author | nipkow |
Thu, 01 Nov 2018 11:26:38 +0100 | |
changeset 69218 | 59aefb3b9e95 |
parent 69117 | 3d3e87835ae8 |
child 69219 | d4cec24a1d87 |
permissions | -rw-r--r-- |
57250 | 1 |
(* Author: Tobias Nipkow *) |
64887 | 2 |
(* Todo: minimal ipl of balanced trees *) |
57250 | 3 |
|
60500 | 4 |
section \<open>Binary Tree\<close> |
57250 | 5 |
|
6 |
theory Tree |
|
7 |
imports Main |
|
8 |
begin |
|
9 |
||
58424 | 10 |
datatype 'a tree = |
64887 | 11 |
Leaf ("\<langle>\<rangle>") | |
69218 | 12 |
Node "'a tree" (root: 'a) "'a tree" ("(1\<langle>_,/ _,/ _\<rangle>)") |
57569
e20a999f7161
register tree with datatype_compat ot support QuickCheck
hoelzl
parents:
57530
diff
changeset
|
13 |
datatype_compat tree |
57250 | 14 |
|
69218 | 15 |
primrec left :: "'a tree \<Rightarrow> 'a tree" where |
16 |
"left (Node l v r) = l" | |
|
17 |
"left Leaf = Leaf" |
|
18 |
||
19 |
primrec right :: "'a tree \<Rightarrow> 'a tree" where |
|
20 |
"right (Node l v r) = r" | |
|
21 |
"right Leaf = Leaf" |
|
22 |
||
68998 | 23 |
text\<open>Counting the number of leaves rather than nodes:\<close> |
58438 | 24 |
|
68998 | 25 |
fun size1 :: "'a tree \<Rightarrow> nat" where |
26 |
"size1 \<langle>\<rangle> = 1" | |
|
27 |
"size1 \<langle>l, x, r\<rangle> = size1 l + size1 r" |
|
58438 | 28 |
|
63861 | 29 |
fun subtrees :: "'a tree \<Rightarrow> 'a tree set" where |
30 |
"subtrees \<langle>\<rangle> = {\<langle>\<rangle>}" | |
|
31 |
"subtrees (\<langle>l, a, r\<rangle>) = insert \<langle>l, a, r\<rangle> (subtrees l \<union> subtrees r)" |
|
32 |
||
33 |
fun mirror :: "'a tree \<Rightarrow> 'a tree" where |
|
34 |
"mirror \<langle>\<rangle> = Leaf" | |
|
35 |
"mirror \<langle>l,x,r\<rangle> = \<langle>mirror r, x, mirror l\<rangle>" |
|
36 |
||
37 |
class height = fixes height :: "'a \<Rightarrow> nat" |
|
38 |
||
39 |
instantiation tree :: (type)height |
|
40 |
begin |
|
41 |
||
42 |
fun height_tree :: "'a tree => nat" where |
|
43 |
"height Leaf = 0" | |
|
68999 | 44 |
"height (Node l a r) = max (height l) (height r) + 1" |
63861 | 45 |
|
46 |
instance .. |
|
47 |
||
48 |
end |
|
49 |
||
50 |
fun min_height :: "'a tree \<Rightarrow> nat" where |
|
51 |
"min_height Leaf = 0" | |
|
52 |
"min_height (Node l _ r) = min (min_height l) (min_height r) + 1" |
|
53 |
||
54 |
fun complete :: "'a tree \<Rightarrow> bool" where |
|
55 |
"complete Leaf = True" | |
|
56 |
"complete (Node l x r) = (complete l \<and> complete r \<and> height l = height r)" |
|
57 |
||
58 |
definition balanced :: "'a tree \<Rightarrow> bool" where |
|
59 |
"balanced t = (height t - min_height t \<le> 1)" |
|
60 |
||
61 |
text \<open>Weight balanced:\<close> |
|
62 |
fun wbalanced :: "'a tree \<Rightarrow> bool" where |
|
63 |
"wbalanced Leaf = True" | |
|
64 |
"wbalanced (Node l x r) = (abs(int(size l) - int(size r)) \<le> 1 \<and> wbalanced l \<and> wbalanced r)" |
|
65 |
||
66 |
text \<open>Internal path length:\<close> |
|
64887 | 67 |
fun ipl :: "'a tree \<Rightarrow> nat" where |
68 |
"ipl Leaf = 0 " | |
|
69 |
"ipl (Node l _ r) = ipl l + size l + ipl r + size r" |
|
63861 | 70 |
|
71 |
fun preorder :: "'a tree \<Rightarrow> 'a list" where |
|
72 |
"preorder \<langle>\<rangle> = []" | |
|
73 |
"preorder \<langle>l, x, r\<rangle> = x # preorder l @ preorder r" |
|
74 |
||
75 |
fun inorder :: "'a tree \<Rightarrow> 'a list" where |
|
76 |
"inorder \<langle>\<rangle> = []" | |
|
77 |
"inorder \<langle>l, x, r\<rangle> = inorder l @ [x] @ inorder r" |
|
78 |
||
79 |
text\<open>A linear version avoiding append:\<close> |
|
80 |
fun inorder2 :: "'a tree \<Rightarrow> 'a list \<Rightarrow> 'a list" where |
|
81 |
"inorder2 \<langle>\<rangle> xs = xs" | |
|
82 |
"inorder2 \<langle>l, x, r\<rangle> xs = inorder2 l (x # inorder2 r xs)" |
|
83 |
||
64925 | 84 |
fun postorder :: "'a tree \<Rightarrow> 'a list" where |
85 |
"postorder \<langle>\<rangle> = []" | |
|
86 |
"postorder \<langle>l, x, r\<rangle> = postorder l @ postorder r @ [x]" |
|
87 |
||
63861 | 88 |
text\<open>Binary Search Tree:\<close> |
66606 | 89 |
fun bst_wrt :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a tree \<Rightarrow> bool" where |
90 |
"bst_wrt P \<langle>\<rangle> \<longleftrightarrow> True" | |
|
91 |
"bst_wrt P \<langle>l, a, r\<rangle> \<longleftrightarrow> |
|
92 |
bst_wrt P l \<and> bst_wrt P r \<and> (\<forall>x\<in>set_tree l. P x a) \<and> (\<forall>x\<in>set_tree r. P a x)" |
|
63861 | 93 |
|
66606 | 94 |
abbreviation bst :: "('a::linorder) tree \<Rightarrow> bool" where |
67399 | 95 |
"bst \<equiv> bst_wrt (<)" |
63861 | 96 |
|
97 |
fun (in linorder) heap :: "'a tree \<Rightarrow> bool" where |
|
98 |
"heap Leaf = True" | |
|
99 |
"heap (Node l m r) = |
|
100 |
(heap l \<and> heap r \<and> (\<forall>x \<in> set_tree l \<union> set_tree r. m \<le> x))" |
|
101 |
||
102 |
||
65339 | 103 |
subsection \<open>@{const map_tree}\<close> |
104 |
||
65340 | 105 |
lemma eq_map_tree_Leaf[simp]: "map_tree f t = Leaf \<longleftrightarrow> t = Leaf" |
65339 | 106 |
by (rule tree.map_disc_iff) |
107 |
||
65340 | 108 |
lemma eq_Leaf_map_tree[simp]: "Leaf = map_tree f t \<longleftrightarrow> t = Leaf" |
65339 | 109 |
by (cases t) auto |
110 |
||
111 |
||
63861 | 112 |
subsection \<open>@{const size}\<close> |
113 |
||
68998 | 114 |
lemma size1_size: "size1 t = size t + 1" |
115 |
by (induction t) simp_all |
|
58438 | 116 |
|
62650 | 117 |
lemma size1_ge0[simp]: "0 < size1 t" |
68998 | 118 |
by (simp add: size1_size) |
62650 | 119 |
|
65340 | 120 |
lemma eq_size_0[simp]: "size t = 0 \<longleftrightarrow> t = Leaf" |
65339 | 121 |
by(cases t) auto |
122 |
||
65340 | 123 |
lemma eq_0_size[simp]: "0 = size t \<longleftrightarrow> t = Leaf" |
60505 | 124 |
by(cases t) auto |
125 |
||
58424 | 126 |
lemma neq_Leaf_iff: "(t \<noteq> \<langle>\<rangle>) = (\<exists>l a r. t = \<langle>l, a, r\<rangle>)" |
127 |
by (cases t) auto |
|
57530 | 128 |
|
59776 | 129 |
lemma size_map_tree[simp]: "size (map_tree f t) = size t" |
130 |
by (induction t) auto |
|
131 |
||
132 |
lemma size1_map_tree[simp]: "size1 (map_tree f t) = size1 t" |
|
68998 | 133 |
by (simp add: size1_size) |
59776 | 134 |
|
135 |
||
65339 | 136 |
subsection \<open>@{const set_tree}\<close> |
137 |
||
65340 | 138 |
lemma eq_set_tree_empty[simp]: "set_tree t = {} \<longleftrightarrow> t = Leaf" |
65339 | 139 |
by (cases t) auto |
140 |
||
65340 | 141 |
lemma eq_empty_set_tree[simp]: "{} = set_tree t \<longleftrightarrow> t = Leaf" |
65339 | 142 |
by (cases t) auto |
143 |
||
144 |
lemma finite_set_tree[simp]: "finite(set_tree t)" |
|
145 |
by(induction t) auto |
|
146 |
||
147 |
||
63861 | 148 |
subsection \<open>@{const subtrees}\<close> |
60808
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
149 |
|
65340 | 150 |
lemma neq_subtrees_empty[simp]: "subtrees t \<noteq> {}" |
151 |
by (cases t)(auto) |
|
152 |
||
153 |
lemma neq_empty_subtrees[simp]: "{} \<noteq> subtrees t" |
|
154 |
by (cases t)(auto) |
|
155 |
||
63861 | 156 |
lemma set_treeE: "a \<in> set_tree t \<Longrightarrow> \<exists>l r. \<langle>l, a, r\<rangle> \<in> subtrees t" |
157 |
by (induction t)(auto) |
|
59776 | 158 |
|
63861 | 159 |
lemma Node_notin_subtrees_if[simp]: "a \<notin> set_tree t \<Longrightarrow> Node l a r \<notin> subtrees t" |
160 |
by (induction t) auto |
|
59776 | 161 |
|
63861 | 162 |
lemma in_set_tree_if: "\<langle>l, a, r\<rangle> \<in> subtrees t \<Longrightarrow> a \<in> set_tree t" |
163 |
by (metis Node_notin_subtrees_if) |
|
60808
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
164 |
|
63861 | 165 |
|
166 |
subsection \<open>@{const height} and @{const min_height}\<close> |
|
60808
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
167 |
|
65340 | 168 |
lemma eq_height_0[simp]: "height t = 0 \<longleftrightarrow> t = Leaf" |
65339 | 169 |
by(cases t) auto |
170 |
||
65340 | 171 |
lemma eq_0_height[simp]: "0 = height t \<longleftrightarrow> t = Leaf" |
63665 | 172 |
by(cases t) auto |
173 |
||
60808
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
174 |
lemma height_map_tree[simp]: "height (map_tree f t) = height t" |
59776 | 175 |
by (induction t) auto |
176 |
||
64414 | 177 |
lemma height_le_size_tree: "height t \<le> size (t::'a tree)" |
178 |
by (induction t) auto |
|
179 |
||
64533 | 180 |
lemma size1_height: "size1 t \<le> 2 ^ height (t::'a tree)" |
62202 | 181 |
proof(induction t) |
182 |
case (Node l a r) |
|
183 |
show ?case |
|
184 |
proof (cases "height l \<le> height r") |
|
185 |
case True |
|
64533 | 186 |
have "size1(Node l a r) = size1 l + size1 r" by simp |
64918 | 187 |
also have "\<dots> \<le> 2 ^ height l + 2 ^ height r" using Node.IH by arith |
188 |
also have "\<dots> \<le> 2 ^ height r + 2 ^ height r" using True by simp |
|
64922 | 189 |
also have "\<dots> = 2 ^ height (Node l a r)" |
64918 | 190 |
using True by (auto simp: max_def mult_2) |
191 |
finally show ?thesis . |
|
62202 | 192 |
next |
193 |
case False |
|
64533 | 194 |
have "size1(Node l a r) = size1 l + size1 r" by simp |
64918 | 195 |
also have "\<dots> \<le> 2 ^ height l + 2 ^ height r" using Node.IH by arith |
196 |
also have "\<dots> \<le> 2 ^ height l + 2 ^ height l" using False by simp |
|
62202 | 197 |
finally show ?thesis using False by (auto simp: max_def mult_2) |
198 |
qed |
|
199 |
qed simp |
|
200 |
||
63755
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
201 |
corollary size_height: "size t \<le> 2 ^ height (t::'a tree) - 1" |
68998 | 202 |
using size1_height[of t, unfolded size1_size] by(arith) |
63755
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
203 |
|
63861 | 204 |
lemma height_subtrees: "s \<in> subtrees t \<Longrightarrow> height s \<le> height t" |
205 |
by (induction t) auto |
|
57687 | 206 |
|
63598 | 207 |
|
64540 | 208 |
lemma min_height_le_height: "min_height t \<le> height t" |
63598 | 209 |
by(induction t) auto |
210 |
||
211 |
lemma min_height_map_tree[simp]: "min_height (map_tree f t) = min_height t" |
|
212 |
by (induction t) auto |
|
213 |
||
64533 | 214 |
lemma min_height_size1: "2 ^ min_height t \<le> size1 t" |
63598 | 215 |
proof(induction t) |
216 |
case (Node l a r) |
|
217 |
have "(2::nat) ^ min_height (Node l a r) \<le> 2 ^ min_height l + 2 ^ min_height r" |
|
218 |
by (simp add: min_def) |
|
64533 | 219 |
also have "\<dots> \<le> size1(Node l a r)" using Node.IH by simp |
63598 | 220 |
finally show ?case . |
221 |
qed simp |
|
222 |
||
223 |
||
63861 | 224 |
subsection \<open>@{const complete}\<close> |
63036 | 225 |
|
63755
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
226 |
lemma complete_iff_height: "complete t \<longleftrightarrow> (min_height t = height t)" |
63598 | 227 |
apply(induction t) |
228 |
apply simp |
|
229 |
apply (simp add: min_def max_def) |
|
64540 | 230 |
by (metis le_antisym le_trans min_height_le_height) |
63598 | 231 |
|
63770 | 232 |
lemma size1_if_complete: "complete t \<Longrightarrow> size1 t = 2 ^ height t" |
63036 | 233 |
by (induction t) auto |
234 |
||
63755
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
235 |
lemma size_if_complete: "complete t \<Longrightarrow> size t = 2 ^ height t - 1" |
68998 | 236 |
using size1_if_complete[simplified size1_size] by fastforce |
63770 | 237 |
|
69117 | 238 |
lemma size1_height_if_incomplete: |
239 |
"\<not> complete t \<Longrightarrow> size1 t < 2 ^ height t" |
|
240 |
proof(induction t) |
|
241 |
case Leaf thus ?case by simp |
|
63770 | 242 |
next |
69117 | 243 |
case (Node l x r) |
244 |
have 1: ?case if h: "height l < height r" |
|
245 |
using h size1_height[of l] size1_height[of r] power_strict_increasing[OF h, of "2::nat"] |
|
246 |
by(auto simp: max_def simp del: power_strict_increasing_iff) |
|
247 |
have 2: ?case if h: "height l > height r" |
|
248 |
using h size1_height[of l] size1_height[of r] power_strict_increasing[OF h, of "2::nat"] |
|
249 |
by(auto simp: max_def simp del: power_strict_increasing_iff) |
|
250 |
have 3: ?case if h: "height l = height r" and c: "\<not> complete l" |
|
251 |
using h size1_height[of r] Node.IH(1)[OF c] by(simp) |
|
252 |
have 4: ?case if h: "height l = height r" and c: "\<not> complete r" |
|
253 |
using h size1_height[of l] Node.IH(2)[OF c] by(simp) |
|
254 |
from 1 2 3 4 Node.prems show ?case apply (simp add: max_def) by linarith |
|
63770 | 255 |
qed |
256 |
||
69117 | 257 |
lemma complete_iff_min_height: "complete t \<longleftrightarrow> (height t = min_height t)" |
258 |
by(auto simp add: complete_iff_height) |
|
259 |
||
260 |
lemma min_height_size1_if_incomplete: |
|
261 |
"\<not> complete t \<Longrightarrow> 2 ^ min_height t < size1 t" |
|
262 |
proof(induction t) |
|
263 |
case Leaf thus ?case by simp |
|
264 |
next |
|
265 |
case (Node l x r) |
|
266 |
have 1: ?case if h: "min_height l < min_height r" |
|
267 |
using h min_height_size1[of l] min_height_size1[of r] power_strict_increasing[OF h, of "2::nat"] |
|
268 |
by(auto simp: max_def simp del: power_strict_increasing_iff) |
|
269 |
have 2: ?case if h: "min_height l > min_height r" |
|
270 |
using h min_height_size1[of l] min_height_size1[of r] power_strict_increasing[OF h, of "2::nat"] |
|
271 |
by(auto simp: max_def simp del: power_strict_increasing_iff) |
|
272 |
have 3: ?case if h: "min_height l = min_height r" and c: "\<not> complete l" |
|
273 |
using h min_height_size1[of r] Node.IH(1)[OF c] by(simp add: complete_iff_min_height) |
|
274 |
have 4: ?case if h: "min_height l = min_height r" and c: "\<not> complete r" |
|
275 |
using h min_height_size1[of l] Node.IH(2)[OF c] by(simp add: complete_iff_min_height) |
|
276 |
from 1 2 3 4 Node.prems show ?case |
|
277 |
by (fastforce simp: complete_iff_min_height[THEN iffD1]) |
|
278 |
qed |
|
279 |
||
280 |
lemma complete_if_size1_height: "size1 t = 2 ^ height t \<Longrightarrow> complete t" |
|
281 |
using size1_height_if_incomplete by fastforce |
|
63755
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
282 |
|
64533 | 283 |
lemma complete_if_size1_min_height: "size1 t = 2 ^ min_height t \<Longrightarrow> complete t" |
69117 | 284 |
using min_height_size1_if_incomplete by fastforce |
63755
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
285 |
|
64533 | 286 |
lemma complete_iff_size1: "complete t \<longleftrightarrow> size1 t = 2 ^ height t" |
287 |
using complete_if_size1_height size1_if_complete by blast |
|
288 |
||
63755
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
289 |
|
63861 | 290 |
subsection \<open>@{const balanced}\<close> |
291 |
||
292 |
lemma balanced_subtreeL: "balanced (Node l x r) \<Longrightarrow> balanced l" |
|
293 |
by(simp add: balanced_def) |
|
63755
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
294 |
|
63861 | 295 |
lemma balanced_subtreeR: "balanced (Node l x r) \<Longrightarrow> balanced r" |
296 |
by(simp add: balanced_def) |
|
297 |
||
298 |
lemma balanced_subtrees: "\<lbrakk> balanced t; s \<in> subtrees t \<rbrakk> \<Longrightarrow> balanced s" |
|
299 |
using [[simp_depth_limit=1]] |
|
300 |
by(induction t arbitrary: s) |
|
301 |
(auto simp add: balanced_subtreeL balanced_subtreeR) |
|
63755
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
302 |
|
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
303 |
text\<open>Balanced trees have optimal height:\<close> |
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
304 |
|
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
305 |
lemma balanced_optimal: |
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
306 |
fixes t :: "'a tree" and t' :: "'b tree" |
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
307 |
assumes "balanced t" "size t \<le> size t'" shows "height t \<le> height t'" |
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
308 |
proof (cases "complete t") |
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
309 |
case True |
64924 | 310 |
have "(2::nat) ^ height t \<le> 2 ^ height t'" |
63755
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
311 |
proof - |
64924 | 312 |
have "2 ^ height t = size1 t" |
69115 | 313 |
using True by (simp add: size1_if_complete) |
68998 | 314 |
also have "\<dots> \<le> size1 t'" using assms(2) by(simp add: size1_size) |
64924 | 315 |
also have "\<dots> \<le> 2 ^ height t'" by (rule size1_height) |
63755
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
316 |
finally show ?thesis . |
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
317 |
qed |
64924 | 318 |
thus ?thesis by (simp) |
63755
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
319 |
next |
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
320 |
case False |
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
321 |
have "(2::nat) ^ min_height t < 2 ^ height t'" |
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
322 |
proof - |
64533 | 323 |
have "(2::nat) ^ min_height t < size1 t" |
324 |
by(rule min_height_size1_if_incomplete[OF False]) |
|
68998 | 325 |
also have "\<dots> \<le> size1 t'" using assms(2) by (simp add: size1_size) |
64918 | 326 |
also have "\<dots> \<le> 2 ^ height t'" by(rule size1_height) |
327 |
finally have "(2::nat) ^ min_height t < (2::nat) ^ height t'" . |
|
64924 | 328 |
thus ?thesis . |
63755
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
329 |
qed |
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
330 |
hence *: "min_height t < height t'" by simp |
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
331 |
have "min_height t + 1 = height t" |
64540 | 332 |
using min_height_le_height[of t] assms(1) False |
63829 | 333 |
by (simp add: complete_iff_height balanced_def) |
63755
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
334 |
with * show ?thesis by arith |
182c111190e5
Renamed balanced to complete; added balanced; more about both
nipkow
parents:
63665
diff
changeset
|
335 |
qed |
63036 | 336 |
|
337 |
||
63861 | 338 |
subsection \<open>@{const wbalanced}\<close> |
339 |
||
340 |
lemma wbalanced_subtrees: "\<lbrakk> wbalanced t; s \<in> subtrees t \<rbrakk> \<Longrightarrow> wbalanced s" |
|
341 |
using [[simp_depth_limit=1]] by(induction t arbitrary: s) auto |
|
342 |
||
343 |
||
64887 | 344 |
subsection \<open>@{const ipl}\<close> |
63413 | 345 |
|
346 |
text \<open>The internal path length of a tree:\<close> |
|
347 |
||
64923 | 348 |
lemma ipl_if_complete_int: |
349 |
"complete t \<Longrightarrow> int(ipl t) = (int(height t) - 2) * 2^(height t) + 2" |
|
350 |
apply(induction t) |
|
351 |
apply simp |
|
352 |
apply simp |
|
353 |
apply (simp add: algebra_simps size_if_complete of_nat_diff) |
|
354 |
done |
|
63413 | 355 |
|
356 |
||
59776 | 357 |
subsection "List of entries" |
358 |
||
65340 | 359 |
lemma eq_inorder_Nil[simp]: "inorder t = [] \<longleftrightarrow> t = Leaf" |
65339 | 360 |
by (cases t) auto |
361 |
||
65340 | 362 |
lemma eq_Nil_inorder[simp]: "[] = inorder t \<longleftrightarrow> t = Leaf" |
65339 | 363 |
by (cases t) auto |
364 |
||
57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
365 |
lemma set_inorder[simp]: "set (inorder t) = set_tree t" |
58424 | 366 |
by (induction t) auto |
57250 | 367 |
|
59776 | 368 |
lemma set_preorder[simp]: "set (preorder t) = set_tree t" |
369 |
by (induction t) auto |
|
370 |
||
64925 | 371 |
lemma set_postorder[simp]: "set (postorder t) = set_tree t" |
372 |
by (induction t) auto |
|
373 |
||
59776 | 374 |
lemma length_preorder[simp]: "length (preorder t) = size t" |
375 |
by (induction t) auto |
|
376 |
||
377 |
lemma length_inorder[simp]: "length (inorder t) = size t" |
|
378 |
by (induction t) auto |
|
379 |
||
64925 | 380 |
lemma length_postorder[simp]: "length (postorder t) = size t" |
381 |
by (induction t) auto |
|
382 |
||
59776 | 383 |
lemma preorder_map: "preorder (map_tree f t) = map f (preorder t)" |
384 |
by (induction t) auto |
|
385 |
||
386 |
lemma inorder_map: "inorder (map_tree f t) = map f (inorder t)" |
|
387 |
by (induction t) auto |
|
388 |
||
64925 | 389 |
lemma postorder_map: "postorder (map_tree f t) = map f (postorder t)" |
390 |
by (induction t) auto |
|
391 |
||
63765 | 392 |
lemma inorder2_inorder: "inorder2 t xs = inorder t @ xs" |
393 |
by (induction t arbitrary: xs) auto |
|
394 |
||
57687 | 395 |
|
63861 | 396 |
subsection \<open>Binary Search Tree\<close> |
59561 | 397 |
|
66606 | 398 |
lemma bst_wrt_mono: "(\<And>x y. P x y \<Longrightarrow> Q x y) \<Longrightarrow> bst_wrt P t \<Longrightarrow> bst_wrt Q t" |
59928 | 399 |
by (induction t) (auto) |
400 |
||
67399 | 401 |
lemma bst_wrt_le_if_bst: "bst t \<Longrightarrow> bst_wrt (\<le>) t" |
66606 | 402 |
using bst_wrt_mono less_imp_le by blast |
403 |
||
67399 | 404 |
lemma bst_wrt_le_iff_sorted: "bst_wrt (\<le>) t \<longleftrightarrow> sorted (inorder t)" |
59561 | 405 |
apply (induction t) |
406 |
apply(simp) |
|
68109 | 407 |
by (fastforce simp: sorted_append intro: less_imp_le less_trans) |
59561 | 408 |
|
67399 | 409 |
lemma bst_iff_sorted_wrt_less: "bst t \<longleftrightarrow> sorted_wrt (<) (inorder t)" |
59928 | 410 |
apply (induction t) |
411 |
apply simp |
|
68109 | 412 |
apply (fastforce simp: sorted_wrt_append) |
59928 | 413 |
done |
414 |
||
59776 | 415 |
|
63861 | 416 |
subsection \<open>@{const heap}\<close> |
60505 | 417 |
|
418 |
||
63861 | 419 |
subsection \<open>@{const mirror}\<close> |
59561 | 420 |
|
421 |
lemma mirror_Leaf[simp]: "mirror t = \<langle>\<rangle> \<longleftrightarrow> t = \<langle>\<rangle>" |
|
422 |
by (induction t) simp_all |
|
423 |
||
65339 | 424 |
lemma Leaf_mirror[simp]: "\<langle>\<rangle> = mirror t \<longleftrightarrow> t = \<langle>\<rangle>" |
425 |
using mirror_Leaf by fastforce |
|
426 |
||
59561 | 427 |
lemma size_mirror[simp]: "size(mirror t) = size t" |
428 |
by (induction t) simp_all |
|
429 |
||
430 |
lemma size1_mirror[simp]: "size1(mirror t) = size1 t" |
|
68998 | 431 |
by (simp add: size1_size) |
59561 | 432 |
|
60808
fd26519b1a6a
depth -> height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset
|
433 |
lemma height_mirror[simp]: "height(mirror t) = height t" |
59776 | 434 |
by (induction t) simp_all |
435 |
||
66659 | 436 |
lemma min_height_mirror [simp]: "min_height (mirror t) = min_height t" |
437 |
by (induction t) simp_all |
|
438 |
||
439 |
lemma ipl_mirror [simp]: "ipl (mirror t) = ipl t" |
|
440 |
by (induction t) simp_all |
|
441 |
||
59776 | 442 |
lemma inorder_mirror: "inorder(mirror t) = rev(inorder t)" |
443 |
by (induction t) simp_all |
|
444 |
||
445 |
lemma map_mirror: "map_tree f (mirror t) = mirror (map_tree f t)" |
|
446 |
by (induction t) simp_all |
|
447 |
||
59561 | 448 |
lemma mirror_mirror[simp]: "mirror(mirror t) = t" |
449 |
by (induction t) simp_all |
|
450 |
||
57250 | 451 |
end |