src/HOL/Transcendental.thy
author paulson <lp15@cam.ac.uk>
Tue, 10 Jul 2018 23:18:08 +0100
changeset 68611 4bc4b5c0ccfc
parent 68603 73eeb3f31406
child 68614 3cb44b0abc5c
permissions -rw-r--r--
de-applying, etc.
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     1
(*  Title:      HOL/Transcendental.thy
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     2
    Author:     Jacques D. Fleuriot, University of Cambridge, University of Edinburgh
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     3
    Author:     Lawrence C Paulson
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
     4
    Author:     Jeremy Avigad
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     5
*)
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     6
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
     7
section \<open>Power Series, Transcendental Functions etc.\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
     8
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
     9
theory Transcendental
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
    10
imports Series Deriv NthRoot
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
    11
begin
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    12
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
    13
text \<open>A theorem about the factcorial function on the reals.\<close>
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    14
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    15
lemma square_fact_le_2_fact: "fact n * fact n \<le> (fact (2 * n) :: real)"
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    16
proof (induct n)
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    17
  case 0
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    18
  then show ?case by simp
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    19
next
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    20
  case (Suc n)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    21
  have "(fact (Suc n)) * (fact (Suc n)) = of_nat (Suc n) * of_nat (Suc n) * (fact n * fact n :: real)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    22
    by (simp add: field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    23
  also have "\<dots> \<le> of_nat (Suc n) * of_nat (Suc n) * fact (2 * n)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    24
    by (rule mult_left_mono [OF Suc]) simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    25
  also have "\<dots> \<le> of_nat (Suc (Suc (2 * n))) * of_nat (Suc (2 * n)) * fact (2 * n)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    26
    by (rule mult_right_mono)+ (auto simp: field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    27
  also have "\<dots> = fact (2 * Suc n)" by (simp add: field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    28
  finally show ?case .
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    29
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    30
62347
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    31
lemma fact_in_Reals: "fact n \<in> \<real>"
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    32
  by (induction n) auto
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    33
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    34
lemma of_real_fact [simp]: "of_real (fact n) = fact n"
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    35
  by (metis of_nat_fact of_real_of_nat_eq)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
    36
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
    37
lemma pochhammer_of_real: "pochhammer (of_real x) n = of_real (pochhammer x n)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
    38
  by (simp add: pochhammer_prod)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
    39
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    40
lemma norm_fact [simp]: "norm (fact n :: 'a::real_normed_algebra_1) = fact n"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    41
proof -
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    42
  have "(fact n :: 'a) = of_real (fact n)"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    43
    by simp
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    44
  also have "norm \<dots> = fact n"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    45
    by (subst norm_of_real) simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    46
  finally show ?thesis .
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    47
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    48
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    49
lemma root_test_convergence:
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    50
  fixes f :: "nat \<Rightarrow> 'a::banach"
67443
3abf6a722518 standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents: 67399
diff changeset
    51
  assumes f: "(\<lambda>n. root n (norm (f n))) \<longlonglongrightarrow> x" \<comment> \<open>could be weakened to lim sup\<close>
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    52
    and "x < 1"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    53
  shows "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    54
proof -
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    55
  have "0 \<le> x"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    56
    by (rule LIMSEQ_le[OF tendsto_const f]) (auto intro!: exI[of _ 1])
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    57
  from \<open>x < 1\<close> obtain z where z: "x < z" "z < 1"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    58
    by (metis dense)
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    59
  from f \<open>x < z\<close> have "eventually (\<lambda>n. root n (norm (f n)) < z) sequentially"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    60
    by (rule order_tendstoD)
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    61
  then have "eventually (\<lambda>n. norm (f n) \<le> z^n) sequentially"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    62
    using eventually_ge_at_top
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    63
  proof eventually_elim
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    64
    fix n
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    65
    assume less: "root n (norm (f n)) < z" and n: "1 \<le> n"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    66
    from power_strict_mono[OF less, of n] n show "norm (f n) \<le> z ^ n"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    67
      by simp
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    68
  qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    69
  then show "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    70
    unfolding eventually_sequentially
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    71
    using z \<open>0 \<le> x\<close> by (auto intro!: summable_comparison_test[OF _  summable_geometric])
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    72
qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    73
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    74
subsection \<open>More facts about binomial coefficients\<close>
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    75
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    76
text \<open>
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
    77
  These facts could have been proven before, but having real numbers
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    78
  makes the proofs a lot easier.
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    79
\<close>
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    80
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    81
lemma central_binomial_odd:
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    82
  "odd n \<Longrightarrow> n choose (Suc (n div 2)) = n choose (n div 2)"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    83
proof -
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    84
  assume "odd n"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    85
  hence "Suc (n div 2) \<le> n" by presburger
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    86
  hence "n choose (Suc (n div 2)) = n choose (n - Suc (n div 2))"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    87
    by (rule binomial_symmetric)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    88
  also from \<open>odd n\<close> have "n - Suc (n div 2) = n div 2" by presburger
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    89
  finally show ?thesis .
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    90
qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    91
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    92
lemma binomial_less_binomial_Suc:
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    93
  assumes k: "k < n div 2"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    94
  shows   "n choose k < n choose (Suc k)"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    95
proof -
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    96
  from k have k': "k \<le> n" "Suc k \<le> n" by simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    97
  from k' have "real (n choose k) = fact n / (fact k * fact (n - k))"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    98
    by (simp add: binomial_fact)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
    99
  also from k' have "n - k = Suc (n - Suc k)" by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   100
  also from k' have "fact \<dots> = (real n - real k) * fact (n - Suc k)"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   101
    by (subst fact_Suc) (simp_all add: of_nat_diff)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   102
  also from k have "fact k = fact (Suc k) / (real k + 1)" by (simp add: field_simps)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   103
  also have "fact n / (fact (Suc k) / (real k + 1) * ((real n - real k) * fact (n - Suc k))) =
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   104
               (n choose (Suc k)) * ((real k + 1) / (real n - real k))"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   105
    using k by (simp add: divide_simps binomial_fact)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   106
  also from assms have "(real k + 1) / (real n - real k) < 1" by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   107
  finally show ?thesis using k by (simp add: mult_less_cancel_left)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   108
qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   109
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   110
lemma binomial_strict_mono:
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   111
  assumes "k < k'" "2*k' \<le> n"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   112
  shows   "n choose k < n choose k'"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   113
proof -
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   114
  from assms have "k \<le> k' - 1" by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   115
  thus ?thesis
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   116
  proof (induction rule: inc_induct)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   117
    case base
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   118
    with assms binomial_less_binomial_Suc[of "k' - 1" n]
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   119
      show ?case by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   120
  next
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   121
    case (step k)
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   122
    from step.prems step.hyps assms have "n choose k < n choose (Suc k)"
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   123
      by (intro binomial_less_binomial_Suc) simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   124
    also have "\<dots> < n choose k'" by (rule step.IH)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   125
    finally show ?case .
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   126
  qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   127
qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   128
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   129
lemma binomial_mono:
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   130
  assumes "k \<le> k'" "2*k' \<le> n"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   131
  shows   "n choose k \<le> n choose k'"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   132
  using assms binomial_strict_mono[of k k' n] by (cases "k = k'") simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   133
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   134
lemma binomial_strict_antimono:
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   135
  assumes "k < k'" "2 * k \<ge> n" "k' \<le> n"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   136
  shows   "n choose k > n choose k'"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   137
proof -
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   138
  from assms have "n choose (n - k) > n choose (n - k')"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   139
    by (intro binomial_strict_mono) (simp_all add: algebra_simps)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   140
  with assms show ?thesis by (simp add: binomial_symmetric [symmetric])
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   141
qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   142
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   143
lemma binomial_antimono:
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   144
  assumes "k \<le> k'" "k \<ge> n div 2" "k' \<le> n"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   145
  shows   "n choose k \<ge> n choose k'"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   146
proof (cases "k = k'")
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   147
  case False
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   148
  note not_eq = False
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   149
  show ?thesis
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   150
  proof (cases "k = n div 2 \<and> odd n")
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   151
    case False
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   152
    with assms(2) have "2*k \<ge> n" by presburger
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   153
    with not_eq assms binomial_strict_antimono[of k k' n]
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   154
      show ?thesis by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   155
  next
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   156
    case True
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   157
    have "n choose k' \<le> n choose (Suc (n div 2))"
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   158
    proof (cases "k' = Suc (n div 2)")
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   159
      case False
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   160
      with assms True not_eq have "Suc (n div 2) < k'" by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   161
      with assms binomial_strict_antimono[of "Suc (n div 2)" k' n] True
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   162
        show ?thesis by auto
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   163
    qed simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   164
    also from True have "\<dots> = n choose k" by (simp add: central_binomial_odd)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   165
    finally show ?thesis .
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   166
  qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   167
qed simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   168
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   169
lemma binomial_maximum: "n choose k \<le> n choose (n div 2)"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   170
proof -
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   171
  have "k \<le> n div 2 \<longleftrightarrow> 2*k \<le> n" by linarith
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   172
  consider "2*k \<le> n" | "2*k \<ge> n" "k \<le> n" | "k > n" by linarith
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   173
  thus ?thesis
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   174
  proof cases
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   175
    case 1
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   176
    thus ?thesis by (intro binomial_mono) linarith+
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   177
  next
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   178
    case 2
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   179
    thus ?thesis by (intro binomial_antimono) simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   180
  qed (simp_all add: binomial_eq_0)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   181
qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   182
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   183
lemma binomial_maximum': "(2*n) choose k \<le> (2*n) choose n"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   184
  using binomial_maximum[of "2*n"] by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   185
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   186
lemma central_binomial_lower_bound:
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   187
  assumes "n > 0"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   188
  shows   "4^n / (2*real n) \<le> real ((2*n) choose n)"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   189
proof -
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   190
  from binomial[of 1 1 "2*n"]
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   191
    have "4 ^ n = (\<Sum>k\<le>2*n. (2*n) choose k)"
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   192
    by (simp add: power_mult power2_eq_square One_nat_def [symmetric] del: One_nat_def)
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   193
  also have "{..2*n} = {0<..<2*n} \<union> {0,2*n}" by auto
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   194
  also have "(\<Sum>k\<in>\<dots>. (2*n) choose k) =
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   195
             (\<Sum>k\<in>{0<..<2*n}. (2*n) choose k) + (\<Sum>k\<in>{0,2*n}. (2*n) choose k)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   196
    by (subst sum.union_disjoint) auto
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   197
  also have "(\<Sum>k\<in>{0,2*n}. (2*n) choose k) \<le> (\<Sum>k\<le>1. (n choose k)\<^sup>2)"
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   198
    by (cases n) simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   199
  also from assms have "\<dots> \<le> (\<Sum>k\<le>n. (n choose k)\<^sup>2)"
65680
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
   200
    by (intro sum_mono2) auto
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   201
  also have "\<dots> = (2*n) choose n" by (rule choose_square_sum)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   202
  also have "(\<Sum>k\<in>{0<..<2*n}. (2*n) choose k) \<le> (\<Sum>k\<in>{0<..<2*n}. (2*n) choose n)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   203
    by (intro sum_mono binomial_maximum')
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   204
  also have "\<dots> = card {0<..<2*n} * ((2*n) choose n)" by simp
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   205
  also have "card {0<..<2*n} \<le> 2*n - 1" by (cases n) simp_all
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   206
  also have "(2 * n - 1) * (2 * n choose n) + (2 * n choose n) = ((2*n) choose n) * (2*n)"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   207
    using assms by (simp add: algebra_simps)
63834
6a757f36997e tuned proofs;
wenzelm
parents: 63766
diff changeset
   208
  finally have "4 ^ n \<le> (2 * n choose n) * (2 * n)" by simp_all
63766
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   209
  hence "real (4 ^ n) \<le> real ((2 * n choose n) * (2 * n))"
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   210
    by (subst of_nat_le_iff)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   211
  with assms show ?thesis by (simp add: field_simps)
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   212
qed
695d60817cb1 Some facts about factorial and binomial coefficients
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
   213
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   214
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   215
subsection \<open>Properties of Power Series\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   216
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   217
lemma powser_zero [simp]: "(\<Sum>n. f n * 0 ^ n) = f 0"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   218
  for f :: "nat \<Rightarrow> 'a::real_normed_algebra_1"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   219
proof -
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   220
  have "(\<Sum>n<1. f n * 0 ^ n) = (\<Sum>n. f n * 0 ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   221
    by (subst suminf_finite[where N="{0}"]) (auto simp: power_0_left)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   222
  then show ?thesis by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   223
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   224
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   225
lemma powser_sums_zero: "(\<lambda>n. a n * 0^n) sums a 0"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   226
  for a :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   227
  using sums_finite [of "{0}" "\<lambda>n. a n * 0 ^ n"]
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   228
  by simp
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   229
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   230
lemma powser_sums_zero_iff [simp]: "(\<lambda>n. a n * 0^n) sums x \<longleftrightarrow> a 0 = x"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   231
  for a :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   232
  using powser_sums_zero sums_unique2 by blast
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   233
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   234
text \<open>
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   235
  Power series has a circle or radius of convergence: if it sums for \<open>x\<close>,
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
   236
  then it sums absolutely for \<open>z\<close> with @{term "\<bar>z\<bar> < \<bar>x\<bar>"}.\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   237
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   238
lemma powser_insidea:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   239
  fixes x z :: "'a::real_normed_div_algebra"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   240
  assumes 1: "summable (\<lambda>n. f n * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   241
    and 2: "norm z < norm x"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   242
  shows "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   243
proof -
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   244
  from 2 have x_neq_0: "x \<noteq> 0" by clarsimp
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   245
  from 1 have "(\<lambda>n. f n * x^n) \<longlonglongrightarrow> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   246
    by (rule summable_LIMSEQ_zero)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   247
  then have "convergent (\<lambda>n. f n * x^n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   248
    by (rule convergentI)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   249
  then have "Cauchy (\<lambda>n. f n * x^n)"
44726
8478eab380e9 generalize some lemmas
huffman
parents: 44725
diff changeset
   250
    by (rule convergent_Cauchy)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   251
  then have "Bseq (\<lambda>n. f n * x^n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   252
    by (rule Cauchy_Bseq)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   253
  then obtain K where 3: "0 < K" and 4: "\<forall>n. norm (f n * x^n) \<le> K"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   254
    by (auto simp: Bseq_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   255
  have "\<exists>N. \<forall>n\<ge>N. norm (norm (f n * z ^ n)) \<le> K * norm (z ^ n) * inverse (norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   256
  proof (intro exI allI impI)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   257
    fix n :: nat
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   258
    assume "0 \<le> n"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   259
    have "norm (norm (f n * z ^ n)) * norm (x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   260
          norm (f n * x^n) * norm (z ^ n)"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   261
      by (simp add: norm_mult abs_mult)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   262
    also have "\<dots> \<le> K * norm (z ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   263
      by (simp only: mult_right_mono 4 norm_ge_zero)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   264
    also have "\<dots> = K * norm (z ^ n) * (inverse (norm (x^n)) * norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   265
      by (simp add: x_neq_0)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   266
    also have "\<dots> = K * norm (z ^ n) * inverse (norm (x^n)) * norm (x^n)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   267
      by (simp only: mult.assoc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   268
    finally show "norm (norm (f n * z ^ n)) \<le> K * norm (z ^ n) * inverse (norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   269
      by (simp add: mult_le_cancel_right x_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   270
  qed
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   271
  moreover have "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x^n)))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   272
  proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   273
    from 2 have "norm (norm (z * inverse x)) < 1"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   274
      using x_neq_0
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   275
      by (simp add: norm_mult nonzero_norm_inverse divide_inverse [where 'a=real, symmetric])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   276
    then have "summable (\<lambda>n. norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   277
      by (rule summable_geometric)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   278
    then have "summable (\<lambda>n. K * norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   279
      by (rule summable_mult)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   280
    then show "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x^n)))"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   281
      using x_neq_0
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   282
      by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   283
          power_inverse norm_power mult.assoc)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   284
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   285
  ultimately show "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   286
    by (rule summable_comparison_test)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   287
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   288
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   289
lemma powser_inside:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   290
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   291
  shows
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   292
    "summable (\<lambda>n. f n * (x^n)) \<Longrightarrow> norm z < norm x \<Longrightarrow>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   293
      summable (\<lambda>n. f n * (z ^ n))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   294
  by (rule powser_insidea [THEN summable_norm_cancel])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   295
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   296
lemma powser_times_n_limit_0:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   297
  fixes x :: "'a::{real_normed_div_algebra,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   298
  assumes "norm x < 1"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   299
    shows "(\<lambda>n. of_nat n * x ^ n) \<longlonglongrightarrow> 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   300
proof -
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   301
  have "norm x / (1 - norm x) \<ge> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   302
    using assms by (auto simp: divide_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   303
  moreover obtain N where N: "norm x / (1 - norm x) < of_int N"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   304
    using ex_le_of_int by (meson ex_less_of_int)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   305
  ultimately have N0: "N>0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   306
    by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   307
  then have *: "real_of_int (N + 1) * norm x / real_of_int N < 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   308
    using N assms by (auto simp: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   309
  have **: "real_of_int N * (norm x * (real_of_nat (Suc n) * norm (x ^ n))) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   310
      real_of_nat n * (norm x * ((1 + N) * norm (x ^ n)))" if "N \<le> int n" for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   311
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   312
    from that have "real_of_int N * real_of_nat (Suc n) \<le> real_of_nat n * real_of_int (1 + N)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   313
      by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   314
    then have "(real_of_int N * real_of_nat (Suc n)) * (norm x * norm (x ^ n)) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   315
        (real_of_nat n *  (1 + N)) * (norm x * norm (x ^ n))"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   316
      using N0 mult_mono by fastforce
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   317
    then show ?thesis
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   318
      by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   319
  qed
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   320
  show ?thesis using *
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   321
    by (rule summable_LIMSEQ_zero [OF summable_ratio_test, where N1="nat N"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   322
      (simp add: N0 norm_mult field_simps ** del: of_nat_Suc of_int_add)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   323
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   324
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   325
corollary lim_n_over_pown:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   326
  fixes x :: "'a::{real_normed_field,banach}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   327
  shows "1 < norm x \<Longrightarrow> ((\<lambda>n. of_nat n / x^n) \<longlongrightarrow> 0) sequentially"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   328
  using powser_times_n_limit_0 [of "inverse x"]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   329
  by (simp add: norm_divide divide_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   330
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   331
lemma sum_split_even_odd:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   332
  fixes f :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   333
  shows "(\<Sum>i<2 * n. if even i then f i else g i) = (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1))"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   334
proof (induct n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   335
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   336
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   337
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   338
  case (Suc n)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   339
  have "(\<Sum>i<2 * Suc n. if even i then f i else g i) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   340
    (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1)) + (f (2 * n) + g (2 * n + 1))"
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
   341
    using Suc.hyps unfolding One_nat_def by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   342
  also have "\<dots> = (\<Sum>i<Suc n. f (2 * i)) + (\<Sum>i<Suc n. g (2 * i + 1))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   343
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   344
  finally show ?case .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   345
qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   346
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   347
lemma sums_if':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   348
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   349
  assumes "g sums x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   350
  shows "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   351
  unfolding sums_def
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   352
proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   353
  fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   354
  assume "0 < r"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   355
  from \<open>g sums x\<close>[unfolded sums_def, THEN LIMSEQ_D, OF this]
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   356
  obtain no where no_eq: "\<And>n. n \<ge> no \<Longrightarrow> (norm (sum g {..<n} - x) < r)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   357
    by blast
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   358
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   359
  let ?SUM = "\<lambda> m. \<Sum>i<m. if even i then 0 else g ((i - 1) div 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   360
  have "(norm (?SUM m - x) < r)" if "m \<ge> 2 * no" for m
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   361
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   362
    from that have "m div 2 \<ge> no" by auto
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   363
    have sum_eq: "?SUM (2 * (m div 2)) = sum g {..< m div 2}"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   364
      using sum_split_even_odd by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   365
    then have "(norm (?SUM (2 * (m div 2)) - x) < r)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   366
      using no_eq unfolding sum_eq using \<open>m div 2 \<ge> no\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   367
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   368
    have "?SUM (2 * (m div 2)) = ?SUM m"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   369
    proof (cases "even m")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   370
      case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   371
      then show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   372
        by (auto simp: even_two_times_div_two)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   373
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   374
      case False
58834
773b378d9313 more simp rules concerning dvd and even/odd
haftmann
parents: 58740
diff changeset
   375
      then have eq: "Suc (2 * (m div 2)) = m" by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   376
      then have "even (2 * (m div 2))" using \<open>odd m\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   377
      have "?SUM m = ?SUM (Suc (2 * (m div 2)))" unfolding eq ..
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   378
      also have "\<dots> = ?SUM (2 * (m div 2))" using \<open>even (2 * (m div 2))\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   379
      finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   380
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   381
    ultimately show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   382
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   383
  then show "\<exists>no. \<forall> m \<ge> no. norm (?SUM m - x) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   384
    by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   385
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   386
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   387
lemma sums_if:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   388
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   389
  assumes "g sums x" and "f sums y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   390
  shows "(\<lambda> n. if even n then f (n div 2) else g ((n - 1) div 2)) sums (x + y)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   391
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   392
  let ?s = "\<lambda> n. if even n then 0 else f ((n - 1) div 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   393
  have if_sum: "(if B then (0 :: real) else E) + (if B then T else 0) = (if B then T else E)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   394
    for B T E
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   395
    by (cases B) auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   396
  have g_sums: "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   397
    using sums_if'[OF \<open>g sums x\<close>] .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   398
  have if_eq: "\<And>B T E. (if \<not> B then T else E) = (if B then E else T)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   399
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   400
  have "?s sums y" using sums_if'[OF \<open>f sums y\<close>] .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   401
  from this[unfolded sums_def, THEN LIMSEQ_Suc]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   402
  have "(\<lambda>n. if even n then f (n div 2) else 0) sums y"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   403
    by (simp add: lessThan_Suc_eq_insert_0 sum_atLeast1_atMost_eq image_Suc_lessThan
63566
e5abbdee461a more accurate cong del;
wenzelm
parents: 63558
diff changeset
   404
        if_eq sums_def cong del: if_weak_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   405
  from sums_add[OF g_sums this] show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   406
    by (simp only: if_sum)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   407
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   408
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   409
subsection \<open>Alternating series test / Leibniz formula\<close>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   410
(* FIXME: generalise these results from the reals via type classes? *)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   411
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   412
lemma sums_alternating_upper_lower:
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   413
  fixes a :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   414
  assumes mono: "\<And>n. a (Suc n) \<le> a n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   415
    and a_pos: "\<And>n. 0 \<le> a n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   416
    and "a \<longlonglongrightarrow> 0"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   417
  shows "\<exists>l. ((\<forall>n. (\<Sum>i<2*n. (- 1)^i*a i) \<le> l) \<and> (\<lambda> n. \<Sum>i<2*n. (- 1)^i*a i) \<longlonglongrightarrow> l) \<and>
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   418
             ((\<forall>n. l \<le> (\<Sum>i<2*n + 1. (- 1)^i*a i)) \<and> (\<lambda> n. \<Sum>i<2*n + 1. (- 1)^i*a i) \<longlonglongrightarrow> l)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   419
  (is "\<exists>l. ((\<forall>n. ?f n \<le> l) \<and> _) \<and> ((\<forall>n. l \<le> ?g n) \<and> _)")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   420
proof (rule nested_sequence_unique)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   421
  have fg_diff: "\<And>n. ?f n - ?g n = - a (2 * n)" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   422
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   423
  show "\<forall>n. ?f n \<le> ?f (Suc n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   424
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   425
    show "?f n \<le> ?f (Suc n)" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   426
      using mono[of "2*n"] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   427
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   428
  show "\<forall>n. ?g (Suc n) \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   429
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   430
    show "?g (Suc n) \<le> ?g n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   431
      using mono[of "Suc (2*n)"] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   432
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   433
  show "\<forall>n. ?f n \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   434
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   435
    show "?f n \<le> ?g n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   436
      using fg_diff a_pos by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   437
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   438
  show "(\<lambda>n. ?f n - ?g n) \<longlonglongrightarrow> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   439
    unfolding fg_diff
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   440
  proof (rule LIMSEQ_I)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   441
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   442
    assume "0 < r"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   443
    with \<open>a \<longlonglongrightarrow> 0\<close>[THEN LIMSEQ_D] obtain N where "\<And> n. n \<ge> N \<Longrightarrow> norm (a n - 0) < r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   444
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   445
    then have "\<forall>n \<ge> N. norm (- a (2 * n) - 0) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   446
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   447
    then show "\<exists>N. \<forall>n \<ge> N. norm (- a (2 * n) - 0) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   448
      by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   449
  qed
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   450
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   451
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   452
lemma summable_Leibniz':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   453
  fixes a :: "nat \<Rightarrow> real"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   454
  assumes a_zero: "a \<longlonglongrightarrow> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   455
    and a_pos: "\<And>n. 0 \<le> a n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   456
    and a_monotone: "\<And>n. a (Suc n) \<le> a n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   457
  shows summable: "summable (\<lambda> n. (-1)^n * a n)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   458
    and "\<And>n. (\<Sum>i<2*n. (-1)^i*a i) \<le> (\<Sum>i. (-1)^i*a i)"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   459
    and "(\<lambda>n. \<Sum>i<2*n. (-1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (-1)^i*a i)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   460
    and "\<And>n. (\<Sum>i. (-1)^i*a i) \<le> (\<Sum>i<2*n+1. (-1)^i*a i)"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   461
    and "(\<lambda>n. \<Sum>i<2*n+1. (-1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (-1)^i*a i)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   462
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   463
  let ?S = "\<lambda>n. (-1)^n * a n"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   464
  let ?P = "\<lambda>n. \<Sum>i<n. ?S i"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   465
  let ?f = "\<lambda>n. ?P (2 * n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   466
  let ?g = "\<lambda>n. ?P (2 * n + 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   467
  obtain l :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   468
    where below_l: "\<forall> n. ?f n \<le> l"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   469
      and "?f \<longlonglongrightarrow> l"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   470
      and above_l: "\<forall> n. l \<le> ?g n"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   471
      and "?g \<longlonglongrightarrow> l"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   472
    using sums_alternating_upper_lower[OF a_monotone a_pos a_zero] by blast
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   473
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   474
  let ?Sa = "\<lambda>m. \<Sum>n<m. ?S n"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   475
  have "?Sa \<longlonglongrightarrow> l"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   476
  proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   477
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   478
    assume "0 < r"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   479
    with \<open>?f \<longlonglongrightarrow> l\<close>[THEN LIMSEQ_D]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   480
    obtain f_no where f: "\<And>n. n \<ge> f_no \<Longrightarrow> norm (?f n - l) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   481
      by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   482
    from \<open>0 < r\<close> \<open>?g \<longlonglongrightarrow> l\<close>[THEN LIMSEQ_D]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   483
    obtain g_no where g: "\<And>n. n \<ge> g_no \<Longrightarrow> norm (?g n - l) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   484
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   485
    have "norm (?Sa n - l) < r" if "n \<ge> (max (2 * f_no) (2 * g_no))" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   486
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   487
      from that have "n \<ge> 2 * f_no" and "n \<ge> 2 * g_no" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   488
      show ?thesis
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   489
      proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   490
        case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   491
        then have n_eq: "2 * (n div 2) = n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   492
          by (simp add: even_two_times_div_two)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   493
        with \<open>n \<ge> 2 * f_no\<close> have "n div 2 \<ge> f_no"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   494
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   495
        from f[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   496
          unfolding n_eq atLeastLessThanSuc_atLeastAtMost .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   497
      next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   498
        case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   499
        then have "even (n - 1)" by simp
58710
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   500
        then have n_eq: "2 * ((n - 1) div 2) = n - 1"
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   501
          by (simp add: even_two_times_div_two)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   502
        then have range_eq: "n - 1 + 1 = n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   503
          using odd_pos[OF False] by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   504
        from n_eq \<open>n \<ge> 2 * g_no\<close> have "(n - 1) div 2 \<ge> g_no"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   505
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   506
        from g[OF this] show ?thesis
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   507
          by (simp only: n_eq range_eq)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   508
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   509
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   510
    then show "\<exists>no. \<forall>n \<ge> no. norm (?Sa n - l) < r" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   511
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   512
  then have sums_l: "(\<lambda>i. (-1)^i * a i) sums l"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   513
    by (simp only: sums_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   514
  then show "summable ?S"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   515
    by (auto simp: summable_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   516
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   517
  have "l = suminf ?S" by (rule sums_unique[OF sums_l])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   518
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   519
  fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   520
  show "suminf ?S \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   521
    unfolding sums_unique[OF sums_l, symmetric] using above_l by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   522
  show "?f n \<le> suminf ?S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   523
    unfolding sums_unique[OF sums_l, symmetric] using below_l by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   524
  show "?g \<longlonglongrightarrow> suminf ?S"
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   525
    using \<open>?g \<longlonglongrightarrow> l\<close> \<open>l = suminf ?S\<close> by auto
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   526
  show "?f \<longlonglongrightarrow> suminf ?S"
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   527
    using \<open>?f \<longlonglongrightarrow> l\<close> \<open>l = suminf ?S\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   528
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   529
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   530
theorem summable_Leibniz:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   531
  fixes a :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   532
  assumes a_zero: "a \<longlonglongrightarrow> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   533
    and "monoseq a"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   534
  shows "summable (\<lambda> n. (-1)^n * a n)" (is "?summable")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   535
    and "0 < a 0 \<longrightarrow>
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   536
      (\<forall>n. (\<Sum>i. (- 1)^i*a i) \<in> { \<Sum>i<2*n. (- 1)^i * a i .. \<Sum>i<2*n+1. (- 1)^i * a i})" (is "?pos")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   537
    and "a 0 < 0 \<longrightarrow>
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   538
      (\<forall>n. (\<Sum>i. (- 1)^i*a i) \<in> { \<Sum>i<2*n+1. (- 1)^i * a i .. \<Sum>i<2*n. (- 1)^i * a i})" (is "?neg")
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   539
    and "(\<lambda>n. \<Sum>i<2*n. (- 1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (- 1)^i*a i)" (is "?f")
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   540
    and "(\<lambda>n. \<Sum>i<2*n+1. (- 1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (- 1)^i*a i)" (is "?g")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   541
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   542
  have "?summable \<and> ?pos \<and> ?neg \<and> ?f \<and> ?g"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   543
  proof (cases "(\<forall>n. 0 \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   544
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   545
    then have ord: "\<And>n m. m \<le> n \<Longrightarrow> a n \<le> a m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   546
      and ge0: "\<And>n. 0 \<le> a n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   547
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   548
    have mono: "a (Suc n) \<le> a n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   549
      using ord[where n="Suc n" and m=n] by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   550
    note leibniz = summable_Leibniz'[OF \<open>a \<longlonglongrightarrow> 0\<close> ge0]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   551
    from leibniz[OF mono]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   552
    show ?thesis using \<open>0 \<le> a 0\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   553
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   554
    let ?a = "\<lambda>n. - a n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   555
    case False
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   556
    with monoseq_le[OF \<open>monoseq a\<close> \<open>a \<longlonglongrightarrow> 0\<close>]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   557
    have "(\<forall> n. a n \<le> 0) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)" by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   558
    then have ord: "\<And>n m. m \<le> n \<Longrightarrow> ?a n \<le> ?a m" and ge0: "\<And> n. 0 \<le> ?a n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   559
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   560
    have monotone: "?a (Suc n) \<le> ?a n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   561
      using ord[where n="Suc n" and m=n] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   562
    note leibniz =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   563
      summable_Leibniz'[OF _ ge0, of "\<lambda>x. x",
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   564
        OF tendsto_minus[OF \<open>a \<longlonglongrightarrow> 0\<close>, unfolded minus_zero] monotone]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   565
    have "summable (\<lambda> n. (-1)^n * ?a n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   566
      using leibniz(1) by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   567
    then obtain l where "(\<lambda> n. (-1)^n * ?a n) sums l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   568
      unfolding summable_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   569
    from this[THEN sums_minus] have "(\<lambda> n. (-1)^n * a n) sums -l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   570
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   571
    then have ?summable by (auto simp: summable_def)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   572
    moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   573
    have "\<bar>- a - - b\<bar> = \<bar>a - b\<bar>" for a b :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   574
      unfolding minus_diff_minus by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   575
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   576
    from suminf_minus[OF leibniz(1), unfolded mult_minus_right minus_minus]
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   577
    have move_minus: "(\<Sum>n. - ((- 1) ^ n * a n)) = - (\<Sum>n. (- 1) ^ n * a n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   578
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   579
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   580
    have ?pos using \<open>0 \<le> ?a 0\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   581
    moreover have ?neg
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   582
      using leibniz(2,4)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   583
      unfolding mult_minus_right sum_negf move_minus neg_le_iff_le
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   584
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   585
    moreover have ?f and ?g
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   586
      using leibniz(3,5)[unfolded mult_minus_right sum_negf move_minus, THEN tendsto_minus_cancel]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   587
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   588
    ultimately show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   589
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
   590
  then show ?summable and ?pos and ?neg and ?f and ?g
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   591
    by safe
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   592
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   593
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   594
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   595
subsection \<open>Term-by-Term Differentiability of Power Series\<close>
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   596
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   597
definition diffs :: "(nat \<Rightarrow> 'a::ring_1) \<Rightarrow> nat \<Rightarrow> 'a"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   598
  where "diffs c = (\<lambda>n. of_nat (Suc n) * c (Suc n))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   599
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   600
text \<open>Lemma about distributing negation over it.\<close>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   601
lemma diffs_minus: "diffs (\<lambda>n. - c n) = (\<lambda>n. - diffs c n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   602
  by (simp add: diffs_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   603
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   604
lemma diffs_equiv:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   605
  fixes x :: "'a::{real_normed_vector,ring_1}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   606
  shows "summable (\<lambda>n. diffs c n * x^n) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   607
    (\<lambda>n. of_nat n * c n * x^(n - Suc 0)) sums (\<Sum>n. diffs c n * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   608
  unfolding diffs_def
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   609
  by (simp add: summable_sums sums_Suc_imp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   610
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   611
lemma lemma_termdiff1:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   612
  fixes z :: "'a :: {monoid_mult,comm_ring}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   613
  shows "(\<Sum>p<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   614
    (\<Sum>p<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   615
  by (auto simp: algebra_simps power_add [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   616
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   617
lemma sumr_diff_mult_const2: "sum f {..<n} - of_nat n * r = (\<Sum>i<n. f i - r)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   618
  for r :: "'a::ring_1"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   619
  by (simp add: sum_subtractf)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   620
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
   621
lemma lemma_realpow_rev_sumr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   622
  "(\<Sum>p<Suc n. (x ^ p) * (y ^ (n - p))) = (\<Sum>p<Suc n. (x ^ (n - p)) * (y ^ p))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   623
  by (subst nat_diff_sum_reindex[symmetric]) simp
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
   624
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   625
lemma lemma_termdiff2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   626
  fixes h :: "'a::field"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   627
  assumes h: "h \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   628
  shows "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) =
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   629
         h * (\<Sum>p< n - Suc 0. \<Sum>q< n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   630
    (is "?lhs = ?rhs")
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   631
proof (cases n)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   632
  case (Suc n)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   633
  have 0: "\<And>x k. (\<Sum>n<Suc k. h * (z ^ x * (z ^ (k - n) * (h + z) ^ n))) =
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   634
                 (\<Sum>j<Suc k.  h * ((h + z) ^ j * z ^ (x + k - j)))"
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   635
    apply (rule sum.cong [OF refl])
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   636
    by (simp add: power_add [symmetric] mult.commute)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   637
  have *: "(\<Sum>i<n. z ^ i * ((z + h) ^ (n - i) - z ^ (n - i))) =
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   638
           (\<Sum>i<n. \<Sum>j<n - i. h * ((z + h) ^ j * z ^ (n - Suc j)))"
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   639
    apply (rule sum.cong [OF refl])
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   640
    apply (clarsimp simp add: less_iff_Suc_add sum_distrib_left diff_power_eq_sum ac_simps 0
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   641
        simp del: sum_lessThan_Suc power_Suc)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   642
    done
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   643
  have "h * ?lhs = h * ?rhs"
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   644
    apply (simp add: right_diff_distrib diff_divide_distrib h mult.assoc [symmetric])
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   645
    using Suc
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   646
    apply (simp add: diff_power_eq_sum h right_diff_distrib [symmetric] mult.assoc
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   647
        del: power_Suc sum_lessThan_Suc of_nat_Suc)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   648
    apply (subst lemma_realpow_rev_sumr)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   649
    apply (subst sumr_diff_mult_const2)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   650
    apply (simp add: lemma_termdiff1 sum_distrib_left *)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   651
    done
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   652
  then show ?thesis
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   653
    by (simp add: h)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   654
qed auto
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   655
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   656
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   657
lemma real_sum_nat_ivl_bounded2:
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34974
diff changeset
   658
  fixes K :: "'a::linordered_semidom"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   659
  assumes f: "\<And>p::nat. p < n \<Longrightarrow> f p \<le> K"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   660
    and K: "0 \<le> K"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   661
  shows "sum f {..<n-k} \<le> of_nat n * K"
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   662
  apply (rule order_trans [OF sum_mono [OF f]])
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   663
  apply (auto simp: mult_right_mono K)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   664
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   665
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   666
lemma lemma_termdiff3:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   667
  fixes h z :: "'a::real_normed_field"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   668
  assumes 1: "h \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   669
    and 2: "norm z \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   670
    and 3: "norm (z + h) \<le> K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   671
  shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   672
    of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   673
proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   674
  have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) =
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   675
    norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   676
    by (metis (lifting, no_types) lemma_termdiff2 [OF 1] mult.commute norm_mult)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   677
  also have "\<dots> \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   678
  proof (rule mult_right_mono [OF _ norm_ge_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   679
    from norm_ge_zero 2 have K: "0 \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   680
      by (rule order_trans)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   681
    have le_Kn: "\<And>i j n. i + j = n \<Longrightarrow> norm ((z + h) ^ i * z ^ j) \<le> K ^ n"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   682
      apply (erule subst)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   683
      apply (simp only: norm_mult norm_power power_add)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   684
      apply (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   685
      done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   686
    show "norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   687
        of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   688
      apply (intro
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   689
          order_trans [OF norm_sum]
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   690
          real_sum_nat_ivl_bounded2
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   691
          mult_nonneg_nonneg
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   692
          of_nat_0_le_iff
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   693
          zero_le_power K)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   694
      apply (rule le_Kn, simp)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   695
      done
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   696
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   697
  also have "\<dots> = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   698
    by (simp only: mult.assoc)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   699
  finally show ?thesis .
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   700
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   701
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   702
lemma lemma_termdiff4:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   703
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   704
    and k :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   705
  assumes k: "0 < k"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   706
    and le: "\<And>h. h \<noteq> 0 \<Longrightarrow> norm h < k \<Longrightarrow> norm (f h) \<le> K * norm h"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   707
  shows "f \<midarrow>0\<rightarrow> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   708
proof (rule tendsto_norm_zero_cancel)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   709
  show "(\<lambda>h. norm (f h)) \<midarrow>0\<rightarrow> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   710
  proof (rule real_tendsto_sandwich)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   711
    show "eventually (\<lambda>h. 0 \<le> norm (f h)) (at 0)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   712
      by simp
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   713
    show "eventually (\<lambda>h. norm (f h) \<le> K * norm h) (at 0)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   714
      using k by (auto simp: eventually_at dist_norm le)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   715
    show "(\<lambda>h. 0) \<midarrow>(0::'a)\<rightarrow> (0::real)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   716
      by (rule tendsto_const)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   717
    have "(\<lambda>h. K * norm h) \<midarrow>(0::'a)\<rightarrow> K * norm (0::'a)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   718
      by (intro tendsto_intros)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   719
    then show "(\<lambda>h. K * norm h) \<midarrow>(0::'a)\<rightarrow> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   720
      by simp
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   721
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   722
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   723
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   724
lemma lemma_termdiff5:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   725
  fixes g :: "'a::real_normed_vector \<Rightarrow> nat \<Rightarrow> 'b::banach"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   726
    and k :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   727
  assumes k: "0 < k"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   728
    and f: "summable f"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   729
    and le: "\<And>h n. h \<noteq> 0 \<Longrightarrow> norm h < k \<Longrightarrow> norm (g h n) \<le> f n * norm h"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   730
  shows "(\<lambda>h. suminf (g h)) \<midarrow>0\<rightarrow> 0"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   731
proof (rule lemma_termdiff4 [OF k])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   732
  fix h :: 'a
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   733
  assume "h \<noteq> 0" and "norm h < k"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   734
  then have 1: "\<forall>n. norm (g h n) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   735
    by (simp add: le)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   736
  then have "\<exists>N. \<forall>n\<ge>N. norm (norm (g h n)) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   737
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   738
  moreover from f have 2: "summable (\<lambda>n. f n * norm h)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   739
    by (rule summable_mult2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   740
  ultimately have 3: "summable (\<lambda>n. norm (g h n))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   741
    by (rule summable_comparison_test)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   742
  then have "norm (suminf (g h)) \<le> (\<Sum>n. norm (g h n))"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   743
    by (rule summable_norm)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   744
  also from 1 3 2 have "(\<Sum>n. norm (g h n)) \<le> (\<Sum>n. f n * norm h)"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
   745
    by (rule suminf_le)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   746
  also from f have "(\<Sum>n. f n * norm h) = suminf f * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   747
    by (rule suminf_mult2 [symmetric])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   748
  finally show "norm (suminf (g h)) \<le> suminf f * norm h" .
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   749
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   750
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   751
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   752
(* FIXME: Long proofs *)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   753
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   754
lemma termdiffs_aux:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   755
  fixes x :: "'a::{real_normed_field,banach}"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   756
  assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   757
    and 2: "norm x < norm K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   758
  shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) \<midarrow>0\<rightarrow> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   759
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   760
  from dense [OF 2] obtain r where r1: "norm x < r" and r2: "r < norm K"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   761
    by fast
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   762
  from norm_ge_zero r1 have r: "0 < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   763
    by (rule order_le_less_trans)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   764
  then have r_neq_0: "r \<noteq> 0" by simp
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   765
  show ?thesis
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   766
  proof (rule lemma_termdiff5)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   767
    show "0 < r - norm x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   768
      using r1 by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   769
    from r r2 have "norm (of_real r::'a) < norm K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   770
      by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   771
    with 1 have "summable (\<lambda>n. norm (diffs (diffs c) n * (of_real r ^ n)))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   772
      by (rule powser_insidea)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   773
    then have "summable (\<lambda>n. diffs (diffs (\<lambda>n. norm (c n))) n * r ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   774
      using r by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   775
    then have "summable (\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   776
      by (rule diffs_equiv [THEN sums_summable])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   777
    also have "(\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0)) =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   778
      (\<lambda>n. diffs (\<lambda>m. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   779
      apply (rule ext)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   780
      apply (case_tac n)
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   781
      apply (simp_all add: diffs_def r_neq_0)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   782
      done
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   783
    finally have "summable
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   784
      (\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   785
      by (rule diffs_equiv [THEN sums_summable])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   786
    also have
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   787
      "(\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0)) =
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   788
       (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   789
      apply (rule ext)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   790
      apply (case_tac n, simp)
55417
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 54576
diff changeset
   791
      apply (rename_tac nat)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   792
      apply (case_tac nat, simp)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   793
      apply (simp add: r_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   794
      done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   795
    finally show "summable (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" .
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   796
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   797
    fix h :: 'a
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   798
    fix n :: nat
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   799
    assume h: "h \<noteq> 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   800
    assume "norm h < r - norm x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   801
    then have "norm x + norm h < r" by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   802
    with norm_triangle_ineq have xh: "norm (x + h) < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   803
      by (rule order_le_less_trans)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   804
    show "norm (c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   805
      norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   806
      apply (simp only: norm_mult mult.assoc)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   807
      apply (rule mult_left_mono [OF _ norm_ge_zero])
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   808
      apply (simp add: mult.assoc [symmetric])
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   809
      apply (metis h lemma_termdiff3 less_eq_real_def r1 xh)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   810
      done
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   811
  qed
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   812
qed
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19765
diff changeset
   813
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   814
lemma termdiffs:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   815
  fixes K x :: "'a::{real_normed_field,banach}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   816
  assumes 1: "summable (\<lambda>n. c n * K ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   817
    and 2: "summable (\<lambda>n. (diffs c) n * K ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   818
    and 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   819
    and 4: "norm x < norm K"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   820
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x^n) x :> (\<Sum>n. (diffs c) n * x^n)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   821
  unfolding DERIV_def
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   822
proof (rule LIM_zero_cancel)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   823
  show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x^n)) / h
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   824
            - suminf (\<lambda>n. diffs c n * x^n)) \<midarrow>0\<rightarrow> 0"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   825
  proof (rule LIM_equal2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   826
    show "0 < norm K - norm x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   827
      using 4 by (simp add: less_diff_eq)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   828
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   829
    fix h :: 'a
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   830
    assume "norm (h - 0) < norm K - norm x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   831
    then have "norm x + norm h < norm K" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   832
    then have 5: "norm (x + h) < norm K"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   833
      by (rule norm_triangle_ineq [THEN order_le_less_trans])
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   834
    have "summable (\<lambda>n. c n * x^n)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   835
      and "summable (\<lambda>n. c n * (x + h) ^ n)"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   836
      and "summable (\<lambda>n. diffs c n * x^n)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   837
      using 1 2 4 5 by (auto elim: powser_inside)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   838
    then have "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x^n)) / h - (\<Sum>n. diffs c n * x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   839
          (\<Sum>n. (c n * (x + h) ^ n - c n * x^n) / h - of_nat n * c n * x ^ (n - Suc 0))"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   840
      by (intro sums_unique sums_diff sums_divide diffs_equiv summable_sums)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   841
    then show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x^n)) / h - (\<Sum>n. diffs c n * x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   842
          (\<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0)))"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   843
      by (simp add: algebra_simps)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   844
  next
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   845
    show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) \<midarrow>0\<rightarrow> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   846
      by (rule termdiffs_aux [OF 3 4])
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   847
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   848
qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   849
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   850
subsection \<open>The Derivative of a Power Series Has the Same Radius of Convergence\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   851
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   852
lemma termdiff_converges:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   853
  fixes x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   854
  assumes K: "norm x < K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   855
    and sm: "\<And>x. norm x < K \<Longrightarrow> summable(\<lambda>n. c n * x ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   856
  shows "summable (\<lambda>n. diffs c n * x ^ n)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   857
proof (cases "x = 0")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   858
  case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   859
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   860
    using powser_sums_zero sums_summable by auto
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   861
next
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   862
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   863
  then have "K > 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   864
    using K less_trans zero_less_norm_iff by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   865
  then obtain r :: real where r: "norm x < norm r" "norm r < K" "r > 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   866
    using K False
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
   867
    by (auto simp: field_simps abs_less_iff add_pos_pos intro: that [of "(norm x + K) / 2"])
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   868
  have to0: "(\<lambda>n. of_nat n * (x / of_real r) ^ n) \<longlonglongrightarrow> 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   869
    using r by (simp add: norm_divide powser_times_n_limit_0 [of "x / of_real r"])
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   870
  obtain N where N: "\<And>n. n\<ge>N \<Longrightarrow> real_of_nat n * norm x ^ n < r ^ n"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   871
    using r LIMSEQ_D [OF to0, of 1]
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   872
    by (auto simp: norm_divide norm_mult norm_power field_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   873
  have "summable (\<lambda>n. (of_nat n * c n) * x ^ n)"
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   874
  proof (rule summable_comparison_test')
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   875
    show "summable (\<lambda>n. norm (c n * of_real r ^ n))"
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   876
      apply (rule powser_insidea [OF sm [of "of_real ((r+K)/2)"]])
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   877
      using N r norm_of_real [of "r + K", where 'a = 'a] by auto
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   878
    show "\<And>n. N \<le> n \<Longrightarrow> norm (of_nat n * c n * x ^ n) \<le> norm (c n * of_real r ^ n)"
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   879
      using N r by (fastforce simp add: norm_mult norm_power less_eq_real_def)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   880
  qed
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   881
  then have "summable (\<lambda>n. (of_nat (Suc n) * c(Suc n)) * x ^ Suc n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   882
    using summable_iff_shift [of "\<lambda>n. of_nat n * c n * x ^ n" 1]
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   883
    by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   884
  then have "summable (\<lambda>n. (of_nat (Suc n) * c(Suc n)) * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   885
    using False summable_mult2 [of "\<lambda>n. (of_nat (Suc n) * c(Suc n) * x ^ n) * x" "inverse x"]
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60762
diff changeset
   886
    by (simp add: mult.assoc) (auto simp: ac_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   887
  then show ?thesis
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   888
    by (simp add: diffs_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   889
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   890
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   891
lemma termdiff_converges_all:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   892
  fixes x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   893
  assumes "\<And>x. summable (\<lambda>n. c n * x^n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   894
  shows "summable (\<lambda>n. diffs c n * x^n)"
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   895
  by (rule termdiff_converges [where K = "1 + norm x"]) (use assms in auto)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   896
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   897
lemma termdiffs_strong:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   898
  fixes K x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   899
  assumes sm: "summable (\<lambda>n. c n * K ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   900
    and K: "norm x < norm K"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   901
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x^n) x :> (\<Sum>n. diffs c n * x^n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   902
proof -
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   903
  have K2: "norm ((of_real (norm K) + of_real (norm x)) / 2 :: 'a) < norm K"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   904
    using K
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
   905
    apply (auto simp: norm_divide field_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   906
    apply (rule le_less_trans [of _ "of_real (norm K) + of_real (norm x)"])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   907
     apply (auto simp: mult_2_right norm_triangle_mono)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   908
    done
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   909
  then have [simp]: "norm ((of_real (norm K) + of_real (norm x)) :: 'a) < norm K * 2"
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   910
    by simp
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   911
  have "summable (\<lambda>n. c n * (of_real (norm x + norm K) / 2) ^ n)"
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   912
    by (metis K2 summable_norm_cancel [OF powser_insidea [OF sm]] add.commute of_real_add)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   913
  moreover have "\<And>x. norm x < norm K \<Longrightarrow> summable (\<lambda>n. diffs c n * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   914
    by (blast intro: sm termdiff_converges powser_inside)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   915
  moreover have "\<And>x. norm x < norm K \<Longrightarrow> summable (\<lambda>n. diffs(diffs c) n * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   916
    by (blast intro: sm termdiff_converges powser_inside)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   917
  ultimately show ?thesis
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   918
    apply (rule termdiffs [where K = "of_real (norm x + norm K) / 2"])
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   919
    using K
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   920
      apply (auto simp: field_simps)
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   921
    apply (simp flip: of_real_add)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   922
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   923
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   924
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   925
lemma termdiffs_strong_converges_everywhere:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   926
  fixes K x :: "'a::{real_normed_field,banach}"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   927
  assumes "\<And>y. summable (\<lambda>n. c n * y ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   928
  shows "((\<lambda>x. \<Sum>n. c n * x^n) has_field_derivative (\<Sum>n. diffs c n * x^n)) (at x)"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   929
  using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   930
  by (force simp del: of_real_add)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   931
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   932
lemma termdiffs_strong':
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   933
  fixes z :: "'a :: {real_normed_field,banach}"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   934
  assumes "\<And>z. norm z < K \<Longrightarrow> summable (\<lambda>n. c n * z ^ n)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   935
  assumes "norm z < K"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   936
  shows   "((\<lambda>z. \<Sum>n. c n * z^n) has_field_derivative (\<Sum>n. diffs c n * z^n)) (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   937
proof (rule termdiffs_strong)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   938
  define L :: real where "L =  (norm z + K) / 2"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   939
  have "0 \<le> norm z" by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   940
  also note \<open>norm z < K\<close>
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   941
  finally have K: "K \<ge> 0" by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   942
  from assms K have L: "L \<ge> 0" "norm z < L" "L < K" by (simp_all add: L_def)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   943
  from L show "norm z < norm (of_real L :: 'a)" by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   944
  from L show "summable (\<lambda>n. c n * of_real L ^ n)" by (intro assms(1)) simp_all
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   945
qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   946
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   947
lemma termdiffs_sums_strong:
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   948
  fixes z :: "'a :: {banach,real_normed_field}"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   949
  assumes sums: "\<And>z. norm z < K \<Longrightarrow> (\<lambda>n. c n * z ^ n) sums f z"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   950
  assumes deriv: "(f has_field_derivative f') (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   951
  assumes norm: "norm z < K"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   952
  shows   "(\<lambda>n. diffs c n * z ^ n) sums f'"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   953
proof -
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   954
  have summable: "summable (\<lambda>n. diffs c n * z^n)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   955
    by (intro termdiff_converges[OF norm] sums_summable[OF sums])
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   956
  from norm have "eventually (\<lambda>z. z \<in> norm -` {..<K}) (nhds z)"
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   957
    by (intro eventually_nhds_in_open open_vimage)
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   958
       (simp_all add: continuous_on_norm continuous_on_id)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   959
  hence eq: "eventually (\<lambda>z. (\<Sum>n. c n * z^n) = f z) (nhds z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   960
    by eventually_elim (insert sums, simp add: sums_iff)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   961
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   962
  have "((\<lambda>z. \<Sum>n. c n * z^n) has_field_derivative (\<Sum>n. diffs c n * z^n)) (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   963
    by (intro termdiffs_strong'[OF _ norm] sums_summable[OF sums])
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   964
  hence "(f has_field_derivative (\<Sum>n. diffs c n * z^n)) (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   965
    by (subst (asm) DERIV_cong_ev[OF refl eq refl])
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   966
  from this and deriv have "(\<Sum>n. diffs c n * z^n) = f'" by (rule DERIV_unique)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   967
  with summable show ?thesis by (simp add: sums_iff)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   968
qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   969
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   970
lemma isCont_powser:
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   971
  fixes K x :: "'a::{real_normed_field,banach}"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   972
  assumes "summable (\<lambda>n. c n * K ^ n)"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   973
  assumes "norm x < norm K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   974
  shows "isCont (\<lambda>x. \<Sum>n. c n * x^n) x"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   975
  using termdiffs_strong[OF assms] by (blast intro!: DERIV_isCont)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   976
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   977
lemmas isCont_powser' = isCont_o2[OF _ isCont_powser]
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   978
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   979
lemma isCont_powser_converges_everywhere:
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   980
  fixes K x :: "'a::{real_normed_field,banach}"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   981
  assumes "\<And>y. summable (\<lambda>n. c n * y ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   982
  shows "isCont (\<lambda>x. \<Sum>n. c n * x^n) x"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   983
  using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   984
  by (force intro!: DERIV_isCont simp del: of_real_add)
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   985
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   986
lemma powser_limit_0:
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   987
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   988
  assumes s: "0 < s"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   989
    and sm: "\<And>x. norm x < s \<Longrightarrow> (\<lambda>n. a n * x ^ n) sums (f x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   990
  shows "(f \<longlongrightarrow> a 0) (at 0)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   991
proof -
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   992
  have "norm (of_real s / 2 :: 'a) < s"
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   993
    using s  by (auto simp: norm_divide)
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   994
  then have "summable (\<lambda>n. a n * (of_real s / 2) ^ n)"
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   995
    by (rule sums_summable [OF sm])
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   996
  then have "((\<lambda>x. \<Sum>n. a n * x ^ n) has_field_derivative (\<Sum>n. diffs a n * 0 ^ n)) (at 0)"
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   997
    by (rule termdiffs_strong) (use s in \<open>auto simp: norm_divide\<close>)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   998
  then have "isCont (\<lambda>x. \<Sum>n. a n * x ^ n) 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   999
    by (blast intro: DERIV_continuous)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1000
  then have "((\<lambda>x. \<Sum>n. a n * x ^ n) \<longlongrightarrow> a 0) (at 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1001
    by (simp add: continuous_within)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1002
  then show ?thesis
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1003
    apply (rule Lim_transform)
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
  1004
    apply (clarsimp simp: LIM_eq)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1005
    apply (rule_tac x=s in exI)
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
  1006
    using s sm sums_unique by fastforce
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1007
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1008
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1009
lemma powser_limit_0_strong:
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1010
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1011
  assumes s: "0 < s"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1012
    and sm: "\<And>x. x \<noteq> 0 \<Longrightarrow> norm x < s \<Longrightarrow> (\<lambda>n. a n * x ^ n) sums (f x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1013
  shows "(f \<longlongrightarrow> a 0) (at 0)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1014
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1015
  have *: "((\<lambda>x. if x = 0 then a 0 else f x) \<longlongrightarrow> a 0) (at 0)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1016
    by (rule powser_limit_0 [OF s]) (auto simp: powser_sums_zero sm)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1017
  show ?thesis
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1018
    apply (subst LIM_equal [where g = "(\<lambda>x. if x = 0 then a 0 else f x)"])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1019
     apply (simp_all add: *)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1020
    done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1021
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1022
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1023
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1024
subsection \<open>Derivability of power series\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1025
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1026
lemma DERIV_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1027
  fixes f :: "real \<Rightarrow> nat \<Rightarrow> real"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1028
  assumes DERIV_f: "\<And> n. DERIV (\<lambda> x. f x n) x0 :> (f' x0 n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1029
    and allf_summable: "\<And> x. x \<in> {a <..< b} \<Longrightarrow> summable (f x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1030
    and x0_in_I: "x0 \<in> {a <..< b}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1031
    and "summable (f' x0)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1032
    and "summable L"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1033
    and L_def: "\<And>n x y. x \<in> {a <..< b} \<Longrightarrow> y \<in> {a <..< b} \<Longrightarrow> \<bar>f x n - f y n\<bar> \<le> L n * \<bar>x - y\<bar>"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1034
  shows "DERIV (\<lambda> x. suminf (f x)) x0 :> (suminf (f' x0))"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1035
  unfolding DERIV_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1036
proof (rule LIM_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1037
  fix r :: real
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1038
  assume "0 < r" then have "0 < r/3" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1039
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1040
  obtain N_L where N_L: "\<And> n. N_L \<le> n \<Longrightarrow> \<bar> \<Sum> i. L (i + n) \<bar> < r/3"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1041
    using suminf_exist_split[OF \<open>0 < r/3\<close> \<open>summable L\<close>] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1042
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1043
  obtain N_f' where N_f': "\<And> n. N_f' \<le> n \<Longrightarrow> \<bar> \<Sum> i. f' x0 (i + n) \<bar> < r/3"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1044
    using suminf_exist_split[OF \<open>0 < r/3\<close> \<open>summable (f' x0)\<close>] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1045
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1046
  let ?N = "Suc (max N_L N_f')"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1047
  have "\<bar> \<Sum> i. f' x0 (i + ?N) \<bar> < r/3" (is "?f'_part < r/3")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1048
    and L_estimate: "\<bar> \<Sum> i. L (i + ?N) \<bar> < r/3"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1049
    using N_L[of "?N"] and N_f' [of "?N"] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1050
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1051
  let ?diff = "\<lambda>i x. (f (x0 + x) i - f x0 i) / x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1052
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1053
  let ?r = "r / (3 * real ?N)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1054
  from \<open>0 < r\<close> have "0 < ?r" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1055
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1056
  let ?s = "\<lambda>n. SOME s. 0 < s \<and> (\<forall> x. x \<noteq> 0 \<and> \<bar> x \<bar> < s \<longrightarrow> \<bar> ?diff n x - f' x0 n \<bar> < ?r)"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
  1057
  define S' where "S' = Min (?s ` {..< ?N })"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1058
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1059
  have "0 < S'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1060
    unfolding S'_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1061
  proof (rule iffD2[OF Min_gr_iff])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1062
    show "\<forall>x \<in> (?s ` {..< ?N }). 0 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1063
    proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1064
      fix x
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1065
      assume "x \<in> ?s ` {..<?N}"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1066
      then obtain n where "x = ?s n" and "n \<in> {..<?N}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1067
        using image_iff[THEN iffD1] by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1068
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF \<open>0 < ?r\<close>, unfolded real_norm_def]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1069
      obtain s where s_bound: "0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1070
        by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1071
      have "0 < ?s n"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1072
        by (rule someI2[where a=s]) (auto simp: s_bound simp del: of_nat_Suc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1073
      then show "0 < x" by (simp only: \<open>x = ?s n\<close>)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1074
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1075
  qed auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1076
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
  1077
  define S where "S = min (min (x0 - a) (b - x0)) S'"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1078
  then have "0 < S" and S_a: "S \<le> x0 - a" and S_b: "S \<le> b - x0"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1079
    and "S \<le> S'" using x0_in_I and \<open>0 < S'\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1080
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1081
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1082
  have "\<bar>(suminf (f (x0 + x)) - suminf (f x0)) / x - suminf (f' x0)\<bar> < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1083
    if "x \<noteq> 0" and "\<bar>x\<bar> < S" for x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1084
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1085
    from that have x_in_I: "x0 + x \<in> {a <..< b}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1086
      using S_a S_b by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1087
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1088
    note diff_smbl = summable_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1089
    note div_smbl = summable_divide[OF diff_smbl]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1090
    note all_smbl = summable_diff[OF div_smbl \<open>summable (f' x0)\<close>]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1091
    note ign = summable_ignore_initial_segment[where k="?N"]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1092
    note diff_shft_smbl = summable_diff[OF ign[OF allf_summable[OF x_in_I]] ign[OF allf_summable[OF x0_in_I]]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1093
    note div_shft_smbl = summable_divide[OF diff_shft_smbl]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1094
    note all_shft_smbl = summable_diff[OF div_smbl ign[OF \<open>summable (f' x0)\<close>]]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1095
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1096
    have 1: "\<bar>(\<bar>?diff (n + ?N) x\<bar>)\<bar> \<le> L (n + ?N)" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1097
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1098
      have "\<bar>?diff (n + ?N) x\<bar> \<le> L (n + ?N) * \<bar>(x0 + x) - x0\<bar> / \<bar>x\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1099
        using divide_right_mono[OF L_def[OF x_in_I x0_in_I] abs_ge_zero]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1100
        by (simp only: abs_divide)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1101
      with \<open>x \<noteq> 0\<close> show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1102
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1103
    note 2 = summable_rabs_comparison_test[OF _ ign[OF \<open>summable L\<close>]]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1104
    from 1 have "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> (\<Sum> i. L (i + ?N))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1105
      by (metis (lifting) abs_idempotent
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1106
          order_trans[OF summable_rabs[OF 2] suminf_le[OF _ 2 ign[OF \<open>summable L\<close>]]])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1107
    then have "\<bar>\<Sum>i. ?diff (i + ?N) x\<bar> \<le> r / 3" (is "?L_part \<le> r/3")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1108
      using L_estimate by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1109
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1110
    have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n\<bar> \<le> (\<Sum>n<?N. \<bar>?diff n x - f' x0 n\<bar>)" ..
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1111
    also have "\<dots> < (\<Sum>n<?N. ?r)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1112
    proof (rule sum_strict_mono)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1113
      fix n
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1114
      assume "n \<in> {..< ?N}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1115
      have "\<bar>x\<bar> < S" using \<open>\<bar>x\<bar> < S\<close> .
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1116
      also have "S \<le> S'" using \<open>S \<le> S'\<close> .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1117
      also have "S' \<le> ?s n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1118
        unfolding S'_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1119
      proof (rule Min_le_iff[THEN iffD2])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1120
        have "?s n \<in> (?s ` {..<?N}) \<and> ?s n \<le> ?s n"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1121
          using \<open>n \<in> {..< ?N}\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1122
        then show "\<exists> a \<in> (?s ` {..<?N}). a \<le> ?s n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1123
          by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1124
      qed auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1125
      finally have "\<bar>x\<bar> < ?s n" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1126
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1127
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF \<open>0 < ?r\<close>,
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1128
          unfolded real_norm_def diff_0_right, unfolded some_eq_ex[symmetric], THEN conjunct2]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1129
      have "\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < ?s n \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r" .
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1130
      with \<open>x \<noteq> 0\<close> and \<open>\<bar>x\<bar> < ?s n\<close> show "\<bar>?diff n x - f' x0 n\<bar> < ?r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1131
        by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1132
    qed auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1133
    also have "\<dots> = of_nat (card {..<?N}) * ?r"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1134
      by (rule sum_constant)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1135
    also have "\<dots> = real ?N * ?r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1136
      by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1137
    also have "\<dots> = r/3"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1138
      by (auto simp del: of_nat_Suc)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1139
    finally have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n \<bar> < r / 3" (is "?diff_part < r / 3") .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1140
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1141
    from suminf_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1142
    have "\<bar>(suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0)\<bar> =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1143
        \<bar>\<Sum>n. ?diff n x - f' x0 n\<bar>"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1144
      unfolding suminf_diff[OF div_smbl \<open>summable (f' x0)\<close>, symmetric]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1145
      using suminf_divide[OF diff_smbl, symmetric] by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1146
    also have "\<dots> \<le> ?diff_part + \<bar>(\<Sum>n. ?diff (n + ?N) x) - (\<Sum> n. f' x0 (n + ?N))\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1147
      unfolding suminf_split_initial_segment[OF all_smbl, where k="?N"]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1148
      unfolding suminf_diff[OF div_shft_smbl ign[OF \<open>summable (f' x0)\<close>]]
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1149
      apply (simp only: add.commute)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1150
      using abs_triangle_ineq by blast
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1151
    also have "\<dots> \<le> ?diff_part + ?L_part + ?f'_part"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1152
      using abs_triangle_ineq4 by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1153
    also have "\<dots> < r /3 + r/3 + r/3"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1154
      using \<open>?diff_part < r/3\<close> \<open>?L_part \<le> r/3\<close> and \<open>?f'_part < r/3\<close>
36842
99745a4b9cc9 fix some linarith_split_limit warnings
huffman
parents: 36824
diff changeset
  1155
      by (rule add_strict_mono [OF add_less_le_mono])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1156
    finally show ?thesis
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1157
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1158
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1159
  then show "\<exists>s > 0. \<forall> x. x \<noteq> 0 \<and> norm (x - 0) < s \<longrightarrow>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1160
      norm (((\<Sum>n. f (x0 + x) n) - (\<Sum>n. f x0 n)) / x - (\<Sum>n. f' x0 n)) < r"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1161
    using \<open>0 < S\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1162
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1163
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1164
lemma DERIV_power_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1165
  fixes f :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1166
  assumes converges: "\<And>x. x \<in> {-R <..< R} \<Longrightarrow> summable (\<lambda>n. f n * real (Suc n) * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1167
    and x0_in_I: "x0 \<in> {-R <..< R}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1168
    and "0 < R"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1169
  shows "DERIV (\<lambda>x. (\<Sum>n. f n * x^(Suc n))) x0 :> (\<Sum>n. f n * real (Suc n) * x0^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1170
    (is "DERIV (\<lambda>x. suminf (?f x)) x0 :> suminf (?f' x0)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1171
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1172
  have for_subinterval: "DERIV (\<lambda>x. suminf (?f x)) x0 :> suminf (?f' x0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1173
    if "0 < R'" and "R' < R" and "-R' < x0" and "x0 < R'" for R'
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1174
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1175
    from that have "x0 \<in> {-R' <..< R'}" and "R' \<in> {-R <..< R}" and "x0 \<in> {-R <..< R}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1176
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1177
    show ?thesis
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1178
    proof (rule DERIV_series')
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1179
      show "summable (\<lambda> n. \<bar>f n * real (Suc n) * R'^n\<bar>)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1180
      proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1181
        have "(R' + R) / 2 < R" and "0 < (R' + R) / 2"
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1182
          using \<open>0 < R'\<close> \<open>0 < R\<close> \<open>R' < R\<close> by (auto simp: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1183
        then have in_Rball: "(R' + R) / 2 \<in> {-R <..< R}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1184
          using \<open>R' < R\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1185
        have "norm R' < norm ((R' + R) / 2)"
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1186
          using \<open>0 < R'\<close> \<open>0 < R\<close> \<open>R' < R\<close> by (auto simp: field_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1187
        from powser_insidea[OF converges[OF in_Rball] this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1188
          by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1189
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1190
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1191
      fix n x y
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1192
      assume "x \<in> {-R' <..< R'}" and "y \<in> {-R' <..< R'}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1193
      show "\<bar>?f x n - ?f y n\<bar> \<le> \<bar>f n * real (Suc n) * R'^n\<bar> * \<bar>x-y\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1194
      proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1195
        have "\<bar>f n * x ^ (Suc n) - f n * y ^ (Suc n)\<bar> =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1196
          (\<bar>f n\<bar> * \<bar>x-y\<bar>) * \<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar>"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1197
          unfolding right_diff_distrib[symmetric] diff_power_eq_sum abs_mult
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1198
          by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1199
        also have "\<dots> \<le> (\<bar>f n\<bar> * \<bar>x-y\<bar>) * (\<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1200
        proof (rule mult_left_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1201
          have "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> (\<Sum>p<Suc n. \<bar>x ^ p * y ^ (n - p)\<bar>)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1202
            by (rule sum_abs)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1203
          also have "\<dots> \<le> (\<Sum>p<Suc n. R' ^ n)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1204
          proof (rule sum_mono)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1205
            fix p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1206
            assume "p \<in> {..<Suc n}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1207
            then have "p \<le> n" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1208
            have "\<bar>x^n\<bar> \<le> R'^n" if  "x \<in> {-R'<..<R'}" for n and x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1209
            proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1210
              from that have "\<bar>x\<bar> \<le> R'" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1211
              then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1212
                unfolding power_abs by (rule power_mono) auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1213
            qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1214
            from mult_mono[OF this[OF \<open>x \<in> {-R'<..<R'}\<close>, of p] this[OF \<open>y \<in> {-R'<..<R'}\<close>, of "n-p"]]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1215
              and \<open>0 < R'\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1216
            have "\<bar>x^p * y^(n - p)\<bar> \<le> R'^p * R'^(n - p)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1217
              unfolding abs_mult by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1218
            then show "\<bar>x^p * y^(n - p)\<bar> \<le> R'^n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1219
              unfolding power_add[symmetric] using \<open>p \<le> n\<close> by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1220
          qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1221
          also have "\<dots> = real (Suc n) * R' ^ n"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1222
            unfolding sum_constant card_atLeastLessThan by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1223
          finally show "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> \<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1224
            unfolding abs_of_nonneg[OF zero_le_power[OF less_imp_le[OF \<open>0 < R'\<close>]]]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1225
            by linarith
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1226
          show "0 \<le> \<bar>f n\<bar> * \<bar>x - y\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1227
            unfolding abs_mult[symmetric] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1228
        qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1229
        also have "\<dots> = \<bar>f n * real (Suc n) * R' ^ n\<bar> * \<bar>x - y\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1230
          unfolding abs_mult mult.assoc[symmetric] by algebra
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1231
        finally show ?thesis .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1232
      qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1233
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1234
      show "DERIV (\<lambda>x. ?f x n) x0 :> ?f' x0 n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1235
        by (auto intro!: derivative_eq_intros simp del: power_Suc)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1236
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1237
      fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1238
      assume "x \<in> {-R' <..< R'}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1239
      then have "R' \<in> {-R <..< R}" and "norm x < norm R'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1240
        using assms \<open>R' < R\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1241
      have "summable (\<lambda>n. f n * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1242
      proof (rule summable_comparison_test, intro exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1243
        fix n
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1244
        have le: "\<bar>f n\<bar> * 1 \<le> \<bar>f n\<bar> * real (Suc n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1245
          by (rule mult_left_mono) auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1246
        show "norm (f n * x^n) \<le> norm (f n * real (Suc n) * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1247
          unfolding real_norm_def abs_mult
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1248
          using le mult_right_mono by fastforce
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1249
      qed (rule powser_insidea[OF converges[OF \<open>R' \<in> {-R <..< R}\<close>] \<open>norm x < norm R'\<close>])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1250
      from this[THEN summable_mult2[where c=x], simplified mult.assoc, simplified mult.commute]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1251
      show "summable (?f x)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1252
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1253
      show "summable (?f' x0)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1254
        using converges[OF \<open>x0 \<in> {-R <..< R}\<close>] .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1255
      show "x0 \<in> {-R' <..< R'}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1256
        using \<open>x0 \<in> {-R' <..< R'}\<close> .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1257
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1258
  qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1259
  let ?R = "(R + \<bar>x0\<bar>) / 2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1260
  have "\<bar>x0\<bar> < ?R"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1261
    using assms by (auto simp: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1262
  then have "- ?R < x0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1263
  proof (cases "x0 < 0")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1264
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1265
    then have "- x0 < ?R"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1266
      using \<open>\<bar>x0\<bar> < ?R\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1267
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1268
      unfolding neg_less_iff_less[symmetric, of "- x0"] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1269
  next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1270
    case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1271
    have "- ?R < 0" using assms by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1272
    also have "\<dots> \<le> x0" using False by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1273
    finally show ?thesis .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1274
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1275
  then have "0 < ?R" "?R < R" "- ?R < x0" and "x0 < ?R"
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1276
    using assms by (auto simp: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1277
  from for_subinterval[OF this] show ?thesis .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1278
qed
29695
171146a93106 Added real related theorems from Fact.thy
chaieb
parents: 29667
diff changeset
  1279
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1280
lemma geometric_deriv_sums:
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1281
  fixes z :: "'a :: {real_normed_field,banach}"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1282
  assumes "norm z < 1"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1283
  shows   "(\<lambda>n. of_nat (Suc n) * z ^ n) sums (1 / (1 - z)^2)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1284
proof -
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1285
  have "(\<lambda>n. diffs (\<lambda>n. 1) n * z^n) sums (1 / (1 - z)^2)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1286
  proof (rule termdiffs_sums_strong)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1287
    fix z :: 'a assume "norm z < 1"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1288
    thus "(\<lambda>n. 1 * z^n) sums (1 / (1 - z))" by (simp add: geometric_sums)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1289
  qed (insert assms, auto intro!: derivative_eq_intros simp: power2_eq_square)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1290
  thus ?thesis unfolding diffs_def by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1291
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1292
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1293
lemma isCont_pochhammer [continuous_intros]: "isCont (\<lambda>z. pochhammer z n) z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1294
  for z :: "'a::real_normed_field"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1295
  by (induct n) (auto simp: pochhammer_rec')
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1296
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1297
lemma continuous_on_pochhammer [continuous_intros]: "continuous_on A (\<lambda>z. pochhammer z n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1298
  for A :: "'a::real_normed_field set"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1299
  by (intro continuous_at_imp_continuous_on ballI isCont_pochhammer)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1300
66486
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66279
diff changeset
  1301
lemmas continuous_on_pochhammer' [continuous_intros] =
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66279
diff changeset
  1302
  continuous_on_compose2[OF continuous_on_pochhammer _ subset_UNIV]
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66279
diff changeset
  1303
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1304
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1305
subsection \<open>Exponential Function\<close>
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1306
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1307
definition exp :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1308
  where "exp = (\<lambda>x. \<Sum>n. x^n /\<^sub>R fact n)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1309
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1310
lemma summable_exp_generic:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
  1311
  fixes x :: "'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1312
  defines S_def: "S \<equiv> \<lambda>n. x^n /\<^sub>R fact n"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1313
  shows "summable S"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1314
proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1315
  have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
  1316
    unfolding S_def by (simp del: mult_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1317
  obtain r :: real where r0: "0 < r" and r1: "r < 1"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1318
    using dense [OF zero_less_one] by fast
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1319
  obtain N :: nat where N: "norm x < real N * r"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1320
    using ex_less_of_nat_mult r0 by auto
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1321
  from r1 show ?thesis
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1322
  proof (rule summable_ratio_test [rule_format])
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1323
    fix n :: nat
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1324
    assume n: "N \<le> n"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1325
    have "norm x \<le> real N * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1326
      using N by (rule order_less_imp_le)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1327
    also have "real N * r \<le> real (Suc n) * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1328
      using r0 n by (simp add: mult_right_mono)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1329
    finally have "norm x * norm (S n) \<le> real (Suc n) * r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1330
      using norm_ge_zero by (rule mult_right_mono)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1331
    then have "norm (x * S n) \<le> real (Suc n) * r * norm (S n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1332
      by (rule order_trans [OF norm_mult_ineq])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1333
    then have "norm (x * S n) / real (Suc n) \<le> r * norm (S n)"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1334
      by (simp add: pos_divide_le_eq ac_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1335
    then show "norm (S (Suc n)) \<le> r * norm (S n)"
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1336
      by (simp add: S_Suc inverse_eq_divide)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1337
  qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1338
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1339
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1340
lemma summable_norm_exp: "summable (\<lambda>n. norm (x^n /\<^sub>R fact n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1341
  for x :: "'a::{real_normed_algebra_1,banach}"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1342
proof (rule summable_norm_comparison_test [OF exI, rule_format])
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1343
  show "summable (\<lambda>n. norm x^n /\<^sub>R fact n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1344
    by (rule summable_exp_generic)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1345
  show "norm (x^n /\<^sub>R fact n) \<le> norm x^n /\<^sub>R fact n" for n
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1346
    by (simp add: norm_power_ineq)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1347
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1348
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1349
lemma summable_exp: "summable (\<lambda>n. inverse (fact n) * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1350
  for x :: "'a::{real_normed_field,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1351
  using summable_exp_generic [where x=x]
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1352
  by (simp add: scaleR_conv_of_real nonzero_of_real_inverse)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1353
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1354
lemma exp_converges: "(\<lambda>n. x^n /\<^sub>R fact n) sums exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1355
  unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1356
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1357
lemma exp_fdiffs:
60241
wenzelm
parents: 60036
diff changeset
  1358
  "diffs (\<lambda>n. inverse (fact n)) = (\<lambda>n. inverse (fact n :: 'a::{real_normed_field,banach}))"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1359
  by (simp add: diffs_def mult_ac nonzero_inverse_mult_distrib nonzero_of_real_inverse
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1360
      del: mult_Suc of_nat_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1361
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1362
lemma diffs_of_real: "diffs (\<lambda>n. of_real (f n)) = (\<lambda>n. of_real (diffs f n))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1363
  by (simp add: diffs_def)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1364
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1365
lemma DERIV_exp [simp]: "DERIV exp x :> exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1366
  unfolding exp_def scaleR_conv_of_real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1367
proof (rule DERIV_cong)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1368
  have sinv: "summable (\<lambda>n. of_real (inverse (fact n)) * x ^ n)" for x::'a
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1369
    by (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1370
  note xx = exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real]
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1371
  show "((\<lambda>x. \<Sum>n. of_real (inverse (fact n)) * x ^ n) has_field_derivative
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1372
        (\<Sum>n. diffs (\<lambda>n. of_real (inverse (fact n))) n * x ^ n))  (at x)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1373
    by (rule termdiffs [where K="of_real (1 + norm x)"]) (simp_all only: diffs_of_real exp_fdiffs sinv norm_of_real)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1374
  show "(\<Sum>n. diffs (\<lambda>n. of_real (inverse (fact n))) n * x ^ n) = (\<Sum>n. of_real (inverse (fact n)) * x ^ n)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1375
    by (simp add: diffs_of_real exp_fdiffs)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1376
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1377
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1378
declare DERIV_exp[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1379
  and DERIV_exp[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1380
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1381
lemmas has_derivative_exp[derivative_intros] = DERIV_exp[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1382
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1383
lemma norm_exp: "norm (exp x) \<le> exp (norm x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1384
proof -
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1385
  from summable_norm[OF summable_norm_exp, of x]
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1386
  have "norm (exp x) \<le> (\<Sum>n. inverse (fact n) * norm (x^n))"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1387
    by (simp add: exp_def)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1388
  also have "\<dots> \<le> exp (norm x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1389
    using summable_exp_generic[of "norm x"] summable_norm_exp[of x]
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1390
    by (auto simp: exp_def intro!: suminf_le norm_power_ineq)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1391
  finally show ?thesis .
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1392
qed
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1393
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1394
lemma isCont_exp: "isCont exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1395
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1396
  by (rule DERIV_exp [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1397
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1398
lemma isCont_exp' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. exp (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1399
  for f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1400
  by (rule isCont_o2 [OF _ isCont_exp])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1401
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1402
lemma tendsto_exp [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. exp (f x)) \<longlongrightarrow> exp a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1403
  for f:: "_ \<Rightarrow>'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1404
  by (rule isCont_tendsto_compose [OF isCont_exp])
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1405
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1406
lemma continuous_exp [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. exp (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1407
  for f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1408
  unfolding continuous_def by (rule tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1409
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1410
lemma continuous_on_exp [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. exp (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1411
  for f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1412
  unfolding continuous_on_def by (auto intro: tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1413
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1414
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1415
subsubsection \<open>Properties of the Exponential Function\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1416
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1417
lemma exp_zero [simp]: "exp 0 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1418
  unfolding exp_def by (simp add: scaleR_conv_of_real)
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1419
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1420
lemma exp_series_add_commuting:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1421
  fixes x y :: "'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1422
  defines S_def: "S \<equiv> \<lambda>x n. x^n /\<^sub>R fact n"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1423
  assumes comm: "x * y = y * x"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1424
  shows "S (x + y) n = (\<Sum>i\<le>n. S x i * S y (n - i))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1425
proof (induct n)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1426
  case 0
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1427
  show ?case
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1428
    unfolding S_def by simp
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1429
next
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1430
  case (Suc n)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1431
  have S_Suc: "\<And>x n. S x (Suc n) = (x * S x n) /\<^sub>R real (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
  1432
    unfolding S_def by (simp del: mult_Suc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1433
  then have times_S: "\<And>x n. x * S x n = real (Suc n) *\<^sub>R S x (Suc n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1434
    by simp
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1435
  have S_comm: "\<And>n. S x n * y = y * S x n"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1436
    by (simp add: power_commuting_commutes comm S_def)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1437
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1438
  have "real (Suc n) *\<^sub>R S (x + y) (Suc n) = (x + y) * S (x + y) n"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1439
    by (simp only: times_S)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1440
  also have "\<dots> = (x + y) * (\<Sum>i\<le>n. S x i * S y (n - i))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1441
    by (simp only: Suc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1442
  also have "\<dots> = x * (\<Sum>i\<le>n. S x i * S y (n - i)) + y * (\<Sum>i\<le>n. S x i * S y (n - i))"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  1443
    by (rule distrib_right)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1444
  also have "\<dots> = (\<Sum>i\<le>n. x * S x i * S y (n - i)) + (\<Sum>i\<le>n. S x i * y * S y (n - i))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1445
    by (simp add: sum_distrib_left ac_simps S_comm)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1446
  also have "\<dots> = (\<Sum>i\<le>n. x * S x i * S y (n - i)) + (\<Sum>i\<le>n. S x i * (y * S y (n - i)))"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1447
    by (simp add: ac_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1448
  also have "\<dots> = (\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n - i))) +
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1449
      (\<Sum>i\<le>n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1450
    by (simp add: times_S Suc_diff_le)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1451
  also have "(\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n - i))) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1452
      (\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n - i)))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1453
    by (subst sum_atMost_Suc_shift) simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1454
  also have "(\<Sum>i\<le>n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i))) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1455
      (\<Sum>i\<le>Suc n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i)))"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1456
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1457
  also have "(\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n - i))) +
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1458
        (\<Sum>i\<le>Suc n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i))) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1459
      (\<Sum>i\<le>Suc n. real (Suc n) *\<^sub>R (S x i * S y (Suc n - i)))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1460
    by (simp only: sum.distrib [symmetric] scaleR_left_distrib [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1461
        of_nat_add [symmetric]) simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1462
  also have "\<dots> = real (Suc n) *\<^sub>R (\<Sum>i\<le>Suc n. S x i * S y (Suc n - i))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1463
    by (simp only: scaleR_right.sum)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1464
  finally show "S (x + y) (Suc n) = (\<Sum>i\<le>Suc n. S x i * S y (Suc n - i))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1465
    by (simp del: sum_cl_ivl_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1466
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1467
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1468
lemma exp_add_commuting: "x * y = y * x \<Longrightarrow> exp (x + y) = exp x * exp y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1469
  by (simp only: exp_def Cauchy_product summable_norm_exp exp_series_add_commuting)
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1470
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1471
lemma exp_times_arg_commute: "exp A * A = A * exp A"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1472
  by (simp add: exp_def suminf_mult[symmetric] summable_exp_generic power_commutes suminf_mult2)
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1473
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1474
lemma exp_add: "exp (x + y) = exp x * exp y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1475
  for x y :: "'a::{real_normed_field,banach}"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1476
  by (rule exp_add_commuting) (simp add: ac_simps)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1477
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1478
lemma exp_double: "exp(2 * z) = exp z ^ 2"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1479
  by (simp add: exp_add_commuting mult_2 power2_eq_square)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1480
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1481
lemmas mult_exp_exp = exp_add [symmetric]
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1482
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1483
lemma exp_of_real: "exp (of_real x) = of_real (exp x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1484
  unfolding exp_def
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1485
  apply (subst suminf_of_real [OF summable_exp_generic])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1486
  apply (simp add: scaleR_conv_of_real)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1487
  done
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1488
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1489
lemmas of_real_exp = exp_of_real[symmetric]
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1490
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1491
corollary exp_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> exp z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1492
  by (metis Reals_cases Reals_of_real exp_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1493
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1494
lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1495
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1496
  have "exp x * exp (- x) = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1497
    by (simp add: exp_add_commuting[symmetric])
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1498
  also assume "exp x = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1499
  finally show False by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1500
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1501
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1502
lemma exp_minus_inverse: "exp x * exp (- x) = 1"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1503
  by (simp add: exp_add_commuting[symmetric])
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1504
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1505
lemma exp_minus: "exp (- x) = inverse (exp x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1506
  for x :: "'a::{real_normed_field,banach}"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1507
  by (intro inverse_unique [symmetric] exp_minus_inverse)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1508
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1509
lemma exp_diff: "exp (x - y) = exp x / exp y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1510
  for x :: "'a::{real_normed_field,banach}"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  1511
  using exp_add [of x "- y"] by (simp add: exp_minus divide_inverse)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1512
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1513
lemma exp_of_nat_mult: "exp (of_nat n * x) = exp x ^ n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1514
  for x :: "'a::{real_normed_field,banach}"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1515
  by (induct n) (auto simp: distrib_left exp_add mult.commute)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1516
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1517
corollary exp_of_nat2_mult: "exp (x * of_nat n) = exp x ^ n"
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1518
  for x :: "'a::{real_normed_field,banach}"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1519
  by (metis exp_of_nat_mult mult_of_nat_commute)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1520
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1521
lemma exp_sum: "finite I \<Longrightarrow> exp (sum f I) = prod (\<lambda>x. exp (f x)) I"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1522
  by (induct I rule: finite_induct) (auto simp: exp_add_commuting mult.commute)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1523
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1524
lemma exp_divide_power_eq:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1525
  fixes x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1526
  assumes "n > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1527
  shows "exp (x / of_nat n) ^ n = exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1528
  using assms
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1529
proof (induction n arbitrary: x)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1530
  case (Suc n)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1531
  show ?case
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1532
  proof (cases "n = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1533
    case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1534
    then show ?thesis by simp
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1535
  next
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1536
    case False
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1537
    then have [simp]: "x * of_nat n / (1 + of_nat n) / of_nat n = x / (1 + of_nat n)"
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1538
      by simp
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1539
    have [simp]: "x / (1 + of_nat n) + x * of_nat n / (1 + of_nat n) = x"
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1540
      apply (simp add: divide_simps)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1541
      using of_nat_eq_0_iff apply (fastforce simp: distrib_left)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1542
      done
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1543
    show ?thesis
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1544
      using Suc.IH [of "x * of_nat n / (1 + of_nat n)"] False
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1545
      by (simp add: exp_add [symmetric])
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1546
  qed
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1547
qed simp
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1548
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1549
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1550
subsubsection \<open>Properties of the Exponential Function on Reals\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1551
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1552
text \<open>Comparisons of @{term "exp x"} with zero.\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1553
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1554
text \<open>Proof: because every exponential can be seen as a square.\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1555
lemma exp_ge_zero [simp]: "0 \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1556
  for x :: real
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1557
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1558
  have "0 \<le> exp (x/2) * exp (x/2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1559
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1560
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1561
    by (simp add: exp_add [symmetric])
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1562
qed
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1563
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1564
lemma exp_gt_zero [simp]: "0 < exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1565
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1566
  by (simp add: order_less_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1567
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1568
lemma not_exp_less_zero [simp]: "\<not> exp x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1569
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1570
  by (simp add: not_less)
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1571
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1572
lemma not_exp_le_zero [simp]: "\<not> exp x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1573
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1574
  by (simp add: not_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1575
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1576
lemma abs_exp_cancel [simp]: "\<bar>exp x\<bar> = exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1577
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1578
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1579
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1580
text \<open>Strict monotonicity of exponential.\<close>
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1581
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1582
lemma exp_ge_add_one_self_aux:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1583
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1584
  assumes "0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1585
  shows "1 + x \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1586
  using order_le_imp_less_or_eq [OF assms]
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1587
proof
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1588
  assume "0 < x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1589
  have "1 + x \<le> (\<Sum>n<2. inverse (fact n) * x^n)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1590
    by (auto simp: numeral_2_eq_2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1591
  also have "\<dots> \<le> (\<Sum>n. inverse (fact n) * x^n)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1592
    apply (rule sum_le_suminf [OF summable_exp])
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1593
    using \<open>0 < x\<close>
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1594
    apply (auto  simp add: zero_le_mult_iff)
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1595
    done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1596
  finally show "1 + x \<le> exp x"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1597
    by (simp add: exp_def)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1598
qed auto
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1599
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1600
lemma exp_gt_one: "0 < x \<Longrightarrow> 1 < exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1601
  for x :: real
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1602
proof -
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1603
  assume x: "0 < x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1604
  then have "1 < 1 + x" by simp
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1605
  also from x have "1 + x \<le> exp x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1606
    by (simp add: exp_ge_add_one_self_aux)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1607
  finally show ?thesis .
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1608
qed
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1609
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1610
lemma exp_less_mono:
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1611
  fixes x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1612
  assumes "x < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1613
  shows "exp x < exp y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1614
proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1615
  from \<open>x < y\<close> have "0 < y - x" by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1616
  then have "1 < exp (y - x)" by (rule exp_gt_one)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1617
  then have "1 < exp y / exp x" by (simp only: exp_diff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1618
  then show "exp x < exp y" by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1619
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1620
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1621
lemma exp_less_cancel: "exp x < exp y \<Longrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1622
  for x y :: real
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1623
  unfolding linorder_not_le [symmetric]
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1624
  by (auto simp: order_le_less exp_less_mono)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1625
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1626
lemma exp_less_cancel_iff [iff]: "exp x < exp y \<longleftrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1627
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1628
  by (auto intro: exp_less_mono exp_less_cancel)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1629
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1630
lemma exp_le_cancel_iff [iff]: "exp x \<le> exp y \<longleftrightarrow> x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1631
  for x y :: real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1632
  by (auto simp: linorder_not_less [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1633
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1634
lemma exp_inj_iff [iff]: "exp x = exp y \<longleftrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1635
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1636
  by (simp add: order_eq_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1637
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1638
text \<open>Comparisons of @{term "exp x"} with one.\<close>
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1639
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1640
lemma one_less_exp_iff [simp]: "1 < exp x \<longleftrightarrow> 0 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1641
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1642
  using exp_less_cancel_iff [where x = 0 and y = x] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1643
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1644
lemma exp_less_one_iff [simp]: "exp x < 1 \<longleftrightarrow> x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1645
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1646
  using exp_less_cancel_iff [where x = x and y = 0] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1647
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1648
lemma one_le_exp_iff [simp]: "1 \<le> exp x \<longleftrightarrow> 0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1649
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1650
  using exp_le_cancel_iff [where x = 0 and y = x] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1651
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1652
lemma exp_le_one_iff [simp]: "exp x \<le> 1 \<longleftrightarrow> x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1653
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1654
  using exp_le_cancel_iff [where x = x and y = 0] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1655
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1656
lemma exp_eq_one_iff [simp]: "exp x = 1 \<longleftrightarrow> x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1657
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1658
  using exp_inj_iff [where x = x and y = 0] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1659
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1660
lemma lemma_exp_total: "1 \<le> y \<Longrightarrow> \<exists>x. 0 \<le> x \<and> x \<le> y - 1 \<and> exp x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1661
  for y :: real
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1662
proof (rule IVT)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1663
  assume "1 \<le> y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1664
  then have "0 \<le> y - 1" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1665
  then have "1 + (y - 1) \<le> exp (y - 1)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1666
    by (rule exp_ge_add_one_self_aux)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1667
  then show "y \<le> exp (y - 1)" by simp
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1668
qed (simp_all add: le_diff_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1669
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1670
lemma exp_total: "0 < y \<Longrightarrow> \<exists>x. exp x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1671
  for y :: real
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1672
proof (rule linorder_le_cases [of 1 y])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1673
  assume "1 \<le> y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1674
  then show "\<exists>x. exp x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1675
    by (fast dest: lemma_exp_total)
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1676
next
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1677
  assume "0 < y" and "y \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1678
  then have "1 \<le> inverse y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1679
    by (simp add: one_le_inverse_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1680
  then obtain x where "exp x = inverse y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1681
    by (fast dest: lemma_exp_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1682
  then have "exp (- x) = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1683
    by (simp add: exp_minus)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1684
  then show "\<exists>x. exp x = y" ..
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1685
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1686
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1687
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1688
subsection \<open>Natural Logarithm\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1689
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1690
class ln = real_normed_algebra_1 + banach +
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1691
  fixes ln :: "'a \<Rightarrow> 'a"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1692
  assumes ln_one [simp]: "ln 1 = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1693
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1694
definition powr :: "'a \<Rightarrow> 'a \<Rightarrow> 'a::ln"  (infixr "powr" 80)
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61762
diff changeset
  1695
  \<comment> \<open>exponentation via ln and exp\<close>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1696
  where  [code del]: "x powr a \<equiv> if x = 0 then 0 else exp (a * ln x)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1697
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1698
lemma powr_0 [simp]: "0 powr z = 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1699
  by (simp add: powr_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1700
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1701
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1702
instantiation real :: ln
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1703
begin
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1704
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1705
definition ln_real :: "real \<Rightarrow> real"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1706
  where "ln_real x = (THE u. exp u = x)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1707
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1708
instance
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1709
  by intro_classes (simp add: ln_real_def)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1710
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1711
end
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1712
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1713
lemma powr_eq_0_iff [simp]: "w powr z = 0 \<longleftrightarrow> w = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1714
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1715
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1716
lemma ln_exp [simp]: "ln (exp x) = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1717
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1718
  by (simp add: ln_real_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1719
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1720
lemma exp_ln [simp]: "0 < x \<Longrightarrow> exp (ln x) = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1721
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1722
  by (auto dest: exp_total)
22654
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
  1723
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1724
lemma exp_ln_iff [simp]: "exp (ln x) = x \<longleftrightarrow> 0 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1725
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1726
  by (metis exp_gt_zero exp_ln)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1727
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1728
lemma ln_unique: "exp y = x \<Longrightarrow> ln x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1729
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1730
  by (erule subst) (rule ln_exp)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1731
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1732
lemma ln_mult: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln (x * y) = ln x + ln y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1733
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1734
  by (rule ln_unique) (simp add: exp_add)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1735
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1736
lemma ln_prod: "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i > 0) \<Longrightarrow> ln (prod f I) = sum (\<lambda>x. ln(f x)) I"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1737
  for f :: "'a \<Rightarrow> real"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1738
  by (induct I rule: finite_induct) (auto simp: ln_mult prod_pos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1739
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1740
lemma ln_inverse: "0 < x \<Longrightarrow> ln (inverse x) = - ln x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1741
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1742
  by (rule ln_unique) (simp add: exp_minus)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1743
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1744
lemma ln_div: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln (x / y) = ln x - ln y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1745
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1746
  by (rule ln_unique) (simp add: exp_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1747
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1748
lemma ln_realpow: "0 < x \<Longrightarrow> ln (x^n) = real n * ln x"
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1749
  by (rule ln_unique) (simp add: exp_of_nat_mult)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1750
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1751
lemma ln_less_cancel_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x < ln y \<longleftrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1752
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1753
  by (subst exp_less_cancel_iff [symmetric]) simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1754
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1755
lemma ln_le_cancel_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x \<le> ln y \<longleftrightarrow> x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1756
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1757
  by (simp add: linorder_not_less [symmetric])
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1758
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1759
lemma ln_inj_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x = ln y \<longleftrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1760
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1761
  by (simp add: order_eq_iff)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1762
65680
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1763
lemma ln_add_one_self_le_self: "0 \<le> x \<Longrightarrow> ln (1 + x) \<le> x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1764
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1765
  by (rule exp_le_cancel_iff [THEN iffD1]) (simp add: exp_ge_add_one_self_aux)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1766
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1767
lemma ln_less_self [simp]: "0 < x \<Longrightarrow> ln x < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1768
  for x :: real
65680
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1769
  by (rule order_less_le_trans [where y = "ln (1 + x)"]) (simp_all add: ln_add_one_self_le_self)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1770
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1771
lemma ln_ge_iff: "\<And>x::real. 0 < x \<Longrightarrow> y \<le> ln x \<longleftrightarrow> exp y \<le> x"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1772
  using exp_le_cancel_iff exp_total by force
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1773
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1774
lemma ln_ge_zero [simp]: "1 \<le> x \<Longrightarrow> 0 \<le> ln x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1775
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1776
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1777
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1778
lemma ln_ge_zero_imp_ge_one: "0 \<le> ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1779
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1780
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1781
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1782
lemma ln_ge_zero_iff [simp]: "0 < x \<Longrightarrow> 0 \<le> ln x \<longleftrightarrow> 1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1783
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1784
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1785
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1786
lemma ln_less_zero_iff [simp]: "0 < x \<Longrightarrow> ln x < 0 \<longleftrightarrow> x < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1787
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1788
  using ln_less_cancel_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1789
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1790
lemma ln_le_zero_iff [simp]: "0 < x \<Longrightarrow> ln x \<le> 0 \<longleftrightarrow> x \<le> 1"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1791
  for x :: real
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1792
  by (metis less_numeral_extra(1) ln_le_cancel_iff ln_one)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1793
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1794
lemma ln_gt_zero: "1 < x \<Longrightarrow> 0 < ln x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1795
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1796
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1797
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1798
lemma ln_gt_zero_imp_gt_one: "0 < ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1799
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1800
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1801
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1802
lemma ln_gt_zero_iff [simp]: "0 < x \<Longrightarrow> 0 < ln x \<longleftrightarrow> 1 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1803
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1804
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1805
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1806
lemma ln_eq_zero_iff [simp]: "0 < x \<Longrightarrow> ln x = 0 \<longleftrightarrow> x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1807
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1808
  using ln_inj_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1809
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1810
lemma ln_less_zero: "0 < x \<Longrightarrow> x < 1 \<Longrightarrow> ln x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1811
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1812
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1813
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1814
lemma ln_neg_is_const: "x \<le> 0 \<Longrightarrow> ln x = (THE x. False)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1815
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1816
  by (auto simp: ln_real_def intro!: arg_cong[where f = The])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1817
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1818
lemma isCont_ln:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1819
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1820
  assumes "x \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1821
  shows "isCont ln x"
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1822
proof (cases "0 < x")
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1823
  case True
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1824
  then have "isCont ln (exp (ln x))"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  1825
    by (intro isCont_inverse_function[where d = "\<bar>x\<bar>" and f = exp]) auto
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1826
  with True show ?thesis
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1827
    by simp
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1828
next
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1829
  case False
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1830
  with \<open>x \<noteq> 0\<close> show "isCont ln x"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1831
    unfolding isCont_def
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1832
    by (subst filterlim_cong[OF _ refl, of _ "nhds (ln 0)" _ "\<lambda>_. ln 0"])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1833
       (auto simp: ln_neg_is_const not_less eventually_at dist_real_def
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1834
         intro!: exI[of _ "\<bar>x\<bar>"])
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  1835
qed
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1836
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1837
lemma tendsto_ln [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. ln (f x)) \<longlongrightarrow> ln a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1838
  for a :: real
45915
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1839
  by (rule isCont_tendsto_compose [OF isCont_ln])
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1840
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1841
lemma continuous_ln:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1842
  "continuous F f \<Longrightarrow> f (Lim F (\<lambda>x. x)) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1843
  unfolding continuous_def by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1844
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1845
lemma isCont_ln' [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1846
  "continuous (at x) f \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> continuous (at x) (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1847
  unfolding continuous_at by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1848
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1849
lemma continuous_within_ln [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1850
  "continuous (at x within s) f \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1851
  unfolding continuous_within by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1852
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  1853
lemma continuous_on_ln [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1854
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. f x \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1855
  unfolding continuous_on_def by (auto intro: tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1856
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1857
lemma DERIV_ln: "0 < x \<Longrightarrow> DERIV ln x :> inverse x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1858
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1859
  by (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1860
    (auto intro: DERIV_cong [OF DERIV_exp exp_ln] isCont_ln)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1861
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1862
lemma DERIV_ln_divide: "0 < x \<Longrightarrow> DERIV ln x :> 1 / x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1863
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1864
  by (rule DERIV_ln[THEN DERIV_cong]) (simp_all add: divide_inverse)
33667
958dc9f03611 A little rationalisation
paulson
parents: 33549
diff changeset
  1865
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1866
declare DERIV_ln_divide[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1867
  and DERIV_ln_divide[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1868
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1869
lemmas has_derivative_ln[derivative_intros] = DERIV_ln[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1870
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1871
lemma ln_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1872
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1873
  shows "ln x = (\<Sum> n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1874
    (is "ln x = suminf (?f (x - 1))")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1875
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1876
  let ?f' = "\<lambda>x n. (-1)^n * (x - 1)^n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1877
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1878
  have "ln x - suminf (?f (x - 1)) = ln 1 - suminf (?f (1 - 1))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1879
  proof (rule DERIV_isconst3 [where x = x])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1880
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1881
    assume "x \<in> {0 <..< 2}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1882
    then have "0 < x" and "x < 2" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1883
    have "norm (1 - x) < 1"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1884
      using \<open>0 < x\<close> and \<open>x < 2\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1885
    have "1 / x = 1 / (1 - (1 - x))" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1886
    also have "\<dots> = (\<Sum> n. (1 - x)^n)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1887
      using geometric_sums[OF \<open>norm (1 - x) < 1\<close>] by (rule sums_unique)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1888
    also have "\<dots> = suminf (?f' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1889
      unfolding power_mult_distrib[symmetric]
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67268
diff changeset
  1890
      by (rule arg_cong[where f=suminf], rule arg_cong[where f="(^)"], auto)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1891
    finally have "DERIV ln x :> suminf (?f' x)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1892
      using DERIV_ln[OF \<open>0 < x\<close>] unfolding divide_inverse by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1893
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1894
    have repos: "\<And> h x :: real. h - 1 + x = h + x - 1" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1895
    have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1896
      (\<Sum>n. (-1)^n * (1 / real (n + 1)) * real (Suc n) * (x - 1) ^ n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1897
    proof (rule DERIV_power_series')
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1898
      show "x - 1 \<in> {- 1<..<1}" and "(0 :: real) < 1"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1899
        using \<open>0 < x\<close> \<open>x < 2\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1900
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1901
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1902
      assume "x \<in> {- 1<..<1}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1903
      then have "norm (-x) < 1" by auto
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1904
      show "summable (\<lambda>n. (- 1) ^ n * (1 / real (n + 1)) * real (Suc n) * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1905
        unfolding One_nat_def
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1906
        by (auto simp: power_mult_distrib[symmetric] summable_geometric[OF \<open>norm (-x) < 1\<close>])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1907
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1908
    then have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :> suminf (?f' x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1909
      unfolding One_nat_def by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1910
    then have "DERIV (\<lambda>x. suminf (?f (x - 1))) x :> suminf (?f' x)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1911
      unfolding DERIV_def repos .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1912
    ultimately have "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> suminf (?f' x) - suminf (?f' x)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1913
      by (rule DERIV_diff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1914
    then show "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> 0" by auto
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1915
  qed (auto simp: assms)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1916
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1917
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1918
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1919
lemma exp_first_terms:
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1920
  fixes x :: "'a::{real_normed_algebra_1,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1921
  shows "exp x = (\<Sum>n<k. inverse(fact n) *\<^sub>R (x ^ n)) + (\<Sum>n. inverse(fact (n + k)) *\<^sub>R (x ^ (n + k)))"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1922
proof -
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1923
  have "exp x = suminf (\<lambda>n. inverse(fact n) *\<^sub>R (x^n))"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1924
    by (simp add: exp_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1925
  also from summable_exp_generic have "\<dots> = (\<Sum> n. inverse(fact(n+k)) *\<^sub>R (x ^ (n + k))) +
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1926
    (\<Sum> n::nat<k. inverse(fact n) *\<^sub>R (x^n))" (is "_ = _ + ?a")
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1927
    by (rule suminf_split_initial_segment)
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1928
  finally show ?thesis by simp
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1929
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1930
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1931
lemma exp_first_term: "exp x = 1 + (\<Sum>n. inverse (fact (Suc n)) *\<^sub>R (x ^ Suc n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1932
  for x :: "'a::{real_normed_algebra_1,banach}"
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1933
  using exp_first_terms[of x 1] by simp
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1934
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1935
lemma exp_first_two_terms: "exp x = 1 + x + (\<Sum>n. inverse (fact (n + 2)) *\<^sub>R (x ^ (n + 2)))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1936
  for x :: "'a::{real_normed_algebra_1,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1937
  using exp_first_terms[of x 2] by (simp add: eval_nat_numeral)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1938
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1939
lemma exp_bound:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1940
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1941
  assumes a: "0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1942
    and b: "x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1943
  shows "exp x \<le> 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1944
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1945
  have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n + 2))) \<le> x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1946
  proof -
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1947
    have "(\<lambda>n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums (x\<^sup>2 / 2 * (1 / (1 - 1 / 2)))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1948
      by (intro sums_mult geometric_sums) simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1949
    then have sumsx: "(\<lambda>n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums x\<^sup>2"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1950
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1951
    have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n + 2))) \<le> suminf (\<lambda>n. (x\<^sup>2/2) * ((1/2)^n))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1952
    proof (intro suminf_le allI)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1953
      show "inverse (fact (n + 2)) * x ^ (n + 2) \<le> (x\<^sup>2/2) * ((1/2)^n)" for n :: nat
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1954
      proof -
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1955
        have "(2::nat) * 2 ^ n \<le> fact (n + 2)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1956
          by (induct n) simp_all
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1957
        then have "real ((2::nat) * 2 ^ n) \<le> real_of_nat (fact (n + 2))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1958
          by (simp only: of_nat_le_iff)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1959
        then have "((2::real) * 2 ^ n) \<le> fact (n + 2)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1960
          unfolding of_nat_fact by simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1961
        then have "inverse (fact (n + 2)) \<le> inverse ((2::real) * 2 ^ n)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1962
          by (rule le_imp_inverse_le) simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1963
        then have "inverse (fact (n + 2)) \<le> 1/(2::real) * (1/2)^n"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1964
          by (simp add: power_inverse [symmetric])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1965
        then have "inverse (fact (n + 2)) * (x^n * x\<^sup>2) \<le> 1/2 * (1/2)^n * (1 * x\<^sup>2)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1966
          by (rule mult_mono) (rule mult_mono, simp_all add: power_le_one a b)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1967
        then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1968
          unfolding power_add by (simp add: ac_simps del: fact_Suc)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1969
      qed
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1970
      show "summable (\<lambda>n. inverse (fact (n + 2)) * x ^ (n + 2))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1971
        by (rule summable_exp [THEN summable_ignore_initial_segment])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1972
      show "summable (\<lambda>n. x\<^sup>2 / 2 * (1 / 2) ^ n)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1973
        by (rule sums_summable [OF sumsx])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1974
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1975
    also have "\<dots> = x\<^sup>2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1976
      by (rule sums_unique [THEN sym]) (rule sumsx)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1977
    finally show ?thesis .
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1978
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1979
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1980
    unfolding exp_first_two_terms by auto
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1981
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1982
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1983
corollary exp_half_le2: "exp(1/2) \<le> (2::real)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1984
  using exp_bound [of "1/2"]
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1985
  by (simp add: field_simps)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1986
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1987
corollary exp_le: "exp 1 \<le> (3::real)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1988
  using exp_bound [of 1]
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1989
  by (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1990
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1991
lemma exp_bound_half: "norm z \<le> 1/2 \<Longrightarrow> norm (exp z) \<le> 2"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1992
  by (blast intro: order_trans intro!: exp_half_le2 norm_exp)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1993
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1994
lemma exp_bound_lemma:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1995
  assumes "norm z \<le> 1/2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1996
  shows "norm (exp z) \<le> 1 + 2 * norm z"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1997
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1998
  have *: "(norm z)\<^sup>2 \<le> norm z * 1"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1999
    unfolding power2_eq_square
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2000
    by (rule mult_left_mono) (use assms in auto)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2001
  have "norm (exp z) \<le> exp (norm z)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2002
    by (rule norm_exp)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2003
  also have "\<dots> \<le> 1 + (norm z) + (norm z)\<^sup>2"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2004
    using assms exp_bound by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2005
  also have "\<dots> \<le> 1 + 2 * norm z"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2006
    using * by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2007
  finally show ?thesis .
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2008
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2009
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2010
lemma real_exp_bound_lemma: "0 \<le> x \<Longrightarrow> x \<le> 1/2 \<Longrightarrow> exp x \<le> 1 + 2 * x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2011
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2012
  using exp_bound_lemma [of x] by simp
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2013
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2014
lemma ln_one_minus_pos_upper_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2015
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2016
  assumes a: "0 \<le> x" and b: "x < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2017
  shows "ln (1 - x) \<le> - x"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2018
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2019
  have "(1 - x) * (1 + x + x\<^sup>2) = 1 - x^3"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2020
    by (simp add: algebra_simps power2_eq_square power3_eq_cube)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2021
  also have "\<dots> \<le> 1"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2022
    by (auto simp: a)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2023
  finally have "(1 - x) * (1 + x + x\<^sup>2) \<le> 1" .
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  2024
  moreover have c: "0 < 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2025
    by (simp add: add_pos_nonneg a)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2026
  ultimately have "1 - x \<le> 1 / (1 + x + x\<^sup>2)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2027
    by (elim mult_imp_le_div_pos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2028
  also have "\<dots> \<le> 1 / exp x"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2029
    by (metis a abs_one b exp_bound exp_gt_zero frac_le less_eq_real_def real_sqrt_abs
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2030
        real_sqrt_pow2_iff real_sqrt_power)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2031
  also have "\<dots> = exp (- x)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2032
    by (auto simp: exp_minus divide_inverse)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2033
  finally have "1 - x \<le> exp (- x)" .
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2034
  also have "1 - x = exp (ln (1 - x))"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  2035
    by (metis b diff_0 exp_ln_iff less_iff_diff_less_0 minus_diff_eq)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2036
  finally have "exp (ln (1 - x)) \<le> exp (- x)" .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2037
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2038
    by (auto simp only: exp_le_cancel_iff)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2039
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2040
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2041
lemma exp_ge_add_one_self [simp]: "1 + x \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2042
  for x :: real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2043
proof (cases "0 \<le> x \<or> x \<le> -1")
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2044
  case True
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2045
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2046
    apply (rule disjE)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2047
     apply (simp add: exp_ge_add_one_self_aux)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2048
    using exp_ge_zero order_trans real_add_le_0_iff by blast
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2049
next
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2050
  case False
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2051
  then have ln1: "ln (1 + x) \<le> x"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2052
    using ln_one_minus_pos_upper_bound [of "-x"] by simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2053
  have "1 + x = exp (ln (1 + x))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2054
    using False by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2055
  also have "\<dots> \<le> exp x"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2056
    by (simp add: ln1)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2057
  finally show ?thesis .
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2058
qed
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2059
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2060
lemma ln_one_plus_pos_lower_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2061
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2062
  assumes a: "0 \<le> x" and b: "x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2063
  shows "x - x\<^sup>2 \<le> ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2064
proof -
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  2065
  have "exp (x - x\<^sup>2) = exp x / exp (x\<^sup>2)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2066
    by (rule exp_diff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2067
  also have "\<dots> \<le> (1 + x + x\<^sup>2) / exp (x \<^sup>2)"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  2068
    by (metis a b divide_right_mono exp_bound exp_ge_zero)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2069
  also have "\<dots> \<le> (1 + x + x\<^sup>2) / (1 + x\<^sup>2)"
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56541
diff changeset
  2070
    by (simp add: a divide_left_mono add_pos_nonneg)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2071
  also from a have "\<dots> \<le> 1 + x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2072
    by (simp add: field_simps add_strict_increasing zero_le_mult_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2073
  finally have "exp (x - x\<^sup>2) \<le> 1 + x" .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2074
  also have "\<dots> = exp (ln (1 + x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2075
  proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2076
    from a have "0 < 1 + x" by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2077
    then show ?thesis
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2078
      by (auto simp only: exp_ln_iff [THEN sym])
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2079
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2080
  finally have "exp (x - x\<^sup>2) \<le> exp (ln (1 + x))" .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2081
  then show ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2082
    by (metis exp_le_cancel_iff)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2083
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2084
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2085
lemma ln_one_minus_pos_lower_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2086
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2087
  assumes a: "0 \<le> x" and b: "x \<le> 1 / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2088
  shows "- x - 2 * x\<^sup>2 \<le> ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2089
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2090
  from b have c: "x < 1" by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2091
  then have "ln (1 - x) = - ln (1 + x / (1 - x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2092
    by (auto simp: ln_inverse [symmetric] field_simps intro: arg_cong [where f=ln])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2093
  also have "- (x / (1 - x)) \<le> \<dots>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2094
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2095
    have "ln (1 + x / (1 - x)) \<le> x / (1 - x)"
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  2096
      using a c by (intro ln_add_one_self_le_self) auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2097
    then show ?thesis
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2098
      by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2099
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2100
  also have "- (x / (1 - x)) = - x / (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2101
    by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2102
  finally have d: "- x / (1 - x) \<le> ln (1 - x)" .
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2103
  have "0 < 1 - x" using a b by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2104
  then have e: "- x - 2 * x\<^sup>2 \<le> - x / (1 - x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2105
    using mult_right_le_one_le[of "x * x" "2 * x"] a b
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2106
    by (simp add: field_simps power2_eq_square)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2107
  from e d show "- x - 2 * x\<^sup>2 \<le> ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2108
    by (rule order_trans)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2109
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2110
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2111
lemma ln_add_one_self_le_self2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2112
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2113
  shows "-1 < x \<Longrightarrow> ln (1 + x) \<le> x"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2114
  by (metis diff_gt_0_iff_gt diff_minus_eq_add exp_ge_add_one_self exp_le_cancel_iff exp_ln minus_less_iff)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2115
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2116
lemma abs_ln_one_plus_x_minus_x_bound_nonneg:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2117
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2118
  assumes x: "0 \<le> x" and x1: "x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2119
  shows "\<bar>ln (1 + x) - x\<bar> \<le> x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2120
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2121
  from x have "ln (1 + x) \<le> x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2122
    by (rule ln_add_one_self_le_self)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2123
  then have "ln (1 + x) - x \<le> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2124
    by simp
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  2125
  then have "\<bar>ln(1 + x) - x\<bar> = - (ln(1 + x) - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2126
    by (rule abs_of_nonpos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2127
  also have "\<dots> = x - ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2128
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2129
  also have "\<dots> \<le> x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2130
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2131
    from x x1 have "x - x\<^sup>2 \<le> ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2132
      by (intro ln_one_plus_pos_lower_bound)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2133
    then show ?thesis
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2134
      by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2135
  qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2136
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2137
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2138
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2139
lemma abs_ln_one_plus_x_minus_x_bound_nonpos:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2140
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2141
  assumes a: "-(1 / 2) \<le> x" and b: "x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2142
  shows "\<bar>ln (1 + x) - x\<bar> \<le> 2 * x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2143
proof -
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2144
  have *: "- (-x) - 2 * (-x)\<^sup>2 \<le> ln (1 - (- x))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2145
    by (metis a b diff_zero ln_one_minus_pos_lower_bound minus_diff_eq neg_le_iff_le) 
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2146
  have "\<bar>ln (1 + x) - x\<bar> = x - ln (1 - (- x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2147
    using a ln_add_one_self_le_self2 [of x] by (simp add: abs_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2148
  also have "\<dots> \<le> 2 * x\<^sup>2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2149
    using * by (simp add: algebra_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2150
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2151
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2152
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2153
lemma abs_ln_one_plus_x_minus_x_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2154
  fixes x :: real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2155
  assumes "\<bar>x\<bar> \<le> 1 / 2"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2156
  shows "\<bar>ln (1 + x) - x\<bar> \<le> 2 * x\<^sup>2"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2157
proof (cases "0 \<le> x")
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2158
  case True
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2159
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2160
    using abs_ln_one_plus_x_minus_x_bound_nonneg assms by fastforce
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2161
next
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2162
  case False
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2163
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2164
    using abs_ln_one_plus_x_minus_x_bound_nonpos assms by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2165
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2166
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2167
lemma ln_x_over_x_mono:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2168
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2169
  assumes x: "exp 1 \<le> x" "x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2170
  shows "ln y / y \<le> ln x / x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2171
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2172
  note x
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2173
  moreover have "0 < exp (1::real)" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2174
  ultimately have a: "0 < x" and b: "0 < y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2175
    by (fast intro: less_le_trans order_trans)+
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2176
  have "x * ln y - x * ln x = x * (ln y - ln x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2177
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2178
  also have "\<dots> = x * ln (y / x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2179
    by (simp only: ln_div a b)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2180
  also have "y / x = (x + (y - x)) / x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2181
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2182
  also have "\<dots> = 1 + (y - x) / x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2183
    using x a by (simp add: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2184
  also have "x * ln (1 + (y - x) / x) \<le> x * ((y - x) / x)"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2185
    using x a
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  2186
    by (intro mult_left_mono ln_add_one_self_le_self) simp_all
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2187
  also have "\<dots> = y - x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2188
    using a by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2189
  also have "\<dots> = (y - x) * ln (exp 1)" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2190
  also have "\<dots> \<le> (y - x) * ln x"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2191
    using a x exp_total of_nat_1 x(1)  by (fastforce intro: mult_left_mono)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2192
  also have "\<dots> = y * ln x - x * ln x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2193
    by (rule left_diff_distrib)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2194
  finally have "x * ln y \<le> y * ln x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2195
    by arith
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2196
  then have "ln y \<le> (y * ln x) / x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2197
    using a by (simp add: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2198
  also have "\<dots> = y * (ln x / x)" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2199
  finally show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2200
    using b by (simp add: field_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2201
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2202
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2203
lemma ln_le_minus_one: "0 < x \<Longrightarrow> ln x \<le> x - 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2204
  for x :: real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2205
  using exp_ge_add_one_self[of "ln x"] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2206
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2207
corollary ln_diff_le: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x - ln y \<le> (x - y) / y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2208
  for x :: real
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2209
  by (simp add: ln_div [symmetric] diff_divide_distrib ln_le_minus_one)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2210
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2211
lemma ln_eq_minus_one:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2212
  fixes x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2213
  assumes "0 < x" "ln x = x - 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2214
  shows "x = 1"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2215
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2216
  let ?l = "\<lambda>y. ln y - y + 1"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2217
  have D: "\<And>x::real. 0 < x \<Longrightarrow> DERIV ?l x :> (1 / x - 1)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2218
    by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2219
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2220
  show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2221
  proof (cases rule: linorder_cases)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2222
    assume "x < 1"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2223
    from dense[OF \<open>x < 1\<close>] obtain a where "x < a" "a < 1" by blast
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2224
    from \<open>x < a\<close> have "?l x < ?l a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2225
    proof (rule DERIV_pos_imp_increasing, safe)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2226
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2227
      assume "x \<le> y" "y \<le> a"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2228
      with \<open>0 < x\<close> \<open>a < 1\<close> have "0 < 1 / y - 1" "0 < y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2229
        by (auto simp: field_simps)
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61738
diff changeset
  2230
      with D show "\<exists>z. DERIV ?l y :> z \<and> 0 < z" by blast
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2231
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2232
    also have "\<dots> \<le> 0"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2233
      using ln_le_minus_one \<open>0 < x\<close> \<open>x < a\<close> by (auto simp: field_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2234
    finally show "x = 1" using assms by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2235
  next
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2236
    assume "1 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2237
    from dense[OF this] obtain a where "1 < a" "a < x" by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2238
    from \<open>a < x\<close> have "?l x < ?l a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2239
    proof (rule DERIV_neg_imp_decreasing, safe)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2240
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2241
      assume "a \<le> y" "y \<le> x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2242
      with \<open>1 < a\<close> have "1 / y - 1 < 0" "0 < y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2243
        by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2244
      with D show "\<exists>z. DERIV ?l y :> z \<and> z < 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2245
        by blast
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2246
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2247
    also have "\<dots> \<le> 0"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2248
      using ln_le_minus_one \<open>1 < a\<close> by (auto simp: field_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2249
    finally show "x = 1" using assms by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2250
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2251
    assume "x = 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2252
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2253
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2254
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2255
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2256
lemma ln_x_over_x_tendsto_0: "((\<lambda>x::real. ln x / x) \<longlongrightarrow> 0) at_top"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2257
proof (rule lhospital_at_top_at_top[where f' = inverse and g' = "\<lambda>_. 1"])
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2258
  from eventually_gt_at_top[of "0::real"]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2259
  show "\<forall>\<^sub>F x in at_top. (ln has_real_derivative inverse x) (at x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2260
    by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2261
qed (use tendsto_inverse_0 in
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2262
      \<open>auto simp: filterlim_ident dest!: tendsto_mono[OF at_top_le_at_infinity]\<close>)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2263
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2264
lemma exp_ge_one_plus_x_over_n_power_n:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2265
  assumes "x \<ge> - real n" "n > 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2266
  shows "(1 + x / of_nat n) ^ n \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2267
proof (cases "x = - of_nat n")
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2268
  case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2269
  from assms False have "(1 + x / of_nat n) ^ n = exp (of_nat n * ln (1 + x / of_nat n))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2270
    by (subst exp_of_nat_mult, subst exp_ln) (simp_all add: field_simps)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2271
  also from assms False have "ln (1 + x / real n) \<le> x / real n"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2272
    by (intro ln_add_one_self_le_self2) (simp_all add: field_simps)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2273
  with assms have "exp (of_nat n * ln (1 + x / of_nat n)) \<le> exp x"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2274
    by (simp add: field_simps)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2275
  finally show ?thesis .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2276
next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2277
  case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2278
  then show ?thesis by (simp add: zero_power)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2279
qed
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2280
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2281
lemma exp_ge_one_minus_x_over_n_power_n:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2282
  assumes "x \<le> real n" "n > 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2283
  shows "(1 - x / of_nat n) ^ n \<le> exp (-x)"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2284
  using exp_ge_one_plus_x_over_n_power_n[of n "-x"] assms by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2285
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2286
lemma exp_at_bot: "(exp \<longlongrightarrow> (0::real)) at_bot"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2287
  unfolding tendsto_Zfun_iff
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2288
proof (rule ZfunI, simp add: eventually_at_bot_dense)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2289
  fix r :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2290
  assume "0 < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2291
  have "exp x < r" if "x < ln r" for x
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2292
    by (metis \<open>0 < r\<close> exp_less_mono exp_ln that)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2293
  then show "\<exists>k. \<forall>n<k. exp n < r" by auto
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2294
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2295
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2296
lemma exp_at_top: "LIM x at_top. exp x :: real :> at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2297
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. True" and P="\<lambda>x. 0 < x" and g=ln])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2298
    (auto intro: eventually_gt_at_top)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2299
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2300
lemma lim_exp_minus_1: "((\<lambda>z::'a. (exp(z) - 1) / z) \<longlongrightarrow> 1) (at 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2301
  for x :: "'a::{real_normed_field,banach}"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2302
proof -
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2303
  have "((\<lambda>z::'a. exp(z) - 1) has_field_derivative 1) (at 0)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2304
    by (intro derivative_eq_intros | simp)+
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2305
  then show ?thesis
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2306
    by (simp add: Deriv.DERIV_iff2)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2307
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2308
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2309
lemma ln_at_0: "LIM x at_right 0. ln (x::real) :> at_bot"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2310
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g=exp])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51527
diff changeset
  2311
     (auto simp: eventually_at_filter)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2312
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2313
lemma ln_at_top: "LIM x at_top. ln (x::real) :> at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2314
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g=exp])
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  2315
     (auto intro: eventually_gt_at_top)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2316
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2317
lemma filtermap_ln_at_top: "filtermap (ln::real \<Rightarrow> real) at_top = at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2318
  by (intro filtermap_fun_inverse[of exp] exp_at_top ln_at_top) auto
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2319
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2320
lemma filtermap_exp_at_top: "filtermap (exp::real \<Rightarrow> real) at_top = at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2321
  by (intro filtermap_fun_inverse[of ln] exp_at_top ln_at_top)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2322
     (auto simp: eventually_at_top_dense)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2323
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2324
lemma filtermap_ln_at_right: "filtermap ln (at_right (0::real)) = at_bot"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2325
  by (auto intro!: filtermap_fun_inverse[where g="\<lambda>x. exp x"] ln_at_0
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2326
      simp: filterlim_at exp_at_bot)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2327
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2328
lemma tendsto_power_div_exp_0: "((\<lambda>x. x ^ k / exp x) \<longlongrightarrow> (0::real)) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2329
proof (induct k)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2330
  case 0
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2331
  show "((\<lambda>x. x ^ 0 / exp x) \<longlongrightarrow> (0::real)) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2332
    by (simp add: inverse_eq_divide[symmetric])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2333
       (metis filterlim_compose[OF tendsto_inverse_0] exp_at_top filterlim_mono
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2334
         at_top_le_at_infinity order_refl)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2335
next
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2336
  case (Suc k)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2337
  show ?case
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2338
  proof (rule lhospital_at_top_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2339
    show "eventually (\<lambda>x. DERIV (\<lambda>x. x ^ Suc k) x :> (real (Suc k) * x^k)) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2340
      by eventually_elim (intro derivative_eq_intros, auto)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2341
    show "eventually (\<lambda>x. DERIV exp x :> exp x) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2342
      by eventually_elim auto
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2343
    show "eventually (\<lambda>x. exp x \<noteq> 0) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2344
      by auto
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2345
    from tendsto_mult[OF tendsto_const Suc, of "real (Suc k)"]
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2346
    show "((\<lambda>x. real (Suc k) * x ^ k / exp x) \<longlongrightarrow> 0) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2347
      by simp
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2348
  qed (rule exp_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2349
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2350
64758
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2351
subsubsection\<open> A couple of simple bounds\<close>
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2352
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2353
lemma exp_plus_inverse_exp:
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2354
  fixes x::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2355
  shows "2 \<le> exp x + inverse (exp x)"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2356
proof -
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2357
  have "2 \<le> exp x + exp (-x)"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2358
    using exp_ge_add_one_self [of x] exp_ge_add_one_self [of "-x"]
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2359
    by linarith
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2360
  then show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2361
    by (simp add: exp_minus)
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2362
qed
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2363
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2364
lemma real_le_x_sinh:
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2365
  fixes x::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2366
  assumes "0 \<le> x"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2367
  shows "x \<le> (exp x - inverse(exp x)) / 2"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2368
proof -
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2369
  have *: "exp a - inverse(exp a) - 2*a \<le> exp b - inverse(exp b) - 2*b" if "a \<le> b" for a b::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2370
    apply (rule DERIV_nonneg_imp_nondecreasing [OF that])
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2371
    using exp_plus_inverse_exp
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2372
    apply (intro exI allI impI conjI derivative_eq_intros | force)+
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2373
    done
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2374
  show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2375
    using*[OF assms] by simp
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2376
qed
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2377
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2378
lemma real_le_abs_sinh:
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2379
  fixes x::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2380
  shows "abs x \<le> abs((exp x - inverse(exp x)) / 2)"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2381
proof (cases "0 \<le> x")
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2382
  case True
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2383
  show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2384
    using real_le_x_sinh [OF True] True by (simp add: abs_if)
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2385
next
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2386
  case False
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2387
  have "-x \<le> (exp(-x) - inverse(exp(-x))) / 2"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2388
    by (meson False linear neg_le_0_iff_le real_le_x_sinh)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2389
  also have "\<dots> \<le> \<bar>(exp x - inverse (exp x)) / 2\<bar>"
64758
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2390
    by (metis (no_types, hide_lams) abs_divide abs_le_iff abs_minus_cancel
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2391
       add.inverse_inverse exp_minus minus_diff_eq order_refl)
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2392
  finally show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2393
    using False by linarith
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2394
qed
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2395
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2396
subsection\<open>The general logarithm\<close>
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2397
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2398
definition log :: "real \<Rightarrow> real \<Rightarrow> real"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61762
diff changeset
  2399
  \<comment> \<open>logarithm of @{term x} to base @{term a}\<close>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2400
  where "log a x = ln x / ln a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2401
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2402
lemma tendsto_log [tendsto_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2403
  "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> 0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < b \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2404
    ((\<lambda>x. log (f x) (g x)) \<longlongrightarrow> log a b) F"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2405
  unfolding log_def by (intro tendsto_intros) auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2406
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2407
lemma continuous_log:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2408
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2409
    and "continuous F g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2410
    and "0 < f (Lim F (\<lambda>x. x))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2411
    and "f (Lim F (\<lambda>x. x)) \<noteq> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2412
    and "0 < g (Lim F (\<lambda>x. x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2413
  shows "continuous F (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2414
  using assms unfolding continuous_def by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2415
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2416
lemma continuous_at_within_log[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2417
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2418
    and "continuous (at a within s) g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2419
    and "0 < f a"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2420
    and "f a \<noteq> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2421
    and "0 < g a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2422
  shows "continuous (at a within s) (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2423
  using assms unfolding continuous_within by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2424
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2425
lemma isCont_log[continuous_intros, simp]:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2426
  assumes "isCont f a" "isCont g a" "0 < f a" "f a \<noteq> 1" "0 < g a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2427
  shows "isCont (\<lambda>x. log (f x) (g x)) a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2428
  using assms unfolding continuous_at by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2429
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2430
lemma continuous_on_log[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2431
  assumes "continuous_on s f" "continuous_on s g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2432
    and "\<forall>x\<in>s. 0 < f x" "\<forall>x\<in>s. f x \<noteq> 1" "\<forall>x\<in>s. 0 < g x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2433
  shows "continuous_on s (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2434
  using assms unfolding continuous_on_def by (fast intro: tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2435
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2436
lemma powr_one_eq_one [simp]: "1 powr a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2437
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2438
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2439
lemma powr_zero_eq_one [simp]: "x powr 0 = (if x = 0 then 0 else 1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2440
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2441
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2442
lemma powr_one_gt_zero_iff [simp]: "x powr 1 = x \<longleftrightarrow> 0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2443
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2444
  by (auto simp: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2445
declare powr_one_gt_zero_iff [THEN iffD2, simp]
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2446
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2447
lemma powr_diff:
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2448
  fixes w:: "'a::{ln,real_normed_field}" shows  "w powr (z1 - z2) = w powr z1 / w powr z2"
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2449
  by (simp add: powr_def algebra_simps exp_diff)
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2450
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2451
lemma powr_mult: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> (x * y) powr a = (x powr a) * (y powr a)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2452
  for a x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2453
  by (simp add: powr_def exp_add [symmetric] ln_mult distrib_left)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2454
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2455
lemma powr_ge_pzero [simp]: "0 \<le> x powr y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2456
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2457
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2458
67573
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2459
lemma powr_non_neg[simp]: "\<not>a powr x < 0" for a x::real
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2460
  using powr_ge_pzero[of a x] by arith
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2461
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2462
lemma powr_divide: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> (x / y) powr a = (x powr a) / (y powr a)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2463
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2464
  apply (simp add: divide_inverse positive_imp_inverse_positive powr_mult)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2465
  apply (simp add: powr_def exp_minus [symmetric] exp_add [symmetric] ln_inverse)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2466
  done
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2467
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2468
lemma powr_add: "x powr (a + b) = (x powr a) * (x powr b)"
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2469
  for a b x :: "'a::{ln,real_normed_field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2470
  by (simp add: powr_def exp_add [symmetric] distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2471
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2472
lemma powr_mult_base: "0 < x \<Longrightarrow>x * x powr y = x powr (1 + y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2473
  for x :: real
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63040
diff changeset
  2474
  by (auto simp: powr_add)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2475
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2476
lemma powr_powr: "(x powr a) powr b = x powr (a * b)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2477
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2478
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2479
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2480
lemma powr_powr_swap: "(x powr a) powr b = (x powr b) powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2481
  for a b x :: real
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2482
  by (simp add: powr_powr mult.commute)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2483
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2484
lemma powr_minus: "x powr (- a) = inverse (x powr a)"
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2485
      for a x :: "'a::{ln,real_normed_field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2486
  by (simp add: powr_def exp_minus [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2487
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2488
lemma powr_minus_divide: "x powr (- a) = 1/(x powr a)"
67268
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  2489
      for a x :: "'a::{ln,real_normed_field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2490
  by (simp add: divide_inverse powr_minus)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2491
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2492
lemma divide_powr_uminus: "a / b powr c = a * b powr (- c)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2493
  for a b c :: real
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2494
  by (simp add: powr_minus_divide)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2495
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2496
lemma powr_less_mono: "a < b \<Longrightarrow> 1 < x \<Longrightarrow> x powr a < x powr b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2497
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2498
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2499
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2500
lemma powr_less_cancel: "x powr a < x powr b \<Longrightarrow> 1 < x \<Longrightarrow> a < b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2501
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2502
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2503
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2504
lemma powr_less_cancel_iff [simp]: "1 < x \<Longrightarrow> x powr a < x powr b \<longleftrightarrow> a < b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2505
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2506
  by (blast intro: powr_less_cancel powr_less_mono)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2507
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2508
lemma powr_le_cancel_iff [simp]: "1 < x \<Longrightarrow> x powr a \<le> x powr b \<longleftrightarrow> a \<le> b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2509
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2510
  by (simp add: linorder_not_less [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2511
66511
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2512
lemma powr_realpow: "0 < x \<Longrightarrow> x powr (real n) = x^n"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2513
by (induction n) (simp_all add: ac_simps powr_add)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2514
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2515
lemma log_ln: "ln x = log (exp(1)) x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2516
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2517
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2518
lemma DERIV_log:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2519
  assumes "x > 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2520
  shows "DERIV (\<lambda>y. log b y) x :> 1 / (ln b * x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2521
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
  2522
  define lb where "lb = 1 / ln b"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2523
  moreover have "DERIV (\<lambda>y. lb * ln y) x :> lb / x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2524
    using \<open>x > 0\<close> by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2525
  ultimately show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2526
    by (simp add: log_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2527
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2528
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2529
lemmas DERIV_log[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2530
  and DERIV_log[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2531
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2532
lemma powr_log_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> a powr (log a x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2533
  by (simp add: powr_def log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2534
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2535
lemma log_powr_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a (a powr y) = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2536
  by (simp add: log_def powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2537
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2538
lemma log_mult:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2539
  "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2540
    log a (x * y) = log a x + log a y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2541
  by (simp add: log_def ln_mult divide_inverse distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2542
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2543
lemma log_eq_div_ln_mult_log:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2544
  "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2545
    log a x = (ln b/ln a) * log b x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2546
  by (simp add: log_def divide_inverse)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2547
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2548
text\<open>Base 10 logarithms\<close>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2549
lemma log_base_10_eq1: "0 < x \<Longrightarrow> log 10 x = (ln (exp 1) / ln 10) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2550
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2551
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2552
lemma log_base_10_eq2: "0 < x \<Longrightarrow> log 10 x = (log 10 (exp 1)) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2553
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2554
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2555
lemma log_one [simp]: "log a 1 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2556
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2557
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2558
lemma log_eq_one [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2559
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2560
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2561
lemma log_inverse: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log a (inverse x) = - log a x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2562
  apply (rule add_left_cancel [THEN iffD1, where a1 = "log a x"])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2563
  apply (simp add: log_mult [symmetric])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2564
  done
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2565
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2566
lemma log_divide: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a (x/y) = log a x - log a y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2567
  by (simp add: log_mult divide_inverse log_inverse)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2568
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2569
lemma powr_gt_zero [simp]: "0 < x powr a \<longleftrightarrow> x \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2570
  for a x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2571
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2572
67573
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2573
lemma powr_nonneg_iff[simp]: "a powr x \<le> 0 \<longleftrightarrow> a = 0"
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2574
  for a x::real
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2575
  by (meson not_less powr_gt_zero)
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2576
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2577
lemma log_add_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log b x + y = log b (x * b powr y)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2578
  and add_log_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> y + log b x = log b (b powr y * x)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2579
  and log_minus_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log b x - y = log b (x * b powr -y)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2580
  and minus_log_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> y - log b x = log b (b powr y / x)"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2581
  by (simp_all add: log_mult log_divide)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2582
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2583
lemma log_less_cancel_iff [simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a x < log a y \<longleftrightarrow> x < y"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  2584
  using powr_less_cancel_iff [of a] powr_log_cancel [of a x] powr_log_cancel [of a y]
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  2585
  by (metis less_eq_real_def less_trans not_le zero_less_one)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2586
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2587
lemma log_inj:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2588
  assumes "1 < b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2589
  shows "inj_on (log b) {0 <..}"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2590
proof (rule inj_onI, simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2591
  fix x y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2592
  assume pos: "0 < x" "0 < y" and *: "log b x = log b y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2593
  show "x = y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2594
  proof (cases rule: linorder_cases)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2595
    assume "x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2596
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2597
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2598
    assume "x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2599
    then have "log b x < log b y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2600
      using log_less_cancel_iff[OF \<open>1 < b\<close>] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2601
    then show ?thesis using * by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2602
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2603
    assume "y < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2604
    then have "log b y < log b x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2605
      using log_less_cancel_iff[OF \<open>1 < b\<close>] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2606
    then show ?thesis using * by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2607
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2608
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2609
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2610
lemma log_le_cancel_iff [simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a x \<le> log a y \<longleftrightarrow> x \<le> y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2611
  by (simp add: linorder_not_less [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2612
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2613
lemma zero_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < log a x \<longleftrightarrow> 1 < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2614
  using log_less_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2615
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2616
lemma zero_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 \<le> log a x \<longleftrightarrow> 1 \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2617
  using log_le_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2618
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2619
lemma log_less_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 0 \<longleftrightarrow> x < 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2620
  using log_less_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2621
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2622
lemma log_le_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 0 \<longleftrightarrow> x \<le> 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2623
  using log_le_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2624
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2625
lemma one_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 < log a x \<longleftrightarrow> a < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2626
  using log_less_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2627
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2628
lemma one_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> log a x \<longleftrightarrow> a \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2629
  using log_le_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2630
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2631
lemma log_less_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 1 \<longleftrightarrow> x < a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2632
  using log_less_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2633
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2634
lemma log_le_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 1 \<longleftrightarrow> x \<le> a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2635
  using log_le_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2636
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2637
lemma le_log_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2638
  fixes b x y :: real
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2639
  assumes "1 < b" "x > 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2640
  shows "y \<le> log b x \<longleftrightarrow> b powr y \<le> x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  2641
  using assms
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  2642
  by (metis less_irrefl less_trans powr_le_cancel_iff powr_log_cancel zero_less_one)
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2643
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2644
lemma less_log_iff:
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2645
  assumes "1 < b" "x > 0"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2646
  shows "y < log b x \<longleftrightarrow> b powr y < x"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2647
  by (metis assms dual_order.strict_trans less_irrefl powr_less_cancel_iff
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2648
    powr_log_cancel zero_less_one)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2649
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2650
lemma
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2651
  assumes "1 < b" "x > 0"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2652
  shows log_less_iff: "log b x < y \<longleftrightarrow> x < b powr y"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2653
    and log_le_iff: "log b x \<le> y \<longleftrightarrow> x \<le> b powr y"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2654
  using le_log_iff[OF assms, of y] less_log_iff[OF assms, of y]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2655
  by auto
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2656
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2657
lemmas powr_le_iff = le_log_iff[symmetric]
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2658
  and powr_less_iff = less_log_iff[symmetric]
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2659
  and less_powr_iff = log_less_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2660
  and le_powr_iff = log_le_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2661
66511
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2662
lemma le_log_of_power:
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2663
  assumes "b ^ n \<le> m" "1 < b"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2664
  shows "n \<le> log b m"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2665
proof -
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2666
  from assms have "0 < m" by (metis less_trans zero_less_power less_le_trans zero_less_one)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2667
  thus ?thesis using assms by (simp add: le_log_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2668
qed
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2669
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2670
lemma le_log2_of_power: "2 ^ n \<le> m \<Longrightarrow> n \<le> log 2 m" for m n :: nat
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2671
using le_log_of_power[of 2] by simp
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2672
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2673
lemma log_of_power_le: "\<lbrakk> m \<le> b ^ n; b > 1; m > 0 \<rbrakk> \<Longrightarrow> log b (real m) \<le> n"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2674
by (simp add: log_le_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2675
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2676
lemma log2_of_power_le: "\<lbrakk> m \<le> 2 ^ n; m > 0 \<rbrakk> \<Longrightarrow> log 2 m \<le> n" for m n :: nat
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2677
using log_of_power_le[of _ 2] by simp
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2678
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2679
lemma log_of_power_less: "\<lbrakk> m < b ^ n; b > 1; m > 0 \<rbrakk> \<Longrightarrow> log b (real m) < n"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2680
by (simp add: log_less_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2681
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2682
lemma log2_of_power_less: "\<lbrakk> m < 2 ^ n; m > 0 \<rbrakk> \<Longrightarrow> log 2 m < n" for m n :: nat
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2683
using log_of_power_less[of _ 2] by simp
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2684
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2685
lemma less_log_of_power:
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2686
  assumes "b ^ n < m" "1 < b"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2687
  shows "n < log b m"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2688
proof -
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2689
  have "0 < m" by (metis assms less_trans zero_less_power zero_less_one)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2690
  thus ?thesis using assms by (simp add: less_log_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2691
qed
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2692
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2693
lemma less_log2_of_power: "2 ^ n < m \<Longrightarrow> n < log 2 m" for m n :: nat
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2694
using less_log_of_power[of 2] by simp
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2695
64446
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2696
lemma gr_one_powr[simp]:
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2697
  fixes x y :: real shows "\<lbrakk> x > 1; y > 0 \<rbrakk> \<Longrightarrow> 1 < x powr y"
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2698
by(simp add: less_powr_iff)
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2699
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2700
lemma floor_log_eq_powr_iff: "x > 0 \<Longrightarrow> b > 1 \<Longrightarrow> \<lfloor>log b x\<rfloor> = k \<longleftrightarrow> b powr k \<le> x \<and> x < b powr (k + 1)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2701
  by (auto simp: floor_eq_iff powr_le_iff less_powr_iff)
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2702
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2703
lemma floor_log_nat_eq_powr_iff: fixes b n k :: nat
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2704
  shows "\<lbrakk> b \<ge> 2; k > 0 \<rbrakk> \<Longrightarrow>
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2705
  floor (log b (real k)) = n \<longleftrightarrow> b^n \<le> k \<and> k < b^(n+1)"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2706
by (auto simp: floor_log_eq_powr_iff powr_add powr_realpow
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2707
               of_nat_power[symmetric] of_nat_mult[symmetric] ac_simps
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2708
         simp del: of_nat_power of_nat_mult)
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2709
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2710
lemma floor_log_nat_eq_if: fixes b n k :: nat
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2711
  assumes "b^n \<le> k" "k < b^(n+1)" "b \<ge> 2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2712
  shows "floor (log b (real k)) = n"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2713
proof -
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2714
  have "k \<ge> 1" using assms(1,3) one_le_power[of b n] by linarith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2715
  with assms show ?thesis by(simp add: floor_log_nat_eq_powr_iff)
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2716
qed
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2717
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2718
lemma ceiling_log_eq_powr_iff: "\<lbrakk> x > 0; b > 1 \<rbrakk>
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2719
  \<Longrightarrow> \<lceil>log b x\<rceil> = int k + 1 \<longleftrightarrow> b powr k < x \<and> x \<le> b powr (k + 1)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2720
by (auto simp: ceiling_eq_iff powr_less_iff le_powr_iff)
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2721
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2722
lemma ceiling_log_nat_eq_powr_iff: fixes b n k :: nat
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2723
  shows "\<lbrakk> b \<ge> 2; k > 0 \<rbrakk> \<Longrightarrow>
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2724
  ceiling (log b (real k)) = int n + 1 \<longleftrightarrow> (b^n < k \<and> k \<le> b^(n+1))"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2725
using ceiling_log_eq_powr_iff
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2726
by (auto simp: powr_add powr_realpow of_nat_power[symmetric] of_nat_mult[symmetric] ac_simps
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2727
         simp del: of_nat_power of_nat_mult)
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2728
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2729
lemma ceiling_log_nat_eq_if: fixes b n k :: nat
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2730
  assumes "b^n < k" "k \<le> b^(n+1)" "b \<ge> 2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2731
  shows "ceiling (log b (real k)) = int n + 1"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2732
proof -
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2733
  have "k \<ge> 1" using assms(1,3) one_le_power[of b n] by linarith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2734
  with assms show ?thesis by(simp add: ceiling_log_nat_eq_powr_iff)
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2735
qed
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2736
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2737
lemma floor_log2_div2: fixes n :: nat assumes "n \<ge> 2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2738
shows "floor(log 2 n) = floor(log 2 (n div 2)) + 1"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2739
proof cases
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2740
  assume "n=2" thus ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2741
next
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2742
  let ?m = "n div 2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2743
  assume "n\<noteq>2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2744
  hence "1 \<le> ?m" using assms by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2745
  then obtain i where i: "2 ^ i \<le> ?m" "?m < 2 ^ (i + 1)"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2746
    using ex_power_ivl1[of 2 ?m] by auto
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2747
  have "2^(i+1) \<le> 2*?m" using i(1) by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2748
  also have "2*?m \<le> n" by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2749
  finally have *: "2^(i+1) \<le> \<dots>" .
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2750
  have "n < 2^(i+1+1)" using i(2) by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2751
  from floor_log_nat_eq_if[OF * this] floor_log_nat_eq_if[OF i]
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2752
  show ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2753
qed
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2754
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2755
lemma ceiling_log2_div2: assumes "n \<ge> 2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2756
shows "ceiling(log 2 (real n)) = ceiling(log 2 ((n-1) div 2 + 1)) + 1"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2757
proof cases
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2758
  assume "n=2" thus ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2759
next
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2760
  let ?m = "(n-1) div 2 + 1"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2761
  assume "n\<noteq>2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2762
  hence "2 \<le> ?m" using assms by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2763
  then obtain i where i: "2 ^ i < ?m" "?m \<le> 2 ^ (i + 1)"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2764
    using ex_power_ivl2[of 2 ?m] by auto
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2765
  have "n \<le> 2*?m" by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2766
  also have "2*?m \<le> 2 ^ ((i+1)+1)" using i(2) by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2767
  finally have *: "n \<le> \<dots>" .
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2768
  have "2^(i+1) < n" using i(1) by (auto simp: less_Suc_eq_0_disj)
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2769
  from ceiling_log_nat_eq_if[OF this *] ceiling_log_nat_eq_if[OF i]
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2770
  show ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2771
qed
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2772
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2773
lemma powr_real_of_int:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2774
  "x > 0 \<Longrightarrow> x powr real_of_int n = (if n \<ge> 0 then x ^ nat n else inverse (x ^ nat (- n)))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61976
diff changeset
  2775
  using powr_realpow[of x "nat n"] powr_realpow[of x "nat (-n)"]
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2776
  by (auto simp: field_simps powr_minus)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61976
diff changeset
  2777
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2778
lemma powr_numeral [simp]: "0 < x \<Longrightarrow> x powr (numeral n :: real) = x ^ (numeral n)"
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2779
  by (metis of_nat_numeral powr_realpow)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2780
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2781
lemma powr_int:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2782
  assumes "x > 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2783
  shows "x powr i = (if i \<ge> 0 then x ^ nat i else 1 / x ^ nat (-i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2784
proof (cases "i < 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2785
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2786
  have r: "x powr i = 1 / x powr (- i)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2787
    by (simp add: powr_minus field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2788
  show ?thesis using \<open>i < 0\<close> \<open>x > 0\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2789
    by (simp add: r field_simps powr_realpow[symmetric])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2790
next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2791
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2792
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2793
    by (simp add: assms powr_realpow[symmetric])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2794
qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2795
58981
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2796
lemma compute_powr[code]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2797
  fixes i :: real
58981
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2798
  shows "b powr i =
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2799
    (if b \<le> 0 then Code.abort (STR ''op powr with nonpositive base'') (\<lambda>_. b powr i)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2800
     else if \<lfloor>i\<rfloor> = i then (if 0 \<le> i then b ^ nat \<lfloor>i\<rfloor> else 1 / b ^ nat \<lfloor>- i\<rfloor>)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2801
     else Code.abort (STR ''op powr with non-integer exponent'') (\<lambda>_. b powr i))"
59587
8ea7b22525cb Removed the obsolete functions "natfloor" and "natceiling"
nipkow
parents: 58984
diff changeset
  2802
  by (auto simp: powr_int)
58981
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2803
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2804
lemma powr_one: "0 \<le> x \<Longrightarrow> x powr 1 = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2805
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2806
  using powr_realpow [of x 1] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2807
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2808
lemma powr_neg_one: "0 < x \<Longrightarrow> x powr - 1 = 1 / x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2809
  for x :: real
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2810
  using powr_int [of x "- 1"] by simp
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2811
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2812
lemma powr_neg_numeral: "0 < x \<Longrightarrow> x powr - numeral n = 1 / x ^ numeral n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2813
  for x :: real
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2814
  using powr_int [of x "- numeral n"] by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2815
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2816
lemma root_powr_inverse: "0 < n \<Longrightarrow> 0 < x \<Longrightarrow> root n x = x powr (1/n)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2817
  by (rule real_root_pos_unique) (auto simp: powr_realpow[symmetric] powr_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2818
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2819
lemma ln_powr: "x \<noteq> 0 \<Longrightarrow> ln (x powr y) = y * ln x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2820
  for x :: real
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2821
  by (simp add: powr_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2822
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2823
lemma ln_root: "n > 0 \<Longrightarrow> b > 0 \<Longrightarrow> ln (root n b) =  ln b / n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2824
  by (simp add: root_powr_inverse ln_powr)
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2825
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2826
lemma ln_sqrt: "0 < x \<Longrightarrow> ln (sqrt x) = ln x / 2"
65109
a79c1080f1e9 added numeral_powr_numeral
nipkow
parents: 65057
diff changeset
  2827
  by (simp add: ln_powr ln_powr[symmetric] mult.commute)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2828
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2829
lemma log_root: "n > 0 \<Longrightarrow> a > 0 \<Longrightarrow> log b (root n a) =  log b a / n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2830
  by (simp add: log_def ln_root)
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2831
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2832
lemma log_powr: "x \<noteq> 0 \<Longrightarrow> log b (x powr y) = y * log b x"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2833
  by (simp add: log_def ln_powr)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2834
64446
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2835
(* [simp] is not worth it, interferes with some proofs *)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  2836
lemma log_nat_power: "0 < x \<Longrightarrow> log b (x^n) = real n * log b x"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2837
  by (simp add: log_powr powr_realpow [symmetric])
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2838
66510
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2839
lemma log_of_power_eq:
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2840
  assumes "m = b ^ n" "b > 1"
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2841
  shows "n = log b (real m)"
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2842
proof -
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2843
  have "n = log b (b ^ n)" using assms(2) by (simp add: log_nat_power)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2844
  also have "\<dots> = log b m" using assms by simp
66510
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2845
  finally show ?thesis .
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2846
qed
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2847
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2848
lemma log2_of_power_eq: "m = 2 ^ n \<Longrightarrow> n = log 2 m" for m n :: nat
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2849
using log_of_power_eq[of _ 2] by simp
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2850
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2851
lemma log_base_change: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log b x = log a x / log a b"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2852
  by (simp add: log_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2853
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2854
lemma log_base_pow: "0 < a \<Longrightarrow> log (a ^ n) x = log a x / n"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2855
  by (simp add: log_def ln_realpow)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2856
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2857
lemma log_base_powr: "a \<noteq> 0 \<Longrightarrow> log (a powr b) x = log a x / b"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2858
  by (simp add: log_def ln_powr)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2859
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2860
lemma log_base_root: "n > 0 \<Longrightarrow> b > 0 \<Longrightarrow> log (root n b) x = n * (log b x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2861
  by (simp add: log_def ln_root)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2862
67727
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67685
diff changeset
  2863
lemma ln_bound: "0 < x \<Longrightarrow> ln x \<le> x" for x :: real
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67685
diff changeset
  2864
  using ln_le_minus_one by force
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2865
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2866
lemma powr_mono:
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2867
  fixes x :: real
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2868
  assumes "a \<le> b" and "1 \<le> x" shows "x powr a \<le> x powr b"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2869
  using assms less_eq_real_def by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2870
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2871
lemma ge_one_powr_ge_zero: "1 \<le> x \<Longrightarrow> 0 \<le> a \<Longrightarrow> 1 \<le> x powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2872
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2873
  using powr_mono by fastforce
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2874
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2875
lemma powr_less_mono2: "0 < a \<Longrightarrow> 0 \<le> x \<Longrightarrow> x < y \<Longrightarrow> x powr a < y powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2876
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2877
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2878
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2879
lemma powr_less_mono2_neg: "a < 0 \<Longrightarrow> 0 < x \<Longrightarrow> x < y \<Longrightarrow> y powr a < x powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2880
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2881
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2882
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2883
lemma powr_mono2: "x powr a \<le> y powr a" if "0 \<le> a" "0 \<le> x" "x \<le> y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2884
  for x :: real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2885
  using less_eq_real_def powr_less_mono2 that by auto
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2886
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2887
lemma powr_le1: "0 \<le> a \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> x powr a \<le> 1"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2888
  for x :: real
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2889
  using powr_mono2 by fastforce
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2890
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2891
lemma powr_mono2':
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2892
  fixes a x y :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2893
  assumes "a \<le> 0" "x > 0" "x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2894
  shows "x powr a \<ge> y powr a"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2895
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2896
  from assms have "x powr - a \<le> y powr - a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2897
    by (intro powr_mono2) simp_all
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2898
  with assms show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2899
    by (auto simp: powr_minus field_simps)
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2900
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2901
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2902
lemma powr_mono_both:
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2903
  fixes x :: real
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2904
  assumes "0 \<le> a" "a \<le> b" "1 \<le> x" "x \<le> y"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2905
    shows "x powr a \<le> y powr b"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2906
  by (meson assms order.trans powr_mono powr_mono2 zero_le_one)
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2907
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2908
lemma powr_inj: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> a powr x = a powr y \<longleftrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2909
  for x :: real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2910
  unfolding powr_def exp_inj_iff by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2911
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2912
lemma powr_half_sqrt: "0 \<le> x \<Longrightarrow> x powr (1/2) = sqrt x"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2913
  by (simp add: powr_def root_powr_inverse sqrt_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2914
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2915
lemma ln_powr_bound: "1 \<le> x \<Longrightarrow> 0 < a \<Longrightarrow> ln x \<le> (x powr a) / a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2916
  for x :: real
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2917
  by (metis exp_gt_zero linear ln_eq_zero_iff ln_exp ln_less_self ln_powr mult.commute
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2918
      mult_imp_le_div_pos not_less powr_gt_zero)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2919
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2920
lemma ln_powr_bound2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2921
  fixes x :: real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2922
  assumes "1 < x" and "0 < a"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2923
  shows "(ln x) powr a \<le> (a powr a) * x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2924
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2925
  from assms have "ln x \<le> (x powr (1 / a)) / (1 / a)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2926
    by (metis less_eq_real_def ln_powr_bound zero_less_divide_1_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2927
  also have "\<dots> = a * (x powr (1 / a))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2928
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2929
  finally have "(ln x) powr a \<le> (a * (x powr (1 / a))) powr a"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2930
    by (metis assms less_imp_le ln_gt_zero powr_mono2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2931
  also have "\<dots> = (a powr a) * ((x powr (1 / a)) powr a)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2932
    using assms powr_mult by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2933
  also have "(x powr (1 / a)) powr a = x powr ((1 / a) * a)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2934
    by (rule powr_powr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2935
  also have "\<dots> = x" using assms
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  2936
    by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2937
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2938
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2939
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2940
lemma tendsto_powr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2941
  fixes a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2942
  assumes f: "(f \<longlongrightarrow> a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2943
    and g: "(g \<longlongrightarrow> b) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2944
    and a: "a \<noteq> 0"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2945
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> a powr b) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2946
  unfolding powr_def
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  2947
proof (rule filterlim_If)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2948
  from f show "((\<lambda>x. 0) \<longlongrightarrow> (if a = 0 then 0 else exp (b * ln a))) (inf F (principal {x. f x = 0}))"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  2949
    by simp (auto simp: filterlim_iff eventually_inf_principal elim: eventually_mono dest: t1_space_nhds)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2950
  from f g a show "((\<lambda>x. exp (g x * ln (f x))) \<longlongrightarrow> (if a = 0 then 0 else exp (b * ln a)))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2951
      (inf F (principal {x. f x \<noteq> 0}))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2952
    by (auto intro!: tendsto_intros intro: tendsto_mono inf_le1)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2953
qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2954
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2955
lemma tendsto_powr'[tendsto_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2956
  fixes a :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2957
  assumes f: "(f \<longlongrightarrow> a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2958
    and g: "(g \<longlongrightarrow> b) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2959
    and a: "a \<noteq> 0 \<or> (b > 0 \<and> eventually (\<lambda>x. f x \<ge> 0) F)"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2960
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> a powr b) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2961
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2962
  from a consider "a \<noteq> 0" | "a = 0" "b > 0" "eventually (\<lambda>x. f x \<ge> 0) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2963
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2964
  then show ?thesis
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2965
  proof cases
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2966
    case 1
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2967
    with f g show ?thesis by (rule tendsto_powr)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2968
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2969
    case 2
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2970
    have "((\<lambda>x. if f x = 0 then 0 else exp (g x * ln (f x))) \<longlongrightarrow> 0) F"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2971
    proof (intro filterlim_If)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2972
      have "filterlim f (principal {0<..}) (inf F (principal {z. f z \<noteq> 0}))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2973
        using \<open>eventually (\<lambda>x. f x \<ge> 0) F\<close>
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2974
        by (auto simp: filterlim_iff eventually_inf_principal
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2975
            eventually_principal elim: eventually_mono)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2976
      moreover have "filterlim f (nhds a) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2977
        by (rule tendsto_mono[OF _ f]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2978
      ultimately have f: "filterlim f (at_right 0) (inf F (principal {x. f x \<noteq> 0}))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2979
        by (simp add: at_within_def filterlim_inf \<open>a = 0\<close>)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2980
      have g: "(g \<longlongrightarrow> b) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2981
        by (rule tendsto_mono[OF _ g]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2982
      show "((\<lambda>x. exp (g x * ln (f x))) \<longlongrightarrow> 0) (inf F (principal {x. f x \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2983
        by (rule filterlim_compose[OF exp_at_bot] filterlim_tendsto_pos_mult_at_bot
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2984
                 filterlim_compose[OF ln_at_0] f g \<open>b > 0\<close>)+
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2985
    qed simp_all
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2986
    with \<open>a = 0\<close> show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2987
      by (simp add: powr_def)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2988
  qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2989
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2990
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2991
lemma continuous_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2992
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2993
    and "continuous F g"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  2994
    and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2995
  shows "continuous F (\<lambda>x. (f x) powr (g x :: real))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2996
  using assms unfolding continuous_def by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2997
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2998
lemma continuous_at_within_powr[continuous_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2999
  fixes f g :: "_ \<Rightarrow> real"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3000
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3001
    and "continuous (at a within s) g"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3002
    and "f a \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3003
  shows "continuous (at a within s) (\<lambda>x. (f x) powr (g x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3004
  using assms unfolding continuous_within by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3005
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3006
lemma isCont_powr[continuous_intros, simp]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3007
  fixes f g :: "_ \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3008
  assumes "isCont f a" "isCont g a" "f a \<noteq> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3009
  shows "isCont (\<lambda>x. (f x) powr g x) a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3010
  using assms unfolding continuous_at by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3011
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  3012
lemma continuous_on_powr[continuous_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3013
  fixes f g :: "_ \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3014
  assumes "continuous_on s f" "continuous_on s g" and "\<forall>x\<in>s. f x \<noteq> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3015
  shows "continuous_on s (\<lambda>x. (f x) powr (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3016
  using assms unfolding continuous_on_def by (fast intro: tendsto_powr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3017
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3018
lemma tendsto_powr2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3019
  fixes a :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3020
  assumes f: "(f \<longlongrightarrow> a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3021
    and g: "(g \<longlongrightarrow> b) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3022
    and "\<forall>\<^sub>F x in F. 0 \<le> f x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3023
    and b: "0 < b"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3024
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> a powr b) F"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3025
  using tendsto_powr'[of f a F g b] assms by auto
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3026
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3027
lemma has_derivative_powr[derivative_intros]:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3028
  assumes g[derivative_intros]: "(g has_derivative g') (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3029
    and f[derivative_intros]:"(f has_derivative f') (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3030
  assumes pos: "0 < g x" and "x \<in> X"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3031
  shows "((\<lambda>x. g x powr f x::real) has_derivative (\<lambda>h. (g x powr f x) * (f' h * ln (g x) + g' h * f x / g x))) (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3032
proof -
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3033
  have "\<forall>\<^sub>F x in at x within X. g x > 0"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3034
    by (rule order_tendstoD[OF _ pos])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3035
      (rule has_derivative_continuous[OF g, unfolded continuous_within])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3036
  then obtain d where "d > 0" and pos': "\<And>x'. x' \<in> X \<Longrightarrow> dist x' x < d \<Longrightarrow> 0 < g x'"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3037
    using pos unfolding eventually_at by force
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3038
  have "((\<lambda>x. exp (f x * ln (g x))) has_derivative
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3039
    (\<lambda>h. (g x powr f x) * (f' h * ln (g x) + g' h * f x / g x))) (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3040
    using pos
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3041
    by (auto intro!: derivative_eq_intros simp: divide_simps powr_def)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3042
  then show ?thesis
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3043
    by (rule has_derivative_transform_within[OF _ \<open>d > 0\<close> \<open>x \<in> X\<close>]) (auto simp: powr_def dest: pos')
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3044
qed
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3045
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3046
lemma DERIV_powr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3047
  fixes r :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3048
  assumes g: "DERIV g x :> m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3049
    and pos: "g x > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3050
    and f: "DERIV f x :> r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3051
  shows "DERIV (\<lambda>x. g x powr f x) x :> (g x powr f x) * (r * ln (g x) + m * f x / g x)"
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3052
  using assms
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3053
  by (auto intro!: derivative_eq_intros ext simp: has_field_derivative_def algebra_simps)
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3054
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3055
lemma DERIV_fun_powr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3056
  fixes r :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3057
  assumes g: "DERIV g x :> m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3058
    and pos: "g x > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3059
  shows "DERIV (\<lambda>x. (g x) powr r) x :> r * (g x) powr (r - of_nat 1) * m"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3060
  using DERIV_powr[OF g pos DERIV_const, of r] pos
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  3061
  by (simp add: powr_diff field_simps)
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3062
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3063
lemma has_real_derivative_powr:
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3064
  assumes "z > 0"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3065
  shows "((\<lambda>z. z powr r) has_real_derivative r * z powr (r - 1)) (at z)"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3066
proof (subst DERIV_cong_ev[OF refl _ refl])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3067
  from assms have "eventually (\<lambda>z. z \<noteq> 0) (nhds z)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3068
    by (intro t1_space_nhds) auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3069
  then show "eventually (\<lambda>z. z powr r = exp (r * ln z)) (nhds z)"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3070
    unfolding powr_def by eventually_elim simp
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3071
  from assms show "((\<lambda>z. exp (r * ln z)) has_real_derivative r * z powr (r - 1)) (at z)"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3072
    by (auto intro!: derivative_eq_intros simp: powr_def field_simps exp_diff)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3073
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3074
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3075
declare has_real_derivative_powr[THEN DERIV_chain2, derivative_intros]
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3076
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3077
lemma tendsto_zero_powrI:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3078
  assumes "(f \<longlongrightarrow> (0::real)) F" "(g \<longlongrightarrow> b) F" "\<forall>\<^sub>F x in F. 0 \<le> f x" "0 < b"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3079
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> 0) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3080
  using tendsto_powr2[OF assms] by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3081
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3082
lemma continuous_on_powr':
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3083
  fixes f g :: "_ \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3084
  assumes "continuous_on s f" "continuous_on s g"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3085
    and "\<forall>x\<in>s. f x \<ge> 0 \<and> (f x = 0 \<longrightarrow> g x > 0)"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3086
  shows "continuous_on s (\<lambda>x. (f x) powr (g x))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3087
  unfolding continuous_on_def
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3088
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3089
  fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3090
  assume x: "x \<in> s"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3091
  from assms x show "((\<lambda>x. f x powr g x) \<longlongrightarrow> f x powr g x) (at x within s)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3092
  proof (cases "f x = 0")
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3093
    case True
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3094
    from assms(3) have "eventually (\<lambda>x. f x \<ge> 0) (at x within s)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3095
      by (auto simp: at_within_def eventually_inf_principal)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3096
    with True x assms show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3097
      by (auto intro!: tendsto_zero_powrI[of f _ g "g x"] simp: continuous_on_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3098
  next
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3099
    case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3100
    with assms x show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3101
      by (auto intro!: tendsto_powr' simp: continuous_on_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3102
  qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3103
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3104
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3105
lemma tendsto_neg_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3106
  assumes "s < 0"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3107
    and f: "LIM x F. f x :> at_top"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3108
  shows "((\<lambda>x. f x powr s) \<longlongrightarrow> (0::real)) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3109
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3110
  have "((\<lambda>x. exp (s * ln (f x))) \<longlongrightarrow> (0::real)) F" (is "?X")
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3111
    by (auto intro!: filterlim_compose[OF exp_at_bot] filterlim_compose[OF ln_at_top]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3112
        filterlim_tendsto_neg_mult_at_bot assms)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3113
  also have "?X \<longleftrightarrow> ((\<lambda>x. f x powr s) \<longlongrightarrow> (0::real)) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3114
    using f filterlim_at_top_dense[of f F]
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  3115
    by (intro filterlim_cong[OF refl refl]) (auto simp: neq_iff powr_def elim: eventually_mono)
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3116
  finally show ?thesis .
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3117
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3118
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3119
lemma tendsto_exp_limit_at_right: "((\<lambda>y. (1 + x * y) powr (1 / y)) \<longlongrightarrow> exp x) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3120
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3121
proof (cases "x = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3122
  case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3123
  then show ?thesis by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3124
next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3125
  case False
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3126
  have "((\<lambda>y. ln (1 + x * y)::real) has_real_derivative 1 * x) (at 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3127
    by (auto intro!: derivative_eq_intros)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3128
  then have "((\<lambda>y. ln (1 + x * y) / y) \<longlongrightarrow> x) (at 0)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3129
    by (auto simp: has_field_derivative_def field_has_derivative_at)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3130
  then have *: "((\<lambda>y. exp (ln (1 + x * y) / y)) \<longlongrightarrow> exp x) (at 0)"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3131
    by (rule tendsto_intros)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3132
  then show ?thesis
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3133
  proof (rule filterlim_mono_eventually)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3134
    show "eventually (\<lambda>xa. exp (ln (1 + x * xa) / xa) = (1 + x * xa) powr (1 / xa)) (at_right 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3135
      unfolding eventually_at_right[OF zero_less_one]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3136
      using False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3137
      apply (intro exI[of _ "1 / \<bar>x\<bar>"])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  3138
      apply (auto simp: field_simps powr_def abs_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3139
      apply (metis add_less_same_cancel1 mult_less_0_iff not_less_iff_gr_or_eq zero_less_one)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3140
      done
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3141
  qed (simp_all add: at_eq_sup_left_right)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3142
qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3143
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3144
lemma tendsto_exp_limit_at_top: "((\<lambda>y. (1 + x / y) powr y) \<longlongrightarrow> exp x) at_top"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3145
  for x :: real
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3146
  by (simp add: filterlim_at_top_to_right inverse_eq_divide tendsto_exp_limit_at_right)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3147
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3148
lemma tendsto_exp_limit_sequentially: "(\<lambda>n. (1 + x / n) ^ n) \<longlonglongrightarrow> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3149
  for x :: real
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3150
proof (rule filterlim_mono_eventually)
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  3151
  from reals_Archimedean2 [of "\<bar>x\<bar>"] obtain n :: nat where *: "real n > \<bar>x\<bar>" ..
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3152
  then have "eventually (\<lambda>n :: nat. 0 < 1 + x / real n) at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3153
    by (intro eventually_sequentiallyI [of n]) (auto simp: divide_simps)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3154
  then show "eventually (\<lambda>n. (1 + x / n) powr n = (1 + x / n) ^ n) at_top"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  3155
    by (rule eventually_mono) (erule powr_realpow)
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  3156
  show "(\<lambda>n. (1 + x / real n) powr real n) \<longlonglongrightarrow> exp x"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3157
    by (rule filterlim_compose [OF tendsto_exp_limit_at_top filterlim_real_sequentially])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3158
qed auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3159
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3160
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3161
subsection \<open>Sine and Cosine\<close>
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3162
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3163
definition sin_coeff :: "nat \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3164
  where "sin_coeff = (\<lambda>n. if even n then 0 else (- 1) ^ ((n - Suc 0) div 2) / (fact n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3165
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3166
definition cos_coeff :: "nat \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3167
  where "cos_coeff = (\<lambda>n. if even n then ((- 1) ^ (n div 2)) / (fact n) else 0)"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  3168
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3169
definition sin :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3170
  where "sin = (\<lambda>x. \<Sum>n. sin_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3171
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3172
definition cos :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3173
  where "cos = (\<lambda>x. \<Sum>n. cos_coeff n *\<^sub>R x^n)"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  3174
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3175
lemma sin_coeff_0 [simp]: "sin_coeff 0 = 0"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3176
  unfolding sin_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3177
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3178
lemma cos_coeff_0 [simp]: "cos_coeff 0 = 1"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3179
  unfolding cos_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3180
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3181
lemma sin_coeff_Suc: "sin_coeff (Suc n) = cos_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3182
  unfolding cos_coeff_def sin_coeff_def
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3183
  by (simp del: mult_Suc)
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3184
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3185
lemma cos_coeff_Suc: "cos_coeff (Suc n) = - sin_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3186
  unfolding cos_coeff_def sin_coeff_def
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3187
  by (simp del: mult_Suc) (auto elim: oddE)
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3188
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3189
lemma summable_norm_sin: "summable (\<lambda>n. norm (sin_coeff n *\<^sub>R x^n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3190
  for x :: "'a::{real_normed_algebra_1,banach}"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3191
  unfolding sin_coeff_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3192
  apply (rule summable_comparison_test [OF _ summable_norm_exp [where x=x]])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3193
  apply (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3194
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3195
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3196
lemma summable_norm_cos: "summable (\<lambda>n. norm (cos_coeff n *\<^sub>R x^n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3197
  for x :: "'a::{real_normed_algebra_1,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3198
  unfolding cos_coeff_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3199
  apply (rule summable_comparison_test [OF _ summable_norm_exp [where x=x]])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3200
  apply (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3201
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3202
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3203
lemma sin_converges: "(\<lambda>n. sin_coeff n *\<^sub>R x^n) sums sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3204
  unfolding sin_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3205
  by (metis (full_types) summable_norm_cancel summable_norm_sin summable_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3206
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3207
lemma cos_converges: "(\<lambda>n. cos_coeff n *\<^sub>R x^n) sums cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3208
  unfolding cos_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3209
  by (metis (full_types) summable_norm_cancel summable_norm_cos summable_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3210
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3211
lemma sin_of_real: "sin (of_real x) = of_real (sin x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3212
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3213
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3214
  have "(\<lambda>n. of_real (sin_coeff n *\<^sub>R  x^n)) = (\<lambda>n. sin_coeff n *\<^sub>R  (of_real x)^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3215
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3216
    show "of_real (sin_coeff n *\<^sub>R  x^n) = sin_coeff n *\<^sub>R of_real x^n" for n
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3217
      by (simp add: scaleR_conv_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3218
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3219
  also have "\<dots> sums (sin (of_real x))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3220
    by (rule sin_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3221
  finally have "(\<lambda>n. of_real (sin_coeff n *\<^sub>R x^n)) sums (sin (of_real x))" .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3222
  then show ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3223
    using sums_unique2 sums_of_real [OF sin_converges]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3224
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3225
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3226
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3227
corollary sin_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> sin z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3228
  by (metis Reals_cases Reals_of_real sin_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3229
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3230
lemma cos_of_real: "cos (of_real x) = of_real (cos x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3231
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3232
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3233
  have "(\<lambda>n. of_real (cos_coeff n *\<^sub>R  x^n)) = (\<lambda>n. cos_coeff n *\<^sub>R  (of_real x)^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3234
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3235
    show "of_real (cos_coeff n *\<^sub>R  x^n) = cos_coeff n *\<^sub>R of_real x^n" for n
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3236
      by (simp add: scaleR_conv_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3237
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3238
  also have "\<dots> sums (cos (of_real x))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3239
    by (rule cos_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3240
  finally have "(\<lambda>n. of_real (cos_coeff n *\<^sub>R x^n)) sums (cos (of_real x))" .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3241
  then show ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3242
    using sums_unique2 sums_of_real [OF cos_converges]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3243
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3244
qed
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3245
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3246
corollary cos_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> cos z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3247
  by (metis Reals_cases Reals_of_real cos_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3248
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3249
lemma diffs_sin_coeff: "diffs sin_coeff = cos_coeff"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3250
  by (simp add: diffs_def sin_coeff_Suc del: of_nat_Suc)
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3251
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3252
lemma diffs_cos_coeff: "diffs cos_coeff = (\<lambda>n. - sin_coeff n)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3253
  by (simp add: diffs_def cos_coeff_Suc del: of_nat_Suc)
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3254
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3255
lemma sin_int_times_real: "sin (of_int m * of_real x) = of_real (sin (of_int m * x))"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3256
  by (metis sin_of_real of_real_mult of_real_of_int_eq)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3257
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3258
lemma cos_int_times_real: "cos (of_int m * of_real x) = of_real (cos (of_int m * x))"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3259
  by (metis cos_of_real of_real_mult of_real_of_int_eq)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3260
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3261
text \<open>Now at last we can get the derivatives of exp, sin and cos.\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3262
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3263
lemma DERIV_sin [simp]: "DERIV sin x :> cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3264
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3265
  unfolding sin_def cos_def scaleR_conv_of_real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3266
  apply (rule DERIV_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3267
   apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3268
      apply (simp_all add: norm_less_p1 diffs_of_real diffs_sin_coeff diffs_cos_coeff
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3269
              summable_minus_iff scaleR_conv_of_real [symmetric]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3270
              summable_norm_sin [THEN summable_norm_cancel]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3271
              summable_norm_cos [THEN summable_norm_cancel])
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3272
  done
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3273
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3274
declare DERIV_sin[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3275
  and DERIV_sin[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3276
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3277
lemmas has_derivative_sin[derivative_intros] = DERIV_sin[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3278
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3279
lemma DERIV_cos [simp]: "DERIV cos x :> - sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3280
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3281
  unfolding sin_def cos_def scaleR_conv_of_real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3282
  apply (rule DERIV_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3283
   apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3284
      apply (simp_all add: norm_less_p1 diffs_of_real diffs_minus suminf_minus
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3285
              diffs_sin_coeff diffs_cos_coeff
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3286
              summable_minus_iff scaleR_conv_of_real [symmetric]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3287
              summable_norm_sin [THEN summable_norm_cancel]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3288
              summable_norm_cos [THEN summable_norm_cancel])
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3289
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3290
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3291
declare DERIV_cos[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3292
  and DERIV_cos[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3293
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3294
lemmas has_derivative_cos[derivative_intros] = DERIV_cos[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3295
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3296
lemma isCont_sin: "isCont sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3297
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3298
  by (rule DERIV_sin [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3299
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3300
lemma isCont_cos: "isCont cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3301
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3302
  by (rule DERIV_cos [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3303
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3304
lemma isCont_sin' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. sin (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3305
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3306
  by (rule isCont_o2 [OF _ isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3307
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3308
(* FIXME a context for f would be better *)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3309
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3310
lemma isCont_cos' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. cos (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3311
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3312
  by (rule isCont_o2 [OF _ isCont_cos])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3313
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3314
lemma tendsto_sin [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. sin (f x)) \<longlongrightarrow> sin a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3315
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3316
  by (rule isCont_tendsto_compose [OF isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3317
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3318
lemma tendsto_cos [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. cos (f x)) \<longlongrightarrow> cos a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3319
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3320
  by (rule isCont_tendsto_compose [OF isCont_cos])
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3321
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3322
lemma continuous_sin [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. sin (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3323
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3324
  unfolding continuous_def by (rule tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3325
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3326
lemma continuous_on_sin [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. sin (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3327
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3328
  unfolding continuous_on_def by (auto intro: tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3329
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3330
lemma continuous_within_sin: "continuous (at z within s) sin"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3331
  for z :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3332
  by (simp add: continuous_within tendsto_sin)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3333
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3334
lemma continuous_cos [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. cos (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3335
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3336
  unfolding continuous_def by (rule tendsto_cos)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3337
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3338
lemma continuous_on_cos [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. cos (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3339
  for f :: "_ \<Rightarrow> 'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3340
  unfolding continuous_on_def by (auto intro: tendsto_cos)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3341
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3342
lemma continuous_within_cos: "continuous (at z within s) cos"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3343
  for z :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3344
  by (simp add: continuous_within tendsto_cos)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3345
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3346
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3347
subsection \<open>Properties of Sine and Cosine\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3348
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3349
lemma sin_zero [simp]: "sin 0 = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3350
  by (simp add: sin_def sin_coeff_def scaleR_conv_of_real)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3351
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3352
lemma cos_zero [simp]: "cos 0 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3353
  by (simp add: cos_def cos_coeff_def scaleR_conv_of_real)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3354
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3355
lemma DERIV_fun_sin: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. sin (g x)) x :> cos (g x) * m"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3356
  by (auto intro!: derivative_intros)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3357
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3358
lemma DERIV_fun_cos: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. cos(g x)) x :> - sin (g x) * m"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3359
  by (auto intro!: derivative_eq_intros)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3360
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3361
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3362
subsection \<open>Deriving the Addition Formulas\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3363
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3364
text \<open>The product of two cosine series.\<close>
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3365
lemma cos_x_cos_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3366
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3367
  shows
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3368
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3369
        if even p \<and> even n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3370
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3371
      sums (cos x * cos y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3372
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3373
  have "(cos_coeff n * cos_coeff (p - n)) *\<^sub>R (x^n * y^(p - n)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3374
    (if even p \<and> even n then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p - n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3375
     else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3376
    if "n \<le> p" for n p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3377
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3378
    from that have *: "even n \<Longrightarrow> even p \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3379
        (-1) ^ (n div 2) * (-1) ^ ((p - n) div 2) = (-1 :: real) ^ (p div 2)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3380
      by (metis div_add power_add le_add_diff_inverse odd_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3381
    with that show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3382
      by (auto simp: algebra_simps cos_coeff_def binomial_fact)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3383
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3384
  then have "(\<lambda>p. \<Sum>n\<le>p. if even p \<and> even n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3385
                  then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3386
             (\<lambda>p. \<Sum>n\<le>p. (cos_coeff n * cos_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3387
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3388
  also have "\<dots> = (\<lambda>p. \<Sum>n\<le>p. (cos_coeff n *\<^sub>R x^n) * (cos_coeff (p - n) *\<^sub>R y^(p-n)))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3389
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3390
  also have "\<dots> sums (cos x * cos y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3391
    using summable_norm_cos
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3392
    by (auto simp: cos_def scaleR_conv_of_real intro!: Cauchy_product_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3393
  finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3394
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3395
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3396
text \<open>The product of two sine series.\<close>
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3397
lemma sin_x_sin_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3398
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3399
  shows
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3400
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3401
        if even p \<and> odd n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3402
        then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3403
        else 0)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3404
      sums (sin x * sin y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3405
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3406
  have "(sin_coeff n * sin_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3407
    (if even p \<and> odd n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3408
     then -((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3409
     else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3410
    if "n \<le> p" for n p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3411
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3412
    have "(-1) ^ ((n - Suc 0) div 2) * (-1) ^ ((p - Suc n) div 2) = - ((-1 :: real) ^ (p div 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3413
      if np: "odd n" "even p"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3414
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3415
      from \<open>n \<le> p\<close> np have *: "n - Suc 0 + (p - Suc n) = p - Suc (Suc 0)" "Suc (Suc 0) \<le> p"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3416
        by arith+
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3417
      have "(p - Suc (Suc 0)) div 2 = p div 2 - Suc 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3418
        by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3419
      with \<open>n \<le> p\<close> np * show ?thesis
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3420
        apply (simp add: power_add [symmetric] div_add [symmetric] del: div_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3421
        apply (metis (no_types) One_nat_def Suc_1 le_div_geq minus_minus
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3422
            mult.left_neutral mult_minus_left power.simps(2) zero_less_Suc)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3423
        done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3424
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3425
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3426
      using \<open>n\<le>p\<close> by (auto simp: algebra_simps sin_coeff_def binomial_fact)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3427
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3428
  then have "(\<lambda>p. \<Sum>n\<le>p. if even p \<and> odd n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3429
               then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3430
             (\<lambda>p. \<Sum>n\<le>p. (sin_coeff n * sin_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3431
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3432
  also have "\<dots> = (\<lambda>p. \<Sum>n\<le>p. (sin_coeff n *\<^sub>R x^n) * (sin_coeff (p - n) *\<^sub>R y^(p-n)))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3433
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3434
  also have "\<dots> sums (sin x * sin y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3435
    using summable_norm_sin
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3436
    by (auto simp: sin_def scaleR_conv_of_real intro!: Cauchy_product_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3437
  finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3438
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3439
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3440
lemma sums_cos_x_plus_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3441
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3442
  shows
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3443
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3444
        if even p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3445
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3446
        else 0)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3447
      sums cos (x + y)"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3448
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3449
  have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3450
    "(\<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3451
      if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3452
      else 0) = cos_coeff p *\<^sub>R ((x + y) ^ p)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3453
    for p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3454
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3455
    have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3456
      "(\<Sum>n\<le>p. if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3457
       (if even p then \<Sum>n\<le>p. ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3458
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3459
    also have "\<dots> =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3460
       (if even p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3461
        then of_real ((-1) ^ (p div 2) / (fact p)) * (\<Sum>n\<le>p. (p choose n) *\<^sub>R (x^n) * y^(p-n))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3462
        else 0)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  3463
      by (auto simp: sum_distrib_left field_simps scaleR_conv_of_real nonzero_of_real_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3464
    also have "\<dots> = cos_coeff p *\<^sub>R ((x + y) ^ p)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3465
      by (simp add: cos_coeff_def binomial_ring [of x y]  scaleR_conv_of_real atLeast0AtMost)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3466
    finally show ?thesis .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3467
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3468
  then have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3469
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3470
        if even p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3471
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3472
        else 0) = (\<lambda>p. cos_coeff p *\<^sub>R ((x+y)^p))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3473
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3474
   also have "\<dots> sums cos (x + y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3475
    by (rule cos_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3476
   finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3477
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3478
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3479
theorem cos_add:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3480
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3481
  shows "cos (x + y) = cos x * cos y - sin x * sin y"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3482
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3483
  have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3484
    "(if even p \<and> even n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3485
      then ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3486
     (if even p \<and> odd n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3487
      then - ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3488
     (if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3489
    if "n \<le> p" for n p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3490
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3491
  then have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3492
    "(\<lambda>p. \<Sum>n\<le>p. (if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3493
      sums (cos x * cos y - sin x * sin y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3494
    using sums_diff [OF cos_x_cos_y [of x y] sin_x_sin_y [of x y]]
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  3495
    by (simp add: sum_subtractf [symmetric])
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3496
  then show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3497
    by (blast intro: sums_cos_x_plus_y sums_unique2)
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3498
qed
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3499
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3500
lemma sin_minus_converges: "(\<lambda>n. - (sin_coeff n *\<^sub>R (-x)^n)) sums sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3501
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3502
  have [simp]: "\<And>n. - (sin_coeff n *\<^sub>R (-x)^n) = (sin_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3503
    by (auto simp: sin_coeff_def elim!: oddE)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3504
  show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3505
    by (simp add: sin_def summable_norm_sin [THEN summable_norm_cancel, THEN summable_sums])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3506
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3507
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3508
lemma sin_minus [simp]: "sin (- x) = - sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3509
  for x :: "'a::{real_normed_algebra_1,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3510
  using sin_minus_converges [of x]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3511
  by (auto simp: sin_def summable_norm_sin [THEN summable_norm_cancel]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3512
      suminf_minus sums_iff equation_minus_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3513
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3514
lemma cos_minus_converges: "(\<lambda>n. (cos_coeff n *\<^sub>R (-x)^n)) sums cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3515
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3516
  have [simp]: "\<And>n. (cos_coeff n *\<^sub>R (-x)^n) = (cos_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3517
    by (auto simp: Transcendental.cos_coeff_def elim!: evenE)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3518
  show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3519
    by (simp add: cos_def summable_norm_cos [THEN summable_norm_cancel, THEN summable_sums])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3520
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3521
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3522
lemma cos_minus [simp]: "cos (-x) = cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3523
  for x :: "'a::{real_normed_algebra_1,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3524
  using cos_minus_converges [of x]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3525
  by (simp add: cos_def summable_norm_cos [THEN summable_norm_cancel]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3526
      suminf_minus sums_iff equation_minus_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3527
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3528
lemma sin_cos_squared_add [simp]: "(sin x)\<^sup>2 + (cos x)\<^sup>2 = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3529
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3530
  using cos_add [of x "-x"]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3531
  by (simp add: power2_eq_square algebra_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3532
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3533
lemma sin_cos_squared_add2 [simp]: "(cos x)\<^sup>2 + (sin x)\<^sup>2 = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3534
  for x :: "'a::{real_normed_field,banach}"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3535
  by (subst add.commute, rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3536
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3537
lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3538
  for x :: "'a::{real_normed_field,banach}"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3539
  using sin_cos_squared_add2 [unfolded power2_eq_square] .
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3540
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3541
lemma sin_squared_eq: "(sin x)\<^sup>2 = 1 - (cos x)\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3542
  for x :: "'a::{real_normed_field,banach}"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3543
  unfolding eq_diff_eq by (rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3544
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3545
lemma cos_squared_eq: "(cos x)\<^sup>2 = 1 - (sin x)\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3546
  for x :: "'a::{real_normed_field,banach}"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3547
  unfolding eq_diff_eq by (rule sin_cos_squared_add2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3548
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3549
lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3550
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3551
  by (rule power2_le_imp_le) (simp_all add: sin_squared_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3552
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3553
lemma sin_ge_minus_one [simp]: "- 1 \<le> sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3554
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3555
  using abs_sin_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3556
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3557
lemma sin_le_one [simp]: "sin x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3558
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3559
  using abs_sin_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3560
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3561
lemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3562
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3563
  by (rule power2_le_imp_le) (simp_all add: cos_squared_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3564
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3565
lemma cos_ge_minus_one [simp]: "- 1 \<le> cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3566
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3567
  using abs_cos_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3568
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3569
lemma cos_le_one [simp]: "cos x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3570
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3571
  using abs_cos_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3572
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3573
lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3574
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3575
  using cos_add [of x "- y"] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3576
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3577
lemma cos_double: "cos(2*x) = (cos x)\<^sup>2 - (sin x)\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3578
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3579
  using cos_add [where x=x and y=x] by (simp add: power2_eq_square)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3580
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3581
lemma sin_cos_le1: "\<bar>sin x * sin y + cos x * cos y\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3582
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3583
  using cos_diff [of x y] by (metis abs_cos_le_one add.commute)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3584
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3585
lemma DERIV_fun_pow: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3586
  by (auto intro!: derivative_eq_intros simp:)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3587
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3588
lemma DERIV_fun_exp: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. exp (g x)) x :> exp (g x) * m"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3589
  by (auto intro!: derivative_intros)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3590
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3591
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3592
subsection \<open>The Constant Pi\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3593
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3594
definition pi :: real
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3595
  where "pi = 2 * (THE x. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3596
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3597
text \<open>Show that there's a least positive @{term x} with @{term "cos x = 0"};
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3598
   hence define pi.\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3599
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3600
lemma sin_paired: "(\<lambda>n. (- 1) ^ n / (fact (2 * n + 1)) * x ^ (2 * n + 1)) sums  sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3601
  for x :: real
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3602
proof -
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3603
  have "(\<lambda>n. \<Sum>k = n*2..<n * 2 + 2. sin_coeff k * x ^ k) sums sin x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3604
    by (rule sums_group) (use sin_converges [of x, unfolded scaleR_conv_of_real] in auto)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3605
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3606
    by (simp add: sin_coeff_def ac_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3607
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3608
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3609
lemma sin_gt_zero_02:
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3610
  fixes x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3611
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3612
  shows "0 < sin x"
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3613
proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3614
  let ?f = "\<lambda>n::nat. \<Sum>k = n*2..<n*2+2. (- 1) ^ k / (fact (2*k+1)) * x^(2*k+1)"
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3615
  have pos: "\<forall>n. 0 < ?f n"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3616
  proof
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3617
    fix n :: nat
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3618
    let ?k2 = "real (Suc (Suc (4 * n)))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3619
    let ?k3 = "real (Suc (Suc (Suc (4 * n))))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3620
    have "x * x < ?k2 * ?k3"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3621
      using assms by (intro mult_strict_mono', simp_all)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3622
    then have "x * x * x * x ^ (n * 4) < ?k2 * ?k3 * x * x ^ (n * 4)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3623
      by (intro mult_strict_right_mono zero_less_power \<open>0 < x\<close>)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3624
    then show "0 < ?f n"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3625
      by (simp add: divide_simps mult_ac del: mult_Suc)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3626
qed
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3627
  have sums: "?f sums sin x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3628
    by (rule sin_paired [THEN sums_group]) simp
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3629
  show "0 < sin x"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3630
    unfolding sums_unique [OF sums]
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3631
    using sums_summable [OF sums] pos
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  3632
    by (rule suminf_pos)
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3633
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3634
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3635
lemma cos_double_less_one: "0 < x \<Longrightarrow> x < 2 \<Longrightarrow> cos (2 * x) < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3636
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3637
  using sin_gt_zero_02 [where x = x] by (auto simp: cos_squared_eq cos_double)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3638
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3639
lemma cos_paired: "(\<lambda>n. (- 1) ^ n / (fact (2 * n)) * x ^ (2 * n)) sums cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3640
  for x :: real
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3641
proof -
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  3642
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. cos_coeff k * x ^ k) sums cos x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3643
    by (rule sums_group) (use cos_converges [of x, unfolded scaleR_conv_of_real] in auto)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3644
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3645
    by (simp add: cos_coeff_def ac_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3646
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3647
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3648
lemma sum_pos_lt_pair:
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3649
  fixes f :: "nat \<Rightarrow> real"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3650
  assumes f: "summable f" and fplus: "\<And>d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc (Suc 0) * d) + 1))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3651
  shows "sum f {..<k} < suminf f"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3652
proof -
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3653
  have "(\<lambda>n. \<Sum>n = n * Suc (Suc 0)..<n * Suc (Suc 0) +  Suc (Suc 0). f (n + k)) 
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3654
             sums (\<Sum>n. f (n + k))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3655
  proof (rule sums_group)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3656
    show "(\<lambda>n. f (n + k)) sums (\<Sum>n. f (n + k))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3657
      by (simp add: f summable_iff_shift summable_sums)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3658
  qed auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3659
  with fplus have "0 < (\<Sum>n. f (n + k))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3660
    apply (simp add: add.commute)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3661
    apply (metis (no_types, lifting) suminf_pos summable_def sums_unique)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3662
    done
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3663
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3664
    by (simp add: f suminf_minus_initial_segment)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3665
qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3666
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3667
lemma cos_two_less_zero [simp]: "cos 2 < (0::real)"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3668
proof -
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63365
diff changeset
  3669
  note fact_Suc [simp del]
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3670
  from sums_minus [OF cos_paired]
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3671
  have *: "(\<lambda>n. - ((- 1) ^ n * 2 ^ (2 * n) / fact (2 * n))) sums - cos (2::real)"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3672
    by simp
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3673
  then have sm: "summable (\<lambda>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3674
    by (rule sums_summable)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3675
  have "0 < (\<Sum>n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3676
    by (simp add: fact_num_eq_if power_eq_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3677
  moreover have "(\<Sum>n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n  * 2 ^ (2 * n) / (fact (2 * n)))) <
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3678
    (\<Sum>n. - ((- 1) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3679
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3680
    {
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3681
      fix d
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3682
      let ?six4d = "Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))"
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3683
      have "(4::real) * (fact (?six4d)) < (Suc (Suc (?six4d)) * fact (Suc (?six4d)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3684
        unfolding of_nat_mult by (rule mult_strict_mono) (simp_all add: fact_less_mono)
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3685
      then have "(4::real) * (fact (?six4d)) < (fact (Suc (Suc (?six4d))))"
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63365
diff changeset
  3686
        by (simp only: fact_Suc [of "Suc (?six4d)"] of_nat_mult of_nat_fact)
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3687
      then have "(4::real) * inverse (fact (Suc (Suc (?six4d)))) < inverse (fact (?six4d))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3688
        by (simp add: inverse_eq_divide less_divide_eq)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3689
    }
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3690
    then show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3691
      by (force intro!: sum_pos_lt_pair [OF sm] simp add: divide_inverse algebra_simps)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3692
  qed
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3693
  ultimately have "0 < (\<Sum>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3694
    by (rule order_less_trans)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3695
  moreover from * have "- cos 2 = (\<Sum>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3696
    by (rule sums_unique)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3697
  ultimately have "(0::real) < - cos 2" by simp
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3698
  then show ?thesis by simp
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3699
qed
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3700
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3701
lemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3702
lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3703
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3704
lemma cos_is_zero: "\<exists>!x::real. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0"
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3705
proof (rule ex_ex1I)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3706
  show "\<exists>x::real. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3707
    by (rule IVT2) simp_all
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3708
next
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3709
  fix a b :: real
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3710
  assume ab: "0 \<le> a \<and> a \<le> 2 \<and> cos a = 0" "0 \<le> b \<and> b \<le> 2 \<and> cos b = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3711
  have cosd: "\<And>x::real. cos differentiable (at x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  3712
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3713
  show "a = b"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3714
  proof (cases a b rule: linorder_cases)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3715
    case less
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3716
    then obtain z where "a < z" "z < b" "(cos has_real_derivative 0) (at z)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3717
      using Rolle by (metis cosd isCont_cos ab)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3718
    then have "sin z = 0"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3719
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3720
    then show ?thesis
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3721
      by (metis \<open>a < z\<close> \<open>z < b\<close> ab order_less_le_trans less_le sin_gt_zero_02)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3722
  next
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3723
    case greater
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3724
    then obtain z where "b < z" "z < a" "(cos has_real_derivative 0) (at z)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3725
      using Rolle by (metis cosd isCont_cos ab)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3726
    then have "sin z = 0"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3727
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3728
    then show ?thesis
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3729
      by (metis \<open>b < z\<close> \<open>z < a\<close> ab order_less_le_trans less_le sin_gt_zero_02)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3730
  qed auto
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3731
qed
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  3732
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3733
lemma pi_half: "pi/2 = (THE x. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3734
  by (simp add: pi_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3735
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3736
lemma cos_pi_half [simp]: "cos (pi/2) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3737
  by (simp add: pi_half cos_is_zero [THEN theI'])
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3738
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3739
lemma cos_of_real_pi_half [simp]: "cos ((of_real pi/2) :: 'a) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3740
  if "SORT_CONSTRAINT('a::{real_field,banach,real_normed_algebra_1})"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3741
  by (metis cos_pi_half cos_of_real eq_numeral_simps(4)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3742
      nonzero_of_real_divide of_real_0 of_real_numeral)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3743
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3744
lemma pi_half_gt_zero [simp]: "0 < pi/2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3745
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3746
  have "0 \<le> pi/2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3747
    by (simp add: pi_half cos_is_zero [THEN theI'])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3748
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3749
    by (metis cos_pi_half cos_zero less_eq_real_def one_neq_zero)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3750
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3751
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3752
lemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3753
lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3754
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3755
lemma pi_half_less_two [simp]: "pi/2 < 2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3756
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3757
  have "pi/2 \<le> 2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3758
    by (simp add: pi_half cos_is_zero [THEN theI'])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3759
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3760
    by (metis cos_pi_half cos_two_neq_zero le_less)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3761
qed
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3762
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3763
lemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3764
lemmas pi_half_le_two [simp] =  pi_half_less_two [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3765
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3766
lemma pi_gt_zero [simp]: "0 < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3767
  using pi_half_gt_zero by simp
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3768
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3769
lemma pi_ge_zero [simp]: "0 \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3770
  by (rule pi_gt_zero [THEN order_less_imp_le])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3771
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3772
lemma pi_neq_zero [simp]: "pi \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3773
  by (rule pi_gt_zero [THEN less_imp_neq, symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3774
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3775
lemma pi_not_less_zero [simp]: "\<not> pi < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3776
  by (simp add: linorder_not_less)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3777
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  3778
lemma minus_pi_half_less_zero: "-(pi/2) < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3779
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3780
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3781
lemma m2pi_less_pi: "- (2*pi) < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3782
  by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3783
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3784
lemma sin_pi_half [simp]: "sin(pi/2) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3785
  using sin_cos_squared_add2 [where x = "pi/2"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3786
  using sin_gt_zero_02 [OF pi_half_gt_zero pi_half_less_two]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3787
  by (simp add: power2_eq_1_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3788
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3789
lemma sin_of_real_pi_half [simp]: "sin ((of_real pi/2) :: 'a) = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3790
  if "SORT_CONSTRAINT('a::{real_field,banach,real_normed_algebra_1})"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3791
  using sin_pi_half
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3792
  by (metis sin_pi_half eq_numeral_simps(4) nonzero_of_real_divide of_real_1 of_real_numeral sin_of_real)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3793
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3794
lemma sin_cos_eq: "sin x = cos (of_real pi/2 - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3795
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3796
  by (simp add: cos_diff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3797
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3798
lemma minus_sin_cos_eq: "- sin x = cos (x + of_real pi/2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3799
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3800
  by (simp add: cos_add nonzero_of_real_divide)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3801
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3802
lemma cos_sin_eq: "cos x = sin (of_real pi/2 - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3803
  for x :: "'a::{real_normed_field,banach}"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3804
  using sin_cos_eq [of "of_real pi/2 - x"] by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3805
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3806
lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3807
  for x :: "'a::{real_normed_field,banach}"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3808
  using cos_add [of "of_real pi/2 - x" "-y"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3809
  by (simp add: cos_sin_eq) (simp add: sin_cos_eq)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3810
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3811
lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3812
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3813
  using sin_add [of x "- y"] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3814
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3815
lemma sin_double: "sin(2 * x) = 2 * sin x * cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3816
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3817
  using sin_add [where x=x and y=x] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3818
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3819
lemma cos_of_real_pi [simp]: "cos (of_real pi) = -1"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3820
  using cos_add [where x = "pi/2" and y = "pi/2"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3821
  by (simp add: cos_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3822
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3823
lemma sin_of_real_pi [simp]: "sin (of_real pi) = 0"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3824
  using sin_add [where x = "pi/2" and y = "pi/2"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3825
  by (simp add: sin_of_real)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3826
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3827
lemma cos_pi [simp]: "cos pi = -1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3828
  using cos_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3829
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3830
lemma sin_pi [simp]: "sin pi = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3831
  using sin_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3832
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3833
lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3834
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3835
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3836
lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3837
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3838
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3839
lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3840
  by (simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3841
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3842
lemma cos_periodic_pi2 [simp]: "cos (pi + x) = - cos x"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3843
  by (simp add: cos_add)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3844
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3845
lemma sin_periodic [simp]: "sin (x + 2 * pi) = sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3846
  by (simp add: sin_add sin_double cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3847
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3848
lemma cos_periodic [simp]: "cos (x + 2 * pi) = cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3849
  by (simp add: cos_add sin_double cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3850
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3851
lemma cos_npi [simp]: "cos (real n * pi) = (- 1) ^ n"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3852
  by (induct n) (auto simp: distrib_right)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3853
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3854
lemma cos_npi2 [simp]: "cos (pi * real n) = (- 1) ^ n"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3855
  by (metis cos_npi mult.commute)
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3856
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3857
lemma sin_npi [simp]: "sin (real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3858
  for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3859
  by (induct n) (auto simp: distrib_right)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3860
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3861
lemma sin_npi2 [simp]: "sin (pi * real n) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3862
  for n :: nat
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3863
  by (simp add: mult.commute [of pi])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3864
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3865
lemma cos_two_pi [simp]: "cos (2 * pi) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3866
  by (simp add: cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3867
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3868
lemma sin_two_pi [simp]: "sin (2 * pi) = 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3869
  by (simp add: sin_double)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3870
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3871
lemma sin_times_sin: "sin w * sin z = (cos (w - z) - cos (w + z)) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3872
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3873
  by (simp add: cos_diff cos_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3874
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3875
lemma sin_times_cos: "sin w * cos z = (sin (w + z) + sin (w - z)) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3876
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3877
  by (simp add: sin_diff sin_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3878
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3879
lemma cos_times_sin: "cos w * sin z = (sin (w + z) - sin (w - z)) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3880
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3881
  by (simp add: sin_diff sin_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3882
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3883
lemma cos_times_cos: "cos w * cos z = (cos (w - z) + cos (w + z)) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3884
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3885
  by (simp add: cos_diff cos_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3886
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3887
lemma sin_plus_sin: "sin w + sin z = 2 * sin ((w + z) / 2) * cos ((w - z) / 2)"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3888
  for w :: "'a::{real_normed_field,banach}" 
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3889
  apply (simp add: mult.assoc sin_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3890
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3891
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3892
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3893
lemma sin_diff_sin: "sin w - sin z = 2 * sin ((w - z) / 2) * cos ((w + z) / 2)"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3894
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3895
  apply (simp add: mult.assoc sin_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3896
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3897
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3898
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3899
lemma cos_plus_cos: "cos w + cos z = 2 * cos ((w + z) / 2) * cos ((w - z) / 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3900
  for w :: "'a::{real_normed_field,banach,field}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3901
  apply (simp add: mult.assoc cos_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3902
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3903
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3904
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3905
lemma cos_diff_cos: "cos w - cos z = 2 * sin ((w + z) / 2) * sin ((z - w) / 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3906
  for w :: "'a::{real_normed_field,banach,field}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3907
  apply (simp add: mult.assoc sin_times_sin)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3908
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3909
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3910
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3911
lemma cos_double_cos: "cos (2 * z) = 2 * cos z ^ 2 - 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3912
  for z :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3913
  by (simp add: cos_double sin_squared_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3914
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3915
lemma cos_double_sin: "cos (2 * z) = 1 - 2 * sin z ^ 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3916
  for z :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3917
  by (simp add: cos_double sin_squared_eq)
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3918
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3919
lemma sin_pi_minus [simp]: "sin (pi - x) = sin x"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3920
  by (metis sin_minus sin_periodic_pi minus_minus uminus_add_conv_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3921
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3922
lemma cos_pi_minus [simp]: "cos (pi - x) = - (cos x)"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3923
  by (metis cos_minus cos_periodic_pi uminus_add_conv_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3924
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3925
lemma sin_minus_pi [simp]: "sin (x - pi) = - (sin x)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3926
  by (simp add: sin_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3927
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3928
lemma cos_minus_pi [simp]: "cos (x - pi) = - (cos x)"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3929
  by (simp add: cos_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3930
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3931
lemma sin_2pi_minus [simp]: "sin (2 * pi - x) = - (sin x)"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3932
  by (metis sin_periodic_pi2 add_diff_eq mult_2 sin_pi_minus)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3933
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3934
lemma cos_2pi_minus [simp]: "cos (2 * pi - x) = cos x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3935
  by (metis (no_types, hide_lams) cos_add cos_minus cos_two_pi sin_minus sin_two_pi
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3936
      diff_0_right minus_diff_eq mult_1 mult_zero_left uminus_add_conv_diff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3937
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3938
lemma sin_gt_zero2: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3939
  by (metis sin_gt_zero_02 order_less_trans pi_half_less_two)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3940
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  3941
lemma sin_less_zero:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3942
  assumes "- pi/2 < x" and "x < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3943
  shows "sin x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3944
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3945
  have "0 < sin (- x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3946
    using assms by (simp only: sin_gt_zero2)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3947
  then show ?thesis by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3948
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3949
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3950
lemma pi_less_4: "pi < 4"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3951
  using pi_half_less_two by auto
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3952
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3953
lemma cos_gt_zero: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3954
  by (simp add: cos_sin_eq sin_gt_zero2)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3955
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3956
lemma cos_gt_zero_pi: "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3957
  using cos_gt_zero [of x] cos_gt_zero [of "-x"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3958
  by (cases rule: linorder_cases [of x 0]) auto
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3959
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3960
lemma cos_ge_zero: "-(pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> 0 \<le> cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3961
  by (auto simp: order_le_less cos_gt_zero_pi)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3962
    (metis cos_pi_half eq_divide_eq eq_numeral_simps(4))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3963
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3964
lemma sin_gt_zero: "0 < x \<Longrightarrow> x < pi \<Longrightarrow> 0 < sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3965
  by (simp add: sin_cos_eq cos_gt_zero_pi)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3966
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3967
lemma sin_lt_zero: "pi < x \<Longrightarrow> x < 2 * pi \<Longrightarrow> sin x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3968
  using sin_gt_zero [of "x - pi"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3969
  by (simp add: sin_diff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3970
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3971
lemma pi_ge_two: "2 \<le> pi"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3972
proof (rule ccontr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3973
  assume "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3974
  then have "pi < 2" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3975
  have "\<exists>y > pi. y < 2 \<and> y < 2 * pi"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3976
  proof (cases "2 < 2 * pi")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3977
    case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3978
    with dense[OF \<open>pi < 2\<close>] show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3979
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3980
    case False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3981
    have "pi < 2 * pi" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3982
    from dense[OF this] and False show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3983
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3984
  then obtain y where "pi < y" and "y < 2" and "y < 2 * pi"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3985
    by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3986
  then have "0 < sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3987
    using sin_gt_zero_02 by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3988
  moreover have "sin y < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3989
    using sin_gt_zero[of "y - pi"] \<open>pi < y\<close> and \<open>y < 2 * pi\<close> sin_periodic_pi[of "y - pi"]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3990
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3991
  ultimately show False by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3992
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3993
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3994
lemma sin_ge_zero: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3995
  by (auto simp: order_le_less sin_gt_zero)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3996
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3997
lemma sin_le_zero: "pi \<le> x \<Longrightarrow> x < 2 * pi \<Longrightarrow> sin x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3998
  using sin_ge_zero [of "x - pi"] by (simp add: sin_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3999
62948
7700f467892b lots of new theorems for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 62679
diff changeset
  4000
lemma sin_pi_divide_n_ge_0 [simp]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4001
  assumes "n \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4002
  shows "0 \<le> sin (pi / real n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4003
  by (rule sin_ge_zero) (use assms in \<open>simp_all add: divide_simps\<close>)
62948
7700f467892b lots of new theorems for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 62679
diff changeset
  4004
7700f467892b lots of new theorems for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 62679
diff changeset
  4005
lemma sin_pi_divide_n_gt_0:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4006
  assumes "2 \<le> n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4007
  shows "0 < sin (pi / real n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4008
  by (rule sin_gt_zero) (use assms in \<open>simp_all add: divide_simps\<close>)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4009
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4010
text\<open>Proof resembles that of @{text cos_is_zero} but with @{term pi} for the upper bound\<close>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4011
lemma cos_total:
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4012
  assumes y: "-1 \<le> y" "y \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4013
  shows "\<exists>!x. 0 \<le> x \<and> x \<le> pi \<and> cos x = y"
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  4014
proof (rule ex_ex1I)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4015
  show "\<exists>x::real. 0 \<le> x \<and> x \<le> pi \<and> cos x = y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4016
    by (rule IVT2) (simp_all add: y)
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  4017
next
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4018
  fix a b :: real
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4019
  assume ab: "0 \<le> a \<and> a \<le> pi \<and> cos a = y" "0 \<le> b \<and> b \<le> pi \<and> cos b = y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4020
  have cosd: "\<And>x::real. cos differentiable (at x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  4021
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4022
  show "a = b"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4023
  proof (cases a b rule: linorder_cases)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4024
    case less
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4025
    then obtain z where "a < z" "z < b" "(cos has_real_derivative 0) (at z)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4026
      using Rolle by (metis cosd isCont_cos ab)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4027
    then have "sin z = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4028
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4029
    then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4030
      by (metis \<open>a < z\<close> \<open>z < b\<close> ab order_less_le_trans less_le sin_gt_zero)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4031
  next
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4032
    case greater
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4033
    then obtain z where "b < z" "z < a" "(cos has_real_derivative 0) (at z)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4034
      using Rolle by (metis cosd isCont_cos ab)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4035
    then have "sin z = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4036
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4037
    then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4038
      by (metis \<open>b < z\<close> \<open>z < a\<close> ab order_less_le_trans less_le sin_gt_zero)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4039
  qed auto
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  4040
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4041
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4042
lemma sin_total:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4043
  assumes y: "-1 \<le> y" "y \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4044
  shows "\<exists>!x. - (pi/2) \<le> x \<and> x \<le> pi/2 \<and> sin x = y"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4045
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4046
  from cos_total [OF y]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4047
  obtain x where x: "0 \<le> x" "x \<le> pi" "cos x = y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4048
    and uniq: "\<And>x'. 0 \<le> x' \<Longrightarrow> x' \<le> pi \<Longrightarrow> cos x' = y \<Longrightarrow> x' = x "
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4049
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4050
  show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4051
    unfolding sin_cos_eq
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4052
  proof (rule ex1I [where a="pi/2 - x"])
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4053
    show "- (pi/2) \<le> z \<and> z \<le> pi/2 \<and> cos (of_real pi/2 - z) = y \<Longrightarrow>
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4054
          z = pi/2 - x" for z
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4055
      using uniq [of "pi/2 -z"] by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4056
  qed (use x in auto)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4057
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4058
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4059
lemma cos_zero_lemma:
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4060
  assumes "0 \<le> x" "cos x = 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4061
  shows "\<exists>n. odd n \<and> x = of_nat n * (pi/2) \<and> n > 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4062
proof -
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4063
  have xle: "x < (1 + real_of_int \<lfloor>x/pi\<rfloor>) * pi"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4064
    using floor_correct [of "x/pi"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4065
    by (simp add: add.commute divide_less_eq)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4066
  obtain n where "real n * pi \<le> x" "x < real (Suc n) * pi"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4067
  proof 
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4068
    show "real (nat \<lfloor>x / pi\<rfloor>) * pi \<le> x"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4069
      using assms floor_divide_lower [of pi x] by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4070
    show "x < real (Suc (nat \<lfloor>x / pi\<rfloor>)) * pi"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4071
      using assms floor_divide_upper [of pi x]  by (simp add: xle)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4072
  qed
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4073
  then have x: "0 \<le> x - n * pi" "(x - n * pi) \<le> pi" "cos (x - n * pi) = 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4074
    by (auto simp: algebra_simps cos_diff assms)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4075
  then have "\<exists>!x. 0 \<le> x \<and> x \<le> pi \<and> cos x = 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4076
    by (auto simp: intro!: cos_total)
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  4077
  then obtain \<theta> where \<theta>: "0 \<le> \<theta>" "\<theta> \<le> pi" "cos \<theta> = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4078
    and uniq: "\<And>\<phi>. 0 \<le> \<phi> \<Longrightarrow> \<phi> \<le> pi \<Longrightarrow> cos \<phi> = 0 \<Longrightarrow> \<phi> = \<theta>"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4079
    by blast
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4080
  then have "x - real n * pi = \<theta>"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4081
    using x by blast
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4082
  moreover have "pi/2 = \<theta>"
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  4083
    using pi_half_ge_zero uniq by fastforce
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4084
  ultimately show ?thesis
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4085
    by (rule_tac x = "Suc (2 * n)" in exI) (simp add: algebra_simps)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4086
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4087
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4088
lemma sin_zero_lemma: "0 \<le> x \<Longrightarrow> sin x = 0 \<Longrightarrow> \<exists>n::nat. even n \<and> x = real n * (pi/2)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4089
  using cos_zero_lemma [of "x + pi/2"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4090
  apply (clarsimp simp add: cos_add)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4091
  apply (rule_tac x = "n - 1" in exI)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4092
  apply (simp add: algebra_simps of_nat_diff)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4093
  done
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4094
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4095
lemma cos_zero_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4096
  "cos x = 0 \<longleftrightarrow> ((\<exists>n. odd n \<and> x = real n * (pi/2)) \<or> (\<exists>n. odd n \<and> x = - (real n * (pi/2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4097
  (is "?lhs = ?rhs")
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  4098
proof -
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4099
  have *: "cos (real n * pi/2) = 0" if "odd n" for n :: nat
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4100
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4101
    from that obtain m where "n = 2 * m + 1" ..
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4102
    then show ?thesis
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4103
      by (simp add: field_simps) (simp add: cos_add add_divide_distrib)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4104
  qed
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  4105
  show ?thesis
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4106
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4107
    show ?rhs if ?lhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4108
      using that cos_zero_lemma [of x] cos_zero_lemma [of "-x"] by force
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4109
    show ?lhs if ?rhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4110
      using that by (auto dest: * simp del: eq_divide_eq_numeral1)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4111
  qed
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  4112
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4113
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4114
lemma sin_zero_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4115
  "sin x = 0 \<longleftrightarrow> ((\<exists>n. even n \<and> x = real n * (pi/2)) \<or> (\<exists>n. even n \<and> x = - (real n * (pi/2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4116
  (is "?lhs = ?rhs")
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4117
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4118
  show ?rhs if ?lhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4119
    using that sin_zero_lemma [of x] sin_zero_lemma [of "-x"] by force
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4120
  show ?lhs if ?rhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4121
    using that by (auto elim: evenE)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4122
qed
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4123
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4124
lemma cos_zero_iff_int: "cos x = 0 \<longleftrightarrow> (\<exists>n. odd n \<and> x = of_int n * (pi/2))"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4125
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4126
  have 1: "\<And>n. odd n \<Longrightarrow> \<exists>i. odd i \<and> real n = real_of_int i"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4127
    by (metis even_of_nat of_int_of_nat_eq)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4128
  have 2: "\<And>n. odd n \<Longrightarrow> \<exists>i. odd i \<and> - (real n * pi) = real_of_int i * pi"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4129
    by (metis even_minus even_of_nat mult.commute mult_minus_right of_int_minus of_int_of_nat_eq)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4130
  have 3: "\<lbrakk>odd i;  \<forall>n. even n \<or> real_of_int i \<noteq> - (real n)\<rbrakk>
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4131
         \<Longrightarrow> \<exists>n. odd n \<and> real_of_int i = real n" for i
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4132
    by (cases i rule: int_cases2) auto
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4133
  show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4134
    by (force simp: cos_zero_iff intro!: 1 2 3)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4135
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4136
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4137
lemma sin_zero_iff_int: "sin x = 0 \<longleftrightarrow> (\<exists>n. even n \<and> x = of_int n * (pi/2))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4138
proof safe
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4139
  assume "sin x = 0"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4140
  then show "\<exists>n. even n \<and> x = of_int n * (pi/2)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4141
    apply (simp add: sin_zero_iff, safe)
68100
b2d84b1114fa removed some lemma duplicates
haftmann
parents: 68077
diff changeset
  4142
     apply (metis even_of_nat of_int_of_nat_eq)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4143
    apply (rule_tac x="- (int n)" in exI)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4144
    apply simp
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4145
    done
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4146
next
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4147
  fix i :: int
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4148
  assume "even i"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4149
  then show "sin (of_int i * (pi/2)) = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4150
    by (cases i rule: int_cases2, simp_all add: sin_zero_iff)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4151
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4152
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4153
lemma sin_zero_iff_int2: "sin x = 0 \<longleftrightarrow> (\<exists>n::int. x = of_int n * pi)"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  4154
  apply (simp only: sin_zero_iff_int)
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  4155
  apply (safe elim!: evenE)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4156
   apply (simp_all add: field_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4157
  using dvd_triv_left apply fastforce
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60301
diff changeset
  4158
  done
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4159
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4160
lemma sin_npi_int [simp]: "sin (pi * of_int n) = 0"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4161
  by (simp add: sin_zero_iff_int2)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4162
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4163
lemma cos_monotone_0_pi:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4164
  assumes "0 \<le> y" and "y < x" and "x \<le> pi"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4165
  shows "cos x < cos y"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4166
proof -
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  4167
  have "- (x - y) < 0" using assms by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4168
  from MVT2[OF \<open>y < x\<close> DERIV_cos[THEN impI, THEN allI]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4169
  obtain z where "y < z" and "z < x" and cos_diff: "cos x - cos y = (x - y) * - sin z"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4170
    by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4171
  then have "0 < z" and "z < pi"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4172
    using assms by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4173
  then have "0 < sin z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4174
    using sin_gt_zero by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4175
  then have "cos x - cos y < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4176
    unfolding cos_diff minus_mult_commute[symmetric]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4177
    using \<open>- (x - y) < 0\<close> by (rule mult_pos_neg2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4178
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4179
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4180
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4181
lemma cos_monotone_0_pi_le:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4182
  assumes "0 \<le> y" and "y \<le> x" and "x \<le> pi"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4183
  shows "cos x \<le> cos y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4184
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4185
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4186
  show ?thesis
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4187
    using cos_monotone_0_pi[OF \<open>0 \<le> y\<close> True \<open>x \<le> pi\<close>] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4188
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4189
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4190
  then have "y = x" using \<open>y \<le> x\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4191
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4192
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4193
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4194
lemma cos_monotone_minus_pi_0:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4195
  assumes "- pi \<le> y" and "y < x" and "x \<le> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4196
  shows "cos y < cos x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4197
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4198
  have "0 \<le> - x" and "- x < - y" and "- y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4199
    using assms by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4200
  from cos_monotone_0_pi[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4201
    unfolding cos_minus .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4202
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4203
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4204
lemma cos_monotone_minus_pi_0':
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4205
  assumes "- pi \<le> y" and "y \<le> x" and "x \<le> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4206
  shows "cos y \<le> cos x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4207
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4208
  case True
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4209
  show ?thesis using cos_monotone_minus_pi_0[OF \<open>-pi \<le> y\<close> True \<open>x \<le> 0\<close>]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4210
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4211
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4212
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4213
  then have "y = x" using \<open>y \<le> x\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4214
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4215
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4216
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4217
lemma sin_monotone_2pi:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4218
  assumes "- (pi/2) \<le> y" and "y < x" and "x \<le> pi/2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4219
  shows "sin y < sin x"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4220
  unfolding sin_cos_eq
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4221
  using assms by (auto intro: cos_monotone_0_pi)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4222
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4223
lemma sin_monotone_2pi_le:
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4224
  assumes "- (pi/2) \<le> y" and "y \<le> x" and "x \<le> pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4225
  shows "sin y \<le> sin x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4226
  by (metis assms le_less sin_monotone_2pi)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4227
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4228
lemma sin_x_le_x:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4229
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4230
  assumes x: "x \<ge> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4231
  shows "sin x \<le> x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4232
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4233
  let ?f = "\<lambda>x. x - sin x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4234
  from x have "?f x \<ge> ?f 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4235
    apply (rule DERIV_nonneg_imp_nondecreasing)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4236
    apply (intro allI impI exI[of _ "1 - cos x" for x])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4237
    apply (auto intro!: derivative_eq_intros simp: field_simps)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4238
    done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4239
  then show "sin x \<le> x" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4240
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4241
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4242
lemma sin_x_ge_neg_x:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4243
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4244
  assumes x: "x \<ge> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4245
  shows "sin x \<ge> - x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4246
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4247
  let ?f = "\<lambda>x. x + sin x"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4248
  from x have "?f x \<ge> ?f 0"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4249
    apply (rule DERIV_nonneg_imp_nondecreasing)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4250
    apply (intro allI impI exI[of _ "1 + cos x" for x])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4251
    apply (auto intro!: derivative_eq_intros simp: field_simps real_0_le_add_iff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4252
    done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4253
  then show "sin x \<ge> -x" by simp
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4254
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4255
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4256
lemma abs_sin_x_le_abs_x: "\<bar>sin x\<bar> \<le> \<bar>x\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4257
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4258
  using sin_x_ge_neg_x [of x] sin_x_le_x [of x] sin_x_ge_neg_x [of "-x"] sin_x_le_x [of "-x"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4259
  by (auto simp: abs_real_def)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4260
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4261
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4262
subsection \<open>More Corollaries about Sine and Cosine\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4263
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4264
lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi/2) = (-1) ^ n"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4265
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4266
  have "sin ((real n + 1/2) * pi) = cos (real n * pi)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4267
    by (auto simp: algebra_simps sin_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4268
  then show ?thesis
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4269
    by (simp add: distrib_right add_divide_distrib add.commute mult.commute [of pi])
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4270
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4271
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4272
lemma cos_2npi [simp]: "cos (2 * real n * pi) = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4273
  for n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4274
  by (cases "even n") (simp_all add: cos_double mult.assoc)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4275
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4276
lemma cos_3over2_pi [simp]: "cos (3/2*pi) = 0"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4277
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4278
  have "cos (3/2*pi) = cos (pi + pi/2)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4279
    by simp
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4280
  also have "... = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4281
    by (subst cos_add, simp)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4282
  finally show ?thesis .
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4283
qed
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4284
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4285
lemma sin_2npi [simp]: "sin (2 * real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4286
  for n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4287
  by (auto simp: mult.assoc sin_double)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4288
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4289
lemma sin_3over2_pi [simp]: "sin (3/2*pi) = - 1"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4290
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4291
  have "sin (3/2*pi) = sin (pi + pi/2)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4292
    by simp
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4293
  also have "... = -1"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4294
    by (subst sin_add, simp)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4295
  finally show ?thesis .
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4296
qed
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4297
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4298
lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4299
  by (simp only: cos_add sin_add of_nat_Suc distrib_right distrib_left add_divide_distrib, auto)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4300
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4301
lemma DERIV_cos_add [simp]: "DERIV (\<lambda>x. cos (x + k)) xa :> - sin (xa + k)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4302
  by (auto intro!: derivative_eq_intros)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4303
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4304
lemma sin_zero_norm_cos_one:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4305
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4306
  assumes "sin x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4307
  shows "norm (cos x) = 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4308
  using sin_cos_squared_add [of x, unfolded assms]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4309
  by (simp add: square_norm_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4310
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4311
lemma sin_zero_abs_cos_one: "sin x = 0 \<Longrightarrow> \<bar>cos x\<bar> = (1::real)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4312
  using sin_zero_norm_cos_one by fastforce
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4313
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4314
lemma cos_one_sin_zero:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4315
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4316
  assumes "cos x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4317
  shows "sin x = 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4318
  using sin_cos_squared_add [of x, unfolded assms]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4319
  by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4320
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4321
lemma sin_times_pi_eq_0: "sin (x * pi) = 0 \<longleftrightarrow> x \<in> \<int>"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4322
  by (simp add: sin_zero_iff_int2) (metis Ints_cases Ints_of_int)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4323
67091
1393c2340eec more symbols;
wenzelm
parents: 66827
diff changeset
  4324
lemma cos_one_2pi: "cos x = 1 \<longleftrightarrow> (\<exists>n::nat. x = n * 2 * pi) \<or> (\<exists>n::nat. x = - (n * 2 * pi))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4325
  (is "?lhs = ?rhs")
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4326
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4327
  assume ?lhs
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4328
  then have "sin x = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4329
    by (simp add: cos_one_sin_zero)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4330
  then show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4331
  proof (simp only: sin_zero_iff, elim exE disjE conjE)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4332
    fix n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4333
    assume n: "even n" "x = real n * (pi/2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4334
    then obtain m where m: "n = 2 * m"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4335
      using dvdE by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4336
    then have me: "even m" using \<open>?lhs\<close> n
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4337
      by (auto simp: field_simps) (metis one_neq_neg_one  power_minus_odd power_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4338
    show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4339
      using m me n
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4340
      by (auto simp: field_simps elim!: evenE)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4341
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4342
    fix n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4343
    assume n: "even n" "x = - (real n * (pi/2))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4344
    then obtain m where m: "n = 2 * m"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4345
      using dvdE by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4346
    then have me: "even m" using \<open>?lhs\<close> n
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4347
      by (auto simp: field_simps) (metis one_neq_neg_one  power_minus_odd power_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4348
    show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4349
      using m me n
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4350
      by (auto simp: field_simps elim!: evenE)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4351
  qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4352
next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4353
  assume ?rhs
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4354
  then show "cos x = 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4355
    by (metis cos_2npi cos_minus mult.assoc mult.left_commute)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4356
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4357
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4358
lemma cos_one_2pi_int: "cos x = 1 \<longleftrightarrow> (\<exists>n::int. x = n * 2 * pi)" (is "?lhs = ?rhs")
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4359
proof
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4360
  assume "cos x = 1"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4361
  then show ?rhs
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4362
    by (metis cos_one_2pi mult.commute mult_minus_right of_int_minus of_int_of_nat_eq)
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4363
next
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4364
  assume ?rhs
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4365
  then show "cos x = 1"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4366
    by (clarsimp simp add: cos_one_2pi) (metis mult_minus_right of_int_of_nat)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4367
qed
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4368
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4369
lemma cos_npi_int [simp]:
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4370
  fixes n::int shows "cos (pi * of_int n) = (if even n then 1 else -1)"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4371
    by (auto simp: algebra_simps cos_one_2pi_int elim!: oddE evenE)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4372
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4373
lemma sin_cos_sqrt: "0 \<le> sin x \<Longrightarrow> sin x = sqrt (1 - (cos(x) ^ 2))"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4374
  using sin_squared_eq real_sqrt_unique by fastforce
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4375
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4376
lemma sin_eq_0_pi: "- pi < x \<Longrightarrow> x < pi \<Longrightarrow> sin x = 0 \<Longrightarrow> x = 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4377
  by (metis sin_gt_zero sin_minus minus_less_iff neg_0_less_iff_less not_less_iff_gr_or_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4378
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4379
lemma cos_treble_cos: "cos (3 * x) = 4 * cos x ^ 3 - 3 * cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4380
  for x :: "'a::{real_normed_field,banach}"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4381
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4382
  have *: "(sin x * (sin x * 3)) = 3 - (cos x * (cos x * 3))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4383
    by (simp add: mult.assoc [symmetric] sin_squared_eq [unfolded power2_eq_square])
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4384
  have "cos(3 * x) = cos(2*x + x)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4385
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4386
  also have "\<dots> = 4 * cos x ^ 3 - 3 * cos x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4387
    apply (simp only: cos_add cos_double sin_double)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4388
    apply (simp add: * field_simps power2_eq_square power3_eq_cube)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4389
    done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4390
  finally show ?thesis .
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4391
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4392
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4393
lemma cos_45: "cos (pi / 4) = sqrt 2 / 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4394
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4395
  let ?c = "cos (pi / 4)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4396
  let ?s = "sin (pi / 4)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4397
  have nonneg: "0 \<le> ?c"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4398
    by (simp add: cos_ge_zero)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4399
  have "0 = cos (pi / 4 + pi / 4)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4400
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4401
  also have "cos (pi / 4 + pi / 4) = ?c\<^sup>2 - ?s\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4402
    by (simp only: cos_add power2_eq_square)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4403
  also have "\<dots> = 2 * ?c\<^sup>2 - 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4404
    by (simp add: sin_squared_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4405
  finally have "?c\<^sup>2 = (sqrt 2 / 2)\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4406
    by (simp add: power_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4407
  then show ?thesis
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4408
    using nonneg by (rule power2_eq_imp_eq) simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4409
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4410
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4411
lemma cos_30: "cos (pi / 6) = sqrt 3/2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4412
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4413
  let ?c = "cos (pi / 6)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4414
  let ?s = "sin (pi / 6)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4415
  have pos_c: "0 < ?c"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4416
    by (rule cos_gt_zero) simp_all
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4417
  have "0 = cos (pi / 6 + pi / 6 + pi / 6)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4418
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4419
  also have "\<dots> = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4420
    by (simp only: cos_add sin_add)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4421
  also have "\<dots> = ?c * (?c\<^sup>2 - 3 * ?s\<^sup>2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4422
    by (simp add: algebra_simps power2_eq_square)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4423
  finally have "?c\<^sup>2 = (sqrt 3/2)\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4424
    using pos_c by (simp add: sin_squared_eq power_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4425
  then show ?thesis
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4426
    using pos_c [THEN order_less_imp_le]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4427
    by (rule power2_eq_imp_eq) simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4428
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4429
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4430
lemma sin_45: "sin (pi / 4) = sqrt 2 / 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4431
  by (simp add: sin_cos_eq cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4432
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4433
lemma sin_60: "sin (pi / 3) = sqrt 3/2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4434
  by (simp add: sin_cos_eq cos_30)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4435
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4436
lemma cos_60: "cos (pi / 3) = 1 / 2"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4437
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4438
  have "0 \<le> cos (pi / 3)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4439
    by (rule cos_ge_zero) (use pi_half_ge_zero in \<open>linarith+\<close>)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4440
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4441
    by (simp add: cos_squared_eq sin_60 power_divide power2_eq_imp_eq)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4442
qed
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4443
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4444
lemma sin_30: "sin (pi / 6) = 1 / 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4445
  by (simp add: sin_cos_eq cos_60)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4446
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4447
lemma cos_integer_2pi: "n \<in> \<int> \<Longrightarrow> cos(2 * pi * n) = 1"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4448
  by (metis Ints_cases cos_one_2pi_int mult.assoc mult.commute)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4449
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4450
lemma sin_integer_2pi: "n \<in> \<int> \<Longrightarrow> sin(2 * pi * n) = 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4451
  by (metis sin_two_pi Ints_mult mult.assoc mult.commute sin_times_pi_eq_0)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4452
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  4453
lemma cos_int_2pin [simp]: "cos ((2 * pi) * of_int n) = 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4454
  by (simp add: cos_one_2pi_int)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4455
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  4456
lemma sin_int_2pin [simp]: "sin ((2 * pi) * of_int n) = 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  4457
  by (metis Ints_of_int sin_integer_2pi)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4458
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4459
lemma sincos_principal_value: "\<exists>y. (- pi < y \<and> y \<le> pi) \<and> (sin y = sin x \<and> cos y = cos x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4460
  apply (rule exI [where x="pi - (2 * pi) * frac ((pi - x) / (2 * pi))"])
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4461
  apply (auto simp: field_simps frac_lt_1)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4462
   apply (simp_all add: frac_def divide_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4463
   apply (simp_all add: add_divide_distrib diff_divide_distrib)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4464
   apply (simp_all add: sin_diff cos_diff mult.assoc [symmetric] cos_integer_2pi sin_integer_2pi)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4465
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4466
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4467
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4468
subsection \<open>Tangent\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4469
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4470
definition tan :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4471
  where "tan = (\<lambda>x. sin x / cos x)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4472
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4473
lemma tan_of_real: "of_real (tan x) = (tan (of_real x) :: 'a::{real_normed_field,banach})"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4474
  by (simp add: tan_def sin_of_real cos_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4475
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4476
lemma tan_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> tan z \<in> \<real>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4477
  for z :: "'a::{real_normed_field,banach}"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4478
  by (simp add: tan_def)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4479
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4480
lemma tan_zero [simp]: "tan 0 = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4481
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4482
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4483
lemma tan_pi [simp]: "tan pi = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4484
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4485
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4486
lemma tan_npi [simp]: "tan (real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4487
  for n :: nat
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4488
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4489
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4490
lemma tan_minus [simp]: "tan (- x) = - tan x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4491
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4492
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4493
lemma tan_periodic [simp]: "tan (x + 2 * pi) = tan x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4494
  by (simp add: tan_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4495
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4496
lemma lemma_tan_add1: "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> 1 - tan x * tan y = cos (x + y)/(cos x * cos y)"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4497
  by (simp add: tan_def cos_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4498
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4499
lemma add_tan_eq: "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> tan x + tan y = sin(x + y)/(cos x * cos y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4500
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4501
  by (simp add: tan_def sin_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4502
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4503
lemma tan_add:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4504
  "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> cos (x + y) \<noteq> 0 \<Longrightarrow> tan (x + y) = (tan x + tan y)/(1 - tan x * tan y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4505
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4506
  by (simp add: add_tan_eq lemma_tan_add1 field_simps) (simp add: tan_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4507
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4508
lemma tan_double: "cos x \<noteq> 0 \<Longrightarrow> cos (2 * x) \<noteq> 0 \<Longrightarrow> tan (2 * x) = (2 * tan x) / (1 - (tan x)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4509
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4510
  using tan_add [of x x] by (simp add: power2_eq_square)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4511
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4512
lemma tan_gt_zero: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < tan x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4513
  by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4514
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4515
lemma tan_less_zero:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4516
  assumes "- pi/2 < x" and "x < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4517
  shows "tan x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4518
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4519
  have "0 < tan (- x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4520
    using assms by (simp only: tan_gt_zero)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4521
  then show ?thesis by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4522
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4523
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4524
lemma tan_half: "tan x = sin (2 * x) / (cos (2 * x) + 1)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4525
  for x :: "'a::{real_normed_field,banach,field}"
44756
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  4526
  unfolding tan_def sin_double cos_double sin_squared_eq
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  4527
  by (simp add: power2_eq_square)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4528
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4529
lemma tan_30: "tan (pi / 6) = 1 / sqrt 3"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4530
  unfolding tan_def by (simp add: sin_30 cos_30)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4531
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4532
lemma tan_45: "tan (pi / 4) = 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4533
  unfolding tan_def by (simp add: sin_45 cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4534
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4535
lemma tan_60: "tan (pi / 3) = sqrt 3"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4536
  unfolding tan_def by (simp add: sin_60 cos_60)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4537
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4538
lemma DERIV_tan [simp]: "cos x \<noteq> 0 \<Longrightarrow> DERIV tan x :> inverse ((cos x)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4539
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4540
  unfolding tan_def
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  4541
  by (auto intro!: derivative_eq_intros, simp add: divide_inverse power2_eq_square)
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4542
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4543
declare DERIV_tan[THEN DERIV_chain2, derivative_intros]
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4544
  and DERIV_tan[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4545
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  4546
lemmas has_derivative_tan[derivative_intros] = DERIV_tan[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  4547
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4548
lemma isCont_tan: "cos x \<noteq> 0 \<Longrightarrow> isCont tan x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4549
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4550
  by (rule DERIV_tan [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4551
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4552
lemma isCont_tan' [simp,continuous_intros]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4553
  fixes a :: "'a::{real_normed_field,banach}" and f :: "'a \<Rightarrow> 'a"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4554
  shows "isCont f a \<Longrightarrow> cos (f a) \<noteq> 0 \<Longrightarrow> isCont (\<lambda>x. tan (f x)) a"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4555
  by (rule isCont_o2 [OF _ isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4556
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4557
lemma tendsto_tan [tendsto_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4558
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4559
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> cos a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. tan (f x)) \<longlongrightarrow> tan a) F"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4560
  by (rule isCont_tendsto_compose [OF isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4561
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4562
lemma continuous_tan:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4563
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4564
  shows "continuous F f \<Longrightarrow> cos (f (Lim F (\<lambda>x. x))) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. tan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4565
  unfolding continuous_def by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4566
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4567
lemma continuous_on_tan [continuous_intros]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4568
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4569
  shows "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. cos (f x) \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. tan (f x))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4570
  unfolding continuous_on_def by (auto intro: tendsto_tan)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4571
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4572
lemma continuous_within_tan [continuous_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4573
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4574
  shows "continuous (at x within s) f \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4575
    cos (f x) \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. tan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4576
  unfolding continuous_within by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4577
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  4578
lemma LIM_cos_div_sin: "(\<lambda>x. cos(x)/sin(x)) \<midarrow>pi/2\<rightarrow> 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4579
  by (rule LIM_cong_limit, (rule tendsto_intros)+, simp_all)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4580
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4581
lemma lemma_tan_total: 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4582
  assumes "0 < y" shows "\<exists>x. 0 < x \<and> x < pi/2 \<and> y < tan x"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4583
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4584
  obtain s where "0 < s" 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4585
    and s: "\<And>x. \<lbrakk>x \<noteq> pi/2; norm (x - pi/2) < s\<rbrakk> \<Longrightarrow> norm (cos x / sin x - 0) < inverse y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4586
    using LIM_D [OF LIM_cos_div_sin, of "inverse y"] that assms by force
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4587
  obtain e where e: "0 < e" "e < s" "e < pi/2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4588
    using \<open>0 < s\<close> field_lbound_gt_zero pi_half_gt_zero by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4589
  show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4590
  proof (intro exI conjI)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4591
    have "0 < sin e" "0 < cos e"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4592
      using e by (auto intro: cos_gt_zero sin_gt_zero2 simp: mult.commute)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4593
    then 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4594
    show "y < tan (pi/2 - e)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4595
      using s [of "pi/2 - e"] e assms
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4596
      by (simp add: tan_def sin_diff cos_diff) (simp add: field_simps split: if_split_asm)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4597
  qed (use e in auto)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4598
qed
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4599
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4600
lemma tan_total_pos: 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4601
  assumes "0 \<le> y" shows "\<exists>x. 0 \<le> x \<and> x < pi/2 \<and> tan x = y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4602
proof (cases "y = 0")
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4603
  case True
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4604
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4605
    using pi_half_gt_zero tan_zero by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4606
next
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4607
  case False
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4608
  with assms have "y > 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4609
    by linarith
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4610
  obtain x where x: "0 < x" "x < pi/2" "y < tan x"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4611
    using lemma_tan_total \<open>0 < y\<close> by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4612
  have "\<exists>u\<ge>0. u \<le> x \<and> tan u = y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4613
  proof (intro IVT allI impI)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4614
    show "isCont tan u" if "0 \<le> u \<and> u \<le> x" for u
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4615
    proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4616
      have "cos u \<noteq> 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4617
        using antisym_conv2 cos_gt_zero that x(2) by fastforce
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4618
      with assms show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4619
        by (auto intro!: DERIV_tan [THEN DERIV_isCont])
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4620
    qed
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4621
  qed (use assms x in auto)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4622
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4623
    using x(2) by auto
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4624
qed
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4625
    
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4626
lemma lemma_tan_total1: "\<exists>x. -(pi/2) < x \<and> x < (pi/2) \<and> tan x = y"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4627
proof (cases "0::real" y rule: le_cases)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4628
  case le
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4629
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4630
    by (meson less_le_trans minus_pi_half_less_zero tan_total_pos)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4631
next
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4632
  case ge
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4633
  with tan_total_pos [of "-y"] obtain x where "0 \<le> x" "x < pi / 2" "tan x = - y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4634
    by force
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4635
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4636
    by (rule_tac x="-x" in exI) auto
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4637
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4638
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4639
proposition tan_total: "\<exists>! x. -(pi/2) < x \<and> x < (pi/2) \<and> tan x = y"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4640
proof -
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4641
  have "u = v" if u: "- (pi / 2) < u" "u < pi / 2" and v: "- (pi / 2) < v" "v < pi / 2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4642
    and eq: "tan u = tan v" for u v
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4643
  proof (cases u v rule: linorder_cases)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4644
    case less
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4645
    have "\<And>x. u \<le> x \<and> x \<le> v \<longrightarrow> isCont tan x"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4646
      by (metis cos_gt_zero_pi isCont_tan less_numeral_extra(3) less_trans order.not_eq_order_implies_strict u v)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4647
    moreover have "\<And>x. u < x \<and> x < v \<Longrightarrow> tan differentiable (at x)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4648
      by (metis DERIV_tan cos_gt_zero_pi differentiableI less_numeral_extra(3) order.strict_trans u(1) v(2))
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4649
    ultimately obtain z where "u < z" "z < v" "DERIV tan z :> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4650
      by (metis less Rolle eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4651
    moreover have "cos z \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4652
      by (metis (no_types) \<open>u < z\<close> \<open>z < v\<close> cos_gt_zero_pi less_le_trans linorder_not_less not_less_iff_gr_or_eq u(1) v(2))
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4653
    ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4654
      using DERIV_unique [OF _ DERIV_tan] by fastforce
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4655
  next
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4656
    case greater
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4657
    have "\<And>x. v \<le> x \<and> x \<le> u \<Longrightarrow> isCont tan x"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4658
      by (metis cos_gt_zero_pi isCont_tan less_numeral_extra(3) less_trans order.not_eq_order_implies_strict u v)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4659
    moreover have "\<And>x. v < x \<and> x < u \<Longrightarrow> tan differentiable (at x)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4660
      by (metis DERIV_tan cos_gt_zero_pi differentiableI less_numeral_extra(3) order.strict_trans u(2) v(1))
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4661
    ultimately obtain z where "v < z" "z < u" "DERIV tan z :> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4662
      by (metis greater Rolle eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4663
    moreover have "cos z \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4664
      by (metis  \<open>v < z\<close> \<open>z < u\<close> cos_gt_zero_pi less_le_trans linorder_not_less not_less_iff_gr_or_eq u(2) v(1))
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4665
    ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4666
      using DERIV_unique [OF _ DERIV_tan] by fastforce
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4667
  qed auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4668
  then have "\<exists>!x. - (pi / 2) < x \<and> x < pi / 2 \<and> tan x = y" 
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4669
    if x: "- (pi / 2) < x" "x < pi / 2" "tan x = y" for x
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4670
    using that by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4671
  then show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4672
    using lemma_tan_total1 [where y = y]
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4673
    by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4674
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4675
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4676
lemma tan_monotone:
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4677
  assumes "- (pi/2) < y" and "y < x" and "x < pi/2"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4678
  shows "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4679
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4680
  have "\<forall>x'. y \<le> x' \<and> x' \<le> x \<longrightarrow> DERIV tan x' :> inverse ((cos x')\<^sup>2)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4681
  proof (rule allI, rule impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4682
    fix x' :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4683
    assume "y \<le> x' \<and> x' \<le> x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4684
    then have "-(pi/2) < x'" and "x' < pi/2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4685
      using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4686
    from cos_gt_zero_pi[OF this]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4687
    have "cos x' \<noteq> 0" by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4688
    then show "DERIV tan x' :> inverse ((cos x')\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4689
      by (rule DERIV_tan)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4690
  qed
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4691
  from MVT2[OF \<open>y < x\<close> this]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4692
  obtain z where "y < z" and "z < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4693
    and tan_diff: "tan x - tan y = (x - y) * inverse ((cos z)\<^sup>2)" by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4694
  then have "- (pi/2) < z" and "z < pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4695
    using assms by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4696
  then have "0 < cos z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4697
    using cos_gt_zero_pi by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4698
  then have inv_pos: "0 < inverse ((cos z)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4699
    by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4700
  have "0 < x - y" using \<open>y < x\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4701
  with inv_pos have "0 < tan x - tan y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4702
    unfolding tan_diff by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4703
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4704
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4705
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4706
lemma tan_monotone':
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4707
  assumes "- (pi/2) < y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4708
    and "y < pi/2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4709
    and "- (pi/2) < x"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4710
    and "x < pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4711
  shows "y < x \<longleftrightarrow> tan y < tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4712
proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4713
  assume "y < x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4714
  then show "tan y < tan x"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4715
    using tan_monotone and \<open>- (pi/2) < y\<close> and \<open>x < pi/2\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4716
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4717
  assume "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4718
  show "y < x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4719
  proof (rule ccontr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4720
    assume "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4721
    then have "x \<le> y" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4722
    then have "tan x \<le> tan y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4723
    proof (cases "x = y")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4724
      case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4725
      then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4726
    next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4727
      case False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4728
      then have "x < y" using \<open>x \<le> y\<close> by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4729
      from tan_monotone[OF \<open>- (pi/2) < x\<close> this \<open>y < pi/2\<close>] show ?thesis
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4730
        by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4731
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4732
    then show False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4733
      using \<open>tan y < tan x\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4734
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4735
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4736
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4737
lemma tan_inverse: "1 / (tan y) = tan (pi/2 - y)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4738
  unfolding tan_def sin_cos_eq[of y] cos_sin_eq[of y] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4739
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4740
lemma tan_periodic_pi[simp]: "tan (x + pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4741
  by (simp add: tan_def)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4742
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4743
lemma tan_periodic_nat[simp]: "tan (x + real n * pi) = tan x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4744
  for n :: nat
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4745
proof (induct n arbitrary: x)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4746
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4747
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4748
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4749
  case (Suc n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4750
  have split_pi_off: "x + real (Suc n) * pi = (x + real n * pi) + pi"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4751
    unfolding Suc_eq_plus1 of_nat_add  distrib_right by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4752
  show ?case
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4753
    unfolding split_pi_off using Suc by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4754
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4755
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4756
lemma tan_periodic_int[simp]: "tan (x + of_int i * pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4757
proof (cases "0 \<le> i")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4758
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4759
  then have i_nat: "of_int i = of_int (nat i)" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4760
  show ?thesis unfolding i_nat
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  4761
    by (metis of_int_of_nat_eq tan_periodic_nat)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4762
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4763
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4764
  then have i_nat: "of_int i = - of_int (nat (- i))" by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4765
  have "tan x = tan (x + of_int i * pi - of_int i * pi)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4766
    by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4767
  also have "\<dots> = tan (x + of_int i * pi)"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4768
    unfolding i_nat mult_minus_left diff_minus_eq_add
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  4769
    by (metis of_int_of_nat_eq tan_periodic_nat)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4770
  finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4771
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4772
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46240
diff changeset
  4773
lemma tan_periodic_n[simp]: "tan (x + numeral n * pi) = tan x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4774
  using tan_periodic_int[of _ "numeral n" ] by simp
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4775
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4776
lemma tan_minus_45: "tan (-(pi/4)) = -1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4777
  unfolding tan_def by (simp add: sin_45 cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4778
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4779
lemma tan_diff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4780
  "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> cos (x - y) \<noteq> 0 \<Longrightarrow> tan (x - y) = (tan x - tan y)/(1 + tan x * tan y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4781
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4782
  using tan_add [of x "-y"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4783
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4784
lemma tan_pos_pi2_le: "0 \<le> x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 \<le> tan x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4785
  using less_eq_real_def tan_gt_zero by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4786
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4787
lemma cos_tan: "\<bar>x\<bar> < pi/2 \<Longrightarrow> cos x = 1 / sqrt (1 + tan x ^ 2)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4788
  using cos_gt_zero_pi [of x]
62390
842917225d56 more canonical names
nipkow
parents: 62379
diff changeset
  4789
  by (simp add: divide_simps tan_def real_sqrt_divide abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4790
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4791
lemma sin_tan: "\<bar>x\<bar> < pi/2 \<Longrightarrow> sin x = tan x / sqrt (1 + tan x ^ 2)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4792
  using cos_gt_zero [of "x"] cos_gt_zero [of "-x"]
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4793
  by (force simp: divide_simps tan_def real_sqrt_divide abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4794
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4795
lemma tan_mono_le: "-(pi/2) < x \<Longrightarrow> x \<le> y \<Longrightarrow> y < pi/2 \<Longrightarrow> tan x \<le> tan y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4796
  using less_eq_real_def tan_monotone by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4797
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4798
lemma tan_mono_lt_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4799
  "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> -(pi/2) < y \<Longrightarrow> y < pi/2 \<Longrightarrow> tan x < tan y \<longleftrightarrow> x < y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4800
  using tan_monotone' by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4801
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4802
lemma tan_mono_le_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4803
  "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> -(pi/2) < y \<Longrightarrow> y < pi/2 \<Longrightarrow> tan x \<le> tan y \<longleftrightarrow> x \<le> y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4804
  by (meson tan_mono_le not_le tan_monotone)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4805
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  4806
lemma tan_bound_pi2: "\<bar>x\<bar> < pi/4 \<Longrightarrow> \<bar>tan x\<bar> < 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4807
  using tan_45 tan_monotone [of x "pi/4"] tan_monotone [of "-x" "pi/4"]
62390
842917225d56 more canonical names
nipkow
parents: 62379
diff changeset
  4808
  by (auto simp: abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4809
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4810
lemma tan_cot: "tan(pi/2 - x) = inverse(tan x)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4811
  by (simp add: tan_def sin_diff cos_diff)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4812
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4813
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4814
subsection \<open>Cotangent\<close>
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4815
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4816
definition cot :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4817
  where "cot = (\<lambda>x. cos x / sin x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4818
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4819
lemma cot_of_real: "of_real (cot x) = (cot (of_real x) :: 'a::{real_normed_field,banach})"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4820
  by (simp add: cot_def sin_of_real cos_of_real)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4821
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4822
lemma cot_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> cot z \<in> \<real>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4823
  for z :: "'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4824
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4825
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4826
lemma cot_zero [simp]: "cot 0 = 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4827
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4828
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4829
lemma cot_pi [simp]: "cot pi = 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4830
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4831
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4832
lemma cot_npi [simp]: "cot (real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4833
  for n :: nat
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4834
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4835
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4836
lemma cot_minus [simp]: "cot (- x) = - cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4837
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4838
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4839
lemma cot_periodic [simp]: "cot (x + 2 * pi) = cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4840
  by (simp add: cot_def)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4841
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4842
lemma cot_altdef: "cot x = inverse (tan x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4843
  by (simp add: cot_def tan_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4844
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4845
lemma tan_altdef: "tan x = inverse (cot x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4846
  by (simp add: cot_def tan_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4847
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4848
lemma tan_cot': "tan (pi/2 - x) = cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4849
  by (simp add: tan_cot cot_altdef)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4850
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4851
lemma cot_gt_zero: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4852
  by (simp add: cot_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4853
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4854
lemma cot_less_zero:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4855
  assumes lb: "- pi/2 < x" and "x < 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4856
  shows "cot x < 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4857
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4858
  have "0 < cot (- x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4859
    using assms by (simp only: cot_gt_zero)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4860
  then show ?thesis by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4861
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4862
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4863
lemma DERIV_cot [simp]: "sin x \<noteq> 0 \<Longrightarrow> DERIV cot x :> -inverse ((sin x)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4864
  for x :: "'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4865
  unfolding cot_def using cos_squared_eq[of x]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4866
  by (auto intro!: derivative_eq_intros) (simp add: divide_inverse power2_eq_square)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4867
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4868
lemma isCont_cot: "sin x \<noteq> 0 \<Longrightarrow> isCont cot x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4869
  for x :: "'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4870
  by (rule DERIV_cot [THEN DERIV_isCont])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4871
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4872
lemma isCont_cot' [simp,continuous_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4873
  "isCont f a \<Longrightarrow> sin (f a) \<noteq> 0 \<Longrightarrow> isCont (\<lambda>x. cot (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4874
  for a :: "'a::{real_normed_field,banach}" and f :: "'a \<Rightarrow> 'a"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4875
  by (rule isCont_o2 [OF _ isCont_cot])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4876
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4877
lemma tendsto_cot [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> sin a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. cot (f x)) \<longlongrightarrow> cot a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4878
  for f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4879
  by (rule isCont_tendsto_compose [OF isCont_cot])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4880
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4881
lemma continuous_cot:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4882
  "continuous F f \<Longrightarrow> sin (f (Lim F (\<lambda>x. x))) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. cot (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4883
  for f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4884
  unfolding continuous_def by (rule tendsto_cot)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4885
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4886
lemma continuous_on_cot [continuous_intros]:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4887
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4888
  shows "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. sin (f x) \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. cot (f x))"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4889
  unfolding continuous_on_def by (auto intro: tendsto_cot)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4890
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4891
lemma continuous_within_cot [continuous_intros]:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4892
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4893
  shows "continuous (at x within s) f \<Longrightarrow> sin (f x) \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. cot (f x))"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4894
  unfolding continuous_within by (rule tendsto_cot)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4895
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  4896
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4897
subsection \<open>Inverse Trigonometric Functions\<close>
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4898
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4899
definition arcsin :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4900
  where "arcsin y = (THE x. -(pi/2) \<le> x \<and> x \<le> pi/2 \<and> sin x = y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4901
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4902
definition arccos :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4903
  where "arccos y = (THE x. 0 \<le> x \<and> x \<le> pi \<and> cos x = y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4904
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4905
definition arctan :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4906
  where "arctan y = (THE x. -(pi/2) < x \<and> x < pi/2 \<and> tan x = y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4907
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4908
lemma arcsin: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y \<and> arcsin y \<le> pi/2 \<and> sin (arcsin y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4909
  unfolding arcsin_def by (rule theI' [OF sin_total])
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  4910
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4911
lemma arcsin_pi: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y \<and> arcsin y \<le> pi \<and> sin (arcsin y) = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4912
  by (drule (1) arcsin) (force intro: order_trans)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4913
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4914
lemma sin_arcsin [simp]: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> sin (arcsin y) = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4915
  by (blast dest: arcsin)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4916
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4917
lemma arcsin_bounded: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y \<and> arcsin y \<le> pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4918
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4919
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4920
lemma arcsin_lbound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4921
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4922
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4923
lemma arcsin_ubound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin y \<le> pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4924
  by (blast dest: arcsin)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4925
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4926
lemma arcsin_lt_bounded:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4927
  assumes "- 1 < y" "y < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4928
  shows  "- (pi/2) < arcsin y \<and> arcsin y < pi/2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4929
proof -
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4930
  have "arcsin y \<noteq> pi/2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4931
    by (metis arcsin assms not_less not_less_iff_gr_or_eq sin_pi_half)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4932
  moreover have "arcsin y \<noteq> - pi/2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4933
    by (metis arcsin assms minus_divide_left not_less not_less_iff_gr_or_eq sin_minus sin_pi_half)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4934
  ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4935
    using arcsin_bounded [of y] assms by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4936
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4937
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4938
lemma arcsin_sin: "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> arcsin (sin x) = x"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4939
  unfolding arcsin_def
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4940
  using the1_equality [OF sin_total]  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4941
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4942
lemma arcsin_0 [simp]: "arcsin 0 = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4943
  using arcsin_sin [of 0] by simp
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4944
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4945
lemma arcsin_1 [simp]: "arcsin 1 = pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4946
  using arcsin_sin [of "pi/2"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4947
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4948
lemma arcsin_minus_1 [simp]: "arcsin (- 1) = - (pi/2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4949
  using arcsin_sin [of "- pi/2"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4950
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4951
lemma arcsin_minus: "- 1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arcsin (- x) = - arcsin x"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4952
  by (metis (no_types, hide_lams) arcsin arcsin_sin minus_minus neg_le_iff_le sin_minus)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4953
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4954
lemma arcsin_eq_iff: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arcsin x = arcsin y \<longleftrightarrow> x = y"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  4955
  by (metis abs_le_iff arcsin minus_le_iff)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4956
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4957
lemma cos_arcsin_nonzero: "- 1 < x \<Longrightarrow> x < 1 \<Longrightarrow> cos (arcsin x) \<noteq> 0"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4958
  using arcsin_lt_bounded cos_gt_zero_pi by force
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  4959
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4960
lemma arccos: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> 0 \<le> arccos y \<and> arccos y \<le> pi \<and> cos (arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4961
  unfolding arccos_def by (rule theI' [OF cos_total])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4962
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4963
lemma cos_arccos [simp]: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> cos (arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4964
  by (blast dest: arccos)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4965
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4966
lemma arccos_bounded: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> 0 \<le> arccos y \<and> arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4967
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4968
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4969
lemma arccos_lbound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> 0 \<le> arccos y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4970
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4971
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4972
lemma arccos_ubound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4973
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4974
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4975
lemma arccos_lt_bounded: 
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4976
  assumes "- 1 < y" "y < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4977
  shows  "0 < arccos y \<and> arccos y < pi"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4978
proof -
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4979
  have "arccos y \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4980
    by (metis (no_types) arccos assms(1) assms(2) cos_zero less_eq_real_def less_irrefl)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4981
  moreover have "arccos y \<noteq> -pi"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4982
    by (metis arccos assms(1) assms(2) cos_minus cos_pi not_less not_less_iff_gr_or_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4983
  ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4984
    using arccos_bounded [of y] assms
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4985
    by (metis arccos cos_pi not_less not_less_iff_gr_or_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4986
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4987
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4988
lemma arccos_cos: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> arccos (cos x) = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4989
  by (auto simp: arccos_def intro!: the1_equality cos_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4990
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4991
lemma arccos_cos2: "x \<le> 0 \<Longrightarrow> - pi \<le> x \<Longrightarrow> arccos (cos x) = -x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4992
  by (auto simp: arccos_def intro!: the1_equality cos_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4993
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4994
lemma cos_arcsin:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4995
  assumes "- 1 \<le> x" "x \<le> 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4996
  shows "cos (arcsin x) = sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4997
proof (rule power2_eq_imp_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4998
  show "(cos (arcsin x))\<^sup>2 = (sqrt (1 - x\<^sup>2))\<^sup>2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4999
    by (simp add: square_le_1 assms cos_squared_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5000
  show "0 \<le> cos (arcsin x)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5001
    using arcsin assms cos_ge_zero by blast
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5002
  show "0 \<le> sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5003
    by (simp add: square_le_1 assms)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5004
qed
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5005
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5006
lemma sin_arccos:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5007
  assumes "- 1 \<le> x" "x \<le> 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5008
  shows "sin (arccos x) = sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5009
proof (rule power2_eq_imp_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5010
  show "(sin (arccos x))\<^sup>2 = (sqrt (1 - x\<^sup>2))\<^sup>2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5011
    by (simp add: square_le_1 assms sin_squared_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5012
  show "0 \<le> sin (arccos x)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5013
    by (simp add: arccos_bounded assms sin_ge_zero)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5014
  show "0 \<le> sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5015
    by (simp add: square_le_1 assms)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5016
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5017
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5018
lemma arccos_0 [simp]: "arccos 0 = pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5019
  by (metis arccos_cos cos_gt_zero cos_pi cos_pi_half pi_gt_zero
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5020
      pi_half_ge_zero not_le not_zero_less_neg_numeral numeral_One)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5021
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5022
lemma arccos_1 [simp]: "arccos 1 = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5023
  using arccos_cos by force
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5024
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5025
lemma arccos_minus_1 [simp]: "arccos (- 1) = pi"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5026
  by (metis arccos_cos cos_pi order_refl pi_ge_zero)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5027
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5028
lemma arccos_minus: "-1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arccos (- x) = pi - arccos x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5029
  by (metis arccos_cos arccos_cos2 cos_minus_pi cos_total diff_le_0_iff_le le_add_same_cancel1
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5030
      minus_diff_eq uminus_add_conv_diff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5031
65057
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5032
corollary arccos_minus_abs:
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5033
  assumes "\<bar>x\<bar> \<le> 1"
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5034
  shows "arccos (- x) = pi - arccos x"
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5035
using assms by (simp add: arccos_minus)
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5036
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5037
lemma sin_arccos_nonzero: "- 1 < x \<Longrightarrow> x < 1 \<Longrightarrow> sin (arccos x) \<noteq> 0"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5038
  using arccos_lt_bounded sin_gt_zero by force
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5039
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5040
lemma arctan: "- (pi/2) < arctan y \<and> arctan y < pi/2 \<and> tan (arctan y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5041
  unfolding arctan_def by (rule theI' [OF tan_total])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5042
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5043
lemma tan_arctan: "tan (arctan y) = y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5044
  by (simp add: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5045
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5046
lemma arctan_bounded: "- (pi/2) < arctan y \<and> arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5047
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5048
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5049
lemma arctan_lbound: "- (pi/2) < arctan y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5050
  by (simp add: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5051
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5052
lemma arctan_ubound: "arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5053
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5054
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5055
lemma arctan_unique:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5056
  assumes "-(pi/2) < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5057
    and "x < pi/2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5058
    and "tan x = y"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5059
  shows "arctan y = x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5060
  using assms arctan [of y] tan_total [of y] by (fast elim: ex1E)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5061
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5062
lemma arctan_tan: "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> arctan (tan x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5063
  by (rule arctan_unique) simp_all
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5064
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5065
lemma arctan_zero_zero [simp]: "arctan 0 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5066
  by (rule arctan_unique) simp_all
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5067
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5068
lemma arctan_minus: "arctan (- x) = - arctan x"
65057
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5069
  using arctan [of "x"] by (auto simp: arctan_unique)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5070
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5071
lemma cos_arctan_not_zero [simp]: "cos (arctan x) \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5072
  by (intro less_imp_neq [symmetric] cos_gt_zero_pi arctan_lbound arctan_ubound)
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5073
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5074
lemma cos_arctan: "cos (arctan x) = 1 / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5075
proof (rule power2_eq_imp_eq)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5076
  have "0 < 1 + x\<^sup>2" by (simp add: add_pos_nonneg)
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5077
  show "0 \<le> 1 / sqrt (1 + x\<^sup>2)" by simp
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5078
  show "0 \<le> cos (arctan x)"
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5079
    by (intro less_imp_le cos_gt_zero_pi arctan_lbound arctan_ubound)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5080
  have "(cos (arctan x))\<^sup>2 * (1 + (tan (arctan x))\<^sup>2) = 1"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  5081
    unfolding tan_def by (simp add: distrib_left power_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5082
  then show "(cos (arctan x))\<^sup>2 = (1 / sqrt (1 + x\<^sup>2))\<^sup>2"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5083
    using \<open>0 < 1 + x\<^sup>2\<close> by (simp add: arctan power_divide eq_divide_eq)
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5084
qed
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5085
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5086
lemma sin_arctan: "sin (arctan x) = x / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5087
  using add_pos_nonneg [OF zero_less_one zero_le_power2 [of x]]
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5088
  using tan_arctan [of x] unfolding tan_def cos_arctan
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5089
  by (simp add: eq_divide_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5090
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5091
lemma tan_sec: "cos x \<noteq> 0 \<Longrightarrow> 1 + (tan x)\<^sup>2 = (inverse (cos x))\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5092
  for x :: "'a::{real_normed_field,banach,field}"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5093
  by (simp add: add_divide_eq_iff inverse_eq_divide power2_eq_square tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5094
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5095
lemma arctan_less_iff: "arctan x < arctan y \<longleftrightarrow> x < y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5096
  by (metis tan_monotone' arctan_lbound arctan_ubound tan_arctan)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5097
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5098
lemma arctan_le_iff: "arctan x \<le> arctan y \<longleftrightarrow> x \<le> y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5099
  by (simp only: not_less [symmetric] arctan_less_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5100
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5101
lemma arctan_eq_iff: "arctan x = arctan y \<longleftrightarrow> x = y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5102
  by (simp only: eq_iff [where 'a=real] arctan_le_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5103
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5104
lemma zero_less_arctan_iff [simp]: "0 < arctan x \<longleftrightarrow> 0 < x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5105
  using arctan_less_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5106
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5107
lemma arctan_less_zero_iff [simp]: "arctan x < 0 \<longleftrightarrow> x < 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5108
  using arctan_less_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5109
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5110
lemma zero_le_arctan_iff [simp]: "0 \<le> arctan x \<longleftrightarrow> 0 \<le> x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5111
  using arctan_le_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5112
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5113
lemma arctan_le_zero_iff [simp]: "arctan x \<le> 0 \<longleftrightarrow> x \<le> 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5114
  using arctan_le_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5115
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5116
lemma arctan_eq_zero_iff [simp]: "arctan x = 0 \<longleftrightarrow> x = 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5117
  using arctan_eq_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5118
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5119
lemma continuous_on_arcsin': "continuous_on {-1 .. 1} arcsin"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5120
proof -
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5121
  have "continuous_on (sin ` {- pi/2 .. pi/2}) arcsin"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5122
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arcsin_sin)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5123
  also have "sin ` {- pi/2 .. pi/2} = {-1 .. 1}"
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5124
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5125
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5126
    assume "x \<in> {-1..1}"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5127
    then show "x \<in> sin ` {- pi/2..pi/2}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5128
      using arcsin_lbound arcsin_ubound
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  5129
      by (intro image_eqI[where x="arcsin x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5130
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5131
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5132
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5133
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5134
lemma continuous_on_arcsin [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5135
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arcsin (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5136
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arcsin']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5137
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5138
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5139
lemma isCont_arcsin: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arcsin x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5140
  using continuous_on_arcsin'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5141
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5142
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5143
lemma continuous_on_arccos': "continuous_on {-1 .. 1} arccos"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5144
proof -
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5145
  have "continuous_on (cos ` {0 .. pi}) arccos"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5146
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arccos_cos)
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5147
  also have "cos ` {0 .. pi} = {-1 .. 1}"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5148
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5149
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5150
    assume "x \<in> {-1..1}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5151
    then show "x \<in> cos ` {0..pi}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5152
      using arccos_lbound arccos_ubound
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5153
      by (intro image_eqI[where x="arccos x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5154
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5155
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5156
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5157
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5158
lemma continuous_on_arccos [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5159
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arccos (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5160
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arccos']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5161
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5162
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5163
lemma isCont_arccos: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arccos x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5164
  using continuous_on_arccos'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5165
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5166
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5167
lemma isCont_arctan: "isCont arctan x"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5168
proof -
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5169
  obtain u where u: "- (pi / 2) < u" "u < arctan x"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5170
    by (meson arctan arctan_less_iff linordered_field_no_lb)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5171
  obtain v where v: "arctan x < v" "v < pi / 2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5172
    by (meson arctan_less_iff arctan_ubound linordered_field_no_ub)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5173
  have "isCont arctan (tan (arctan x))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5174
  proof (rule isCont_inverse_function2 [of u "arctan x" v])
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5175
    show "\<And>z. \<lbrakk>u \<le> z; z \<le> v\<rbrakk> \<Longrightarrow> arctan (tan z) = z"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5176
      using arctan_unique u(1) v(2) by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5177
    then show "\<And>z. \<lbrakk>u \<le> z; z \<le> v\<rbrakk> \<Longrightarrow> isCont tan z"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5178
      by (metis arctan cos_gt_zero_pi isCont_tan less_irrefl)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5179
  qed (use u v in auto)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5180
  then show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5181
    by (simp add: arctan)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5182
qed
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5183
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  5184
lemma tendsto_arctan [tendsto_intros]: "(f \<longlongrightarrow> x) F \<Longrightarrow> ((\<lambda>x. arctan (f x)) \<longlongrightarrow> arctan x) F"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5185
  by (rule isCont_tendsto_compose [OF isCont_arctan])
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5186
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5187
lemma continuous_arctan [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. arctan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5188
  unfolding continuous_def by (rule tendsto_arctan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5189
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5190
lemma continuous_on_arctan [continuous_intros]:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5191
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. arctan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5192
  unfolding continuous_on_def by (auto intro: tendsto_arctan)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5193
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5194
lemma DERIV_arcsin:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5195
  assumes "- 1 < x" "x < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5196
  shows "DERIV arcsin x :> inverse (sqrt (1 - x\<^sup>2))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5197
proof (rule DERIV_inverse_function)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5198
  show "(sin has_real_derivative sqrt (1 - x\<^sup>2)) (at (arcsin x))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5199
    by (rule derivative_eq_intros | use assms cos_arcsin in force)+
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5200
  show "sqrt (1 - x\<^sup>2) \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5201
    using abs_square_eq_1 assms by force
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5202
qed (use assms isCont_arcsin in auto)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5203
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5204
lemma DERIV_arccos:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5205
  assumes "- 1 < x" "x < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5206
  shows "DERIV arccos x :> inverse (- sqrt (1 - x\<^sup>2))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5207
proof (rule DERIV_inverse_function)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5208
  show "(cos has_real_derivative - sqrt (1 - x\<^sup>2)) (at (arccos x))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5209
    by (rule derivative_eq_intros | use assms sin_arccos in force)+
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5210
  show "- sqrt (1 - x\<^sup>2) \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5211
    using abs_square_eq_1 assms by force
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5212
qed (use assms isCont_arccos in auto)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5213
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5214
lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x\<^sup>2)"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5215
proof (rule DERIV_inverse_function [where f=tan and a="x - 1" and b="x + 1"])
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5216
  show "(tan has_real_derivative 1 + x\<^sup>2) (at (arctan x))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5217
    apply (rule derivative_eq_intros | simp)+
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5218
    by (metis arctan cos_arctan_not_zero power_inverse tan_sec)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5219
  show "\<And>y. \<lbrakk>x - 1 < y; y < x + 1\<rbrakk> \<Longrightarrow> tan (arctan y) = y"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5220
    using tan_arctan by blast
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5221
  show "1 + x\<^sup>2 \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5222
    by (metis power_one sum_power2_eq_zero_iff zero_neq_one)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5223
qed (use isCont_arctan in auto)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5224
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  5225
declare
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  5226
  DERIV_arcsin[THEN DERIV_chain2, derivative_intros]
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61284
diff changeset
  5227
  DERIV_arcsin[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  5228
  DERIV_arccos[THEN DERIV_chain2, derivative_intros]
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61284
diff changeset
  5229
  DERIV_arccos[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  5230
  DERIV_arctan[THEN DERIV_chain2, derivative_intros]
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61284
diff changeset
  5231
  DERIV_arctan[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  5232
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5233
lemmas has_derivative_arctan[derivative_intros] = DERIV_arctan[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5234
  and has_derivative_arccos[derivative_intros] = DERIV_arccos[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5235
  and has_derivative_arcsin[derivative_intros] = DERIV_arcsin[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5236
61881
b4bfa62e799d Transcendental: use [simp]-canonical form - (pi/2)
hoelzl
parents: 61810
diff changeset
  5237
lemma filterlim_tan_at_right: "filterlim tan at_bot (at_right (- (pi/2)))"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5238
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5239
     (auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5240
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5241
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5242
lemma filterlim_tan_at_left: "filterlim tan at_top (at_left (pi/2))"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5243
  by (rule filterlim_at_top_at_left[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5244
     (auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5245
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5246
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  5247
lemma tendsto_arctan_at_top: "(arctan \<longlongrightarrow> (pi/2)) at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5248
proof (rule tendstoI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5249
  fix e :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5250
  assume "0 < e"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
  5251
  define y where "y = pi/2 - min (pi/2) e"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5252
  then have y: "0 \<le> y" "y < pi/2" "pi/2 \<le> e + y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5253
    using \<open>0 < e\<close> by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5254
  show "eventually (\<lambda>x. dist (arctan x) (pi/2) < e) at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5255
  proof (intro eventually_at_top_dense[THEN iffD2] exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5256
    fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5257
    assume "tan y < x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5258
    then have "arctan (tan y) < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5259
      by (simp add: arctan_less_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5260
    with y have "y < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5261
      by (subst (asm) arctan_tan) simp_all
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5262
    with arctan_ubound[of x, arith] y \<open>0 < e\<close>
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5263
    show "dist (arctan x) (pi/2) < e"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5264
      by (simp add: dist_real_def)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5265
  qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5266
qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5267
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  5268
lemma tendsto_arctan_at_bot: "(arctan \<longlongrightarrow> - (pi/2)) at_bot"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5269
  unfolding filterlim_at_bot_mirror arctan_minus
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5270
  by (intro tendsto_minus tendsto_arctan_at_top)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5271
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5272
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5273
subsection \<open>Prove Totality of the Trigonometric Functions\<close>
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5274
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5275
lemma cos_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> cos (arccos y) = y"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5276
  by (simp add: abs_le_iff)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5277
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5278
lemma sin_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> sin (arccos y) = sqrt (1 - y\<^sup>2)"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5279
  by (simp add: sin_arccos abs_le_iff)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5280
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5281
lemma sin_mono_less_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5282
  "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> - (pi/2) \<le> y \<Longrightarrow> y \<le> pi/2 \<Longrightarrow> sin x < sin y \<longleftrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5283
  by (metis not_less_iff_gr_or_eq sin_monotone_2pi)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5284
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5285
lemma sin_mono_le_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5286
  "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> - (pi/2) \<le> y \<Longrightarrow> y \<le> pi/2 \<Longrightarrow> sin x \<le> sin y \<longleftrightarrow> x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5287
  by (meson leD le_less_linear sin_monotone_2pi sin_monotone_2pi_le)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5288
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5289
lemma sin_inj_pi:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5290
  "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> - (pi/2) \<le> y \<Longrightarrow> y \<le> pi/2 \<Longrightarrow> sin x = sin y \<Longrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5291
  by (metis arcsin_sin)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5292
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5293
lemma cos_mono_less_eq: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> pi \<Longrightarrow> cos x < cos y \<longleftrightarrow> y < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5294
  by (meson cos_monotone_0_pi cos_monotone_0_pi_le leD le_less_linear)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5295
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5296
lemma cos_mono_le_eq: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> pi \<Longrightarrow> cos x \<le> cos y \<longleftrightarrow> y \<le> x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5297
  by (metis arccos_cos cos_monotone_0_pi_le eq_iff linear)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5298
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5299
lemma cos_inj_pi: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> pi \<Longrightarrow> cos x = cos y \<Longrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5300
  by (metis arccos_cos)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5301
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5302
lemma arccos_le_pi2: "\<lbrakk>0 \<le> y; y \<le> 1\<rbrakk> \<Longrightarrow> arccos y \<le> pi/2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5303
  by (metis (mono_tags) arccos_0 arccos cos_le_one cos_monotone_0_pi_le
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5304
      cos_pi cos_pi_half pi_half_ge_zero antisym_conv less_eq_neg_nonpos linear minus_minus order.trans order_refl)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5305
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5306
lemma sincos_total_pi_half:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5307
  assumes "0 \<le> x" "0 \<le> y" "x\<^sup>2 + y\<^sup>2 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5308
  shows "\<exists>t. 0 \<le> t \<and> t \<le> pi/2 \<and> x = cos t \<and> y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5309
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5310
  have x1: "x \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5311
    using assms by (metis le_add_same_cancel1 power2_le_imp_le power_one zero_le_power2)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5312
  with assms have *: "0 \<le> arccos x" "cos (arccos x) = x"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5313
    by (auto simp: arccos)
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  5314
  from assms have "y = sqrt (1 - x\<^sup>2)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5315
    by (metis abs_of_nonneg add.commute add_diff_cancel real_sqrt_abs)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5316
  with x1 * assms arccos_le_pi2 [of x] show ?thesis
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5317
    by (rule_tac x="arccos x" in exI) (auto simp: sin_arccos)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5318
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5319
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5320
lemma sincos_total_pi:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5321
  assumes "0 \<le> y" "x\<^sup>2 + y\<^sup>2 = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5322
  shows "\<exists>t. 0 \<le> t \<and> t \<le> pi \<and> x = cos t \<and> y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5323
proof (cases rule: le_cases [of 0 x])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5324
  case le
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5325
  from sincos_total_pi_half [OF le] show ?thesis
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5326
    by (metis pi_ge_two pi_half_le_two add.commute add_le_cancel_left add_mono assms)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5327
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5328
  case ge
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5329
  then have "0 \<le> -x"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5330
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5331
  then obtain t where t: "t\<ge>0" "t \<le> pi/2" "-x = cos t" "y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5332
    using sincos_total_pi_half assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5333
    by auto (metis \<open>0 \<le> - x\<close> power2_minus)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5334
  show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5335
    by (rule exI [where x = "pi -t"]) (use t in auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5336
qed
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5337
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5338
lemma sincos_total_2pi_le:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5339
  assumes "x\<^sup>2 + y\<^sup>2 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5340
  shows "\<exists>t. 0 \<le> t \<and> t \<le> 2 * pi \<and> x = cos t \<and> y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5341
proof (cases rule: le_cases [of 0 y])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5342
  case le
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5343
  from sincos_total_pi [OF le] show ?thesis
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5344
    by (metis assms le_add_same_cancel1 mult.commute mult_2_right order.trans)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5345
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5346
  case ge
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5347
  then have "0 \<le> -y"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5348
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5349
  then obtain t where t: "t\<ge>0" "t \<le> pi" "x = cos t" "-y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5350
    using sincos_total_pi assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5351
    by auto (metis \<open>0 \<le> - y\<close> power2_minus)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5352
  show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5353
    by (rule exI [where x = "2 * pi - t"]) (use t in auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5354
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5355
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5356
lemma sincos_total_2pi:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5357
  assumes "x\<^sup>2 + y\<^sup>2 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5358
  obtains t where "0 \<le> t" "t < 2*pi" "x = cos t" "y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5359
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5360
  from sincos_total_2pi_le [OF assms]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5361
  obtain t where t: "0 \<le> t" "t \<le> 2*pi" "x = cos t" "y = sin t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5362
    by blast
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5363
  show ?thesis
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5364
    by (cases "t = 2 * pi") (use t that in \<open>force+\<close>)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5365
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5366
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  5367
lemma arcsin_less_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arcsin x < arcsin y \<longleftrightarrow> x < y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5368
  by (rule trans [OF sin_mono_less_eq [symmetric]]) (use arcsin_ubound arcsin_lbound in auto)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5369
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  5370
lemma arcsin_le_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arcsin x \<le> arcsin y \<longleftrightarrow> x \<le> y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5371
  using arcsin_less_mono not_le by blast
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5372
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5373
lemma arcsin_less_arcsin: "- 1 \<le> x \<Longrightarrow> x < y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin x < arcsin y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5374
  using arcsin_less_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5375
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5376
lemma arcsin_le_arcsin: "- 1 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin x \<le> arcsin y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5377
  using arcsin_le_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5378
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5379
lemma arccos_less_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arccos x < arccos y \<longleftrightarrow> y < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5380
  by (rule trans [OF cos_mono_less_eq [symmetric]]) (use arccos_ubound arccos_lbound in auto)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5381
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  5382
lemma arccos_le_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arccos x \<le> arccos y \<longleftrightarrow> y \<le> x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5383
  using arccos_less_mono [of y x] by (simp add: not_le [symmetric])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5384
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5385
lemma arccos_less_arccos: "- 1 \<le> x \<Longrightarrow> x < y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y < arccos x"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5386
  using arccos_less_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5387
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5388
lemma arccos_le_arccos: "- 1 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y \<le> arccos x"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5389
  using arccos_le_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5390
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5391
lemma arccos_eq_iff: "\<bar>x\<bar> \<le> 1 \<and> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arccos x = arccos y \<longleftrightarrow> x = y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5392
  using cos_arccos_abs by fastforce
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5393
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5394
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5395
lemma arccos_cos_eq_abs:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5396
  assumes "\<bar>\<theta>\<bar> \<le> pi"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5397
  shows "arccos (cos \<theta>) = \<bar>\<theta>\<bar>"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5398
  unfolding arccos_def
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5399
proof (intro the_equality conjI; clarify?)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5400
  show "cos \<bar>\<theta>\<bar> = cos \<theta>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5401
    by (simp add: abs_real_def)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5402
  show "x = \<bar>\<theta>\<bar>" if "cos x = cos \<theta>" "0 \<le> x" "x \<le> pi" for x
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5403
    by (simp add: \<open>cos \<bar>\<theta>\<bar> = cos \<theta>\<close> assms cos_inj_pi that)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5404
qed (use assms in auto)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5405
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5406
lemma arccos_cos_eq_abs_2pi:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5407
  obtains k where "arccos (cos \<theta>) = \<bar>\<theta> - of_int k * (2 * pi)\<bar>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5408
proof -
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5409
  define k where "k \<equiv>  \<lfloor>(\<theta> + pi) / (2 * pi)\<rfloor>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5410
  have lepi: "\<bar>\<theta> - of_int k * (2 * pi)\<bar> \<le> pi"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5411
    using floor_divide_lower [of "2*pi" "\<theta> + pi"] floor_divide_upper [of "2*pi" "\<theta> + pi"]
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5412
    by (auto simp: k_def abs_if algebra_simps)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5413
  have "arccos (cos \<theta>) = arccos (cos (\<theta> - of_int k * (2 * pi)))"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5414
    using cos_int_2pin sin_int_2pin by (simp add: cos_diff mult.commute)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5415
  also have "\<dots> = \<bar>\<theta> - of_int k * (2 * pi)\<bar>"
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5416
    using arccos_cos_eq_abs lepi by blast
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5417
  finally show ?thesis
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5418
    using that by metis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5419
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5420
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5421
lemma cos_limit_1:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5422
  assumes "(\<lambda>j. cos (\<theta> j)) \<longlonglongrightarrow> 1"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5423
  shows "\<exists>k. (\<lambda>j. \<theta> j - of_int (k j) * (2 * pi)) \<longlonglongrightarrow> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5424
proof -
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5425
  have "\<forall>\<^sub>F j in sequentially. cos (\<theta> j) \<in> {- 1..1}"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5426
    by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5427
  then have "(\<lambda>j. arccos (cos (\<theta> j))) \<longlonglongrightarrow> arccos 1"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5428
    using continuous_on_tendsto_compose [OF continuous_on_arccos' assms] by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5429
  moreover have "\<And>j. \<exists>k. arccos (cos (\<theta> j)) = \<bar>\<theta> j - of_int k * (2 * pi)\<bar>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5430
    using arccos_cos_eq_abs_2pi by metis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5431
  then have "\<exists>k. \<forall>j. arccos (cos (\<theta> j)) = \<bar>\<theta> j - of_int (k j) * (2 * pi)\<bar>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5432
    by metis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5433
  ultimately have "\<exists>k. (\<lambda>j. \<bar>\<theta> j - of_int (k j) * (2 * pi)\<bar>) \<longlonglongrightarrow> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5434
    by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5435
  then show ?thesis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5436
    by (simp add: tendsto_rabs_zero_iff)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5437
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5438
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5439
lemma cos_diff_limit_1:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5440
  assumes "(\<lambda>j. cos (\<theta> j - \<Theta>)) \<longlonglongrightarrow> 1"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5441
  obtains k where "(\<lambda>j. \<theta> j - of_int (k j) * (2 * pi)) \<longlonglongrightarrow> \<Theta>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5442
proof -
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5443
  obtain k where "(\<lambda>j. (\<theta> j - \<Theta>) - of_int (k j) * (2 * pi)) \<longlonglongrightarrow> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5444
    using cos_limit_1 [OF assms] by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5445
  then have "(\<lambda>j. \<Theta> + ((\<theta> j - \<Theta>) - of_int (k j) * (2 * pi))) \<longlonglongrightarrow> \<Theta> + 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5446
    by (rule tendsto_add [OF tendsto_const])
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5447
  with that show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5448
    by auto
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5449
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5450
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5451
subsection \<open>Machin's formula\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5452
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5453
lemma arctan_one: "arctan 1 = pi / 4"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5454
  by (rule arctan_unique) (simp_all add: tan_45 m2pi_less_pi)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5455
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5456
lemma tan_total_pi4:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5457
  assumes "\<bar>x\<bar> < 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5458
  shows "\<exists>z. - (pi / 4) < z \<and> z < pi / 4 \<and> tan z = x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5459
proof
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5460
  show "- (pi / 4) < arctan x \<and> arctan x < pi / 4 \<and> tan (arctan x) = x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5461
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5462
    unfolding arctan_less_iff
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5463
    using assms by (auto simp: arctan)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5464
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5465
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5466
lemma arctan_add:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5467
  assumes "\<bar>x\<bar> \<le> 1" "\<bar>y\<bar> < 1"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5468
  shows "arctan x + arctan y = arctan ((x + y) / (1 - x * y))"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5469
proof (rule arctan_unique [symmetric])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5470
  have "- (pi / 4) \<le> arctan x" "- (pi / 4) < arctan y"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5471
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5472
    unfolding arctan_le_iff arctan_less_iff
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5473
    using assms by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5474
  from add_le_less_mono [OF this] show 1: "- (pi/2) < arctan x + arctan y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5475
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5476
  have "arctan x \<le> pi / 4" "arctan y < pi / 4"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5477
    unfolding arctan_one [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5478
    unfolding arctan_le_iff arctan_less_iff
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5479
    using assms by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5480
  from add_le_less_mono [OF this] show 2: "arctan x + arctan y < pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5481
    by simp
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5482
  show "tan (arctan x + arctan y) = (x + y) / (1 - x * y)"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5483
    using cos_gt_zero_pi [OF 1 2] by (simp add: arctan tan_add)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5484
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5485
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5486
lemma arctan_double: "\<bar>x\<bar> < 1 \<Longrightarrow> 2 * arctan x = arctan ((2 * x) / (1 - x\<^sup>2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5487
  by (metis arctan_add linear mult_2 not_less power2_eq_square)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5488
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5489
theorem machin: "pi / 4 = 4 * arctan (1 / 5) - arctan (1 / 239)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5490
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5491
  have "\<bar>1 / 5\<bar> < (1 :: real)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5492
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5493
  from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (1 / 5) = arctan (5 / 12)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5494
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5495
  moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5496
  have "\<bar>5 / 12\<bar> < (1 :: real)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5497
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5498
  from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (5 / 12) = arctan (120 / 119)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5499
    by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5500
  moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5501
  have "\<bar>1\<bar> \<le> (1::real)" and "\<bar>1 / 239\<bar> < (1::real)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5502
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5503
  from arctan_add[OF this] have "arctan 1 + arctan (1 / 239) = arctan (120 / 119)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5504
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5505
  ultimately have "arctan 1 + arctan (1 / 239) = 4 * arctan (1 / 5)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5506
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5507
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5508
    unfolding arctan_one by algebra
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5509
qed
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5510
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5511
lemma machin_Euler: "5 * arctan (1 / 7) + 2 * arctan (3 / 79) = pi / 4"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5512
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5513
  have 17: "\<bar>1 / 7\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5514
  with arctan_double have "2 * arctan (1 / 7) = arctan (7 / 24)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  5515
    by simp (simp add: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5516
  moreover
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5517
  have "\<bar>7 / 24\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5518
  with arctan_double have "2 * arctan (7 / 24) = arctan (336 / 527)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5519
    by simp (simp add: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5520
  moreover
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5521
  have "\<bar>336 / 527\<bar> < (1 :: real)" by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5522
  from arctan_add[OF less_imp_le[OF 17] this]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5523
  have "arctan(1/7) + arctan (336 / 527) = arctan (2879 / 3353)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5524
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5525
  ultimately have I: "5 * arctan (1 / 7) = arctan (2879 / 3353)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5526
  have 379: "\<bar>3 / 79\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5527
  with arctan_double have II: "2 * arctan (3 / 79) = arctan (237 / 3116)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5528
    by simp (simp add: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5529
  have *: "\<bar>2879 / 3353\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5530
  have "\<bar>237 / 3116\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5531
  from arctan_add[OF less_imp_le[OF *] this] have "arctan (2879/3353) + arctan (237/3116) = pi/4"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5532
    by (simp add: arctan_one)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5533
  with I II show ?thesis by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5534
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5535
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5536
(*But could also prove MACHIN_GAUSS:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5537
  12 * arctan(1/18) + 8 * arctan(1/57) - 5 * arctan(1/239) = pi/4*)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5538
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5539
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5540
subsection \<open>Introducing the inverse tangent power series\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5541
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5542
lemma monoseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5543
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5544
  assumes "\<bar>x\<bar> \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5545
  shows "monoseq (\<lambda>n. 1 / real (n * 2 + 1) * x^(n * 2 + 1))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5546
    (is "monoseq ?a")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5547
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5548
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5549
  then show ?thesis by (auto simp: monoseq_def)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5550
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5551
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5552
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5553
    using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5554
  show "monoseq ?a"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5555
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5556
    have mono: "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<le>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5557
        1 / real (Suc (n * 2)) * x ^ Suc (n * 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5558
      if "0 \<le> x" and "x \<le> 1" for n and x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5559
    proof (rule mult_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5560
      show "1 / real (Suc (Suc n * 2)) \<le> 1 / real (Suc (n * 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5561
        by (rule frac_le) simp_all
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5562
      show "0 \<le> 1 / real (Suc (n * 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5563
        by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5564
      show "x ^ Suc (Suc n * 2) \<le> x ^ Suc (n * 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5565
        by (rule power_decreasing) (simp_all add: \<open>0 \<le> x\<close> \<open>x \<le> 1\<close>)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5566
      show "0 \<le> x ^ Suc (Suc n * 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5567
        by (rule zero_le_power) (simp add: \<open>0 \<le> x\<close>)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5568
    qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5569
    show ?thesis
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5570
    proof (cases "0 \<le> x")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5571
      case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5572
      from mono[OF this \<open>x \<le> 1\<close>, THEN allI]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5573
      show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5574
        unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI2)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5575
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5576
      case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5577
      then have "0 \<le> - x" and "- x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5578
        using \<open>-1 \<le> x\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5579
      from mono[OF this]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5580
      have "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<ge>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5581
          1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5582
        using \<open>0 \<le> -x\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5583
      then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5584
        unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI1[OF allI])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5585
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5586
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5587
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5588
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5589
lemma zeroseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5590
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5591
  assumes "\<bar>x\<bar> \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5592
  shows "(\<lambda>n. 1 / real (n * 2 + 1) * x^(n * 2 + 1)) \<longlonglongrightarrow> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5593
    (is "?a \<longlonglongrightarrow> 0")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5594
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5595
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5596
  then show ?thesis by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5597
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5598
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5599
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5600
    using assms by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5601
  show "?a \<longlonglongrightarrow> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5602
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5603
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5604
    then have "norm x < 1" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5605
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_power_zero[OF \<open>norm x < 1\<close>, THEN LIMSEQ_Suc]]
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5606
    have "(\<lambda>n. 1 / real (n + 1) * x ^ (n + 1)) \<longlonglongrightarrow> 0"
31790
05c92381363c corrected and unified thm names
nipkow
parents: 31338
diff changeset
  5607
      unfolding inverse_eq_divide Suc_eq_plus1 by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5608
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5609
      using pos2 by (rule LIMSEQ_linear)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5610
  next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5611
    case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5612
    then have "x = -1 \<or> x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5613
      using \<open>\<bar>x\<bar> \<le> 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5614
    then have n_eq: "\<And> n. x ^ (n * 2 + 1) = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5615
      unfolding One_nat_def by auto
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  5616
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat[THEN LIMSEQ_linear, OF pos2, unfolded inverse_eq_divide] tendsto_const[of x]]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5617
    show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5618
      unfolding n_eq Suc_eq_plus1 by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5619
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5620
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5621
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5622
lemma summable_arctan_series:
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  5623
  fixes n :: nat
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5624
  assumes "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5625
  shows "summable (\<lambda> k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5626
    (is "summable (?c x)")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5627
  by (rule summable_Leibniz(1),
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5628
      rule zeroseq_arctan_series[OF assms],
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5629
      rule monoseq_arctan_series[OF assms])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5630
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5631
lemma DERIV_arctan_series:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5632
  assumes "\<bar>x\<bar> < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5633
  shows "DERIV (\<lambda>x'. \<Sum>k. (-1)^k * (1 / real (k * 2 + 1) * x' ^ (k * 2 + 1))) x :>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5634
      (\<Sum>k. (-1)^k * x^(k * 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5635
    (is "DERIV ?arctan _ :> ?Int")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5636
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5637
  let ?f = "\<lambda>n. if even n then (-1)^(n div 2) * 1 / real (Suc n) else 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5638
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5639
  have n_even: "even n \<Longrightarrow> 2 * (n div 2) = n" for n :: nat
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5640
    by presburger
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5641
  then have if_eq: "?f n * real (Suc n) * x'^n =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5642
      (if even n then (-1)^(n div 2) * x'^(2 * (n div 2)) else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5643
    for n x'
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5644
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5645
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5646
  have summable_Integral: "summable (\<lambda> n. (- 1) ^ n * x^(2 * n))" if "\<bar>x\<bar> < 1" for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5647
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5648
    from that have "x\<^sup>2 < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5649
      by (simp add: abs_square_less_1)
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5650
    have "summable (\<lambda> n. (- 1) ^ n * (x\<^sup>2) ^n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5651
      by (rule summable_Leibniz(1))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5652
        (auto intro!: LIMSEQ_realpow_zero monoseq_realpow \<open>x\<^sup>2 < 1\<close> order_less_imp_le[OF \<open>x\<^sup>2 < 1\<close>])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5653
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5654
      by (simp only: power_mult)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5655
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5656
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67268
diff changeset
  5657
  have sums_even: "(sums) f = (sums) (\<lambda> n. if even n then f (n div 2) else 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5658
    for f :: "nat \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5659
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5660
    have "f sums x = (\<lambda> n. if even n then f (n div 2) else 0) sums x" for x :: real
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5661
    proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5662
      assume "f sums x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5663
      from sums_if[OF sums_zero this] show "(\<lambda>n. if even n then f (n div 2) else 0) sums x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5664
        by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5665
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5666
      assume "(\<lambda> n. if even n then f (n div 2) else 0) sums x"
63170
eae6549dbea2 tuned proofs, to allow unfold_abs_def;
wenzelm
parents: 63145
diff changeset
  5667
      from LIMSEQ_linear[OF this[simplified sums_def] pos2, simplified sum_split_even_odd[simplified mult.commute]]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5668
      show "f sums x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5669
        unfolding sums_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5670
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5671
    then show ?thesis ..
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5672
  qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5673
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5674
  have Int_eq: "(\<Sum>n. ?f n * real (Suc n) * x^n) = ?Int"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5675
    unfolding if_eq mult.commute[of _ 2]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5676
      suminf_def sums_even[of "\<lambda> n. (- 1) ^ n * x ^ (2 * n)", symmetric]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5677
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5678
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5679
  have arctan_eq: "(\<Sum>n. ?f n * x^(Suc n)) = ?arctan x" for x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5680
  proof -
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5681
    have if_eq': "\<And>n. (if even n then (- 1) ^ (n div 2) * 1 / real (Suc n) else 0) * x ^ Suc n =
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5682
      (if even n then (- 1) ^ (n div 2) * (1 / real (Suc (2 * (n div 2))) * x ^ Suc (2 * (n div 2))) else 0)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5683
      using n_even by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5684
    have idx_eq: "\<And>n. n * 2 + 1 = Suc (2 * n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5685
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5686
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5687
      unfolding if_eq' idx_eq suminf_def
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5688
        sums_even[of "\<lambda> n. (- 1) ^ n * (1 / real (Suc (2 * n)) * x ^ Suc (2 * n))", symmetric]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5689
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5690
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5691
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5692
  have "DERIV (\<lambda> x. \<Sum> n. ?f n * x^(Suc n)) x :> (\<Sum>n. ?f n * real (Suc n) * x^n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5693
  proof (rule DERIV_power_series')
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5694
    show "x \<in> {- 1 <..< 1}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5695
      using \<open>\<bar> x \<bar> < 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5696
    show "summable (\<lambda> n. ?f n * real (Suc n) * x'^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5697
      if x'_bounds: "x' \<in> {- 1 <..< 1}" for x' :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5698
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5699
      from that have "\<bar>x'\<bar> < 1" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5700
      then have *: "summable (\<lambda>n. (- 1) ^ n * x' ^ (2 * n))"
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5701
        by (rule summable_Integral)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5702
      show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5703
        unfolding if_eq
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5704
        apply (rule sums_summable [where l="0 + (\<Sum>n. (-1)^n * x'^(2 * n))"])
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5705
        apply (rule sums_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5706
         apply (rule sums_zero)
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5707
        apply (rule summable_sums)
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5708
        apply (rule *)
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  5709
        done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5710
    qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5711
  qed auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5712
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5713
    by (simp only: Int_eq arctan_eq)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5714
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5715
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5716
lemma arctan_series:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5717
  assumes "\<bar>x\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5718
  shows "arctan x = (\<Sum>k. (-1)^k * (1 / real (k * 2 + 1) * x ^ (k * 2 + 1)))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5719
    (is "_ = suminf (\<lambda> n. ?c x n)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5720
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5721
  let ?c' = "\<lambda>x n. (-1)^n * x^(n*2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5722
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5723
  have DERIV_arctan_suminf: "DERIV (\<lambda> x. suminf (?c x)) x :> (suminf (?c' x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5724
    if "0 < r" and "r < 1" and "\<bar>x\<bar> < r" for r x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5725
  proof (rule DERIV_arctan_series)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5726
    from that show "\<bar>x\<bar> < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5727
      using \<open>r < 1\<close> and \<open>\<bar>x\<bar> < r\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5728
  qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5729
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5730
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5731
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5732
    assume "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5733
    note summable_Leibniz[OF zeroseq_arctan_series[OF this] monoseq_arctan_series[OF this]]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5734
  } note arctan_series_borders = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5735
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5736
  have when_less_one: "arctan x = (\<Sum>k. ?c x k)" if "\<bar>x\<bar> < 1" for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5737
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5738
    obtain r where "\<bar>x\<bar> < r" and "r < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5739
      using dense[OF \<open>\<bar>x\<bar> < 1\<close>] by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5740
    then have "0 < r" and "- r < x" and "x < r" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5741
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5742
    have suminf_eq_arctan_bounded: "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5743
      if "-r < a" and "b < r" and "a < b" and "a \<le> x" and "x \<le> b" for x a b
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5744
    proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5745
      from that have "\<bar>x\<bar> < r" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5746
      show "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5747
      proof (rule DERIV_isconst2[of "a" "b"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5748
        show "a < b" and "a \<le> x" and "x \<le> b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5749
          using \<open>a < b\<close> \<open>a \<le> x\<close> \<open>x \<le> b\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5750
        have "\<forall>x. - r < x \<and> x < r \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5751
        proof (rule allI, rule impI)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5752
          fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5753
          assume "-r < x \<and> x < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5754
          then have "\<bar>x\<bar> < r" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5755
          with \<open>r < 1\<close> have "\<bar>x\<bar> < 1" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5756
          have "\<bar>- (x\<^sup>2)\<bar> < 1" using abs_square_less_1 \<open>\<bar>x\<bar> < 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5757
          then have "(\<lambda>n. (- (x\<^sup>2)) ^ n) sums (1 / (1 - (- (x\<^sup>2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5758
            unfolding real_norm_def[symmetric] by (rule geometric_sums)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5759
          then have "(?c' x) sums (1 / (1 - (- (x\<^sup>2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5760
            unfolding power_mult_distrib[symmetric] power_mult mult.commute[of _ 2] by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5761
          then have suminf_c'_eq_geom: "inverse (1 + x\<^sup>2) = suminf (?c' x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5762
            using sums_unique unfolding inverse_eq_divide by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5763
          have "DERIV (\<lambda> x. suminf (?c x)) x :> (inverse (1 + x\<^sup>2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5764
            unfolding suminf_c'_eq_geom
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5765
            by (rule DERIV_arctan_suminf[OF \<open>0 < r\<close> \<open>r < 1\<close> \<open>\<bar>x\<bar> < r\<close>])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5766
          from DERIV_diff [OF this DERIV_arctan] show "DERIV (\<lambda>x. suminf (?c x) - arctan x) x :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5767
            by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5768
        qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5769
        then have DERIV_in_rball: "\<forall>y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda>x. suminf (?c x) - arctan x) y :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5770
          using \<open>-r < a\<close> \<open>b < r\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5771
        then show "\<forall>y. a < y \<and> y < b \<longrightarrow> DERIV (\<lambda>x. suminf (?c x) - arctan x) y :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5772
          using \<open>\<bar>x\<bar> < r\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5773
        show "\<forall>y. a \<le> y \<and> y \<le> b \<longrightarrow> isCont (\<lambda>x. suminf (?c x) - arctan x) y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5774
          using DERIV_in_rball DERIV_isCont by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5775
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5776
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5777
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5778
    have suminf_arctan_zero: "suminf (?c 0) - arctan 0 = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5779
      unfolding Suc_eq_plus1[symmetric] power_Suc2 mult_zero_right arctan_zero_zero suminf_zero
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5780
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5781
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5782
    have "suminf (?c x) - arctan x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5783
    proof (cases "x = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5784
      case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5785
      then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5786
        using suminf_arctan_zero by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5787
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5788
      case False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5789
      then have "0 < \<bar>x\<bar>" and "- \<bar>x\<bar> < \<bar>x\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5790
        by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5791
      have "suminf (?c (- \<bar>x\<bar>)) - arctan (- \<bar>x\<bar>) = suminf (?c 0) - arctan 0"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5792
        by (rule suminf_eq_arctan_bounded[where x1=0 and a1="-\<bar>x\<bar>" and b1="\<bar>x\<bar>", symmetric])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5793
          (simp_all only: \<open>\<bar>x\<bar> < r\<close> \<open>-\<bar>x\<bar> < \<bar>x\<bar>\<close> neg_less_iff_less)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5794
      moreover
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5795
      have "suminf (?c x) - arctan x = suminf (?c (- \<bar>x\<bar>)) - arctan (- \<bar>x\<bar>)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5796
        by (rule suminf_eq_arctan_bounded[where x1=x and a1="- \<bar>x\<bar>" and b1="\<bar>x\<bar>"])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5797
           (simp_all only: \<open>\<bar>x\<bar> < r\<close> \<open>- \<bar>x\<bar> < \<bar>x\<bar>\<close> neg_less_iff_less)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5798
      ultimately show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5799
        using suminf_arctan_zero by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5800
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5801
    then show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5802
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5803
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5804
  show "arctan x = suminf (\<lambda>n. ?c x n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5805
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5806
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5807
    then show ?thesis by (rule when_less_one)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5808
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5809
    case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5810
    then have "\<bar>x\<bar> = 1" using \<open>\<bar>x\<bar> \<le> 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5811
    let ?a = "\<lambda>x n. \<bar>1 / real (n * 2 + 1) * x^(n * 2 + 1)\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5812
    let ?diff = "\<lambda>x n. \<bar>arctan x - (\<Sum>i<n. ?c x i)\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5813
    have "?diff 1 n \<le> ?a 1 n" for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5814
    proof -
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5815
      have "0 < (1 :: real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5816
      moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5817
      have "?diff x n \<le> ?a x n" if "0 < x" and "x < 1" for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5818
      proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5819
        from that have "\<bar>x\<bar> \<le> 1" and "\<bar>x\<bar> < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5820
          by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5821
        from \<open>0 < x\<close> have "0 < 1 / real (0 * 2 + (1::nat)) * x ^ (0 * 2 + 1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5822
          by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5823
        note bounds = mp[OF arctan_series_borders(2)[OF \<open>\<bar>x\<bar> \<le> 1\<close>] this, unfolded when_less_one[OF \<open>\<bar>x\<bar> < 1\<close>, symmetric], THEN spec]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5824
        have "0 < 1 / real (n*2+1) * x^(n*2+1)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5825
          by (rule mult_pos_pos) (simp_all only: zero_less_power[OF \<open>0 < x\<close>], auto)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5826
        then have a_pos: "?a x n = 1 / real (n*2+1) * x^(n*2+1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5827
          by (rule abs_of_pos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5828
        show ?thesis
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5829
        proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5830
          case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5831
          then have sgn_pos: "(-1)^n = (1::real)" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5832
          from \<open>even n\<close> obtain m where "n = 2 * m" ..
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  5833
          then have "2 * m = n" ..
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5834
          from bounds[of m, unfolded this atLeastAtMost_iff]
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  5835
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n + 1. (?c x i)) - (\<Sum>i<n. (?c x i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5836
            by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5837
          also have "\<dots> = ?c x n" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5838
          also have "\<dots> = ?a x n" unfolding sgn_pos a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5839
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5840
        next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5841
          case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5842
          then have sgn_neg: "(-1)^n = (-1::real)" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5843
          from \<open>odd n\<close> obtain m where "n = 2 * m + 1" ..
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  5844
          then have m_def: "2 * m + 1 = n" ..
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5845
          then have m_plus: "2 * (m + 1) = n + 1" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5846
          from bounds[of "m + 1", unfolded this atLeastAtMost_iff, THEN conjunct1] bounds[of m, unfolded m_def atLeastAtMost_iff, THEN conjunct2]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5847
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n. (?c x i)) - (\<Sum>i<n+1. (?c x i))" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5848
          also have "\<dots> = - ?c x n" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5849
          also have "\<dots> = ?a x n" unfolding sgn_neg a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5850
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  5851
        qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5852
      qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5853
      hence "\<forall>x \<in> { 0 <..< 1 }. 0 \<le> ?a x n - ?diff x n" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5854
      moreover have "isCont (\<lambda> x. ?a x n - ?diff x n) x" for x
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  5855
        unfolding diff_conv_add_uminus divide_inverse
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5856
        by (auto intro!: isCont_add isCont_rabs continuous_ident isCont_minus isCont_arctan
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5857
          continuous_at_within_inverse isCont_mult isCont_power continuous_const isCont_sum
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  5858
          simp del: add_uminus_conv_diff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5859
      ultimately have "0 \<le> ?a 1 n - ?diff 1 n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5860
        by (rule LIM_less_bound)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5861
      then show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5862
    qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5863
    have "?a 1 \<longlonglongrightarrow> 0"
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  5864
      unfolding tendsto_rabs_zero_iff power_one divide_inverse One_nat_def
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5865
      by (auto intro!: tendsto_mult LIMSEQ_linear LIMSEQ_inverse_real_of_nat simp del: of_nat_Suc)
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5866
    have "?diff 1 \<longlonglongrightarrow> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5867
    proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5868
      fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5869
      assume "0 < r"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5870
      obtain N :: nat where N_I: "N \<le> n \<Longrightarrow> ?a 1 n < r" for n
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5871
        using LIMSEQ_D[OF \<open>?a 1 \<longlonglongrightarrow> 0\<close> \<open>0 < r\<close>] by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5872
      have "norm (?diff 1 n - 0) < r" if "N \<le> n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5873
        using \<open>?diff 1 n \<le> ?a 1 n\<close> N_I[OF that] by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5874
      then show "\<exists>N. \<forall> n \<ge> N. norm (?diff 1 n - 0) < r" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5875
    qed
44710
9caf6883f1f4 remove redundant lemmas about LIMSEQ
huffman
parents: 44568
diff changeset
  5876
    from this [unfolded tendsto_rabs_zero_iff, THEN tendsto_add [OF _ tendsto_const], of "- arctan 1", THEN tendsto_minus]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5877
    have "(?c 1) sums (arctan 1)" unfolding sums_def by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5878
    then have "arctan 1 = (\<Sum>i. ?c 1 i)" by (rule sums_unique)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5879
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5880
    show ?thesis
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5881
    proof (cases "x = 1")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5882
      case True
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5883
      then show ?thesis by (simp add: \<open>arctan 1 = (\<Sum> i. ?c 1 i)\<close>)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5884
    next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5885
      case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5886
      then have "x = -1" using \<open>\<bar>x\<bar> = 1\<close> by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5887
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5888
      have "- (pi/2) < 0" using pi_gt_zero by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5889
      have "- (2 * pi) < 0" using pi_gt_zero by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5890
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5891
      have c_minus_minus: "?c (- 1) i = - ?c 1 i" for i by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5892
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5893
      have "arctan (- 1) = arctan (tan (-(pi / 4)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5894
        unfolding tan_45 tan_minus ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5895
      also have "\<dots> = - (pi / 4)"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5896
        by (rule arctan_tan) (auto simp: order_less_trans[OF \<open>- (pi/2) < 0\<close> pi_gt_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5897
      also have "\<dots> = - (arctan (tan (pi / 4)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5898
        unfolding neg_equal_iff_equal
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5899
        by (rule arctan_tan[symmetric]) (auto simp: order_less_trans[OF \<open>- (2 * pi) < 0\<close> pi_gt_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5900
      also have "\<dots> = - (arctan 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5901
        unfolding tan_45 ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5902
      also have "\<dots> = - (\<Sum> i. ?c 1 i)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5903
        using \<open>arctan 1 = (\<Sum> i. ?c 1 i)\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5904
      also have "\<dots> = (\<Sum> i. ?c (- 1) i)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5905
        using suminf_minus[OF sums_summable[OF \<open>(?c 1) sums (arctan 1)\<close>]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5906
        unfolding c_minus_minus by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5907
      finally show ?thesis using \<open>x = -1\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5908
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5909
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5910
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5911
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5912
lemma arctan_half: "arctan x = 2 * arctan (x / (1 + sqrt(1 + x\<^sup>2)))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5913
  for x :: real
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5914
proof -
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5915
  obtain y where low: "- (pi/2) < y" and high: "y < pi/2" and y_eq: "tan y = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5916
    using tan_total by blast
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5917
  then have low2: "- (pi/2) < y / 2" and high2: "y / 2 < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5918
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5919
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5920
  have "0 < cos y" by (rule cos_gt_zero_pi[OF low high])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5921
  then have "cos y \<noteq> 0" and cos_sqrt: "sqrt ((cos y)\<^sup>2) = cos y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5922
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5923
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5924
  have "1 + (tan y)\<^sup>2 = 1 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5925
    unfolding tan_def power_divide ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5926
  also have "\<dots> = (cos y)\<^sup>2 / (cos y)\<^sup>2 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5927
    using \<open>cos y \<noteq> 0\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5928
  also have "\<dots> = 1 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5929
    unfolding add_divide_distrib[symmetric] sin_cos_squared_add2 ..
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  5930
  finally have "1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5931
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5932
  have "sin y / (cos y + 1) = tan y / ((cos y + 1) / cos y)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5933
    unfolding tan_def using \<open>cos y \<noteq> 0\<close> by (simp add: field_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5934
  also have "\<dots> = tan y / (1 + 1 / cos y)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5935
    using \<open>cos y \<noteq> 0\<close> unfolding add_divide_distrib by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5936
  also have "\<dots> = tan y / (1 + 1 / sqrt ((cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5937
    unfolding cos_sqrt ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5938
  also have "\<dots> = tan y / (1 + sqrt (1 / (cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5939
    unfolding real_sqrt_divide by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5940
  finally have eq: "sin y / (cos y + 1) = tan y / (1 + sqrt(1 + (tan y)\<^sup>2))"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5941
    unfolding \<open>1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2\<close> .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5942
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5943
  have "arctan x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5944
    using arctan_tan low high y_eq by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5945
  also have "\<dots> = 2 * (arctan (tan (y/2)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5946
    using arctan_tan[OF low2 high2] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5947
  also have "\<dots> = 2 * (arctan (sin y / (cos y + 1)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5948
    unfolding tan_half by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5949
  finally show ?thesis
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5950
    unfolding eq \<open>tan y = x\<close> .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5951
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5952
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5953
lemma arctan_monotone: "x < y \<Longrightarrow> arctan x < arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5954
  by (simp only: arctan_less_iff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5955
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5956
lemma arctan_monotone': "x \<le> y \<Longrightarrow> arctan x \<le> arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5957
  by (simp only: arctan_le_iff)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5958
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5959
lemma arctan_inverse:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5960
  assumes "x \<noteq> 0"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5961
  shows "arctan (1 / x) = sgn x * pi/2 - arctan x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5962
proof (rule arctan_unique)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5963
  show "- (pi/2) < sgn x * pi/2 - arctan x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5964
    using arctan_bounded [of x] assms
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5965
    unfolding sgn_real_def
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5966
    apply (auto simp: arctan algebra_simps)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5967
    apply (drule zero_less_arctan_iff [THEN iffD2], arith)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5968
    done
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5969
  show "sgn x * pi/2 - arctan x < pi/2"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5970
    using arctan_bounded [of "- x"] assms
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5971
    unfolding sgn_real_def arctan_minus
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5972
    by (auto simp: algebra_simps)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5973
  show "tan (sgn x * pi/2 - arctan x) = 1 / x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5974
    unfolding tan_inverse [of "arctan x", unfolded tan_arctan]
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5975
    unfolding sgn_real_def
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  5976
    by (simp add: tan_def cos_arctan sin_arctan sin_diff cos_diff)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5977
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5978
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5979
theorem pi_series: "pi / 4 = (\<Sum>k. (-1)^k * 1 / real (k * 2 + 1))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5980
  (is "_ = ?SUM")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5981
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5982
  have "pi / 4 = arctan 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5983
    using arctan_one by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5984
  also have "\<dots> = ?SUM"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5985
    using arctan_series[of 1] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5986
  finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5987
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5988
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5989
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5990
subsection \<open>Existence of Polar Coordinates\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5991
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5992
lemma cos_x_y_le_one: "\<bar>x / sqrt (x\<^sup>2 + y\<^sup>2)\<bar> \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5993
  by (rule power2_le_imp_le [OF _ zero_le_one])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5994
    (simp add: power_divide divide_le_eq not_sum_power2_lt_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5995
22978
1cd8cc21a7c3 clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents: 22977
diff changeset
  5996
lemmas cos_arccos_lemma1 = cos_arccos_abs [OF cos_x_y_le_one]
15228
4d332d10fa3d revised simprules for division
paulson
parents: 15140
diff changeset
  5997
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5998
lemmas sin_arccos_lemma1 = sin_arccos_abs [OF cos_x_y_le_one]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5999
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6000
lemma polar_Ex: "\<exists>r::real. \<exists>a. x = r * cos a \<and> y = r * sin a"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6001
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6002
  have polar_ex1: "0 < y \<Longrightarrow> \<exists>r a. x = r * cos a \<and> y = r * sin a" for y
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6003
    apply (rule exI [where x = "sqrt (x\<^sup>2 + y\<^sup>2)"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6004
    apply (rule exI [where x = "arccos (x / sqrt (x\<^sup>2 + y\<^sup>2))"])
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6005
    apply (simp add: cos_arccos_lemma1 sin_arccos_lemma1 power_divide
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6006
        real_sqrt_mult [symmetric] right_diff_distrib)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6007
    done
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6008
  show ?thesis
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6009
  proof (cases "0::real" y rule: linorder_cases)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  6010
    case less
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6011
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6012
      by (rule polar_ex1)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6013
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6014
    case equal
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6015
    then show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6016
      by (force simp: intro!: cos_zero sin_zero)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6017
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6018
    case greater
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6019
    with polar_ex1 [where y="-y"] show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6020
      by auto (metis cos_minus minus_minus minus_mult_right sin_minus)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6021
  qed
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6022
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  6023
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6024
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6025
subsection \<open>Basics about polynomial functions: products, extremal behaviour and root counts\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6026
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6027
lemma pairs_le_eq_Sigma: "{(i, j). i + j \<le> m} = Sigma (atMost m) (\<lambda>r. atMost (m - r))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6028
  for m :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6029
  by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6030
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6031
lemma sum_up_index_split: "(\<Sum>k\<le>m + n. f k) = (\<Sum>k\<le>m. f k) + (\<Sum>k = Suc m..m + n. f k)"
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6032
  by (metis atLeast0AtMost Suc_eq_plus1 le0 sum_ub_add_nat)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6033
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6034
lemma Sigma_interval_disjoint: "(SIGMA i:A. {..v i}) \<inter> (SIGMA i:A.{v i<..w}) = {}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6035
  for w :: "'a::order"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6036
  by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6037
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6038
lemma product_atMost_eq_Un: "A \<times> {..m} = (SIGMA i:A.{..m - i}) \<union> (SIGMA i:A.{m - i<..m})"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6039
  for m :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6040
  by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6041
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6042
lemma polynomial_product: (*with thanks to Chaitanya Mangla*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6043
  fixes x :: "'a::idom"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6044
  assumes m: "\<And>i. i > m \<Longrightarrow> a i = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6045
    and n: "\<And>j. j > n \<Longrightarrow> b j = 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  6046
  shows "(\<Sum>i\<le>m. (a i) * x ^ i) * (\<Sum>j\<le>n. (b j) * x ^ j) =
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6047
    (\<Sum>r\<le>m + n. (\<Sum>k\<le>r. (a k) * (b (r - k))) * x ^ r)"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6048
proof -
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6049
  have "(\<Sum>i\<le>m. (a i) * x ^ i) * (\<Sum>j\<le>n. (b j) * x ^ j) = (\<Sum>i\<le>m. \<Sum>j\<le>n. (a i * x ^ i) * (b j * x ^ j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6050
    by (rule sum_product)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6051
  also have "\<dots> = (\<Sum>i\<le>m + n. \<Sum>j\<le>n + m. a i * x ^ i * (b j * x ^ j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6052
    using assms by (auto simp: sum_up_index_split)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6053
  also have "\<dots> = (\<Sum>r\<le>m + n. \<Sum>j\<le>m + n - r. a r * x ^ r * (b j * x ^ j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6054
    apply (simp add: add_ac sum.Sigma product_atMost_eq_Un)
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6055
    apply (clarsimp simp add: sum_Un Sigma_interval_disjoint intro!: sum.neutral)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6056
    apply (metis add_diff_assoc2 add.commute add_lessD1 leD m n nat_le_linear neqE)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6057
    done
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6058
  also have "\<dots> = (\<Sum>(i,j)\<in>{(i,j). i+j \<le> m+n}. (a i * x ^ i) * (b j * x ^ j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6059
    by (auto simp: pairs_le_eq_Sigma sum.Sigma)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6060
  also have "\<dots> = (\<Sum>r\<le>m + n. (\<Sum>k\<le>r. (a k) * (b (r - k))) * x ^ r)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6061
    apply (subst sum_triangle_reindex_eq)
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6062
    apply (auto simp: algebra_simps sum_distrib_left intro!: sum.cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6063
    apply (metis le_add_diff_inverse power_add)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6064
    done
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6065
  finally show ?thesis .
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6066
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6067
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  6068
lemma polynomial_product_nat:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6069
  fixes x :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6070
  assumes m: "\<And>i. i > m \<Longrightarrow> a i = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6071
    and n: "\<And>j. j > n \<Longrightarrow> b j = 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  6072
  shows "(\<Sum>i\<le>m. (a i) * x ^ i) * (\<Sum>j\<le>n. (b j) * x ^ j) =
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6073
    (\<Sum>r\<le>m + n. (\<Sum>k\<le>r. (a k) * (b (r - k))) * x ^ r)"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6074
  using polynomial_product [of m a n b x] assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6075
  by (simp only: of_nat_mult [symmetric] of_nat_power [symmetric]
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6076
      of_nat_eq_iff Int.int_sum [symmetric])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6077
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6078
lemma polyfun_diff: (*COMPLEX_SUB_POLYFUN in HOL Light*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6079
  fixes x :: "'a::idom"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6080
  assumes "1 \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6081
  shows "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6082
    (x - y) * (\<Sum>j<n. (\<Sum>i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6083
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6084
  have h: "bij_betw (\<lambda>(i,j). (j,i)) ((SIGMA i : atMost n. lessThan i)) (SIGMA j : lessThan n. {Suc j..n})"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6085
    by (auto simp: bij_betw_def inj_on_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6086
  have "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) = (\<Sum>i\<le>n. a i * (x^i - y^i))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6087
    by (simp add: right_diff_distrib sum_subtractf)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6088
  also have "\<dots> = (\<Sum>i\<le>n. a i * (x - y) * (\<Sum>j<i. y^(i - Suc j) * x^j))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6089
    by (simp add: power_diff_sumr2 mult.assoc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6090
  also have "\<dots> = (\<Sum>i\<le>n. \<Sum>j<i. a i * (x - y) * (y^(i - Suc j) * x^j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6091
    by (simp add: sum_distrib_left)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6092
  also have "\<dots> = (\<Sum>(i,j) \<in> (SIGMA i : atMost n. lessThan i). a i * (x - y) * (y^(i - Suc j) * x^j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6093
    by (simp add: sum.Sigma)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6094
  also have "\<dots> = (\<Sum>(j,i) \<in> (SIGMA j : lessThan n. {Suc j..n}). a i * (x - y) * (y^(i - Suc j) * x^j))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6095
    by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.strong_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6096
  also have "\<dots> = (\<Sum>j<n. \<Sum>i=Suc j..n. a i * (x - y) * (y^(i - Suc j) * x^j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6097
    by (simp add: sum.Sigma)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6098
  also have "\<dots> = (x - y) * (\<Sum>j<n. (\<Sum>i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6099
    by (simp add: sum_distrib_left mult_ac)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6100
  finally show ?thesis .
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6101
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6102
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6103
lemma polyfun_diff_alt: (*COMPLEX_SUB_POLYFUN_ALT in HOL Light*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6104
  fixes x :: "'a::idom"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6105
  assumes "1 \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6106
  shows "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6107
    (x - y) * ((\<Sum>j<n. \<Sum>k<n-j. a(j + k + 1) * y^k * x^j))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6108
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6109
  have "(\<Sum>i=Suc j..n. a i * y^(i - j - 1)) = (\<Sum>k<n-j. a(j+k+1) * y^k)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6110
    if "j < n" for j :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6111
  proof -
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6112
    have h: "bij_betw (\<lambda>i. i - (j + 1)) {Suc j..n} (lessThan (n-j))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6113
      apply (auto simp: bij_betw_def inj_on_def)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6114
      apply (rule_tac x="x + Suc j" in image_eqI, auto)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6115
      done
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6116
    then show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6117
      by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.strong_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6118
  qed
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6119
  then show ?thesis
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6120
    by (simp add: polyfun_diff [OF assms] sum_distrib_right)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6121
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6122
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6123
lemma polyfun_linear_factor:  (*COMPLEX_POLYFUN_LINEAR_FACTOR in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6124
  fixes a :: "'a::idom"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6125
  shows "\<exists>b. \<forall>z. (\<Sum>i\<le>n. c(i) * z^i) = (z - a) * (\<Sum>i<n. b(i) * z^i) + (\<Sum>i\<le>n. c(i) * a^i)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6126
proof (cases "n = 0")
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6127
  case True then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6128
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6129
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6130
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6131
  have "(\<exists>b. \<forall>z. (\<Sum>i\<le>n. c i * z^i) = (z - a) * (\<Sum>i<n. b i * z^i) + (\<Sum>i\<le>n. c i * a^i)) \<longleftrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6132
        (\<exists>b. \<forall>z. (\<Sum>i\<le>n. c i * z^i) - (\<Sum>i\<le>n. c i * a^i) = (z - a) * (\<Sum>i<n. b i * z^i))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6133
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6134
  also have "\<dots> \<longleftrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6135
    (\<exists>b. \<forall>z. (z - a) * (\<Sum>j<n. (\<Sum>i = Suc j..n. c i * a^(i - Suc j)) * z^j) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6136
      (z - a) * (\<Sum>i<n. b i * z^i))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6137
    using False by (simp add: polyfun_diff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6138
  also have "\<dots> = True" by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6139
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6140
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6141
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6142
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6143
lemma polyfun_linear_factor_root:  (*COMPLEX_POLYFUN_LINEAR_FACTOR_ROOT in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6144
  fixes a :: "'a::idom"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6145
  assumes "(\<Sum>i\<le>n. c(i) * a^i) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6146
  obtains b where "\<And>z. (\<Sum>i\<le>n. c i * z^i) = (z - a) * (\<Sum>i<n. b i * z^i)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6147
  using polyfun_linear_factor [of c n a] assms by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6148
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6149
(*The material of this section, up until this point, could go into a new theory of polynomials
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6150
  based on Main alone. The remaining material involves limits, continuity, series, etc.*)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6151
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6152
lemma isCont_polynom: "isCont (\<lambda>w. \<Sum>i\<le>n. c i * w^i) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6153
  for c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6154
  by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6155
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6156
lemma zero_polynom_imp_zero_coeffs:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6157
  fixes c :: "nat \<Rightarrow> 'a::{ab_semigroup_mult,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6158
  assumes "\<And>w. (\<Sum>i\<le>n. c i * w^i) = 0"  "k \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6159
  shows "c k = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6160
  using assms
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6161
proof (induction n arbitrary: c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6162
  case 0
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6163
  then show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6164
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6165
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6166
  case (Suc n c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6167
  have [simp]: "c 0 = 0" using Suc.prems(1) [of 0]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6168
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6169
  have "(\<Sum>i\<le>Suc n. c i * w^i) = w * (\<Sum>i\<le>n. c (Suc i) * w^i)" for w
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6170
  proof -
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6171
    have "(\<Sum>i\<le>Suc n. c i * w^i) = (\<Sum>i\<le>n. c (Suc i) * w ^ Suc i)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6172
      unfolding Set_Interval.sum_atMost_Suc_shift
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6173
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6174
    also have "\<dots> = w * (\<Sum>i\<le>n. c (Suc i) * w^i)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6175
      by (simp add: sum_distrib_left ac_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6176
    finally show ?thesis .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6177
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6178
  then have w: "\<And>w. w \<noteq> 0 \<Longrightarrow> (\<Sum>i\<le>n. c (Suc i) * w^i) = 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6179
    using Suc  by auto
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  6180
  then have "(\<lambda>h. \<Sum>i\<le>n. c (Suc i) * h^i) \<midarrow>0\<rightarrow> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6181
    by (simp cong: LIM_cong)  \<comment> \<open>the case \<open>w = 0\<close> by continuity\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6182
  then have "(\<Sum>i\<le>n. c (Suc i) * 0^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6183
    using isCont_polynom [of 0 "\<lambda>i. c (Suc i)" n] LIM_unique
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6184
    by (force simp: Limits.isCont_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6185
  then have "\<And>w. (\<Sum>i\<le>n. c (Suc i) * w^i) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6186
    using w by metis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6187
  then have "\<And>i. i \<le> n \<Longrightarrow> c (Suc i) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6188
    using Suc.IH [of "\<lambda>i. c (Suc i)"] by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6189
  then show ?case using \<open>k \<le> Suc n\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6190
    by (cases k) auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6191
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6192
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6193
lemma polyfun_rootbound: (*COMPLEX_POLYFUN_ROOTBOUND in HOL Light*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6194
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6195
  assumes "c k \<noteq> 0" "k\<le>n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6196
  shows "finite {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<and> card {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<le> n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6197
  using assms
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6198
proof (induction n arbitrary: c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6199
  case 0
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6200
  then show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6201
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6202
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6203
  case (Suc m c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6204
  let ?succase = ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6205
  show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6206
  proof (cases "{z. (\<Sum>i\<le>Suc m. c(i) * z^i) = 0} = {}")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6207
    case True
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6208
    then show ?succase
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6209
      by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6210
  next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6211
    case False
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6212
    then obtain z0 where z0: "(\<Sum>i\<le>Suc m. c(i) * z0^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6213
      by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6214
    then obtain b where b: "\<And>w. (\<Sum>i\<le>Suc m. c i * w^i) = (w - z0) * (\<Sum>i\<le>m. b i * w^i)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6215
      using polyfun_linear_factor_root [OF z0, unfolded lessThan_Suc_atMost]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6216
      by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6217
    then have eq: "{z. (\<Sum>i\<le>Suc m. c i * z^i) = 0} = insert z0 {z. (\<Sum>i\<le>m. b i * z^i) = 0}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6218
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6219
    have "\<not> (\<forall>k\<le>m. b k = 0)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6220
    proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6221
      assume [simp]: "\<forall>k\<le>m. b k = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6222
      then have "\<And>w. (\<Sum>i\<le>m. b i * w^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6223
        by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6224
      then have "\<And>w. (\<Sum>i\<le>Suc m. c i * w^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6225
        using b by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6226
      then have "\<And>k. k \<le> Suc m \<Longrightarrow> c k = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6227
        using zero_polynom_imp_zero_coeffs by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6228
      then show False using Suc.prems by blast
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6229
    qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6230
    then obtain k' where bk': "b k' \<noteq> 0" "k' \<le> m"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6231
      by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6232
    show ?succase
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6233
      using Suc.IH [of b k'] bk'
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6234
      by (simp add: eq card_insert_if del: sum_atMost_Suc)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6235
    qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6236
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6237
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6238
lemma
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6239
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6240
  assumes "c k \<noteq> 0" "k\<le>n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6241
  shows polyfun_roots_finite: "finite {z. (\<Sum>i\<le>n. c(i) * z^i) = 0}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6242
    and polyfun_roots_card: "card {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<le> n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6243
  using polyfun_rootbound assms by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6244
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6245
lemma polyfun_finite_roots: (*COMPLEX_POLYFUN_FINITE_ROOTS in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6246
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6247
  shows "finite {x. (\<Sum>i\<le>n. c i * x^i) = 0} \<longleftrightarrow> (\<exists>i\<le>n. c i \<noteq> 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6248
    (is "?lhs = ?rhs")
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6249
proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6250
  assume ?lhs
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6251
  moreover have "\<not> finite {x. (\<Sum>i\<le>n. c i * x^i) = 0}" if "\<forall>i\<le>n. c i = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6252
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6253
    from that have "\<And>x. (\<Sum>i\<le>n. c i * x^i) = 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6254
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6255
    then show ?thesis
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6256
      using ex_new_if_finite [OF infinite_UNIV_char_0 [where 'a='a]]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6257
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6258
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6259
  ultimately show ?rhs by metis
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6260
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6261
  assume ?rhs
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6262
  with polyfun_rootbound show ?lhs by blast
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6263
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6264
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6265
lemma polyfun_eq_0: "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = 0) \<longleftrightarrow> (\<forall>i\<le>n. c i = 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6266
  for c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6267
  (*COMPLEX_POLYFUN_EQ_0 in HOL Light*)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6268
  using zero_polynom_imp_zero_coeffs by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6269
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6270
lemma polyfun_eq_coeffs: "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = (\<Sum>i\<le>n. d i * x^i)) \<longleftrightarrow> (\<forall>i\<le>n. c i = d i)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6271
  for c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6272
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6273
  have "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = (\<Sum>i\<le>n. d i * x^i)) \<longleftrightarrow> (\<forall>x. (\<Sum>i\<le>n. (c i - d i) * x^i) = 0)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6274
    by (simp add: left_diff_distrib Groups_Big.sum_subtractf)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6275
  also have "\<dots> \<longleftrightarrow> (\<forall>i\<le>n. c i - d i = 0)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6276
    by (rule polyfun_eq_0)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6277
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6278
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6279
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6280
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6281
lemma polyfun_eq_const: (*COMPLEX_POLYFUN_EQ_CONST in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6282
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6283
  shows "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = k) \<longleftrightarrow> c 0 = k \<and> (\<forall>i \<in> {1..n}. c i = 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6284
    (is "?lhs = ?rhs")
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6285
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6286
  have *: "\<forall>x. (\<Sum>i\<le>n. (if i=0 then k else 0) * x^i) = k"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6287
    by (induct n) auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6288
  show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6289
  proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6290
    assume ?lhs
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6291
    with * have "(\<forall>i\<le>n. c i = (if i=0 then k else 0))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6292
      by (simp add: polyfun_eq_coeffs [symmetric])
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6293
    then show ?rhs by simp
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6294
  next
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6295
    assume ?rhs
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6296
    then show ?lhs by (induct n) auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6297
  qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6298
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6299
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6300
lemma root_polyfun:
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6301
  fixes z :: "'a::idom"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6302
  assumes "1 \<le> n"
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6303
  shows "z^n = a \<longleftrightarrow> (\<Sum>i\<le>n. (if i = 0 then -a else if i=n then 1 else 0) * z^i) = 0"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6304
  using assms by (cases n) (simp_all add: sum_head_Suc atLeast0AtMost [symmetric])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6305
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6306
lemma
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6307
  assumes "SORT_CONSTRAINT('a::{idom,real_normed_div_algebra})"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6308
    and "1 \<le> n"
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6309
  shows finite_roots_unity: "finite {z::'a. z^n = 1}"
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6310
    and card_roots_unity: "card {z::'a. z^n = 1} \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6311
  using polyfun_rootbound [of "\<lambda>i. if i = 0 then -1 else if i=n then 1 else 0" n n] assms(2)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6312
  by (auto simp: root_polyfun [OF assms(2)])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6313
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  6314
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6315
subsection \<open>Hyperbolic functions\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6316
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6317
definition sinh :: "'a :: {banach, real_normed_algebra_1} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6318
  "sinh x = (exp x - exp (-x)) /\<^sub>R 2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6319
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6320
definition cosh :: "'a :: {banach, real_normed_algebra_1} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6321
  "cosh x = (exp x + exp (-x)) /\<^sub>R 2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6322
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6323
definition tanh :: "'a :: {banach, real_normed_field} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6324
  "tanh x = sinh x / cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6325
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6326
definition arsinh :: "'a :: {banach, real_normed_algebra_1, ln} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6327
  "arsinh x = ln (x + (x^2 + 1) powr of_real (1/2))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6328
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6329
definition arcosh :: "'a :: {banach, real_normed_algebra_1, ln} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6330
  "arcosh x = ln (x + (x^2 - 1) powr of_real (1/2))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6331
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6332
definition artanh :: "'a :: {banach, real_normed_field, ln} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6333
  "artanh x = ln ((1 + x) / (1 - x)) / 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6334
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6335
lemma arsinh_0 [simp]: "arsinh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6336
  by (simp add: arsinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6337
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6338
lemma arcosh_1 [simp]: "arcosh 1 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6339
  by (simp add: arcosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6340
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6341
lemma artanh_0 [simp]: "artanh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6342
  by (simp add: artanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6343
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6344
lemma tanh_altdef:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6345
  "tanh x = (exp x - exp (-x)) / (exp x + exp (-x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6346
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6347
  have "tanh x = (2 *\<^sub>R sinh x) / (2 *\<^sub>R cosh x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6348
    by (simp add: tanh_def scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6349
  also have "2 *\<^sub>R sinh x = exp x - exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6350
    by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6351
  also have "2 *\<^sub>R cosh x = exp x + exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6352
    by (simp add: cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6353
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6354
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6355
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6356
lemma tanh_real_altdef: "tanh (x::real) = (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6357
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6358
  have [simp]: "exp (2 * x) = exp x * exp x" "exp (x * 2) = exp x * exp x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6359
    by (subst exp_add [symmetric]; simp)+
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6360
  have "tanh x = (2 * exp (-x) * sinh x) / (2 * exp (-x) * cosh x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6361
    by (simp add: tanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6362
  also have "2 * exp (-x) * sinh x = 1 - exp (-2*x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6363
    by (simp add: exp_minus field_simps sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6364
  also have "2 * exp (-x) * cosh x = 1 + exp (-2*x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6365
    by (simp add: exp_minus field_simps cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6366
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6367
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6368
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6369
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6370
lemma sinh_converges: "(\<lambda>n. if even n then 0 else x ^ n /\<^sub>R fact n) sums sinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6371
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6372
  have "(\<lambda>n. (x ^ n /\<^sub>R fact n - (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) sums sinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6373
    unfolding sinh_def by (intro sums_scaleR_right sums_diff exp_converges)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6374
  also have "(\<lambda>n. (x ^ n /\<^sub>R fact n - (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) =
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6375
               (\<lambda>n. if even n then 0 else x ^ n /\<^sub>R fact n)" by auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6376
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6377
qed
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6378
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6379
lemma cosh_converges: "(\<lambda>n. if even n then x ^ n /\<^sub>R fact n else 0) sums cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6380
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6381
  have "(\<lambda>n. (x ^ n /\<^sub>R fact n + (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) sums cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6382
    unfolding cosh_def by (intro sums_scaleR_right sums_add exp_converges)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6383
  also have "(\<lambda>n. (x ^ n /\<^sub>R fact n + (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) =
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6384
               (\<lambda>n. if even n then x ^ n /\<^sub>R fact n else 0)" by auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6385
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6386
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6387
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6388
lemma sinh_0 [simp]: "sinh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6389
  by (simp add: sinh_def)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6390
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6391
lemma cosh_0 [simp]: "cosh 0 = 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6392
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6393
  have "cosh 0 = (1/2) *\<^sub>R (1 + 1)" by (simp add: cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6394
  also have "\<dots> = 1" by (rule scaleR_half_double)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6395
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6396
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6397
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6398
lemma tanh_0 [simp]: "tanh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6399
  by (simp add: tanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6400
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6401
lemma sinh_minus [simp]: "sinh (- x) = -sinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6402
  by (simp add: sinh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6403
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6404
lemma cosh_minus [simp]: "cosh (- x) = cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6405
  by (simp add: cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6406
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6407
lemma tanh_minus [simp]: "tanh (-x) = -tanh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6408
  by (simp add: tanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6409
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6410
lemma sinh_ln_real: "x > 0 \<Longrightarrow> sinh (ln x :: real) = (x - inverse x) / 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6411
  by (simp add: sinh_def exp_minus)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6412
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6413
lemma cosh_ln_real: "x > 0 \<Longrightarrow> cosh (ln x :: real) = (x + inverse x) / 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6414
  by (simp add: cosh_def exp_minus)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6415
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6416
lemma tanh_ln_real: "x > 0 \<Longrightarrow> tanh (ln x :: real) = (x ^ 2 - 1) / (x ^ 2 + 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6417
  by (simp add: tanh_def sinh_ln_real cosh_ln_real divide_simps power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6418
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6419
lemma has_field_derivative_scaleR_right [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6420
  "(f has_field_derivative D) F \<Longrightarrow> ((\<lambda>x. c *\<^sub>R f x) has_field_derivative (c *\<^sub>R D)) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6421
  unfolding has_field_derivative_def
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6422
  using has_derivative_scaleR_right[of f "\<lambda>x. D * x" F c]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6423
  by (simp add: mult_scaleR_left [symmetric] del: mult_scaleR_left)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6424
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6425
lemma has_field_derivative_sinh [THEN DERIV_chain2, derivative_intros]:
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6426
  "(sinh has_field_derivative cosh x) (at (x :: 'a :: {banach, real_normed_field}))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6427
  unfolding sinh_def cosh_def by (auto intro!: derivative_eq_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6428
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6429
lemma has_field_derivative_cosh [THEN DERIV_chain2, derivative_intros]:
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6430
  "(cosh has_field_derivative sinh x) (at (x :: 'a :: {banach, real_normed_field}))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6431
  unfolding sinh_def cosh_def by (auto intro!: derivative_eq_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6432
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6433
lemma has_field_derivative_tanh [THEN DERIV_chain2, derivative_intros]:
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6434
  "cosh x \<noteq> 0 \<Longrightarrow> (tanh has_field_derivative 1 - tanh x ^ 2)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6435
                     (at (x :: 'a :: {banach, real_normed_field}))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6436
  unfolding tanh_def by (auto intro!: derivative_eq_intros simp: power2_eq_square divide_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6437
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6438
lemma has_derivative_sinh [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6439
  fixes g :: "'a \<Rightarrow> ('a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6440
  assumes "(g has_derivative (\<lambda>x. Db * x)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6441
  shows   "((\<lambda>x. sinh (g x)) has_derivative (\<lambda>y. (cosh (g x) * Db) * y)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6442
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6443
  have "((\<lambda>x. - g x) has_derivative (\<lambda>y. -(Db * y))) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6444
    using assms by (intro derivative_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6445
  also have "(\<lambda>y. -(Db * y)) = (\<lambda>x. (-Db) * x)" by (simp add: fun_eq_iff)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6446
  finally have "((\<lambda>x. sinh (g x)) has_derivative
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6447
    (\<lambda>y. (exp (g x) * Db * y - exp (-g x) * (-Db) * y) /\<^sub>R 2)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6448
    unfolding sinh_def by (intro derivative_intros assms)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6449
  also have "(\<lambda>y. (exp (g x) * Db * y - exp (-g x) * (-Db) * y) /\<^sub>R 2) = (\<lambda>y. (cosh (g x) * Db) * y)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6450
    by (simp add: fun_eq_iff cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6451
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6452
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6453
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6454
lemma has_derivative_cosh [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6455
  fixes g :: "'a \<Rightarrow> ('a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6456
  assumes "(g has_derivative (\<lambda>y. Db * y)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6457
  shows   "((\<lambda>x. cosh (g x)) has_derivative (\<lambda>y. (sinh (g x) * Db) * y)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6458
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6459
  have "((\<lambda>x. - g x) has_derivative (\<lambda>y. -(Db * y))) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6460
    using assms by (intro derivative_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6461
  also have "(\<lambda>y. -(Db * y)) = (\<lambda>y. (-Db) * y)" by (simp add: fun_eq_iff)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6462
  finally have "((\<lambda>x. cosh (g x)) has_derivative
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6463
    (\<lambda>y. (exp (g x) * Db * y + exp (-g x) * (-Db) * y) /\<^sub>R 2)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6464
    unfolding cosh_def by (intro derivative_intros assms)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6465
  also have "(\<lambda>y. (exp (g x) * Db * y + exp (-g x) * (-Db) * y) /\<^sub>R 2) = (\<lambda>y. (sinh (g x) * Db) * y)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6466
    by (simp add: fun_eq_iff sinh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6467
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6468
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6469
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6470
lemma sinh_plus_cosh: "sinh x + cosh x = exp x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6471
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6472
  have "sinh x + cosh x = (1 / 2) *\<^sub>R (exp x + exp x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6473
    by (simp add: sinh_def cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6474
  also have "\<dots> = exp x" by (rule scaleR_half_double)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6475
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6476
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6477
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6478
lemma cosh_plus_sinh: "cosh x + sinh x = exp x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6479
  by (subst add.commute) (rule sinh_plus_cosh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6480
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6481
lemma cosh_minus_sinh: "cosh x - sinh x = exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6482
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6483
  have "cosh x - sinh x = (1 / 2) *\<^sub>R (exp (-x) + exp (-x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6484
    by (simp add: sinh_def cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6485
  also have "\<dots> = exp (-x)" by (rule scaleR_half_double)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6486
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6487
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6488
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6489
lemma sinh_minus_cosh: "sinh x - cosh x = -exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6490
  using cosh_minus_sinh[of x] by (simp add: algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6491
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6492
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6493
context
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6494
  fixes x :: "'a :: {real_normed_field, banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6495
begin
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6496
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6497
lemma sinh_zero_iff: "sinh x = 0 \<longleftrightarrow> exp x \<in> {1, -1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6498
  by (auto simp: sinh_def field_simps exp_minus power2_eq_square square_eq_1_iff)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6499
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6500
lemma cosh_zero_iff: "cosh x = 0 \<longleftrightarrow> exp x ^ 2 = -1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6501
  by (auto simp: cosh_def exp_minus field_simps power2_eq_square eq_neg_iff_add_eq_0)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6502
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6503
lemma cosh_square_eq: "cosh x ^ 2 = sinh x ^ 2 + 1"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6504
  by (simp add: cosh_def sinh_def algebra_simps power2_eq_square exp_add [symmetric]
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6505
                scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6506
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6507
lemma sinh_square_eq: "sinh x ^ 2 = cosh x ^ 2 - 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6508
  by (simp add: cosh_square_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6509
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6510
lemma hyperbolic_pythagoras: "cosh x ^ 2 - sinh x ^ 2 = 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6511
  by (simp add: cosh_square_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6512
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6513
lemma sinh_add: "sinh (x + y) = sinh x * cosh y + cosh x * sinh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6514
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6515
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6516
lemma sinh_diff: "sinh (x - y) = sinh x * cosh y - cosh x * sinh y"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6517
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6518
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6519
lemma cosh_add: "cosh (x + y) = cosh x * cosh y + sinh x * sinh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6520
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6521
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6522
lemma cosh_diff: "cosh (x - y) = cosh x * cosh y - sinh x * sinh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6523
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6524
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6525
lemma tanh_add:
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6526
  "cosh x \<noteq> 0 \<Longrightarrow> cosh y \<noteq> 0 \<Longrightarrow> tanh (x + y) = (tanh x + tanh y) / (1 + tanh x * tanh y)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6527
  by (simp add: tanh_def sinh_add cosh_add divide_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6528
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6529
lemma sinh_double: "sinh (2 * x) = 2 * sinh x * cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6530
  using sinh_add[of x] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6531
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6532
lemma cosh_double: "cosh (2 * x) = cosh x ^ 2 + sinh x ^ 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6533
  using cosh_add[of x] by (simp add: power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6534
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6535
end
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6536
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6537
lemma sinh_field_def: "sinh z = (exp z - exp (-z)) / (2 :: 'a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6538
  by (simp add: sinh_def scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6539
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6540
lemma cosh_field_def: "cosh z = (exp z + exp (-z)) / (2 :: 'a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6541
  by (simp add: cosh_def scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6542
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6543
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6544
subsubsection \<open>More specific properties of the real functions\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6545
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6546
lemma sinh_real_zero_iff [simp]: "sinh (x::real) = 0 \<longleftrightarrow> x = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6547
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6548
  have "(-1 :: real) < 0" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6549
  also have "0 < exp x" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6550
  finally have "exp x \<noteq> -1" by (intro notI) simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6551
  thus ?thesis by (subst sinh_zero_iff) simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6552
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6553
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6554
lemma plus_inverse_ge_2:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6555
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6556
  assumes "x > 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6557
  shows   "x + inverse x \<ge> 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6558
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6559
  have "0 \<le> (x - 1) ^ 2" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6560
  also have "\<dots> = x^2 - 2*x + 1" by (simp add: power2_eq_square algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6561
  finally show ?thesis using assms by (simp add: field_simps power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6562
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6563
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6564
lemma sinh_real_nonneg_iff [simp]: "sinh (x :: real) \<ge> 0 \<longleftrightarrow> x \<ge> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6565
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6566
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6567
lemma sinh_real_pos_iff [simp]: "sinh (x :: real) > 0 \<longleftrightarrow> x > 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6568
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6569
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6570
lemma sinh_real_nonpos_iff [simp]: "sinh (x :: real) \<le> 0 \<longleftrightarrow> x \<le> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6571
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6572
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6573
lemma sinh_real_neg_iff [simp]: "sinh (x :: real) < 0 \<longleftrightarrow> x < 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6574
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6575
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6576
lemma cosh_real_ge_1: "cosh (x :: real) \<ge> 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6577
  using plus_inverse_ge_2[of "exp x"] by (simp add: cosh_def exp_minus)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6578
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6579
lemma cosh_real_pos [simp]: "cosh (x :: real) > 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6580
  using cosh_real_ge_1[of x] by simp
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6581
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6582
lemma cosh_real_nonneg[simp]: "cosh (x :: real) \<ge> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6583
  using cosh_real_ge_1[of x] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6584
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6585
lemma cosh_real_nonzero [simp]: "cosh (x :: real) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6586
  using cosh_real_ge_1[of x] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6587
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6588
lemma tanh_real_nonneg_iff [simp]: "tanh (x :: real) \<ge> 0 \<longleftrightarrow> x \<ge> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6589
  by (simp add: tanh_def field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6590
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6591
lemma tanh_real_pos_iff [simp]: "tanh (x :: real) > 0 \<longleftrightarrow> x > 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6592
  by (simp add: tanh_def field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6593
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6594
lemma tanh_real_nonpos_iff [simp]: "tanh (x :: real) \<le> 0 \<longleftrightarrow> x \<le> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6595
  by (simp add: tanh_def field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6596
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6597
lemma tanh_real_neg_iff [simp]: "tanh (x :: real) < 0 \<longleftrightarrow> x < 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6598
  by (simp add: tanh_def field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6599
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6600
lemma tanh_real_zero_iff [simp]: "tanh (x :: real) = 0 \<longleftrightarrow> x = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6601
  by (simp add: tanh_def field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6602
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6603
lemma arsinh_real_def: "arsinh (x::real) = ln (x + sqrt (x^2 + 1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6604
  by (simp add: arsinh_def powr_half_sqrt)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6605
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6606
lemma arcosh_real_def: "x \<ge> 1 \<Longrightarrow> arcosh (x::real) = ln (x + sqrt (x^2 - 1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6607
  by (simp add: arcosh_def powr_half_sqrt)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6608
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6609
lemma arsinh_real_aux: "0 < x + sqrt (x ^ 2 + 1 :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6610
proof (cases "x < 0")
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6611
  case True
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6612
  have "(-x) ^ 2 = x ^ 2" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6613
  also have "x ^ 2 < x ^ 2 + 1" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6614
  finally have "sqrt ((-x) ^ 2) < sqrt (x ^ 2 + 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6615
    by (rule real_sqrt_less_mono)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6616
  thus ?thesis using True by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6617
qed (auto simp: add_nonneg_pos)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6618
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6619
lemma arsinh_minus_real [simp]: "arsinh (-x::real) = -arsinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6620
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6621
  have "arsinh (-x) = ln (sqrt (x\<^sup>2 + 1) - x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6622
    by (simp add: arsinh_real_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6623
  also have "sqrt (x^2 + 1) - x = inverse (sqrt (x^2 + 1) + x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6624
    using arsinh_real_aux[of x] by (simp add: divide_simps algebra_simps power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6625
  also have "ln \<dots> = -arsinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6626
    using arsinh_real_aux[of x] by (simp add: arsinh_real_def ln_inverse)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6627
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6628
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6629
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6630
lemma artanh_minus_real [simp]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6631
  assumes "abs x < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6632
  shows   "artanh (-x::real) = -artanh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6633
  using assms by (simp add: artanh_def ln_div field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6634
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6635
lemma sinh_less_cosh_real: "sinh (x :: real) < cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6636
  by (simp add: sinh_def cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6637
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6638
lemma sinh_le_cosh_real: "sinh (x :: real) \<le> cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6639
  by (simp add: sinh_def cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6640
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6641
lemma tanh_real_lt_1: "tanh (x :: real) < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6642
  by (simp add: tanh_def sinh_less_cosh_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6643
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6644
lemma tanh_real_gt_neg1: "tanh (x :: real) > -1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6645
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6646
  have "- cosh x < sinh x" by (simp add: sinh_def cosh_def divide_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6647
  thus ?thesis by (simp add: tanh_def field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6648
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6649
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6650
lemma tanh_real_bounds: "tanh (x :: real) \<in> {-1<..<1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6651
  using tanh_real_lt_1 tanh_real_gt_neg1 by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6652
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6653
context
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6654
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6655
begin
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6656
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6657
lemma arsinh_sinh_real: "arsinh (sinh x) = x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6658
  by (simp add: arsinh_real_def powr_def sinh_square_eq sinh_plus_cosh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6659
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6660
lemma arcosh_cosh_real: "x \<ge> 0 \<Longrightarrow> arcosh (cosh x) = x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6661
  by (simp add: arcosh_real_def powr_def cosh_square_eq cosh_real_ge_1 cosh_plus_sinh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6662
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6663
lemma artanh_tanh_real: "artanh (tanh x) = x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6664
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6665
  have "artanh (tanh x) = ln (cosh x * (cosh x + sinh x) / (cosh x * (cosh x - sinh x))) / 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6666
    by (simp add: artanh_def tanh_def divide_simps)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6667
  also have "cosh x * (cosh x + sinh x) / (cosh x * (cosh x - sinh x)) =
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6668
               (cosh x + sinh x) / (cosh x - sinh x)" by simp
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6669
  also have "\<dots> = (exp x)^2"
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6670
    by (simp add: cosh_plus_sinh cosh_minus_sinh exp_minus field_simps power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6671
  also have "ln ((exp x)^2) / 2 = x" by (simp add: ln_realpow)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6672
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6673
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6674
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6675
end
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6676
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6677
lemma sinh_real_strict_mono: "strict_mono (sinh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6678
  by (rule pos_deriv_imp_strict_mono derivative_intros)+ auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6679
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6680
lemma cosh_real_strict_mono:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6681
  assumes "0 \<le> x" and "x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6682
  shows   "cosh x < cosh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6683
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6684
  from assms have "\<exists>z>x. z < y \<and> cosh y - cosh x = (y - x) * sinh z"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6685
    by (intro MVT2) (auto dest: connectedD_interval intro!: derivative_eq_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6686
  then obtain z where z: "z > x" "z < y" "cosh y - cosh x = (y - x) * sinh z" by blast
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6687
  note \<open>cosh y - cosh x = (y - x) * sinh z\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6688
  also from \<open>z > x\<close> and assms have "(y - x) * sinh z > 0" by (intro mult_pos_pos) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6689
  finally show "cosh x < cosh y" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6690
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6691
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6692
lemma tanh_real_strict_mono: "strict_mono (tanh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6693
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6694
  have *: "tanh x ^ 2 < 1" for x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6695
    using tanh_real_bounds[of x] by (simp add: abs_square_less_1 abs_if)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6696
  show ?thesis
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6697
    by (rule pos_deriv_imp_strict_mono) (insert *, auto intro!: derivative_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6698
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6699
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6700
lemma sinh_real_abs [simp]: "sinh (abs x :: real) = abs (sinh x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6701
  by (simp add: abs_if)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6702
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6703
lemma cosh_real_abs [simp]: "cosh (abs x :: real) = cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6704
  by (simp add: abs_if)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6705
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6706
lemma tanh_real_abs [simp]: "tanh (abs x :: real) = abs (tanh x)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6707
  by (auto simp: abs_if)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6708
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6709
lemma sinh_real_eq_iff [simp]: "sinh x = sinh y \<longleftrightarrow> x = (y :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6710
  using sinh_real_strict_mono by (simp add: strict_mono_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6711
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6712
lemma tanh_real_eq_iff [simp]: "tanh x = tanh y \<longleftrightarrow> x = (y :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6713
  using tanh_real_strict_mono by (simp add: strict_mono_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6714
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6715
lemma cosh_real_eq_iff [simp]: "cosh x = cosh y \<longleftrightarrow> abs x = abs (y :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6716
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6717
  have "cosh x = cosh y \<longleftrightarrow> x = y" if "x \<ge> 0" "y \<ge> 0" for x y :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6718
    using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x] that
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6719
    by (cases x y rule: linorder_cases) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6720
  from this[of "abs x" "abs y"] show ?thesis by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6721
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6722
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6723
lemma sinh_real_le_iff [simp]: "sinh x \<le> sinh y \<longleftrightarrow> x \<le> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6724
  using sinh_real_strict_mono by (simp add: strict_mono_less_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6725
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6726
lemma cosh_real_nonneg_le_iff: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> cosh x \<le> cosh y \<longleftrightarrow> x \<le> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6727
  using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6728
  by (cases x y rule: linorder_cases) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6729
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6730
lemma cosh_real_nonpos_le_iff: "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> cosh x \<le> cosh y \<longleftrightarrow> x \<ge> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6731
  using cosh_real_nonneg_le_iff[of "-x" "-y"] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6732
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6733
lemma tanh_real_le_iff [simp]: "tanh x \<le> tanh y \<longleftrightarrow> x \<le> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6734
  using tanh_real_strict_mono by (simp add: strict_mono_less_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6735
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6736
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6737
lemma sinh_real_less_iff [simp]: "sinh x < sinh y \<longleftrightarrow> x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6738
  using sinh_real_strict_mono by (simp add: strict_mono_less)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6739
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6740
lemma cosh_real_nonneg_less_iff: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> cosh x < cosh y \<longleftrightarrow> x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6741
  using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6742
  by (cases x y rule: linorder_cases) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6743
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6744
lemma cosh_real_nonpos_less_iff: "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> cosh x < cosh y \<longleftrightarrow> x > (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6745
  using cosh_real_nonneg_less_iff[of "-x" "-y"] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6746
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6747
lemma tanh_real_less_iff [simp]: "tanh x < tanh y \<longleftrightarrow> x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6748
  using tanh_real_strict_mono by (simp add: strict_mono_less)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6749
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6750
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6751
subsubsection \<open>Limits\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6752
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6753
lemma sinh_real_at_top: "filterlim (sinh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6754
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6755
  have *: "((\<lambda>x. - exp (- x)) \<longlongrightarrow> (-0::real)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6756
    by (intro tendsto_minus filterlim_compose[OF exp_at_bot] filterlim_uminus_at_bot_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6757
  have "filterlim (\<lambda>x. (1 / 2) * (-exp (-x) + exp x) :: real) at_top at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6758
    by (rule filterlim_tendsto_pos_mult_at_top[OF _ _
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6759
               filterlim_tendsto_add_at_top[OF *]] tendsto_const)+ (auto simp: exp_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6760
  also have "(\<lambda>x. (1 / 2) * (-exp (-x) + exp x) :: real) = sinh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6761
    by (simp add: fun_eq_iff sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6762
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6763
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6764
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6765
lemma sinh_real_at_bot: "filterlim (sinh :: real \<Rightarrow> real) at_bot at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6766
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6767
  have "filterlim (\<lambda>x. -sinh x :: real) at_bot at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6768
    by (simp add: filterlim_uminus_at_top [symmetric] sinh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6769
  also have "(\<lambda>x. -sinh x :: real) = (\<lambda>x. sinh (-x))" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6770
  finally show ?thesis by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6771
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6772
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6773
lemma cosh_real_at_top: "filterlim (cosh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6774
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6775
  have *: "((\<lambda>x. exp (- x)) \<longlongrightarrow> (0::real)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6776
    by (intro filterlim_compose[OF exp_at_bot] filterlim_uminus_at_bot_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6777
  have "filterlim (\<lambda>x. (1 / 2) * (exp (-x) + exp x) :: real) at_top at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6778
    by (rule filterlim_tendsto_pos_mult_at_top[OF _ _
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6779
               filterlim_tendsto_add_at_top[OF *]] tendsto_const)+ (auto simp: exp_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6780
  also have "(\<lambda>x. (1 / 2) * (exp (-x) + exp x) :: real) = cosh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6781
    by (simp add: fun_eq_iff cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6782
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6783
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6784
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6785
lemma cosh_real_at_bot: "filterlim (cosh :: real \<Rightarrow> real) at_top at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6786
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6787
  have "filterlim (\<lambda>x. cosh (-x) :: real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6788
    by (simp add: cosh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6789
  thus ?thesis by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6790
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6791
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6792
lemma tanh_real_at_top: "(tanh \<longlongrightarrow> (1::real)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6793
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6794
  have "((\<lambda>x::real. (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))) \<longlongrightarrow> (1 - 0) / (1 + 0)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6795
    by (intro tendsto_intros filterlim_compose[OF exp_at_bot]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6796
              filterlim_tendsto_neg_mult_at_bot[OF tendsto_const] filterlim_ident) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6797
  also have "(\<lambda>x::real. (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))) = tanh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6798
    by (rule ext) (simp add: tanh_real_altdef)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6799
  finally show ?thesis by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6800
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6801
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6802
lemma tanh_real_at_bot: "(tanh \<longlongrightarrow> (-1::real)) at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6803
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6804
  have "((\<lambda>x::real. -tanh x) \<longlongrightarrow> -1) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6805
    by (intro tendsto_minus tanh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6806
  also have "(\<lambda>x. -tanh x :: real) = (\<lambda>x. tanh (-x))" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6807
  finally show ?thesis by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6808
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6809
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6810
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6811
subsubsection \<open>Properties of the inverse hyperbolic functions\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6812
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6813
lemma isCont_sinh: "isCont sinh (x :: 'a :: {real_normed_field, banach})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6814
  unfolding sinh_def [abs_def] by (auto intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6815
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6816
lemma isCont_cosh: "isCont cosh (x :: 'a :: {real_normed_field, banach})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6817
  unfolding cosh_def [abs_def] by (auto intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6818
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6819
lemma isCont_tanh: "cosh x \<noteq> 0 \<Longrightarrow> isCont tanh (x :: 'a :: {real_normed_field, banach})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6820
  unfolding tanh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6821
  by (auto intro!: continuous_intros isCont_divide isCont_sinh isCont_cosh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6822
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6823
lemma continuous_on_sinh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6824
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6825
  assumes "continuous_on A f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6826
  shows   "continuous_on A (\<lambda>x. sinh (f x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6827
  unfolding sinh_def using assms by (intro continuous_intros)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6828
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6829
lemma continuous_on_cosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6830
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6831
  assumes "continuous_on A f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6832
  shows   "continuous_on A (\<lambda>x. cosh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6833
  unfolding cosh_def using assms by (intro continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6834
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6835
lemma continuous_sinh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6836
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6837
  assumes "continuous F f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6838
  shows   "continuous F (\<lambda>x. sinh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6839
  unfolding sinh_def using assms by (intro continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6840
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6841
lemma continuous_cosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6842
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6843
  assumes "continuous F f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6844
  shows   "continuous F (\<lambda>x. cosh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6845
  unfolding cosh_def using assms by (intro continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6846
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6847
lemma continuous_on_tanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6848
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6849
  assumes "continuous_on A f" "\<And>x. x \<in> A \<Longrightarrow> cosh (f x) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6850
  shows   "continuous_on A (\<lambda>x. tanh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6851
  unfolding tanh_def using assms by (intro continuous_intros) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6852
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6853
lemma continuous_at_within_tanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6854
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6855
  assumes "continuous (at x within A) f" "cosh (f x) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6856
  shows   "continuous (at x within A) (\<lambda>x. tanh (f x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6857
  unfolding tanh_def using assms by (intro continuous_intros continuous_divide) auto
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6858
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6859
lemma continuous_tanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6860
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6861
  assumes "continuous F f" "cosh (f (Lim F (\<lambda>x. x))) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6862
  shows   "continuous F (\<lambda>x. tanh (f x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6863
  unfolding tanh_def using assms by (intro continuous_intros continuous_divide) auto
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6864
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6865
lemma tendsto_sinh [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6866
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6867
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. sinh (f x)) \<longlongrightarrow> sinh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6868
  by (rule isCont_tendsto_compose [OF isCont_sinh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6869
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6870
lemma tendsto_cosh [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6871
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6872
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. cosh (f x)) \<longlongrightarrow> cosh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6873
  by (rule isCont_tendsto_compose [OF isCont_cosh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6874
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6875
lemma tendsto_tanh [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6876
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6877
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> cosh a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. tanh (f x)) \<longlongrightarrow> tanh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6878
  by (rule isCont_tendsto_compose [OF isCont_tanh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6879
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6880
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6881
lemma arsinh_real_has_field_derivative [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6882
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6883
  shows "(arsinh has_field_derivative (1 / (sqrt (x ^ 2 + 1)))) (at x within A)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6884
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6885
  have pos: "1 + x ^ 2 > 0" by (intro add_pos_nonneg) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6886
  from pos arsinh_real_aux[of x] show ?thesis unfolding arsinh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6887
    by (auto intro!: derivative_eq_intros simp: powr_minus powr_half_sqrt divide_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6888
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6889
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6890
lemma arcosh_real_has_field_derivative [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6891
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6892
  assumes "x > 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6893
  shows   "(arcosh has_field_derivative (1 / (sqrt (x ^ 2 - 1)))) (at x within A)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6894
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6895
  from assms have "x + sqrt (x\<^sup>2 - 1) > 0" by (simp add: add_pos_pos)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6896
  thus ?thesis using assms unfolding arcosh_def [abs_def]
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6897
    by (auto intro!: derivative_eq_intros
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6898
             simp: powr_minus powr_half_sqrt divide_simps power2_eq_1_iff)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6899
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6900
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6901
lemma artanh_real_has_field_derivative [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6902
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6903
  assumes "abs x < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6904
  shows   "(artanh has_field_derivative (1 / (1 - x ^ 2))) (at x within A)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6905
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6906
  from assms have "x > -1" "x < 1" by linarith+
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6907
  hence "(artanh has_field_derivative (4 - 4 * x) / ((1 + x) * (1 - x) * (1 - x) * 4))
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6908
           (at x within A)" unfolding artanh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6909
    by (auto intro!: derivative_eq_intros simp: powr_minus powr_half_sqrt)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6910
  also have "(4 - 4 * x) / ((1 + x) * (1 - x) * (1 - x) * 4) = 1 / ((1 + x) * (1 - x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6911
    by (simp add: divide_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6912
  also have "(1 + x) * (1 - x) = 1 - x ^ 2" by (simp add: algebra_simps power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6913
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6914
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6915
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6916
lemma continuous_on_arsinh [continuous_intros]: "continuous_on A (arsinh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6917
  by (rule DERIV_continuous_on derivative_intros)+
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6918
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6919
lemma continuous_on_arcosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6920
  assumes "A \<subseteq> {1..}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6921
  shows   "continuous_on A (arcosh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6922
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6923
  have pos: "x + sqrt (x ^ 2 - 1) > 0" if "x \<ge> 1" for x
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6924
    using that by (intro add_pos_nonneg) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6925
  show ?thesis
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6926
  unfolding arcosh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6927
  by (intro continuous_on_subset [OF _ assms] continuous_on_ln continuous_on_add
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6928
               continuous_on_id continuous_on_powr')
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6929
     (auto dest: pos simp: powr_half_sqrt intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6930
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6931
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6932
lemma continuous_on_artanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6933
  assumes "A \<subseteq> {-1<..<1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6934
  shows   "continuous_on A (artanh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6935
  unfolding artanh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6936
  by (intro continuous_on_subset [OF _ assms]) (auto intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6937
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6938
lemma continuous_on_arsinh' [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6939
  fixes f :: "real \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6940
  assumes "continuous_on A f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6941
  shows   "continuous_on A (\<lambda>x. arsinh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6942
  by (rule continuous_on_compose2[OF continuous_on_arsinh assms]) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6943
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6944
lemma continuous_on_arcosh' [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6945
  fixes f :: "real \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6946
  assumes "continuous_on A f" "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6947
  shows   "continuous_on A (\<lambda>x. arcosh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6948
  by (rule continuous_on_compose2[OF continuous_on_arcosh assms(1) order.refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6949
     (use assms(2) in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6950
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6951
lemma continuous_on_artanh' [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6952
  fixes f :: "real \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6953
  assumes "continuous_on A f" "\<And>x. x \<in> A \<Longrightarrow> f x \<in> {-1<..<1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6954
  shows   "continuous_on A (\<lambda>x. artanh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6955
  by (rule continuous_on_compose2[OF continuous_on_artanh assms(1) order.refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6956
     (use assms(2) in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6957
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6958
lemma isCont_arsinh [continuous_intros]: "isCont arsinh (x :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6959
  using continuous_on_arsinh[of UNIV] by (auto simp: continuous_on_eq_continuous_at)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6960
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6961
lemma isCont_arcosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6962
  assumes "x > 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6963
  shows   "isCont arcosh (x :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6964
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6965
  have "continuous_on {1::real<..} arcosh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6966
    by (rule continuous_on_arcosh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6967
  with assms show ?thesis by (auto simp: continuous_on_eq_continuous_at)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6968
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6969
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6970
lemma isCont_artanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6971
  assumes "x > -1" "x < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6972
  shows   "isCont artanh (x :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6973
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6974
  have "continuous_on {-1<..<(1::real)} artanh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6975
    by (rule continuous_on_artanh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6976
  with assms show ?thesis by (auto simp: continuous_on_eq_continuous_at)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6977
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6978
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6979
lemma tendsto_arsinh [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. arsinh (f x)) \<longlongrightarrow> arsinh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6980
  for f :: "_ \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6981
  by (rule isCont_tendsto_compose [OF isCont_arsinh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6982
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6983
lemma tendsto_arcosh_strong [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6984
  fixes f :: "_ \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6985
  assumes "(f \<longlongrightarrow> a) F" "a \<ge> 1" "eventually (\<lambda>x. f x \<ge> 1) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6986
  shows   "((\<lambda>x. arcosh (f x)) \<longlongrightarrow> arcosh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6987
  by (rule continuous_on_tendsto_compose[OF continuous_on_arcosh[OF order.refl]])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6988
     (use assms in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6989
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6990
lemma tendsto_arcosh:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6991
  fixes f :: "_ \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6992
  assumes "(f \<longlongrightarrow> a) F" "a > 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6993
  shows "((\<lambda>x. arcosh (f x)) \<longlongrightarrow> arcosh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6994
  by (rule isCont_tendsto_compose [OF isCont_arcosh]) (use assms in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6995
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6996
lemma tendsto_arcosh_at_left_1: "(arcosh \<longlongrightarrow> 0) (at_right (1::real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6997
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6998
  have "(arcosh \<longlongrightarrow> arcosh 1) (at_right (1::real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6999
    by (rule tendsto_arcosh_strong) (auto simp: eventually_at intro!: exI[of _ 1])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7000
  thus ?thesis by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7001
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7002
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7003
lemma tendsto_artanh [tendsto_intros]:
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7004
  fixes f :: "'a \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7005
  assumes "(f \<longlongrightarrow> a) F" "a > -1" "a < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7006
  shows   "((\<lambda>x. artanh (f x)) \<longlongrightarrow> artanh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7007
  by (rule isCont_tendsto_compose [OF isCont_artanh]) (use assms in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7008
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7009
lemma continuous_arsinh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7010
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. arsinh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7011
  unfolding continuous_def by (rule tendsto_arsinh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7012
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7013
(* TODO: This rule does not work for one-sided continuity at 1 *)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7014
lemma continuous_arcosh_strong [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7015
  assumes "continuous F f" "eventually (\<lambda>x. f x \<ge> 1) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7016
  shows   "continuous F (\<lambda>x. arcosh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7017
proof (cases "F = bot")
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7018
  case False
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7019
  show ?thesis
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7020
    unfolding continuous_def
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7021
  proof (intro tendsto_arcosh_strong)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7022
    show "1 \<le> f (Lim F (\<lambda>x. x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7023
      using assms False unfolding continuous_def by (rule tendsto_lowerbound)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7024
  qed (insert assms, auto simp: continuous_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7025
qed auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7026
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7027
lemma continuous_arcosh:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7028
  "continuous F f \<Longrightarrow> f (Lim F (\<lambda>x. x)) > 1 \<Longrightarrow> continuous F (\<lambda>x. arcosh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7029
  unfolding continuous_def by (rule tendsto_arcosh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7030
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7031
lemma continuous_artanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7032
  "continuous F f \<Longrightarrow> f (Lim F (\<lambda>x. x)) \<in> {-1<..<1} \<Longrightarrow> continuous F (\<lambda>x. artanh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7033
  unfolding continuous_def by (rule tendsto_artanh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7034
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7035
lemma arsinh_real_at_top:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7036
  "filterlim (arsinh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7037
proof (subst filterlim_cong[OF refl refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7038
  show "filterlim (\<lambda>x. ln (x + sqrt (1 + x\<^sup>2))) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7039
    by (intro filterlim_compose[OF ln_at_top filterlim_at_top_add_at_top] filterlim_ident
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7040
              filterlim_compose[OF sqrt_at_top] filterlim_tendsto_add_at_top[OF tendsto_const]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7041
              filterlim_pow_at_top) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7042
qed (auto intro!: eventually_mono[OF eventually_ge_at_top[of 1]] simp: arsinh_real_def add_ac)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7043
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7044
lemma arsinh_real_at_bot:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7045
  "filterlim (arsinh :: real \<Rightarrow> real) at_bot at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7046
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7047
  have "filterlim (\<lambda>x::real. -arsinh x) at_bot at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7048
    by (subst filterlim_uminus_at_top [symmetric]) (rule arsinh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7049
  also have "(\<lambda>x::real. -arsinh x) = (\<lambda>x. arsinh (-x))" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7050
  finally show ?thesis
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7051
    by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7052
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7053
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7054
lemma arcosh_real_at_top:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7055
  "filterlim (arcosh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7056
proof (subst filterlim_cong[OF refl refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7057
  show "filterlim (\<lambda>x. ln (x + sqrt (-1 + x\<^sup>2))) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7058
    by (intro filterlim_compose[OF ln_at_top filterlim_at_top_add_at_top] filterlim_ident
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7059
              filterlim_compose[OF sqrt_at_top] filterlim_tendsto_add_at_top[OF tendsto_const]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7060
              filterlim_pow_at_top) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7061
qed (auto intro!: eventually_mono[OF eventually_ge_at_top[of 1]] simp: arcosh_real_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7062
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7063
lemma artanh_real_at_left_1:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7064
  "filterlim (artanh :: real \<Rightarrow> real) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7065
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7066
  have *: "filterlim (\<lambda>x::real. (1 + x) / (1 - x)) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7067
    by (rule LIM_at_top_divide)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7068
       (auto intro!: tendsto_eq_intros eventually_mono[OF eventually_at_left_real[of 0]])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7069
  have "filterlim (\<lambda>x::real. (1/2) * ln ((1 + x) / (1 - x))) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7070
    by (intro filterlim_tendsto_pos_mult_at_top[OF tendsto_const] *
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7071
                 filterlim_compose[OF ln_at_top]) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7072
  also have "(\<lambda>x::real. (1/2) * ln ((1 + x) / (1 - x))) = artanh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7073
    by (simp add: artanh_def [abs_def])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7074
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7075
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7076
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7077
lemma artanh_real_at_right_1:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7078
  "filterlim (artanh :: real \<Rightarrow> real) at_bot (at_right (-1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7079
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7080
  have "?thesis \<longleftrightarrow> filterlim (\<lambda>x::real. -artanh x) at_top (at_right (-1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7081
    by (simp add: filterlim_uminus_at_bot)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7082
  also have "\<dots> \<longleftrightarrow> filterlim (\<lambda>x::real. artanh (-x)) at_top (at_right (-1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7083
    by (intro filterlim_cong refl eventually_mono[OF eventually_at_right_real[of "-1" "1"]]) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7084
  also have "\<dots> \<longleftrightarrow> filterlim (artanh :: real \<Rightarrow> real) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7085
    by (simp add: filterlim_at_left_to_right)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7086
  also have \<dots> by (rule artanh_real_at_left_1)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7087
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7088
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7089
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7090
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7091
subsection \<open>Simprocs for root and power literals\<close>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7092
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7093
lemma numeral_powr_numeral_real [simp]:
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7094
  "numeral m powr numeral n = (numeral m ^ numeral n :: real)"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7095
  by (simp add: powr_numeral)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7096
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7097
context
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7098
begin
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7099
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7100
private lemma sqrt_numeral_simproc_aux:
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7101
  assumes "m * m \<equiv> n"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7102
  shows   "sqrt (numeral n :: real) \<equiv> numeral m"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7103
proof -
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7104
  have "numeral n \<equiv> numeral m * (numeral m :: real)" by (simp add: assms [symmetric])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7105
  moreover have "sqrt \<dots> \<equiv> numeral m" by (subst real_sqrt_abs2) simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7106
  ultimately show "sqrt (numeral n :: real) \<equiv> numeral m" by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7107
qed
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7108
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7109
private lemma root_numeral_simproc_aux:
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7110
  assumes "Num.pow m n \<equiv> x"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7111
  shows   "root (numeral n) (numeral x :: real) \<equiv> numeral m"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7112
  by (subst assms [symmetric], subst numeral_pow, subst real_root_pos2) simp_all
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7113
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7114
private lemma powr_numeral_simproc_aux:
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7115
  assumes "Num.pow y n = x"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7116
  shows   "numeral x powr (m / numeral n :: real) \<equiv> numeral y powr m"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7117
  by (subst assms [symmetric], subst numeral_pow, subst powr_numeral [symmetric])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7118
     (simp, subst powr_powr, simp_all)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7119
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7120
private lemma numeral_powr_inverse_eq:
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7121
  "numeral x powr (inverse (numeral n)) = numeral x powr (1 / numeral n :: real)"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7122
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7123
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7124
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7125
ML \<open>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7126
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7127
signature ROOT_NUMERAL_SIMPROC = sig
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7128
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7129
val sqrt : int option -> int -> int option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7130
val sqrt' : int option -> int -> int option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7131
val nth_root : int option -> int -> int -> int option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7132
val nth_root' : int option -> int -> int -> int option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7133
val sqrt_simproc : Proof.context -> cterm -> thm option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7134
val root_simproc : int * int -> Proof.context -> cterm -> thm option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7135
val powr_simproc : int * int -> Proof.context -> cterm -> thm option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7136
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  7137
end
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7138
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7139
structure Root_Numeral_Simproc : ROOT_NUMERAL_SIMPROC = struct
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7140
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7141
fun iterate NONE p f x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7142
      let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7143
        fun go x = if p x then x else go (f x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7144
      in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7145
        SOME (go x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7146
      end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7147
  | iterate (SOME threshold) p f x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7148
      let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7149
        fun go (threshold, x) = 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7150
          if p x then SOME x else if threshold = 0 then NONE else go (threshold - 1, f x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7151
      in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7152
        go (threshold, x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7153
      end  
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7154
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7155
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7156
fun nth_root _ 1 x = SOME x
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7157
  | nth_root _ _ 0 = SOME 0
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7158
  | nth_root _ _ 1 = SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7159
  | nth_root threshold n x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7160
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7161
    fun newton_step y = ((n - 1) * y + x div Integer.pow (n - 1) y) div n
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7162
    fun is_root y = Integer.pow n y <= x andalso x < Integer.pow n (y + 1)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7163
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7164
    if x < n then
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7165
      SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7166
    else if x < Integer.pow n 2 then 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7167
      SOME 1 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7168
    else 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7169
      let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7170
        val y = Real.floor (Math.pow (Real.fromInt x, Real.fromInt 1 / Real.fromInt n))
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7171
      in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7172
        if is_root y then
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7173
          SOME y
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7174
        else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7175
          iterate threshold is_root newton_step ((x + n - 1) div n)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7176
      end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7177
  end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7178
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7179
fun nth_root' _ 1 x = SOME x
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7180
  | nth_root' _ _ 0 = SOME 0
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7181
  | nth_root' _ _ 1 = SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7182
  | nth_root' threshold n x = if x < n then NONE else if x < Integer.pow n 2 then NONE else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7183
      case nth_root threshold n x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7184
        NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7185
      | SOME y => if Integer.pow n y = x then SOME y else NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7186
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7187
fun sqrt _ 0 = SOME 0
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7188
  | sqrt _ 1 = SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7189
  | sqrt threshold n =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7190
    let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7191
      fun aux (a, b) = if n >= b * b then aux (b, b * b) else (a, b)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7192
      val (lower_root, lower_n) = aux (1, 2)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7193
      fun newton_step x = (x + n div x) div 2
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7194
      fun is_sqrt r = r*r <= n andalso n < (r+1)*(r+1)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7195
      val y = Real.floor (Math.sqrt (Real.fromInt n))
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7196
    in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7197
      if is_sqrt y then 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7198
        SOME y
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7199
      else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7200
        Option.mapPartial (iterate threshold is_sqrt newton_step o (fn x => x * lower_root)) 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7201
          (sqrt threshold (n div lower_n))
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7202
    end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7203
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7204
fun sqrt' threshold x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7205
  case sqrt threshold x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7206
    NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7207
  | SOME y => if y * y = x then SOME y else NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7208
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7209
fun sqrt_simproc ctxt ct =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7210
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7211
    val n = ct |> Thm.term_of |> dest_comb |> snd |> dest_comb |> snd |> HOLogic.dest_numeral
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7212
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7213
    case sqrt' (SOME 10000) n of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7214
      NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7215
    | SOME m => 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7216
        SOME (Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt o HOLogic.mk_numeral) [m, n])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7217
                  @{thm sqrt_numeral_simproc_aux})
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7218
  end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7219
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7220
fun root_simproc (threshold1, threshold2) ctxt ct =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7221
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7222
    val [n, x] = 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7223
      ct |> Thm.term_of |> strip_comb |> snd |> map (dest_comb #> snd #> HOLogic.dest_numeral)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7224
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7225
    if n > threshold1 orelse x > threshold2 then NONE else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7226
      case nth_root' (SOME 100) n x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7227
        NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7228
      | SOME m => 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7229
          SOME (Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt o HOLogic.mk_numeral) [m, n, x])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7230
            @{thm root_numeral_simproc_aux})
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7231
  end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7232
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7233
fun powr_simproc (threshold1, threshold2) ctxt ct =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7234
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7235
    val eq_thm = Conv.try_conv (Conv.rewr_conv @{thm numeral_powr_inverse_eq}) ct
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7236
    val ct = Thm.dest_equals_rhs (Thm.cprop_of eq_thm)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7237
    val (_, [x, t]) = strip_comb (Thm.term_of ct)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7238
    val (_, [m, n]) = strip_comb t
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7239
    val [x, n] = map (dest_comb #> snd #> HOLogic.dest_numeral) [x, n]
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7240
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7241
    if n > threshold1 orelse x > threshold2 then NONE else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7242
      case nth_root' (SOME 100) n x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7243
        NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7244
      | SOME y => 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7245
          let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7246
            val [y, n, x] = map HOLogic.mk_numeral [y, n, x]
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7247
            val thm = Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt) [y, n, x, m])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7248
              @{thm powr_numeral_simproc_aux}
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7249
          in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7250
            SOME (@{thm transitive} OF [eq_thm, thm])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7251
          end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7252
  end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7253
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7254
end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7255
\<close>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7256
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7257
end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7258
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7259
simproc_setup sqrt_numeral ("sqrt (numeral n)") = 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7260
  \<open>K Root_Numeral_Simproc.sqrt_simproc\<close>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7261
  
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7262
simproc_setup root_numeral ("root (numeral n) (numeral x)") = 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7263
  \<open>K (Root_Numeral_Simproc.root_simproc (200, Integer.pow 200 2))\<close>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7264
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7265
simproc_setup powr_divide_numeral 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7266
  ("numeral x powr (m / numeral n :: real)" | "numeral x powr (inverse (numeral n) :: real)") = 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7267
    \<open>K (Root_Numeral_Simproc.powr_simproc (200, Integer.pow 200 2))\<close>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7268
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7269
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7270
lemma "root 100 1267650600228229401496703205376 = 2"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7271
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7272
    
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7273
lemma "sqrt 196 = 14" 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7274
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7275
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7276
lemma "256 powr (7 / 4 :: real) = 16384"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7277
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7278
    
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7279
lemma "27 powr (inverse 3) = (3::real)"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7280
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7281
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7282
end