transform_within[OF _ \<open>d > 0\<close> \<open>x \<in> X\<close>]) (auto simp: powr_def dest: pos')
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3020
qed
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3021
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3022
lemma has_derivative_const_powr [derivative_intros]:
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3023
  assumes "\<And>x. (f has_derivative f') (at x)" "a \<noteq> (0::real)"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3024
  shows "((\<lambda>x. a powr (f x)) has_derivative (\<lambda>y. f' y * ln a * a powr (f x))) (at x)"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3025
  using assms
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3026
  apply (simp add: powr_def)
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3027
  apply (rule assms derivative_eq_intros refl)+
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3028
  done
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3029
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3030
lemma has_real_derivative_const_powr [derivative_intros]:
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3031
  assumes "\<And>x. (f has_real_derivative f' x) (at x)"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3032
    "a \<noteq> (0::real)"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3033
  shows "((\<lambda>x. a powr (f x)) has_real_derivative (f' x * ln a * a powr (f x))) (at x)"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3034
  using assms
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3035
  apply (simp add: powr_def)
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3036
  apply (rule assms derivative_eq_intros refl | simp)+
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3037
  done
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3038
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3039
lemma DERIV_powr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3040
  fixes r :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3041
  assumes g: "DERIV g x :> m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3042
    and pos: "g x > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3043
    and f: "DERIV f x :> r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3044
  shows "DERIV (\<lambda>x. g x powr f x) x :> (g x powr f x) * (r * ln (g x) + m * f x / g x)"
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3045
  using assms
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3046
  by (auto intro!: derivative_eq_intros ext simp: has_field_derivative_def algebra_simps)
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3047
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3048
lemma DERIV_fun_powr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3049
  fixes r :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3050
  assumes g: "DERIV g x :> m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3051
    and pos: "g x > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3052
  shows "DERIV (\<lambda>x. (g x) powr r) x :> r * (g x) powr (r - of_nat 1) * m"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3053
  using DERIV_powr[OF g pos DERIV_const, of r] pos
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  3054
  by (simp add: powr_diff field_simps)
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3055
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3056
lemma has_real_derivative_powr:
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3057
  assumes "z > 0"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3058
  shows "((\<lambda>z. z powr r) has_real_derivative r * z powr (r - 1)) (at z)"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3059
proof (subst DERIV_cong_ev[OF refl _ refl])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3060
  from assms have "eventually (\<lambda>z. z \<noteq> 0) (nhds z)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3061
    by (intro t1_space_nhds) auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3062
  then show "eventually (\<lambda>z. z powr r = exp (r * ln z)) (nhds z)"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3063
    unfolding powr_def by eventually_elim simp
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3064
  from assms show "((\<lambda>z. exp (r * ln z)) has_real_derivative r * z powr (r - 1)) (at z)"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3065
    by (auto intro!: derivative_eq_intros simp: powr_def field_simps exp_diff)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3066
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3067
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3068
declare has_real_derivative_powr[THEN DERIV_chain2, derivative_intros]
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3069
80034
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3070
text \<open>A more general version, by Johannes Hölzl\<close>
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3071
lemma has_real_derivative_powr':
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3072
  fixes f g :: "real \<Rightarrow> real"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3073
  assumes "(f has_real_derivative f') (at x)"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3074
  assumes "(g has_real_derivative g') (at x)"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3075
  assumes "f x > 0"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3076
  defines "h \<equiv> \<lambda>x. f x powr g x * (g' * ln (f x) + f' * g x / f x)"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3077
  shows   "((\<lambda>x. f x powr g x) has_real_derivative h x) (at x)"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3078
proof (subst DERIV_cong_ev[OF refl _ refl])
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3079
  from assms have "isCont f x"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3080
    by (simp add: DERIV_continuous)
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3081
  hence "f \<midarrow>x\<rightarrow> f x" by (simp add: continuous_at)
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3082
  with \<open>f x > 0\<close> have "eventually (\<lambda>x. f x > 0) (nhds x)"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3083
    by (auto simp: tendsto_at_iff_tendsto_nhds dest: order_tendstoD)
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3084
  thus "eventually (\<lambda>x. f x powr g x = exp (g x * ln (f x))) (nhds x)"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3085
    by eventually_elim (simp add: powr_def)
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3086
next
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3087
  from assms show "((\<lambda>x. exp (g x * ln (f x))) has_real_derivative h x) (at x)"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3088
    by (auto intro!: derivative_eq_intros simp: h_def powr_def)
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3089
qed
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3090
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3091
lemma tendsto_zero_powrI:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3092
  assumes "(f \<longlongrightarrow> (0::real)) F" "(g \<longlongrightarrow> b) F" "\<forall>\<^sub>F x in F. 0 \<le> f x" "0 < b"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3093
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> 0) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3094
  using tendsto_powr2[OF assms] by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3095
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3096
lemma continuous_on_powr':
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3097
  fixes f g :: "_ \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3098
  assumes "continuous_on s f" "continuous_on s g"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3099
    and "\<forall>x\<in>s. f x \<ge> 0 \<and> (f x = 0 \<longrightarrow> g x > 0)"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3100
  shows "continuous_on s (\<lambda>x. (f x) powr (g x))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3101
  unfolding continuous_on_def
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3102
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3103
  fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3104
  assume x: "x \<in> s"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3105
  from assms x show "((\<lambda>x. f x powr g x) \<longlongrightarrow> f x powr g x) (at x within s)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3106
  proof (cases "f x = 0")
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3107
    case True
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3108
    from assms(3) have "eventually (\<lambda>x. f x \<ge> 0) (at x within s)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3109
      by (auto simp: at_within_def eventually_inf_principal)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3110
    with True x assms show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3111
      by (auto intro!: tendsto_zero_powrI[of f _ g "g x"] simp: continuous_on_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3112
  next
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3113
    case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3114
    with assms x show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3115
      by (auto intro!: tendsto_powr' simp: continuous_on_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3116
  qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3117
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3118
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3119
lemma tendsto_neg_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3120
  assumes "s < 0"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3121
    and f: "LIM x F. f x :> at_top"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3122
  shows "((\<lambda>x. f x powr s) \<longlongrightarrow> (0::real)) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3123
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3124
  have "((\<lambda>x. exp (s * ln (f x))) \<longlongrightarrow> (0::real)) F" (is "?X")
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3125
    by (auto intro!: filterlim_compose[OF exp_at_bot] filterlim_compose[OF ln_at_top]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3126
        filterlim_tendsto_neg_mult_at_bot assms)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3127
  also have "?X \<longleftrightarrow> ((\<lambda>x. f x powr s) \<longlongrightarrow> (0::real)) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3128
    using f filterlim_at_top_dense[of f F]
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  3129
    by (intro filterlim_cong[OF refl refl]) (auto simp: neq_iff powr_def elim: eventually_mono)
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3130
  finally show ?thesis .
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3131
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3132
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3133
lemma tendsto_exp_limit_at_right: "((\<lambda>y. (1 + x * y) powr (1 / y)) \<longlongrightarrow> exp x) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3134
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3135
proof (cases "x = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3136
  case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3137
  then show ?thesis by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3138
next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3139
  case False
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3140
  have "((\<lambda>y. ln (1 + x * y)::real) has_real_derivative 1 * x) (at 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3141
    by (auto intro!: derivative_eq_intros)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3142
  then have "((\<lambda>y. ln (1 + x * y) / y) \<longlongrightarrow> x) (at 0)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3143
    by (auto simp: has_field_derivative_def field_has_derivative_at)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3144
  then have *: "((\<lambda>y. exp (ln (1 + x * y) / y)) \<longlongrightarrow> exp x) (at 0)"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3145
    by (rule tendsto_intros)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3146
  then show ?thesis
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3147
  proof (rule filterlim_mono_eventually)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3148
    show "eventually (\<lambda>xa. exp (ln (1 + x * xa) / xa) = (1 + x * xa) powr (1 / xa)) (at_right 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3149
      unfolding eventually_at_right[OF zero_less_one]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3150
      using False
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  3151
      by (intro exI[of _ "1 / \<bar>x\<bar>"]) (auto simp: field_simps powr_def abs_if add_nonneg_eq_0_iff)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3152
  qed (simp_all add: at_eq_sup_left_right)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3153
qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3154
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3155
lemma tendsto_exp_limit_at_top: "((\<lambda>y. (1 + x / y) powr y) \<longlongrightarrow> exp x) at_top"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3156
  for x :: real
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3157
  by (simp add: filterlim_at_top_to_right inverse_eq_divide tendsto_exp_limit_at_right)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3158
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3159
lemma tendsto_exp_limit_sequentially: "(\<lambda>n. (1 + x / n) ^ n) \<longlonglongrightarrow> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3160
  for x :: real
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3161
proof (rule filterlim_mono_eventually)
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  3162
  from reals_Archimedean2 [of "\<bar>x\<bar>"] obtain n :: nat where *: "real n > \<bar>x\<bar>" ..
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3163
  then have "eventually (\<lambda>n :: nat. 0 < 1 + x / real n) at_top"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  3164
    by (intro eventually_sequentiallyI [of n]) (auto simp: field_split_simps)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3165
  then show "eventually (\<lambda>n. (1 + x / n) powr n = (1 + x / n) ^ n) at_top"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  3166
    by (rule eventually_mono) (erule powr_realpow)
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  3167
  show "(\<lambda>n. (1 + x / real n) powr real n) \<longlonglongrightarrow> exp x"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3168
    by (rule filterlim_compose [OF tendsto_exp_limit_at_top filterlim_real_sequentially])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3169
qed auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3170
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3171
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3172
subsection \<open>Sine and Cosine\<close>
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3173
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3174
definition sin_coeff :: "nat \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3175
  where "sin_coeff = (\<lambda>n. if even n then 0 else (- 1) ^ ((n - Suc 0) div 2) / (fact n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3176
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3177
definition cos_coeff :: "nat \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3178
  where "cos_coeff = (\<lambda>n. if even n then ((- 1) ^ (n div 2)) / (fact n) else 0)"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  3179
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3180
definition sin :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3181
  where "sin = (\<lambda>x. \<Sum>n. sin_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3182
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3183
definition cos :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3184
  where "cos = (\<lambda>x. \<Sum>n. cos_coeff n *\<^sub>R x^n)"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  3185
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3186
lemma sin_coeff_0 [simp]: "sin_coeff 0 = 0"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3187
  unfolding sin_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3188
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3189
lemma cos_coeff_0 [simp]: "cos_coeff 0 = 1"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3190
  unfolding cos_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3191
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3192
lemma sin_coeff_Suc: "sin_coeff (Suc n) = cos_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3193
  unfolding cos_coeff_def sin_coeff_def
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3194
  by (simp del: mult_Suc)
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3195
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3196
lemma cos_coeff_Suc: "cos_coeff (Suc n) = - sin_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3197
  unfolding cos_coeff_def sin_coeff_def
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3198
  by (simp del: mult_Suc) (auto elim: oddE)
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3199
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3200
lemma summable_norm_sin: "summable (\<lambda>n. norm (sin_coeff n *\<^sub>R x^n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3201
  for x :: "'a::{real_normed_algebra_1,banach}"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3202
proof (rule summable_comparison_test [OF _ summable_norm_exp])
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3203
  show "\<exists>N. \<forall>n\<ge>N. norm (norm (sin_coeff n *\<^sub>R x ^ n)) \<le> norm (x ^ n /\<^sub>R fact n)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3204
    unfolding sin_coeff_def
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3205
    by (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3206
qed
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3207
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3208
lemma summable_norm_cos: "summable (\<lambda>n. norm (cos_coeff n *\<^sub>R x^n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3209
  for x :: "'a::{real_normed_algebra_1,banach}"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3210
proof (rule summable_comparison_test [OF _ summable_norm_exp])
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3211
  show "\<exists>N. \<forall>n\<ge>N. norm (norm (cos_coeff n *\<^sub>R x ^ n)) \<le> norm (x ^ n /\<^sub>R fact n)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3212
    unfolding cos_coeff_def
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3213
    by (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3214
qed
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3215
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3216
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3217
lemma sin_converges: "(\<lambda>n. sin_coeff n *\<^sub>R x^n) sums sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3218
  unfolding sin_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3219
  by (metis (full_types) summable_norm_cancel summable_norm_sin summable_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3220
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3221
lemma cos_converges: "(\<lambda>n. cos_coeff n *\<^sub>R x^n) sums cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3222
  unfolding cos_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3223
  by (metis (full_types) summable_norm_cancel summable_norm_cos summable_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3224
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3225
lemma sin_of_real: "sin (of_real x) = of_real (sin x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3226
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3227
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3228
  have "(\<lambda>n. of_real (sin_coeff n *\<^sub>R  x^n)) = (\<lambda>n. sin_coeff n *\<^sub>R  (of_real x)^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3229
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3230
    show "of_real (sin_coeff n *\<^sub>R  x^n) = sin_coeff n *\<^sub>R of_real x^n" for n
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3231
      by (simp add: scaleR_conv_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3232
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3233
  also have "\<dots> sums (sin (of_real x))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3234
    by (rule sin_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3235
  finally have "(\<lambda>n. of_real (sin_coeff n *\<^sub>R x^n)) sums (sin (of_real x))" .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3236
  then show ?thesis
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3237
    using sums_unique2 sums_of_real [OF sin_converges] by blast
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3238
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3239
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3240
corollary sin_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> sin z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3241
  by (metis Reals_cases Reals_of_real sin_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3242
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3243
lemma cos_of_real: "cos (of_real x) = of_real (cos x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3244
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3245
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3246
  have "(\<lambda>n. of_real (cos_coeff n *\<^sub>R  x^n)) = (\<lambda>n. cos_coeff n *\<^sub>R  (of_real x)^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3247
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3248
    show "of_real (cos_coeff n *\<^sub>R  x^n) = cos_coeff n *\<^sub>R of_real x^n" for n
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3249
      by (simp add: scaleR_conv_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3250
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3251
  also have "\<dots> sums (cos (of_real x))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3252
    by (rule cos_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3253
  finally have "(\<lambda>n. of_real (cos_coeff n *\<^sub>R x^n)) sums (cos (of_real x))" .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3254
  then show ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3255
    using sums_unique2 sums_of_real [OF cos_converges]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3256
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3257
qed
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3258
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3259
corollary cos_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> cos z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3260
  by (metis Reals_cases Reals_of_real cos_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3261
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3262
lemma diffs_sin_coeff: "diffs sin_coeff = cos_coeff"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3263
  by (simp add: diffs_def sin_coeff_Suc del: of_nat_Suc)
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3264
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3265
lemma diffs_cos_coeff: "diffs cos_coeff = (\<lambda>n. - sin_coeff n)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3266
  by (simp add: diffs_def cos_coeff_Suc del: of_nat_Suc)
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3267
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3268
lemma sin_int_times_real: "sin (of_int m * of_real x) = of_real (sin (of_int m * x))"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3269
  by (metis sin_of_real of_real_mult of_real_of_int_eq)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3270
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3271
lemma cos_int_times_real: "cos (of_int m * of_real x) = of_real (cos (of_int m * x))"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3272
  by (metis cos_of_real of_real_mult of_real_of_int_eq)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3273
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3274
text \<open>Now at last we can get the derivatives of exp, sin and cos.\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3275
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3276
lemma DERIV_sin [simp]: "DERIV sin x :> cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3277
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3278
  unfolding sin_def cos_def scaleR_conv_of_real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3279
  apply (rule DERIV_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3280
   apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3281
      apply (simp_all add: norm_less_p1 diffs_of_real diffs_sin_coeff diffs_cos_coeff
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3282
              summable_minus_iff scaleR_conv_of_real [symmetric]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3283
              summable_norm_sin [THEN summable_norm_cancel]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3284
              summable_norm_cos [THEN summable_norm_cancel])
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3285
  done
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3286
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3287
declare DERIV_sin[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3288
  and DERIV_sin[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3289
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3290
lemmas has_derivative_sin[derivative_intros] = DERIV_sin[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3291
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3292
lemma DERIV_cos [simp]: "DERIV cos x :> - sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3293
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3294
  unfolding sin_def cos_def scaleR_conv_of_real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3295
  apply (rule DERIV_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3296
   apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3297
      apply (simp_all add: norm_less_p1 diffs_of_real diffs_minus suminf_minus
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3298
              diffs_sin_coeff diffs_cos_coeff
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3299
              summable_minus_iff scaleR_conv_of_real [symmetric]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3300
              summable_norm_sin [THEN summable_norm_cancel]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3301
              summable_norm_cos [THEN summable_norm_cancel])
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3302
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3303
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3304
declare DERIV_cos[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3305
  and DERIV_cos[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3306
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3307
lemmas has_derivative_cos[derivative_intros] = DERIV_cos[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3308
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3309
lemma isCont_sin: "isCont sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3310
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3311
  by (rule DERIV_sin [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3312
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3313
lemma continuous_on_sin_real: "continuous_on {a..b} sin" for a::real
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3314
  using continuous_at_imp_continuous_on isCont_sin by blast
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3315
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3316
lemma isCont_cos: "isCont cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3317
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3318
  by (rule DERIV_cos [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3319
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3320
lemma continuous_on_cos_real: "continuous_on {a..b} cos" for a::real
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3321
  using continuous_at_imp_continuous_on isCont_cos by blast
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3322
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3323
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3324
context
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3325
  fixes f :: "'a::t2_space \<Rightarrow> 'b::{real_normed_field,banach}"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3326
begin
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3327
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3328
lemma isCont_sin' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. sin (f x)) a"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3329
  by (rule isCont_o2 [OF _ isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3330
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3331
lemma isCont_cos' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. cos (f x)) a"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3332
  by (rule isCont_o2 [OF _ isCont_cos])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3333
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3334
lemma tendsto_sin [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. sin (f x)) \<longlongrightarrow> sin a) F"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3335
  by (rule isCont_tendsto_compose [OF isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3336
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3337
lemma tendsto_cos [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. cos (f x)) \<longlongrightarrow> cos a) F"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3338
  by (rule isCont_tendsto_compose [OF isCont_cos])
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3339
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3340
lemma continuous_sin [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. sin (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3341
  unfolding continuous_def by (rule tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3342
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3343
lemma continuous_on_sin [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. sin (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3344
  unfolding continuous_on_def by (auto intro: tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3345
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3346
lemma continuous_cos [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. cos (f x))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3347
  unfolding continuous_def by (rule tendsto_cos)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3348
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3349
lemma continuous_on_cos [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. cos (f x))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3350
  unfolding continuous_on_def by (auto intro: tendsto_cos)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3351
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3352
end
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3353
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3354
lemma continuous_within_sin: "continuous (at z within s) sin"     
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3355
  for z :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3356
  by (simp add: continuous_within tendsto_sin)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3357
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3358
lemma continuous_within_cos: "continuous (at z within s) cos"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3359
  for z :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3360
  by (simp add: continuous_within tendsto_cos)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3361
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3362
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3363
subsection \<open>Properties of Sine and Cosine\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3364
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3365
lemma sin_zero [simp]: "sin 0 = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3366
  by (simp add: sin_def sin_coeff_def scaleR_conv_of_real)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3367
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3368
lemma cos_zero [simp]: "cos 0 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3369
  by (simp add: cos_def cos_coeff_def scaleR_conv_of_real)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3370
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3371
lemma DERIV_fun_sin: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. sin (g x)) x :> cos (g x) * m"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3372
  by (fact derivative_intros)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3373
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3374
lemma DERIV_fun_cos: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. cos(g x)) x :> - sin (g x) * m"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3375
  by (fact derivative_intros)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3376
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3377
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3378
subsection \<open>Deriving the Addition Formulas\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3379
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3380
text \<open>The product of two cosine series.\<close>
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3381
lemma cos_x_cos_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3382
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3383
  shows
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3384
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3385
        if even p \<and> even n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3386
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3387
      sums (cos x * cos y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3388
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3389
  have "(cos_coeff n * cos_coeff (p - n)) *\<^sub>R (x^n * y^(p - n)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3390
    (if even p \<and> even n then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p - n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3391
     else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3392
    if "n \<le> p" for n p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3393
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3394
    from that have *: "even n \<Longrightarrow> even p \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3395
        (-1) ^ (n div 2) * (-1) ^ ((p - n) div 2) = (-1 :: real) ^ (p div 2)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3396
      by (metis div_add power_add le_add_diff_inverse odd_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3397
    with that show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3398
      by (auto simp: algebra_simps cos_coeff_def binomial_fact)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3399
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3400
  then have "(\<lambda>p. \<Sum>n\<le>p. if even p \<and> even n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3401
                  then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3402
             (\<lambda>p. \<Sum>n\<le>p. (cos_coeff n * cos_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3403
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3404
  also have "\<dots> = (\<lambda>p. \<Sum>n\<le>p. (cos_coeff n *\<^sub>R x^n) * (cos_coeff (p - n) *\<^sub>R y^(p-n)))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3405
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3406
  also have "\<dots> sums (cos x * cos y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3407
    using summable_norm_cos
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3408
    by (auto simp: cos_def scaleR_conv_of_real intro!: Cauchy_product_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3409
  finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3410
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3411
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3412
text \<open>The product of two sine series.\<close>
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3413
lemma sin_x_sin_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3414
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3415
  shows
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3416
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3417
        if even p \<and> odd n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3418
        then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3419
        else 0)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3420
      sums (sin x * sin y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3421
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3422
  have "(sin_coeff n * sin_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3423
    (if even p \<and> odd n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3424
     then -((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3425
     else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3426
    if "n \<le> p" for n p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3427
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3428
    have "(-1) ^ ((n - Suc 0) div 2) * (-1) ^ ((p - Suc n) div 2) = - ((-1 :: real) ^ (p div 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3429
      if np: "odd n" "even p"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3430
    proof -
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3431
      have "p > 0"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3432
        using \<open>n \<le> p\<close> neq0_conv that(1) by blast
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3433
      then have \<section>: "(- 1::real) ^ (p div 2 - Suc 0) = - ((- 1) ^ (p div 2))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3434
        using \<open>even p\<close> by (auto simp add: dvd_def power_eq_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3435
      from \<open>n \<le> p\<close> np have *: "n - Suc 0 + (p - Suc n) = p - Suc (Suc 0)" "Suc (Suc 0) \<le> p"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3436
        by arith+
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3437
      have "(p - Suc (Suc 0)) div 2 = p div 2 - Suc 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3438
        by simp
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3439
      with \<open>n \<le> p\<close> np  \<section> * show ?thesis
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3440
        by (simp add: flip: div_add power_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3441
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3442
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3443
      using \<open>n\<le>p\<close> by (auto simp: algebra_simps sin_coeff_def binomial_fact)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3444
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3445
  then have "(\<lambda>p. \<Sum>n\<le>p. if even p \<and> odd n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3446
               then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3447
             (\<lambda>p. \<Sum>n\<le>p. (sin_coeff n * sin_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3448
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3449
  also have "\<dots> = (\<lambda>p. \<Sum>n\<le>p. (sin_coeff n *\<^sub>R x^n) * (sin_coeff (p - n) *\<^sub>R y^(p-n)))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3450
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3451
  also have "\<dots> sums (sin x * sin y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3452
    using summable_norm_sin
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3453
    by (auto simp: sin_def scaleR_conv_of_real intro!: Cauchy_product_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3454
  finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3455
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3456
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3457
lemma sums_cos_x_plus_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3458
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3459
  shows
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3460
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3461
        if even p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3462
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3463
        else 0)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3464
      sums cos (x + y)"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3465
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3466
  have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3467
    "(\<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3468
      if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3469
      else 0) = cos_coeff p *\<^sub>R ((x + y) ^ p)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3470
    for p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3471
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3472
    have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3473
      "(\<Sum>n\<le>p. if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3474
       (if even p then \<Sum>n\<le>p. ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3475
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3476
    also have "\<dots> =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3477
       (if even p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3478
        then of_real ((-1) ^ (p div 2) / (fact p)) * (\<Sum>n\<le>p. (p choose n) *\<^sub>R (x^n) * y^(p-n))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3479
        else 0)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  3480
      by (auto simp: sum_distrib_left field_simps scaleR_conv_of_real nonzero_of_real_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3481
    also have "\<dots> = cos_coeff p *\<^sub>R ((x + y) ^ p)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3482
      by (simp add: cos_coeff_def binomial_ring [of x y]  scaleR_conv_of_real atLeast0AtMost)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3483
    finally show ?thesis .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3484
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3485
  then have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3486
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3487
        if even p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3488
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3489
        else 0) = (\<lambda>p. cos_coeff p *\<^sub>R ((x+y)^p))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3490
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3491
   also have "\<dots> sums cos (x + y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3492
    by (rule cos_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3493
   finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3494
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3495
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3496
theorem cos_add:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3497
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3498
  shows "cos (x + y) = cos x * cos y - sin x * sin y"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3499
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3500
  have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3501
    "(if even p \<and> even n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3502
      then ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3503
     (if even p \<and> odd n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3504
      then - ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3505
     (if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3506
    if "n \<le> p" for n p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3507
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3508
  then have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3509
    "(\<lambda>p. \<Sum>n\<le>p. (if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3510
      sums (cos x * cos y - sin x * sin y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3511
    using sums_diff [OF cos_x_cos_y [of x y] sin_x_sin_y [of x y]]
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  3512
    by (simp add: sum_subtractf [symmetric])
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3513
  then show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3514
    by (blast intro: sums_cos_x_plus_y sums_unique2)
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3515
qed
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3516
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3517
lemma sin_minus_converges: "(\<lambda>n. - (sin_coeff n *\<^sub>R (-x)^n)) sums sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3518
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3519
  have [simp]: "\<And>n. - (sin_coeff n *\<^sub>R (-x)^n) = (sin_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3520
    by (auto simp: sin_coeff_def elim!: oddE)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3521
  show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3522
    by (simp add: sin_def summable_norm_sin [THEN summable_norm_cancel, THEN summable_sums])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3523
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3524
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3525
lemma sin_minus [simp]: "sin (- x) = - sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3526
  for x :: "'a::{real_normed_algebra_1,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3527
  using sin_minus_converges [of x]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3528
  by (auto simp: sin_def summable_norm_sin [THEN summable_norm_cancel]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3529
      suminf_minus sums_iff equation_minus_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3530
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3531
lemma cos_minus_converges: "(\<lambda>n. (cos_coeff n *\<^sub>R (-x)^n)) sums cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3532
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3533
  have [simp]: "\<And>n. (cos_coeff n *\<^sub>R (-x)^n) = (cos_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3534
    by (auto simp: Transcendental.cos_coeff_def elim!: evenE)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3535
  show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3536
    by (simp add: cos_def summable_norm_cos [THEN summable_norm_cancel, THEN summable_sums])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3537
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3538
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3539
lemma cos_minus [simp]: "cos (-x) = cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3540
  for x :: "'a::{real_normed_algebra_1,banach}"
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  3541
  using cos_minus_converges [of x] by (metis cos_def sums_unique)
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  3542
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  3543
lemma cos_abs_real [simp]: "cos \<bar>x :: real\<bar> = cos x"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  3544
  by (simp add: abs_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3545
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3546
lemma sin_cos_squared_add [simp]: "(sin x)\<^sup>2 + (cos x)\<^sup>2 = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3547
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3548
  using cos_add [of x "-x"]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3549
  by (simp add: power2_eq_square algebra_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3550
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3551
lemma sin_cos_squared_add2 [simp]: "(cos x)\<^sup>2 + (sin x)\<^sup>2 = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3552
  for x :: "'a::{real_normed_field,banach}"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3553
  by (subst add.commute, rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3554
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3555
lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3556
  for x :: "'a::{real_normed_field,banach}"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3557
  using sin_cos_squared_add2 [unfolded power2_eq_square] .
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3558
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3559
lemma sin_squared_eq: "(sin x)\<^sup>2 = 1 - (cos x)\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3560
  for x :: "'a::{real_normed_field,banach}"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3561
  unfolding eq_diff_eq by (rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3562
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3563
lemma cos_squared_eq: "(cos x)\<^sup>2 = 1 - (sin x)\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3564
  for x :: "'a::{real_normed_field,banach}"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3565
  unfolding eq_diff_eq by (rule sin_cos_squared_add2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3566
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3567
lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3568
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3569
  by (rule power2_le_imp_le) (simp_all add: sin_squared_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3570
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3571
lemma sin_ge_minus_one [simp]: "- 1 \<le> sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3572
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3573
  using abs_sin_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3574
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3575
lemma sin_le_one [simp]: "sin x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3576
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3577
  using abs_sin_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3578
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3579
lemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3580
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3581
  by (rule power2_le_imp_le) (simp_all add: cos_squared_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3582
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3583
lemma cos_ge_minus_one [simp]: "- 1 \<le> cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3584
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3585
  using abs_cos_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3586
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3587
lemma cos_le_one [simp]: "cos x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3588
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3589
  using abs_cos_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3590
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3591
lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3592
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3593
  using cos_add [of x "- y"] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3594
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3595
lemma cos_double: "cos(2*x) = (cos x)\<^sup>2 - (sin x)\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3596
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3597
  using cos_add [where x=x and y=x] by (simp add: power2_eq_square)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3598
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3599
lemma sin_cos_le1: "\<bar>sin x * sin y + cos x * cos y\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3600
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3601
  using cos_diff [of x y] by (metis abs_cos_le_one add.commute)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3602
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3603
lemma DERIV_fun_pow: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3604
  by (auto intro!: derivative_eq_intros simp:)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3605
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3606
lemma DERIV_fun_exp: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. exp (g x)) x :> exp (g x) * m"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3607
  by (auto intro!: derivative_intros)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3608
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3609
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3610
subsection \<open>The Constant Pi\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3611
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3612
definition pi :: real
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3613
  where "pi = 2 * (THE x. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3614
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  3615
text \<open>Show that there's a least positive \<^term>\<open>x\<close> with \<^term>\<open>cos x = 0\<close>;
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3616
   hence define pi.\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3617
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3618
lemma sin_paired: "(\<lambda>n. (- 1) ^ n / (fact (2 * n + 1)) * x ^ (2 * n + 1)) sums  sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3619
  for x :: real
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3620
proof -
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3621
  have "(\<lambda>n. \<Sum>k = n*2..<n * 2 + 2. sin_coeff k * x ^ k) sums sin x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3622
    by (rule sums_group) (use sin_converges [of x, unfolded scaleR_conv_of_real] in auto)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3623
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3624
    by (simp add: sin_coeff_def ac_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3625
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3626
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3627
lemma sin_gt_zero_02:
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3628
  fixes x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3629
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3630
  shows "0 < sin x"
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3631
proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3632
  let ?f = "\<lambda>n::nat. \<Sum>k = n*2..<n*2+2. (- 1) ^ k / (fact (2*k+1)) * x^(2*k+1)"
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3633
  have pos: "\<forall>n. 0 < ?f n"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3634
  proof
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3635
    fix n :: nat
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3636
    let ?k2 = "real (Suc (Suc (4 * n)))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3637
    let ?k3 = "real (Suc (Suc (Suc (4 * n))))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3638
    have "x * x < ?k2 * ?k3"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3639
      using assms by (intro mult_strict_mono', simp_all)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3640
    then have "x * x * x * x ^ (n * 4) < ?k2 * ?k3 * x * x ^ (n * 4)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3641
      by (intro mult_strict_right_mono zero_less_power \<open>0 < x\<close>)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3642
    then show "0 < ?f n"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  3643
      by (simp add: ac_simps divide_less_eq)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3644
qed
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3645
  have sums: "?f sums sin x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3646
    by (rule sin_paired [THEN sums_group]) simp
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3647
  show "0 < sin x"
72219
0f38c96a0a74 tidying up some theorem statements
paulson <lp15@cam.ac.uk>
parents: 72211
diff changeset
  3648
    unfolding sums_unique [OF sums] using sums_summable [OF sums] pos by (simp add: suminf_pos)
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3649
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3650
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3651
lemma cos_double_less_one: "0 < x \<Longrightarrow> x < 2 \<Longrightarrow> cos (2 * x) < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3652
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3653
  using sin_gt_zero_02 [where x = x] by (auto simp: cos_squared_eq cos_double)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3654
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3655
lemma cos_paired: "(\<lambda>n. (- 1) ^ n / (fact (2 * n)) * x ^ (2 * n)) sums cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3656
  for x :: real
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3657
proof -
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  3658
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. cos_coeff k * x ^ k) sums cos x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3659
    by (rule sums_group) (use cos_converges [of x, unfolded scaleR_conv_of_real] in auto)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3660
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3661
    by (simp add: cos_coeff_def ac_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3662
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3663
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3664
lemma sum_pos_lt_pair:
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3665
  fixes f :: "nat \<Rightarrow> real"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3666
  assumes f: "summable f" and fplus: "\<And>d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc (Suc 0) * d) + 1))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3667
  shows "sum f {..<k} < suminf f"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3668
proof -
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3669
  have "(\<lambda>n. \<Sum>n = n * Suc (Suc 0)..<n * Suc (Suc 0) +  Suc (Suc 0). f (n + k)) 
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3670
             sums (\<Sum>n. f (n + k))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3671
  proof (rule sums_group)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3672
    show "(\<lambda>n. f (n + k)) sums (\<Sum>n. f (n + k))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3673
      by (simp add: f summable_iff_shift summable_sums)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3674
  qed auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3675
  with fplus have "0 < (\<Sum>n. f (n + k))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3676
    apply (simp add: add.commute)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3677
    apply (metis (no_types, lifting) suminf_pos summable_def sums_unique)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3678
    done
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3679
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3680
    by (simp add: f suminf_minus_initial_segment)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3681
qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3682
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3683
lemma cos_two_less_zero [simp]: "cos 2 < (0::real)"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3684
proof -
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63365
diff changeset
  3685
  note fact_Suc [simp del]
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3686
  from sums_minus [OF cos_paired]
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3687
  have *: "(\<lambda>n. - ((- 1) ^ n * 2 ^ (2 * n) / fact (2 * n))) sums - cos (2::real)"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3688
    by simp
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3689
  then have sm: "summable (\<lambda>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3690
    by (rule sums_summable)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3691
  have "0 < (\<Sum>n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3692
    by (simp add: fact_num_eq_if power_eq_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3693
  moreover have "(\<Sum>n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n  * 2 ^ (2 * n) / (fact (2 * n)))) <
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3694
    (\<Sum>n. - ((- 1) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3695
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3696
    {
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3697
      fix d
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3698
      let ?six4d = "Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))"
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3699
      have "(4::real) * (fact (?six4d)) < (Suc (Suc (?six4d)) * fact (Suc (?six4d)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3700
        unfolding of_nat_mult by (rule mult_strict_mono) (simp_all add: fact_less_mono)
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3701
      then have "(4::real) * (fact (?six4d)) < (fact (Suc (Suc (?six4d))))"
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63365
diff changeset
  3702
        by (simp only: fact_Suc [of "Suc (?six4d)"] of_nat_mult of_nat_fact)
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3703
      then have "(4::real) * inverse (fact (Suc (Suc (?six4d)))) < inverse (fact (?six4d))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3704
        by (simp add: inverse_eq_divide less_divide_eq)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3705
    }
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3706
    then show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3707
      by (force intro!: sum_pos_lt_pair [OF sm] simp add: divide_inverse algebra_simps)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3708
  qed
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3709
  ultimately have "0 < (\<Sum>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3710
    by (rule order_less_trans)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3711
  moreover from * have "- cos 2 = (\<Sum>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3712
    by (rule sums_unique)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3713
  ultimately have "(0::real) < - cos 2" by simp
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3714
  then show ?thesis by simp
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3715
qed
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3716
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3717
lemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3718
lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3719
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3720
lemma cos_is_zero: "\<exists>!x::real. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0"
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3721
proof (rule ex_ex1I)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3722
  show "\<exists>x::real. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3723
    by (rule IVT2) simp_all
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3724
next
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3725
  fix a b :: real
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3726
  assume ab: "0 \<le> a \<and> a \<le> 2 \<and> cos a = 0" "0 \<le> b \<and> b \<le> 2 \<and> cos b = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3727
  have cosd: "\<And>x::real. cos differentiable (at x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  3728
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3729
  show "a = b"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3730
  proof (cases a b rule: linorder_cases)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3731
    case less
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3732
    then obtain z where "a < z" "z < b" "(cos has_real_derivative 0) (at z)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3733
      using Rolle by (metis cosd continuous_on_cos_real ab)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3734
    then have "sin z = 0"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3735
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3736
    then show ?thesis
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3737
      by (metis \<open>a < z\<close> \<open>z < b\<close> ab order_less_le_trans less_le sin_gt_zero_02)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3738
  next
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3739
    case greater
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3740
    then obtain z where "b < z" "z < a" "(cos has_real_derivative 0) (at z)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3741
      using Rolle by (metis cosd continuous_on_cos_real ab)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3742
    then have "sin z = 0"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3743
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3744
    then show ?thesis
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3745
      by (metis \<open>b < z\<close> \<open>z < a\<close> ab order_less_le_trans less_le sin_gt_zero_02)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3746
  qed auto
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3747
qed
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  3748
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3749
lemma pi_half: "pi/2 = (THE x. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3750
  by (simp add: pi_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3751
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3752
lemma cos_pi_half [simp]: "cos (pi/2) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3753
  by (simp add: pi_half cos_is_zero [THEN theI'])
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3754
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3755
lemma cos_of_real_pi_half [simp]: "cos ((of_real pi/2) :: 'a) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3756
  if "SORT_CONSTRAINT('a::{real_field,banach,real_normed_algebra_1})"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3757
  by (metis cos_pi_half cos_of_real eq_numeral_simps(4)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3758
      nonzero_of_real_divide of_real_0 of_real_numeral)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3759
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3760
lemma pi_half_gt_zero [simp]: "0 < pi/2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3761
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3762
  have "0 \<le> pi/2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3763
    by (simp add: pi_half cos_is_zero [THEN theI'])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3764
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3765
    by (metis cos_pi_half cos_zero less_eq_real_def one_neq_zero)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3766
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3767
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3768
lemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3769
lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3770
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3771
lemma pi_half_less_two [simp]: "pi/2 < 2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3772
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3773
  have "pi/2 \<le> 2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3774
    by (simp add: pi_half cos_is_zero [THEN theI'])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3775
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3776
    by (metis cos_pi_half cos_two_neq_zero le_less)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3777
qed
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3778
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3779
lemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3780
lemmas pi_half_le_two [simp] =  pi_half_less_two [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3781
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3782
lemma pi_gt_zero [simp]: "0 < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3783
  using pi_half_gt_zero by simp
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3784
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3785
lemma pi_ge_zero [simp]: "0 \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3786
  by (rule pi_gt_zero [THEN order_less_imp_le])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3787
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3788
lemma pi_neq_zero [simp]: "pi \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3789
  by (rule pi_gt_zero [THEN less_imp_neq, symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3790
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3791
lemma pi_not_less_zero [simp]: "\<not> pi < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3792
  by (simp add: linorder_not_less)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3793
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  3794
lemma minus_pi_half_less_zero: "-(pi/2) < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3795
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3796
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3797
lemma m2pi_less_pi: "- (2*pi) < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3798
  by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3799
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3800
lemma sin_pi_half [simp]: "sin(pi/2) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3801
  using sin_cos_squared_add2 [where x = "pi/2"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3802
  using sin_gt_zero_02 [OF pi_half_gt_zero pi_half_less_two]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3803
  by (simp add: power2_eq_1_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3804
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3805
lemma sin_of_real_pi_half [simp]: "sin ((of_real pi/2) :: 'a) = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3806
  if "SORT_CONSTRAINT('a::{real_field,banach,real_normed_algebra_1})"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3807
  using sin_pi_half
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3808
  by (metis sin_pi_half eq_numeral_simps(4) nonzero_of_real_divide of_real_1 of_real_numeral sin_of_real)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3809
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3810
lemma sin_cos_eq: "sin x = cos (of_real pi/2 - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3811
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3812
  by (simp add: cos_diff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3813
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3814
lemma minus_sin_cos_eq: "- sin x = cos (x + of_real pi/2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3815
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3816
  by (simp add: cos_add nonzero_of_real_divide)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3817
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3818
lemma cos_sin_eq: "cos x = sin (of_real pi/2 - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3819
  for x :: "'a::{real_normed_field,banach}"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3820
  using sin_cos_eq [of "of_real pi/2 - x"] by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3821
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3822
lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3823
  for x :: "'a::{real_normed_field,banach}"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3824
  using cos_add [of "of_real pi/2 - x" "-y"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3825
  by (simp add: cos_sin_eq) (simp add: sin_cos_eq)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3826
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3827
lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3828
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3829
  using sin_add [of x "- y"] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3830
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3831
lemma sin_double: "sin(2 * x) = 2 * sin x * cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3832
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3833
  using sin_add [where x=x and y=x] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3834
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3835
lemma cos_of_real_pi [simp]: "cos (of_real pi) = -1"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3836
  using cos_add [where x = "pi/2" and y = "pi/2"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3837
  by (simp add: cos_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3838
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3839
lemma sin_of_real_pi [simp]: "sin (of_real pi) = 0"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3840
  using sin_add [where x = "pi/2" and y = "pi/2"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3841
  by (simp add: sin_of_real)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3842
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3843
lemma cos_pi [simp]: "cos pi = -1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3844
  using cos_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3845
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3846
lemma sin_pi [simp]: "sin pi = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3847
  using sin_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3848
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3849
lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3850
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3851
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3852
lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3853
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3854
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3855
lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3856
  by (simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3857
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3858
lemma cos_periodic_pi2 [simp]: "cos (pi + x) = - cos x"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3859
  by (simp add: cos_add)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3860
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3861
lemma sin_periodic [simp]: "sin (x + 2 * pi) = sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3862
  by (simp add: sin_add sin_double cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3863
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3864
lemma cos_periodic [simp]: "cos (x + 2 * pi) = cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3865
  by (simp add: cos_add sin_double cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3866
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3867
lemma cos_npi [simp]: "cos (real n * pi) = (- 1) ^ n"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3868
  by (induct n) (auto simp: distrib_right)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3869
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3870
lemma cos_npi2 [simp]: "cos (pi * real n) = (- 1) ^ n"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3871
  by (metis cos_npi mult.commute)
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3872
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3873
lemma sin_npi [simp]: "sin (real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3874
  for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3875
  by (induct n) (auto simp: distrib_right)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3876
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3877
lemma sin_npi2 [simp]: "sin (pi * real n) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3878
  for n :: nat
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3879
  by (simp add: mult.commute [of pi])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3880
80241
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3881
lemma sin_npi_numeral [simp]: "sin(Num.numeral n * pi) = 0"
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3882
  by (metis of_nat_numeral sin_npi)
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3883
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3884
lemma sin_npi2_numeral [simp]: "sin (pi * Num.numeral n) = 0"
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3885
  by (metis of_nat_numeral sin_npi2)
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3886
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3887
lemma cos_npi_numeral [simp]: "cos (Num.numeral n * pi) = (- 1) ^ Num.numeral n"
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3888
  by (metis cos_npi of_nat_numeral)
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3889
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3890
lemma cos_npi2_numeral [simp]: "cos (pi * Num.numeral n) = (- 1) ^ Num.numeral n"
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3891
  by (metis cos_npi2 of_nat_numeral)
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3892
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3893
lemma cos_two_pi [simp]: "cos (2 * pi) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3894
  by (simp add: cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3895
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3896
lemma sin_two_pi [simp]: "sin (2 * pi) = 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3897
  by (simp add: sin_double)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3898
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3899
context
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3900
  fixes w :: "'a::{real_normed_field,banach}"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3901
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3902
begin
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3903
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3904
lemma sin_times_sin: "sin w * sin z = (cos (w - z) - cos (w + z)) / 2"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3905
  by (simp add: cos_diff cos_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3906
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3907
lemma sin_times_cos: "sin w * cos z = (sin (w + z) + sin (w - z)) / 2"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3908
  by (simp add: sin_diff sin_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3909
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3910
lemma cos_times_sin: "cos w * sin z = (sin (w + z) - sin (w - z)) / 2"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3911
  by (simp add: sin_diff sin_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3912
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3913
lemma cos_times_cos: "cos w * cos z = (cos (w - z) + cos (w + z)) / 2"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3914
  by (simp add: cos_diff cos_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3915
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3916
lemma cos_double_cos: "cos (2 * w) = 2 * cos w ^ 2 - 1"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3917
  by (simp add: cos_double sin_squared_eq)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3918
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3919
lemma cos_double_sin: "cos (2 * w) = 1 - 2 * sin w ^ 2"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3920
  by (simp add: cos_double sin_squared_eq)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3921
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3922
end
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3923
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3924
lemma sin_plus_sin: "sin w + sin z = 2 * sin ((w + z) / 2) * cos ((w - z) / 2)"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3925
  for w :: "'a::{real_normed_field,banach}" 
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3926
  apply (simp add: mult.assoc sin_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3927
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3928
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3929
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3930
lemma sin_diff_sin: "sin w - sin z = 2 * sin ((w - z) / 2) * cos ((w + z) / 2)"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3931
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3932
  apply (simp add: mult.assoc sin_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3933
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3934
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3935
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3936
lemma cos_plus_cos: "cos w + cos z = 2 * cos ((w + z) / 2) * cos ((w - z) / 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3937
  for w :: "'a::{real_normed_field,banach,field}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3938
  apply (simp add: mult.assoc cos_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3939
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3940
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3941
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3942
lemma cos_diff_cos: "cos w - cos z = 2 * sin ((w + z) / 2) * sin ((z - w) / 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3943
  for w :: "'a::{real_normed_field,banach,field}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3944
  apply (simp add: mult.assoc sin_times_sin)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3945
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3946
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3947
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3948
lemma sin_pi_minus [simp]: "sin (pi - x) = sin x"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3949
  by (metis sin_minus sin_periodic_pi minus_minus uminus_add_conv_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3950
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3951
lemma cos_pi_minus [simp]: "cos (pi - x) = - (cos x)"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3952
  by (metis cos_minus cos_periodic_pi uminus_add_conv_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3953
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3954
lemma sin_minus_pi [simp]: "sin (x - pi) = - (sin x)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3955
  by (simp add: sin_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3956
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3957
lemma cos_minus_pi [simp]: "cos (x - pi) = - (cos x)"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3958
  by (simp add: cos_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3959
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3960
lemma sin_2pi_minus [simp]: "sin (2 * pi - x) = - (sin x)"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3961
  by (metis sin_periodic_pi2 add_diff_eq mult_2 sin_pi_minus)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3962
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3963
lemma cos_2pi_minus [simp]: "cos (2 * pi - x) = cos x"
73932
fd21b4a93043 added opaque_combs and renamed hide_lams to opaque_lifting
desharna
parents: 72980
diff changeset
  3964
  by (metis (no_types, opaque_lifting) cos_add cos_minus cos_two_pi sin_minus sin_two_pi
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3965
      diff_0_right minus_diff_eq mult_1 mult_zero_left uminus_add_conv_diff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3966
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3967
lemma sin_gt_zero2: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3968
  by (metis sin_gt_zero_02 order_less_trans pi_half_less_two)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3969
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3970
lemma sin_less_zero:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3971
  assumes "- pi/2 < x" and "x < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3972
  shows "sin x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3973
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3974
  have "0 < sin (- x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3975
    using assms by (simp only: sin_gt_zero2)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3976
  then show ?thesis by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3977
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3978
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3979
lemma pi_less_4: "pi < 4"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3980
  using pi_half_less_two by auto
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3981
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3982
lemma cos_gt_zero: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3983
  by (simp add: cos_sin_eq sin_gt_zero2)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3984
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3985
lemma cos_gt_zero_pi: "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3986
  using cos_gt_zero [of x] cos_gt_zero [of "-x"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3987
  by (cases rule: linorder_cases [of x 0]) auto
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3988
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3989
lemma cos_ge_zero: "-(pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> 0 \<le> cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3990
  by (auto simp: order_le_less cos_gt_zero_pi)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3991
    (metis cos_pi_half eq_divide_eq eq_numeral_simps(4))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3992
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3993
lemma sin_gt_zero: "0 < x \<Longrightarrow> x < pi \<Longrightarrow> 0 < sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3994
  by (simp add: sin_cos_eq cos_gt_zero_pi)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3995
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3996
lemma sin_lt_zero: "pi < x \<Longrightarrow> x < 2 * pi \<Longrightarrow> sin x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3997
  using sin_gt_zero [of "x - pi"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3998
  by (simp add: sin_diff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3999
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4000
lemma pi_ge_two: "2 \<le> pi"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4001
proof (rule ccontr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4002
  assume "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4003
  then have "pi < 2" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4004
  have "\<exists>y > pi. y < 2 \<and> y < 2 * pi"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4005
  proof (cases "2 < 2 * pi")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4006
    case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4007
    with dense[OF \<open>pi < 2\<close>] show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4008
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4009
    case False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4010
    have "pi < 2 * pi" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4011
    from dense[OF this] and False show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4012
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4013
  then obtain y where "pi < y" and "y < 2" and "y < 2 * pi"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4014
    by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4015
  then have "0 < sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4016
    using sin_gt_zero_02 by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4017
  moreover have "sin y < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4018
    using sin_gt_zero[of "y - pi"] \<open>pi < y\<close> and \<open>y < 2 * pi\<close> sin_periodic_pi[of "y - pi"]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4019
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4020
  ultimately show False by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4021
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4022
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4023
lemma sin_ge_zero: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4024
  by (auto simp: order_le_less sin_gt_zero)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4025
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4026
lemma sin_le_zero: "pi \<le> x \<Longrightarrow> x < 2 * pi \<Longrightarrow> sin x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4027
  using sin_ge_zero [of "x - pi"] by (simp add: sin_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4028
62948
7700f467892b lots of new theorems for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 62679
diff changeset
  4029
lemma sin_pi_divide_n_ge_0 [simp]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4030
  assumes "n \<noteq> 0"
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4031
  shows "0 \<le> sin (pi/real n)"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  4032
  by (rule sin_ge_zero) (use assms in \<open>simp_all add: field_split_simps\<close>)
62948
7700f467892b lots of new theorems for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 62679
diff changeset
  4033
7700f467892b lots of new theorems for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 62679
diff changeset
  4034
lemma sin_pi_divide_n_gt_0:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4035
  assumes "2 \<le> n"
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4036
  shows "0 < sin (pi/real n)"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  4037
  by (rule sin_gt_zero) (use assms in \<open>simp_all add: field_split_simps\<close>)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4038
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  4039
text\<open>Proof resembles that of \<open>cos_is_zero\<close> but with \<^term>\<open>pi\<close> for the upper bound\<close>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4040
lemma cos_total:
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4041
  assumes y: "-1 \<le> y" "y \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4042
  shows "\<exists>!x. 0 \<le> x \<and> x \<le> pi \<and> cos x = y"
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  4043
proof (rule ex_ex1I)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4044
  show "\<exists>x::real. 0 \<le> x \<and> x \<le> pi \<and> cos x = y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4045
    by (rule IVT2) (simp_all add: y)
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  4046
next
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4047
  fix a b :: real
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4048
  assume ab: "0 \<le> a \<and> a \<le> pi \<and> cos a = y" "0 \<le> b \<and> b \<le> pi \<and> cos b = y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4049
  have cosd: "\<And>x::real. cos differentiable (at x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  4050
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4051
  show "a = b"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4052
  proof (cases a b rule: linorder_cases)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4053
    case less
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4054
    then obtain z where "a < z" "z < b" "(cos has_real_derivative 0) (at z)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4055
      using Rolle by (metis cosd continuous_on_cos_real ab)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4056
    then have "sin z = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4057
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4058
    then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4059
      by (metis \<open>a < z\<close> \<open>z < b\<close> ab order_less_le_trans less_le sin_gt_zero)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4060
  next
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4061
    case greater
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4062
    then obtain z where "b < z" "z < a" "(cos has_real_derivative 0) (at z)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4063
      using Rolle by (metis cosd continuous_on_cos_real ab)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4064
    then have "sin z = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4065
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4066
    then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4067
      by (metis \<open>b < z\<close> \<open>z < a\<close> ab order_less_le_trans less_le sin_gt_zero)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4068
  qed auto
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  4069
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4070
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4071
lemma sin_total:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4072
  assumes y: "-1 \<le> y" "y \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4073
  shows "\<exists>!x. - (pi/2) \<le> x \<and> x \<le> pi/2 \<and> sin x = y"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4074
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4075
  from cos_total [OF y]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4076
  obtain x where x: "0 \<le> x" "x \<le> pi" "cos x = y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4077
    and uniq: "\<And>x'. 0 \<le> x' \<Longrightarrow> x' \<le> pi \<Longrightarrow> cos x' = y \<Longrightarrow> x' = x "
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4078
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4079
  show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4080
    unfolding sin_cos_eq
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4081
  proof (rule ex1I [where a="pi/2 - x"])
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4082
    show "- (pi/2) \<le> z \<and> z \<le> pi/2 \<and> cos (of_real pi/2 - z) = y \<Longrightarrow>
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4083
          z = pi/2 - x" for z
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4084
      using uniq [of "pi/2 -z"] by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4085
  qed (use x in auto)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4086
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4087
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4088
lemma cos_zero_lemma:
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4089
  assumes "0 \<le> x" "cos x = 0"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4090
  shows "\<exists>n. odd n \<and> x = of_nat n * (pi/2)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4091
proof -
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4092
  have xle: "x < (1 + real_of_int \<lfloor>x/pi\<rfloor>) * pi"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4093
    using floor_correct [of "x/pi"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4094
    by (simp add: add.commute divide_less_eq)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4095
  obtain n where "real n * pi \<le> x" "x < real (Suc n) * pi"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4096
  proof 
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4097
    show "real (nat \<lfloor>x / pi\<rfloor>) * pi \<le> x"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4098
      using assms floor_divide_lower [of pi x] by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4099
    show "x < real (Suc (nat \<lfloor>x / pi\<rfloor>)) * pi"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4100
      using assms floor_divide_upper [of pi x]  by (simp add: xle)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4101
  qed
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4102
  then have x: "0 \<le> x - n * pi" "(x - n * pi) \<le> pi" "cos (x - n * pi) = 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4103
    by (auto simp: algebra_simps cos_diff assms)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4104
  then have "\<exists>!x. 0 \<le> x \<and> x \<le> pi \<and> cos x = 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4105
    by (auto simp: intro!: cos_total)
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  4106
  then obtain \<theta> where \<theta>: "0 \<le> \<theta>" "\<theta> \<le> pi" "cos \<theta> = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4107
    and uniq: "\<And>\<phi>. 0 \<le> \<phi> \<Longrightarrow> \<phi> \<le> pi \<Longrightarrow> cos \<phi> = 0 \<Longrightarrow> \<phi> = \<theta>"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4108
    by blast
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4109
  then have "x - real n * pi = \<theta>"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4110
    using x by blast
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4111
  moreover have "pi/2 = \<theta>"
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  4112
    using pi_half_ge_zero uniq by fastforce
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4113
  ultimately show ?thesis
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4114
    by (rule_tac x = "Suc (2 * n)" in exI) (simp add: algebra_simps)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4115
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4116
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4117
lemma sin_zero_lemma:
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4118
  assumes "0 \<le> x" "sin x = 0"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4119
  shows "\<exists>n::nat. even n \<and> x = real n * (pi/2)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4120
proof -
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4121
  obtain n where "odd n" and n: "x + pi/2 = of_nat n * (pi/2)" "n > 0"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4122
    using cos_zero_lemma [of "x + pi/2"] assms by (auto simp add: cos_add)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4123
  then have "x = real (n - 1) * (pi/2)"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4124
    by (simp add: algebra_simps of_nat_diff)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4125
  then show ?thesis
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4126
    by (simp add: \<open>odd n\<close>)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4127
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4128
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4129
lemma cos_zero_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4130
  "cos x = 0 \<longleftrightarrow> ((\<exists>n. odd n \<and> x = real n * (pi/2)) \<or> (\<exists>n. odd n \<and> x = - (real n * (pi/2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4131
  (is "?lhs = ?rhs")
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  4132
proof -
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4133
  have *: "cos (real n * pi/2) = 0" if "odd n" for n :: nat
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4134
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4135
    from that obtain m where "n = 2 * m + 1" ..
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4136
    then show ?thesis
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4137
      by (simp add: field_simps) (simp add: cos_add add_divide_distrib)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4138
  qed
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  4139
  show ?thesis
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4140
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4141
    show ?rhs if ?lhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4142
      using that cos_zero_lemma [of x] cos_zero_lemma [of "-x"] by force
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4143
    show ?lhs if ?rhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4144
      using that by (auto dest: * simp del: eq_divide_eq_numeral1)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4145
  qed
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  4146
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4147
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4148
lemma sin_zero_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4149
  "sin x = 0 \<longleftrightarrow> ((\<exists>n. even n \<and> x = real n * (pi/2)) \<or> (\<exists>n. even n \<and> x = - (real n * (pi/2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4150
  (is "?lhs = ?rhs")
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4151
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4152
  show ?rhs if ?lhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4153
    using that sin_zero_lemma [of x] sin_zero_lemma [of "-x"] by force
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4154
  show ?lhs if ?rhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4155
    using that by (auto elim: evenE)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4156
qed
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4157
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4158
lemma sin_zero_pi_iff:
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4159
  fixes x::real
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4160
  assumes "\<bar>x\<bar> < pi"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4161
  shows "sin x = 0 \<longleftrightarrow> x = 0"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4162
proof
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4163
  show "x = 0" if "sin x = 0"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4164
    using that assms by (auto simp: sin_zero_iff)
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4165
qed auto
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4166
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4167
lemma cos_zero_iff_int: "cos x = 0 \<longleftrightarrow> (\<exists>i. odd i \<and> x = of_int i * (pi/2))"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4168
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4169
  have 1: "\<And>n. odd n \<Longrightarrow> \<exists>i. odd i \<and> real n = real_of_int i"
74592
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73932
diff changeset
  4170
    by (metis even_of_nat_iff of_int_of_nat_eq)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4171
  have 2: "\<And>n. odd n \<Longrightarrow> \<exists>i. odd i \<and> - (real n * pi) = real_of_int i * pi"
74592
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73932
diff changeset
  4172
    by (metis even_minus even_of_nat_iff mult.commute mult_minus_right of_int_minus of_int_of_nat_eq)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4173
  have 3: "\<lbrakk>odd i;  \<forall>n. even n \<or> real_of_int i \<noteq> - (real n)\<rbrakk>
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4174
         \<Longrightarrow> \<exists>n. odd n \<and> real_of_int i = real n" for i
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4175
    by (cases i rule: int_cases2) auto
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4176
  show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4177
    by (force simp: cos_zero_iff intro!: 1 2 3)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4178
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4179
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4180
lemma sin_zero_iff_int: "sin x = 0 \<longleftrightarrow> (\<exists>i. even i \<and> x = of_int i * (pi/2))" (is "?lhs = ?rhs")
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4181
proof safe
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4182
  assume ?lhs
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4183
  then consider (plus) n where "even n" "x = real n * (pi/2)" | (minus) n where "even n"  "x = - (real n * (pi/2))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4184
    using sin_zero_iff by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4185
  then show "\<exists>n. even n \<and> x = of_int n * (pi/2)"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4186
  proof cases
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4187
    case plus
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4188
    then show ?rhs
74592
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73932
diff changeset
  4189
      by (metis even_of_nat_iff of_int_of_nat_eq)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4190
  next
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4191
    case minus
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4192
    then show ?thesis
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4193
      by (rule_tac x="- (int n)" in exI) simp
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4194
  qed
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4195
next
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4196
  fix i :: int
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4197
  assume "even i"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4198
  then show "sin (of_int i * (pi/2)) = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4199
    by (cases i rule: int_cases2, simp_all add: sin_zero_iff)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4200
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4201
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4202
lemma sin_zero_iff_int2: "sin x = 0 \<longleftrightarrow> (\<exists>i::int. x = of_int i * pi)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4203
proof -
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4204
  have "sin x = 0 \<longleftrightarrow> (\<exists>i. even i \<and> x = real_of_int i * (pi/2))"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4205
    by (auto simp: sin_zero_iff_int)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4206
  also have "... = (\<exists>j. x = real_of_int (2*j) * (pi/2))"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4207
    using dvd_triv_left by blast
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4208
  also have "... = (\<exists>i::int. x = of_int i * pi)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4209
    by auto
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4210
  finally show ?thesis .
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4211
qed
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4212
77230
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4213
lemma cos_zero_iff_int2:
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4214
  fixes x::real
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4215
  shows "cos x = 0 \<longleftrightarrow> (\<exists>n::int. x = n * pi +  pi/2)"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4216
  using sin_zero_iff_int2[of "x-pi/2"] unfolding sin_cos_eq 
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4217
  by (auto simp add: algebra_simps)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4218
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4219
lemma sin_npi_int [simp]: "sin (pi * of_int n) = 0"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4220
  by (simp add: sin_zero_iff_int2)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4221
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4222
lemma cos_monotone_0_pi:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4223
  assumes "0 \<le> y" and "y < x" and "x \<le> pi"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4224
  shows "cos x < cos y"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4225
proof -
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  4226
  have "- (x - y) < 0" using assms by auto
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4227
  from MVT2[OF \<open>y < x\<close> DERIV_cos]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4228
  obtain z where "y < z" and "z < x" and cos_diff: "cos x - cos y = (x - y) * - sin z"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4229
    by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4230
  then have "0 < z" and "z < pi"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4231
    using assms by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4232
  then have "0 < sin z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4233
    using sin_gt_zero by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4234
  then have "cos x - cos y < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4235
    unfolding cos_diff minus_mult_commute[symmetric]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4236
    using \<open>- (x - y) < 0\<close> by (rule mult_pos_neg2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4237
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4238
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4239
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4240
lemma cos_monotone_0_pi_le:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4241
  assumes "0 \<le> y" and "y \<le> x" and "x \<le> pi"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4242
  shows "cos x \<le> cos y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4243
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4244
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4245
  show ?thesis
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4246
    using cos_monotone_0_pi[OF \<open>0 \<le> y\<close> True \<open>x \<le> pi\<close>] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4247
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4248
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4249
  then have "y = x" using \<open>y \<le> x\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4250
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4251
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4252
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4253
lemma cos_monotone_minus_pi_0:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4254
  assumes "- pi \<le> y" and "y < x" and "x \<le> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4255
  shows "cos y < cos x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4256
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4257
  have "0 \<le> - x" and "- x < - y" and "- y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4258
    using assms by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4259
  from cos_monotone_0_pi[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4260
    unfolding cos_minus .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4261
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4262
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4263
lemma cos_monotone_minus_pi_0':
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4264
  assumes "- pi \<le> y" and "y \<le> x" and "x \<le> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4265
  shows "cos y \<le> cos x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4266
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4267
  case True
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4268
  show ?thesis using cos_monotone_minus_pi_0[OF \<open>-pi \<le> y\<close> True \<open>x \<le> 0\<close>]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4269
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4270
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4271
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4272
  then have "y = x" using \<open>y \<le> x\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4273
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4274
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4275
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4276
lemma sin_monotone_2pi:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4277
  assumes "- (pi/2) \<le> y" and "y < x" and "x \<le> pi/2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4278
  shows "sin y < sin x"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4279
  unfolding sin_cos_eq
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4280
  using assms by (auto intro: cos_monotone_0_pi)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4281
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4282
lemma sin_monotone_2pi_le:
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4283
  assumes "- (pi/2) \<le> y" and "y \<le> x" and "x \<le> pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4284
  shows "sin y \<le> sin x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4285
  by (metis assms le_less sin_monotone_2pi)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4286
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4287
lemma sin_x_le_x:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4288
  fixes x :: real
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4289
  assumes "x \<ge> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4290
  shows "sin x \<le> x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4291
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4292
  let ?f = "\<lambda>x. x - sin x"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4293
  have "\<And>u. \<lbrakk>0 \<le> u; u \<le> x\<rbrakk> \<Longrightarrow> \<exists>y. (?f has_real_derivative 1 - cos u) (at u)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4294
    by (auto intro!: derivative_eq_intros simp: field_simps)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4295
  then have "?f x \<ge> ?f 0"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4296
    by (metis cos_le_one diff_ge_0_iff_ge DERIV_nonneg_imp_nondecreasing [OF assms])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4297
  then show "sin x \<le> x" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4298
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4299
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4300
lemma sin_x_ge_neg_x:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4301
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4302
  assumes x: "x \<ge> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4303
  shows "sin x \<ge> - x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4304
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4305
  let ?f = "\<lambda>x. x + sin x"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4306
  have \<section>: "\<And>u. \<lbrakk>0 \<le> u; u \<le> x\<rbrakk> \<Longrightarrow> \<exists>y. (?f has_real_derivative 1 + cos u) (at u)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4307
    by (auto intro!: derivative_eq_intros simp: field_simps)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4308
  have "?f x \<ge> ?f 0"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4309
    by (rule DERIV_nonneg_imp_nondecreasing [OF assms]) (use \<section> real_0_le_add_iff in force)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4310
  then show "sin x \<ge> -x" by simp
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4311
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4312
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4313
lemma abs_sin_x_le_abs_x: "\<bar>sin x\<bar> \<le> \<bar>x\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4314
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4315
  using sin_x_ge_neg_x [of x] sin_x_le_x [of x] sin_x_ge_neg_x [of "-x"] sin_x_le_x [of "-x"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4316
  by (auto simp: abs_real_def)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4317
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4318
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4319
subsection \<open>More Corollaries about Sine and Cosine\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4320
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4321
lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi/2) = (-1) ^ n"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4322
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4323
  have "sin ((real n + 1/2) * pi) = cos (real n * pi)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4324
    by (auto simp: algebra_simps sin_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4325
  then show ?thesis
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4326
    by (simp add: distrib_right add_divide_distrib add.commute mult.commute [of pi])
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4327
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4328
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4329
lemma cos_2npi [simp]: "cos (2 * real n * pi) = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4330
  for n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4331
  by (cases "even n") (simp_all add: cos_double mult.assoc)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4332
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4333
lemma cos_3over2_pi [simp]: "cos (3/2*pi) = 0"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4334
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4335
  have "cos (3/2*pi) = cos (pi + pi/2)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4336
    by simp
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4337
  also have "... = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4338
    by (subst cos_add, simp)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4339
  finally show ?thesis .
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4340
qed
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4341
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4342
lemma sin_2npi [simp]: "sin (2 * real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4343
  for n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4344
  by (auto simp: mult.assoc sin_double)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4345
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4346
lemma sin_3over2_pi [simp]: "sin (3/2*pi) = - 1"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4347
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4348
  have "sin (3/2*pi) = sin (pi + pi/2)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4349
    by simp
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4350
  also have "... = -1"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4351
    by (subst sin_add, simp)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4352
  finally show ?thesis .
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4353
qed
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4354
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4355
lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4356
  by (simp only: cos_add sin_add of_nat_Suc distrib_right distrib_left add_divide_distrib, auto)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4357
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4358
lemma DERIV_cos_add [simp]: "DERIV (\<lambda>x. cos (x + k)) xa :> - sin (xa + k)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4359
  by (auto intro!: derivative_eq_intros)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4360
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4361
lemma sin_zero_norm_cos_one:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4362
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4363
  assumes "sin x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4364
  shows "norm (cos x) = 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4365
  using sin_cos_squared_add [of x, unfolded assms]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4366
  by (simp add: square_norm_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4367
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4368
lemma sin_zero_abs_cos_one: "sin x = 0 \<Longrightarrow> \<bar>cos x\<bar> = (1::real)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4369
  using sin_zero_norm_cos_one by fastforce
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4370
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4371
lemma cos_one_sin_zero:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4372
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4373
  assumes "cos x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4374
  shows "sin x = 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4375
  using sin_cos_squared_add [of x, unfolded assms]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4376
  by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4377
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4378
lemma sin_times_pi_eq_0: "sin (x * pi) = 0 \<longleftrightarrow> x \<in> \<int>"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4379
  by (simp add: sin_zero_iff_int2) (metis Ints_cases Ints_of_int)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4380
67091
1393c2340eec more symbols;
wenzelm
parents: 66827
diff changeset
  4381
lemma cos_one_2pi: "cos x = 1 \<longleftrightarrow> (\<exists>n::nat. x = n * 2 * pi) \<or> (\<exists>n::nat. x = - (n * 2 * pi))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4382
  (is "?lhs = ?rhs")
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4383
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4384
  assume ?lhs
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4385
  then have "sin x = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4386
    by (simp add: cos_one_sin_zero)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4387
  then show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4388
  proof (simp only: sin_zero_iff, elim exE disjE conjE)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4389
    fix n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4390
    assume n: "even n" "x = real n * (pi/2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4391
    then obtain m where m: "n = 2 * m"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4392
      using dvdE by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4393
    then have me: "even m" using \<open>?lhs\<close> n
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4394
      by (auto simp: field_simps) (metis one_neq_neg_one  power_minus_odd power_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4395
    show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4396
      using m me n
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4397
      by (auto simp: field_simps elim!: evenE)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4398
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4399
    fix n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4400
    assume n: "even n" "x = - (real n * (pi/2))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4401
    then obtain m where m: "n = 2 * m"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4402
      using dvdE by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4403
    then have me: "even m" using \<open>?lhs\<close> n
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4404
      by (auto simp: field_simps) (metis one_neq_neg_one  power_minus_odd power_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4405
    show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4406
      using m me n
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4407
      by (auto simp: field_simps elim!: evenE)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4408
  qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4409
next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4410
  assume ?rhs
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4411
  then show "cos x = 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4412
    by (metis cos_2npi cos_minus mult.assoc mult.left_commute)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4413
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4414
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4415
lemma cos_one_2pi_int: "cos x = 1 \<longleftrightarrow> (\<exists>n::int. x = n * 2 * pi)" (is "?lhs = ?rhs")
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4416
proof
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4417
  assume "cos x = 1"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4418
  then show ?rhs
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4419
    by (metis cos_one_2pi mult.commute mult_minus_right of_int_minus of_int_of_nat_eq)
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4420
next
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4421
  assume ?rhs
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4422
  then show "cos x = 1"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4423
    by (clarsimp simp add: cos_one_2pi) (metis mult_minus_right of_int_of_nat)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4424
qed
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4425
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4426
lemma cos_npi_int [simp]:
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4427
  fixes n::int shows "cos (pi * of_int n) = (if even n then 1 else -1)"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4428
    by (auto simp: algebra_simps cos_one_2pi_int elim!: oddE evenE)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4429
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4430
lemma sin_cos_sqrt: "0 \<le> sin x \<Longrightarrow> sin x = sqrt (1 - (cos(x) ^ 2))"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4431
  using sin_squared_eq real_sqrt_unique by fastforce
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4432
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4433
lemma sin_eq_0_pi: "- pi < x \<Longrightarrow> x < pi \<Longrightarrow> sin x = 0 \<Longrightarrow> x = 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4434
  by (metis sin_gt_zero sin_minus minus_less_iff neg_0_less_iff_less not_less_iff_gr_or_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4435
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4436
lemma cos_treble_cos: "cos (3 * x) = 4 * cos x ^ 3 - 3 * cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4437
  for x :: "'a::{real_normed_field,banach}"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4438
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4439
  have *: "(sin x * (sin x * 3)) = 3 - (cos x * (cos x * 3))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4440
    by (simp add: mult.assoc [symmetric] sin_squared_eq [unfolded power2_eq_square])
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4441
  have "cos(3 * x) = cos(2*x + x)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4442
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4443
  also have "\<dots> = 4 * cos x ^ 3 - 3 * cos x"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4444
    unfolding cos_add cos_double sin_double
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4445
    by (simp add: * field_simps power2_eq_square power3_eq_cube)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4446
  finally show ?thesis .
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4447
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4448
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4449
lemma cos_45: "cos (pi/4) = sqrt 2 / 2"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4450
proof -
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4451
  let ?c = "cos (pi/4)"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4452
  let ?s = "sin (pi/4)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4453
  have nonneg: "0 \<le> ?c"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4454
    by (simp add: cos_ge_zero)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4455
  have "0 = cos (pi/4 + pi/4)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4456
    by simp
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4457
  also have "cos (pi/4 + pi/4) = ?c\<^sup>2 - ?s\<^sup>2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4458
    by (simp only: cos_add power2_eq_square)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4459
  also have "\<dots> = 2 * ?c\<^sup>2 - 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4460
    by (simp add: sin_squared_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4461
  finally have "?c\<^sup>2 = (sqrt 2 / 2)\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4462
    by (simp add: power_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4463
  then show ?thesis
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4464
    using nonneg by (rule power2_eq_imp_eq) simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4465
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4466
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4467
lemma cos_30: "cos (pi/6) = sqrt 3/2"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4468
proof -
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4469
  let ?c = "cos (pi/6)"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4470
  let ?s = "sin (pi/6)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4471
  have pos_c: "0 < ?c"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4472
    by (rule cos_gt_zero) simp_all
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4473
  have "0 = cos (pi/6 + pi/6 + pi/6)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4474
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4475
  also have "\<dots> = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4476
    by (simp only: cos_add sin_add)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4477
  also have "\<dots> = ?c * (?c\<^sup>2 - 3 * ?s\<^sup>2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4478
    by (simp add: algebra_simps power2_eq_square)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4479
  finally have "?c\<^sup>2 = (sqrt 3/2)\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4480
    using pos_c by (simp add: sin_squared_eq power_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4481
  then show ?thesis
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4482
    using pos_c [THEN order_less_imp_le]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4483
    by (rule power2_eq_imp_eq) simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4484
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4485
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4486
lemma sin_45: "sin (pi/4) = sqrt 2 / 2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4487
  by (simp add: sin_cos_eq cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4488
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4489
lemma sin_60: "sin (pi/3) = sqrt 3/2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4490
  by (simp add: sin_cos_eq cos_30)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4491
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4492
lemma cos_60: "cos (pi/3) = 1/2"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4493
proof -
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4494
  have "0 \<le> cos (pi/3)"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4495
    by (rule cos_ge_zero) (use pi_half_ge_zero in \<open>linarith+\<close>)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4496
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4497
    by (simp add: cos_squared_eq sin_60 power_divide power2_eq_imp_eq)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4498
qed
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4499
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4500
lemma sin_30: "sin (pi/6) = 1/2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4501
  by (simp add: sin_cos_eq cos_60)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4502
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4503
lemma cos_120: "cos (2 * pi/3) = -1/2"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4504
  and sin_120: "sin (2 * pi/3) = sqrt 3 / 2"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4505
  using sin_double[of "pi/3"] cos_double[of "pi/3"]
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4506
  by (simp_all add: power2_eq_square sin_60 cos_60)
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4507
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4508
lemma cos_120': "cos (pi * 2 / 3) = -1/2"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4509
  using cos_120 by (subst mult.commute)
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4510
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4511
lemma sin_120': "sin (pi * 2 / 3) = sqrt 3 / 2"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4512
  using sin_120 by (subst mult.commute)
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4513
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4514
lemma cos_integer_2pi: "n \<in> \<int> \<Longrightarrow> cos(2 * pi * n) = 1"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4515
  by (metis Ints_cases cos_one_2pi_int mult.assoc mult.commute)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4516
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4517
lemma sin_integer_2pi: "n \<in> \<int> \<Longrightarrow> sin(2 * pi * n) = 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4518
  by (metis sin_two_pi Ints_mult mult.assoc mult.commute sin_times_pi_eq_0)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4519
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  4520
lemma cos_int_2pin [simp]: "cos ((2 * pi) * of_int n) = 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4521
  by (simp add: cos_one_2pi_int)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4522
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  4523
lemma sin_int_2pin [simp]: "sin ((2 * pi) * of_int n) = 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  4524
  by (metis Ints_of_int sin_integer_2pi)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4525
78890
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4526
lemma sin_cos_eq_iff: "sin y = sin x \<and> cos y = cos x \<longleftrightarrow> (\<exists>n::int. y = x + 2 * pi * n)" (is "?L=?R")
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4527
proof
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4528
  assume ?L
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4529
  then have "cos (y-x) = 1"
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4530
    using cos_add [of y "-x"] by simp
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4531
  then show ?R
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4532
    by (metis cos_one_2pi_int add.commute diff_add_cancel mult.assoc mult.commute) 
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4533
next
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4534
  assume ?R
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4535
  then show ?L
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4536
    by (auto simp: sin_add cos_add)
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4537
qed
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4538
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4539
lemma sincos_principal_value: "\<exists>y. (- pi < y \<and> y \<le> pi) \<and> (sin y = sin x \<and> cos y = cos x)"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4540
proof -
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4541
  define y where "y \<equiv> pi - (2 * pi) * frac ((pi - x) / (2 * pi))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4542
  have "-pi < y"" y \<le> pi"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4543
    by (auto simp: field_simps frac_lt_1 y_def)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4544
  moreover
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4545
  have "sin y = sin x" "cos y = cos x"
78890
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4546
    by (simp_all add: y_def frac_def divide_simps sin_add cos_add mult_of_int_commute)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4547
  ultimately
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4548
  show ?thesis by metis
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4549
qed
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4550
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4551
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4552
subsection \<open>Tangent\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4553
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4554
definition tan :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4555
  where "tan = (\<lambda>x. sin x / cos x)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4556
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4557
lemma tan_of_real: "of_real (tan x) = (tan (of_real x) :: 'a::{real_normed_field,banach})"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4558
  by (simp add: tan_def sin_of_real cos_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4559
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4560
lemma tan_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> tan z \<in> \<real>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4561
  for z :: "'a::{real_normed_field,banach}"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4562
  by (simp add: tan_def)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4563
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4564
lemma tan_zero [simp]: "tan 0 = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4565
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4566
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4567
lemma tan_pi [simp]: "tan pi = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4568
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4569
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4570
lemma tan_npi [simp]: "tan (real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4571
  for n :: nat
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4572
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4573
77230
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4574
lemma tan_pi_half [simp]: "tan (pi / 2) = 0"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4575
  by (simp add: tan_def)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4576
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4577
lemma tan_minus [simp]: "tan (- x) = - tan x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4578
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4579
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4580
lemma tan_periodic [simp]: "tan (x + 2 * pi) = tan x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4581
  by (simp add: tan_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4582
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4583
lemma lemma_tan_add1: "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> 1 - tan x * tan y = cos (x + y)/(cos x * cos y)"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4584
  by (simp add: tan_def cos_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4585
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4586
lemma add_tan_eq: "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> tan x + tan y = sin(x + y)/(cos x * cos y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4587
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4588
  by (simp add: tan_def sin_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4589
77230
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4590
lemma tan_eq_0_cos_sin: "tan x = 0 \<longleftrightarrow> cos x = 0 \<or> sin x = 0"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4591
  by (auto simp: tan_def)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4592
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4593
text \<open>Note: half of these zeros would normally be regarded as undefined cases.\<close>
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4594
lemma tan_eq_0_Ex:
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4595
  assumes "tan x = 0"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4596
  obtains k::int where "x = (k/2) * pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4597
  using assms
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4598
  by (metis cos_zero_iff_int mult.commute sin_zero_iff_int tan_eq_0_cos_sin times_divide_eq_left) 
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4599
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4600
lemma tan_add:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4601
  "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> cos (x + y) \<noteq> 0 \<Longrightarrow> tan (x + y) = (tan x + tan y)/(1 - tan x * tan y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4602
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4603
  by (simp add: add_tan_eq lemma_tan_add1 field_simps) (simp add: tan_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4604
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4605
lemma tan_double: "cos x \<noteq> 0 \<Longrightarrow> cos (2 * x) \<noteq> 0 \<Longrightarrow> tan (2 * x) = (2 * tan x) / (1 - (tan x)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4606
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4607
  using tan_add [of x x] by (simp add: power2_eq_square)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4608
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4609
lemma tan_gt_zero: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < tan x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4610
  by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4611
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4612
lemma tan_less_zero:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4613
  assumes "- pi/2 < x" and "x < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4614
  shows "tan x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4615
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4616
  have "0 < tan (- x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4617
    using assms by (simp only: tan_gt_zero)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4618
  then show ?thesis by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4619
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4620
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4621
lemma tan_half: "tan x = sin (2 * x) / (cos (2 * x) + 1)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4622
  for x :: "'a::{real_normed_field,banach,field}"
44756
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  4623
  unfolding tan_def sin_double cos_double sin_squared_eq
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  4624
  by (simp add: power2_eq_square)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4625
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4626
lemma tan_30: "tan (pi/6) = 1 / sqrt 3"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4627
  unfolding tan_def by (simp add: sin_30 cos_30)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4628
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4629
lemma tan_45: "tan (pi/4) = 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4630
  unfolding tan_def by (simp add: sin_45 cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4631
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4632
lemma tan_60: "tan (pi/3) = sqrt 3"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4633
  unfolding tan_def by (simp add: sin_60 cos_60)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4634
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4635
lemma DERIV_tan [simp]: "cos x \<noteq> 0 \<Longrightarrow> DERIV tan x :> inverse ((cos x)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4636
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4637
  unfolding tan_def
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  4638
  by (auto intro!: derivative_eq_intros, simp add: divide_inverse power2_eq_square)
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4639
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4640
declare DERIV_tan[THEN DERIV_chain2, derivative_intros]
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4641
  and DERIV_tan[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4642
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  4643
lemmas has_derivative_tan[derivative_intros] = DERIV_tan[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  4644
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4645
lemma isCont_tan: "cos x \<noteq> 0 \<Longrightarrow> isCont tan x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4646
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4647
  by (rule DERIV_tan [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4648
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4649
lemma isCont_tan' [simp,continuous_intros]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4650
  fixes a :: "'a::{real_normed_field,banach}" and f :: "'a \<Rightarrow> 'a"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4651
  shows "isCont f a \<Longrightarrow> cos (f a) \<noteq> 0 \<Longrightarrow> isCont (\<lambda>x. tan (f x)) a"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4652
  by (rule isCont_o2 [OF _ isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4653
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4654
lemma tendsto_tan [tendsto_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4655
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4656
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> cos a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. tan (f x)) \<longlongrightarrow> tan a) F"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4657
  by (rule isCont_tendsto_compose [OF isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4658
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4659
lemma continuous_tan:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4660
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4661
  shows "continuous F f \<Longrightarrow> cos (f (Lim F (\<lambda>x. x))) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. tan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4662
  unfolding continuous_def by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4663
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4664
lemma continuous_on_tan [continuous_intros]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4665
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4666
  shows "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. cos (f x) \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. tan (f x))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4667
  unfolding continuous_on_def by (auto intro: tendsto_tan)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4668
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4669
lemma continuous_within_tan [continuous_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4670
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4671
  shows "continuous (at x within s) f \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4672
    cos (f x) \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. tan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4673
  unfolding continuous_within by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4674
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  4675
lemma LIM_cos_div_sin: "(\<lambda>x. cos(x)/sin(x)) \<midarrow>pi/2\<rightarrow> 0"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70350
diff changeset
  4676
  by (rule tendsto_cong_limit, (rule tendsto_intros)+, simp_all)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4677
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4678
lemma lemma_tan_total: 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4679
  assumes "0 < y" shows "\<exists>x. 0 < x \<and> x < pi/2 \<and> y < tan x"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4680
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4681
  obtain s where "0 < s" 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4682
    and s: "\<And>x. \<lbrakk>x \<noteq> pi/2; norm (x - pi/2) < s\<rbrakk> \<Longrightarrow> norm (cos x / sin x - 0) < inverse y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4683
    using LIM_D [OF LIM_cos_div_sin, of "inverse y"] that assms by force
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4684
  obtain e where e: "0 < e" "e < s" "e < pi/2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4685
    using \<open>0 < s\<close> field_lbound_gt_zero pi_half_gt_zero by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4686
  show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4687
  proof (intro exI conjI)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4688
    have "0 < sin e" "0 < cos e"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4689
      using e by (auto intro: cos_gt_zero sin_gt_zero2 simp: mult.commute)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4690
    then 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4691
    show "y < tan (pi/2 - e)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4692
      using s [of "pi/2 - e"] e assms
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4693
      by (simp add: tan_def sin_diff cos_diff) (simp add: field_simps split: if_split_asm)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4694
  qed (use e in auto)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4695
qed
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4696
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4697
lemma tan_total_pos: 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4698
  assumes "0 \<le> y" shows "\<exists>x. 0 \<le> x \<and> x < pi/2 \<and> tan x = y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4699
proof (cases "y = 0")
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4700
  case True
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4701
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4702
    using pi_half_gt_zero tan_zero by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4703
next
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4704
  case False
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4705
  with assms have "y > 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4706
    by linarith
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4707
  obtain x where x: "0 < x" "x < pi/2" "y < tan x"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4708
    using lemma_tan_total \<open>0 < y\<close> by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4709
  have "\<exists>u\<ge>0. u \<le> x \<and> tan u = y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4710
  proof (intro IVT allI impI)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4711
    show "isCont tan u" if "0 \<le> u \<and> u \<le> x" for u
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4712
    proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4713
      have "cos u \<noteq> 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4714
        using antisym_conv2 cos_gt_zero that x(2) by fastforce
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4715
      with assms show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4716
        by (auto intro!: DERIV_tan [THEN DERIV_isCont])
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4717
    qed
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4718
  qed (use assms x in auto)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4719
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4720
    using x(2) by auto
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4721
qed
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4722
    
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4723
lemma lemma_tan_total1: "\<exists>x. -(pi/2) < x \<and> x < (pi/2) \<and> tan x = y"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4724
proof (cases "0::real" y rule: le_cases)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4725
  case le
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4726
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4727
    by (meson less_le_trans minus_pi_half_less_zero tan_total_pos)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4728
next
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4729
  case ge
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4730
  with tan_total_pos [of "-y"] obtain x where "0 \<le> x" "x < pi/2" "tan x = - y"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4731
    by force
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4732
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4733
    by (rule_tac x="-x" in exI) auto
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4734
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4735
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4736
proposition tan_total: "\<exists>! x. -(pi/2) < x \<and> x < (pi/2) \<and> tan x = y"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4737
proof -
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4738
  have "u = v" if u: "- (pi/2) < u" "u < pi/2" and v: "- (pi/2) < v" "v < pi/2"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4739
    and eq: "tan u = tan v" for u v
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4740
  proof (cases u v rule: linorder_cases)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4741
    case less
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4742
    have "\<And>x. u \<le> x \<and> x \<le> v \<longrightarrow> isCont tan x"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4743
      by (metis cos_gt_zero_pi isCont_tan le_less_trans less_irrefl less_le_trans u(1) v(2))
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4744
    then have "continuous_on {u..v} tan"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4745
      by (simp add: continuous_at_imp_continuous_on)
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4746
    moreover have "\<And>x. u < x \<and> x < v \<Longrightarrow> tan differentiable (at x)"
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  4747
      by (metis DERIV_tan cos_gt_zero_pi real_differentiable_def less_numeral_extra(3) order.strict_trans u(1) v(2))
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4748
    ultimately obtain z where "u < z" "z < v" "DERIV tan z :> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4749
      by (metis less Rolle eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4750
    moreover have "cos z \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4751
      by (metis (no_types) \<open>u < z\<close> \<open>z < v\<close> cos_gt_zero_pi less_le_trans linorder_not_less not_less_iff_gr_or_eq u(1) v(2))
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4752
    ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4753
      using DERIV_unique [OF _ DERIV_tan] by fastforce
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4754
  next
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4755
    case greater
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4756
    have "\<And>x. v \<le> x \<and> x \<le> u \<Longrightarrow> isCont tan x"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4757
      by (metis cos_gt_zero_pi isCont_tan le_less_trans less_irrefl less_le_trans u(2) v(1))
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4758
    then have "continuous_on {v..u} tan"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4759
      by (simp add: continuous_at_imp_continuous_on)
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4760
    moreover have "\<And>x. v < x \<and> x < u \<Longrightarrow> tan differentiable (at x)"
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  4761
      by (metis DERIV_tan cos_gt_zero_pi real_differentiable_def less_numeral_extra(3) order.strict_trans u(2) v(1))
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4762
    ultimately obtain z where "v < z" "z < u" "DERIV tan z :> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4763
      by (metis greater Rolle eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4764
    moreover have "cos z \<noteq> 0"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4765
      by (metis \<open>v < z\<close> \<open>z < u\<close> cos_gt_zero_pi less_eq_real_def less_le_trans order_less_irrefl u(2) v(1))
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4766
    ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4767
      using DERIV_unique [OF _ DERIV_tan] by fastforce
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4768
  qed auto
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4769
  then have "\<exists>!x. - (pi/2) < x \<and> x < pi/2 \<and> tan x = y" 
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4770
    if x: "- (pi/2) < x" "x < pi/2" "tan x = y" for x
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4771
    using that by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4772
  then show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4773
    using lemma_tan_total1 [where y = y]
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4774
    by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4775
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4776
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4777
lemma tan_monotone:
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4778
  assumes "- (pi/2) < y" and "y < x" and "x < pi/2"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4779
  shows "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4780
proof -
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4781
  have "DERIV tan x' :> inverse ((cos x')\<^sup>2)" if "y \<le> x'" "x' \<le> x" for x'
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4782
  proof -
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4783
    have "-(pi/2) < x'" and "x' < pi/2"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4784
      using that assms by auto
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4785
    with cos_gt_zero_pi have "cos x' \<noteq> 0" by force
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4786
    then show "DERIV tan x' :> inverse ((cos x')\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4787
      by (rule DERIV_tan)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4788
  qed
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4789
  from MVT2[OF \<open>y < x\<close> this]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4790
  obtain z where "y < z" and "z < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4791
    and tan_diff: "tan x - tan y = (x - y) * inverse ((cos z)\<^sup>2)" by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4792
  then have "- (pi/2) < z" and "z < pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4793
    using assms by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4794
  then have "0 < cos z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4795
    using cos_gt_zero_pi by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4796
  then have inv_pos: "0 < inverse ((cos z)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4797
    by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4798
  have "0 < x - y" using \<open>y < x\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4799
  with inv_pos have "0 < tan x - tan y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4800
    unfolding tan_diff by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4801
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4802
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4803
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4804
lemma tan_monotone':
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4805
  assumes "- (pi/2) < y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4806
    and "y < pi/2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4807
    and "- (pi/2) < x"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4808
    and "x < pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4809
  shows "y < x \<longleftrightarrow> tan y < tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4810
proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4811
  assume "y < x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4812
  then show "tan y < tan x"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4813
    using tan_monotone and \<open>- (pi/2) < y\<close> and \<open>x < pi/2\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4814
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4815
  assume "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4816
  show "y < x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4817
  proof (rule ccontr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4818
    assume "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4819
    then have "x \<le> y" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4820
    then have "tan x \<le> tan y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4821
    proof (cases "x = y")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4822
      case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4823
      then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4824
    next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4825
      case False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4826
      then have "x < y" using \<open>x \<le> y\<close> by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4827
      from tan_monotone[OF \<open>- (pi/2) < x\<close> this \<open>y < pi/2\<close>] show ?thesis
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4828
        by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4829
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4830
    then show False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4831
      using \<open>tan y < tan x\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4832
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4833
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4834
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4835
lemma tan_inverse: "1 / (tan y) = tan (pi/2 - y)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4836
  unfolding tan_def sin_cos_eq[of y] cos_sin_eq[of y] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4837
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4838
lemma tan_periodic_pi[simp]: "tan (x + pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4839
  by (simp add: tan_def)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4840
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4841
lemma tan_periodic_nat[simp]: "tan (x + real n * pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4842
proof (induct n arbitrary: x)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4843
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4844
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4845
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4846
  case (Suc n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4847
  have split_pi_off: "x + real (Suc n) * pi = (x + real n * pi) + pi"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4848
    unfolding Suc_eq_plus1 of_nat_add  distrib_right by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4849
  show ?case
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4850
    unfolding split_pi_off using Suc by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4851
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4852
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4853
lemma tan_periodic_int[simp]: "tan (x + of_int i * pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4854
proof (cases "0 \<le> i")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4855
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4856
  then have i_nat: "of_int i = - of_int (nat (- i))" by auto
77230
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4857
  then show ?thesis
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4858
    by (smt (verit, best) mult_minus_left of_int_of_nat_eq tan_periodic_nat)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4859
qed (use zero_le_imp_eq_int in fastforce)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4860
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46240
diff changeset
  4861
lemma tan_periodic_n[simp]: "tan (x + numeral n * pi) = tan x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4862
  using tan_periodic_int[of _ "numeral n" ] by simp
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4863
77230
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4864
lemma tan_minus_45 [simp]: "tan (-(pi/4)) = -1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4865
  unfolding tan_def by (simp add: sin_45 cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4866
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4867
lemma tan_diff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4868
  "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> cos (x - y) \<noteq> 0 \<Longrightarrow> tan (x - y) = (tan x - tan y)/(1 + tan x * tan y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4869
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4870
  using tan_add [of x "-y"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4871
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4872
lemma tan_pos_pi2_le: "0 \<le> x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 \<le> tan x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4873
  using less_eq_real_def tan_gt_zero by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4874
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4875
lemma cos_tan: "\<bar>x\<bar> < pi/2 \<Longrightarrow> cos x = 1 / sqrt (1 + tan x ^ 2)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4876
  using cos_gt_zero_pi [of x]
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  4877
  by (simp add: field_split_simps tan_def real_sqrt_divide abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4878
77089
b4f892d0625d Some new material from the AFP
paulson <lp15@cam.ac.uk>
parents: 76819
diff changeset
  4879
lemma cos_tan_half: "cos x \<noteq>0 \<Longrightarrow>  cos (2*x) = (1 - (tan x)^2) / (1 + (tan x)^2)"
b4f892d0625d Some new material from the AFP
paulson <lp15@cam.ac.uk>
parents: 76819
diff changeset
  4880
  unfolding cos_double tan_def by (auto simp add:field_simps )
b4f892d0625d Some new material from the AFP
paulson <lp15@cam.ac.uk>
parents: 76819
diff changeset
  4881
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4882
lemma sin_tan: "\<bar>x\<bar> < pi/2 \<Longrightarrow> sin x = tan x / sqrt (1 + tan x ^ 2)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4883
  using cos_gt_zero [of "x"] cos_gt_zero [of "-x"]
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  4884
  by (force simp: field_split_simps tan_def real_sqrt_divide abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4885
77089
b4f892d0625d Some new material from the AFP
paulson <lp15@cam.ac.uk>
parents: 76819
diff changeset
  4886
lemma sin_tan_half: "sin (2*x) = 2 * tan x / (1 + (tan x)^2)"
b4f892d0625d Some new material from the AFP
paulson <lp15@cam.ac.uk>
parents: 76819
diff changeset
  4887
  unfolding sin_double tan_def
b4f892d0625d Some new material from the AFP
paulson <lp15@cam.ac.uk>
parents: 76819
diff changeset
  4888
  by (cases "cos x=0") (auto simp add:field_simps power2_eq_square)
b4f892d0625d Some new material from the AFP
paulson <lp15@cam.ac.uk>
parents: 76819
diff changeset
  4889
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4890
lemma tan_mono_le: "-(pi/2) < x \<Longrightarrow> x \<le> y \<Longrightarrow> y < pi/2 \<Longrightarrow> tan x \<le> tan y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4891
  using less_eq_real_def tan_monotone by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4892
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4893
lemma tan_mono_lt_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4894
  "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> -(pi/2) < y \<Longrightarrow> y < pi/2 \<Longrightarrow> tan x < tan y \<longleftrightarrow> x < y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4895
  using tan_monotone' by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4896
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4897
lemma tan_mono_le_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4898
  "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> -(pi/2) < y \<Longrightarrow> y < pi/2 \<Longrightarrow> tan x \<le> tan y \<longleftrightarrow> x \<le> y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4899
  by (meson tan_mono_le not_le tan_monotone)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4900
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  4901
lemma tan_bound_pi2: "\<bar>x\<bar> < pi/4 \<Longrightarrow> \<bar>tan x\<bar> < 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4902
  using tan_45 tan_monotone [of x "pi/4"] tan_monotone [of "-x" "pi/4"]
62390
842917225d56 more canonical names
nipkow
parents: 62379
diff changeset
  4903
  by (auto simp: abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4904
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4905
lemma tan_cot: "tan(pi/2 - x) = inverse(tan x)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4906
  by (simp add: tan_def sin_diff cos_diff)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4907
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4908
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4909
subsection \<open>Cotangent\<close>
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4910
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4911
definition cot :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4912
  where "cot = (\<lambda>x. cos x / sin x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4913
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4914
lemma cot_of_real: "of_real (cot x) = (cot (of_real x) :: 'a::{real_normed_field,banach})"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4915
  by (simp add: cot_def sin_of_real cos_of_real)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4916
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4917
lemma cot_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> cot z \<in> \<real>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4918
  for z :: "'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4919
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4920
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4921
lemma cot_zero [simp]: "cot 0 = 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4922
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4923
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4924
lemma cot_pi [simp]: "cot pi = 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4925
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4926
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4927
lemma cot_npi [simp]: "cot (real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4928
  for n :: nat
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4929
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4930
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4931
lemma cot_minus [simp]: "cot (- x) = - cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4932
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4933
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4934
lemma cot_periodic [simp]: "cot (x + 2 * pi) = cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4935
  by (simp add: cot_def)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4936
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4937
lemma cot_altdef: "cot x = inverse (tan x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4938
  by (simp add: cot_def tan_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4939
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4940
lemma tan_altdef: "tan x = inverse (cot x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4941
  by (simp add: cot_def tan_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4942
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4943
lemma tan_cot': "tan (pi/2 - x) = cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4944
  by (simp add: tan_cot cot_altdef)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4945
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4946
lemma cot_gt_zero: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4947
  by (simp add: cot_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4948
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4949
lemma cot_less_zero:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4950
  assumes lb: "- pi/2 < x" and "x < 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4951
  shows "cot x < 0"
77230
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4952
  by (smt (verit) assms cot_gt_zero cot_minus divide_minus_left)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4953
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4954
lemma DERIV_cot [simp]: "sin x \<noteq> 0 \<Longrightarrow> DERIV cot x :> -inverse ((sin x)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4955
  for x :: "'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4956
  unfolding cot_def using cos_squared_eq[of x]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4957
  by (auto intro!: derivative_eq_intros) (simp add: divide_inverse power2_eq_square)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4958
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4959
lemma isCont_cot: "sin x \<noteq> 0 \<Longrightarrow> isCont cot x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4960
  for x :: "'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4961
  by (rule DERIV_cot [THEN DERIV_isCont])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4962
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4963
lemma isCont_cot' [simp,continuous_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4964
  "isCont f a \<Longrightarrow> sin (f a) \<noteq> 0 \<Longrightarrow> isCont (\<lambda>x. cot (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4965
  for a :: "'a::{real_normed_field,banach}" and f :: "'a \<Rightarrow> 'a"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4966
  by (rule isCont_o2 [OF _ isCont_cot])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4967
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4968
lemma tendsto_cot [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> sin a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. cot (f x)) \<longlongrightarrow> cot a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4969
  for f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4970
  by (rule isCont_tendsto_compose [OF isCont_cot])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4971
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4972
lemma continuous_cot:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4973
  "continuous F f \<Longrightarrow> sin (f (Lim F (\<lambda>x. x))) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. cot (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4974
  for f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4975
  unfolding continuous_def by (rule tendsto_cot)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4976
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4977
lemma continuous_on_cot [continuous_intros]:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4978
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4979
  shows "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. sin (f x) \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. cot (f x))"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4980
  unfolding continuous_on_def by (auto intro: tendsto_cot)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4981
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4982
lemma continuous_within_cot [continuous_intros]:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4983
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4984
  shows "continuous (at x within s) f \<Longrightarrow> sin (f x) \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. cot (f x))"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4985
  unfolding continuous_within by (rule tendsto_cot)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4986
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4987
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4988
subsection \<open>Inverse Trigonometric Functions\<close>
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4989
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4990
definition arcsin :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4991
  where "arcsin y = (THE x. -(pi/2) \<le> x \<and> x \<le> pi/2 \<and> sin x = y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4992
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4993
definition arccos :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4994
  where "arccos y = (THE x. 0 \<le> x \<and> x \<le> pi \<and> cos x = y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4995
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4996
definition arctan :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4997
  where "arctan y = (THE x. -(pi/2) < x \<and> x < pi/2 \<and> tan x = y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4998
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4999
lemma arcsin: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y \<and> arcsin y \<le> pi/2 \<and> sin (arcsin y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5000
  unfolding arcsin_def by (rule theI' [OF sin_total])
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  5001
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5002
lemma arcsin_pi: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y \<and> arcsin y \<le> pi \<and> sin (arcsin y) = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5003
  by (drule (1) arcsin) (force intro: order_trans)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5004
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5005
lemma sin_arcsin [simp]: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> sin (arcsin y) = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5006
  by (blast dest: arcsin)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5007
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5008
lemma arcsin_bounded: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y \<and> arcsin y \<le> pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5009
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5010
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5011
lemma arcsin_lbound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5012
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5013
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5014
lemma arcsin_ubound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin y \<le> pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5015
  by (blast dest: arcsin)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5016
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5017
lemma arcsin_lt_bounded:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5018
  assumes "- 1 < y" "y < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5019
  shows  "- (pi/2) < arcsin y \<and> arcsin y < pi/2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5020
proof -
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5021
  have "arcsin y \<noteq> pi/2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5022
    by (metis arcsin assms not_less not_less_iff_gr_or_eq sin_pi_half)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5023
  moreover have "arcsin y \<noteq> - pi/2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5024
    by (metis arcsin assms minus_divide_left not_less not_less_iff_gr_or_eq sin_minus sin_pi_half)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5025
  ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5026
    using arcsin_bounded [of y] assms by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5027
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5028
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5029
lemma arcsin_sin: "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> arcsin (sin x) = x"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5030
  unfolding arcsin_def
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5031
  using the1_equality [OF sin_total]  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5032
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5033
lemma arcsin_unique:
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5034
  assumes "-pi/2 \<le> x" and "x \<le> pi/2" and "sin x = y" shows "arcsin y = x"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5035
  using arcsin_sin[of x] assms by force
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5036
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5037
lemma arcsin_0 [simp]: "arcsin 0 = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5038
  using arcsin_sin [of 0] by simp
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5039
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5040
lemma arcsin_1 [simp]: "arcsin 1 = pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5041
  using arcsin_sin [of "pi/2"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5042
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5043
lemma arcsin_minus_1 [simp]: "arcsin (- 1) = - (pi/2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5044
  using arcsin_sin [of "- pi/2"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5045
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5046
lemma arcsin_minus: "- 1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arcsin (- x) = - arcsin x"
73932
fd21b4a93043 added opaque_combs and renamed hide_lams to opaque_lifting
desharna
parents: 72980
diff changeset
  5047
  by (metis (no_types, opaque_lifting) arcsin arcsin_sin minus_minus neg_le_iff_le sin_minus)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5048
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5049
lemma arcsin_one_half [simp]: "arcsin (1/2) = pi / 6"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5050
  and arcsin_minus_one_half [simp]: "arcsin (-(1/2)) = -pi / 6"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5051
  by (intro arcsin_unique; simp add: sin_30 field_simps)+
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5052
  
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5053
lemma arcsin_one_over_sqrt_2: "arcsin (1 / sqrt 2) = pi / 4"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5054
  by (rule arcsin_unique) (auto simp: sin_45 field_simps)
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5055
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5056
lemma arcsin_eq_iff: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arcsin x = arcsin y \<longleftrightarrow> x = y"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  5057
  by (metis abs_le_iff arcsin minus_le_iff)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5058
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5059
lemma cos_arcsin_nonzero: "- 1 < x \<Longrightarrow> x < 1 \<Longrightarrow> cos (arcsin x) \<noteq> 0"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5060
  using arcsin_lt_bounded cos_gt_zero_pi by force
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5061
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5062
lemma arccos: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> 0 \<le> arccos y \<and> arccos y \<le> pi \<and> cos (arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5063
  unfolding arccos_def by (rule theI' [OF cos_total])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5064
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5065
lemma cos_arccos [simp]: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> cos (arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5066
  by (blast dest: arccos)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5067
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5068
lemma arccos_bounded: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> 0 \<le> arccos y \<and> arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5069
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5070
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5071
lemma arccos_lbound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> 0 \<le> arccos y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5072
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5073
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5074
lemma arccos_ubound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5075
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5076
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5077
lemma arccos_lt_bounded: 
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5078
  assumes "- 1 < y" "y < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5079
  shows  "0 < arccos y \<and> arccos y < pi"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5080
proof -
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5081
  have "arccos y \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5082
    by (metis (no_types) arccos assms(1) assms(2) cos_zero less_eq_real_def less_irrefl)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5083
  moreover have "arccos y \<noteq> -pi"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5084
    by (metis arccos assms(1) assms(2) cos_minus cos_pi not_less not_less_iff_gr_or_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5085
  ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5086
    using arccos_bounded [of y] assms
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5087
    by (metis arccos cos_pi not_less not_less_iff_gr_or_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5088
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5089
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5090
lemma arccos_cos: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> arccos (cos x) = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5091
  by (auto simp: arccos_def intro!: the1_equality cos_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5092
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5093
lemma arccos_cos2: "x \<le> 0 \<Longrightarrow> - pi \<le> x \<Longrightarrow> arccos (cos x) = -x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5094
  by (auto simp: arccos_def intro!: the1_equality cos_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5095
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5096
lemma arccos_unique:
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5097
  assumes "0 \<le> x" and "x \<le> pi" and "cos x = y" shows "arccos y = x"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5098
  using arccos_cos assms by blast
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5099
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5100
lemma cos_arcsin:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5101
  assumes "- 1 \<le> x" "x \<le> 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5102
  shows "cos (arcsin x) = sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5103
proof (rule power2_eq_imp_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5104
  show "(cos (arcsin x))\<^sup>2 = (sqrt (1 - x\<^sup>2))\<^sup>2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5105
    by (simp add: square_le_1 assms cos_squared_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5106
  show "0 \<le> cos (arcsin x)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5107
    using arcsin assms cos_ge_zero by blast
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5108
  show "0 \<le> sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5109
    by (simp add: square_le_1 assms)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5110
qed
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5111
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5112
lemma sin_arccos:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5113
  assumes "- 1 \<le> x" "x \<le> 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5114
  shows "sin (arccos x) = sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5115
proof (rule power2_eq_imp_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5116
  show "(sin (arccos x))\<^sup>2 = (sqrt (1 - x\<^sup>2))\<^sup>2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5117
    by (simp add: square_le_1 assms sin_squared_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5118
  show "0 \<le> sin (arccos x)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5119
    by (simp add: arccos_bounded assms sin_ge_zero)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5120
  show "0 \<le> sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5121
    by (simp add: square_le_1 assms)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5122
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5123
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5124
lemma arccos_0 [simp]: "arccos 0 = pi/2"
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5125
  using arccos_cos pi_half_ge_zero by fastforce
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5126
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5127
lemma arccos_1 [simp]: "arccos 1 = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5128
  using arccos_cos by force
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5129
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5130
lemma arccos_minus_1 [simp]: "arccos (- 1) = pi"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5131
  by (metis arccos_cos cos_pi order_refl pi_ge_zero)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5132
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5133
lemma arccos_minus: "-1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arccos (- x) = pi - arccos x"
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5134
  by (smt (verit, ccfv_threshold) arccos arccos_cos cos_minus cos_minus_pi)
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5135
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5136
lemma arccos_one_half [simp]: "arccos (1/2) = pi / 3"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5137
  and arccos_minus_one_half [simp]: "arccos (-(1/2)) = 2 * pi / 3"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5138
  by (intro arccos_unique; simp add: cos_60 cos_120)+
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5139
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5140
lemma arccos_one_over_sqrt_2: "arccos (1 / sqrt 2) = pi / 4"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5141
  by (rule arccos_unique) (auto simp: cos_45 field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5142
65057
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5143
corollary arccos_minus_abs:
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5144
  assumes "\<bar>x\<bar> \<le> 1"
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5145
  shows "arccos (- x) = pi - arccos x"
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5146
using assms by (simp add: arccos_minus)
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5147
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5148
lemma sin_arccos_nonzero: "- 1 < x \<Longrightarrow> x < 1 \<Longrightarrow> sin (arccos x) \<noteq> 0"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5149
  using arccos_lt_bounded sin_gt_zero by force
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5150
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5151
lemma arctan: "- (pi/2) < arctan y \<and> arctan y < pi/2 \<and> tan (arctan y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5152
  unfolding arctan_def by (rule theI' [OF tan_total])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5153
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5154
lemma tan_arctan: "tan (arctan y) = y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5155
  by (simp add: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5156
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5157
lemma arctan_bounded: "- (pi/2) < arctan y \<and> arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5158
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5159
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5160
lemma arctan_lbound: "- (pi/2) < arctan y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5161
  by (simp add: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5162
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5163
lemma arctan_ubound: "arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5164
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5165
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5166
lemma arctan_unique:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5167
  assumes "-(pi/2) < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5168
    and "x < pi/2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5169
    and "tan x = y"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5170
  shows "arctan y = x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5171
  using assms arctan [of y] tan_total [of y] by (fast elim: ex1E)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5172
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5173
lemma arctan_tan: "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> arctan (tan x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5174
  by (rule arctan_unique) simp_all
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5175
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5176
lemma arctan_zero_zero [simp]: "arctan 0 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5177
  by (rule arctan_unique) simp_all
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5178
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5179
lemma arctan_minus: "arctan (- x) = - arctan x"
65057
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5180
  using arctan [of "x"] by (auto simp: arctan_unique)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5181
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5182
lemma cos_arctan_not_zero [simp]: "cos (arctan x) \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5183
  by (intro less_imp_neq [symmetric] cos_gt_zero_pi arctan_lbound arctan_ubound)
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5184
77230
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5185
lemma tan_eq_arctan_Ex:
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5186
  shows "tan x = y \<longleftrightarrow> (\<exists>k::int. x = arctan y + k*pi \<or> (x = pi/2 + k*pi \<and> y=0))"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5187
proof
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5188
  assume lhs: "tan x = y"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5189
  obtain k::int where k:"-pi/2 < x-k*pi" "x-k*pi \<le> pi/2"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5190
  proof 
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5191
    define k where "k \<equiv> ceiling (x/pi - 1/2)"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5192
    show "- pi / 2 < x - real_of_int k * pi" 
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5193
      using ceiling_divide_lower [of "pi*2" "(x * 2 - pi)"] by (auto simp: k_def field_simps)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5194
    show  "x-k*pi \<le> pi/2"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5195
      using ceiling_divide_upper [of "pi*2" "(x * 2 - pi)"] by (auto simp: k_def field_simps)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5196
  qed
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5197
  have "x = arctan y + of_int k * pi" when "x \<noteq> pi/2 + k*pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5198
  proof -
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5199
    have "tan (x - k * pi) = y" using lhs tan_periodic_int[of _ "-k"] by auto
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5200
    then have "arctan y = x - real_of_int k * pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5201
      by (smt (verit) arctan_tan lhs divide_minus_left k mult_minus_left of_int_minus tan_periodic_int that)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5202
    then show ?thesis by auto
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5203
  qed
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5204
  then show "\<exists>k. x = arctan y + of_int k * pi \<or> (x = pi/2 + k*pi \<and> y=0)"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5205
    using lhs k by force
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5206
qed (auto simp: arctan)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5207
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5208
lemma arctan_tan_eq_abs_pi:
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5209
  assumes "cos \<theta> \<noteq> 0"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5210
  obtains k where "arctan (tan \<theta>) = \<theta> - of_int k * pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5211
  by (metis add.commute assms cos_zero_iff_int2 eq_diff_eq tan_eq_arctan_Ex)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5212
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5213
lemma tan_eq:
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5214
  assumes "tan x = tan y" "tan x \<noteq> 0"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5215
  obtains k::int where "x = y + k * pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5216
proof -
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5217
  obtain k0 where k0: "x = arctan (tan y) + real_of_int k0 * pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5218
    using assms tan_eq_arctan_Ex[of x "tan y"] by auto
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5219
  obtain k1 where k1: "arctan (tan y) = y - of_int k1 * pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5220
    using arctan_tan_eq_abs_pi assms tan_eq_0_cos_sin by auto
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5221
  have "x = y + (k0-k1)*pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5222
    using k0 k1 by (auto simp: algebra_simps)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5223
  with that show ?thesis
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5224
    by blast
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5225
qed
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5226
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5227
lemma cos_arctan: "cos (arctan x) = 1 / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5228
proof (rule power2_eq_imp_eq)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5229
  have "0 < 1 + x\<^sup>2" by (simp add: add_pos_nonneg)
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5230
  show "0 \<le> 1 / sqrt (1 + x\<^sup>2)" by simp
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5231
  show "0 \<le> cos (arctan x)"
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5232
    by (intro less_imp_le cos_gt_zero_pi arctan_lbound arctan_ubound)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5233
  have "(cos (arctan x))\<^sup>2 * (1 + (tan (arctan x))\<^sup>2) = 1"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  5234
    unfolding tan_def by (simp add: distrib_left power_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5235
  then show "(cos (arctan x))\<^sup>2 = (1 / sqrt (1 + x\<^sup>2))\<^sup>2"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5236
    using \<open>0 < 1 + x\<^sup>2\<close> by (simp add: arctan power_divide eq_divide_eq)
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5237
qed
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5238
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5239
lemma sin_arctan: "sin (arctan x) = x / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5240
  using add_pos_nonneg [OF zero_less_one zero_le_power2 [of x]]
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5241
  using tan_arctan [of x] unfolding tan_def cos_arctan
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5242
  by (simp add: eq_divide_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5243
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5244
lemma tan_sec: "cos x \<noteq> 0 \<Longrightarrow> 1 + (tan x)\<^sup>2 = (inverse (cos x))\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5245
  for x :: "'a::{real_normed_field,banach,field}"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5246
  by (simp add: add_divide_eq_iff inverse_eq_divide power2_eq_square tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5247
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5248
lemma arctan_less_iff: "arctan x < arctan y \<longleftrightarrow> x < y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5249
  by (metis tan_monotone' arctan_lbound arctan_ubound tan_arctan)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5250
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5251
lemma arctan_le_iff: "arctan x \<le> arctan y \<longleftrightarrow> x \<le> y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5252
  by (simp only: not_less [symmetric] arctan_less_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5253
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5254
lemma arctan_eq_iff: "arctan x = arctan y \<longleftrightarrow> x = y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5255
  by (simp only: eq_iff [where 'a=real] arctan_le_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5256
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5257
lemma zero_less_arctan_iff [simp]: "0 < arctan x \<longleftrightarrow> 0 < x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5258
  using arctan_less_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5259
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5260
lemma arctan_less_zero_iff [simp]: "arctan x < 0 \<longleftrightarrow> x < 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5261
  using arctan_less_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5262
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5263
lemma zero_le_arctan_iff [simp]: "0 \<le> arctan x \<longleftrightarrow> 0 \<le> x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5264
  using arctan_le_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5265
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5266
lemma arctan_le_zero_iff [simp]: "arctan x \<le> 0 \<longleftrightarrow> x \<le> 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5267
  using arctan_le_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5268
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5269
lemma arctan_eq_zero_iff [simp]: "arctan x = 0 \<longleftrightarrow> x = 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5270
  using arctan_eq_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5271
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5272
lemma continuous_on_arcsin': "continuous_on {-1 .. 1} arcsin"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5273
proof -
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5274
  have "continuous_on (sin ` {- pi/2 .. pi/2}) arcsin"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5275
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arcsin_sin)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5276
  also have "sin ` {- pi/2 .. pi/2} = {-1 .. 1}"
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5277
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5278
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5279
    assume "x \<in> {-1..1}"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5280
    then show "x \<in> sin ` {- pi/2..pi/2}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5281
      using arcsin_lbound arcsin_ubound
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  5282
      by (intro image_eqI[where x="arcsin x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5283
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5284
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5285
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5286
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5287
lemma continuous_on_arcsin [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5288
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arcsin (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5289
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arcsin']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5290
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5291
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5292
lemma isCont_arcsin: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arcsin x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5293
  using continuous_on_arcsin'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5294
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5295
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5296
lemma continuous_on_arccos': "continuous_on {-1 .. 1} arccos"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5297
proof -
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5298
  have "continuous_on (cos ` {0 .. pi}) arccos"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5299
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arccos_cos)
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5300
  also have "cos ` {0 .. pi} = {-1 .. 1}"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5301
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5302
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5303
    assume "x \<in> {-1..1}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5304
    then show "x \<in> cos ` {0..pi}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5305
      using arccos_lbound arccos_ubound
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5306
      by (intro image_eqI[where x="arccos x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5307
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5308
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5309
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5310
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5311
lemma continuous_on_arccos [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5312
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arccos (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5313
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arccos']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5314
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5315
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5316
lemma isCont_arccos: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arccos x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5317
  using continuous_on_arccos'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5318
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5319
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5320
lemma isCont_arctan: "isCont arctan x"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5321
proof -
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5322
  obtain u where u: "- (pi/2) < u" "u < arctan x"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5323
    by (meson arctan arctan_less_iff linordered_field_no_lb)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5324
  obtain v where v: "arctan x < v" "v < pi/2"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5325
    by (meson arctan_less_iff arctan_ubound linordered_field_no_ub)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5326
  have "isCont arctan (tan (arctan x))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5327
  proof (rule isCont_inverse_function2 [of u "arctan x" v])
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5328
    show "\<And>z. \<lbrakk>u \<le> z; z \<le> v\<rbrakk> \<Longrightarrow> arctan (tan z) = z"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5329
      using arctan_unique u(1) v(2) by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5330
    then show "\<And>z. \<lbrakk>u \<le> z; z \<le> v\<rbrakk> \<Longrightarrow> isCont tan z"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5331
      by (metis arctan cos_gt_zero_pi isCont_tan less_irrefl)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5332
  qed (use u v in auto)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5333
  then show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5334
    by (simp add: arctan)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5335
qed
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5336
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  5337
lemma tendsto_arctan [tendsto_intros]: "(f \<longlongrightarrow> x) F \<Longrightarrow> ((\<lambda>x. arctan (f x)) \<longlongrightarrow> arctan x) F"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5338
  by (rule isCont_tendsto_compose [OF isCont_arctan])
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5339
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5340
lemma continuous_arctan [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. arctan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5341
  unfolding continuous_def by (rule tendsto_arctan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5342
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5343
lemma continuous_on_arctan [continuous_intros]:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5344
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. arctan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5345
  unfolding continuous_on_def by (auto intro: tendsto_arctan)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5346
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5347
lemma DERIV_arcsin:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5348
  assumes "- 1 < x" "x < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5349
  shows "DERIV arcsin x :> inverse (sqrt (1 - x\<^sup>2))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5350
proof (rule DERIV_inverse_function)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5351
  show "(sin has_real_derivative sqrt (1 - x\<^sup>2)) (at (arcsin x))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5352
    by (rule derivative_eq_intros | use assms cos_arcsin in force)+
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5353
  show "sqrt (1 - x\<^sup>2) \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5354
    using abs_square_eq_1 assms by force
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5355
qed (use assms isCont_arcsin in auto)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5356
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5357
lemma DERIV_arccos:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5358
  assumes "- 1 < x" "x < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5359
  shows "DERIV arccos x :> inverse (- sqrt (1 - x\<^sup>2))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5360
proof (rule DERIV_inverse_function)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5361
  show "(cos has_real_derivative - sqrt (1 - x\<^sup>2)) (at (arccos x))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5362
    by (rule derivative_eq_intros | use assms sin_arccos in force)+
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5363
  show "- sqrt (1 - x\<^sup>2) \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5364
    using abs_square_eq_1 assms by force
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5365
qed (use assms isCont_arccos in auto)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5366
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5367
lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x\<^sup>2)"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  5368
proof (rule DERIV_inverse_function)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  5369
  have "inverse ((cos (arctan x))\<^sup>2) = 1 + x\<^sup>2"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5370
    by (metis arctan cos_arctan_not_zero power_inverse tan_sec)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  5371
  then show "(tan has_real_derivative 1 + x\<^sup>2) (at (arctan x))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  5372
    by (auto intro!: derivative_eq_intros)
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5373
  show "\<And>y. \<lbrakk>x - 1 < y; y < x + 1\<rbrakk> \<Longrightarrow> tan (arctan y) = y"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5374
    using tan_arctan by blast
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5375
  show "1 + x\<^sup>2 \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5376
    by (metis power_one sum_power2_eq_zero_iff zero_neq_one)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5377
qed (use isCont_arctan in auto)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5378
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  5379
declare
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  5380
  DERIV_arcsin[THEN DERIV_chain2, derivative_intros]
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61284
diff changeset
  5381
  DERIV_arcsin[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  5382
  DERIV_arccos[THEN DERIV_chain2, derivative_intros]
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61284
diff changeset
  5383
  DERIV_arccos[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  5384
  DERIV_arctan[THEN DERIV_chain2, derivative_intros]
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61284
diff changeset
  5385
  DERIV_arctan[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  5386
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5387
lemmas has_derivative_arctan[derivative_intros] = DERIV_arctan[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5388
  and has_derivative_arccos[derivative_intros] = DERIV_arccos[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5389
  and has_derivative_arcsin[derivative_intros] = DERIV_arcsin[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5390
61881
b4bfa62e799d Transcendental: use [simp]-canonical form - (pi/2)
hoelzl
parents: 61810
diff changeset
  5391
lemma filterlim_tan_at_right: "filterlim tan at_bot (at_right (- (pi/2)))"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5392
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5393
     (auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5394
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5395
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5396
lemma filterlim_tan_at_left: "filterlim tan at_top (at_left (pi/2))"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5397
  by (rule filterlim_at_top_at_left[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5398
     (auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5399
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5400
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  5401
lemma tendsto_arctan_at_top: "(arctan \<longlongrightarrow> (pi/2)) at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5402
proof (rule tendstoI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5403
  fix e :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5404
  assume "0 < e"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
  5405
  define y where "y = pi/2 - min (pi/2) e"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5406
  then have y: "0 \<le> y" "y < pi/2" "pi/2 \<le> e + y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5407
    using \<open>0 < e\<close> by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5408
  show "eventually (\<lambda>x. dist (arctan x) (pi/2) < e) at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5409
  proof (intro eventually_at_top_dense[THEN iffD2] exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5410
    fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5411
    assume "tan y < x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5412
    then have "arctan (tan y) < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5413
      by (simp add: arctan_less_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5414
    with y have "y < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5415
      by (subst (asm) arctan_tan) simp_all
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5416
    with arctan_ubound[of x, arith] y \<open>0 < e\<close>
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5417
    show "dist (arctan x) (pi/2) < e"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5418
      by (simp add: dist_real_def)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5419
  qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5420
qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5421
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  5422
lemma tendsto_arctan_at_bot: "(arctan \<longlongrightarrow> - (pi/2)) at_bot"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5423
  unfolding filterlim_at_bot_mirror arctan_minus
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5424
  by (intro tendsto_minus tendsto_arctan_at_top)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5425
79672
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5426
lemma sin_multiple_reduce:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5427
  "sin (x * numeral n :: 'a :: {real_normed_field, banach}) = 
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5428
     sin x * cos (x * of_nat (pred_numeral n)) + cos x * sin (x * of_nat (pred_numeral n))"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5429
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5430
  have "numeral n = of_nat (pred_numeral n) + (1 :: 'a)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5431
    by (metis add.commute numeral_eq_Suc of_nat_Suc of_nat_numeral)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5432
  also have "sin (x * \<dots>) = sin (x * of_nat (pred_numeral n) + x)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5433
    unfolding of_nat_Suc by (simp add: ring_distribs)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5434
  finally show ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5435
    by (simp add: sin_add)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5436
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5437
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5438
lemma cos_multiple_reduce:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5439
  "cos (x * numeral n :: 'a :: {real_normed_field, banach}) =
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5440
     cos (x * of_nat (pred_numeral n)) * cos x - sin (x * of_nat (pred_numeral n)) * sin x"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5441
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5442
  have "numeral n = of_nat (pred_numeral n) + (1 :: 'a)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5443
    by (metis add.commute numeral_eq_Suc of_nat_Suc of_nat_numeral)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5444
  also have "cos (x * \<dots>) = cos (x * of_nat (pred_numeral n) + x)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5445
    unfolding of_nat_Suc by (simp add: ring_distribs)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5446
  finally show ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5447
    by (simp add: cos_add)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5448
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5449
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5450
lemma arccos_eq_pi_iff: "x \<in> {-1..1} \<Longrightarrow> arccos x = pi \<longleftrightarrow> x = -1"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5451
  by (metis arccos arccos_minus_1 atLeastAtMost_iff cos_pi)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5452
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5453
lemma arccos_eq_0_iff: "x \<in> {-1..1} \<Longrightarrow> arccos x = 0 \<longleftrightarrow> x = 1"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5454
  by (metis arccos arccos_1 atLeastAtMost_iff cos_zero)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5455
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5456
subsection \<open>Prove Totality of the Trigonometric Functions\<close>
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5457
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5458
lemma cos_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> cos (arccos y) = y"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5459
  by (simp add: abs_le_iff)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5460
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5461
lemma sin_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> sin (arccos y) = sqrt (1 - y\<^sup>2)"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5462
  by (simp add: sin_arccos abs_le_iff)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5463
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5464
lemma sin_mono_less_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5465
  "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> - (pi/2) \<le> y \<Longrightarrow> y \<le> pi/2 \<Longrightarrow> sin x < sin y \<longleftrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5466
  by (metis not_less_iff_gr_or_eq sin_monotone_2pi)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5467
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5468
lemma sin_mono_le_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5469
  "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> - (pi/2) \<le> y \<Longrightarrow> y \<le> pi/2 \<Longrightarrow> sin x \<le> sin y \<longleftrightarrow> x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5470
  by (meson leD le_less_linear sin_monotone_2pi sin_monotone_2pi_le)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5471
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5472
lemma sin_inj_pi:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5473
  "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> - (pi/2) \<le> y \<Longrightarrow> y \<le> pi/2 \<Longrightarrow> sin x = sin y \<Longrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5474
  by (metis arcsin_sin)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5475
70722
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5476
lemma arcsin_le_iff:
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5477
  assumes "x \<ge> -1" "x \<le> 1" "y \<ge> -pi/2" "y \<le> pi/2"
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5478
  shows   "arcsin x \<le> y \<longleftrightarrow> x \<le> sin y"
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5479
proof -
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5480
  have "arcsin x \<le> y \<longleftrightarrow> sin (arcsin x) \<le> sin y"
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5481
    using arcsin_bounded[of x] assms by (subst sin_mono_le_eq) auto
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5482
  also from assms have "sin (arcsin x) = x" by simp
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5483
  finally show ?thesis .
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5484
qed
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5485
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5486
lemma le_arcsin_iff:
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5487
  assumes "x \<ge> -1" "x \<le> 1" "y \<ge> -pi/2" "y \<le> pi/2"
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5488
  shows   "arcsin x \<ge> y \<longleftrightarrow> x \<ge> sin y"
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5489
proof -
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5490
  have "arcsin x \<ge> y \<longleftrightarrow> sin (arcsin x) \<ge> sin y"
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5491
    using arcsin_bounded[of x] assms by (subst sin_mono_le_eq) auto
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5492
  also from assms have "sin (arcsin x) = x" by simp
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5493
  finally show ?thesis .
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5494
qed
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5495
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5496
lemma cos_mono_less_eq: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> pi \<Longrightarrow> cos x < cos y \<longleftrightarrow> y < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5497
  by (meson cos_monotone_0_pi cos_monotone_0_pi_le leD le_less_linear)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5498
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5499
lemma cos_mono_le_eq: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> pi \<Longrightarrow> cos x \<le> cos y \<longleftrightarrow> y \<le> x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5500
  by (metis arccos_cos cos_monotone_0_pi_le eq_iff linear)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5501
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5502
lemma cos_inj_pi: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> pi \<Longrightarrow> cos x = cos y \<Longrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5503
  by (metis arccos_cos)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5504
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5505
lemma arccos_le_pi2: "\<lbrakk>0 \<le> y; y \<le> 1\<rbrakk> \<Longrightarrow> arccos y \<le> pi/2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5506
  by (metis (mono_tags) arccos_0 arccos cos_le_one cos_monotone_0_pi_le
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5507
      cos_pi cos_pi_half pi_half_ge_zero antisym_conv less_eq_neg_nonpos linear minus_minus order.trans order_refl)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5508
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5509
lemma sincos_total_pi_half:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5510
  assumes "0 \<le> x" "0 \<le> y" "x\<^sup>2 + y\<^sup>2 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5511
  shows "\<exists>t. 0 \<le> t \<and> t \<le> pi/2 \<and> x = cos t \<and> y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5512
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5513
  have x1: "x \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5514
    using assms by (metis le_add_same_cancel1 power2_le_imp_le power_one zero_le_power2)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5515
  with assms have *: "0 \<le> arccos x" "cos (arccos x) = x"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5516
    by (auto simp: arccos)
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  5517
  from assms have "y = sqrt (1 - x\<^sup>2)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5518
    by (metis abs_of_nonneg add.commute add_diff_cancel real_sqrt_abs)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5519
  with x1 * assms arccos_le_pi2 [of x] show ?thesis
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5520
    by (rule_tac x="arccos x" in exI) (auto simp: sin_arccos)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5521
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5522
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5523
lemma sincos_total_pi:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5524
  assumes "0 \<le> y" "x\<^sup>2 + y\<^sup>2 = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5525
  shows "\<exists>t. 0 \<le> t \<and> t \<le> pi \<and> x = cos t \<and> y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5526
proof (cases rule: le_cases [of 0 x])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5527
  case le
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5528
  from sincos_total_pi_half [OF le] show ?thesis
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5529
    by (metis pi_ge_two pi_half_le_two add.commute add_le_cancel_left add_mono assms)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5530
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5531
  case ge
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5532
  then have "0 \<le> -x"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5533
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5534
  then obtain t where t: "t\<ge>0" "t \<le> pi/2" "-x = cos t" "y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5535
    using sincos_total_pi_half assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5536
    by auto (metis \<open>0 \<le> - x\<close> power2_minus)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5537
  show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5538
    by (rule exI [where x = "pi -t"]) (use t in auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5539
qed
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5540
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5541
lemma sincos_total_2pi_le:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5542
  assumes "x\<^sup>2 + y\<^sup>2 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5543
  shows "\<exists>t. 0 \<le> t \<and> t \<le> 2 * pi \<and> x = cos t \<and> y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5544
proof (cases rule: le_cases [of 0 y])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5545
  case le
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5546
  from sincos_total_pi [OF le] show ?thesis
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5547
    by (metis assms le_add_same_cancel1 mult.commute mult_2_right order.trans)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5548
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5549
  case ge
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5550
  then have "0 \<le> -y"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5551
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5552
  then obtain t where t: "t\<ge>0" "t \<le> pi" "x = cos t" "-y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5553
    using sincos_total_pi assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5554
    by auto (metis \<open>0 \<le> - y\<close> power2_minus)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5555
  show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5556
    by (rule exI [where x = "2 * pi - t"]) (use t in auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5557
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5558
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5559
lemma sincos_total_2pi:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5560
  assumes "x\<^sup>2 + y\<^sup>2 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5561
  obtains t where "0 \<le> t" "t < 2*pi" "x = cos t" "y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5562
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5563
  from sincos_total_2pi_le [OF assms]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5564
  obtain t where t: "0 \<le> t" "t \<le> 2*pi" "x = cos t" "y = sin t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5565
    by blast
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5566
  show ?thesis
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5567
    by (cases "t = 2 * pi") (use t that in \<open>force+\<close>)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5568
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5569
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  5570
lemma arcsin_less_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arcsin x < arcsin y \<longleftrightarrow> x < y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5571
  by (rule trans [OF sin_mono_less_eq [symmetric]]) (use arcsin_ubound arcsin_lbound in auto)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5572
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  5573
lemma arcsin_le_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arcsin x \<le> arcsin y \<longleftrightarrow> x \<le> y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5574
  using arcsin_less_mono not_le by blast
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5575
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5576
lemma arcsin_less_arcsin: "- 1 \<le> x \<Longrightarrow> x < y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin x < arcsin y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5577
  using arcsin_less_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5578
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5579
lemma arcsin_le_arcsin: "- 1 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin x \<le> arcsin y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5580
  using arcsin_le_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5581
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5582
lemma arcsin_nonneg: "x \<in> {0..1} \<Longrightarrow> arcsin x \<ge> 0"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5583
  using arcsin_le_arcsin[of 0 x] by simp
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5584
  
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5585
lemma arccos_less_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arccos x < arccos y \<longleftrightarrow> y < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5586
  by (rule trans [OF cos_mono_less_eq [symmetric]]) (use arccos_ubound arccos_lbound in auto)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5587
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  5588
lemma arccos_le_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arccos x \<le> arccos y \<longleftrightarrow> y \<le> x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5589
  using arccos_less_mono [of y x] by (simp add: not_le [symmetric])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5590
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5591
lemma arccos_less_arccos: "- 1 \<le> x \<Longrightarrow> x < y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y < arccos x"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5592
  using arccos_less_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5593
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5594
lemma arccos_le_arccos: "- 1 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y \<le> arccos x"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5595
  using arccos_le_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5596
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5597
lemma arccos_eq_iff: "\<bar>x\<bar> \<le> 1 \<and> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arccos x = arccos y \<longleftrightarrow> x = y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5598
  using cos_arccos_abs by fastforce
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5599
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5600
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5601
lemma arccos_cos_eq_abs:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5602
  assumes "\<bar>\<theta>\<bar> \<le> pi"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5603
  shows "arccos (cos \<theta>) = \<bar>\<theta>\<bar>"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5604
  unfolding arccos_def
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5605
proof (intro the_equality conjI; clarify?)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5606
  show "cos \<bar>\<theta>\<bar> = cos \<theta>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5607
    by (simp add: abs_real_def)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5608
  show "x = \<bar>\<theta>\<bar>" if "cos x = cos \<theta>" "0 \<le> x" "x \<le> pi" for x
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5609
    by (simp add: \<open>cos \<bar>\<theta>\<bar> = cos \<theta>\<close> assms cos_inj_pi that)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5610
qed (use assms in auto)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5611
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5612
lemma arccos_cos_eq_abs_2pi:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5613
  obtains k where "arccos (cos \<theta>) = \<bar>\<theta> - of_int k * (2 * pi)\<bar>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5614
proof -
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5615
  define k where "k \<equiv>  \<lfloor>(\<theta> + pi) / (2 * pi)\<rfloor>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5616
  have lepi: "\<bar>\<theta> - of_int k * (2 * pi)\<bar> \<le> pi"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5617
    using floor_divide_lower [of "2*pi" "\<theta> + pi"] floor_divide_upper [of "2*pi" "\<theta> + pi"]
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5618
    by (auto simp: k_def abs_if algebra_simps)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5619
  have "arccos (cos \<theta>) = arccos (cos (\<theta> - of_int k * (2 * pi)))"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5620
    using cos_int_2pin sin_int_2pin by (simp add: cos_diff mult.commute)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5621
  also have "\<dots> = \<bar>\<theta> - of_int k * (2 * pi)\<bar>"
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5622
    using arccos_cos_eq_abs lepi by blast
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5623
  finally show ?thesis
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5624
    using that by metis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5625
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5626
76819
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5627
lemma arccos_arctan:
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5628
  assumes "-1 < x" "x < 1"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5629
  shows "arccos x = pi/2 - arctan(x / sqrt(1 - x\<^sup>2))"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5630
proof -
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5631
  have "arctan(x / sqrt(1 - x\<^sup>2)) - (pi/2 - arccos x) = 0"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5632
  proof (rule sin_eq_0_pi)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5633
    show "- pi < arctan (x / sqrt (1 - x\<^sup>2)) - (pi/2 - arccos x)"
76819
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5634
      using arctan_lbound [of "x / sqrt(1 - x\<^sup>2)"]  arccos_bounded [of x] assms
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5635
      by (simp add: algebra_simps)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5636
  next
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5637
    show "arctan (x / sqrt (1 - x\<^sup>2)) - (pi/2 - arccos x) < pi"
76819
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5638
      using arctan_ubound [of "x / sqrt(1 - x\<^sup>2)"]  arccos_bounded [of x] assms
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5639
      by (simp add: algebra_simps)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5640
  next
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5641
    show "sin (arctan (x / sqrt (1 - x\<^sup>2)) - (pi/2 - arccos x)) = 0"
76819
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5642
      using assms
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5643
      by (simp add: algebra_simps sin_diff cos_add sin_arccos sin_arctan cos_arctan
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5644
                    power2_eq_square square_eq_1_iff)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5645
  qed
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5646
  then show ?thesis
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5647
    by simp
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5648
qed
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5649
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5650
lemma arcsin_plus_arccos:
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5651
  assumes "-1 \<le> x" "x \<le> 1"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5652
    shows "arcsin x + arccos x = pi/2"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5653
proof -
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5654
  have "arcsin x = pi/2 - arccos x"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5655
    apply (rule sin_inj_pi)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5656
    using assms arcsin [OF assms] arccos [OF assms]
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5657
    by (auto simp: algebra_simps sin_diff)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5658
  then show ?thesis
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5659
    by (simp add: algebra_simps)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5660
qed
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5661
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5662
lemma arcsin_arccos_eq: "-1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arcsin x = pi/2 - arccos x"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5663
  using arcsin_plus_arccos by force
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5664
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5665
lemma arccos_arcsin_eq: "-1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arccos x = pi/2 - arcsin x"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5666
  using arcsin_plus_arccos by force
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5667
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5668
lemma arcsin_arctan: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> arcsin x = arctan(x / sqrt(1 - x\<^sup>2))"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5669
  by (simp add: arccos_arctan arcsin_arccos_eq)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5670
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5671
lemma arcsin_arccos_sqrt_pos: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arcsin x = arccos(sqrt(1 - x\<^sup>2))"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5672
  by (smt (verit, del_insts) arccos_cos arcsin_0 arcsin_le_arcsin arcsin_pi cos_arcsin)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5673
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5674
lemma arcsin_arccos_sqrt_neg: "-1 \<le> x \<Longrightarrow> x \<le> 0 \<Longrightarrow> arcsin x = -arccos(sqrt(1 - x\<^sup>2))"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5675
  using arcsin_arccos_sqrt_pos [of "-x"]
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5676
  by (simp add: arcsin_minus)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5677
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5678
lemma arccos_arcsin_sqrt_pos: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arccos x = arcsin(sqrt(1 - x\<^sup>2))"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5679
  by (smt (verit, del_insts) arccos_lbound arccos_le_pi2 arcsin_sin sin_arccos)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5680
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5681
lemma arccos_arcsin_sqrt_neg: "-1 \<le> x \<Longrightarrow> x \<le> 0 \<Longrightarrow> arccos x = pi - arcsin(sqrt(1 - x\<^sup>2))"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5682
  using arccos_arcsin_sqrt_pos [of "-x"]
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5683
  by (simp add: arccos_minus)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5684
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5685
lemma cos_limit_1:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5686
  assumes "(\<lambda>j. cos (\<theta> j)) \<longlonglongrightarrow> 1"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5687
  shows "\<exists>k. (\<lambda>j. \<theta> j - of_int (k j) * (2 * pi)) \<longlonglongrightarrow> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5688
proof -
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5689
  have "\<forall>\<^sub>F j in sequentially. cos (\<theta> j) \<in> {- 1..1}"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5690
    by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5691
  then have "(\<lambda>j. arccos (cos (\<theta> j))) \<longlonglongrightarrow> arccos 1"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5692
    using continuous_on_tendsto_compose [OF continuous_on_arccos' assms] by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5693
  moreover have "\<And>j. \<exists>k. arccos (cos (\<theta> j)) = \<bar>\<theta> j - of_int k * (2 * pi)\<bar>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5694
    using arccos_cos_eq_abs_2pi by metis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5695
  then have "\<exists>k. \<forall>j. arccos (cos (\<theta> j)) = \<bar>\<theta> j - of_int (k j) * (2 * pi)\<bar>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5696
    by metis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5697
  ultimately have "\<exists>k. (\<lambda>j. \<bar>\<theta> j - of_int (k j) * (2 * pi)\<bar>) \<longlonglongrightarrow> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5698
    by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5699
  then show ?thesis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5700
    by (simp add: tendsto_rabs_zero_iff)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5701
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5702
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5703
lemma cos_diff_limit_1:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5704
  assumes "(\<lambda>j. cos (\<theta> j - \<Theta>)) \<longlonglongrightarrow> 1"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5705
  obtains k where "(\<lambda>j. \<theta> j - of_int (k j) * (2 * pi)) \<longlonglongrightarrow> \<Theta>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5706
proof -
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5707
  obtain k where "(\<lambda>j. (\<theta> j - \<Theta>) - of_int (k j) * (2 * pi)) \<longlonglongrightarrow> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5708
    using cos_limit_1 [OF assms] by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5709
  then have "(\<lambda>j. \<Theta> + ((\<theta> j - \<Theta>) - of_int (k j) * (2 * pi))) \<longlonglongrightarrow> \<Theta> + 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5710
    by (rule tendsto_add [OF tendsto_const])
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5711
  with that show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5712
    by auto
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5713
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5714
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5715
subsection \<open>Machin's formula\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5716
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5717
lemma arctan_one: "arctan 1 = pi/4"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5718
  by (rule arctan_unique) (simp_all add: tan_45 m2pi_less_pi)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5719
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5720
lemma tan_total_pi4:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5721
  assumes "\<bar>x\<bar> < 1"
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5722
  shows "\<exists>z. - (pi/4) < z \<and> z < pi/4 \<and> tan z = x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5723
proof
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5724
  show "- (pi/4) < arctan x \<and> arctan x < pi/4 \<and> tan (arctan x) = x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5725
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5726
    unfolding arctan_less_iff
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5727
    using assms by (auto simp: arctan)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5728
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5729
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5730
lemma arctan_add:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5731
  assumes "\<bar>x\<bar> \<le> 1" "\<bar>y\<bar> < 1"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5732
  shows "arctan x + arctan y = arctan ((x + y) / (1 - x * y))"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5733
proof (rule arctan_unique [symmetric])
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5734
  have "- (pi/4) \<le> arctan x" "- (pi/4) < arctan y"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5735
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5736
    unfolding arctan_le_iff arctan_less_iff
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5737
    using assms by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5738
  from add_le_less_mono [OF this] show 1: "- (pi/2) < arctan x + arctan y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5739
    by simp
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5740
  have "arctan x \<le> pi/4" "arctan y < pi/4"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5741
    unfolding arctan_one [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5742
    unfolding arctan_le_iff arctan_less_iff
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5743
    using assms by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5744
  from add_le_less_mono [OF this] show 2: "arctan x + arctan y < pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5745
    by simp
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5746
  show "tan (arctan x + arctan y) = (x + y) / (1 - x * y)"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5747
    using cos_gt_zero_pi [OF 1 2] by (simp add: arctan tan_add)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5748
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5749
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5750
lemma arctan_double: "\<bar>x\<bar> < 1 \<Longrightarrow> 2 * arctan x = arctan ((2 * x) / (1 - x\<^sup>2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5751
  by (metis arctan_add linear mult_2 not_less power2_eq_square)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5752
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5753
theorem machin: "pi/4 = 4 * arctan (1 / 5) - arctan (1/239)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5754
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5755
  have "\<bar>1 / 5\<bar> < (1 :: real)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5756
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5757
  from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (1 / 5) = arctan (5 / 12)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5758
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5759
  moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5760
  have "\<bar>5 / 12\<bar> < (1 :: real)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5761
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5762
  from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (5 / 12) = arctan (120 / 119)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5763
    by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5764
  moreover
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5765
  have "\<bar>1\<bar> \<le> (1::real)" and "\<bar>1/239\<bar> < (1::real)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5766
    by auto
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5767
  from arctan_add[OF this] have "arctan 1 + arctan (1/239) = arctan (120 / 119)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5768
    by auto
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5769
  ultimately have "arctan 1 + arctan (1/239) = 4 * arctan (1 / 5)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5770
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5771
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5772
    unfolding arctan_one by algebra
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5773
qed
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5774
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5775
lemma machin_Euler: "5 * arctan (1 / 7) + 2 * arctan (3 / 79) = pi/4"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5776
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5777
  have 17: "\<bar>1 / 7\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5778
  with arctan_double have "2 * arctan (1 / 7) = arctan (7 / 24)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  5779
    by simp (simp add: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5780
  moreover
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5781
  have "\<bar>7 / 24\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5782
  with arctan_double have "2 * arctan (7 / 24) = arctan (336 / 527)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5783
    by simp (simp add: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5784
  moreover
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5785
  have "\<bar>336 / 527\<bar> < (1 :: real)" by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5786
  from arctan_add[OF less_imp_le[OF 17] this]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5787
  have "arctan(1/7) + arctan (336 / 527) = arctan (2879 / 3353)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5788
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5789
  ultimately have I: "5 * arctan (1 / 7) = arctan (2879 / 3353)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5790
  have 379: "\<bar>3 / 79\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5791
  with arctan_double have II: "2 * arctan (3 / 79) = arctan (237 / 3116)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5792
    by simp (simp add: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5793
  have *: "\<bar>2879 / 3353\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5794
  have "\<bar>237 / 3116\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5795
  from arctan_add[OF less_imp_le[OF *] this] have "arctan (2879/3353) + arctan (237/3116) = pi/4"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5796
    by (simp add: arctan_one)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5797
  with I II show ?thesis by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5798
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5799
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5800
(*But could also prove MACHIN_GAUSS:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5801
  12 * arctan(1/18) + 8 * arctan(1/57) - 5 * arctan(1/239) = pi/4*)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5802
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5803
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5804
subsection \<open>Introducing the inverse tangent power series\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5805
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5806
lemma monoseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5807
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5808
  assumes "\<bar>x\<bar> \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5809
  shows "monoseq (\<lambda>n. 1 / real (n * 2 + 1) * x^(n * 2 + 1))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5810
    (is "monoseq ?a")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5811
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5812
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5813
  then show ?thesis by (auto simp: monoseq_def)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5814
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5815
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5816
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5817
    using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5818
  show "monoseq ?a"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5819
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5820
    have mono: "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<le>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5821
        1 / real (Suc (n * 2)) * x ^ Suc (n * 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5822
      if "0 \<le> x" and "x \<le> 1" for n and x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5823
    proof (rule mult_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5824
      show "1 / real (Suc (Suc n * 2)) \<le> 1 / real (Suc (n * 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5825
        by (rule frac_le) simp_all
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5826
      show "0 \<le> 1 / real (Suc (n * 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5827
        by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5828
      show "x ^ Suc (Suc n * 2) \<le> x ^ Suc (n * 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5829
        by (rule power_decreasing) (simp_all add: \<open>0 \<le> x\<close> \<open>x \<le> 1\<close>)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5830
      show "0 \<le> x ^ Suc (Suc n * 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5831
        by (rule zero_le_power) (simp add: \<open>0 \<le> x\<close>)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5832
    qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5833
    show ?thesis
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5834
    proof (cases "0 \<le> x")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5835
      case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5836
      from mono[OF this \<open>x \<le> 1\<close>, THEN allI]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5837
      show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5838
        unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI2)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5839
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5840
      case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5841
      then have "0 \<le> - x" and "- x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5842
        using \<open>-1 \<le> x\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5843
      from mono[OF this]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5844
      have "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<ge>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5845
          1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5846
        using \<open>0 \<le> -x\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5847
      then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5848
        unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI1[OF allI])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5849
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5850
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5851
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5852
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5853
lemma zeroseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5854
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5855
  assumes "\<bar>x\<bar> \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5856
  shows "(\<lambda>n. 1 / real (n * 2 + 1) * x^(n * 2 + 1)) \<longlonglongrightarrow> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5857
    (is "?a \<longlonglongrightarrow> 0")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5858
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5859
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5860
  then show ?thesis by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5861
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5862
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5863
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5864
    using assms by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5865
  show "?a \<longlonglongrightarrow> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5866
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5867
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5868
    then have "norm x < 1" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5869
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_power_zero[OF \<open>norm x < 1\<close>, THEN LIMSEQ_Suc]]
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5870
    have "(\<lambda>n. 1 / real (n + 1) * x ^ (n + 1)) \<longlonglongrightarrow> 0"
31790
05c92381363c corrected and unified thm names
nipkow
parents: 31338
diff changeset
  5871
      unfolding inverse_eq_divide Suc_eq_plus1 by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5872
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5873
      using pos2 by (rule LIMSEQ_linear)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5874
  next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5875
    case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5876
    then have "x = -1 \<or> x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5877
      using \<open>\<bar>x\<bar> \<le> 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5878
    then have n_eq: "\<And> n. x ^ (n * 2 + 1) = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5879
      unfolding One_nat_def by auto
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  5880
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat[THEN LIMSEQ_linear, OF pos2, unfolded inverse_eq_divide] tendsto_const[of x]]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5881
    show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5882
      unfolding n_eq Suc_eq_plus1 by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5883
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5884
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5885
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5886
lemma summable_arctan_series:
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  5887
  fixes n :: nat
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5888
  assumes "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5889
  shows "summable (\<lambda> k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5890
    (is "summable (?c x)")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5891
  by (rule summable_Leibniz(1),
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5892
      rule zeroseq_arctan_series[OF assms],
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5893
      rule monoseq_arctan_series[OF assms])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5894
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5895
lemma DERIV_arctan_series:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5896
  assumes "\<bar>x\<bar> < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5897
  shows "DERIV (\<lambda>x'. \<Sum>k. (-1)^k * (1 / real (k * 2 + 1) * x' ^ (k * 2 + 1))) x :>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5898
      (\<Sum>k. (-1)^k * x^(k * 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5899
    (is "DERIV ?arctan _ :> ?Int")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5900
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5901
  let ?f = "\<lambda>n. if even n then (-1)^(n div 2) * 1 / real (Suc n) else 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5902
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5903
  have n_even: "even n \<Longrightarrow> 2 * (n div 2) = n" for n :: nat
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5904
    by presburger
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5905
  then have if_eq: "?f n * real (Suc n) * x'^n =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5906
      (if even n then (-1)^(n div 2) * x'^(2 * (n div 2)) else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5907
    for n x'
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5908
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5909
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5910
  have summable_Integral: "summable (\<lambda> n. (- 1) ^ n * x^(2 * n))" if "\<bar>x\<bar> < 1" for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5911
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5912
    from that have "x\<^sup>2 < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5913
      by (simp add: abs_square_less_1)
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5914
    have "summable (\<lambda> n. (- 1) ^ n * (x\<^sup>2) ^n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5915
      by (rule summable_Leibniz(1))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5916
        (auto intro!: LIMSEQ_realpow_zero monoseq_realpow \<open>x\<^sup>2 < 1\<close> order_less_imp_le[OF \<open>x\<^sup>2 < 1\<close>])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5917
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5918
      by (simp only: power_mult)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5919
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5920
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67268
diff changeset
  5921
  have sums_even: "(sums) f = (sums) (\<lambda> n. if even n then f (n div 2) else 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5922
    for f :: "nat \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5923
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5924
    have "f sums x = (\<lambda> n. if even n then f (n div 2) else 0) sums x" for x :: real
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5925
    proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5926
      assume "f sums x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5927
      from sums_if[OF sums_zero this] show "(\<lambda>n. if even n then f (n div 2) else 0) sums x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5928
        by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5929
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5930
      assume "(\<lambda> n. if even n then f (n div 2) else 0) sums x"
63170
eae6549dbea2 tuned proofs, to allow unfold_abs_def;
wenzelm
parents: 63145
diff changeset
  5931
      from LIMSEQ_linear[OF this[simplified sums_def] pos2, simplified sum_split_even_odd[simplified mult.commute]]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5932
      show "f sums x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5933
        unfolding sums_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5934
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5935
    then show ?thesis ..
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5936
  qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5937
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5938
  have Int_eq: "(\<Sum>n. ?f n * real (Suc n) * x^n) = ?Int"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5939
    unfolding if_eq mult.commute[of _ 2]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5940
      suminf_def sums_even[of "\<lambda> n. (- 1) ^ n * x ^ (2 * n)", symmetric]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5941
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5942
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5943
  have arctan_eq: "(\<Sum>n. ?f n * x^(Suc n)) = ?arctan x" for x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5944
  proof -
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5945
    have if_eq': "\<And>n. (if even n then (- 1) ^ (n div 2) * 1 / real (Suc n) else 0) * x ^ Suc n =
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5946
      (if even n then (- 1) ^ (n div 2) * (1 / real (Suc (2 * (n div 2))) * x ^ Suc (2 * (n div 2))) else 0)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5947
      using n_even by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5948
    have idx_eq: "\<And>n. n * 2 + 1 = Suc (2 * n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5949
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5950
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5951
      unfolding if_eq' idx_eq suminf_def
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5952
        sums_even[of "\<lambda> n. (- 1) ^ n * (1 / real (Suc (2 * n)) * x ^ Suc (2 * n))", symmetric]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5953
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5954
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5955
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5956
  have "DERIV (\<lambda> x. \<Sum> n. ?f n * x^(Suc n)) x :> (\<Sum>n. ?f n * real (Suc n) * x^n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5957
  proof (rule DERIV_power_series')
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5958
    show "x \<in> {- 1 <..< 1}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5959
      using \<open>\<bar> x \<bar> < 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5960
    show "summable (\<lambda> n. ?f n * real (Suc n) * x'^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5961
      if x'_bounds: "x' \<in> {- 1 <..< 1}" for x' :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5962
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5963
      from that have "\<bar>x'\<bar> < 1" by auto
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  5964
      then show ?thesis
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  5965
        using that sums_summable sums_if [OF sums_0 [of "\<lambda>x. 0"] summable_sums [OF summable_Integral]]   
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  5966
        by (auto simp add: if_distrib [of "\<lambda>x. x * y" for y] cong: if_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5967
    qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5968
  qed auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5969
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5970
    by (simp only: Int_eq arctan_eq)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5971
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5972
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5973
lemma arctan_series:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5974
  assumes "\<bar>x\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5975
  shows "arctan x = (\<Sum>k. (-1)^k * (1 / real (k * 2 + 1) * x ^ (k * 2 + 1)))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5976
    (is "_ = suminf (\<lambda> n. ?c x n)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5977
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5978
  let ?c' = "\<lambda>x n. (-1)^n * x^(n*2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5979
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5980
  have DERIV_arctan_suminf: "DERIV (\<lambda> x. suminf (?c x)) x :> (suminf (?c' x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5981
    if "0 < r" and "r < 1" and "\<bar>x\<bar> < r" for r x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5982
  proof (rule DERIV_arctan_series)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5983
    from that show "\<bar>x\<bar> < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5984
      using \<open>r < 1\<close> and \<open>\<bar>x\<bar> < r\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5985
  qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5986
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5987
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5988
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5989
    assume "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5990
    note summable_Leibniz[OF zeroseq_arctan_series[OF this] monoseq_arctan_series[OF this]]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5991
  } note arctan_series_borders = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5992
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5993
  have when_less_one: "arctan x = (\<Sum>k. ?c x k)" if "\<bar>x\<bar> < 1" for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5994
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5995
    obtain r where "\<bar>x\<bar> < r" and "r < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5996
      using dense[OF \<open>\<bar>x\<bar> < 1\<close>] by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5997
    then have "0 < r" and "- r < x" and "x < r" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5998
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5999
    have suminf_eq_arctan_bounded: "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6000
      if "-r < a" and "b < r" and "a < b" and "a \<le> x" and "x \<le> b" for x a b
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6001
    proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6002
      from that have "\<bar>x\<bar> < r" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6003
      show "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6004
      proof (rule DERIV_isconst2[of "a" "b"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6005
        show "a < b" and "a \<le> x" and "x \<le> b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6006
          using \<open>a < b\<close> \<open>a \<le> x\<close> \<open>x \<le> b\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6007
        have "\<forall>x. - r < x \<and> x < r \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6008
        proof (rule allI, rule impI)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6009
          fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6010
          assume "-r < x \<and> x < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6011
          then have "\<bar>x\<bar> < r" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6012
          with \<open>r < 1\<close> have "\<bar>x\<bar> < 1" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6013
          have "\<bar>- (x\<^sup>2)\<bar> < 1" using abs_square_less_1 \<open>\<bar>x\<bar> < 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6014
          then have "(\<lambda>n. (- (x\<^sup>2)) ^ n) sums (1 / (1 - (- (x\<^sup>2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6015
            unfolding real_norm_def[symmetric] by (rule geometric_sums)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6016
          then have "(?c' x) sums (1 / (1 - (- (x\<^sup>2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6017
            unfolding power_mult_distrib[symmetric] power_mult mult.commute[of _ 2] by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6018
          then have suminf_c'_eq_geom: "inverse (1 + x\<^sup>2) = suminf (?c' x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6019
            using sums_unique unfolding inverse_eq_divide by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6020
          have "DERIV (\<lambda> x. suminf (?c x)) x :> (inverse (1 + x\<^sup>2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6021
            unfolding suminf_c'_eq_geom
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6022
            by (rule DERIV_arctan_suminf[OF \<open>0 < r\<close> \<open>r < 1\<close> \<open>\<bar>x\<bar> < r\<close>])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6023
          from DERIV_diff [OF this DERIV_arctan] show "DERIV (\<lambda>x. suminf (?c x) - arctan x) x :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6024
            by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6025
        qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6026
        then have DERIV_in_rball: "\<forall>y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda>x. suminf (?c x) - arctan x) y :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6027
          using \<open>-r < a\<close> \<open>b < r\<close> by auto
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  6028
        then show "\<And>y. \<lbrakk>a < y; y < b\<rbrakk> \<Longrightarrow> DERIV (\<lambda>x. suminf (?c x) - arctan x) y :> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6029
          using \<open>\<bar>x\<bar> < r\<close> by auto
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  6030
        show "continuous_on {a..b} (\<lambda>x. suminf (?c x) - arctan x)"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  6031
          using DERIV_in_rball DERIV_atLeastAtMost_imp_continuous_on by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6032
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6033
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6034
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6035
    have suminf_arctan_zero: "suminf (?c 0) - arctan 0 = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6036
      unfolding Suc_eq_plus1[symmetric] power_Suc2 mult_zero_right arctan_zero_zero suminf_zero
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6037
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6038
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6039
    have "suminf (?c x) - arctan x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6040
    proof (cases "x = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6041
      case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6042
      then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6043
        using suminf_arctan_zero by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6044
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6045
      case False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6046
      then have "0 < \<bar>x\<bar>" and "- \<bar>x\<bar> < \<bar>x\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6047
        by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6048
      have "suminf (?c (- \<bar>x\<bar>)) - arctan (- \<bar>x\<bar>) = suminf (?c 0) - arctan 0"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6049
        by (rule suminf_eq_arctan_bounded[where x1=0 and a1="-\<bar>x\<bar>" and b1="\<bar>x\<bar>", symmetric])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6050
          (simp_all only: \<open>\<bar>x\<bar> < r\<close> \<open>-\<bar>x\<bar> < \<bar>x\<bar>\<close> neg_less_iff_less)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6051
      moreover
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6052
      have "suminf (?c x) - arctan x = suminf (?c (- \<bar>x\<bar>)) - arctan (- \<bar>x\<bar>)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6053
        by (rule suminf_eq_arctan_bounded[where x1=x and a1="- \<bar>x\<bar>" and b1="\<bar>x\<bar>"])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6054
           (simp_all only: \<open>\<bar>x\<bar> < r\<close> \<open>- \<bar>x\<bar> < \<bar>x\<bar>\<close> neg_less_iff_less)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6055
      ultimately show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6056
        using suminf_arctan_zero by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6057
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6058
    then show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6059
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6060
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6061
  show "arctan x = suminf (\<lambda>n. ?c x n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6062
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6063
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6064
    then show ?thesis by (rule when_less_one)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6065
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6066
    case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6067
    then have "\<bar>x\<bar> = 1" using \<open>\<bar>x\<bar> \<le> 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6068
    let ?a = "\<lambda>x n. \<bar>1 / real (n * 2 + 1) * x^(n * 2 + 1)\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6069
    let ?diff = "\<lambda>x n. \<bar>arctan x - (\<Sum>i<n. ?c x i)\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6070
    have "?diff 1 n \<le> ?a 1 n" for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6071
    proof -
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6072
      have "0 < (1 :: real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6073
      moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6074
      have "?diff x n \<le> ?a x n" if "0 < x" and "x < 1" for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6075
      proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6076
        from that have "\<bar>x\<bar> \<le> 1" and "\<bar>x\<bar> < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6077
          by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6078
        from \<open>0 < x\<close> have "0 < 1 / real (0 * 2 + (1::nat)) * x ^ (0 * 2 + 1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6079
          by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6080
        note bounds = mp[OF arctan_series_borders(2)[OF \<open>\<bar>x\<bar> \<le> 1\<close>] this, unfolded when_less_one[OF \<open>\<bar>x\<bar> < 1\<close>, symmetric], THEN spec]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6081
        have "0 < 1 / real (n*2+1) * x^(n*2+1)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6082
          by (rule mult_pos_pos) (simp_all only: zero_less_power[OF \<open>0 < x\<close>], auto)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6083
        then have a_pos: "?a x n = 1 / real (n*2+1) * x^(n*2+1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6084
          by (rule abs_of_pos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6085
        show ?thesis
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6086
        proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6087
          case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6088
          then have sgn_pos: "(-1)^n = (1::real)" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6089
          from \<open>even n\<close> obtain m where "n = 2 * m" ..
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  6090
          then have "2 * m = n" ..
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6091
          from bounds[of m, unfolded this atLeastAtMost_iff]
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  6092
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n + 1. (?c x i)) - (\<Sum>i<n. (?c x i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6093
            by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6094
          also have "\<dots> = ?c x n" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6095
          also have "\<dots> = ?a x n" unfolding sgn_pos a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6096
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6097
        next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6098
          case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6099
          then have sgn_neg: "(-1)^n = (-1::real)" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6100
          from \<open>odd n\<close> obtain m where "n = 2 * m + 1" ..
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  6101
          then have m_def: "2 * m + 1 = n" ..
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6102
          then have m_plus: "2 * (m + 1) = n + 1" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6103
          from bounds[of "m + 1", unfolded this atLeastAtMost_iff, THEN conjunct1] bounds[of m, unfolded m_def atLeastAtMost_iff, THEN conjunct2]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6104
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n. (?c x i)) - (\<Sum>i<n+1. (?c x i))" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6105
          also have "\<dots> = - ?c x n" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6106
          also have "\<dots> = ?a x n" unfolding sgn_neg a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6107
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6108
        qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6109
      qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6110
      hence "\<forall>x \<in> { 0 <..< 1 }. 0 \<le> ?a x n - ?diff x n" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6111
      moreover have "isCont (\<lambda> x. ?a x n - ?diff x n) x" for x
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  6112
        unfolding diff_conv_add_uminus divide_inverse
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6113
        by (auto intro!: isCont_add isCont_rabs continuous_ident isCont_minus isCont_arctan
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  6114
          continuous_at_within_inverse isCont_mult isCont_power continuous_const isCont_sum
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  6115
          simp del: add_uminus_conv_diff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6116
      ultimately have "0 \<le> ?a 1 n - ?diff 1 n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6117
        by (rule LIM_less_bound)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6118
      then show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6119
    qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  6120
    have "?a 1 \<longlonglongrightarrow> 0"
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  6121
      unfolding tendsto_rabs_zero_iff power_one divide_inverse One_nat_def
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  6122
      by (auto intro!: tendsto_mult LIMSEQ_linear LIMSEQ_inverse_real_of_nat simp del: of_nat_Suc)
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  6123
    have "?diff 1 \<longlonglongrightarrow> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6124
    proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6125
      fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6126
      assume "0 < r"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6127
      obtain N :: nat where N_I: "N \<le> n \<Longrightarrow> ?a 1 n < r" for n
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  6128
        using LIMSEQ_D[OF \<open>?a 1 \<longlonglongrightarrow> 0\<close> \<open>0 < r\<close>] by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6129
      have "norm (?diff 1 n - 0) < r" if "N \<le> n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6130
        using \<open>?diff 1 n \<le> ?a 1 n\<close> N_I[OF that] by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6131
      then show "\<exists>N. \<forall> n \<ge> N. norm (?diff 1 n - 0) < r" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6132
    qed
44710
9caf6883f1f4 remove redundant lemmas about LIMSEQ
huffman
parents: 44568
diff changeset
  6133
    from this [unfolded tendsto_rabs_zero_iff, THEN tendsto_add [OF _ tendsto_const], of "- arctan 1", THEN tendsto_minus]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6134
    have "(?c 1) sums (arctan 1)" unfolding sums_def by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6135
    then have "arctan 1 = (\<Sum>i. ?c 1 i)" by (rule sums_unique)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  6136
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6137
    show ?thesis
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6138
    proof (cases "x = 1")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6139
      case True
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6140
      then show ?thesis by (simp add: \<open>arctan 1 = (\<Sum> i. ?c 1 i)\<close>)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6141
    next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6142
      case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6143
      then have "x = -1" using \<open>\<bar>x\<bar> = 1\<close> by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  6144
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  6145
      have "- (pi/2) < 0" using pi_gt_zero by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6146
      have "- (2 * pi) < 0" using pi_gt_zero by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  6147
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6148
      have c_minus_minus: "?c (- 1) i = - ?c 1 i" for i by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6149
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6150
      have "arctan (- 1) = arctan (tan (-(pi/4)))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6151
        unfolding tan_45 tan_minus ..
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6152
      also have "\<dots> = - (pi/4)"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  6153
        by (rule arctan_tan) (auto simp: order_less_trans[OF \<open>- (pi/2) < 0\<close> pi_gt_zero])
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6154
      also have "\<dots> = - (arctan (tan (pi/4)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6155
        unfolding neg_equal_iff_equal
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6156
        by (rule arctan_tan[symmetric]) (auto simp: order_less_trans[OF \<open>- (2 * pi) < 0\<close> pi_gt_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6157
      also have "\<dots> = - (arctan 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6158
        unfolding tan_45 ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6159
      also have "\<dots> = - (\<Sum> i. ?c 1 i)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6160
        using \<open>arctan 1 = (\<Sum> i. ?c 1 i)\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6161
      also have "\<dots> = (\<Sum> i. ?c (- 1) i)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6162
        using suminf_minus[OF sums_summable[OF \<open>(?c 1) sums (arctan 1)\<close>]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6163
        unfolding c_minus_minus by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6164
      finally show ?thesis using \<open>x = -1\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6165
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6166
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6167
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6168
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6169
lemma arctan_half: "arctan x = 2 * arctan (x / (1 + sqrt(1 + x\<^sup>2)))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6170
  for x :: real
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6171
proof -
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  6172
  obtain y where low: "- (pi/2) < y" and high: "y < pi/2" and y_eq: "tan y = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6173
    using tan_total by blast
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  6174
  then have low2: "- (pi/2) < y / 2" and high2: "y / 2 < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6175
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6176
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6177
  have "0 < cos y" by (rule cos_gt_zero_pi[OF low high])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6178
  then have "cos y \<noteq> 0" and cos_sqrt: "sqrt ((cos y)\<^sup>2) = cos y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6179
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6180
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6181
  have "1 + (tan y)\<^sup>2 = 1 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6182
    unfolding tan_def power_divide ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6183
  also have "\<dots> = (cos y)\<^sup>2 / (cos y)\<^sup>2 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6184
    using \<open>cos y \<noteq> 0\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6185
  also have "\<dots> = 1 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6186
    unfolding add_divide_distrib[symmetric] sin_cos_squared_add2 ..
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  6187
  finally have "1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6188
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6189
  have "sin y / (cos y + 1) = tan y / ((cos y + 1) / cos y)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6190
    unfolding tan_def using \<open>cos y \<noteq> 0\<close> by (simp add: field_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6191
  also have "\<dots> = tan y / (1 + 1 / cos y)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6192
    using \<open>cos y \<noteq> 0\<close> unfolding add_divide_distrib by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6193
  also have "\<dots> = tan y / (1 + 1 / sqrt ((cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6194
    unfolding cos_sqrt ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6195
  also have "\<dots> = tan y / (1 + sqrt (1 / (cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6196
    unfolding real_sqrt_divide by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6197
  finally have eq: "sin y / (cos y + 1) = tan y / (1 + sqrt(1 + (tan y)\<^sup>2))"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6198
    unfolding \<open>1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2\<close> .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6199
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6200
  have "arctan x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6201
    using arctan_tan low high y_eq by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6202
  also have "\<dots> = 2 * (arctan (tan (y/2)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6203
    using arctan_tan[OF low2 high2] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6204
  also have "\<dots> = 2 * (arctan (sin y / (cos y + 1)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6205
    unfolding tan_half by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6206
  finally show ?thesis
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6207
    unfolding eq \<open>tan y = x\<close> .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6208
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6209
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6210
lemma arctan_monotone: "x < y \<Longrightarrow> arctan x < arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6211
  by (simp only: arctan_less_iff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6212
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6213
lemma arctan_monotone': "x \<le> y \<Longrightarrow> arctan x \<le> arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6214
  by (simp only: arctan_le_iff)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  6215
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  6216
lemma arctan_inverse:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6217
  assumes "x \<noteq> 0"
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  6218
  shows "arctan (1/x) = sgn x * pi/2 - arctan x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  6219
proof (rule arctan_unique)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6220
  have \<section>: "x > 0 \<Longrightarrow> arctan x < pi"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6221
    using arctan_bounded [of x] by linarith 
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  6222
  show "- (pi/2) < sgn x * pi/2 - arctan x"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6223
    using assms by (auto simp: sgn_real_def arctan algebra_simps \<section>)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  6224
  show "sgn x * pi/2 - arctan x < pi/2"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  6225
    using arctan_bounded [of "- x"] assms
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6226
    by (auto simp: algebra_simps sgn_real_def arctan_minus)
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  6227
  show "tan (sgn x * pi/2 - arctan x) = 1/x"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6228
    unfolding tan_inverse [of "arctan x", unfolded tan_arctan] sgn_real_def
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  6229
    by (simp add: tan_def cos_arctan sin_arctan sin_diff cos_diff)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6230
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6231
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6232
theorem pi_series: "pi/4 = (\<Sum>k. (-1)^k * 1 / real (k * 2 + 1))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6233
  (is "_ = ?SUM")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6234
proof -
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6235
  have "pi/4 = arctan 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6236
    using arctan_one by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6237
  also have "\<dots> = ?SUM"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6238
    using arctan_series[of 1] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6239
  finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6240
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  6241
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6242
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6243
subsection \<open>Existence of Polar Coordinates\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  6244
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  6245
lemma cos_x_y_le_one: "\<bar>x / sqrt (x\<^sup>2 + y\<^sup>2)\<bar> \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6246
  by (rule power2_le_imp_le [OF _ zero_le_one])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6247
    (simp add: power_divide divide_le_eq not_sum_power2_lt_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  6248
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6249
lemma polar_Ex: "\<exists>r::real. \<exists>a. x = r * cos a \<and> y = r * sin a"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6250
proof -
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6251
  have polar_ex1: "\<exists>r a. x = r * cos a \<and> y = r * sin a" if "0 < y" for y
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6252
  proof -
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6253
    have "x = sqrt (x\<^sup>2 + y\<^sup>2) * cos (arccos (x / sqrt (x\<^sup>2 + y\<^sup>2)))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6254
      by (simp add: cos_arccos_abs [OF cos_x_y_le_one])
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6255
    moreover have "y = sqrt (x\<^sup>2 + y\<^sup>2) * sin (arccos (x / sqrt (x\<^sup>2 + y\<^sup>2)))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6256
      using that
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6257
      by (simp add: sin_arccos_abs [OF cos_x_y_le_one] power_divide right_diff_distrib flip: real_sqrt_mult)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6258
    ultimately show ?thesis
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6259
      by blast
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6260
  qed
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6261
  show ?thesis
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6262
  proof (cases "0::real" y rule: linorder_cases)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  6263
    case less
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6264
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6265
      by (rule polar_ex1)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6266
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6267
    case equal
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6268
    then show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6269
      by (force simp: intro!: cos_zero sin_zero)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6270
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6271
    case greater
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6272
    with polar_ex1 [where y="-y"] show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6273
      by auto (metis cos_minus minus_minus minus_mult_right sin_minus)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6274
  qed
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6275
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  6276
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6277
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6278
subsection \<open>Basics about polynomial functions: products, extremal behaviour and root counts\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6279
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  6280
lemma polynomial_product_nat:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6281
  fixes x :: nat
78663
3032bc7d613d A little reorganisation
paulson <lp15@cam.ac.uk>
parents: 78274
diff changeset
  6282
  assumes m: "\<And>i. i > m \<Longrightarrow> int (a i) = 0"
3032bc7d613d A little reorganisation
paulson <lp15@cam.ac.uk>
parents: 78274
diff changeset
  6283
    and n: "\<And>j. j > n \<Longrightarrow> int (b j) = 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  6284
  shows "(\<Sum>i\<le>m. (a i) * x ^ i) * (\<Sum>j\<le>n. (b j) * x ^ j) =
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6285
         (\<Sum>r\<le>m + n. (\<Sum>k\<le>r. (a k) * (b (r - k))) * x ^ r)"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6286
  using polynomial_product [of m a n b x] assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6287
  by (simp only: of_nat_mult [symmetric] of_nat_power [symmetric]
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6288
      of_nat_eq_iff Int.int_sum [symmetric])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6289
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6290
lemma polyfun_diff: (*COMPLEX_SUB_POLYFUN in HOL Light*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6291
  fixes x :: "'a::idom"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6292
  assumes "1 \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6293
  shows "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6294
    (x - y) * (\<Sum>j<n. (\<Sum>i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6295
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6296
  have h: "bij_betw (\<lambda>(i,j). (j,i)) ((SIGMA i : atMost n. lessThan i)) (SIGMA j : lessThan n. {Suc j..n})"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6297
    by (auto simp: bij_betw_def inj_on_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6298
  have "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) = (\<Sum>i\<le>n. a i * (x^i - y^i))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6299
    by (simp add: right_diff_distrib sum_subtractf)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6300
  also have "\<dots> = (\<Sum>i\<le>n. a i * (x - y) * (\<Sum>j<i. y^(i - Suc j) * x^j))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6301
    by (simp add: power_diff_sumr2 mult.assoc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6302
  also have "\<dots> = (\<Sum>i\<le>n. \<Sum>j<i. a i * (x - y) * (y^(i - Suc j) * x^j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6303
    by (simp add: sum_distrib_left)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6304
  also have "\<dots> = (\<Sum>(i,j) \<in> (SIGMA i : atMost n. lessThan i). a i * (x - y) * (y^(i - Suc j) * x^j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6305
    by (simp add: sum.Sigma)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6306
  also have "\<dots> = (\<Sum>(j,i) \<in> (SIGMA j : lessThan n. {Suc j..n}). a i * (x - y) * (y^(i - Suc j) * x^j))"
69654
bc758f4f09e5 uniform naming
nipkow
parents: 69593
diff changeset
  6307
    by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.cong_simp)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6308
  also have "\<dots> = (\<Sum>j<n. \<Sum>i=Suc j..n. a i * (x - y) * (y^(i - Suc j) * x^j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6309
    by (simp add: sum.Sigma)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6310
  also have "\<dots> = (x - y) * (\<Sum>j<n. (\<Sum>i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6311
    by (simp add: sum_distrib_left mult_ac)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6312
  finally show ?thesis .
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6313
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6314
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6315
lemma polyfun_diff_alt: (*COMPLEX_SUB_POLYFUN_ALT in HOL Light*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6316
  fixes x :: "'a::idom"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6317
  assumes "1 \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6318
  shows "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6319
    (x - y) * ((\<Sum>j<n. \<Sum>k<n-j. a(j + k + 1) * y^k * x^j))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6320
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6321
  have "(\<Sum>i=Suc j..n. a i * y^(i - j - 1)) = (\<Sum>k<n-j. a(j+k+1) * y^k)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6322
    if "j < n" for j :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6323
  proof -
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6324
    have "\<And>k. k < n - j \<Longrightarrow> k \<in> (\<lambda>i. i - Suc j) ` {Suc j..n}"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6325
      by (rule_tac x="k + Suc j" in image_eqI, auto)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6326
    then have h: "bij_betw (\<lambda>i. i - (j + 1)) {Suc j..n} (lessThan (n-j))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6327
      by (auto simp: bij_betw_def inj_on_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6328
    then show ?thesis
69654
bc758f4f09e5 uniform naming
nipkow
parents: 69593
diff changeset
  6329
      by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.cong_simp)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6330
  qed
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6331
  then show ?thesis
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6332
    by (simp add: polyfun_diff [OF assms] sum_distrib_right)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6333
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6334
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6335
lemma polyfun_linear_factor:  (*COMPLEX_POLYFUN_LINEAR_FACTOR in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6336
  fixes a :: "'a::idom"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6337
  shows "\<exists>b. \<forall>z. (\<Sum>i\<le>n. c(i) * z^i) = (z - a) * (\<Sum>i<n. b(i) * z^i) + (\<Sum>i\<le>n. c(i) * a^i)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6338
proof (cases "n = 0")
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6339
  case True then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6340
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6341
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6342
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6343
  have "(\<exists>b. \<forall>z. (\<Sum>i\<le>n. c i * z^i) = (z - a) * (\<Sum>i<n. b i * z^i) + (\<Sum>i\<le>n. c i * a^i)) \<longleftrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6344
        (\<exists>b. \<forall>z. (\<Sum>i\<le>n. c i * z^i) - (\<Sum>i\<le>n. c i * a^i) = (z - a) * (\<Sum>i<n. b i * z^i))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6345
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6346
  also have "\<dots> \<longleftrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6347
    (\<exists>b. \<forall>z. (z - a) * (\<Sum>j<n. (\<Sum>i = Suc j..n. c i * a^(i - Suc j)) * z^j) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6348
      (z - a) * (\<Sum>i<n. b i * z^i))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6349
    using False by (simp add: polyfun_diff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6350
  also have "\<dots> = True" by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6351
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6352
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6353
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6354
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6355
lemma polyfun_linear_factor_root:  (*COMPLEX_POLYFUN_LINEAR_FACTOR_ROOT in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6356
  fixes a :: "'a::idom"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6357
  assumes "(\<Sum>i\<le>n. c(i) * a^i) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6358
  obtains b where "\<And>z. (\<Sum>i\<le>n. c i * z^i) = (z - a) * (\<Sum>i<n. b i * z^i)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6359
  using polyfun_linear_factor [of c n a] assms by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6360
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6361
(*The material of this section, up until this point, could go into a new theory of polynomials
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6362
  based on Main alone. The remaining material involves limits, continuity, series, etc.*)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6363
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6364
lemma isCont_polynom: "isCont (\<lambda>w. \<Sum>i\<le>n. c i * w^i) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6365
  for c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6366
  by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6367
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6368
lemma zero_polynom_imp_zero_coeffs:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6369
  fixes c :: "nat \<Rightarrow> 'a::{ab_semigroup_mult,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6370
  assumes "\<And>w. (\<Sum>i\<le>n. c i * w^i) = 0"  "k \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6371
  shows "c k = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6372
  using assms
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6373
proof (induction n arbitrary: c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6374
  case 0
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6375
  then show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6376
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6377
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6378
  case (Suc n c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6379
  have [simp]: "c 0 = 0" using Suc.prems(1) [of 0]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6380
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6381
  have "(\<Sum>i\<le>Suc n. c i * w^i) = w * (\<Sum>i\<le>n. c (Suc i) * w^i)" for w
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6382
  proof -
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6383
    have "(\<Sum>i\<le>Suc n. c i * w^i) = (\<Sum>i\<le>n. c (Suc i) * w ^ Suc i)"
70113
c8deb8ba6d05 Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
paulson <lp15@cam.ac.uk>
parents: 70097
diff changeset
  6384
      unfolding Set_Interval.sum.atMost_Suc_shift
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6385
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6386
    also have "\<dots> = w * (\<Sum>i\<le>n. c (Suc i) * w^i)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6387
      by (simp add: sum_distrib_left ac_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6388
    finally show ?thesis .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6389
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6390
  then have w: "\<And>w. w \<noteq> 0 \<Longrightarrow> (\<Sum>i\<le>n. c (Suc i) * w^i) = 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6391
    using Suc  by auto
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  6392
  then have "(\<lambda>h. \<Sum>i\<le>n. c (Suc i) * h^i) \<midarrow>0\<rightarrow> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6393
    by (simp cong: LIM_cong)  \<comment> \<open>the case \<open>w = 0\<close> by continuity\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6394
  then have "(\<Sum>i\<le>n. c (Suc i) * 0^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6395
    using isCont_polynom [of 0 "\<lambda>i. c (Suc i)" n] LIM_unique
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6396
    by (force simp: Limits.isCont_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6397
  then have "\<And>w. (\<Sum>i\<le>n. c (Suc i) * w^i) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6398
    using w by metis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6399
  then have "\<And>i. i \<le> n \<Longrightarrow> c (Suc i) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6400
    using Suc.IH [of "\<lambda>i. c (Suc i)"] by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6401
  then show ?case using \<open>k \<le> Suc n\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6402
    by (cases k) auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6403
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6404
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6405
lemma polyfun_rootbound: (*COMPLEX_POLYFUN_ROOTBOUND in HOL Light*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6406
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6407
  assumes "c k \<noteq> 0" "k\<le>n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6408
  shows "finite {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<and> card {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<le> n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6409
  using assms
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6410
proof (induction n arbitrary: c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6411
  case 0
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6412
  then show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6413
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6414
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6415
  case (Suc m c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6416
  let ?succase = ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6417
  show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6418
  proof (cases "{z. (\<Sum>i\<le>Suc m. c(i) * z^i) = 0} = {}")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6419
    case True
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6420
    then show ?succase
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6421
      by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6422
  next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6423
    case False
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6424
    then obtain z0 where z0: "(\<Sum>i\<le>Suc m. c(i) * z0^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6425
      by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6426
    then obtain b where b: "\<And>w. (\<Sum>i\<le>Suc m. c i * w^i) = (w - z0) * (\<Sum>i\<le>m. b i * w^i)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6427
      using polyfun_linear_factor_root [OF z0, unfolded lessThan_Suc_atMost]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6428
      by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6429
    then have eq: "{z. (\<Sum>i\<le>Suc m. c i * z^i) = 0} = insert z0 {z. (\<Sum>i\<le>m. b i * z^i) = 0}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6430
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6431
    have "\<not> (\<forall>k\<le>m. b k = 0)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6432
    proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6433
      assume [simp]: "\<forall>k\<le>m. b k = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6434
      then have "\<And>w. (\<Sum>i\<le>m. b i * w^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6435
        by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6436
      then have "\<And>w. (\<Sum>i\<le>Suc m. c i * w^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6437
        using b by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6438
      then have "\<And>k. k \<le> Suc m \<Longrightarrow> c k = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6439
        using zero_polynom_imp_zero_coeffs by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6440
      then show False using Suc.prems by blast
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6441
    qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6442
    then obtain k' where bk': "b k' \<noteq> 0" "k' \<le> m"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6443
      by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6444
    show ?succase
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6445
      using Suc.IH [of b k'] bk'
70097
4005298550a6 The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
paulson <lp15@cam.ac.uk>
parents: 69654
diff changeset
  6446
      by (simp add: eq card_insert_if del: sum.atMost_Suc)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6447
    qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6448
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6449
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6450
lemma
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6451
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6452
  assumes "c k \<noteq> 0" "k\<le>n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6453
  shows polyfun_roots_finite: "finite {z. (\<Sum>i\<le>n. c(i) * z^i) = 0}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6454
    and polyfun_roots_card: "card {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<le> n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6455
  using polyfun_rootbound assms by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6456
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6457
lemma polyfun_finite_roots: (*COMPLEX_POLYFUN_FINITE_ROOTS in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6458
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6459
  shows "finite {x. (\<Sum>i\<le>n. c i * x^i) = 0} \<longleftrightarrow> (\<exists>i\<le>n. c i \<noteq> 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6460
    (is "?lhs = ?rhs")
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6461
proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6462
  assume ?lhs
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6463
  moreover have "\<not> finite {x. (\<Sum>i\<le>n. c i * x^i) = 0}" if "\<forall>i\<le>n. c i = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6464
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6465
    from that have "\<And>x. (\<Sum>i\<le>n. c i * x^i) = 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6466
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6467
    then show ?thesis
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6468
      using ex_new_if_finite [OF infinite_UNIV_char_0 [where 'a='a]]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6469
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6470
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6471
  ultimately show ?rhs by metis
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6472
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6473
  assume ?rhs
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6474
  with polyfun_rootbound show ?lhs by blast
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6475
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6476
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6477
lemma polyfun_eq_0: "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = 0) \<longleftrightarrow> (\<forall>i\<le>n. c i = 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6478
  for c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6479
  (*COMPLEX_POLYFUN_EQ_0 in HOL Light*)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6480
  using zero_polynom_imp_zero_coeffs by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6481
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6482
lemma polyfun_eq_coeffs: "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = (\<Sum>i\<le>n. d i * x^i)) \<longleftrightarrow> (\<forall>i\<le>n. c i = d i)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6483
  for c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6484
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6485
  have "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = (\<Sum>i\<le>n. d i * x^i)) \<longleftrightarrow> (\<forall>x. (\<Sum>i\<le>n. (c i - d i) * x^i) = 0)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6486
    by (simp add: left_diff_distrib Groups_Big.sum_subtractf)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6487
  also have "\<dots> \<longleftrightarrow> (\<forall>i\<le>n. c i - d i = 0)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6488
    by (rule polyfun_eq_0)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6489
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6490
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6491
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6492
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6493
lemma polyfun_eq_const: (*COMPLEX_POLYFUN_EQ_CONST in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6494
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6495
  shows "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = k) \<longleftrightarrow> c 0 = k \<and> (\<forall>i \<in> {1..n}. c i = 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6496
    (is "?lhs = ?rhs")
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6497
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6498
  have *: "\<forall>x. (\<Sum>i\<le>n. (if i=0 then k else 0) * x^i) = k"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6499
    by (induct n) auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6500
  show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6501
  proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6502
    assume ?lhs
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6503
    with * have "(\<forall>i\<le>n. c i = (if i=0 then k else 0))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6504
      by (simp add: polyfun_eq_coeffs [symmetric])
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6505
    then show ?rhs by simp
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6506
  next
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6507
    assume ?rhs
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6508
    then show ?lhs by (induct n) auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6509
  qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6510
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6511
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6512
lemma root_polyfun:
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6513
  fixes z :: "'a::idom"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6514
  assumes "1 \<le> n"
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6515
  shows "z^n = a \<longleftrightarrow> (\<Sum>i\<le>n. (if i = 0 then -a else if i=n then 1 else 0) * z^i) = 0"
70097
4005298550a6 The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
paulson <lp15@cam.ac.uk>
parents: 69654
diff changeset
  6516
  using assms by (cases n) (simp_all add: sum.atLeast_Suc_atMost atLeast0AtMost [symmetric])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6517
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6518
lemma
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6519
  assumes "SORT_CONSTRAINT('a::{idom,real_normed_div_algebra})"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6520
    and "1 \<le> n"
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6521
  shows finite_roots_unity: "finite {z::'a. z^n = 1}"
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6522
    and card_roots_unity: "card {z::'a. z^n = 1} \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6523
  using polyfun_rootbound [of "\<lambda>i. if i = 0 then -1 else if i=n then 1 else 0" n n] assms(2)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6524
  by (auto simp: root_polyfun [OF assms(2)])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6525
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  6526
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6527
subsection \<open>Hyperbolic functions\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6528
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6529
definition sinh :: "'a :: {banach, real_normed_algebra_1} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6530
  "sinh x = (exp x - exp (-x)) /\<^sub>R 2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6531
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6532
definition cosh :: "'a :: {banach, real_normed_algebra_1} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6533
  "cosh x = (exp x + exp (-x)) /\<^sub>R 2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6534
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6535
definition tanh :: "'a :: {banach, real_normed_field} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6536
  "tanh x = sinh x / cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6537
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6538
definition arsinh :: "'a :: {banach, real_normed_algebra_1, ln} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6539
  "arsinh x = ln (x + (x^2 + 1) powr of_real (1/2))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6540
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6541
definition arcosh :: "'a :: {banach, real_normed_algebra_1, ln} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6542
  "arcosh x = ln (x + (x^2 - 1) powr of_real (1/2))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6543
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6544
definition artanh :: "'a :: {banach, real_normed_field, ln} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6545
  "artanh x = ln ((1 + x) / (1 - x)) / 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6546
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6547
lemma arsinh_0 [simp]: "arsinh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6548
  by (simp add: arsinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6549
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6550
lemma arcosh_1 [simp]: "arcosh 1 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6551
  by (simp add: arcosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6552
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6553
lemma artanh_0 [simp]: "artanh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6554
  by (simp add: artanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6555
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6556
lemma tanh_altdef:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6557
  "tanh x = (exp x - exp (-x)) / (exp x + exp (-x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6558
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6559
  have "tanh x = (2 *\<^sub>R sinh x) / (2 *\<^sub>R cosh x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6560
    by (simp add: tanh_def scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6561
  also have "2 *\<^sub>R sinh x = exp x - exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6562
    by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6563
  also have "2 *\<^sub>R cosh x = exp x + exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6564
    by (simp add: cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6565
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6566
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6567
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6568
lemma tanh_real_altdef: "tanh (x::real) = (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6569
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6570
  have [simp]: "exp (2 * x) = exp x * exp x" "exp (x * 2) = exp x * exp x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6571
    by (subst exp_add [symmetric]; simp)+
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6572
  have "tanh x = (2 * exp (-x) * sinh x) / (2 * exp (-x) * cosh x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6573
    by (simp add: tanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6574
  also have "2 * exp (-x) * sinh x = 1 - exp (-2*x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6575
    by (simp add: exp_minus field_simps sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6576
  also have "2 * exp (-x) * cosh x = 1 + exp (-2*x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6577
    by (simp add: exp_minus field_simps cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6578
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6579
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6580
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6581
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6582
lemma sinh_converges: "(\<lambda>n. if even n then 0 else x ^ n /\<^sub>R fact n) sums sinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6583
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6584
  have "(\<lambda>n. (x ^ n /\<^sub>R fact n - (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) sums sinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6585
    unfolding sinh_def by (intro sums_scaleR_right sums_diff exp_converges)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6586
  also have "(\<lambda>n. (x ^ n /\<^sub>R fact n - (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) =
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6587
               (\<lambda>n. if even n then 0 else x ^ n /\<^sub>R fact n)" by auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6588
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6589
qed
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6590
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6591
lemma cosh_converges: "(\<lambda>n. if even n then x ^ n /\<^sub>R fact n else 0) sums cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6592
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6593
  have "(\<lambda>n. (x ^ n /\<^sub>R fact n + (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) sums cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6594
    unfolding cosh_def by (intro sums_scaleR_right sums_add exp_converges)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6595
  also have "(\<lambda>n. (x ^ n /\<^sub>R fact n + (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) =
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6596
               (\<lambda>n. if even n then x ^ n /\<^sub>R fact n else 0)" by auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6597
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6598
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6599
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6600
lemma sinh_0 [simp]: "sinh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6601
  by (simp add: sinh_def)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6602
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6603
lemma cosh_0 [simp]: "cosh 0 = 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6604
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6605
  have "cosh 0 = (1/2) *\<^sub>R (1 + 1)" by (simp add: cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6606
  also have "\<dots> = 1" by (rule scaleR_half_double)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6607
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6608
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6609
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6610
lemma tanh_0 [simp]: "tanh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6611
  by (simp add: tanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6612
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6613
lemma sinh_minus [simp]: "sinh (- x) = -sinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6614
  by (simp add: sinh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6615
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6616
lemma cosh_minus [simp]: "cosh (- x) = cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6617
  by (simp add: cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6618
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6619
lemma tanh_minus [simp]: "tanh (-x) = -tanh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6620
  by (simp add: tanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6621
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6622
lemma sinh_ln_real: "x > 0 \<Longrightarrow> sinh (ln x :: real) = (x - inverse x) / 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6623
  by (simp add: sinh_def exp_minus)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6624
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6625
lemma cosh_ln_real: "x > 0 \<Longrightarrow> cosh (ln x :: real) = (x + inverse x) / 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6626
  by (simp add: cosh_def exp_minus)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6627
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6628
lemma tanh_ln_real:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6629
  "tanh (ln x :: real) = (x ^ 2 - 1) / (x ^ 2 + 1)" if "x > 0"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6630
proof -
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6631
  from that have "(x * 2 - inverse x * 2) * (x\<^sup>2 + 1) =
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6632
    (x\<^sup>2 - 1) * (2 * x + 2 * inverse x)"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6633
    by (simp add: field_simps power2_eq_square)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6634
  moreover have "x\<^sup>2 + 1 > 0"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6635
    using that by (simp add: ac_simps add_pos_nonneg)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6636
  moreover have "2 * x + 2 * inverse x > 0"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6637
    using that by (simp add: add_pos_pos)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6638
  ultimately have "(x * 2 - inverse x * 2) /
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6639
    (2 * x + 2 * inverse x) =
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6640
    (x\<^sup>2 - 1) / (x\<^sup>2 + 1)"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6641
    by (simp add: frac_eq_eq)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6642
  with that show ?thesis
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6643
    by (simp add: tanh_def sinh_ln_real cosh_ln_real)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6644
qed
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6645
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6646
lemma has_field_derivative_scaleR_right [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6647
  "(f has_field_derivative D) F \<Longrightarrow> ((\<lambda>x. c *\<^sub>R f x) has_field_derivative (c *\<^sub>R D)) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6648
  unfolding has_field_derivative_def
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6649
  using has_derivative_scaleR_right[of f "\<lambda>x. D * x" F c]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6650
  by (simp add: mult_scaleR_left [symmetric] del: mult_scaleR_left)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6651
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6652
lemma has_field_derivative_sinh [THEN DERIV_chain2, derivative_intros]:
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6653
  "(sinh has_field_derivative cosh x) (at (x :: 'a :: {banach, real_normed_field}))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6654
  unfolding sinh_def cosh_def by (auto intro!: derivative_eq_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6655
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6656
lemma has_field_derivative_cosh [THEN DERIV_chain2, derivative_intros]:
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6657
  "(cosh has_field_derivative sinh x) (at (x :: 'a :: {banach, real_normed_field}))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6658
  unfolding sinh_def cosh_def by (auto intro!: derivative_eq_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6659
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6660
lemma has_field_derivative_tanh [THEN DERIV_chain2, derivative_intros]:
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6661
  "cosh x \<noteq> 0 \<Longrightarrow> (tanh has_field_derivative 1 - tanh x ^ 2)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6662
                     (at (x :: 'a :: {banach, real_normed_field}))"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6663
  unfolding tanh_def by (auto intro!: derivative_eq_intros simp: power2_eq_square field_split_simps)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6664
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6665
lemma has_derivative_sinh [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6666
  fixes g :: "'a \<Rightarrow> ('a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6667
  assumes "(g has_derivative (\<lambda>x. Db * x)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6668
  shows   "((\<lambda>x. sinh (g x)) has_derivative (\<lambda>y. (cosh (g x) * Db) * y)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6669
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6670
  have "((\<lambda>x. - g x) has_derivative (\<lambda>y. -(Db * y))) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6671
    using assms by (intro derivative_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6672
  also have "(\<lambda>y. -(Db * y)) = (\<lambda>x. (-Db) * x)" by (simp add: fun_eq_iff)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6673
  finally have "((\<lambda>x. sinh (g x)) has_derivative
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6674
    (\<lambda>y. (exp (g x) * Db * y - exp (-g x) * (-Db) * y) /\<^sub>R 2)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6675
    unfolding sinh_def by (intro derivative_intros assms)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6676
  also have "(\<lambda>y. (exp (g x) * Db * y - exp (-g x) * (-Db) * y) /\<^sub>R 2) = (\<lambda>y. (cosh (g x) * Db) * y)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6677
    by (simp add: fun_eq_iff cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6678
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6679
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6680
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6681
lemma has_derivative_cosh [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6682
  fixes g :: "'a \<Rightarrow> ('a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6683
  assumes "(g has_derivative (\<lambda>y. Db * y)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6684
  shows   "((\<lambda>x. cosh (g x)) has_derivative (\<lambda>y. (sinh (g x) * Db) * y)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6685
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6686
  have "((\<lambda>x. - g x) has_derivative (\<lambda>y. -(Db * y))) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6687
    using assms by (intro derivative_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6688
  also have "(\<lambda>y. -(Db * y)) = (\<lambda>y. (-Db) * y)" by (simp add: fun_eq_iff)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6689
  finally have "((\<lambda>x. cosh (g x)) has_derivative
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6690
    (\<lambda>y. (exp (g x) * Db * y + exp (-g x) * (-Db) * y) /\<^sub>R 2)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6691
    unfolding cosh_def by (intro derivative_intros assms)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6692
  also have "(\<lambda>y. (exp (g x) * Db * y + exp (-g x) * (-Db) * y) /\<^sub>R 2) = (\<lambda>y. (sinh (g x) * Db) * y)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6693
    by (simp add: fun_eq_iff sinh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6694
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6695
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6696
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6697
lemma sinh_plus_cosh: "sinh x + cosh x = exp x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6698
proof -
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6699
  have "sinh x + cosh x = (1/2) *\<^sub>R (exp x + exp x)"
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6700
    by (simp add: sinh_def cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6701
  also have "\<dots> = exp x" by (rule scaleR_half_double)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6702
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6703
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6704
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6705
lemma cosh_plus_sinh: "cosh x + sinh x = exp x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6706
  by (subst add.commute) (rule sinh_plus_cosh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6707
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6708
lemma cosh_minus_sinh: "cosh x - sinh x = exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6709
proof -
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6710
  have "cosh x - sinh x = (1/2) *\<^sub>R (exp (-x) + exp (-x))"
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6711
    by (simp add: sinh_def cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6712
  also have "\<dots> = exp (-x)" by (rule scaleR_half_double)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6713
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6714
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6715
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6716
lemma sinh_minus_cosh: "sinh x - cosh x = -exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6717
  using cosh_minus_sinh[of x] by (simp add: algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6718
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6719
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6720
context
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6721
  fixes x :: "'a :: {real_normed_field, banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6722
begin
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6723
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6724
lemma sinh_zero_iff: "sinh x = 0 \<longleftrightarrow> exp x \<in> {1, -1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6725
  by (auto simp: sinh_def field_simps exp_minus power2_eq_square square_eq_1_iff)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6726
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6727
lemma cosh_zero_iff: "cosh x = 0 \<longleftrightarrow> exp x ^ 2 = -1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6728
  by (auto simp: cosh_def exp_minus field_simps power2_eq_square eq_neg_iff_add_eq_0)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6729
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6730
lemma cosh_square_eq: "cosh x ^ 2 = sinh x ^ 2 + 1"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6731
  by (simp add: cosh_def sinh_def algebra_simps power2_eq_square exp_add [symmetric]
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6732
                scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6733
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6734
lemma sinh_square_eq: "sinh x ^ 2 = cosh x ^ 2 - 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6735
  by (simp add: cosh_square_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6736
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6737
lemma hyperbolic_pythagoras: "cosh x ^ 2 - sinh x ^ 2 = 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6738
  by (simp add: cosh_square_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6739
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6740
lemma sinh_add: "sinh (x + y) = sinh x * cosh y + cosh x * sinh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6741
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6742
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6743
lemma sinh_diff: "sinh (x - y) = sinh x * cosh y - cosh x * sinh y"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6744
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6745
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6746
lemma cosh_add: "cosh (x + y) = cosh x * cosh y + sinh x * sinh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6747
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6748
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6749
lemma cosh_diff: "cosh (x - y) = cosh x * cosh y - sinh x * sinh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6750
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6751
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6752
lemma tanh_add:
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6753
  "tanh (x + y) = (tanh x + tanh y) / (1 + tanh x * tanh y)"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6754
  if "cosh x \<noteq> 0" "cosh y \<noteq> 0"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6755
proof -
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6756
  have "(sinh x * cosh y + cosh x * sinh y) * (1 + sinh x * sinh y / (cosh x * cosh y)) =
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6757
    (cosh x * cosh y + sinh x * sinh y) * ((sinh x * cosh y + sinh y * cosh x) / (cosh y * cosh x))"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6758
    using that by (simp add: field_split_simps)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6759
  also have "(sinh x * cosh y + sinh y * cosh x) / (cosh y * cosh x) = sinh x / cosh x + sinh y / cosh y"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6760
    using that by (simp add: field_split_simps)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6761
  finally have "(sinh x * cosh y + cosh x * sinh y) * (1 + sinh x * sinh y / (cosh x * cosh y)) =
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6762
    (sinh x / cosh x + sinh y / cosh y) * (cosh x * cosh y + sinh x * sinh y)"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6763
    by simp
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6764
  then show ?thesis
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6765
    using that by (auto simp add: tanh_def sinh_add cosh_add eq_divide_eq)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6766
     (simp_all add: field_split_simps)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6767
qed
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6768
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6769
lemma sinh_double: "sinh (2 * x) = 2 * sinh x * cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6770
  using sinh_add[of x] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6771
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6772
lemma cosh_double: "cosh (2 * x) = cosh x ^ 2 + sinh x ^ 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6773
  using cosh_add[of x] by (simp add: power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6774
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6775
end
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6776
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6777
lemma sinh_field_def: "sinh z = (exp z - exp (-z)) / (2 :: 'a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6778
  by (simp add: sinh_def scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6779
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6780
lemma cosh_field_def: "cosh z = (exp z + exp (-z)) / (2 :: 'a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6781
  by (simp add: cosh_def scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6782
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6783
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6784
subsubsection \<open>More specific properties of the real functions\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6785
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6786
lemma plus_inverse_ge_2:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6787
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6788
  assumes "x > 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6789
  shows   "x + inverse x \<ge> 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6790
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6791
  have "0 \<le> (x - 1) ^ 2" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6792
  also have "\<dots> = x^2 - 2*x + 1" by (simp add: power2_eq_square algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6793
  finally show ?thesis using assms by (simp add: field_simps power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6794
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6795
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6796
lemma sinh_real_nonneg_iff [simp]: "sinh (x :: real) \<ge> 0 \<longleftrightarrow> x \<ge> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6797
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6798
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6799
lemma sinh_real_pos_iff [simp]: "sinh (x :: real) > 0 \<longleftrightarrow> x > 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6800
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6801
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6802
lemma sinh_real_nonpos_iff [simp]: "sinh (x :: real) \<le> 0 \<longleftrightarrow> x \<le> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6803
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6804
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6805
lemma sinh_real_neg_iff [simp]: "sinh (x :: real) < 0 \<longleftrightarrow> x < 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6806
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6807
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6808
lemma cosh_real_ge_1: "cosh (x :: real) \<ge> 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6809
  using plus_inverse_ge_2[of "exp x"] by (simp add: cosh_def exp_minus)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6810
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6811
lemma cosh_real_pos [simp]: "cosh (x :: real) > 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6812
  using cosh_real_ge_1[of x] by simp
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6813
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6814
lemma cosh_real_nonneg[simp]: "cosh (x :: real) \<ge> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6815
  using cosh_real_ge_1[of x] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6816
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6817
lemma cosh_real_nonzero [simp]: "cosh (x :: real) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6818
  using cosh_real_ge_1[of x] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6819
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6820
lemma arsinh_real_def: "arsinh (x::real) = ln (x + sqrt (x^2 + 1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6821
  by (simp add: arsinh_def powr_half_sqrt)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6822
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6823
lemma arcosh_real_def: "x \<ge> 1 \<Longrightarrow> arcosh (x::real) = ln (x + sqrt (x^2 - 1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6824
  by (simp add: arcosh_def powr_half_sqrt)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6825
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6826
lemma arsinh_real_aux: "0 < x + sqrt (x ^ 2 + 1 :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6827
proof (cases "x < 0")
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6828
  case True
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6829
  have "(-x) ^ 2 = x ^ 2" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6830
  also have "x ^ 2 < x ^ 2 + 1" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6831
  finally have "sqrt ((-x) ^ 2) < sqrt (x ^ 2 + 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6832
    by (rule real_sqrt_less_mono)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6833
  thus ?thesis using True by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6834
qed (auto simp: add_nonneg_pos)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6835
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6836
lemma arsinh_minus_real [simp]: "arsinh (-x::real) = -arsinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6837
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6838
  have "arsinh (-x) = ln (sqrt (x\<^sup>2 + 1) - x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6839
    by (simp add: arsinh_real_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6840
  also have "sqrt (x^2 + 1) - x = inverse (sqrt (x^2 + 1) + x)"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6841
    using arsinh_real_aux[of x] by (simp add: field_split_simps algebra_simps power2_eq_square)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6842
  also have "ln \<dots> = -arsinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6843
    using arsinh_real_aux[of x] by (simp add: arsinh_real_def ln_inverse)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6844
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6845
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6846
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6847
lemma artanh_minus_real [simp]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6848
  assumes "abs x < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6849
  shows   "artanh (-x::real) = -artanh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6850
  using assms by (simp add: artanh_def ln_div field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6851
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6852
lemma sinh_less_cosh_real: "sinh (x :: real) < cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6853
  by (simp add: sinh_def cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6854
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6855
lemma sinh_le_cosh_real: "sinh (x :: real) \<le> cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6856
  by (simp add: sinh_def cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6857
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6858
lemma tanh_real_lt_1: "tanh (x :: real) < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6859
  by (simp add: tanh_def sinh_less_cosh_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6860
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6861
lemma tanh_real_gt_neg1: "tanh (x :: real) > -1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6862
proof -
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6863
  have "- cosh x < sinh x" by (simp add: sinh_def cosh_def field_split_simps)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6864
  thus ?thesis by (simp add: tanh_def field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6865
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6866
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6867
lemma tanh_real_bounds: "tanh (x :: real) \<in> {-1<..<1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6868
  using tanh_real_lt_1 tanh_real_gt_neg1 by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6869
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6870
context
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6871
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6872
begin
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6873
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6874
lemma arsinh_sinh_real: "arsinh (sinh x) = x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6875
  by (simp add: arsinh_real_def powr_def sinh_square_eq sinh_plus_cosh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6876
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6877
lemma arcosh_cosh_real: "x \<ge> 0 \<Longrightarrow> arcosh (cosh x) = x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6878
  by (simp add: arcosh_real_def powr_def cosh_square_eq cosh_real_ge_1 cosh_plus_sinh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6879
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6880
lemma artanh_tanh_real: "artanh (tanh x) = x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6881
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6882
  have "artanh (tanh x) = ln (cosh x * (cosh x + sinh x) / (cosh x * (cosh x - sinh x))) / 2"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6883
    by (simp add: artanh_def tanh_def field_split_simps)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6884
  also have "cosh x * (cosh x + sinh x) / (cosh x * (cosh x - sinh x)) =
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6885
               (cosh x + sinh x) / (cosh x - sinh x)" by simp
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6886
  also have "\<dots> = (exp x)^2"
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6887
    by (simp add: cosh_plus_sinh cosh_minus_sinh exp_minus field_simps power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6888
  also have "ln ((exp x)^2) / 2 = x" by (simp add: ln_realpow)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6889
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6890
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6891
77221
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6892
lemma sinh_real_zero_iff [simp]: "sinh x = 0 \<longleftrightarrow> x = 0"
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6893
  by (metis arsinh_0 arsinh_sinh_real sinh_0)
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6894
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6895
lemma cosh_real_one_iff [simp]: "cosh x = 1 \<longleftrightarrow> x = 0"
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6896
  by (smt (verit, best) Transcendental.arcosh_cosh_real cosh_0 cosh_minus)
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6897
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6898
lemma tanh_real_nonneg_iff [simp]: "tanh x \<ge> 0 \<longleftrightarrow> x \<ge> 0"
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6899
  by (simp add: tanh_def field_simps)
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6900
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6901
lemma tanh_real_pos_iff [simp]: "tanh x > 0 \<longleftrightarrow> x > 0"
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6902
  by (simp add: tanh_def field_simps)
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6903
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6904
lemma tanh_real_nonpos_iff [simp]: "tanh x \<le> 0 \<longleftrightarrow> x \<le> 0"
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6905
  by (simp add: tanh_def field_simps)
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6906
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6907
lemma tanh_real_neg_iff [simp]: "tanh x < 0 \<longleftrightarrow> x < 0"
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6908
  by (simp add: tanh_def field_simps)
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6909
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6910
lemma tanh_real_zero_iff [simp]: "tanh x = 0 \<longleftrightarrow> x = 0"
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6911
  by (simp add: tanh_def field_simps)
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6912
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6913
end
77221
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6914
  
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6915
lemma sinh_real_strict_mono: "strict_mono (sinh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6916
  by (rule pos_deriv_imp_strict_mono derivative_intros)+ auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6917
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6918
lemma cosh_real_strict_mono:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6919
  assumes "0 \<le> x" and "x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6920
  shows   "cosh x < cosh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6921
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6922
  from assms have "\<exists>z>x. z < y \<and> cosh y - cosh x = (y - x) * sinh z"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6923
    by (intro MVT2) (auto dest: connectedD_interval intro!: derivative_eq_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6924
  then obtain z where z: "z > x" "z < y" "cosh y - cosh x = (y - x) * sinh z" by blast
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6925
  note \<open>cosh y - cosh x = (y - x) * sinh z\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6926
  also from \<open>z > x\<close> and assms have "(y - x) * sinh z > 0" by (intro mult_pos_pos) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6927
  finally show "cosh x < cosh y" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6928
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6929
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6930
lemma tanh_real_strict_mono: "strict_mono (tanh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6931
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6932
  have *: "tanh x ^ 2 < 1" for x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6933
    using tanh_real_bounds[of x] by (simp add: abs_square_less_1 abs_if)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6934
  show ?thesis
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6935
    by (rule pos_deriv_imp_strict_mono) (insert *, auto intro!: derivative_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6936
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6937
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6938
lemma sinh_real_abs [simp]: "sinh (abs x :: real) = abs (sinh x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6939
  by (simp add: abs_if)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6940
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6941
lemma cosh_real_abs [simp]: "cosh (abs x :: real) = cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6942
  by (simp add: abs_if)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6943
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6944
lemma tanh_real_abs [simp]: "tanh (abs x :: real) = abs (tanh x)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6945
  by (auto simp: abs_if)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6946
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6947
lemma sinh_real_eq_iff [simp]: "sinh x = sinh y \<longleftrightarrow> x = (y :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6948
  using sinh_real_strict_mono by (simp add: strict_mono_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6949
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6950
lemma tanh_real_eq_iff [simp]: "tanh x = tanh y \<longleftrightarrow> x = (y :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6951
  using tanh_real_strict_mono by (simp add: strict_mono_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6952
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6953
lemma cosh_real_eq_iff [simp]: "cosh x = cosh y \<longleftrightarrow> abs x = abs (y :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6954
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6955
  have "cosh x = cosh y \<longleftrightarrow> x = y" if "x \<ge> 0" "y \<ge> 0" for x y :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6956
    using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x] that
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6957
    by (cases x y rule: linorder_cases) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6958
  from this[of "abs x" "abs y"] show ?thesis by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6959
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6960
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6961
lemma sinh_real_le_iff [simp]: "sinh x \<le> sinh y \<longleftrightarrow> x \<le> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6962
  using sinh_real_strict_mono by (simp add: strict_mono_less_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6963
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6964
lemma cosh_real_nonneg_le_iff: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> cosh x \<le> cosh y \<longleftrightarrow> x \<le> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6965
  using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6966
  by (cases x y rule: linorder_cases) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6967
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6968
lemma cosh_real_nonpos_le_iff: "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> cosh x \<le> cosh y \<longleftrightarrow> x \<ge> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6969
  using cosh_real_nonneg_le_iff[of "-x" "-y"] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6970
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6971
lemma tanh_real_le_iff [simp]: "tanh x \<le> tanh y \<longleftrightarrow> x \<le> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6972
  using tanh_real_strict_mono by (simp add: strict_mono_less_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6973
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6974
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6975
lemma sinh_real_less_iff [simp]: "sinh x < sinh y \<longleftrightarrow> x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6976
  using sinh_real_strict_mono by (simp add: strict_mono_less)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6977
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6978
lemma cosh_real_nonneg_less_iff: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> cosh x < cosh y \<longleftrightarrow> x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6979
  using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6980
  by (cases x y rule: linorder_cases) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6981
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6982
lemma cosh_real_nonpos_less_iff: "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> cosh x < cosh y \<longleftrightarrow> x > (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6983
  using cosh_real_nonneg_less_iff[of "-x" "-y"] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6984
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6985
lemma tanh_real_less_iff [simp]: "tanh x < tanh y \<longleftrightarrow> x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6986
  using tanh_real_strict_mono by (simp add: strict_mono_less)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6987
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6988
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6989
subsubsection \<open>Limits\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6990
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6991
lemma sinh_real_at_top: "filterlim (sinh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6992
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6993
  have *: "((\<lambda>x. - exp (- x)) \<longlongrightarrow> (-0::real)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6994
    by (intro tendsto_minus filterlim_compose[OF exp_at_bot] filterlim_uminus_at_bot_at_top)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6995
  have "filterlim (\<lambda>x. (1/2) * (-exp (-x) + exp x) :: real) at_top at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6996
    by (rule filterlim_tendsto_pos_mult_at_top[OF _ _
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6997
               filterlim_tendsto_add_at_top[OF *]] tendsto_const)+ (auto simp: exp_at_top)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6998
  also have "(\<lambda>x. (1/2) * (-exp (-x) + exp x) :: real) = sinh"
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6999
    by (simp add: fun_eq_iff sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7000
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7001
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7002
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7003
lemma sinh_real_at_bot: "filterlim (sinh :: real \<Rightarrow> real) at_bot at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7004
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7005
  have "filterlim (\<lambda>x. -sinh x :: real) at_bot at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7006
    by (simp add: filterlim_uminus_at_top [symmetric] sinh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7007
  also have "(\<lambda>x. -sinh x :: real) = (\<lambda>x. sinh (-x))" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7008
  finally show ?thesis by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7009
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7010
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7011
lemma cosh_real_at_top: "filterlim (cosh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7012
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7013
  have *: "((\<lambda>x. exp (- x)) \<longlongrightarrow> (0::real)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7014
    by (intro filterlim_compose[OF exp_at_bot] filterlim_uminus_at_bot_at_top)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  7015
  have "filterlim (\<lambda>x. (1/2) * (exp (-x) + exp x) :: real) at_top at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7016
    by (rule filterlim_tendsto_pos_mult_at_top[OF _ _
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7017
               filterlim_tendsto_add_at_top[OF *]] tendsto_const)+ (auto simp: exp_at_top)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  7018
  also have "(\<lambda>x. (1/2) * (exp (-x) + exp x) :: real) = cosh"
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7019
    by (simp add: fun_eq_iff cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7020
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7021
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7022
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7023
lemma cosh_real_at_bot: "filterlim (cosh :: real \<Rightarrow> real) at_top at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7024
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7025
  have "filterlim (\<lambda>x. cosh (-x) :: real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7026
    by (simp add: cosh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7027
  thus ?thesis by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7028
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7029
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7030
lemma tanh_real_at_top: "(tanh \<longlongrightarrow> (1::real)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7031
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7032
  have "((\<lambda>x::real. (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))) \<longlongrightarrow> (1 - 0) / (1 + 0)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7033
    by (intro tendsto_intros filterlim_compose[OF exp_at_bot]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7034
              filterlim_tendsto_neg_mult_at_bot[OF tendsto_const] filterlim_ident) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7035
  also have "(\<lambda>x::real. (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))) = tanh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7036
    by (rule ext) (simp add: tanh_real_altdef)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7037
  finally show ?thesis by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7038
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7039
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7040
lemma tanh_real_at_bot: "(tanh \<longlongrightarrow> (-1::real)) at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7041
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7042
  have "((\<lambda>x::real. -tanh x) \<longlongrightarrow> -1) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7043
    by (intro tendsto_minus tanh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7044
  also have "(\<lambda>x. -tanh x :: real) = (\<lambda>x. tanh (-x))" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7045
  finally show ?thesis by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7046
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7047
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7048
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7049
subsubsection \<open>Properties of the inverse hyperbolic functions\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7050
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7051
lemma isCont_sinh: "isCont sinh (x :: 'a :: {real_normed_field, banach})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7052
  unfolding sinh_def [abs_def] by (auto intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7053
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7054
lemma isCont_cosh: "isCont cosh (x :: 'a :: {real_normed_field, banach})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7055
  unfolding cosh_def [abs_def] by (auto intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7056
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7057
lemma isCont_tanh: "cosh x \<noteq> 0 \<Longrightarrow> isCont tanh (x :: 'a :: {real_normed_field, banach})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7058
  unfolding tanh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7059
  by (auto intro!: continuous_intros isCont_divide isCont_sinh isCont_cosh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7060
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7061
lemma continuous_on_sinh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7062
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7063
  assumes "continuous_on A f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7064
  shows   "continuous_on A (\<lambda>x. sinh (f x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7065
  unfolding sinh_def using assms by (intro continuous_intros)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7066
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7067
lemma continuous_on_cosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7068
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7069
  assumes "continuous_on A f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7070
  shows   "continuous_on A (\<lambda>x. cosh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7071
  unfolding cosh_def using assms by (intro continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7072
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7073
lemma continuous_sinh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7074
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7075
  assumes "continuous F f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7076
  shows   "continuous F (\<lambda>x. sinh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7077
  unfolding sinh_def using assms by (intro continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7078
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7079
lemma continuous_cosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7080
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7081
  assumes "continuous F f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7082
  shows   "continuous F (\<lambda>x. cosh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7083
  unfolding cosh_def using assms by (intro continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7084
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7085
lemma continuous_on_tanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7086
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7087
  assumes "continuous_on A f" "\<And>x. x \<in> A \<Longrightarrow> cosh (f x) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7088
  shows   "continuous_on A (\<lambda>x. tanh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7089
  unfolding tanh_def using assms by (intro continuous_intros) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7090
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7091
lemma continuous_at_within_tanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7092
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7093
  assumes "continuous (at x within A) f" "cosh (f x) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7094
  shows   "continuous (at x within A) (\<lambda>x. tanh (f x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7095
  unfolding tanh_def using assms by (intro continuous_intros continuous_divide) auto
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7096
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7097
lemma continuous_tanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7098
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7099
  assumes "continuous F f" "cosh (f (Lim F (\<lambda>x. x))) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7100
  shows   "continuous F (\<lambda>x. tanh (f x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7101
  unfolding tanh_def using assms by (intro continuous_intros continuous_divide) auto
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7102
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7103
lemma tendsto_sinh [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7104
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7105
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. sinh (f x)) \<longlongrightarrow> sinh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7106
  by (rule isCont_tendsto_compose [OF isCont_sinh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7107
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7108
lemma tendsto_cosh [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7109
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7110
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. cosh (f x)) \<longlongrightarrow> cosh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7111
  by (rule isCont_tendsto_compose [OF isCont_cosh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7112
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7113
lemma tendsto_tanh [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7114
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7115
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> cosh a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. tanh (f x)) \<longlongrightarrow> tanh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7116
  by (rule isCont_tendsto_compose [OF isCont_tanh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7117
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7118
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7119
lemma arsinh_real_has_field_derivative [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7120
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7121
  shows "(arsinh has_field_derivative (1 / (sqrt (x ^ 2 + 1)))) (at x within A)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7122
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7123
  have pos: "1 + x ^ 2 > 0" by (intro add_pos_nonneg) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7124
  from pos arsinh_real_aux[of x] show ?thesis unfolding arsinh_def [abs_def]
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7125
    by (auto intro!: derivative_eq_intros simp: powr_minus powr_half_sqrt field_split_simps)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7126
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7127
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7128
lemma arcosh_real_has_field_derivative [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7129
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7130
  assumes "x > 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7131
  shows   "(arcosh has_field_derivative (1 / (sqrt (x ^ 2 - 1)))) (at x within A)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7132
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7133
  from assms have "x + sqrt (x\<^sup>2 - 1) > 0" by (simp add: add_pos_pos)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7134
  thus ?thesis using assms unfolding arcosh_def [abs_def]
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7135
    by (auto intro!: derivative_eq_intros
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7136
             simp: powr_minus powr_half_sqrt field_split_simps power2_eq_1_iff)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7137
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7138
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7139
lemma artanh_real_has_field_derivative [derivative_intros]:
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7140
  "(artanh has_field_derivative (1 / (1 - x ^ 2))) (at x within A)" if
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7141
    "\<bar>x\<bar> < 1" for x :: real
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7142
proof -
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7143
  from that have "- 1 < x" "x < 1" by linarith+
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7144
  hence "(artanh has_field_derivative (4 - 4 * x) / ((1 + x) * (1 - x) * (1 - x) * 4))
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7145
           (at x within A)" unfolding artanh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7146
    by (auto intro!: derivative_eq_intros simp: powr_minus powr_half_sqrt)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7147
  also have "(4 - 4 * x) / ((1 + x) * (1 - x) * (1 - x) * 4) = 1 / ((1 + x) * (1 - x))"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7148
    using \<open>-1 < x\<close> \<open>x < 1\<close> by (simp add: frac_eq_eq)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7149
  also have "(1 + x) * (1 - x) = 1 - x ^ 2"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7150
    by (simp add: algebra_simps power2_eq_square)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7151
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7152
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7153
79672
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7154
lemma cosh_double_cosh: "cosh (2 * x :: 'a :: {banach, real_normed_field}) = 2 * (cosh x)\<^sup>2 - 1"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7155
  using cosh_double[of x] by (simp add: sinh_square_eq)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7156
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7157
lemma sinh_multiple_reduce:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7158
  "sinh (x * numeral n :: 'a :: {real_normed_field, banach}) = 
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7159
     sinh x * cosh (x * of_nat (pred_numeral n)) + cosh x * sinh (x * of_nat (pred_numeral n))"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7160
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7161
  have "numeral n = of_nat (pred_numeral n) + (1 :: 'a)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7162
    by (metis add.commute numeral_eq_Suc of_nat_Suc of_nat_numeral)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7163
  also have "sinh (x * \<dots>) = sinh (x * of_nat (pred_numeral n) + x)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7164
    unfolding of_nat_Suc by (simp add: ring_distribs)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7165
  finally show ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7166
    by (simp add: sinh_add)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7167
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7168
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7169
lemma cosh_multiple_reduce:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7170
  "cosh (x * numeral n :: 'a :: {real_normed_field, banach}) =
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7171
     cosh (x * of_nat (pred_numeral n)) * cosh x + sinh (x * of_nat (pred_numeral n)) * sinh x"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7172
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7173
  have "numeral n = of_nat (pred_numeral n) + (1 :: 'a)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7174
    by (metis add.commute numeral_eq_Suc of_nat_Suc of_nat_numeral)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7175
  also have "cosh (x * \<dots>) = cosh (x * of_nat (pred_numeral n) + x)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7176
    unfolding of_nat_Suc by (simp add: ring_distribs)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7177
  finally show ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7178
    by (simp add: cosh_add)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7179
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7180
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7181
lemma cosh_arcosh_real [simp]:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7182
  assumes "x \<ge> (1 :: real)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7183
  shows   "cosh (arcosh x) = x"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7184
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7185
  have "eventually (\<lambda>t::real. cosh t \<ge> x) at_top"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7186
    using cosh_real_at_top by (simp add: filterlim_at_top)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7187
  then obtain t where "t \<ge> 1" "cosh t \<ge> x"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7188
    by (metis eventually_at_top_linorder linorder_not_le order_le_less)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7189
  moreover have "isCont cosh (y :: real)" for y
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7190
    by (intro continuous_intros)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7191
  ultimately obtain y where "y \<ge> 0" "x = cosh y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7192
    using IVT[of cosh 0 x t] assms by auto
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7193
  thus ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7194
    by (simp add: arcosh_cosh_real)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7195
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7196
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7197
lemma arcosh_eq_0_iff_real [simp]: "x \<ge> 1 \<Longrightarrow> arcosh x = 0 \<longleftrightarrow> x = (1 :: real)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7198
  using cosh_arcosh_real by fastforce
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7199
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7200
lemma arcosh_nonneg_real [simp]:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7201
  assumes "x \<ge> 1"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7202
  shows   "arcosh (x :: real) \<ge> 0"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7203
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7204
  have "1 + 0 \<le> x + (x\<^sup>2 - 1) powr (1 / 2)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7205
    using assms by (intro add_mono) auto
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7206
  thus ?thesis unfolding arcosh_def by simp
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7207
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7208
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7209
lemma arcosh_real_strict_mono:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7210
  fixes x y :: real
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7211
  assumes "1 \<le> x" "x < y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7212
  shows   "arcosh x < arcosh y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7213
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7214
  have "cosh (arcosh x) < cosh (arcosh y)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7215
    by (subst (1 2) cosh_arcosh_real) (use assms in auto)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7216
  thus ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7217
    using assms by (subst (asm) cosh_real_nonneg_less_iff) auto
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7218
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7219
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7220
lemma arcosh_less_iff_real [simp]:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7221
  fixes x y :: real
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7222
  assumes "1 \<le> x" "1 \<le> y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7223
  shows   "arcosh x < arcosh y \<longleftrightarrow> x < y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7224
  using arcosh_real_strict_mono[of x y] arcosh_real_strict_mono[of y x] assms
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7225
  by (cases x y rule: linorder_cases) auto
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7226
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7227
lemma arcosh_real_gt_1_iff [simp]: "x \<ge> 1 \<Longrightarrow> arcosh x > 0 \<longleftrightarrow> x \<noteq> (1 :: real)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7228
  using arcosh_less_iff_real[of 1 x] by (auto simp del: arcosh_less_iff_real)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7229
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7230
lemma sinh_arcosh_real: "x \<ge> 1 \<Longrightarrow> sinh (arcosh x) = sqrt (x\<^sup>2 - 1)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7231
  by (rule sym, rule real_sqrt_unique) (auto simp: sinh_square_eq)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7232
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7233
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7234
lemma sinh_arsinh_real [simp]: "sinh (arsinh x :: real) = x"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7235
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7236
  have "eventually (\<lambda>t::real. sinh t \<ge> x) at_top"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7237
    using sinh_real_at_top by (simp add: filterlim_at_top)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7238
  then obtain t where "sinh t \<ge> x"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7239
    by (metis eventually_at_top_linorder linorder_not_le order_le_less)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7240
  moreover have "eventually (\<lambda>t::real. sinh t \<le> x) at_bot"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7241
    using sinh_real_at_bot by (simp add: filterlim_at_bot)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7242
  then obtain t' where "t' \<le> t" "sinh t' \<le> x"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7243
    by (metis eventually_at_bot_linorder nle_le)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7244
  moreover have "isCont sinh (y :: real)" for y
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7245
    by (intro continuous_intros)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7246
  ultimately obtain y where "x = sinh y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7247
    using IVT[of sinh t' x t] by auto
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7248
  thus ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7249
    by (simp add: arsinh_sinh_real)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7250
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7251
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7252
lemma arsinh_real_strict_mono:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7253
  fixes x y :: real
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7254
  assumes "x < y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7255
  shows   "arsinh x < arsinh y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7256
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7257
  have "sinh (arsinh x) < sinh (arsinh y)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7258
    by (subst (1 2) sinh_arsinh_real) (use assms in auto)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7259
  thus ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7260
    using assms by (subst (asm) sinh_real_less_iff) auto
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7261
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7262
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7263
lemma arsinh_less_iff_real [simp]:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7264
  fixes x y :: real
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7265
  shows "arsinh x < arsinh y \<longleftrightarrow> x < y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7266
  using arsinh_real_strict_mono[of x y] arsinh_real_strict_mono[of y x]
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7267
  by (cases x y rule: linorder_cases) auto
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7268
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7269
lemma arsinh_real_eq_0_iff [simp]: "arsinh x = 0 \<longleftrightarrow> x = (0 :: real)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7270
  by (metis arsinh_0 sinh_arsinh_real)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7271
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7272
lemma arsinh_real_pos_iff [simp]: "arsinh x > 0 \<longleftrightarrow> x > (0 :: real)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7273
  using arsinh_less_iff_real[of 0 x] by (simp del: arsinh_less_iff_real)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7274
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7275
lemma arsinh_real_neg_iff [simp]: "arsinh x < 0 \<longleftrightarrow> x < (0 :: real)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7276
  using arsinh_less_iff_real[of x 0] by (simp del: arsinh_less_iff_real)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7277
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7278
lemma cosh_arsinh_real: "cosh (arsinh x) = sqrt (x\<^sup>2 + 1)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7279
  by (rule sym, rule real_sqrt_unique) (auto simp: cosh_square_eq)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7280
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7281
lemma continuous_on_arsinh [continuous_intros]: "continuous_on A (arsinh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7282
  by (rule DERIV_continuous_on derivative_intros)+
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7283
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7284
lemma continuous_on_arcosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7285
  assumes "A \<subseteq> {1..}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7286
  shows   "continuous_on A (arcosh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7287
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7288
  have pos: "x + sqrt (x ^ 2 - 1) > 0" if "x \<ge> 1" for x
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7289
    using that by (intro add_pos_nonneg) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7290
  show ?thesis
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7291
  unfolding arcosh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7292
  by (intro continuous_on_subset [OF _ assms] continuous_on_ln continuous_on_add
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7293
               continuous_on_id continuous_on_powr')
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7294
     (auto dest: pos simp: powr_half_sqrt intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7295
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7296
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7297
lemma continuous_on_artanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7298
  assumes "A \<subseteq> {-1<..<1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7299
  shows   "continuous_on A (artanh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7300
  unfolding artanh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7301
  by (intro continuous_on_subset [OF _ assms]) (auto intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7302
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7303
lemma continuous_on_arsinh' [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7304
  fixes f :: "real \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7305
  assumes "continuous_on A f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7306
  shows   "continuous_on A (\<lambda>x. arsinh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7307
  by (rule continuous_on_compose2[OF continuous_on_arsinh assms]) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7308
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7309
lemma continuous_on_arcosh' [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7310
  fixes f :: "real \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7311
  assumes "continuous_on A f" "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7312
  shows   "continuous_on A (\<lambda>x. arcosh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7313
  by (rule continuous_on_compose2[OF continuous_on_arcosh assms(1) order.refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7314
     (use assms(2) in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7315
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7316
lemma continuous_on_artanh' [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7317
  fixes f :: "real \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7318
  assumes "continuous_on A f" "\<And>x. x \<in> A \<Longrightarrow> f x \<in> {-1<..<1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7319
  shows   "continuous_on A (\<lambda>x. artanh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7320
  by (rule continuous_on_compose2[OF continuous_on_artanh assms(1) order.refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7321
     (use assms(2) in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7322
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7323
lemma isCont_arsinh [continuous_intros]: "isCont arsinh (x :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7324
  using continuous_on_arsinh[of UNIV] by (auto simp: continuous_on_eq_continuous_at)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7325
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7326
lemma isCont_arcosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7327
  assumes "x > 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7328
  shows   "isCont arcosh (x :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7329
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7330
  have "continuous_on {1::real<..} arcosh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7331
    by (rule continuous_on_arcosh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7332
  with assms show ?thesis by (auto simp: continuous_on_eq_continuous_at)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7333
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7334
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7335
lemma isCont_artanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7336
  assumes "x > -1" "x < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7337
  shows   "isCont artanh (x :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7338
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7339
  have "continuous_on {-1<..<(1::real)} artanh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7340
    by (rule continuous_on_artanh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7341
  with assms show ?thesis by (auto simp: continuous_on_eq_continuous_at)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7342
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7343
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7344
lemma tendsto_arsinh [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. arsinh (f x)) \<longlongrightarrow> arsinh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7345
  for f :: "_ \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7346
  by (rule isCont_tendsto_compose [OF isCont_arsinh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7347
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7348
lemma tendsto_arcosh_strong [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7349
  fixes f :: "_ \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7350
  assumes "(f \<longlongrightarrow> a) F" "a \<ge> 1" "eventually (\<lambda>x. f x \<ge> 1) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7351
  shows   "((\<lambda>x. arcosh (f x)) \<longlongrightarrow> arcosh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7352
  by (rule continuous_on_tendsto_compose[OF continuous_on_arcosh[OF order.refl]])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7353
     (use assms in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7354
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7355
lemma tendsto_arcosh:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7356
  fixes f :: "_ \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7357
  assumes "(f \<longlongrightarrow> a) F" "a > 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7358
  shows "((\<lambda>x. arcosh (f x)) \<longlongrightarrow> arcosh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7359
  by (rule isCont_tendsto_compose [OF isCont_arcosh]) (use assms in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7360
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7361
lemma tendsto_arcosh_at_left_1: "(arcosh \<longlongrightarrow> 0) (at_right (1::real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7362
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7363
  have "(arcosh \<longlongrightarrow> arcosh 1) (at_right (1::real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7364
    by (rule tendsto_arcosh_strong) (auto simp: eventually_at intro!: exI[of _ 1])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7365
  thus ?thesis by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7366
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7367
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7368
lemma tendsto_artanh [tendsto_intros]:
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7369
  fixes f :: "'a \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7370
  assumes "(f \<longlongrightarrow> a) F" "a > -1" "a < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7371
  shows   "((\<lambda>x. artanh (f x)) \<longlongrightarrow> artanh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7372
  by (rule isCont_tendsto_compose [OF isCont_artanh]) (use assms in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7373
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7374
lemma continuous_arsinh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7375
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. arsinh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7376
  unfolding continuous_def by (rule tendsto_arsinh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7377
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7378
(* TODO: This rule does not work for one-sided continuity at 1 *)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7379
lemma continuous_arcosh_strong [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7380
  assumes "continuous F f" "eventually (\<lambda>x. f x \<ge> 1) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7381
  shows   "continuous F (\<lambda>x. arcosh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7382
proof (cases "F = bot")
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7383
  case False
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7384
  show ?thesis
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7385
    unfolding continuous_def
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7386
  proof (intro tendsto_arcosh_strong)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7387
    show "1 \<le> f (Lim F (\<lambda>x. x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7388
      using assms False unfolding continuous_def by (rule tendsto_lowerbound)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7389
  qed (insert assms, auto simp: continuous_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7390
qed auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7391
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7392
lemma continuous_arcosh:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7393
  "continuous F f \<Longrightarrow> f (Lim F (\<lambda>x. x)) > 1 \<Longrightarrow> continuous F (\<lambda>x. arcosh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7394
  unfolding continuous_def by (rule tendsto_arcosh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7395
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7396
lemma continuous_artanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7397
  "continuous F f \<Longrightarrow> f (Lim F (\<lambda>x. x)) \<in> {-1<..<1} \<Longrightarrow> continuous F (\<lambda>x. artanh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7398
  unfolding continuous_def by (rule tendsto_artanh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7399
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7400
lemma arsinh_real_at_top:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7401
  "filterlim (arsinh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7402
proof (subst filterlim_cong[OF refl refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7403
  show "filterlim (\<lambda>x. ln (x + sqrt (1 + x\<^sup>2))) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7404
    by (intro filterlim_compose[OF ln_at_top filterlim_at_top_add_at_top] filterlim_ident
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7405
              filterlim_compose[OF sqrt_at_top] filterlim_tendsto_add_at_top[OF tendsto_const]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7406
              filterlim_pow_at_top) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7407
qed (auto intro!: eventually_mono[OF eventually_ge_at_top[of 1]] simp: arsinh_real_def add_ac)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7408
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7409
lemma arsinh_real_at_bot:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7410
  "filterlim (arsinh :: real \<Rightarrow> real) at_bot at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7411
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7412
  have "filterlim (\<lambda>x::real. -arsinh x) at_bot at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7413
    by (subst filterlim_uminus_at_top [symmetric]) (rule arsinh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7414
  also have "(\<lambda>x::real. -arsinh x) = (\<lambda>x. arsinh (-x))" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7415
  finally show ?thesis
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7416
    by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7417
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7418
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7419
lemma arcosh_real_at_top:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7420
  "filterlim (arcosh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7421
proof (subst filterlim_cong[OF refl refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7422
  show "filterlim (\<lambda>x. ln (x + sqrt (-1 + x\<^sup>2))) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7423
    by (intro filterlim_compose[OF ln_at_top filterlim_at_top_add_at_top] filterlim_ident
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7424
              filterlim_compose[OF sqrt_at_top] filterlim_tendsto_add_at_top[OF tendsto_const]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7425
              filterlim_pow_at_top) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7426
qed (auto intro!: eventually_mono[OF eventually_ge_at_top[of 1]] simp: arcosh_real_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7427
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7428
lemma artanh_real_at_left_1:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7429
  "filterlim (artanh :: real \<Rightarrow> real) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7430
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7431
  have *: "filterlim (\<lambda>x::real. (1 + x) / (1 - x)) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7432
    by (rule LIM_at_top_divide)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7433
       (auto intro!: tendsto_eq_intros eventually_mono[OF eventually_at_left_real[of 0]])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7434
  have "filterlim (\<lambda>x::real. (1/2) * ln ((1 + x) / (1 - x))) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7435
    by (intro filterlim_tendsto_pos_mult_at_top[OF tendsto_const] *
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7436
                 filterlim_compose[OF ln_at_top]) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7437
  also have "(\<lambda>x::real. (1/2) * ln ((1 + x) / (1 - x))) = artanh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7438
    by (simp add: artanh_def [abs_def])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7439
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7440
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7441
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7442
lemma artanh_real_at_right_1:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7443
  "filterlim (artanh :: real \<Rightarrow> real) at_bot (at_right (-1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7444
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7445
  have "?thesis \<longleftrightarrow> filterlim (\<lambda>x::real. -artanh x) at_top (at_right (-1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7446
    by (simp add: filterlim_uminus_at_bot)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7447
  also have "\<dots> \<longleftrightarrow> filterlim (\<lambda>x::real. artanh (-x)) at_top (at_right (-1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7448
    by (intro filterlim_cong refl eventually_mono[OF eventually_at_right_real[of "-1" "1"]]) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7449
  also have "\<dots> \<longleftrightarrow> filterlim (artanh :: real \<Rightarrow> real) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7450
    by (simp add: filterlim_at_left_to_right)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7451
  also have \<dots> by (rule artanh_real_at_left_1)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7452
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7453
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7454
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7455
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7456
subsection \<open>Simprocs for root and power literals\<close>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7457
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7458
lemma numeral_powr_numeral_real [simp]:
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7459
  "numeral m powr numeral n = (numeral m ^ numeral n :: real)"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7460
  by (simp add: powr_numeral)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7461
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7462
context
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7463
begin
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7464
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7465
private lemma sqrt_numeral_simproc_aux:
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7466
  assumes "m * m \<equiv> n"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7467
  shows   "sqrt (numeral n :: real) \<equiv> numeral m"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7468
proof -
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7469
  have "numeral n \<equiv> numeral m * (numeral m :: real)" by (simp add: assms [symmetric])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7470
  moreover have "sqrt \<dots> \<equiv> numeral m" by (subst real_sqrt_abs2) simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7471
  ultimately show "sqrt (numeral n :: real) \<equiv> numeral m" by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7472
qed
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7473
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7474
private lemma root_numeral_simproc_aux:
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7475
  assumes "Num.pow m n \<equiv> x"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7476
  shows   "root (numeral n) (numeral x :: real) \<equiv> numeral m"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7477
  by (subst assms [symmetric], subst numeral_pow, subst real_root_pos2) simp_all
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7478
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7479
private lemma powr_numeral_simproc_aux:
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7480
  assumes "Num.pow y n = x"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7481
  shows   "numeral x powr (m / numeral n :: real) \<equiv> numeral y powr m"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7482
  by (subst assms [symmetric], subst numeral_pow, subst powr_numeral [symmetric])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7483
     (simp, subst powr_powr, simp_all)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7484
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7485
private lemma numeral_powr_inverse_eq:
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7486
  "numeral x powr (inverse (numeral n)) = numeral x powr (1 / numeral n :: real)"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7487
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7488
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7489
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7490
ML \<open>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7491
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7492
signature ROOT_NUMERAL_SIMPROC = sig
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7493
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7494
val sqrt : int option -> int -> int option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7495
val sqrt' : int option -> int -> int option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7496
val nth_root : int option -> int -> int -> int option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7497
val nth_root' : int option -> int -> int -> int option
78801
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7498
val sqrt_proc : Simplifier.proc
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7499
val root_proc : int * int -> Simplifier.proc
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7500
val powr_proc : int * int -> Simplifier.proc
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7501
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  7502
end
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7503
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7504
structure Root_Numeral_Simproc : ROOT_NUMERAL_SIMPROC = struct
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7505
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7506
fun iterate NONE p f x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7507
      let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7508
        fun go x = if p x then x else go (f x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7509
      in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7510
        SOME (go x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7511
      end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7512
  | iterate (SOME threshold) p f x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7513
      let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7514
        fun go (threshold, x) = 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7515
          if p x then SOME x else if threshold = 0 then NONE else go (threshold - 1, f x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7516
      in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7517
        go (threshold, x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7518
      end  
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7519
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7520
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7521
fun nth_root _ 1 x = SOME x
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7522
  | nth_root _ _ 0 = SOME 0
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7523
  | nth_root _ _ 1 = SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7524
  | nth_root threshold n x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7525
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7526
    fun newton_step y = ((n - 1) * y + x div Integer.pow (n - 1) y) div n
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7527
    fun is_root y = Integer.pow n y <= x andalso x < Integer.pow n (y + 1)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7528
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7529
    if x < n then
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7530
      SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7531
    else if x < Integer.pow n 2 then 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7532
      SOME 1 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7533
    else 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7534
      let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7535
        val y = Real.floor (Math.pow (Real.fromInt x, Real.fromInt 1 / Real.fromInt n))
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7536
      in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7537
        if is_root y then
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7538
          SOME y
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7539
        else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7540
          iterate threshold is_root newton_step ((x + n - 1) div n)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7541
      end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7542
  end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7543
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7544
fun nth_root' _ 1 x = SOME x
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7545
  | nth_root' _ _ 0 = SOME 0
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7546
  | nth_root' _ _ 1 = SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7547
  | nth_root' threshold n x = if x < n then NONE else if x < Integer.pow n 2 then NONE else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7548
      case nth_root threshold n x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7549
        NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7550
      | SOME y => if Integer.pow n y = x then SOME y else NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7551
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7552
fun sqrt _ 0 = SOME 0
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7553
  | sqrt _ 1 = SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7554
  | sqrt threshold n =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7555
    let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7556
      fun aux (a, b) = if n >= b * b then aux (b, b * b) else (a, b)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7557
      val (lower_root, lower_n) = aux (1, 2)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7558
      fun newton_step x = (x + n div x) div 2
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7559
      fun is_sqrt r = r*r <= n andalso n < (r+1)*(r+1)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7560
      val y = Real.floor (Math.sqrt (Real.fromInt n))
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7561
    in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7562
      if is_sqrt y then 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7563
        SOME y
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7564
      else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7565
        Option.mapPartial (iterate threshold is_sqrt newton_step o (fn x => x * lower_root)) 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7566
          (sqrt threshold (n div lower_n))
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7567
    end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7568
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7569
fun sqrt' threshold x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7570
  case sqrt threshold x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7571
    NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7572
  | SOME y => if y * y = x then SOME y else NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7573
78801
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7574
fun sqrt_proc ctxt ct =
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7575
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7576
    val n = ct |> Thm.term_of |> dest_comb |> snd |> dest_comb |> snd |> HOLogic.dest_numeral
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7577
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7578
    case sqrt' (SOME 10000) n of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7579
      NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7580
    | SOME m => 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7581
        SOME (Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt o HOLogic.mk_numeral) [m, n])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7582
                  @{thm sqrt_numeral_simproc_aux})
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7583
  end
68642
d812b6ee711b Made simproc for sqrt/root of numeral more robust
Manuel Eberl <eberlm@in.tum.de>
parents: 68638
diff changeset
  7584
    handle TERM _ => NONE
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7585
78801
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7586
fun root_proc (threshold1, threshold2) ctxt ct =
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7587
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7588
    val [n, x] = 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7589
      ct |> Thm.term_of |> strip_comb |> snd |> map (dest_comb #> snd #> HOLogic.dest_numeral)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7590
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7591
    if n > threshold1 orelse x > threshold2 then NONE else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7592
      case nth_root' (SOME 100) n x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7593
        NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7594
      | SOME m => 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7595
          SOME (Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt o HOLogic.mk_numeral) [m, n, x])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7596
            @{thm root_numeral_simproc_aux})
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7597
  end
68642
d812b6ee711b Made simproc for sqrt/root of numeral more robust
Manuel Eberl <eberlm@in.tum.de>
parents: 68638
diff changeset
  7598
    handle TERM _ => NONE
d812b6ee711b Made simproc for sqrt/root of numeral more robust
Manuel Eberl <eberlm@in.tum.de>
parents: 68638
diff changeset
  7599
         | Match => NONE
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7600
78801
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7601
fun powr_proc (threshold1, threshold2) ctxt ct =
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7602
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7603
    val eq_thm = Conv.try_conv (Conv.rewr_conv @{thm numeral_powr_inverse_eq}) ct
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7604
    val ct = Thm.dest_equals_rhs (Thm.cprop_of eq_thm)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7605
    val (_, [x, t]) = strip_comb (Thm.term_of ct)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7606
    val (_, [m, n]) = strip_comb t
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7607
    val [x, n] = map (dest_comb #> snd #> HOLogic.dest_numeral) [x, n]
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7608
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7609
    if n > threshold1 orelse x > threshold2 then NONE else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7610
      case nth_root' (SOME 100) n x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7611
        NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7612
      | SOME y => 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7613
          let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7614
            val [y, n, x] = map HOLogic.mk_numeral [y, n, x]
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7615
            val thm = Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt) [y, n, x, m])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7616
              @{thm powr_numeral_simproc_aux}
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7617
          in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7618
            SOME (@{thm transitive} OF [eq_thm, thm])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7619
          end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7620
  end
68642
d812b6ee711b Made simproc for sqrt/root of numeral more robust
Manuel Eberl <eberlm@in.tum.de>
parents: 68638
diff changeset
  7621
    handle TERM _ => NONE
d812b6ee711b Made simproc for sqrt/root of numeral more robust
Manuel Eberl <eberlm@in.tum.de>
parents: 68638
diff changeset
  7622
         | Match => NONE
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7623
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7624
end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7625
\<close>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7626
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7627
end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7628
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7629
simproc_setup sqrt_numeral ("sqrt (numeral n)") = 
78801
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7630
  \<open>K Root_Numeral_Simproc.sqrt_proc\<close>
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7631
  
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7632
simproc_setup root_numeral ("root (numeral n) (numeral x)") = 
78801
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7633
  \<open>K (Root_Numeral_Simproc.root_proc (200, Integer.pow 200 2))\<close>
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7634
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7635
simproc_setup powr_divide_numeral 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7636
  ("numeral x powr (m / numeral n :: real)" | "numeral x powr (inverse (numeral n) :: real)") = 
78801
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7637
    \<open>K (Root_Numeral_Simproc.powr_proc (200, Integer.pow 200 2))\<close>
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7638
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7639
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7640
lemma "root 100 1267650600228229401496703205376 = 2"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7641
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7642
    
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7643
lemma "sqrt 196 = 14" 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7644
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7645
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7646
lemma "256 powr (7 / 4 :: real) = 16384"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7647
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7648
    
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7649
lemma "27 powr (inverse 3) = (3::real)"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7650
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7651
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7652
end