| author | haftmann | 
| Sun, 30 Dec 2018 10:34:56 +0000 | |
| changeset 69545 | 4aed40ecfb43 | 
| parent 69260 | 0a9688695a1b | 
| child 70707 | 125705f5965f | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/Complex.thy | 
| 63569 | 2 | Author: Jacques D. Fleuriot, 2001 University of Edinburgh | 
| 3 | Author: Lawrence C Paulson, 2003/4 | |
| 13957 | 4 | *) | 
| 5 | ||
| 60758 | 6 | section \<open>Complex Numbers: Rectangular and Polar Representations\<close> | 
| 14373 | 7 | |
| 15131 | 8 | theory Complex | 
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
28944diff
changeset | 9 | imports Transcendental | 
| 15131 | 10 | begin | 
| 13957 | 11 | |
| 60758 | 12 | text \<open> | 
| 63569 | 13 | We use the \<^theory_text>\<open>codatatype\<close> command to define the type of complex numbers. This | 
| 14 | allows us to use \<^theory_text>\<open>primcorec\<close> to define complex functions by defining their | |
| 15 | real and imaginary result separately. | |
| 60758 | 16 | \<close> | 
| 14373 | 17 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 18 | codatatype complex = Complex (Re: real) (Im: real) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 19 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 20 | lemma complex_surj: "Complex (Re z) (Im z) = z" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 21 | by (rule complex.collapse) | 
| 13957 | 22 | |
| 63569 | 23 | lemma complex_eqI [intro?]: "Re x = Re y \<Longrightarrow> Im x = Im y \<Longrightarrow> x = y" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 24 | by (rule complex.expand) simp | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 25 | |
| 44065 
eb64ffccfc75
standard theorem naming scheme: complex_eqI, complex_eq_iff
 huffman parents: 
41959diff
changeset | 26 | lemma complex_eq_iff: "x = y \<longleftrightarrow> Re x = Re y \<and> Im x = Im y" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 27 | by (auto intro: complex.expand) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 28 | |
| 63569 | 29 | |
| 60758 | 30 | subsection \<open>Addition and Subtraction\<close> | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 31 | |
| 25599 | 32 | instantiation complex :: ab_group_add | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 33 | begin | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 34 | |
| 63569 | 35 | primcorec zero_complex | 
| 36 | where | |
| 37 | "Re 0 = 0" | |
| 38 | | "Im 0 = 0" | |
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 39 | |
| 63569 | 40 | primcorec plus_complex | 
| 41 | where | |
| 42 | "Re (x + y) = Re x + Re y" | |
| 43 | | "Im (x + y) = Im x + Im y" | |
| 25712 | 44 | |
| 63569 | 45 | primcorec uminus_complex | 
| 46 | where | |
| 47 | "Re (- x) = - Re x" | |
| 48 | | "Im (- x) = - Im x" | |
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 49 | |
| 63569 | 50 | primcorec minus_complex | 
| 51 | where | |
| 52 | "Re (x - y) = Re x - Re y" | |
| 53 | | "Im (x - y) = Im x - Im y" | |
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 54 | |
| 25712 | 55 | instance | 
| 63569 | 56 | by standard (simp_all add: complex_eq_iff) | 
| 25712 | 57 | |
| 58 | end | |
| 59 | ||
| 63569 | 60 | |
| 60758 | 61 | subsection \<open>Multiplication and Division\<close> | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 62 | |
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59862diff
changeset | 63 | instantiation complex :: field | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 64 | begin | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 65 | |
| 63569 | 66 | primcorec one_complex | 
| 67 | where | |
| 68 | "Re 1 = 1" | |
| 69 | | "Im 1 = 0" | |
| 14323 | 70 | |
| 63569 | 71 | primcorec times_complex | 
| 72 | where | |
| 73 | "Re (x * y) = Re x * Re y - Im x * Im y" | |
| 74 | | "Im (x * y) = Re x * Im y + Im x * Re y" | |
| 14323 | 75 | |
| 63569 | 76 | primcorec inverse_complex | 
| 77 | where | |
| 78 | "Re (inverse x) = Re x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)" | |
| 79 | | "Im (inverse x) = - Im x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)" | |
| 14335 | 80 | |
| 63569 | 81 | definition "x div y = x * inverse y" for x y :: complex | 
| 14335 | 82 | |
| 25712 | 83 | instance | 
| 63569 | 84 | by standard | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 85 | (simp_all add: complex_eq_iff divide_complex_def | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 86 | distrib_left distrib_right right_diff_distrib left_diff_distrib | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 87 | power2_eq_square add_divide_distrib [symmetric]) | 
| 14335 | 88 | |
| 25712 | 89 | end | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 90 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 91 | lemma Re_divide: "Re (x / y) = (Re x * Re y + Im x * Im y) / ((Re y)\<^sup>2 + (Im y)\<^sup>2)" | 
| 63569 | 92 | by (simp add: divide_complex_def add_divide_distrib) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 93 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 94 | lemma Im_divide: "Im (x / y) = (Im x * Re y - Re x * Im y) / ((Re y)\<^sup>2 + (Im y)\<^sup>2)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 95 | unfolding divide_complex_def times_complex.sel inverse_complex.sel | 
| 63569 | 96 | by (simp add: divide_simps) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 97 | |
| 65583 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 98 | lemma Complex_divide: | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 99 | "(x / y) = Complex ((Re x * Re y + Im x * Im y) / ((Re y)\<^sup>2 + (Im y)\<^sup>2)) | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 100 | ((Im x * Re y - Re x * Im y) / ((Re y)\<^sup>2 + (Im y)\<^sup>2))" | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 101 | by (metis Im_divide Re_divide complex_surj) | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 102 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 103 | lemma Re_power2: "Re (x ^ 2) = (Re x)^2 - (Im x)^2" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 104 | by (simp add: power2_eq_square) | 
| 20556 
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
 huffman parents: 
20485diff
changeset | 105 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 106 | lemma Im_power2: "Im (x ^ 2) = 2 * Re x * Im x" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 107 | by (simp add: power2_eq_square) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 108 | |
| 59862 | 109 | lemma Re_power_real [simp]: "Im x = 0 \<Longrightarrow> Re (x ^ n) = Re x ^ n " | 
| 44724 | 110 | by (induct n) simp_all | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 111 | |
| 59862 | 112 | lemma Im_power_real [simp]: "Im x = 0 \<Longrightarrow> Im (x ^ n) = 0" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 113 | by (induct n) simp_all | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 114 | |
| 63569 | 115 | |
| 60758 | 116 | subsection \<open>Scalar Multiplication\<close> | 
| 20556 
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
 huffman parents: 
20485diff
changeset | 117 | |
| 25712 | 118 | instantiation complex :: real_field | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 119 | begin | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 120 | |
| 63569 | 121 | primcorec scaleR_complex | 
| 122 | where | |
| 123 | "Re (scaleR r x) = r * Re x" | |
| 124 | | "Im (scaleR r x) = r * Im x" | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22968diff
changeset | 125 | |
| 25712 | 126 | instance | 
| 20556 
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
 huffman parents: 
20485diff
changeset | 127 | proof | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 128 | fix a b :: real and x y :: complex | 
| 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 129 | show "scaleR a (x + y) = scaleR a x + scaleR a y" | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
47108diff
changeset | 130 | by (simp add: complex_eq_iff distrib_left) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 131 | show "scaleR (a + b) x = scaleR a x + scaleR b x" | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
47108diff
changeset | 132 | by (simp add: complex_eq_iff distrib_right) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 133 | show "scaleR a (scaleR b x) = scaleR (a * b) x" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57259diff
changeset | 134 | by (simp add: complex_eq_iff mult.assoc) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 135 | show "scaleR 1 x = x" | 
| 44065 
eb64ffccfc75
standard theorem naming scheme: complex_eqI, complex_eq_iff
 huffman parents: 
41959diff
changeset | 136 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 137 | show "scaleR a x * y = scaleR a (x * y)" | 
| 44065 
eb64ffccfc75
standard theorem naming scheme: complex_eqI, complex_eq_iff
 huffman parents: 
41959diff
changeset | 138 | by (simp add: complex_eq_iff algebra_simps) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 139 | show "x * scaleR a y = scaleR a (x * y)" | 
| 44065 
eb64ffccfc75
standard theorem naming scheme: complex_eqI, complex_eq_iff
 huffman parents: 
41959diff
changeset | 140 | by (simp add: complex_eq_iff algebra_simps) | 
| 20556 
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
 huffman parents: 
20485diff
changeset | 141 | qed | 
| 
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
 huffman parents: 
20485diff
changeset | 142 | |
| 25712 | 143 | end | 
| 144 | ||
| 63569 | 145 | |
| 65579 | 146 | subsection \<open>Numerals, Arithmetic, and Embedding from R\<close> | 
| 14323 | 147 | |
| 44724 | 148 | abbreviation complex_of_real :: "real \<Rightarrow> complex" | 
| 149 | where "complex_of_real \<equiv> of_real" | |
| 20557 
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
 huffman parents: 
20556diff
changeset | 150 | |
| 59000 | 151 | declare [[coercion "of_real :: real \<Rightarrow> complex"]] | 
| 152 | declare [[coercion "of_rat :: rat \<Rightarrow> complex"]] | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 153 | declare [[coercion "of_int :: int \<Rightarrow> complex"]] | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 154 | declare [[coercion "of_nat :: nat \<Rightarrow> complex"]] | 
| 56331 | 155 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 156 | lemma complex_Re_of_nat [simp]: "Re (of_nat n) = of_nat n" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 157 | by (induct n) simp_all | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 158 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 159 | lemma complex_Im_of_nat [simp]: "Im (of_nat n) = 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 160 | by (induct n) simp_all | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 161 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 162 | lemma complex_Re_of_int [simp]: "Re (of_int z) = of_int z" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 163 | by (cases z rule: int_diff_cases) simp | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 164 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 165 | lemma complex_Im_of_int [simp]: "Im (of_int z) = 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 166 | by (cases z rule: int_diff_cases) simp | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 167 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 168 | lemma complex_Re_numeral [simp]: "Re (numeral v) = numeral v" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 169 | using complex_Re_of_int [of "numeral v"] by simp | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 170 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 171 | lemma complex_Im_numeral [simp]: "Im (numeral v) = 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 172 | using complex_Im_of_int [of "numeral v"] by simp | 
| 20557 
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
 huffman parents: 
20556diff
changeset | 173 | |
| 
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
 huffman parents: 
20556diff
changeset | 174 | lemma Re_complex_of_real [simp]: "Re (complex_of_real z) = z" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 175 | by (simp add: of_real_def) | 
| 20557 
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
 huffman parents: 
20556diff
changeset | 176 | |
| 
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
 huffman parents: 
20556diff
changeset | 177 | lemma Im_complex_of_real [simp]: "Im (complex_of_real z) = 0" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 178 | by (simp add: of_real_def) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 179 | |
| 59613 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 180 | lemma Re_divide_numeral [simp]: "Re (z / numeral w) = Re z / numeral w" | 
| 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 181 | by (simp add: Re_divide sqr_conv_mult) | 
| 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 182 | |
| 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 183 | lemma Im_divide_numeral [simp]: "Im (z / numeral w) = Im z / numeral w" | 
| 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 184 | by (simp add: Im_divide sqr_conv_mult) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61552diff
changeset | 185 | |
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62102diff
changeset | 186 | lemma Re_divide_of_nat [simp]: "Re (z / of_nat n) = Re z / of_nat n" | 
| 61552 
980dd46a03fb
Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
 eberlm parents: 
61531diff
changeset | 187 | by (cases n) (simp_all add: Re_divide divide_simps power2_eq_square del: of_nat_Suc) | 
| 
980dd46a03fb
Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
 eberlm parents: 
61531diff
changeset | 188 | |
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62102diff
changeset | 189 | lemma Im_divide_of_nat [simp]: "Im (z / of_nat n) = Im z / of_nat n" | 
| 61552 
980dd46a03fb
Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
 eberlm parents: 
61531diff
changeset | 190 | by (cases n) (simp_all add: Im_divide divide_simps power2_eq_square del: of_nat_Suc) | 
| 59613 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 191 | |
| 63569 | 192 | lemma of_real_Re [simp]: "z \<in> \<real> \<Longrightarrow> of_real (Re z) = z" | 
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 193 | by (auto simp: Reals_def) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 194 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61104diff
changeset | 195 | lemma complex_Re_fact [simp]: "Re (fact n) = fact n" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61104diff
changeset | 196 | proof - | 
| 63569 | 197 | have "(fact n :: complex) = of_real (fact n)" | 
| 198 | by simp | |
| 199 | also have "Re \<dots> = fact n" | |
| 200 | by (subst Re_complex_of_real) simp_all | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61104diff
changeset | 201 | finally show ?thesis . | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61104diff
changeset | 202 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61104diff
changeset | 203 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61104diff
changeset | 204 | lemma complex_Im_fact [simp]: "Im (fact n) = 0" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61104diff
changeset | 205 | by (subst of_nat_fact [symmetric]) (simp only: complex_Im_of_nat) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61104diff
changeset | 206 | |
| 67234 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67082diff
changeset | 207 | lemma Re_prod_Reals: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> \<real>) \<Longrightarrow> Re (prod f A) = prod (\<lambda>x. Re (f x)) A" | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67082diff
changeset | 208 | proof (induction A rule: infinite_finite_induct) | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67082diff
changeset | 209 | case (insert x A) | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67082diff
changeset | 210 | hence "Re (prod f (insert x A)) = Re (f x) * Re (prod f A) - Im (f x) * Im (prod f A)" | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67082diff
changeset | 211 | by simp | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67082diff
changeset | 212 | also from insert.prems have "f x \<in> \<real>" by simp | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67082diff
changeset | 213 | hence "Im (f x) = 0" by (auto elim!: Reals_cases) | 
| 68499 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 214 | also have "Re (prod f A) = (\<Prod>x\<in>A. Re (f x))" | 
| 67234 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67082diff
changeset | 215 | by (intro insert.IH insert.prems) auto | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67082diff
changeset | 216 | finally show ?case using insert.hyps by simp | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67082diff
changeset | 217 | qed auto | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67082diff
changeset | 218 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61104diff
changeset | 219 | |
| 60758 | 220 | subsection \<open>The Complex Number $i$\<close> | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 221 | |
| 65064 
a4abec71279a
Renamed ii to imaginary_unit in order to free up ii as a variable name.  Also replaced some legacy def commands
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 222 | primcorec imaginary_unit :: complex  ("\<i>")
 | 
| 63569 | 223 | where | 
| 224 | "Re \<i> = 0" | |
| 225 | | "Im \<i> = 1" | |
| 20557 
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
 huffman parents: 
20556diff
changeset | 226 | |
| 65274 
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 227 | lemma Complex_eq: "Complex a b = a + \<i> * b" | 
| 57259 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 228 | by (simp add: complex_eq_iff) | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 229 | |
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 230 | lemma complex_eq: "a = Re a + \<i> * Im a" | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 231 | by (simp add: complex_eq_iff) | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 232 | |
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 233 | lemma fun_complex_eq: "f = (\<lambda>x. Re (f x) + \<i> * Im (f x))" | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 234 | by (simp add: fun_eq_iff complex_eq) | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 235 | |
| 63569 | 236 | lemma i_squared [simp]: "\<i> * \<i> = -1" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 237 | by (simp add: complex_eq_iff) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 238 | |
| 63569 | 239 | lemma power2_i [simp]: "\<i>\<^sup>2 = -1" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 240 | by (simp add: power2_eq_square) | 
| 14377 | 241 | |
| 63569 | 242 | lemma inverse_i [simp]: "inverse \<i> = - \<i>" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 243 | by (rule inverse_unique) simp | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 244 | |
| 63569 | 245 | lemma divide_i [simp]: "x / \<i> = - \<i> * x" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 246 | by (simp add: divide_complex_def) | 
| 14377 | 247 | |
| 63569 | 248 | lemma complex_i_mult_minus [simp]: "\<i> * (\<i> * x) = - x" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57259diff
changeset | 249 | by (simp add: mult.assoc [symmetric]) | 
| 14377 | 250 | |
| 63569 | 251 | lemma complex_i_not_zero [simp]: "\<i> \<noteq> 0" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 252 | by (simp add: complex_eq_iff) | 
| 20557 
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
 huffman parents: 
20556diff
changeset | 253 | |
| 63569 | 254 | lemma complex_i_not_one [simp]: "\<i> \<noteq> 1" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 255 | by (simp add: complex_eq_iff) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 256 | |
| 63569 | 257 | lemma complex_i_not_numeral [simp]: "\<i> \<noteq> numeral w" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 258 | by (simp add: complex_eq_iff) | 
| 44841 | 259 | |
| 63569 | 260 | lemma complex_i_not_neg_numeral [simp]: "\<i> \<noteq> - numeral w" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 261 | by (simp add: complex_eq_iff) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 262 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 263 | lemma complex_split_polar: "\<exists>r a. z = complex_of_real r * (cos a + \<i> * sin a)" | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 264 | by (simp add: complex_eq_iff polar_Ex) | 
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 265 | |
| 59613 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 266 | lemma i_even_power [simp]: "\<i> ^ (n * 2) = (-1) ^ n" | 
| 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 267 | by (metis mult.commute power2_i power_mult) | 
| 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 268 | |
| 65064 
a4abec71279a
Renamed ii to imaginary_unit in order to free up ii as a variable name.  Also replaced some legacy def commands
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 269 | lemma Re_i_times [simp]: "Re (\<i> * z) = - Im z" | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 270 | by simp | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 271 | |
| 65064 
a4abec71279a
Renamed ii to imaginary_unit in order to free up ii as a variable name.  Also replaced some legacy def commands
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 272 | lemma Im_i_times [simp]: "Im (\<i> * z) = Re z" | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 273 | by simp | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 274 | |
| 65064 
a4abec71279a
Renamed ii to imaginary_unit in order to free up ii as a variable name.  Also replaced some legacy def commands
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 275 | lemma i_times_eq_iff: "\<i> * w = z \<longleftrightarrow> w = - (\<i> * z)" | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 276 | by auto | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 277 | |
| 63569 | 278 | lemma divide_numeral_i [simp]: "z / (numeral n * \<i>) = - (\<i> * z) / numeral n" | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 279 | by (metis divide_divide_eq_left divide_i mult.commute mult_minus_right) | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 280 | |
| 65583 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 281 | lemma imaginary_eq_real_iff [simp]: | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 282 | assumes "y \<in> Reals" "x \<in> Reals" | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 283 | shows "\<i> * y = x \<longleftrightarrow> x=0 \<and> y=0" | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 284 | using assms | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 285 | unfolding Reals_def | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 286 | apply clarify | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 287 | apply (rule iffI) | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 288 | apply (metis Im_complex_of_real Im_i_times Re_complex_of_real mult_eq_0_iff of_real_0) | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 289 | by simp | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 290 | |
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 291 | lemma real_eq_imaginary_iff [simp]: | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 292 | assumes "y \<in> Reals" "x \<in> Reals" | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 293 | shows "x = \<i> * y \<longleftrightarrow> x=0 \<and> y=0" | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
65579diff
changeset | 294 | using assms imaginary_eq_real_iff by fastforce | 
| 63569 | 295 | |
| 60758 | 296 | subsection \<open>Vector Norm\<close> | 
| 14323 | 297 | |
| 25712 | 298 | instantiation complex :: real_normed_field | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 299 | begin | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 300 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 301 | definition "norm z = sqrt ((Re z)\<^sup>2 + (Im z)\<^sup>2)" | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 302 | |
| 44724 | 303 | abbreviation cmod :: "complex \<Rightarrow> real" | 
| 304 | where "cmod \<equiv> norm" | |
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 305 | |
| 63569 | 306 | definition complex_sgn_def: "sgn x = x /\<^sub>R cmod x" | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 307 | |
| 63569 | 308 | definition dist_complex_def: "dist x y = cmod (x - y)" | 
| 31413 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31292diff
changeset | 309 | |
| 62101 | 310 | definition uniformity_complex_def [code del]: | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
68721diff
changeset | 311 |   "(uniformity :: (complex \<times> complex) filter) = (INF e\<in>{0 <..}. principal {(x, y). dist x y < e})"
 | 
| 62101 | 312 | |
| 313 | definition open_complex_def [code del]: | |
| 314 | "open (U :: complex set) \<longleftrightarrow> (\<forall>x\<in>U. eventually (\<lambda>(x', y). x' = x \<longrightarrow> y \<in> U) uniformity)" | |
| 31292 | 315 | |
| 63569 | 316 | instance | 
| 317 | proof | |
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31419diff
changeset | 318 | fix r :: real and x y :: complex and S :: "complex set" | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 319 | show "(norm x = 0) = (x = 0)" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 320 | by (simp add: norm_complex_def complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 321 | show "norm (x + y) \<le> norm x + norm y" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 322 | by (simp add: norm_complex_def complex_eq_iff real_sqrt_sum_squares_triangle_ineq) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 323 | show "norm (scaleR r x) = \<bar>r\<bar> * norm x" | 
| 63569 | 324 | by (simp add: norm_complex_def complex_eq_iff power_mult_distrib distrib_left [symmetric] | 
| 325 | real_sqrt_mult) | |
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 326 | show "norm (x * y) = norm x * norm y" | 
| 63569 | 327 | by (simp add: norm_complex_def complex_eq_iff real_sqrt_mult [symmetric] | 
| 328 | power2_eq_square algebra_simps) | |
| 62101 | 329 | qed (rule complex_sgn_def dist_complex_def open_complex_def uniformity_complex_def)+ | 
| 20557 
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
 huffman parents: 
20556diff
changeset | 330 | |
| 25712 | 331 | end | 
| 332 | ||
| 63569 | 333 | declare uniformity_Abort[where 'a = complex, code] | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 334 | |
| 63569 | 335 | lemma norm_ii [simp]: "norm \<i> = 1" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 336 | by (simp add: norm_complex_def) | 
| 14323 | 337 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 338 | lemma cmod_unit_one: "cmod (cos a + \<i> * sin a) = 1" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 339 | by (simp add: norm_complex_def) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 340 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 341 | lemma cmod_complex_polar: "cmod (r * (cos a + \<i> * sin a)) = \<bar>r\<bar>" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 342 | by (simp add: norm_mult cmod_unit_one) | 
| 22861 
8ec47039614e
clean up complex norm proofs, remove redundant lemmas
 huffman parents: 
22852diff
changeset | 343 | |
| 
8ec47039614e
clean up complex norm proofs, remove redundant lemmas
 huffman parents: 
22852diff
changeset | 344 | lemma complex_Re_le_cmod: "Re x \<le> cmod x" | 
| 63569 | 345 | unfolding norm_complex_def by (rule real_sqrt_sum_squares_ge1) | 
| 22861 
8ec47039614e
clean up complex norm proofs, remove redundant lemmas
 huffman parents: 
22852diff
changeset | 346 | |
| 44761 | 347 | lemma complex_mod_minus_le_complex_mod: "- cmod x \<le> cmod x" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 348 | by (rule order_trans [OF _ norm_ge_zero]) simp | 
| 22861 
8ec47039614e
clean up complex norm proofs, remove redundant lemmas
 huffman parents: 
22852diff
changeset | 349 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 350 | lemma complex_mod_triangle_ineq2: "cmod (b + a) - cmod b \<le> cmod a" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 351 | by (rule ord_le_eq_trans [OF norm_triangle_ineq2]) simp | 
| 14323 | 352 | |
| 26117 | 353 | lemma abs_Re_le_cmod: "\<bar>Re x\<bar> \<le> cmod x" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 354 | by (simp add: norm_complex_def) | 
| 26117 | 355 | |
| 356 | lemma abs_Im_le_cmod: "\<bar>Im x\<bar> \<le> cmod x" | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 357 | by (simp add: norm_complex_def) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 358 | |
| 57259 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 359 | lemma cmod_le: "cmod z \<le> \<bar>Re z\<bar> + \<bar>Im z\<bar>" | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 360 | apply (subst complex_eq) | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 361 | apply (rule order_trans) | 
| 63569 | 362 | apply (rule norm_triangle_ineq) | 
| 57259 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 363 | apply (simp add: norm_mult) | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 364 | done | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 365 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 366 | lemma cmod_eq_Re: "Im z = 0 \<Longrightarrow> cmod z = \<bar>Re z\<bar>" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 367 | by (simp add: norm_complex_def) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 368 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 369 | lemma cmod_eq_Im: "Re z = 0 \<Longrightarrow> cmod z = \<bar>Im z\<bar>" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 370 | by (simp add: norm_complex_def) | 
| 44724 | 371 | |
| 63569 | 372 | lemma cmod_power2: "(cmod z)\<^sup>2 = (Re z)\<^sup>2 + (Im z)\<^sup>2" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 373 | by (simp add: norm_complex_def) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 374 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 375 | lemma cmod_plus_Re_le_0_iff: "cmod z + Re z \<le> 0 \<longleftrightarrow> Re z = - cmod z" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 376 | using abs_Re_le_cmod[of z] by auto | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 377 | |
| 63569 | 378 | lemma cmod_Re_le_iff: "Im x = Im y \<Longrightarrow> cmod x \<le> cmod y \<longleftrightarrow> \<bar>Re x\<bar> \<le> \<bar>Re y\<bar>" | 
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62102diff
changeset | 379 | by (metis add.commute add_le_cancel_left norm_complex_def real_sqrt_abs real_sqrt_le_iff) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62102diff
changeset | 380 | |
| 63569 | 381 | lemma cmod_Im_le_iff: "Re x = Re y \<Longrightarrow> cmod x \<le> cmod y \<longleftrightarrow> \<bar>Im x\<bar> \<le> \<bar>Im y\<bar>" | 
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62102diff
changeset | 382 | by (metis add_le_cancel_left norm_complex_def real_sqrt_abs real_sqrt_le_iff) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62102diff
changeset | 383 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 384 | lemma Im_eq_0: "\<bar>Re z\<bar> = cmod z \<Longrightarrow> Im z = 0" | 
| 63569 | 385 | by (subst (asm) power_eq_iff_eq_base[symmetric, where n=2]) (auto simp add: norm_complex_def) | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 386 | |
| 63569 | 387 | lemma abs_sqrt_wlog: "(\<And>x. x \<ge> 0 \<Longrightarrow> P x (x\<^sup>2)) \<Longrightarrow> P \<bar>x\<bar> (x\<^sup>2)" | 
| 388 | for x::"'a::linordered_idom" | |
| 389 | by (metis abs_ge_zero power2_abs) | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 390 | |
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 391 | lemma complex_abs_le_norm: "\<bar>Re z\<bar> + \<bar>Im z\<bar> \<le> sqrt 2 * norm z" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 392 | unfolding norm_complex_def | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 393 | apply (rule abs_sqrt_wlog [where x="Re z"]) | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 394 | apply (rule abs_sqrt_wlog [where x="Im z"]) | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 395 | apply (rule power2_le_imp_le) | 
| 63569 | 396 | apply (simp_all add: power2_sum add.commute sum_squares_bound real_sqrt_mult [symmetric]) | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 397 | done | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 398 | |
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 399 | lemma complex_unit_circle: "z \<noteq> 0 \<Longrightarrow> (Re z / cmod z)\<^sup>2 + (Im z / cmod z)\<^sup>2 = 1" | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 400 | by (simp add: norm_complex_def divide_simps complex_eq_iff) | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 401 | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 402 | |
| 60758 | 403 | text \<open>Properties of complex signum.\<close> | 
| 44843 | 404 | |
| 405 | lemma sgn_eq: "sgn z = z / complex_of_real (cmod z)" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57259diff
changeset | 406 | by (simp add: sgn_div_norm divide_inverse scaleR_conv_of_real mult.commute) | 
| 44843 | 407 | |
| 408 | lemma Re_sgn [simp]: "Re(sgn z) = Re(z)/cmod z" | |
| 409 | by (simp add: complex_sgn_def divide_inverse) | |
| 410 | ||
| 411 | lemma Im_sgn [simp]: "Im(sgn z) = Im(z)/cmod z" | |
| 412 | by (simp add: complex_sgn_def divide_inverse) | |
| 413 | ||
| 14354 
988aa4648597
types complex and hcomplex are now instances of class ringpower:
 paulson parents: 
14353diff
changeset | 414 | |
| 64290 | 415 | subsection \<open>Absolute value\<close> | 
| 416 | ||
| 417 | instantiation complex :: field_abs_sgn | |
| 418 | begin | |
| 419 | ||
| 420 | definition abs_complex :: "complex \<Rightarrow> complex" | |
| 421 | where "abs_complex = of_real \<circ> norm" | |
| 422 | ||
| 423 | instance | |
| 424 | apply standard | |
| 425 | apply (auto simp add: abs_complex_def complex_sgn_def norm_mult) | |
| 426 | apply (auto simp add: scaleR_conv_of_real field_simps) | |
| 427 | done | |
| 428 | ||
| 429 | end | |
| 430 | ||
| 431 | ||
| 60758 | 432 | subsection \<open>Completeness of the Complexes\<close> | 
| 23123 | 433 | |
| 44290 
23a5137162ea
remove more bounded_linear locale interpretations (cf. f0de18b62d63)
 huffman parents: 
44127diff
changeset | 434 | lemma bounded_linear_Re: "bounded_linear Re" | 
| 63569 | 435 | by (rule bounded_linear_intro [where K=1]) (simp_all add: norm_complex_def) | 
| 44290 
23a5137162ea
remove more bounded_linear locale interpretations (cf. f0de18b62d63)
 huffman parents: 
44127diff
changeset | 436 | |
| 
23a5137162ea
remove more bounded_linear locale interpretations (cf. f0de18b62d63)
 huffman parents: 
44127diff
changeset | 437 | lemma bounded_linear_Im: "bounded_linear Im" | 
| 63569 | 438 | by (rule bounded_linear_intro [where K=1]) (simp_all add: norm_complex_def) | 
| 23123 | 439 | |
| 44290 
23a5137162ea
remove more bounded_linear locale interpretations (cf. f0de18b62d63)
 huffman parents: 
44127diff
changeset | 440 | lemmas Cauchy_Re = bounded_linear.Cauchy [OF bounded_linear_Re] | 
| 
23a5137162ea
remove more bounded_linear locale interpretations (cf. f0de18b62d63)
 huffman parents: 
44127diff
changeset | 441 | lemmas Cauchy_Im = bounded_linear.Cauchy [OF bounded_linear_Im] | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56369diff
changeset | 442 | lemmas tendsto_Re [tendsto_intros] = bounded_linear.tendsto [OF bounded_linear_Re] | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56369diff
changeset | 443 | lemmas tendsto_Im [tendsto_intros] = bounded_linear.tendsto [OF bounded_linear_Im] | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56369diff
changeset | 444 | lemmas isCont_Re [simp] = bounded_linear.isCont [OF bounded_linear_Re] | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56369diff
changeset | 445 | lemmas isCont_Im [simp] = bounded_linear.isCont [OF bounded_linear_Im] | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56369diff
changeset | 446 | lemmas continuous_Re [simp] = bounded_linear.continuous [OF bounded_linear_Re] | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56369diff
changeset | 447 | lemmas continuous_Im [simp] = bounded_linear.continuous [OF bounded_linear_Im] | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56369diff
changeset | 448 | lemmas continuous_on_Re [continuous_intros] = bounded_linear.continuous_on[OF bounded_linear_Re] | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56369diff
changeset | 449 | lemmas continuous_on_Im [continuous_intros] = bounded_linear.continuous_on[OF bounded_linear_Im] | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56369diff
changeset | 450 | lemmas has_derivative_Re [derivative_intros] = bounded_linear.has_derivative[OF bounded_linear_Re] | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56369diff
changeset | 451 | lemmas has_derivative_Im [derivative_intros] = bounded_linear.has_derivative[OF bounded_linear_Im] | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56369diff
changeset | 452 | lemmas sums_Re = bounded_linear.sums [OF bounded_linear_Re] | 
| 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56369diff
changeset | 453 | lemmas sums_Im = bounded_linear.sums [OF bounded_linear_Im] | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 454 | |
| 36825 | 455 | lemma tendsto_Complex [tendsto_intros]: | 
| 61973 | 456 | "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. Complex (f x) (g x)) \<longlongrightarrow> Complex a b) F" | 
| 65274 
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 457 | unfolding Complex_eq by (auto intro!: tendsto_intros) | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 458 | |
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 459 | lemma tendsto_complex_iff: | 
| 61973 | 460 | "(f \<longlongrightarrow> x) F \<longleftrightarrow> (((\<lambda>x. Re (f x)) \<longlongrightarrow> Re x) F \<and> ((\<lambda>x. Im (f x)) \<longlongrightarrow> Im x) F)" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 461 | proof safe | 
| 61973 | 462 | assume "((\<lambda>x. Re (f x)) \<longlongrightarrow> Re x) F" "((\<lambda>x. Im (f x)) \<longlongrightarrow> Im x) F" | 
| 463 | from tendsto_Complex[OF this] show "(f \<longlongrightarrow> x) F" | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 464 | unfolding complex.collapse . | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 465 | qed (auto intro: tendsto_intros) | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 466 | |
| 63569 | 467 | lemma continuous_complex_iff: | 
| 468 | "continuous F f \<longleftrightarrow> continuous F (\<lambda>x. Re (f x)) \<and> continuous F (\<lambda>x. Im (f x))" | |
| 469 | by (simp only: continuous_def tendsto_complex_iff) | |
| 57259 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 470 | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64290diff
changeset | 471 | lemma continuous_on_of_real_o_iff [simp]: | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64290diff
changeset | 472 | "continuous_on S (\<lambda>x. complex_of_real (g x)) = continuous_on S g" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64290diff
changeset | 473 | using continuous_on_Re continuous_on_of_real by fastforce | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64290diff
changeset | 474 | |
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64290diff
changeset | 475 | lemma continuous_on_of_real_id [simp]: | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64290diff
changeset | 476 | "continuous_on S (of_real :: real \<Rightarrow> 'a::real_normed_algebra_1)" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64290diff
changeset | 477 | by (rule continuous_on_of_real [OF continuous_on_id]) | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64290diff
changeset | 478 | |
| 57259 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 479 | lemma has_vector_derivative_complex_iff: "(f has_vector_derivative x) F \<longleftrightarrow> | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 480 | ((\<lambda>x. Re (f x)) has_field_derivative (Re x)) F \<and> | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 481 | ((\<lambda>x. Im (f x)) has_field_derivative (Im x)) F" | 
| 63569 | 482 | by (simp add: has_vector_derivative_def has_field_derivative_def has_derivative_def | 
| 483 | tendsto_complex_iff field_simps bounded_linear_scaleR_left bounded_linear_mult_right) | |
| 57259 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 484 | |
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 485 | lemma has_field_derivative_Re[derivative_intros]: | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 486 | "(f has_vector_derivative D) F \<Longrightarrow> ((\<lambda>x. Re (f x)) has_field_derivative (Re D)) F" | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 487 | unfolding has_vector_derivative_complex_iff by safe | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 488 | |
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 489 | lemma has_field_derivative_Im[derivative_intros]: | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 490 | "(f has_vector_derivative D) F \<Longrightarrow> ((\<lambda>x. Im (f x)) has_field_derivative (Im D)) F" | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 491 | unfolding has_vector_derivative_complex_iff by safe | 
| 
3a448982a74a
add more derivative and continuity rules for complex-values functions
 hoelzl parents: 
56889diff
changeset | 492 | |
| 23123 | 493 | instance complex :: banach | 
| 494 | proof | |
| 495 | fix X :: "nat \<Rightarrow> complex" | |
| 496 | assume X: "Cauchy X" | |
| 63569 | 497 | then have "(\<lambda>n. Complex (Re (X n)) (Im (X n))) \<longlonglongrightarrow> | 
| 498 | Complex (lim (\<lambda>n. Re (X n))) (lim (\<lambda>n. Im (X n)))" | |
| 499 | by (intro tendsto_Complex convergent_LIMSEQ_iff[THEN iffD1] | |
| 500 | Cauchy_convergent_iff[THEN iffD1] Cauchy_Re Cauchy_Im) | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 501 | then show "convergent X" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 502 | unfolding complex.collapse by (rule convergentI) | 
| 23123 | 503 | qed | 
| 504 | ||
| 63569 | 505 | declare DERIV_power[where 'a=complex, unfolded of_nat_def[symmetric], derivative_intros] | 
| 506 | ||
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56217diff
changeset | 507 | |
| 60758 | 508 | subsection \<open>Complex Conjugation\<close> | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 509 | |
| 63569 | 510 | primcorec cnj :: "complex \<Rightarrow> complex" | 
| 511 | where | |
| 512 | "Re (cnj z) = Re z" | |
| 513 | | "Im (cnj z) = - Im z" | |
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 514 | |
| 63569 | 515 | lemma complex_cnj_cancel_iff [simp]: "cnj x = cnj y \<longleftrightarrow> x = y" | 
| 44724 | 516 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 517 | |
| 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 518 | lemma complex_cnj_cnj [simp]: "cnj (cnj z) = z" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 519 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 520 | |
| 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 521 | lemma complex_cnj_zero [simp]: "cnj 0 = 0" | 
| 44724 | 522 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 523 | |
| 63569 | 524 | lemma complex_cnj_zero_iff [iff]: "cnj z = 0 \<longleftrightarrow> z = 0" | 
| 44724 | 525 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 526 | |
| 67234 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67082diff
changeset | 527 | lemma complex_cnj_one_iff [simp]: "cnj z = 1 \<longleftrightarrow> z = 1" | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67082diff
changeset | 528 | by (simp add: complex_eq_iff) | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67082diff
changeset | 529 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 530 | lemma complex_cnj_add [simp]: "cnj (x + y) = cnj x + cnj y" | 
| 44724 | 531 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 532 | |
| 64267 | 533 | lemma cnj_sum [simp]: "cnj (sum f s) = (\<Sum>x\<in>s. cnj (f x))" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 534 | by (induct s rule: infinite_finite_induct) auto | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 535 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 536 | lemma complex_cnj_diff [simp]: "cnj (x - y) = cnj x - cnj y" | 
| 44724 | 537 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 538 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 539 | lemma complex_cnj_minus [simp]: "cnj (- x) = - cnj x" | 
| 44724 | 540 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 541 | |
| 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 542 | lemma complex_cnj_one [simp]: "cnj 1 = 1" | 
| 44724 | 543 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 544 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 545 | lemma complex_cnj_mult [simp]: "cnj (x * y) = cnj x * cnj y" | 
| 44724 | 546 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 547 | |
| 64272 | 548 | lemma cnj_prod [simp]: "cnj (prod f s) = (\<Prod>x\<in>s. cnj (f x))" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 549 | by (induct s rule: infinite_finite_induct) auto | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 550 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 551 | lemma complex_cnj_inverse [simp]: "cnj (inverse x) = inverse (cnj x)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 552 | by (simp add: complex_eq_iff) | 
| 14323 | 553 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 554 | lemma complex_cnj_divide [simp]: "cnj (x / y) = cnj x / cnj y" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 555 | by (simp add: divide_complex_def) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 556 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 557 | lemma complex_cnj_power [simp]: "cnj (x ^ n) = cnj x ^ n" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 558 | by (induct n) simp_all | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 559 | |
| 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 560 | lemma complex_cnj_of_nat [simp]: "cnj (of_nat n) = of_nat n" | 
| 44724 | 561 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 562 | |
| 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 563 | lemma complex_cnj_of_int [simp]: "cnj (of_int z) = of_int z" | 
| 44724 | 564 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 565 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
44902diff
changeset | 566 | lemma complex_cnj_numeral [simp]: "cnj (numeral w) = numeral w" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
44902diff
changeset | 567 | by (simp add: complex_eq_iff) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
44902diff
changeset | 568 | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54230diff
changeset | 569 | lemma complex_cnj_neg_numeral [simp]: "cnj (- numeral w) = - numeral w" | 
| 44724 | 570 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 571 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 572 | lemma complex_cnj_scaleR [simp]: "cnj (scaleR r x) = scaleR r (cnj x)" | 
| 44724 | 573 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 574 | |
| 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 575 | lemma complex_mod_cnj [simp]: "cmod (cnj z) = cmod z" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 576 | by (simp add: norm_complex_def) | 
| 14323 | 577 | |
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 578 | lemma complex_cnj_complex_of_real [simp]: "cnj (of_real x) = of_real x" | 
| 44724 | 579 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 580 | |
| 63569 | 581 | lemma complex_cnj_i [simp]: "cnj \<i> = - \<i>" | 
| 44724 | 582 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 583 | |
| 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 584 | lemma complex_add_cnj: "z + cnj z = complex_of_real (2 * Re z)" | 
| 44724 | 585 | by (simp add: complex_eq_iff) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 586 | |
| 63569 | 587 | lemma complex_diff_cnj: "z - cnj z = complex_of_real (2 * Im z) * \<i>" | 
| 44724 | 588 | by (simp add: complex_eq_iff) | 
| 14354 
988aa4648597
types complex and hcomplex are now instances of class ringpower:
 paulson parents: 
14353diff
changeset | 589 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51002diff
changeset | 590 | lemma complex_mult_cnj: "z * cnj z = complex_of_real ((Re z)\<^sup>2 + (Im z)\<^sup>2)" | 
| 44724 | 591 | by (simp add: complex_eq_iff power2_eq_square) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 592 | |
| 68499 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 593 | lemma cnj_add_mult_eq_Re: "z * cnj w + cnj z * w = 2 * Re (z * cnj w)" | 
| 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 594 | by (rule complex_eqI) auto | 
| 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 595 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51002diff
changeset | 596 | lemma complex_mod_mult_cnj: "cmod (z * cnj z) = (cmod z)\<^sup>2" | 
| 44724 | 597 | by (simp add: norm_mult power2_eq_square) | 
| 23125 
6f7b5b96241f
cleaned up proofs; reorganized sections; removed redundant lemmas
 huffman parents: 
23124diff
changeset | 598 | |
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 599 | lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 600 | by (simp add: norm_complex_def power2_eq_square) | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 601 | |
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 602 | lemma complex_In_mult_cnj_zero [simp]: "Im (z * cnj z) = 0" | 
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 603 | by simp | 
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 604 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61104diff
changeset | 605 | lemma complex_cnj_fact [simp]: "cnj (fact n) = fact n" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61104diff
changeset | 606 | by (subst of_nat_fact [symmetric], subst complex_cnj_of_nat) simp | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61104diff
changeset | 607 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61104diff
changeset | 608 | lemma complex_cnj_pochhammer [simp]: "cnj (pochhammer z n) = pochhammer (cnj z) n" | 
| 63569 | 609 | by (induct n arbitrary: z) (simp_all add: pochhammer_rec) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61104diff
changeset | 610 | |
| 44290 
23a5137162ea
remove more bounded_linear locale interpretations (cf. f0de18b62d63)
 huffman parents: 
44127diff
changeset | 611 | lemma bounded_linear_cnj: "bounded_linear cnj" | 
| 63569 | 612 | using complex_cnj_add complex_cnj_scaleR by (rule bounded_linear_intro [where K=1]) simp | 
| 14354 
988aa4648597
types complex and hcomplex are now instances of class ringpower:
 paulson parents: 
14353diff
changeset | 613 | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56369diff
changeset | 614 | lemmas tendsto_cnj [tendsto_intros] = bounded_linear.tendsto [OF bounded_linear_cnj] | 
| 63569 | 615 | and isCont_cnj [simp] = bounded_linear.isCont [OF bounded_linear_cnj] | 
| 616 | and continuous_cnj [simp, continuous_intros] = bounded_linear.continuous [OF bounded_linear_cnj] | |
| 617 | and continuous_on_cnj [simp, continuous_intros] = bounded_linear.continuous_on [OF bounded_linear_cnj] | |
| 618 | and has_derivative_cnj [simp, derivative_intros] = bounded_linear.has_derivative [OF bounded_linear_cnj] | |
| 44290 
23a5137162ea
remove more bounded_linear locale interpretations (cf. f0de18b62d63)
 huffman parents: 
44127diff
changeset | 619 | |
| 61973 | 620 | lemma lim_cnj: "((\<lambda>x. cnj(f x)) \<longlongrightarrow> cnj l) F \<longleftrightarrow> (f \<longlongrightarrow> l) F" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 621 | by (simp add: tendsto_iff dist_complex_def complex_cnj_diff [symmetric] del: complex_cnj_diff) | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 622 | |
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 623 | lemma sums_cnj: "((\<lambda>x. cnj(f x)) sums cnj l) \<longleftrightarrow> (f sums l)" | 
| 64267 | 624 | by (simp add: sums_def lim_cnj cnj_sum [symmetric] del: cnj_sum) | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 625 | |
| 68721 | 626 | lemma differentiable_cnj_iff: | 
| 627 | "(\<lambda>z. cnj (f z)) differentiable at x within A \<longleftrightarrow> f differentiable at x within A" | |
| 628 | proof | |
| 629 | assume "(\<lambda>z. cnj (f z)) differentiable at x within A" | |
| 630 | then obtain D where "((\<lambda>z. cnj (f z)) has_derivative D) (at x within A)" | |
| 631 | by (auto simp: differentiable_def) | |
| 632 | from has_derivative_cnj[OF this] show "f differentiable at x within A" | |
| 633 | by (auto simp: differentiable_def) | |
| 634 | next | |
| 635 | assume "f differentiable at x within A" | |
| 636 | then obtain D where "(f has_derivative D) (at x within A)" | |
| 637 | by (auto simp: differentiable_def) | |
| 638 | from has_derivative_cnj[OF this] show "(\<lambda>z. cnj (f z)) differentiable at x within A" | |
| 639 | by (auto simp: differentiable_def) | |
| 640 | qed | |
| 641 | ||
| 642 | lemma has_vector_derivative_cnj [derivative_intros]: | |
| 643 | assumes "(f has_vector_derivative f') (at z within A)" | |
| 644 | shows "((\<lambda>z. cnj (f z)) has_vector_derivative cnj f') (at z within A)" | |
| 645 | using assms by (auto simp: has_vector_derivative_complex_iff intro: derivative_intros) | |
| 646 | ||
| 14354 
988aa4648597
types complex and hcomplex are now instances of class ringpower:
 paulson parents: 
14353diff
changeset | 647 | |
| 63569 | 648 | subsection \<open>Basic Lemmas\<close> | 
| 55734 | 649 | |
| 650 | lemma complex_eq_0: "z=0 \<longleftrightarrow> (Re z)\<^sup>2 + (Im z)\<^sup>2 = 0" | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 651 | by (metis zero_complex.sel complex_eqI sum_power2_eq_zero_iff) | 
| 55734 | 652 | |
| 653 | lemma complex_neq_0: "z\<noteq>0 \<longleftrightarrow> (Re z)\<^sup>2 + (Im z)\<^sup>2 > 0" | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 654 | by (metis complex_eq_0 less_numeral_extra(3) sum_power2_gt_zero_iff) | 
| 55734 | 655 | |
| 656 | lemma complex_norm_square: "of_real ((norm z)\<^sup>2) = z * cnj z" | |
| 63569 | 657 | by (cases z) | 
| 658 | (auto simp: complex_eq_iff norm_complex_def power2_eq_square[symmetric] of_real_power[symmetric] | |
| 659 | simp del: of_real_power) | |
| 55734 | 660 | |
| 63569 | 661 | lemma complex_div_cnj: "a / b = (a * cnj b) / (norm b)\<^sup>2" | 
| 61104 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 662 | using complex_norm_square by auto | 
| 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 663 | |
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 664 | lemma Re_complex_div_eq_0: "Re (a / b) = 0 \<longleftrightarrow> Re (a * cnj b) = 0" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 665 | by (auto simp add: Re_divide) | 
| 59613 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 666 | |
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 667 | lemma Im_complex_div_eq_0: "Im (a / b) = 0 \<longleftrightarrow> Im (a * cnj b) = 0" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 668 | by (auto simp add: Im_divide) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 669 | |
| 63569 | 670 | lemma complex_div_gt_0: "(Re (a / b) > 0 \<longleftrightarrow> Re (a * cnj b) > 0) \<and> (Im (a / b) > 0 \<longleftrightarrow> Im (a * cnj b) > 0)" | 
| 671 | proof (cases "b = 0") | |
| 672 | case True | |
| 673 | then show ?thesis by auto | |
| 55734 | 674 | next | 
| 63569 | 675 | case False | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 676 | then have "0 < (Re b)\<^sup>2 + (Im b)\<^sup>2" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 677 | by (simp add: complex_eq_iff sum_power2_gt_zero_iff) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 678 | then show ?thesis | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 679 | by (simp add: Re_divide Im_divide zero_less_divide_iff) | 
| 55734 | 680 | qed | 
| 681 | ||
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 682 | lemma Re_complex_div_gt_0: "Re (a / b) > 0 \<longleftrightarrow> Re (a * cnj b) > 0" | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 683 | and Im_complex_div_gt_0: "Im (a / b) > 0 \<longleftrightarrow> Im (a * cnj b) > 0" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 684 | using complex_div_gt_0 by auto | 
| 55734 | 685 | |
| 63569 | 686 | lemma Re_complex_div_ge_0: "Re (a / b) \<ge> 0 \<longleftrightarrow> Re (a * cnj b) \<ge> 0" | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 687 | by (metis le_less Re_complex_div_eq_0 Re_complex_div_gt_0) | 
| 55734 | 688 | |
| 63569 | 689 | lemma Im_complex_div_ge_0: "Im (a / b) \<ge> 0 \<longleftrightarrow> Im (a * cnj b) \<ge> 0" | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 690 | by (metis Im_complex_div_eq_0 Im_complex_div_gt_0 le_less) | 
| 55734 | 691 | |
| 63569 | 692 | lemma Re_complex_div_lt_0: "Re (a / b) < 0 \<longleftrightarrow> Re (a * cnj b) < 0" | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 693 | by (metis less_asym neq_iff Re_complex_div_eq_0 Re_complex_div_gt_0) | 
| 55734 | 694 | |
| 63569 | 695 | lemma Im_complex_div_lt_0: "Im (a / b) < 0 \<longleftrightarrow> Im (a * cnj b) < 0" | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 696 | by (metis Im_complex_div_eq_0 Im_complex_div_gt_0 less_asym neq_iff) | 
| 55734 | 697 | |
| 63569 | 698 | lemma Re_complex_div_le_0: "Re (a / b) \<le> 0 \<longleftrightarrow> Re (a * cnj b) \<le> 0" | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 699 | by (metis not_le Re_complex_div_gt_0) | 
| 55734 | 700 | |
| 63569 | 701 | lemma Im_complex_div_le_0: "Im (a / b) \<le> 0 \<longleftrightarrow> Im (a * cnj b) \<le> 0" | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 702 | by (metis Im_complex_div_gt_0 not_le) | 
| 55734 | 703 | |
| 61104 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 704 | lemma Re_divide_of_real [simp]: "Re (z / of_real r) = Re z / r" | 
| 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 705 | by (simp add: Re_divide power2_eq_square) | 
| 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 706 | |
| 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 707 | lemma Im_divide_of_real [simp]: "Im (z / of_real r) = Im z / r" | 
| 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 708 | by (simp add: Im_divide power2_eq_square) | 
| 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 709 | |
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65274diff
changeset | 710 | lemma Re_divide_Reals [simp]: "r \<in> \<real> \<Longrightarrow> Re (z / r) = Re z / Re r" | 
| 61104 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 711 | by (metis Re_divide_of_real of_real_Re) | 
| 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 712 | |
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65274diff
changeset | 713 | lemma Im_divide_Reals [simp]: "r \<in> \<real> \<Longrightarrow> Im (z / r) = Im z / Re r" | 
| 61104 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 714 | by (metis Im_divide_of_real of_real_Re) | 
| 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 715 | |
| 64267 | 716 | lemma Re_sum[simp]: "Re (sum f s) = (\<Sum>x\<in>s. Re (f x))" | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 717 | by (induct s rule: infinite_finite_induct) auto | 
| 55734 | 718 | |
| 64267 | 719 | lemma Im_sum[simp]: "Im (sum f s) = (\<Sum>x\<in>s. Im(f x))" | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 720 | by (induct s rule: infinite_finite_induct) auto | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 721 | |
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 722 | lemma sums_complex_iff: "f sums x \<longleftrightarrow> ((\<lambda>x. Re (f x)) sums Re x) \<and> ((\<lambda>x. Im (f x)) sums Im x)" | 
| 64267 | 723 | unfolding sums_def tendsto_complex_iff Im_sum Re_sum .. | 
| 59613 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 724 | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 725 | lemma summable_complex_iff: "summable f \<longleftrightarrow> summable (\<lambda>x. Re (f x)) \<and> summable (\<lambda>x. Im (f x))" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 726 | unfolding summable_def sums_complex_iff[abs_def] by (metis complex.sel) | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 727 | |
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 728 | lemma summable_complex_of_real [simp]: "summable (\<lambda>n. complex_of_real (f n)) \<longleftrightarrow> summable f" | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 729 | unfolding summable_complex_iff by simp | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 730 | |
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 731 | lemma summable_Re: "summable f \<Longrightarrow> summable (\<lambda>x. Re (f x))" | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 732 | unfolding summable_complex_iff by blast | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 733 | |
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 734 | lemma summable_Im: "summable f \<Longrightarrow> summable (\<lambda>x. Im (f x))" | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 735 | unfolding summable_complex_iff by blast | 
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55759diff
changeset | 736 | |
| 61104 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 737 | lemma complex_is_Nat_iff: "z \<in> \<nat> \<longleftrightarrow> Im z = 0 \<and> (\<exists>i. Re z = of_nat i)" | 
| 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 738 | by (auto simp: Nats_def complex_eq_iff) | 
| 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 739 | |
| 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 740 | lemma complex_is_Int_iff: "z \<in> \<int> \<longleftrightarrow> Im z = 0 \<and> (\<exists>i. Re z = of_int i)" | 
| 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 741 | by (auto simp: Ints_def complex_eq_iff) | 
| 
3c2d4636cebc
new lemmas about vector_derivative, complex numbers, paths, etc.
 paulson parents: 
61076diff
changeset | 742 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 743 | lemma complex_is_Real_iff: "z \<in> \<real> \<longleftrightarrow> Im z = 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 744 | by (auto simp: Reals_def complex_eq_iff) | 
| 55734 | 745 | |
| 746 | lemma Reals_cnj_iff: "z \<in> \<real> \<longleftrightarrow> cnj z = z" | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 747 | by (auto simp: complex_is_Real_iff complex_eq_iff) | 
| 55734 | 748 | |
| 61944 | 749 | lemma in_Reals_norm: "z \<in> \<real> \<Longrightarrow> norm z = \<bar>Re z\<bar>" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 750 | by (simp add: complex_is_Real_iff norm_complex_def) | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 751 | |
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65274diff
changeset | 752 | lemma Re_Reals_divide: "r \<in> \<real> \<Longrightarrow> Re (r / z) = Re r * Re z / (norm z)\<^sup>2" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65274diff
changeset | 753 | by (simp add: Re_divide complex_is_Real_iff cmod_power2) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65274diff
changeset | 754 | |
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65274diff
changeset | 755 | lemma Im_Reals_divide: "r \<in> \<real> \<Longrightarrow> Im (r / z) = -Re r * Im z / (norm z)\<^sup>2" | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65274diff
changeset | 756 | by (simp add: Im_divide complex_is_Real_iff cmod_power2) | 
| 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65274diff
changeset | 757 | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 758 | lemma series_comparison_complex: | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 759 | fixes f:: "nat \<Rightarrow> 'a::banach" | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 760 | assumes sg: "summable g" | 
| 63569 | 761 | and "\<And>n. g n \<in> \<real>" "\<And>n. Re (g n) \<ge> 0" | 
| 762 | and fg: "\<And>n. n \<ge> N \<Longrightarrow> norm(f n) \<le> norm(g n)" | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 763 | shows "summable f" | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 764 | proof - | 
| 63569 | 765 | have g: "\<And>n. cmod (g n) = Re (g n)" | 
| 766 | using assms by (metis abs_of_nonneg in_Reals_norm) | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 767 | show ?thesis | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 768 | apply (rule summable_comparison_test' [where g = "\<lambda>n. norm (g n)" and N=N]) | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 769 | using sg | 
| 63569 | 770 | apply (auto simp: summable_def) | 
| 771 | apply (rule_tac x = "Re s" in exI) | |
| 772 | apply (auto simp: g sums_Re) | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 773 | apply (metis fg g) | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 774 | done | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56331diff
changeset | 775 | qed | 
| 55734 | 776 | |
| 63569 | 777 | |
| 778 | subsection \<open>Polar Form for Complex Numbers\<close> | |
| 59746 
ddae5727c5a9
new HOL Light material about exp, sin, cos
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 779 | |
| 62620 
d21dab28b3f9
New results about paths, segments, etc. The notion of simply_connected.
 paulson <lp15@cam.ac.uk> parents: 
62379diff
changeset | 780 | lemma complex_unimodular_polar: | 
| 63569 | 781 | assumes "norm z = 1" | 
| 782 | obtains t where "0 \<le> t" "t < 2 * pi" "z = Complex (cos t) (sin t)" | |
| 783 | by (metis cmod_power2 one_power2 complex_surj sincos_total_2pi [of "Re z" "Im z"] assms) | |
| 784 | ||
| 14323 | 785 | |
| 60758 | 786 | subsubsection \<open>$\cos \theta + i \sin \theta$\<close> | 
| 20557 
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
 huffman parents: 
20556diff
changeset | 787 | |
| 63569 | 788 | primcorec cis :: "real \<Rightarrow> complex" | 
| 789 | where | |
| 790 | "Re (cis a) = cos a" | |
| 791 | | "Im (cis a) = sin a" | |
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 792 | |
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 793 | lemma cis_zero [simp]: "cis 0 = 1" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 794 | by (simp add: complex_eq_iff) | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 795 | |
| 44828 | 796 | lemma norm_cis [simp]: "norm (cis a) = 1" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 797 | by (simp add: norm_complex_def) | 
| 44828 | 798 | |
| 799 | lemma sgn_cis [simp]: "sgn (cis a) = cis a" | |
| 800 | by (simp add: sgn_div_norm) | |
| 801 | ||
| 68721 | 802 | lemma cis_2pi [simp]: "cis (2 * pi) = 1" | 
| 803 | by (simp add: cis.ctr complex_eq_iff) | |
| 804 | ||
| 44828 | 805 | lemma cis_neq_zero [simp]: "cis a \<noteq> 0" | 
| 806 | by (metis norm_cis norm_zero zero_neq_one) | |
| 807 | ||
| 68721 | 808 | lemma cis_cnj: "cnj (cis t) = cis (-t)" | 
| 809 | by (simp add: complex_eq_iff) | |
| 810 | ||
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 811 | lemma cis_mult: "cis a * cis b = cis (a + b)" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 812 | by (simp add: complex_eq_iff cos_add sin_add) | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 813 | |
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 814 | lemma DeMoivre: "(cis a) ^ n = cis (real n * a)" | 
| 63569 | 815 | by (induct n) (simp_all add: algebra_simps cis_mult) | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 816 | |
| 63569 | 817 | lemma cis_inverse [simp]: "inverse (cis a) = cis (- a)" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 818 | by (simp add: complex_eq_iff) | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 819 | |
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 820 | lemma cis_divide: "cis a / cis b = cis (a - b)" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 821 | by (simp add: divide_complex_def cis_mult) | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 822 | |
| 63569 | 823 | lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re (cis a ^ n)" | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 824 | by (auto simp add: DeMoivre) | 
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 825 | |
| 63569 | 826 | lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im (cis a ^ n)" | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 827 | by (auto simp add: DeMoivre) | 
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 828 | |
| 68499 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 829 | lemma cis_pi [simp]: "cis pi = -1" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 830 | by (simp add: complex_eq_iff) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 831 | |
| 68721 | 832 | lemma cis_pi_half[simp]: "cis (pi / 2) = \<i>" | 
| 833 | by (simp add: cis.ctr complex_eq_iff) | |
| 834 | ||
| 835 | lemma cis_minus_pi_half[simp]: "cis (-(pi / 2)) = -\<i>" | |
| 836 | by (simp add: cis.ctr complex_eq_iff) | |
| 837 | ||
| 838 | lemma cis_multiple_2pi[simp]: "n \<in> \<int> \<Longrightarrow> cis (2 * pi * n) = 1" | |
| 839 | by (auto elim!: Ints_cases simp: cis.ctr one_complex.ctr) | |
| 840 | ||
| 63569 | 841 | |
| 60758 | 842 | subsubsection \<open>$r(\cos \theta + i \sin \theta)$\<close> | 
| 44715 | 843 | |
| 63569 | 844 | definition rcis :: "real \<Rightarrow> real \<Rightarrow> complex" | 
| 845 | where "rcis r a = complex_of_real r * cis a" | |
| 20557 
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
 huffman parents: 
20556diff
changeset | 846 | |
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 847 | lemma Re_rcis [simp]: "Re(rcis r a) = r * cos a" | 
| 44828 | 848 | by (simp add: rcis_def) | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 849 | |
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 850 | lemma Im_rcis [simp]: "Im(rcis r a) = r * sin a" | 
| 44828 | 851 | by (simp add: rcis_def) | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 852 | |
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 853 | lemma rcis_Ex: "\<exists>r a. z = rcis r a" | 
| 44828 | 854 | by (simp add: complex_eq_iff polar_Ex) | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 855 | |
| 61944 | 856 | lemma complex_mod_rcis [simp]: "cmod (rcis r a) = \<bar>r\<bar>" | 
| 44828 | 857 | by (simp add: rcis_def norm_mult) | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 858 | |
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 859 | lemma cis_rcis_eq: "cis a = rcis 1 a" | 
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 860 | by (simp add: rcis_def) | 
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 861 | |
| 63569 | 862 | lemma rcis_mult: "rcis r1 a * rcis r2 b = rcis (r1 * r2) (a + b)" | 
| 44828 | 863 | by (simp add: rcis_def cis_mult) | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 864 | |
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 865 | lemma rcis_zero_mod [simp]: "rcis 0 a = 0" | 
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 866 | by (simp add: rcis_def) | 
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 867 | |
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 868 | lemma rcis_zero_arg [simp]: "rcis r 0 = complex_of_real r" | 
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 869 | by (simp add: rcis_def) | 
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 870 | |
| 44828 | 871 | lemma rcis_eq_zero_iff [simp]: "rcis r a = 0 \<longleftrightarrow> r = 0" | 
| 872 | by (simp add: rcis_def) | |
| 873 | ||
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 874 | lemma DeMoivre2: "(rcis r a) ^ n = rcis (r ^ n) (real n * a)" | 
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 875 | by (simp add: rcis_def power_mult_distrib DeMoivre) | 
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 876 | |
| 63569 | 877 | lemma rcis_inverse: "inverse(rcis r a) = rcis (1 / r) (- a)" | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 878 | by (simp add: divide_inverse rcis_def) | 
| 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 879 | |
| 63569 | 880 | lemma rcis_divide: "rcis r1 a / rcis r2 b = rcis (r1 / r2) (a - b)" | 
| 44828 | 881 | by (simp add: rcis_def cis_divide [symmetric]) | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 882 | |
| 63569 | 883 | |
| 60758 | 884 | subsubsection \<open>Complex exponential\<close> | 
| 44827 
4d1384a1fc82
Complex.thy: move theorems into appropriate subsections
 huffman parents: 
44825diff
changeset | 885 | |
| 68721 | 886 | lemma exp_Reals_eq: | 
| 887 | assumes "z \<in> \<real>" | |
| 888 | shows "exp z = of_real (exp (Re z))" | |
| 889 | using assms by (auto elim!: Reals_cases simp: exp_of_real) | |
| 890 | ||
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 891 | lemma cis_conv_exp: "cis b = exp (\<i> * b)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 892 | proof - | 
| 63569 | 893 | have "(\<i> * complex_of_real b) ^ n /\<^sub>R fact n = | 
| 894 | of_real (cos_coeff n * b^n) + \<i> * of_real (sin_coeff n * b^n)" | |
| 895 | for n :: nat | |
| 896 | proof - | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 897 | have "\<i> ^ n = fact n *\<^sub>R (cos_coeff n + \<i> * sin_coeff n)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 898 | by (induct n) | 
| 63569 | 899 | (simp_all add: sin_coeff_Suc cos_coeff_Suc complex_eq_iff Re_divide Im_divide field_simps | 
| 900 | power2_eq_square add_nonneg_eq_0_iff) | |
| 901 | then show ?thesis | |
| 902 | by (simp add: field_simps) | |
| 903 | qed | |
| 904 | then show ?thesis | |
| 905 | using sin_converges [of b] cos_converges [of b] | |
| 65274 
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 906 | by (auto simp add: Complex_eq cis.ctr exp_def simp del: of_real_mult | 
| 63569 | 907 | intro!: sums_unique sums_add sums_mult sums_of_real) | 
| 44291 
dbd9965745fd
define complex exponential 'expi' as abbreviation for 'exp'
 huffman parents: 
44290diff
changeset | 908 | qed | 
| 
dbd9965745fd
define complex exponential 'expi' as abbreviation for 'exp'
 huffman parents: 
44290diff
changeset | 909 | |
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 910 | lemma exp_eq_polar: "exp z = exp (Re z) * cis (Im z)" | 
| 63569 | 911 | unfolding cis_conv_exp exp_of_real [symmetric] mult_exp_exp | 
| 65274 
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 912 | by (cases z) (simp add: Complex_eq) | 
| 20557 
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
 huffman parents: 
20556diff
changeset | 913 | |
| 44828 | 914 | lemma Re_exp: "Re (exp z) = exp (Re z) * cos (Im z)" | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 915 | unfolding exp_eq_polar by simp | 
| 44828 | 916 | |
| 917 | lemma Im_exp: "Im (exp z) = exp (Re z) * sin (Im z)" | |
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 918 | unfolding exp_eq_polar by simp | 
| 44828 | 919 | |
| 59746 
ddae5727c5a9
new HOL Light material about exp, sin, cos
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 920 | lemma norm_cos_sin [simp]: "norm (Complex (cos t) (sin t)) = 1" | 
| 
ddae5727c5a9
new HOL Light material about exp, sin, cos
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 921 | by (simp add: norm_complex_def) | 
| 
ddae5727c5a9
new HOL Light material about exp, sin, cos
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 922 | |
| 
ddae5727c5a9
new HOL Light material about exp, sin, cos
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 923 | lemma norm_exp_eq_Re [simp]: "norm (exp z) = exp (Re z)" | 
| 65274 
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 924 | by (simp add: cis.code cmod_complex_polar exp_eq_polar Complex_eq) | 
| 59746 
ddae5727c5a9
new HOL Light material about exp, sin, cos
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 925 | |
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 926 | lemma complex_exp_exists: "\<exists>a r. z = complex_of_real r * exp a" | 
| 59746 
ddae5727c5a9
new HOL Light material about exp, sin, cos
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 927 | apply (insert rcis_Ex [of z]) | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 928 | apply (auto simp add: exp_eq_polar rcis_def mult.assoc [symmetric]) | 
| 63569 | 929 | apply (rule_tac x = "\<i> * complex_of_real a" in exI) | 
| 930 | apply auto | |
| 59746 
ddae5727c5a9
new HOL Light material about exp, sin, cos
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 931 | done | 
| 14323 | 932 | |
| 63569 | 933 | lemma exp_pi_i [simp]: "exp (of_real pi * \<i>) = -1" | 
| 61848 | 934 | by (metis cis_conv_exp cis_pi mult.commute) | 
| 935 | ||
| 63569 | 936 | lemma exp_pi_i' [simp]: "exp (\<i> * of_real pi) = -1" | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 937 | using cis_conv_exp cis_pi by auto | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 938 | |
| 63569 | 939 | lemma exp_two_pi_i [simp]: "exp (2 * of_real pi * \<i>) = 1" | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 940 | by (simp add: exp_eq_polar complex_eq_iff) | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14377diff
changeset | 941 | |
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 942 | lemma exp_two_pi_i' [simp]: "exp (\<i> * (of_real pi * 2)) = 1" | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 943 | by (metis exp_two_pi_i mult.commute) | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 944 | |
| 68721 | 945 | lemma continuous_on_cis [continuous_intros]: | 
| 946 | "continuous_on A f \<Longrightarrow> continuous_on A (\<lambda>x. cis (f x))" | |
| 947 | by (auto simp: cis_conv_exp intro!: continuous_intros) | |
| 948 | ||
| 63569 | 949 | |
| 60758 | 950 | subsubsection \<open>Complex argument\<close> | 
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 951 | |
| 63569 | 952 | definition arg :: "complex \<Rightarrow> real" | 
| 953 | where "arg z = (if z = 0 then 0 else (SOME a. sgn z = cis a \<and> - pi < a \<and> a \<le> pi))" | |
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 954 | |
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 955 | lemma arg_zero: "arg 0 = 0" | 
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 956 | by (simp add: arg_def) | 
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 957 | |
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 958 | lemma arg_unique: | 
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 959 | assumes "sgn z = cis x" and "-pi < x" and "x \<le> pi" | 
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 960 | shows "arg z = x" | 
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 961 | proof - | 
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 962 | from assms have "z \<noteq> 0" by auto | 
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 963 | have "(SOME a. sgn z = cis a \<and> -pi < a \<and> a \<le> pi) = x" | 
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 964 | proof | 
| 63040 | 965 | fix a | 
| 966 | define d where "d = a - x" | |
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 967 | assume a: "sgn z = cis a \<and> - pi < a \<and> a \<le> pi" | 
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 968 | from a assms have "- (2*pi) < d \<and> d < 2*pi" | 
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 969 | unfolding d_def by simp | 
| 63569 | 970 | moreover | 
| 971 | from a assms have "cos a = cos x" and "sin a = sin x" | |
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 972 | by (simp_all add: complex_eq_iff) | 
| 63569 | 973 | then have cos: "cos d = 1" | 
| 974 | by (simp add: d_def cos_diff) | |
| 975 | moreover from cos have "sin d = 0" | |
| 976 | by (rule cos_one_sin_zero) | |
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 977 | ultimately have "d = 0" | 
| 63569 | 978 | by (auto simp: sin_zero_iff elim!: evenE dest!: less_2_cases) | 
| 979 | then show "a = x" | |
| 980 | by (simp add: d_def) | |
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 981 | qed (simp add: assms del: Re_sgn Im_sgn) | 
| 60758 | 982 | with \<open>z \<noteq> 0\<close> show "arg z = x" | 
| 63569 | 983 | by (simp add: arg_def) | 
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 984 | qed | 
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 985 | |
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 986 | lemma arg_correct: | 
| 63569 | 987 | assumes "z \<noteq> 0" | 
| 988 | shows "sgn z = cis (arg z) \<and> -pi < arg z \<and> arg z \<le> pi" | |
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 989 | proof (simp add: arg_def assms, rule someI_ex) | 
| 63569 | 990 | obtain r a where z: "z = rcis r a" | 
| 991 | using rcis_Ex by fast | |
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 992 | with assms have "r \<noteq> 0" by auto | 
| 63040 | 993 | define b where "b = (if 0 < r then a else a + pi)" | 
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 994 | have b: "sgn z = cis b" | 
| 63569 | 995 | using \<open>r \<noteq> 0\<close> by (simp add: z b_def rcis_def of_real_def sgn_scaleR sgn_if complex_eq_iff) | 
| 996 | have cis_2pi_nat: "cis (2 * pi * real_of_nat n) = 1" for n | |
| 997 | by (induct n) (simp_all add: distrib_left cis_mult [symmetric] complex_eq_iff) | |
| 998 | have cis_2pi_int: "cis (2 * pi * real_of_int x) = 1" for x | |
| 999 | by (cases x rule: int_diff_cases) | |
| 1000 | (simp add: right_diff_distrib cis_divide [symmetric] cis_2pi_nat) | |
| 63040 | 1001 | define c where "c = b - 2 * pi * of_int \<lceil>(b - pi) / (2 * pi)\<rceil>" | 
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 1002 | have "sgn z = cis c" | 
| 63569 | 1003 | by (simp add: b c_def cis_divide [symmetric] cis_2pi_int) | 
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 1004 | moreover have "- pi < c \<and> c \<le> pi" | 
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 1005 | using ceiling_correct [of "(b - pi) / (2*pi)"] | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1006 | by (simp add: c_def less_divide_eq divide_le_eq algebra_simps del: le_of_int_ceiling) | 
| 63569 | 1007 | ultimately show "\<exists>a. sgn z = cis a \<and> -pi < a \<and> a \<le> pi" | 
| 1008 | by fast | |
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 1009 | qed | 
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 1010 | |
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 1011 | lemma arg_bounded: "- pi < arg z \<and> arg z \<le> pi" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1012 | by (cases "z = 0") (simp_all add: arg_zero arg_correct) | 
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 1013 | |
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 1014 | lemma cis_arg: "z \<noteq> 0 \<Longrightarrow> cis (arg z) = sgn z" | 
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 1015 | by (simp add: arg_correct) | 
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 1016 | |
| 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 1017 | lemma rcis_cmod_arg: "rcis (cmod z) (arg z) = z" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1018 | by (cases "z = 0") (simp_all add: rcis_def cis_arg sgn_div_norm of_real_def) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1019 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1020 | lemma cos_arg_i_mult_zero [simp]: "y \<noteq> 0 \<Longrightarrow> Re y = 0 \<Longrightarrow> cos (arg y) = 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1021 | using cis_arg [of y] by (simp add: complex_eq_iff) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1022 | |
| 67082 | 1023 | subsection \<open>Complex n-th roots\<close> | 
| 1024 | ||
| 1025 | lemma bij_betw_roots_unity: | |
| 1026 | assumes "n > 0" | |
| 68499 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 1027 |   shows   "bij_betw (\<lambda>k. cis (2 * pi * real k / real n)) {..<n} {z. z ^ n = 1}"
 | 
| 67082 | 1028 | (is "bij_betw ?f _ _") | 
| 1029 | unfolding bij_betw_def | |
| 1030 | proof (intro conjI) | |
| 1031 |   show inj: "inj_on ?f {..<n}" unfolding inj_on_def
 | |
| 1032 | proof (safe, goal_cases) | |
| 1033 | case (1 k l) | |
| 1034 | hence kl: "k < n" "l < n" by simp_all | |
| 1035 | from 1 have "1 = ?f k / ?f l" by simp | |
| 1036 | also have "\<dots> = cis (2*pi*(real k - real l)/n)" | |
| 1037 | using assms by (simp add: field_simps cis_divide) | |
| 1038 | finally have "cos (2*pi*(real k - real l) / n) = 1" | |
| 1039 | by (simp add: complex_eq_iff) | |
| 1040 | then obtain m :: int where "2 * pi * (real k - real l) / real n = real_of_int m * 2 * pi" | |
| 1041 | by (subst (asm) cos_one_2pi_int) blast | |
| 1042 | hence "real_of_int (int k - int l) = real_of_int (m * int n)" | |
| 1043 | unfolding of_int_diff of_int_mult using assms by (simp add: divide_simps) | |
| 1044 | also note of_int_eq_iff | |
| 1045 | finally have *: "abs m * n = abs (int k - int l)" by (simp add: abs_mult) | |
| 1046 | also have "\<dots> < int n" using kl by linarith | |
| 1047 | finally have "m = 0" using assms by simp | |
| 1048 | with * show "k = l" by simp | |
| 1049 | qed | |
| 1050 | ||
| 1051 |   have subset: "?f ` {..<n} \<subseteq> {z. z ^ n = 1}"
 | |
| 1052 | proof safe | |
| 1053 | fix k :: nat | |
| 1054 | have "cis (2 * pi * real k / real n) ^ n = cis (2 * pi) ^ k" | |
| 1055 | using assms by (simp add: DeMoivre mult_ac) | |
| 1056 | also have "cis (2 * pi) = 1" by (simp add: complex_eq_iff) | |
| 1057 | finally show "?f k ^ n = 1" by simp | |
| 1058 | qed | |
| 1059 | ||
| 1060 |   have "n = card {..<n}" by simp
 | |
| 1061 |   also from assms and subset have "\<dots> \<le> card {z::complex. z ^ n = 1}"
 | |
| 1062 | by (intro card_inj_on_le[OF inj]) (auto simp: finite_roots_unity) | |
| 1063 |   finally have card: "card {z::complex. z ^ n = 1} = n"
 | |
| 1064 | using assms by (intro antisym card_roots_unity) auto | |
| 1065 | ||
| 68499 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 1066 |   have "card (?f ` {..<n}) = card {z::complex. z ^ n = 1}"
 | 
| 67082 | 1067 | using card inj by (subst card_image) auto | 
| 1068 |   with subset and assms show "?f ` {..<n} = {z::complex. z ^ n = 1}"
 | |
| 1069 | by (intro card_subset_eq finite_roots_unity) auto | |
| 1070 | qed | |
| 1071 | ||
| 1072 | lemma card_roots_unity_eq: | |
| 1073 | assumes "n > 0" | |
| 1074 |   shows   "card {z::complex. z ^ n = 1} = n"
 | |
| 1075 | using bij_betw_same_card [OF bij_betw_roots_unity [OF assms]] by simp | |
| 1076 | ||
| 1077 | lemma bij_betw_nth_root_unity: | |
| 1078 | fixes c :: complex and n :: nat | |
| 1079 | assumes c: "c \<noteq> 0" and n: "n > 0" | |
| 1080 | defines "c' \<equiv> root n (norm c) * cis (arg c / n)" | |
| 1081 |   shows "bij_betw (\<lambda>z. c' * z) {z. z ^ n = 1} {z. z ^ n = c}"
 | |
| 1082 | proof - | |
| 1083 | have "c' ^ n = of_real (root n (norm c) ^ n) * cis (arg c)" | |
| 1084 | unfolding of_real_power using n by (simp add: c'_def power_mult_distrib DeMoivre) | |
| 1085 | also from n have "root n (norm c) ^ n = norm c" by simp | |
| 1086 | also from c have "of_real \<dots> * cis (arg c) = c" by (simp add: cis_arg Complex.sgn_eq) | |
| 1087 | finally have [simp]: "c' ^ n = c" . | |
| 1088 | ||
| 1089 | show ?thesis unfolding bij_betw_def inj_on_def | |
| 1090 | proof safe | |
| 1091 | fix z :: complex assume "z ^ n = 1" | |
| 1092 | hence "(c' * z) ^ n = c' ^ n" by (simp add: power_mult_distrib) | |
| 1093 | also have "c' ^ n = of_real (root n (norm c) ^ n) * cis (arg c)" | |
| 1094 | unfolding of_real_power using n by (simp add: c'_def power_mult_distrib DeMoivre) | |
| 1095 | also from n have "root n (norm c) ^ n = norm c" by simp | |
| 1096 | also from c have "\<dots> * cis (arg c) = c" by (simp add: cis_arg Complex.sgn_eq) | |
| 1097 | finally show "(c' * z) ^ n = c" . | |
| 1098 | next | |
| 1099 | fix z assume z: "c = z ^ n" | |
| 1100 | define z' where "z' = z / c'" | |
| 1101 | from c and n have "c' \<noteq> 0" by (auto simp: c'_def) | |
| 1102 | with n c have "z = c' * z'" and "z' ^ n = 1" | |
| 1103 | by (auto simp: z'_def power_divide z) | |
| 1104 |     thus "z \<in> (\<lambda>z. c' * z) ` {z. z ^ n = 1}" by blast
 | |
| 1105 | qed (insert c n, auto simp: c'_def) | |
| 1106 | qed | |
| 1107 | ||
| 1108 | lemma finite_nth_roots [intro]: | |
| 1109 | assumes "n > 0" | |
| 1110 |   shows   "finite {z::complex. z ^ n = c}"
 | |
| 1111 | proof (cases "c = 0") | |
| 1112 | case True | |
| 1113 |   with assms have "{z::complex. z ^ n = c} = {0}" by auto
 | |
| 1114 | thus ?thesis by simp | |
| 1115 | next | |
| 1116 | case False | |
| 1117 |   from assms have "finite {z::complex. z ^ n = 1}" by (intro finite_roots_unity) simp_all
 | |
| 1118 | also have "?this \<longleftrightarrow> ?thesis" | |
| 1119 | by (rule bij_betw_finite, rule bij_betw_nth_root_unity) fact+ | |
| 1120 | finally show ?thesis . | |
| 1121 | qed | |
| 1122 | ||
| 1123 | lemma card_nth_roots: | |
| 1124 | assumes "c \<noteq> 0" "n > 0" | |
| 1125 |   shows   "card {z::complex. z ^ n = c} = n"
 | |
| 1126 | proof - | |
| 1127 |   have "card {z. z ^ n = c} = card {z::complex. z ^ n = 1}"
 | |
| 1128 | by (rule sym, rule bij_betw_same_card, rule bij_betw_nth_root_unity) fact+ | |
| 1129 | also have "\<dots> = n" by (rule card_roots_unity_eq) fact+ | |
| 1130 | finally show ?thesis . | |
| 1131 | qed | |
| 1132 | ||
| 1133 | lemma sum_roots_unity: | |
| 1134 | assumes "n > 1" | |
| 1135 |   shows   "\<Sum>{z::complex. z ^ n = 1} = 0"
 | |
| 1136 | proof - | |
| 1137 | define \<omega> where "\<omega> = cis (2 * pi / real n)" | |
| 1138 | have [simp]: "\<omega> \<noteq> 1" | |
| 1139 | proof | |
| 1140 | assume "\<omega> = 1" | |
| 1141 | with assms obtain k :: int where "2 * pi / real n = 2 * pi * of_int k" | |
| 1142 | by (auto simp: \<omega>_def complex_eq_iff cos_one_2pi_int) | |
| 1143 | with assms have "real n * of_int k = 1" by (simp add: field_simps) | |
| 1144 | also have "real n * of_int k = of_int (int n * k)" by simp | |
| 1145 | also have "1 = (of_int 1 :: real)" by simp | |
| 1146 | also note of_int_eq_iff | |
| 1147 | finally show False using assms by (auto simp: zmult_eq_1_iff) | |
| 1148 | qed | |
| 1149 | ||
| 1150 | have "(\<Sum>z | z ^ n = 1. z :: complex) = (\<Sum>k<n. cis (2 * pi * real k / real n))" | |
| 1151 | using assms by (intro sum.reindex_bij_betw [symmetric] bij_betw_roots_unity) auto | |
| 1152 | also have "\<dots> = (\<Sum>k<n. \<omega> ^ k)" | |
| 1153 | by (intro sum.cong refl) (auto simp: \<omega>_def DeMoivre mult_ac) | |
| 1154 | also have "\<dots> = (\<omega> ^ n - 1) / (\<omega> - 1)" | |
| 1155 | by (subst geometric_sum) auto | |
| 1156 | also have "\<omega> ^ n - 1 = cis (2 * pi) - 1" using assms by (auto simp: \<omega>_def DeMoivre) | |
| 1157 | also have "\<dots> = 0" by (simp add: complex_eq_iff) | |
| 1158 | finally show ?thesis by simp | |
| 1159 | qed | |
| 1160 | ||
| 1161 | lemma sum_nth_roots: | |
| 1162 | assumes "n > 1" | |
| 1163 |   shows   "\<Sum>{z::complex. z ^ n = c} = 0"
 | |
| 1164 | proof (cases "c = 0") | |
| 1165 | case True | |
| 1166 |   with assms have "{z::complex. z ^ n = c} = {0}" by auto
 | |
| 1167 | also have "\<Sum>\<dots> = 0" by simp | |
| 1168 | finally show ?thesis . | |
| 1169 | next | |
| 1170 | case False | |
| 1171 | define c' where "c' = root n (norm c) * cis (arg c / n)" | |
| 1172 |   from False and assms have "(\<Sum>{z. z ^ n = c}) = (\<Sum>z | z ^ n = 1. c' * z)"
 | |
| 1173 | by (subst sum.reindex_bij_betw [OF bij_betw_nth_root_unity, symmetric]) | |
| 1174 | (auto simp: sum_distrib_left finite_roots_unity c'_def) | |
| 1175 | also from assms have "\<dots> = 0" | |
| 1176 | by (simp add: sum_distrib_left [symmetric] sum_roots_unity) | |
| 1177 | finally show ?thesis . | |
| 1178 | qed | |
| 63569 | 1179 | |
| 60758 | 1180 | subsection \<open>Square root of complex numbers\<close> | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1181 | |
| 63569 | 1182 | primcorec csqrt :: "complex \<Rightarrow> complex" | 
| 1183 | where | |
| 1184 | "Re (csqrt z) = sqrt ((cmod z + Re z) / 2)" | |
| 1185 | | "Im (csqrt z) = (if Im z = 0 then 1 else sgn (Im z)) * sqrt ((cmod z - Re z) / 2)" | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1186 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1187 | lemma csqrt_of_real_nonneg [simp]: "Im x = 0 \<Longrightarrow> Re x \<ge> 0 \<Longrightarrow> csqrt x = sqrt (Re x)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1188 | by (simp add: complex_eq_iff norm_complex_def) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1189 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1190 | lemma csqrt_of_real_nonpos [simp]: "Im x = 0 \<Longrightarrow> Re x \<le> 0 \<Longrightarrow> csqrt x = \<i> * sqrt \<bar>Re x\<bar>" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1191 | by (simp add: complex_eq_iff norm_complex_def) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1192 | |
| 59862 | 1193 | lemma of_real_sqrt: "x \<ge> 0 \<Longrightarrow> of_real (sqrt x) = csqrt (of_real x)" | 
| 1194 | by (simp add: complex_eq_iff norm_complex_def) | |
| 1195 | ||
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1196 | lemma csqrt_0 [simp]: "csqrt 0 = 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1197 | by simp | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1198 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1199 | lemma csqrt_1 [simp]: "csqrt 1 = 1" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1200 | by simp | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1201 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1202 | lemma csqrt_ii [simp]: "csqrt \<i> = (1 + \<i>) / sqrt 2" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1203 | by (simp add: complex_eq_iff Re_divide Im_divide real_sqrt_divide real_div_sqrt) | 
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 1204 | |
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1205 | lemma power2_csqrt[simp,algebra]: "(csqrt z)\<^sup>2 = z" | 
| 63569 | 1206 | proof (cases "Im z = 0") | 
| 1207 | case True | |
| 1208 | then show ?thesis | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1209 | using real_sqrt_pow2[of "Re z"] real_sqrt_pow2[of "- Re z"] | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1210 | by (cases "0::real" "Re z" rule: linorder_cases) | 
| 63569 | 1211 | (simp_all add: complex_eq_iff Re_power2 Im_power2 power2_eq_square cmod_eq_Re) | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1212 | next | 
| 63569 | 1213 | case False | 
| 1214 | moreover have "cmod z * cmod z - Re z * Re z = Im z * Im z" | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1215 | by (simp add: norm_complex_def power2_eq_square) | 
| 63569 | 1216 | moreover have "\<bar>Re z\<bar> \<le> cmod z" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1217 | by (simp add: norm_complex_def) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1218 | ultimately show ?thesis | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1219 | by (simp add: Re_power2 Im_power2 complex_eq_iff real_sgn_eq | 
| 63569 | 1220 | field_simps real_sqrt_mult[symmetric] real_sqrt_divide) | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1221 | qed | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1222 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1223 | lemma csqrt_eq_0 [simp]: "csqrt z = 0 \<longleftrightarrow> z = 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1224 | by auto (metis power2_csqrt power_eq_0_iff) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1225 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1226 | lemma csqrt_eq_1 [simp]: "csqrt z = 1 \<longleftrightarrow> z = 1" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1227 | by auto (metis power2_csqrt power2_eq_1_iff) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1228 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1229 | lemma csqrt_principal: "0 < Re (csqrt z) \<or> Re (csqrt z) = 0 \<and> 0 \<le> Im (csqrt z)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1230 | by (auto simp add: not_less cmod_plus_Re_le_0_iff Im_eq_0) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1231 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1232 | lemma Re_csqrt: "0 \<le> Re (csqrt z)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1233 | by (metis csqrt_principal le_less) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1234 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1235 | lemma csqrt_square: | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1236 | assumes "0 < Re b \<or> (Re b = 0 \<and> 0 \<le> Im b)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1237 | shows "csqrt (b^2) = b" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1238 | proof - | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1239 | have "csqrt (b^2) = b \<or> csqrt (b^2) = - b" | 
| 63569 | 1240 | by (simp add: power2_eq_iff[symmetric]) | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1241 | moreover have "csqrt (b^2) \<noteq> -b \<or> b = 0" | 
| 63569 | 1242 | using csqrt_principal[of "b ^ 2"] assms | 
| 1243 | by (intro disjCI notI) (auto simp: complex_eq_iff) | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1244 | ultimately show ?thesis | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1245 | by auto | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1246 | qed | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1247 | |
| 63569 | 1248 | lemma csqrt_unique: "w\<^sup>2 = z \<Longrightarrow> 0 < Re w \<or> Re w = 0 \<and> 0 \<le> Im w \<Longrightarrow> csqrt z = w" | 
| 59746 
ddae5727c5a9
new HOL Light material about exp, sin, cos
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1249 | by (auto simp: csqrt_square) | 
| 
ddae5727c5a9
new HOL Light material about exp, sin, cos
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1250 | |
| 59613 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 1251 | lemma csqrt_minus [simp]: | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1252 | assumes "Im x < 0 \<or> (Im x = 0 \<and> 0 \<le> Re x)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1253 | shows "csqrt (- x) = \<i> * csqrt x" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1254 | proof - | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1255 | have "csqrt ((\<i> * csqrt x)^2) = \<i> * csqrt x" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1256 | proof (rule csqrt_square) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1257 | have "Im (csqrt x) \<le> 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1258 | using assms by (auto simp add: cmod_eq_Re mult_le_0_iff field_simps complex_Re_le_cmod) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1259 | then show "0 < Re (\<i> * csqrt x) \<or> Re (\<i> * csqrt x) = 0 \<and> 0 \<le> Im (\<i> * csqrt x)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1260 | by (auto simp add: Re_csqrt simp del: csqrt.simps) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1261 | qed | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1262 | also have "(\<i> * csqrt x)^2 = - x" | 
| 59746 
ddae5727c5a9
new HOL Light material about exp, sin, cos
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1263 | by (simp add: power_mult_distrib) | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1264 | finally show ?thesis . | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1265 | qed | 
| 44844 
f74a4175a3a8
prove existence, uniqueness, and other properties of complex arg function
 huffman parents: 
44843diff
changeset | 1266 | |
| 63569 | 1267 | |
| 60758 | 1268 | text \<open>Legacy theorem names\<close> | 
| 44065 
eb64ffccfc75
standard theorem naming scheme: complex_eqI, complex_eq_iff
 huffman parents: 
41959diff
changeset | 1269 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1270 | lemmas cmod_def = norm_complex_def | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1271 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1272 | lemma legacy_Complex_simps: | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1273 | shows Complex_eq_0: "Complex a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1274 | and complex_add: "Complex a b + Complex c d = Complex (a + c) (b + d)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1275 | and complex_minus: "- (Complex a b) = Complex (- a) (- b)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1276 | and complex_diff: "Complex a b - Complex c d = Complex (a - c) (b - d)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1277 | and Complex_eq_1: "Complex a b = 1 \<longleftrightarrow> a = 1 \<and> b = 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1278 | and Complex_eq_neg_1: "Complex a b = - 1 \<longleftrightarrow> a = - 1 \<and> b = 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1279 | and complex_mult: "Complex a b * Complex c d = Complex (a * c - b * d) (a * d + b * c)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1280 | and complex_inverse: "inverse (Complex a b) = Complex (a / (a\<^sup>2 + b\<^sup>2)) (- b / (a\<^sup>2 + b\<^sup>2))" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1281 | and Complex_eq_numeral: "Complex a b = numeral w \<longleftrightarrow> a = numeral w \<and> b = 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1282 | and Complex_eq_neg_numeral: "Complex a b = - numeral w \<longleftrightarrow> a = - numeral w \<and> b = 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1283 | and complex_scaleR: "scaleR r (Complex a b) = Complex (r * a) (r * b)" | 
| 63569 | 1284 | and Complex_eq_i: "Complex x y = \<i> \<longleftrightarrow> x = 0 \<and> y = 1" | 
| 1285 | and i_mult_Complex: "\<i> * Complex a b = Complex (- b) a" | |
| 1286 | and Complex_mult_i: "Complex a b * \<i> = Complex (- b) a" | |
| 1287 | and i_complex_of_real: "\<i> * complex_of_real r = Complex 0 r" | |
| 1288 | and complex_of_real_i: "complex_of_real r * \<i> = Complex 0 r" | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1289 | and Complex_add_complex_of_real: "Complex x y + complex_of_real r = Complex (x+r) y" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1290 | and complex_of_real_add_Complex: "complex_of_real r + Complex x y = Complex (r+x) y" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1291 | and Complex_mult_complex_of_real: "Complex x y * complex_of_real r = Complex (x*r) (y*r)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1292 | and complex_of_real_mult_Complex: "complex_of_real r * Complex x y = Complex (r*x) (r*y)" | 
| 63569 | 1293 | and complex_eq_cancel_iff2: "(Complex x y = complex_of_real xa) = (x = xa \<and> y = 0)" | 
| 66793 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
65583diff
changeset | 1294 | and complex_cnj: "cnj (Complex a b) = Complex a (- b)" | 
| 64267 | 1295 | and Complex_sum': "sum (\<lambda>x. Complex (f x) 0) s = Complex (sum f s) 0" | 
| 1296 | and Complex_sum: "Complex (sum f s) 0 = sum (\<lambda>x. Complex (f x) 0) s" | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1297 | and complex_of_real_def: "complex_of_real r = Complex r 0" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1298 | and complex_norm: "cmod (Complex x y) = sqrt (x\<^sup>2 + y\<^sup>2)" | 
| 65274 
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
 paulson <lp15@cam.ac.uk> parents: 
65064diff
changeset | 1299 | by (simp_all add: norm_complex_def field_simps complex_eq_iff Re_divide Im_divide) | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1300 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1301 | lemma Complex_in_Reals: "Complex x 0 \<in> \<real>" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56541diff
changeset | 1302 | by (metis Reals_of_real complex_of_real_def) | 
| 44065 
eb64ffccfc75
standard theorem naming scheme: complex_eqI, complex_eq_iff
 huffman parents: 
41959diff
changeset | 1303 | |
| 13957 | 1304 | end |