| author | paulson <lp15@cam.ac.uk> | 
| Mon, 07 Mar 2016 15:57:02 +0000 | |
| changeset 62534 | 6855b348e828 | 
| parent 62533 | bc25f3916a99 | 
| child 62540 | f2fc5485e3b0 | 
| permissions | -rw-r--r-- | 
| 56215 | 1 | (* Author: John Harrison, Marco Maggesi, Graziano Gentili, Gianni Ciolli, Valentina Bruno | 
| 2 | Ported from "hol_light/Multivariate/canal.ml" by L C Paulson (2014) | |
| 3 | *) | |
| 4 | ||
| 60420 | 5 | section \<open>Complex Analysis Basics\<close> | 
| 56215 | 6 | |
| 7 | theory Complex_Analysis_Basics | |
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 8 | imports Cartesian_Euclidean_Space "~~/src/HOL/Library/Nonpos_Ints" | 
| 56215 | 9 | begin | 
| 10 | ||
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 11 | |
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 12 | subsection\<open>General lemmas\<close> | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 13 | |
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 14 | lemma nonneg_Reals_cmod_eq_Re: "z \<in> \<real>\<^sub>\<ge>\<^sub>0 \<Longrightarrow> norm z = Re z" | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 15 | by (simp add: complex_nonneg_Reals_iff cmod_eq_Re) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 16 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 17 | lemma has_derivative_mult_right: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 18 | fixes c:: "'a :: real_normed_algebra" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 19 | shows "((op * c) has_derivative (op * c)) F" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 20 | by (rule has_derivative_mult_right [OF has_derivative_id]) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 21 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 22 | lemma has_derivative_of_real[derivative_intros, simp]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 23 | "(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. of_real (f x)) has_derivative (\<lambda>x. of_real (f' x))) F" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 24 | using bounded_linear.has_derivative[OF bounded_linear_of_real] . | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 25 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 26 | lemma has_vector_derivative_real_complex: | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61610diff
changeset | 27 | "DERIV f (of_real a) :> f' \<Longrightarrow> ((\<lambda>x. f (of_real x)) has_vector_derivative f') (at a within s)" | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61610diff
changeset | 28 | using has_derivative_compose[of of_real of_real a _ f "op * f'"] | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 29 | by (simp add: scaleR_conv_of_real ac_simps has_vector_derivative_def has_field_derivative_def) | 
| 56215 | 30 | |
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 31 | lemma fact_cancel: | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 32 | fixes c :: "'a::real_field" | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 33 | shows "of_nat (Suc n) * c / (fact (Suc n)) = c / (fact n)" | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 34 | by (simp add: of_nat_mult del: of_nat_Suc times_nat.simps) | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 35 | |
| 56215 | 36 | lemma bilinear_times: | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 37 | fixes c::"'a::real_algebra" shows "bilinear (\<lambda>x y::'a. x*y)" | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 38 | by (auto simp: bilinear_def distrib_left distrib_right intro!: linearI) | 
| 56215 | 39 | |
| 40 | lemma linear_cnj: "linear cnj" | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 41 | using bounded_linear.linear[OF bounded_linear_cnj] . | 
| 56215 | 42 | |
| 43 | lemma tendsto_Re_upper: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 44 | assumes "~ (trivial_limit F)" | 
| 61973 | 45 | "(f \<longlongrightarrow> l) F" | 
| 56215 | 46 | "eventually (\<lambda>x. Re(f x) \<le> b) F" | 
| 47 | shows "Re(l) \<le> b" | |
| 48 | by (metis assms tendsto_le [OF _ tendsto_const] tendsto_Re) | |
| 49 | ||
| 50 | lemma tendsto_Re_lower: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 51 | assumes "~ (trivial_limit F)" | 
| 61973 | 52 | "(f \<longlongrightarrow> l) F" | 
| 56215 | 53 | "eventually (\<lambda>x. b \<le> Re(f x)) F" | 
| 54 | shows "b \<le> Re(l)" | |
| 55 | by (metis assms tendsto_le [OF _ _ tendsto_const] tendsto_Re) | |
| 56 | ||
| 57 | lemma tendsto_Im_upper: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 58 | assumes "~ (trivial_limit F)" | 
| 61973 | 59 | "(f \<longlongrightarrow> l) F" | 
| 56215 | 60 | "eventually (\<lambda>x. Im(f x) \<le> b) F" | 
| 61 | shows "Im(l) \<le> b" | |
| 62 | by (metis assms tendsto_le [OF _ tendsto_const] tendsto_Im) | |
| 63 | ||
| 64 | lemma tendsto_Im_lower: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 65 | assumes "~ (trivial_limit F)" | 
| 61973 | 66 | "(f \<longlongrightarrow> l) F" | 
| 56215 | 67 | "eventually (\<lambda>x. b \<le> Im(f x)) F" | 
| 68 | shows "b \<le> Im(l)" | |
| 69 | by (metis assms tendsto_le [OF _ _ tendsto_const] tendsto_Im) | |
| 70 | ||
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 71 | lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = op * 0" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 72 | by auto | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 73 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 74 | lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = op * 1" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 75 | by auto | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 76 | |
| 56215 | 77 | lemma continuous_mult_left: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 78 | fixes c::"'a::real_normed_algebra" | 
| 56215 | 79 | shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. c * f x)" | 
| 80 | by (rule continuous_mult [OF continuous_const]) | |
| 81 | ||
| 82 | lemma continuous_mult_right: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 83 | fixes c::"'a::real_normed_algebra" | 
| 56215 | 84 | shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x * c)" | 
| 85 | by (rule continuous_mult [OF _ continuous_const]) | |
| 86 | ||
| 87 | lemma continuous_on_mult_left: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 88 | fixes c::"'a::real_normed_algebra" | 
| 56215 | 89 | shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. c * f x)" | 
| 90 | by (rule continuous_on_mult [OF continuous_on_const]) | |
| 91 | ||
| 92 | lemma continuous_on_mult_right: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 93 | fixes c::"'a::real_normed_algebra" | 
| 56215 | 94 | shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x * c)" | 
| 95 | by (rule continuous_on_mult [OF _ continuous_on_const]) | |
| 96 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56370diff
changeset | 97 | lemma uniformly_continuous_on_cmul_right [continuous_intros]: | 
| 56215 | 98 | fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra" | 
| 56332 | 99 | shows "uniformly_continuous_on s f \<Longrightarrow> uniformly_continuous_on s (\<lambda>x. f x * c)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 100 | using bounded_linear.uniformly_continuous_on[OF bounded_linear_mult_left] . | 
| 56215 | 101 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56370diff
changeset | 102 | lemma uniformly_continuous_on_cmul_left[continuous_intros]: | 
| 56215 | 103 | fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra" | 
| 104 | assumes "uniformly_continuous_on s f" | |
| 105 | shows "uniformly_continuous_on s (\<lambda>x. c * f x)" | |
| 106 | by (metis assms bounded_linear.uniformly_continuous_on bounded_linear_mult_right) | |
| 107 | ||
| 108 | lemma continuous_within_norm_id [continuous_intros]: "continuous (at x within S) norm" | |
| 109 | by (rule continuous_norm [OF continuous_ident]) | |
| 110 | ||
| 111 | lemma continuous_on_norm_id [continuous_intros]: "continuous_on S norm" | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 112 | by (intro continuous_on_id continuous_on_norm) | 
| 56215 | 113 | |
| 60420 | 114 | subsection\<open>DERIV stuff\<close> | 
| 56215 | 115 | |
| 116 | lemma DERIV_zero_connected_constant: | |
| 117 |   fixes f :: "'a::{real_normed_field,euclidean_space} \<Rightarrow> 'a"
 | |
| 118 | assumes "connected s" | |
| 119 | and "open s" | |
| 120 | and "finite k" | |
| 121 | and "continuous_on s f" | |
| 122 | and "\<forall>x\<in>(s - k). DERIV f x :> 0" | |
| 123 | obtains c where "\<And>x. x \<in> s \<Longrightarrow> f(x) = c" | |
| 124 | using has_derivative_zero_connected_constant [OF assms(1-4)] assms | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 125 | by (metis DERIV_const has_derivative_const Diff_iff at_within_open frechet_derivative_at has_field_derivative_def) | 
| 56215 | 126 | |
| 127 | lemma DERIV_zero_constant: | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 128 |   fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
 | 
| 56215 | 129 | shows "\<lbrakk>convex s; | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 130 | \<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)\<rbrakk> | 
| 56215 | 131 | \<Longrightarrow> \<exists>c. \<forall>x \<in> s. f(x) = c" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 132 | by (auto simp: has_field_derivative_def lambda_zero intro: has_derivative_zero_constant) | 
| 56215 | 133 | |
| 134 | lemma DERIV_zero_unique: | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 135 |   fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
 | 
| 56215 | 136 | assumes "convex s" | 
| 137 | and d0: "\<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)" | |
| 138 | and "a \<in> s" | |
| 139 | and "x \<in> s" | |
| 140 | shows "f x = f a" | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 141 | by (rule has_derivative_zero_unique [OF assms(1) _ assms(4,3)]) | 
| 56332 | 142 | (metis d0 has_field_derivative_imp_has_derivative lambda_zero) | 
| 56215 | 143 | |
| 144 | lemma DERIV_zero_connected_unique: | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 145 |   fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
 | 
| 56215 | 146 | assumes "connected s" | 
| 147 | and "open s" | |
| 148 | and d0: "\<And>x. x\<in>s \<Longrightarrow> DERIV f x :> 0" | |
| 149 | and "a \<in> s" | |
| 150 | and "x \<in> s" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 151 | shows "f x = f a" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 152 | by (rule has_derivative_zero_unique_connected [OF assms(2,1) _ assms(5,4)]) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 153 | (metis has_field_derivative_def lambda_zero d0) | 
| 56215 | 154 | |
| 155 | lemma DERIV_transform_within: | |
| 156 | assumes "(f has_field_derivative f') (at a within s)" | |
| 157 | and "0 < d" "a \<in> s" | |
| 158 | and "\<And>x. x\<in>s \<Longrightarrow> dist x a < d \<Longrightarrow> f x = g x" | |
| 159 | shows "(g has_field_derivative f') (at a within s)" | |
| 160 | using assms unfolding has_field_derivative_def | |
| 56332 | 161 | by (blast intro: has_derivative_transform_within) | 
| 56215 | 162 | |
| 163 | lemma DERIV_transform_within_open: | |
| 164 | assumes "DERIV f a :> f'" | |
| 165 | and "open s" "a \<in> s" | |
| 166 | and "\<And>x. x\<in>s \<Longrightarrow> f x = g x" | |
| 167 | shows "DERIV g a :> f'" | |
| 168 | using assms unfolding has_field_derivative_def | |
| 169 | by (metis has_derivative_transform_within_open) | |
| 170 | ||
| 171 | lemma DERIV_transform_at: | |
| 172 | assumes "DERIV f a :> f'" | |
| 173 | and "0 < d" | |
| 174 | and "\<And>x. dist x a < d \<Longrightarrow> f x = g x" | |
| 175 | shows "DERIV g a :> f'" | |
| 176 | by (blast intro: assms DERIV_transform_within) | |
| 177 | ||
| 59615 
fdfdf89a83a6
A few new lemmas and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 178 | (*generalising DERIV_isconst_all, which requires type real (using the ordering)*) | 
| 
fdfdf89a83a6
A few new lemmas and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 179 | lemma DERIV_zero_UNIV_unique: | 
| 
fdfdf89a83a6
A few new lemmas and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 180 |   fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
 | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 181 | shows "(\<And>x. DERIV f x :> 0) \<Longrightarrow> f x = f a" | 
| 59615 
fdfdf89a83a6
A few new lemmas and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 182 | by (metis DERIV_zero_unique UNIV_I assms convex_UNIV) | 
| 
fdfdf89a83a6
A few new lemmas and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 183 | |
| 60420 | 184 | subsection \<open>Some limit theorems about real part of real series etc.\<close> | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 185 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 186 | (*MOVE? But not to Finite_Cartesian_Product*) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 187 | lemma sums_vec_nth : | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 188 | assumes "f sums a" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 189 | shows "(\<lambda>x. f x $ i) sums a $ i" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 190 | using assms unfolding sums_def | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 191 | by (auto dest: tendsto_vec_nth [where i=i]) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 192 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 193 | lemma summable_vec_nth : | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 194 | assumes "summable f" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 195 | shows "summable (\<lambda>x. f x $ i)" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 196 | using assms unfolding summable_def | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 197 | by (blast intro: sums_vec_nth) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 198 | |
| 60420 | 199 | subsection \<open>Complex number lemmas\<close> | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 200 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 201 | lemma | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 202 |   shows open_halfspace_Re_lt: "open {z. Re(z) < b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 203 |     and open_halfspace_Re_gt: "open {z. Re(z) > b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 204 |     and closed_halfspace_Re_ge: "closed {z. Re(z) \<ge> b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 205 |     and closed_halfspace_Re_le: "closed {z. Re(z) \<le> b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 206 |     and closed_halfspace_Re_eq: "closed {z. Re(z) = b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 207 |     and open_halfspace_Im_lt: "open {z. Im(z) < b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 208 |     and open_halfspace_Im_gt: "open {z. Im(z) > b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 209 |     and closed_halfspace_Im_ge: "closed {z. Im(z) \<ge> b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 210 |     and closed_halfspace_Im_le: "closed {z. Im(z) \<le> b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 211 |     and closed_halfspace_Im_eq: "closed {z. Im(z) = b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 212 | by (intro open_Collect_less closed_Collect_le closed_Collect_eq isCont_Re | 
| 60150 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 213 | isCont_Im continuous_ident continuous_const)+ | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 214 | |
| 61070 | 215 | lemma closed_complex_Reals: "closed (\<real> :: complex set)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 216 | proof - | 
| 61070 | 217 |   have "(\<real> :: complex set) = {z. Im z = 0}"
 | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 218 | by (auto simp: complex_is_Real_iff) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 219 | then show ?thesis | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 220 | by (metis closed_halfspace_Im_eq) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 221 | qed | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 222 | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 223 | lemma closed_Real_halfspace_Re_le: "closed (\<real> \<inter> {w. Re w \<le> x})"
 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 224 | by (simp add: closed_Int closed_complex_Reals closed_halfspace_Re_le) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 225 | |
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 226 | corollary closed_nonpos_Reals_complex [simp]: "closed (\<real>\<^sub>\<le>\<^sub>0 :: complex set)" | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 227 | proof - | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 228 |   have "\<real>\<^sub>\<le>\<^sub>0 = \<real> \<inter> {z. Re(z) \<le> 0}"
 | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 229 | using complex_nonpos_Reals_iff complex_is_Real_iff by auto | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 230 | then show ?thesis | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 231 | by (metis closed_Real_halfspace_Re_le) | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 232 | qed | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 233 | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 234 | lemma closed_Real_halfspace_Re_ge: "closed (\<real> \<inter> {w. x \<le> Re(w)})"
 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 235 | using closed_halfspace_Re_ge | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 236 | by (simp add: closed_Int closed_complex_Reals) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 237 | |
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 238 | corollary closed_nonneg_Reals_complex [simp]: "closed (\<real>\<^sub>\<ge>\<^sub>0 :: complex set)" | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 239 | proof - | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 240 |   have "\<real>\<^sub>\<ge>\<^sub>0 = \<real> \<inter> {z. Re(z) \<ge> 0}"
 | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 241 | using complex_nonneg_Reals_iff complex_is_Real_iff by auto | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 242 | then show ?thesis | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 243 | by (metis closed_Real_halfspace_Re_ge) | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 244 | qed | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 245 | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 246 | lemma closed_real_abs_le: "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 247 | proof - | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 248 |   have "{w \<in> \<real>. \<bar>Re w\<bar> \<le> r} = (\<real> \<inter> {w. Re w \<le> r}) \<inter> (\<real> \<inter> {w. Re w \<ge> -r})"
 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 249 | by auto | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 250 |   then show "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 251 | by (simp add: closed_Int closed_Real_halfspace_Re_ge closed_Real_halfspace_Re_le) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 252 | qed | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 253 | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 254 | lemma real_lim: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 255 | fixes l::complex | 
| 61973 | 256 | assumes "(f \<longlongrightarrow> l) F" and "~(trivial_limit F)" and "eventually P F" and "\<And>a. P a \<Longrightarrow> f a \<in> \<real>" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 257 | shows "l \<in> \<real>" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 258 | proof (rule Lim_in_closed_set[OF closed_complex_Reals _ assms(2,1)]) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 259 | show "eventually (\<lambda>x. f x \<in> \<real>) F" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 260 | using assms(3, 4) by (auto intro: eventually_mono) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 261 | qed | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 262 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 263 | lemma real_lim_sequentially: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 264 | fixes l::complex | 
| 61973 | 265 | shows "(f \<longlongrightarrow> l) sequentially \<Longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 266 | by (rule real_lim [where F=sequentially]) (auto simp: eventually_sequentially) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 267 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 268 | lemma real_series: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 269 | fixes l::complex | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 270 | shows "f sums l \<Longrightarrow> (\<And>n. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 271 | unfolding sums_def | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 272 | by (metis real_lim_sequentially setsum_in_Reals) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 273 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 274 | lemma Lim_null_comparison_Re: | 
| 61973 | 275 | assumes "eventually (\<lambda>x. norm(f x) \<le> Re(g x)) F" "(g \<longlongrightarrow> 0) F" shows "(f \<longlongrightarrow> 0) F" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 276 | by (rule Lim_null_comparison[OF assms(1)] tendsto_eq_intros assms(2))+ simp | 
| 56215 | 277 | |
| 60420 | 278 | subsection\<open>Holomorphic functions\<close> | 
| 56215 | 279 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 280 | definition field_differentiable :: "['a \<Rightarrow> 'a::real_normed_field, 'a filter] \<Rightarrow> bool" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 281 | (infixr "(field'_differentiable)" 50) | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 282 | where "f field_differentiable F \<equiv> \<exists>f'. (f has_field_derivative f') F" | 
| 56215 | 283 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 284 | lemma field_differentiable_derivI: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 285 | "f field_differentiable (at x) \<Longrightarrow> (f has_field_derivative deriv f x) (at x)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 286 | by (simp add: field_differentiable_def DERIV_deriv_iff_has_field_derivative) | 
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 287 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 288 | lemma field_differentiable_imp_continuous_at: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 289 | "f field_differentiable (at x within s) \<Longrightarrow> continuous (at x within s) f" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 290 | by (metis DERIV_continuous field_differentiable_def) | 
| 56215 | 291 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 292 | lemma field_differentiable_within_subset: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 293 | "\<lbrakk>f field_differentiable (at x within s); t \<subseteq> s\<rbrakk> | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 294 | \<Longrightarrow> f field_differentiable (at x within t)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 295 | by (metis DERIV_subset field_differentiable_def) | 
| 56215 | 296 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 297 | lemma field_differentiable_at_within: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 298 | "\<lbrakk>f field_differentiable (at x)\<rbrakk> | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 299 | \<Longrightarrow> f field_differentiable (at x within s)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 300 | unfolding field_differentiable_def | 
| 56215 | 301 | by (metis DERIV_subset top_greatest) | 
| 302 | ||
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 303 | lemma field_differentiable_linear [simp,derivative_intros]: "(op * c) field_differentiable F" | 
| 56215 | 304 | proof - | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 305 | show ?thesis | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 306 | unfolding field_differentiable_def has_field_derivative_def mult_commute_abs | 
| 56215 | 307 | by (force intro: has_derivative_mult_right) | 
| 308 | qed | |
| 309 | ||
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 310 | lemma field_differentiable_const [simp,derivative_intros]: "(\<lambda>z. c) field_differentiable F" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 311 | unfolding field_differentiable_def has_field_derivative_def | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 312 | by (rule exI [where x=0]) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 313 | (metis has_derivative_const lambda_zero) | 
| 56215 | 314 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 315 | lemma field_differentiable_ident [simp,derivative_intros]: "(\<lambda>z. z) field_differentiable F" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 316 | unfolding field_differentiable_def has_field_derivative_def | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 317 | by (rule exI [where x=1]) | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 318 | (simp add: lambda_one [symmetric]) | 
| 56215 | 319 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 320 | lemma field_differentiable_id [simp,derivative_intros]: "id field_differentiable F" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 321 | unfolding id_def by (rule field_differentiable_ident) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 322 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 323 | lemma field_differentiable_minus [derivative_intros]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 324 | "f field_differentiable F \<Longrightarrow> (\<lambda>z. - (f z)) field_differentiable F" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 325 | using assms unfolding field_differentiable_def | 
| 56215 | 326 | by (metis field_differentiable_minus) | 
| 327 | ||
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 328 | lemma field_differentiable_add [derivative_intros]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 329 | assumes "f field_differentiable F" "g field_differentiable F" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 330 | shows "(\<lambda>z. f z + g z) field_differentiable F" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 331 | using assms unfolding field_differentiable_def | 
| 56215 | 332 | by (metis field_differentiable_add) | 
| 333 | ||
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 334 | lemma field_differentiable_add_const [simp,derivative_intros]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 335 | "op + c field_differentiable F" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 336 | by (simp add: field_differentiable_add) | 
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 337 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 338 | lemma field_differentiable_setsum [derivative_intros]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 339 | "(\<And>i. i \<in> I \<Longrightarrow> (f i) field_differentiable F) \<Longrightarrow> (\<lambda>z. \<Sum>i\<in>I. f i z) field_differentiable F" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 340 | by (induct I rule: infinite_finite_induct) | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 341 | (auto intro: field_differentiable_add field_differentiable_const) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 342 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 343 | lemma field_differentiable_diff [derivative_intros]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 344 | assumes "f field_differentiable F" "g field_differentiable F" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 345 | shows "(\<lambda>z. f z - g z) field_differentiable F" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 346 | using assms unfolding field_differentiable_def | 
| 56215 | 347 | by (metis field_differentiable_diff) | 
| 348 | ||
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 349 | lemma field_differentiable_inverse [derivative_intros]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 350 | assumes "f field_differentiable (at a within s)" "f a \<noteq> 0" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 351 | shows "(\<lambda>z. inverse (f z)) field_differentiable (at a within s)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 352 | using assms unfolding field_differentiable_def | 
| 56215 | 353 | by (metis DERIV_inverse_fun) | 
| 354 | ||
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 355 | lemma field_differentiable_mult [derivative_intros]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 356 | assumes "f field_differentiable (at a within s)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 357 | "g field_differentiable (at a within s)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 358 | shows "(\<lambda>z. f z * g z) field_differentiable (at a within s)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 359 | using assms unfolding field_differentiable_def | 
| 56215 | 360 | by (metis DERIV_mult [of f _ a s g]) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 361 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 362 | lemma field_differentiable_divide [derivative_intros]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 363 | assumes "f field_differentiable (at a within s)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 364 | "g field_differentiable (at a within s)" | 
| 56215 | 365 | "g a \<noteq> 0" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 366 | shows "(\<lambda>z. f z / g z) field_differentiable (at a within s)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 367 | using assms unfolding field_differentiable_def | 
| 56215 | 368 | by (metis DERIV_divide [of f _ a s g]) | 
| 369 | ||
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 370 | lemma field_differentiable_power [derivative_intros]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 371 | assumes "f field_differentiable (at a within s)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 372 | shows "(\<lambda>z. f z ^ n) field_differentiable (at a within s)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 373 | using assms unfolding field_differentiable_def | 
| 56215 | 374 | by (metis DERIV_power) | 
| 375 | ||
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 376 | lemma field_differentiable_transform_within: | 
| 56215 | 377 | "0 < d \<Longrightarrow> | 
| 378 | x \<in> s \<Longrightarrow> | |
| 379 | (\<And>x'. x' \<in> s \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x') \<Longrightarrow> | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 380 | f field_differentiable (at x within s) | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 381 | \<Longrightarrow> g field_differentiable (at x within s)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 382 | unfolding field_differentiable_def has_field_derivative_def | 
| 56215 | 383 | by (blast intro: has_derivative_transform_within) | 
| 384 | ||
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 385 | lemma field_differentiable_compose_within: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 386 | assumes "f field_differentiable (at a within s)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 387 | "g field_differentiable (at (f a) within f`s)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 388 | shows "(g o f) field_differentiable (at a within s)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 389 | using assms unfolding field_differentiable_def | 
| 56215 | 390 | by (metis DERIV_image_chain) | 
| 391 | ||
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 392 | lemma field_differentiable_compose: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 393 | "f field_differentiable at z \<Longrightarrow> g field_differentiable at (f z) | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 394 | \<Longrightarrow> (g o f) field_differentiable at z" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 395 | by (metis field_differentiable_at_within field_differentiable_compose_within) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 396 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 397 | lemma field_differentiable_within_open: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 398 | "\<lbrakk>a \<in> s; open s\<rbrakk> \<Longrightarrow> f field_differentiable at a within s \<longleftrightarrow> | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 399 | f field_differentiable at a" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 400 | unfolding field_differentiable_def | 
| 56215 | 401 | by (metis at_within_open) | 
| 402 | ||
| 62408 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 403 | subsection\<open>Caratheodory characterization\<close> | 
| 56215 | 404 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 405 | lemma field_differentiable_caratheodory_at: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 406 | "f field_differentiable (at z) \<longleftrightarrow> | 
| 56215 | 407 | (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z) g)" | 
| 408 | using CARAT_DERIV [of f] | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 409 | by (simp add: field_differentiable_def has_field_derivative_def) | 
| 56215 | 410 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 411 | lemma field_differentiable_caratheodory_within: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 412 | "f field_differentiable (at z within s) \<longleftrightarrow> | 
| 56215 | 413 | (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z within s) g)" | 
| 414 | using DERIV_caratheodory_within [of f] | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 415 | by (simp add: field_differentiable_def has_field_derivative_def) | 
| 56215 | 416 | |
| 60420 | 417 | subsection\<open>Holomorphic\<close> | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 418 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 419 | definition holomorphic_on :: "[complex \<Rightarrow> complex, complex set] \<Rightarrow> bool" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 420 | (infixl "(holomorphic'_on)" 50) | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 421 | where "f holomorphic_on s \<equiv> \<forall>x\<in>s. f field_differentiable (at x within s)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 422 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 423 | named_theorems holomorphic_intros "structural introduction rules for holomorphic_on" | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 424 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 425 | lemma holomorphic_onI [intro?]: "(\<And>x. x \<in> s \<Longrightarrow> f field_differentiable (at x within s)) \<Longrightarrow> f holomorphic_on s" | 
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 426 | by (simp add: holomorphic_on_def) | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 427 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 428 | lemma holomorphic_onD [dest?]: "\<lbrakk>f holomorphic_on s; x \<in> s\<rbrakk> \<Longrightarrow> f field_differentiable (at x within s)" | 
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 429 | by (simp add: holomorphic_on_def) | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 430 | |
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 431 | lemma holomorphic_on_imp_differentiable_at: | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 432 | "\<lbrakk>f holomorphic_on s; open s; x \<in> s\<rbrakk> \<Longrightarrow> f field_differentiable (at x)" | 
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 433 | using at_within_open holomorphic_on_def by fastforce | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 434 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 435 | lemma holomorphic_on_empty [holomorphic_intros]: "f holomorphic_on {}"
 | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 436 | by (simp add: holomorphic_on_def) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 437 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 438 | lemma holomorphic_on_open: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 439 | "open s \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>f'. DERIV f x :> f')" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 440 | by (auto simp: holomorphic_on_def field_differentiable_def has_field_derivative_def at_within_open [of _ s]) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 441 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 442 | lemma holomorphic_on_imp_continuous_on: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 443 | "f holomorphic_on s \<Longrightarrow> continuous_on s f" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 444 | by (metis field_differentiable_imp_continuous_at continuous_on_eq_continuous_within holomorphic_on_def) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 445 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 446 | lemma holomorphic_on_subset: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 447 | "f holomorphic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f holomorphic_on t" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 448 | unfolding holomorphic_on_def | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 449 | by (metis field_differentiable_within_subset subsetD) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 450 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 451 | lemma holomorphic_transform: "\<lbrakk>f holomorphic_on s; \<And>x. x \<in> s \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 452 | by (metis field_differentiable_transform_within linordered_field_no_ub holomorphic_on_def) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 453 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 454 | lemma holomorphic_cong: "s = t ==> (\<And>x. x \<in> s \<Longrightarrow> f x = g x) \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> g holomorphic_on t" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 455 | by (metis holomorphic_transform) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 456 | |
| 62217 | 457 | lemma holomorphic_on_linear [simp, holomorphic_intros]: "(op * c) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 458 | unfolding holomorphic_on_def by (metis field_differentiable_linear) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 459 | |
| 62217 | 460 | lemma holomorphic_on_const [simp, holomorphic_intros]: "(\<lambda>z. c) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 461 | unfolding holomorphic_on_def by (metis field_differentiable_const) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 462 | |
| 62217 | 463 | lemma holomorphic_on_ident [simp, holomorphic_intros]: "(\<lambda>x. x) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 464 | unfolding holomorphic_on_def by (metis field_differentiable_ident) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 465 | |
| 62217 | 466 | lemma holomorphic_on_id [simp, holomorphic_intros]: "id holomorphic_on s" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 467 | unfolding id_def by (rule holomorphic_on_ident) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 468 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 469 | lemma holomorphic_on_compose: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 470 | "f holomorphic_on s \<Longrightarrow> g holomorphic_on (f ` s) \<Longrightarrow> (g o f) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 471 | using field_differentiable_compose_within[of f _ s g] | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 472 | by (auto simp: holomorphic_on_def) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 473 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 474 | lemma holomorphic_on_compose_gen: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 475 | "f holomorphic_on s \<Longrightarrow> g holomorphic_on t \<Longrightarrow> f ` s \<subseteq> t \<Longrightarrow> (g o f) holomorphic_on s" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 476 | by (metis holomorphic_on_compose holomorphic_on_subset) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 477 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 478 | lemma holomorphic_on_minus [holomorphic_intros]: "f holomorphic_on s \<Longrightarrow> (\<lambda>z. -(f z)) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 479 | by (metis field_differentiable_minus holomorphic_on_def) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 480 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 481 | lemma holomorphic_on_add [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 482 | "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z + g z) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 483 | unfolding holomorphic_on_def by (metis field_differentiable_add) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 484 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 485 | lemma holomorphic_on_diff [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 486 | "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z - g z) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 487 | unfolding holomorphic_on_def by (metis field_differentiable_diff) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 488 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 489 | lemma holomorphic_on_mult [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 490 | "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z * g z) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 491 | unfolding holomorphic_on_def by (metis field_differentiable_mult) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 492 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 493 | lemma holomorphic_on_inverse [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 494 | "\<lbrakk>f holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. inverse (f z)) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 495 | unfolding holomorphic_on_def by (metis field_differentiable_inverse) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 496 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 497 | lemma holomorphic_on_divide [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 498 | "\<lbrakk>f holomorphic_on s; g holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. f z / g z) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 499 | unfolding holomorphic_on_def by (metis field_differentiable_divide) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 500 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 501 | lemma holomorphic_on_power [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 502 | "f holomorphic_on s \<Longrightarrow> (\<lambda>z. (f z)^n) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 503 | unfolding holomorphic_on_def by (metis field_differentiable_power) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 504 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 505 | lemma holomorphic_on_setsum [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 506 | "(\<And>i. i \<in> I \<Longrightarrow> (f i) holomorphic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 507 | unfolding holomorphic_on_def by (metis field_differentiable_setsum) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 508 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 509 | lemma DERIV_deriv_iff_field_differentiable: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 510 | "DERIV f x :> deriv f x \<longleftrightarrow> f field_differentiable at x" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 511 | unfolding field_differentiable_def by (metis DERIV_imp_deriv) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 512 | |
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 513 | lemma holomorphic_derivI: | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 514 | "\<lbrakk>f holomorphic_on S; open S; x \<in> S\<rbrakk> | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 515 | \<Longrightarrow> (f has_field_derivative deriv f x) (at x within T)" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 516 | by (metis DERIV_deriv_iff_field_differentiable at_within_open holomorphic_on_def has_field_derivative_at_within) | 
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 517 | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 518 | lemma complex_derivative_chain: | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 519 | "f field_differentiable at x \<Longrightarrow> g field_differentiable at (f x) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 520 | \<Longrightarrow> deriv (g o f) x = deriv g (f x) * deriv f x" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 521 | by (metis DERIV_deriv_iff_field_differentiable DERIV_chain DERIV_imp_deriv) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 522 | |
| 62397 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62217diff
changeset | 523 | lemma deriv_linear [simp]: "deriv (\<lambda>w. c * w) = (\<lambda>z. c)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 524 | by (metis DERIV_imp_deriv DERIV_cmult_Id) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 525 | |
| 62397 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62217diff
changeset | 526 | lemma deriv_ident [simp]: "deriv (\<lambda>w. w) = (\<lambda>z. 1)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 527 | by (metis DERIV_imp_deriv DERIV_ident) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 528 | |
| 62397 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62217diff
changeset | 529 | lemma deriv_id [simp]: "deriv id = (\<lambda>z. 1)" | 
| 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62217diff
changeset | 530 | by (simp add: id_def) | 
| 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62217diff
changeset | 531 | |
| 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62217diff
changeset | 532 | lemma deriv_const [simp]: "deriv (\<lambda>w. c) = (\<lambda>z. 0)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 533 | by (metis DERIV_imp_deriv DERIV_const) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 534 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 535 | lemma deriv_add [simp]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 536 | "\<lbrakk>f field_differentiable at z; g field_differentiable at z\<rbrakk> | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 537 | \<Longrightarrow> deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 538 | unfolding DERIV_deriv_iff_field_differentiable[symmetric] | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 539 | by (auto intro!: DERIV_imp_deriv derivative_intros) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 540 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 541 | lemma deriv_diff [simp]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 542 | "\<lbrakk>f field_differentiable at z; g field_differentiable at z\<rbrakk> | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 543 | \<Longrightarrow> deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 544 | unfolding DERIV_deriv_iff_field_differentiable[symmetric] | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 545 | by (auto intro!: DERIV_imp_deriv derivative_intros) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 546 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 547 | lemma deriv_mult [simp]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 548 | "\<lbrakk>f field_differentiable at z; g field_differentiable at z\<rbrakk> | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 549 | \<Longrightarrow> deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 550 | unfolding DERIV_deriv_iff_field_differentiable[symmetric] | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 551 | by (auto intro!: DERIV_imp_deriv derivative_eq_intros) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 552 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 553 | lemma deriv_cmult [simp]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 554 | "f field_differentiable at z \<Longrightarrow> deriv (\<lambda>w. c * f w) z = c * deriv f z" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 555 | unfolding DERIV_deriv_iff_field_differentiable[symmetric] | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 556 | by (auto intro!: DERIV_imp_deriv derivative_eq_intros) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 557 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 558 | lemma deriv_cmult_right [simp]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 559 | "f field_differentiable at z \<Longrightarrow> deriv (\<lambda>w. f w * c) z = deriv f z * c" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 560 | unfolding DERIV_deriv_iff_field_differentiable[symmetric] | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 561 | by (auto intro!: DERIV_imp_deriv derivative_eq_intros) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 562 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 563 | lemma deriv_cdivide_right [simp]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 564 | "f field_differentiable at z \<Longrightarrow> deriv (\<lambda>w. f w / c) z = deriv f z / c" | 
| 62217 | 565 | unfolding Fields.field_class.field_divide_inverse | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 566 | by (blast intro: deriv_cmult_right) | 
| 62217 | 567 | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 568 | lemma complex_derivative_transform_within_open: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 569 | "\<lbrakk>f holomorphic_on s; g holomorphic_on s; open s; z \<in> s; \<And>w. w \<in> s \<Longrightarrow> f w = g w\<rbrakk> | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 570 | \<Longrightarrow> deriv f z = deriv g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 571 | unfolding holomorphic_on_def | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 572 | by (rule DERIV_imp_deriv) | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 573 | (metis DERIV_deriv_iff_field_differentiable DERIV_transform_within_open at_within_open) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 574 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 575 | lemma deriv_compose_linear: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 576 | "f field_differentiable at (c * z) \<Longrightarrow> deriv (\<lambda>w. f (c * w)) z = c * deriv f (c * z)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 577 | apply (rule DERIV_imp_deriv) | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 578 | apply (simp add: DERIV_deriv_iff_field_differentiable [symmetric]) | 
| 59554 
4044f53326c9
inlined rules to free user-space from technical names
 haftmann parents: 
58877diff
changeset | 579 | apply (drule DERIV_chain' [of "times c" c z UNIV f "deriv f (c * z)", OF DERIV_cmult_Id]) | 
| 
4044f53326c9
inlined rules to free user-space from technical names
 haftmann parents: 
58877diff
changeset | 580 | apply (simp add: algebra_simps) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 581 | done | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 582 | |
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 583 | lemma nonzero_deriv_nonconstant: | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 584 | assumes df: "DERIV f \<xi> :> df" and S: "open S" "\<xi> \<in> S" and "df \<noteq> 0" | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 585 | shows "\<not> f constant_on S" | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 586 | unfolding constant_on_def | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 587 | by (metis \<open>df \<noteq> 0\<close> DERIV_transform_within_open [OF df S] DERIV_const DERIV_unique) | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 588 | |
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 589 | lemma holomorphic_nonconstant: | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 590 | assumes holf: "f holomorphic_on S" and "open S" "\<xi> \<in> S" "deriv f \<xi> \<noteq> 0" | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 591 | shows "\<not> f constant_on S" | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 592 | apply (rule nonzero_deriv_nonconstant [of f "deriv f \<xi>" \<xi> S]) | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 593 | using assms | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 594 | apply (auto simp: holomorphic_derivI) | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 595 | done | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 596 | |
| 60420 | 597 | subsection\<open>Analyticity on a set\<close> | 
| 56215 | 598 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 599 | definition analytic_on (infixl "(analytic'_on)" 50) | 
| 56215 | 600 | where | 
| 601 | "f analytic_on s \<equiv> \<forall>x \<in> s. \<exists>e. 0 < e \<and> f holomorphic_on (ball x e)" | |
| 602 | ||
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 603 | lemma analytic_imp_holomorphic: "f analytic_on s \<Longrightarrow> f holomorphic_on s" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 604 | by (simp add: at_within_open [OF _ open_ball] analytic_on_def holomorphic_on_def) | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 605 | (metis centre_in_ball field_differentiable_at_within) | 
| 56215 | 606 | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 607 | lemma analytic_on_open: "open s \<Longrightarrow> f analytic_on s \<longleftrightarrow> f holomorphic_on s" | 
| 56215 | 608 | apply (auto simp: analytic_imp_holomorphic) | 
| 609 | apply (auto simp: analytic_on_def holomorphic_on_def) | |
| 610 | by (metis holomorphic_on_def holomorphic_on_subset open_contains_ball) | |
| 611 | ||
| 612 | lemma analytic_on_imp_differentiable_at: | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 613 | "f analytic_on s \<Longrightarrow> x \<in> s \<Longrightarrow> f field_differentiable (at x)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 614 | apply (auto simp: analytic_on_def holomorphic_on_def) | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 615 | by (metis Topology_Euclidean_Space.open_ball centre_in_ball field_differentiable_within_open) | 
| 56215 | 616 | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 617 | lemma analytic_on_subset: "f analytic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f analytic_on t" | 
| 56215 | 618 | by (auto simp: analytic_on_def) | 
| 619 | ||
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 620 | lemma analytic_on_Un: "f analytic_on (s \<union> t) \<longleftrightarrow> f analytic_on s \<and> f analytic_on t" | 
| 56215 | 621 | by (auto simp: analytic_on_def) | 
| 622 | ||
| 60585 | 623 | lemma analytic_on_Union: "f analytic_on (\<Union>s) \<longleftrightarrow> (\<forall>t \<in> s. f analytic_on t)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 624 | by (auto simp: analytic_on_def) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 625 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 626 | lemma analytic_on_UN: "f analytic_on (\<Union>i\<in>I. s i) \<longleftrightarrow> (\<forall>i\<in>I. f analytic_on (s i))" | 
| 56215 | 627 | by (auto simp: analytic_on_def) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 628 | |
| 56215 | 629 | lemma analytic_on_holomorphic: | 
| 630 | "f analytic_on s \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f holomorphic_on t)" | |
| 631 | (is "?lhs = ?rhs") | |
| 632 | proof - | |
| 633 | have "?lhs \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t)" | |
| 634 | proof safe | |
| 635 | assume "f analytic_on s" | |
| 636 | then show "\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t" | |
| 637 | apply (simp add: analytic_on_def) | |
| 638 |       apply (rule exI [where x="\<Union>{u. open u \<and> f analytic_on u}"], auto)
 | |
| 639 | apply (metis Topology_Euclidean_Space.open_ball analytic_on_open centre_in_ball) | |
| 640 | by (metis analytic_on_def) | |
| 641 | next | |
| 642 | fix t | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 643 | assume "open t" "s \<subseteq> t" "f analytic_on t" | 
| 56215 | 644 | then show "f analytic_on s" | 
| 645 | by (metis analytic_on_subset) | |
| 646 | qed | |
| 647 | also have "... \<longleftrightarrow> ?rhs" | |
| 648 | by (auto simp: analytic_on_open) | |
| 649 | finally show ?thesis . | |
| 650 | qed | |
| 651 | ||
| 652 | lemma analytic_on_linear: "(op * c) analytic_on s" | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 653 | by (auto simp add: analytic_on_holomorphic holomorphic_on_linear) | 
| 56215 | 654 | |
| 655 | lemma analytic_on_const: "(\<lambda>z. c) analytic_on s" | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 656 | by (metis analytic_on_def holomorphic_on_const zero_less_one) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 657 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 658 | lemma analytic_on_ident: "(\<lambda>x. x) analytic_on s" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 659 | by (simp add: analytic_on_def holomorphic_on_ident gt_ex) | 
| 56215 | 660 | |
| 661 | lemma analytic_on_id: "id analytic_on s" | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 662 | unfolding id_def by (rule analytic_on_ident) | 
| 56215 | 663 | |
| 664 | lemma analytic_on_compose: | |
| 665 | assumes f: "f analytic_on s" | |
| 666 | and g: "g analytic_on (f ` s)" | |
| 667 | shows "(g o f) analytic_on s" | |
| 668 | unfolding analytic_on_def | |
| 669 | proof (intro ballI) | |
| 670 | fix x | |
| 671 | assume x: "x \<in> s" | |
| 672 | then obtain e where e: "0 < e" and fh: "f holomorphic_on ball x e" using f | |
| 673 | by (metis analytic_on_def) | |
| 674 | obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball (f x) e'" using g | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 675 | by (metis analytic_on_def g image_eqI x) | 
| 56215 | 676 | have "isCont f x" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 677 | by (metis analytic_on_imp_differentiable_at field_differentiable_imp_continuous_at f x) | 
| 56215 | 678 | with e' obtain d where d: "0 < d" and fd: "f ` ball x d \<subseteq> ball (f x) e'" | 
| 679 | by (auto simp: continuous_at_ball) | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 680 | have "g \<circ> f holomorphic_on ball x (min d e)" | 
| 56215 | 681 | apply (rule holomorphic_on_compose) | 
| 682 | apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | |
| 683 | by (metis fd gh holomorphic_on_subset image_mono min.cobounded1 subset_ball) | |
| 684 | then show "\<exists>e>0. g \<circ> f holomorphic_on ball x e" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 685 | by (metis d e min_less_iff_conj) | 
| 56215 | 686 | qed | 
| 687 | ||
| 688 | lemma analytic_on_compose_gen: | |
| 689 | "f analytic_on s \<Longrightarrow> g analytic_on t \<Longrightarrow> (\<And>z. z \<in> s \<Longrightarrow> f z \<in> t) | |
| 690 | \<Longrightarrow> g o f analytic_on s" | |
| 691 | by (metis analytic_on_compose analytic_on_subset image_subset_iff) | |
| 692 | ||
| 693 | lemma analytic_on_neg: | |
| 694 | "f analytic_on s \<Longrightarrow> (\<lambda>z. -(f z)) analytic_on s" | |
| 695 | by (metis analytic_on_holomorphic holomorphic_on_minus) | |
| 696 | ||
| 697 | lemma analytic_on_add: | |
| 698 | assumes f: "f analytic_on s" | |
| 699 | and g: "g analytic_on s" | |
| 700 | shows "(\<lambda>z. f z + g z) analytic_on s" | |
| 701 | unfolding analytic_on_def | |
| 702 | proof (intro ballI) | |
| 703 | fix z | |
| 704 | assume z: "z \<in> s" | |
| 705 | then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f | |
| 706 | by (metis analytic_on_def) | |
| 707 | obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 708 | by (metis analytic_on_def g z) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 709 | have "(\<lambda>z. f z + g z) holomorphic_on ball z (min e e')" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 710 | apply (rule holomorphic_on_add) | 
| 56215 | 711 | apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | 
| 712 | by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | |
| 713 | then show "\<exists>e>0. (\<lambda>z. f z + g z) holomorphic_on ball z e" | |
| 714 | by (metis e e' min_less_iff_conj) | |
| 715 | qed | |
| 716 | ||
| 717 | lemma analytic_on_diff: | |
| 718 | assumes f: "f analytic_on s" | |
| 719 | and g: "g analytic_on s" | |
| 720 | shows "(\<lambda>z. f z - g z) analytic_on s" | |
| 721 | unfolding analytic_on_def | |
| 722 | proof (intro ballI) | |
| 723 | fix z | |
| 724 | assume z: "z \<in> s" | |
| 725 | then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f | |
| 726 | by (metis analytic_on_def) | |
| 727 | obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 728 | by (metis analytic_on_def g z) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 729 | have "(\<lambda>z. f z - g z) holomorphic_on ball z (min e e')" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 730 | apply (rule holomorphic_on_diff) | 
| 56215 | 731 | apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | 
| 732 | by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | |
| 733 | then show "\<exists>e>0. (\<lambda>z. f z - g z) holomorphic_on ball z e" | |
| 734 | by (metis e e' min_less_iff_conj) | |
| 735 | qed | |
| 736 | ||
| 737 | lemma analytic_on_mult: | |
| 738 | assumes f: "f analytic_on s" | |
| 739 | and g: "g analytic_on s" | |
| 740 | shows "(\<lambda>z. f z * g z) analytic_on s" | |
| 741 | unfolding analytic_on_def | |
| 742 | proof (intro ballI) | |
| 743 | fix z | |
| 744 | assume z: "z \<in> s" | |
| 745 | then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f | |
| 746 | by (metis analytic_on_def) | |
| 747 | obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 748 | by (metis analytic_on_def g z) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 749 | have "(\<lambda>z. f z * g z) holomorphic_on ball z (min e e')" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 750 | apply (rule holomorphic_on_mult) | 
| 56215 | 751 | apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | 
| 752 | by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | |
| 753 | then show "\<exists>e>0. (\<lambda>z. f z * g z) holomorphic_on ball z e" | |
| 754 | by (metis e e' min_less_iff_conj) | |
| 755 | qed | |
| 756 | ||
| 757 | lemma analytic_on_inverse: | |
| 758 | assumes f: "f analytic_on s" | |
| 759 | and nz: "(\<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0)" | |
| 760 | shows "(\<lambda>z. inverse (f z)) analytic_on s" | |
| 761 | unfolding analytic_on_def | |
| 762 | proof (intro ballI) | |
| 763 | fix z | |
| 764 | assume z: "z \<in> s" | |
| 765 | then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f | |
| 766 | by (metis analytic_on_def) | |
| 767 | have "continuous_on (ball z e) f" | |
| 768 | by (metis fh holomorphic_on_imp_continuous_on) | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 769 | then obtain e' where e': "0 < e'" and nz': "\<And>y. dist z y < e' \<Longrightarrow> f y \<noteq> 0" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 770 | by (metis Topology_Euclidean_Space.open_ball centre_in_ball continuous_on_open_avoid e z nz) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 771 | have "(\<lambda>z. inverse (f z)) holomorphic_on ball z (min e e')" | 
| 56215 | 772 | apply (rule holomorphic_on_inverse) | 
| 773 | apply (metis fh holomorphic_on_subset min.cobounded2 min.commute subset_ball) | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 774 | by (metis nz' mem_ball min_less_iff_conj) | 
| 56215 | 775 | then show "\<exists>e>0. (\<lambda>z. inverse (f z)) holomorphic_on ball z e" | 
| 776 | by (metis e e' min_less_iff_conj) | |
| 777 | qed | |
| 778 | ||
| 779 | lemma analytic_on_divide: | |
| 780 | assumes f: "f analytic_on s" | |
| 781 | and g: "g analytic_on s" | |
| 782 | and nz: "(\<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0)" | |
| 783 | shows "(\<lambda>z. f z / g z) analytic_on s" | |
| 784 | unfolding divide_inverse | |
| 785 | by (metis analytic_on_inverse analytic_on_mult f g nz) | |
| 786 | ||
| 787 | lemma analytic_on_power: | |
| 788 | "f analytic_on s \<Longrightarrow> (\<lambda>z. (f z) ^ n) analytic_on s" | |
| 789 | by (induct n) (auto simp: analytic_on_const analytic_on_mult) | |
| 790 | ||
| 791 | lemma analytic_on_setsum: | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 792 | "(\<And>i. i \<in> I \<Longrightarrow> (f i) analytic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) analytic_on s" | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 793 | by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_const analytic_on_add) | 
| 56215 | 794 | |
| 62408 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 795 | lemma deriv_left_inverse: | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 796 | assumes "f holomorphic_on S" and "g holomorphic_on T" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 797 | and "open S" and "open T" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 798 | and "f ` S \<subseteq> T" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 799 | and [simp]: "\<And>z. z \<in> S \<Longrightarrow> g (f z) = z" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 800 | and "w \<in> S" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 801 | shows "deriv f w * deriv g (f w) = 1" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 802 | proof - | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 803 | have "deriv f w * deriv g (f w) = deriv g (f w) * deriv f w" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 804 | by (simp add: algebra_simps) | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 805 | also have "... = deriv (g o f) w" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 806 | using assms | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 807 | by (metis analytic_on_imp_differentiable_at analytic_on_open complex_derivative_chain image_subset_iff) | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 808 | also have "... = deriv id w" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 809 | apply (rule complex_derivative_transform_within_open [where s=S]) | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 810 | apply (rule assms holomorphic_on_compose_gen holomorphic_intros)+ | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 811 | apply simp | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 812 | done | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 813 | also have "... = 1" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 814 | by simp | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 815 | finally show ?thesis . | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 816 | qed | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 817 | |
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 818 | subsection\<open>analyticity at a point\<close> | 
| 56215 | 819 | |
| 820 | lemma analytic_at_ball: | |
| 821 |   "f analytic_on {z} \<longleftrightarrow> (\<exists>e. 0<e \<and> f holomorphic_on ball z e)"
 | |
| 822 | by (metis analytic_on_def singleton_iff) | |
| 823 | ||
| 824 | lemma analytic_at: | |
| 825 |     "f analytic_on {z} \<longleftrightarrow> (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s)"
 | |
| 826 | by (metis analytic_on_holomorphic empty_subsetI insert_subset) | |
| 827 | ||
| 828 | lemma analytic_on_analytic_at: | |
| 829 |     "f analytic_on s \<longleftrightarrow> (\<forall>z \<in> s. f analytic_on {z})"
 | |
| 830 | by (metis analytic_at_ball analytic_on_def) | |
| 831 | ||
| 832 | lemma analytic_at_two: | |
| 833 |   "f analytic_on {z} \<and> g analytic_on {z} \<longleftrightarrow>
 | |
| 834 | (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s \<and> g holomorphic_on s)" | |
| 835 | (is "?lhs = ?rhs") | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 836 | proof | 
| 56215 | 837 | assume ?lhs | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 838 | then obtain s t | 
| 56215 | 839 | where st: "open s" "z \<in> s" "f holomorphic_on s" | 
| 840 | "open t" "z \<in> t" "g holomorphic_on t" | |
| 841 | by (auto simp: analytic_at) | |
| 842 | show ?rhs | |
| 843 | apply (rule_tac x="s \<inter> t" in exI) | |
| 844 | using st | |
| 845 | apply (auto simp: Diff_subset holomorphic_on_subset) | |
| 846 | done | |
| 847 | next | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 848 | assume ?rhs | 
| 56215 | 849 | then show ?lhs | 
| 850 | by (force simp add: analytic_at) | |
| 851 | qed | |
| 852 | ||
| 60420 | 853 | subsection\<open>Combining theorems for derivative with ``analytic at'' hypotheses\<close> | 
| 56215 | 854 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 855 | lemma | 
| 56215 | 856 |   assumes "f analytic_on {z}" "g analytic_on {z}"
 | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 857 | shows complex_derivative_add_at: "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 858 | and complex_derivative_diff_at: "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 859 | and complex_derivative_mult_at: "deriv (\<lambda>w. f w * g w) z = | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 860 | f z * deriv g z + deriv f z * g z" | 
| 56215 | 861 | proof - | 
| 862 | obtain s where s: "open s" "z \<in> s" "f holomorphic_on s" "g holomorphic_on s" | |
| 863 | using assms by (metis analytic_at_two) | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 864 | show "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 865 | apply (rule DERIV_imp_deriv [OF DERIV_add]) | 
| 56215 | 866 | using s | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 867 | apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable) | 
| 56215 | 868 | done | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 869 | show "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 870 | apply (rule DERIV_imp_deriv [OF DERIV_diff]) | 
| 56215 | 871 | using s | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 872 | apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable) | 
| 56215 | 873 | done | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 874 | show "deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 875 | apply (rule DERIV_imp_deriv [OF DERIV_mult']) | 
| 56215 | 876 | using s | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 877 | apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable) | 
| 56215 | 878 | done | 
| 879 | qed | |
| 880 | ||
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 881 | lemma deriv_cmult_at: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 882 |   "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. c * f w) z = c * deriv f z"
 | 
| 61848 | 883 | by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const) | 
| 56215 | 884 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 885 | lemma deriv_cmult_right_at: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 886 |   "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. f w * c) z = deriv f z * c"
 | 
| 61848 | 887 | by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const) | 
| 56215 | 888 | |
| 60420 | 889 | subsection\<open>Complex differentiation of sequences and series\<close> | 
| 56215 | 890 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 891 | (* TODO: Could probably be simplified using Uniform_Limit *) | 
| 56215 | 892 | lemma has_complex_derivative_sequence: | 
| 893 | fixes s :: "complex set" | |
| 894 | assumes cvs: "convex s" | |
| 895 | and df: "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)" | |
| 896 | and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s \<longrightarrow> norm (f' n x - g' x) \<le> e" | |
| 61973 | 897 | and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) \<longlongrightarrow> l) sequentially" | 
| 898 | shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) \<longlongrightarrow> g x) sequentially \<and> | |
| 56215 | 899 | (g has_field_derivative (g' x)) (at x within s)" | 
| 900 | proof - | |
| 61973 | 901 | from assms obtain x l where x: "x \<in> s" and tf: "((\<lambda>n. f n x) \<longlongrightarrow> l) sequentially" | 
| 56215 | 902 | by blast | 
| 903 |   { fix e::real assume e: "e > 0"
 | |
| 904 | then obtain N where N: "\<forall>n\<ge>N. \<forall>x. x \<in> s \<longrightarrow> cmod (f' n x - g' x) \<le> e" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 905 | by (metis conv) | 
| 56215 | 906 | have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h" | 
| 907 | proof (rule exI [of _ N], clarify) | |
| 908 | fix n y h | |
| 909 | assume "N \<le> n" "y \<in> s" | |
| 910 | then have "cmod (f' n y - g' y) \<le> e" | |
| 911 | by (metis N) | |
| 912 | then have "cmod h * cmod (f' n y - g' y) \<le> cmod h * e" | |
| 913 | by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2) | |
| 914 | then show "cmod (f' n y * h - g' y * h) \<le> e * cmod h" | |
| 915 | by (simp add: norm_mult [symmetric] field_simps) | |
| 916 | qed | |
| 917 | } note ** = this | |
| 918 | show ?thesis | |
| 919 | unfolding has_field_derivative_def | |
| 920 | proof (rule has_derivative_sequence [OF cvs _ _ x]) | |
| 921 | show "\<forall>n. \<forall>x\<in>s. (f n has_derivative (op * (f' n x))) (at x within s)" | |
| 922 | by (metis has_field_derivative_def df) | |
| 61969 | 923 | next show "(\<lambda>n. f n x) \<longlonglongrightarrow> l" | 
| 56215 | 924 | by (rule tf) | 
| 925 | next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h" | |
| 926 | by (blast intro: **) | |
| 927 | qed | |
| 928 | qed | |
| 929 | ||
| 930 | lemma has_complex_derivative_series: | |
| 931 | fixes s :: "complex set" | |
| 932 | assumes cvs: "convex s" | |
| 933 | and df: "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 934 | and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s | 
| 56215 | 935 | \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e" | 
| 936 | and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) sums l)" | |
| 937 | shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) sums g x) \<and> ((g has_field_derivative g' x) (at x within s))" | |
| 938 | proof - | |
| 939 | from assms obtain x l where x: "x \<in> s" and sf: "((\<lambda>n. f n x) sums l)" | |
| 940 | by blast | |
| 941 |   { fix e::real assume e: "e > 0"
 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 942 | then obtain N where N: "\<forall>n x. n \<ge> N \<longrightarrow> x \<in> s | 
| 56215 | 943 | \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 944 | by (metis conv) | 
| 56215 | 945 | have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h" | 
| 946 | proof (rule exI [of _ N], clarify) | |
| 947 | fix n y h | |
| 948 | assume "N \<le> n" "y \<in> s" | |
| 949 | then have "cmod ((\<Sum>i<n. f' i y) - g' y) \<le> e" | |
| 950 | by (metis N) | |
| 951 | then have "cmod h * cmod ((\<Sum>i<n. f' i y) - g' y) \<le> cmod h * e" | |
| 952 | by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2) | |
| 953 | then show "cmod ((\<Sum>i<n. h * f' i y) - g' y * h) \<le> e * cmod h" | |
| 954 | by (simp add: norm_mult [symmetric] field_simps setsum_right_distrib) | |
| 955 | qed | |
| 956 | } note ** = this | |
| 957 | show ?thesis | |
| 958 | unfolding has_field_derivative_def | |
| 959 | proof (rule has_derivative_series [OF cvs _ _ x]) | |
| 960 | fix n x | |
| 961 | assume "x \<in> s" | |
| 962 | then show "((f n) has_derivative (\<lambda>z. z * f' n x)) (at x within s)" | |
| 963 | by (metis df has_field_derivative_def mult_commute_abs) | |
| 964 | next show " ((\<lambda>n. f n x) sums l)" | |
| 965 | by (rule sf) | |
| 966 | next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h" | |
| 967 | by (blast intro: **) | |
| 968 | qed | |
| 969 | qed | |
| 970 | ||
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 971 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 972 | lemma field_differentiable_series: | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 973 | fixes f :: "nat \<Rightarrow> complex \<Rightarrow> complex" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 974 | assumes "convex s" "open s" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 975 | assumes "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 976 | assumes "uniformly_convergent_on s (\<lambda>n x. \<Sum>i<n. f' i x)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 977 | assumes "x0 \<in> s" "summable (\<lambda>n. f n x0)" and x: "x \<in> s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 978 | shows "summable (\<lambda>n. f n x)" and "(\<lambda>x. \<Sum>n. f n x) field_differentiable (at x)" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 979 | proof - | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 980 | from assms(4) obtain g' where A: "uniform_limit s (\<lambda>n x. \<Sum>i<n. f' i x) g' sequentially" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 981 | unfolding uniformly_convergent_on_def by blast | 
| 61808 | 982 | from x and \<open>open s\<close> have s: "at x within s = at x" by (rule at_within_open) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 983 | have "\<exists>g. \<forall>x\<in>s. (\<lambda>n. f n x) sums g x \<and> (g has_field_derivative g' x) (at x within s)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 984 | by (intro has_field_derivative_series[of s f f' g' x0] assms A has_field_derivative_at_within) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 985 | then obtain g where g: "\<And>x. x \<in> s \<Longrightarrow> (\<lambda>n. f n x) sums g x" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 986 | "\<And>x. x \<in> s \<Longrightarrow> (g has_field_derivative g' x) (at x within s)" by blast | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 987 | from g[OF x] show "summable (\<lambda>n. f n x)" by (auto simp: summable_def) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 988 | from g(2)[OF x] have g': "(g has_derivative op * (g' x)) (at x)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 989 | by (simp add: has_field_derivative_def s) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 990 | have "((\<lambda>x. \<Sum>n. f n x) has_derivative op * (g' x)) (at x)" | 
| 62087 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
61975diff
changeset | 991 | by (rule has_derivative_transform_within_open[OF g' \<open>open s\<close> x]) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 992 | (insert g, auto simp: sums_iff) | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 993 | thus "(\<lambda>x. \<Sum>n. f n x) field_differentiable (at x)" unfolding differentiable_def | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 994 | by (auto simp: summable_def field_differentiable_def has_field_derivative_def) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 995 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 996 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 997 | lemma field_differentiable_series': | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 998 | fixes f :: "nat \<Rightarrow> complex \<Rightarrow> complex" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 999 | assumes "convex s" "open s" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 1000 | assumes "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 1001 | assumes "uniformly_convergent_on s (\<lambda>n x. \<Sum>i<n. f' i x)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 1002 | assumes "x0 \<in> s" "summable (\<lambda>n. f n x0)" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 1003 | shows "(\<lambda>x. \<Sum>n. f n x) field_differentiable (at x0)" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 1004 | using field_differentiable_series[OF assms, of x0] \<open>x0 \<in> s\<close> by blast+ | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 1005 | |
| 60420 | 1006 | subsection\<open>Bound theorem\<close> | 
| 56215 | 1007 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 1008 | lemma field_differentiable_bound: | 
| 56215 | 1009 | fixes s :: "complex set" | 
| 1010 | assumes cvs: "convex s" | |
| 1011 | and df: "\<And>z. z \<in> s \<Longrightarrow> (f has_field_derivative f' z) (at z within s)" | |
| 1012 | and dn: "\<And>z. z \<in> s \<Longrightarrow> norm (f' z) \<le> B" | |
| 1013 | and "x \<in> s" "y \<in> s" | |
| 1014 | shows "norm(f x - f y) \<le> B * norm(x - y)" | |
| 1015 | apply (rule differentiable_bound [OF cvs]) | |
| 56223 
7696903b9e61
generalize theory of operator norms to work with class real_normed_vector
 huffman parents: 
56217diff
changeset | 1016 | apply (rule ballI, erule df [unfolded has_field_derivative_def]) | 
| 
7696903b9e61
generalize theory of operator norms to work with class real_normed_vector
 huffman parents: 
56217diff
changeset | 1017 | apply (rule ballI, rule onorm_le, simp add: norm_mult mult_right_mono dn) | 
| 
7696903b9e61
generalize theory of operator norms to work with class real_normed_vector
 huffman parents: 
56217diff
changeset | 1018 | apply fact | 
| 
7696903b9e61
generalize theory of operator norms to work with class real_normed_vector
 huffman parents: 
56217diff
changeset | 1019 | apply fact | 
| 56215 | 1020 | done | 
| 1021 | ||
| 62408 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1022 | subsection\<open>Inverse function theorem for complex derivatives\<close> | 
| 56215 | 1023 | |
| 1024 | lemma has_complex_derivative_inverse_basic: | |
| 1025 | fixes f :: "complex \<Rightarrow> complex" | |
| 1026 | shows "DERIV f (g y) :> f' \<Longrightarrow> | |
| 1027 | f' \<noteq> 0 \<Longrightarrow> | |
| 1028 | continuous (at y) g \<Longrightarrow> | |
| 1029 | open t \<Longrightarrow> | |
| 1030 | y \<in> t \<Longrightarrow> | |
| 1031 | (\<And>z. z \<in> t \<Longrightarrow> f (g z) = z) | |
| 1032 | \<Longrightarrow> DERIV g y :> inverse (f')" | |
| 1033 | unfolding has_field_derivative_def | |
| 1034 | apply (rule has_derivative_inverse_basic) | |
| 1035 | apply (auto simp: bounded_linear_mult_right) | |
| 1036 | done | |
| 1037 | ||
| 1038 | (*Used only once, in Multivariate/cauchy.ml. *) | |
| 1039 | lemma has_complex_derivative_inverse_strong: | |
| 1040 | fixes f :: "complex \<Rightarrow> complex" | |
| 1041 | shows "DERIV f x :> f' \<Longrightarrow> | |
| 1042 | f' \<noteq> 0 \<Longrightarrow> | |
| 1043 | open s \<Longrightarrow> | |
| 1044 | x \<in> s \<Longrightarrow> | |
| 1045 | continuous_on s f \<Longrightarrow> | |
| 1046 | (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z) | |
| 1047 | \<Longrightarrow> DERIV g (f x) :> inverse (f')" | |
| 1048 | unfolding has_field_derivative_def | |
| 1049 | apply (rule has_derivative_inverse_strong [of s x f g ]) | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1050 | using assms | 
| 56215 | 1051 | by auto | 
| 1052 | ||
| 1053 | lemma has_complex_derivative_inverse_strong_x: | |
| 1054 | fixes f :: "complex \<Rightarrow> complex" | |
| 1055 | shows "DERIV f (g y) :> f' \<Longrightarrow> | |
| 1056 | f' \<noteq> 0 \<Longrightarrow> | |
| 1057 | open s \<Longrightarrow> | |
| 1058 | continuous_on s f \<Longrightarrow> | |
| 1059 | g y \<in> s \<Longrightarrow> f(g y) = y \<Longrightarrow> | |
| 1060 | (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z) | |
| 1061 | \<Longrightarrow> DERIV g y :> inverse (f')" | |
| 1062 | unfolding has_field_derivative_def | |
| 1063 | apply (rule has_derivative_inverse_strong_x [of s g y f]) | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1064 | using assms | 
| 56215 | 1065 | by auto | 
| 1066 | ||
| 60420 | 1067 | subsection \<open>Taylor on Complex Numbers\<close> | 
| 56215 | 1068 | |
| 1069 | lemma setsum_Suc_reindex: | |
| 1070 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | |
| 1071 |     shows  "setsum f {0..n} = f 0 - f (Suc n) + setsum (\<lambda>i. f (Suc i)) {0..n}"
 | |
| 1072 | by (induct n) auto | |
| 1073 | ||
| 1074 | lemma complex_taylor: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1075 | assumes s: "convex s" | 
| 56215 | 1076 | and f: "\<And>i x. x \<in> s \<Longrightarrow> i \<le> n \<Longrightarrow> (f i has_field_derivative f (Suc i) x) (at x within s)" | 
| 1077 | and B: "\<And>x. x \<in> s \<Longrightarrow> cmod (f (Suc n) x) \<le> B" | |
| 1078 | and w: "w \<in> s" | |
| 1079 | and z: "z \<in> s" | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1080 | shows "cmod(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / (fact i))) | 
| 56215 | 1081 | \<le> B * cmod(z - w)^(Suc n) / fact n" | 
| 1082 | proof - | |
| 1083 | have wzs: "closed_segment w z \<subseteq> s" using assms | |
| 1084 | by (metis convex_contains_segment) | |
| 1085 |   { fix u
 | |
| 1086 | assume "u \<in> closed_segment w z" | |
| 1087 | then have "u \<in> s" | |
| 1088 | by (metis wzs subsetD) | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1089 | have "(\<Sum>i\<le>n. f i u * (- of_nat i * (z-u)^(i - 1)) / (fact i) + | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1090 | f (Suc i) u * (z-u)^i / (fact i)) = | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1091 | f (Suc n) u * (z-u) ^ n / (fact n)" | 
| 56215 | 1092 | proof (induction n) | 
| 1093 | case 0 show ?case by simp | |
| 1094 | next | |
| 1095 | case (Suc n) | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1096 | have "(\<Sum>i\<le>Suc n. f i u * (- of_nat i * (z-u) ^ (i - 1)) / (fact i) + | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1097 | f (Suc i) u * (z-u) ^ i / (fact i)) = | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1098 | f (Suc n) u * (z-u) ^ n / (fact n) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1099 | f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / (fact (Suc n)) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1100 | f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / (fact (Suc n))" | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56409diff
changeset | 1101 | using Suc by simp | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1102 | also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n))" | 
| 56215 | 1103 | proof - | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1104 | have "(fact(Suc n)) * | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1105 | (f(Suc n) u *(z-u) ^ n / (fact n) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1106 | f(Suc(Suc n)) u *((z-u) *(z-u) ^ n) / (fact(Suc n)) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1107 | f(Suc n) u *((1 + of_nat n) *(z-u) ^ n) / (fact(Suc n))) = | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1108 | ((fact(Suc n)) *(f(Suc n) u *(z-u) ^ n)) / (fact n) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1109 | ((fact(Suc n)) *(f(Suc(Suc n)) u *((z-u) *(z-u) ^ n)) / (fact(Suc n))) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1110 | ((fact(Suc n)) *(f(Suc n) u *(of_nat(Suc n) *(z-u) ^ n))) / (fact(Suc n))" | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1111 | by (simp add: algebra_simps del: fact.simps) | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1112 | also have "... = ((fact (Suc n)) * (f (Suc n) u * (z-u) ^ n)) / (fact n) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1113 | (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1114 | (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))" | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1115 | by (simp del: fact.simps) | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1116 | also have "... = (of_nat (Suc n) * (f (Suc n) u * (z-u) ^ n)) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1117 | (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1118 | (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))" | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1119 | by (simp only: fact.simps of_nat_mult ac_simps) simp | 
| 56215 | 1120 | also have "... = f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)" | 
| 1121 | by (simp add: algebra_simps) | |
| 1122 | finally show ?thesis | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1123 | by (simp add: mult_left_cancel [where c = "(fact (Suc n))", THEN iffD1] del: fact.simps) | 
| 56215 | 1124 | qed | 
| 1125 | finally show ?case . | |
| 1126 | qed | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1127 | then have "((\<lambda>v. (\<Sum>i\<le>n. f i v * (z - v)^i / (fact i))) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1128 | has_field_derivative f (Suc n) u * (z-u) ^ n / (fact n)) | 
| 56215 | 1129 | (at u within s)" | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 1130 | apply (intro derivative_eq_intros) | 
| 60420 | 1131 | apply (blast intro: assms \<open>u \<in> s\<close>) | 
| 56215 | 1132 | apply (rule refl)+ | 
| 1133 | apply (auto simp: field_simps) | |
| 1134 | done | |
| 1135 | } note sum_deriv = this | |
| 1136 |   { fix u
 | |
| 1137 | assume u: "u \<in> closed_segment w z" | |
| 1138 | then have us: "u \<in> s" | |
| 1139 | by (metis wzs subsetD) | |
| 1140 | have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> cmod (f (Suc n) u) * cmod (u - z) ^ n" | |
| 1141 | by (metis norm_minus_commute order_refl) | |
| 1142 | also have "... \<le> cmod (f (Suc n) u) * cmod (z - w) ^ n" | |
| 1143 | by (metis mult_left_mono norm_ge_zero power_mono segment_bound [OF u]) | |
| 1144 | also have "... \<le> B * cmod (z - w) ^ n" | |
| 1145 | by (metis norm_ge_zero zero_le_power mult_right_mono B [OF us]) | |
| 1146 | finally have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> B * cmod (z - w) ^ n" . | |
| 1147 | } note cmod_bound = this | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1148 | have "(\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)) = (\<Sum>i\<le>n. (f i z / (fact i)) * 0 ^ i)" | 
| 56215 | 1149 | by simp | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1150 | also have "\<dots> = f 0 z / (fact 0)" | 
| 56215 | 1151 | by (subst setsum_zero_power) simp | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1152 | finally have "cmod (f 0 z - (\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i))) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1153 | \<le> cmod ((\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i)) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1154 | (\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)))" | 
| 56215 | 1155 | by (simp add: norm_minus_commute) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1156 | also have "... \<le> B * cmod (z - w) ^ n / (fact n) * cmod (w - z)" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 1157 | apply (rule field_differentiable_bound | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1158 | [where f' = "\<lambda>w. f (Suc n) w * (z - w)^n / (fact n)" | 
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61235diff
changeset | 1159 | and s = "closed_segment w z", OF convex_closed_segment]) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1160 | apply (auto simp: ends_in_segment DERIV_subset [OF sum_deriv wzs] | 
| 56215 | 1161 | norm_divide norm_mult norm_power divide_le_cancel cmod_bound) | 
| 1162 | done | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1163 | also have "... \<le> B * cmod (z - w) ^ Suc n / (fact n)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1164 | by (simp add: algebra_simps norm_minus_commute) | 
| 56215 | 1165 | finally show ?thesis . | 
| 1166 | qed | |
| 1167 | ||
| 62408 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1168 | text\<open>Something more like the traditional MVT for real components\<close> | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 1169 | |
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1170 | lemma complex_mvt_line: | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 1171 | assumes "\<And>u. u \<in> closed_segment w z \<Longrightarrow> (f has_field_derivative f'(u)) (at u)" | 
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61235diff
changeset | 1172 | shows "\<exists>u. u \<in> closed_segment w z \<and> Re(f z) - Re(f w) = Re(f'(u) * (z - w))" | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1173 | proof - | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1174 | have twz: "\<And>t. (1 - t) *\<^sub>R w + t *\<^sub>R z = w + t *\<^sub>R (z - w)" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1175 | by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib) | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 1176 | note assms[unfolded has_field_derivative_def, derivative_intros] | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1177 | show ?thesis | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1178 | apply (cut_tac mvt_simple | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1179 | [of 0 1 "Re o f o (\<lambda>t. (1 - t) *\<^sub>R w + t *\<^sub>R z)" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1180 | "\<lambda>u. Re o (\<lambda>h. f'((1 - u) *\<^sub>R w + u *\<^sub>R z) * h) o (\<lambda>t. t *\<^sub>R (z - w))"]) | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1181 | apply auto | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1182 | apply (rule_tac x="(1 - x) *\<^sub>R w + x *\<^sub>R z" in exI) | 
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61235diff
changeset | 1183 | apply (auto simp: closed_segment_def twz) [] | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61235diff
changeset | 1184 | apply (intro derivative_eq_intros has_derivative_at_within, simp_all) | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 1185 | apply (simp add: fun_eq_iff real_vector.scale_right_diff_distrib) | 
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61235diff
changeset | 1186 | apply (force simp: twz closed_segment_def) | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1187 | done | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1188 | qed | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1189 | |
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1190 | lemma complex_taylor_mvt: | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1191 | assumes "\<And>i x. \<lbrakk>x \<in> closed_segment w z; i \<le> n\<rbrakk> \<Longrightarrow> ((f i) has_field_derivative f (Suc i) x) (at x)" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1192 | shows "\<exists>u. u \<in> closed_segment w z \<and> | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1193 | Re (f 0 z) = | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1194 | Re ((\<Sum>i = 0..n. f i w * (z - w) ^ i / (fact i)) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1195 | (f (Suc n) u * (z-u)^n / (fact n)) * (z - w))" | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1196 | proof - | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1197 |   { fix u
 | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1198 | assume u: "u \<in> closed_segment w z" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1199 | have "(\<Sum>i = 0..n. | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1200 | (f (Suc i) u * (z-u) ^ i - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1201 | (fact i)) = | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1202 | f (Suc 0) u - | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1203 | (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) / | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1204 | (fact (Suc n)) + | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1205 | (\<Sum>i = 0..n. | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1206 | (f (Suc (Suc i)) u * ((z-u) ^ Suc i) - of_nat (Suc i) * (f (Suc i) u * (z-u) ^ i)) / | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1207 | (fact (Suc i)))" | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1208 | by (subst setsum_Suc_reindex) simp | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1209 | also have "... = f (Suc 0) u - | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1210 | (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) / | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1211 | (fact (Suc n)) + | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1212 | (\<Sum>i = 0..n. | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1213 | f (Suc (Suc i)) u * ((z-u) ^ Suc i) / (fact (Suc i)) - | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1214 | f (Suc i) u * (z-u) ^ i / (fact i))" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
56889diff
changeset | 1215 | by (simp only: diff_divide_distrib fact_cancel ac_simps) | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1216 | also have "... = f (Suc 0) u - | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1217 | (f (Suc (Suc n)) u * (z-u) ^ Suc n - of_nat (Suc n) * (z-u) ^ n * f (Suc n) u) / | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1218 | (fact (Suc n)) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1219 | f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n)) - f (Suc 0) u" | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1220 | by (subst setsum_Suc_diff) auto | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1221 | also have "... = f (Suc n) u * (z-u) ^ n / (fact n)" | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1222 | by (simp only: algebra_simps diff_divide_distrib fact_cancel) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1223 | finally have "(\<Sum>i = 0..n. (f (Suc i) u * (z - u) ^ i | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1224 | - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / (fact i)) = | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1225 | f (Suc n) u * (z - u) ^ n / (fact n)" . | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1226 | then have "((\<lambda>u. \<Sum>i = 0..n. f i u * (z - u) ^ i / (fact i)) has_field_derivative | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1227 | f (Suc n) u * (z - u) ^ n / (fact n)) (at u)" | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 1228 | apply (intro derivative_eq_intros)+ | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1229 | apply (force intro: u assms) | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1230 | apply (rule refl)+ | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
56889diff
changeset | 1231 | apply (auto simp: ac_simps) | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1232 | done | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1233 | } | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1234 | then show ?thesis | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1235 | apply (cut_tac complex_mvt_line [of w z "\<lambda>u. \<Sum>i = 0..n. f i u * (z-u) ^ i / (fact i)" | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1236 | "\<lambda>u. (f (Suc n) u * (z-u)^n / (fact n))"]) | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1237 | apply (auto simp add: intro: open_closed_segment) | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1238 | done | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1239 | qed | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1240 | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1241 | |
| 60420 | 1242 | subsection \<open>Polynomal function extremal theorem, from HOL Light\<close> | 
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1243 | |
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1244 | lemma polyfun_extremal_lemma: (*COMPLEX_POLYFUN_EXTREMAL_LEMMA in HOL Light*) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1245 | fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1246 | assumes "0 < e" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1247 | shows "\<exists>M. \<forall>z. M \<le> norm(z) \<longrightarrow> norm (\<Sum>i\<le>n. c(i) * z^i) \<le> e * norm(z) ^ (Suc n)" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1248 | proof (induct n) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1249 | case 0 with assms | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1250 | show ?case | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1251 | apply (rule_tac x="norm (c 0) / e" in exI) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1252 | apply (auto simp: field_simps) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1253 | done | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1254 | next | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1255 | case (Suc n) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1256 | obtain M where M: "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1257 | using Suc assms by blast | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1258 | show ?case | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1259 | proof (rule exI [where x= "max M (1 + norm(c(Suc n)) / e)"], clarsimp simp del: power_Suc) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1260 | fix z::'a | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1261 | assume z1: "M \<le> norm z" and "1 + norm (c (Suc n)) / e \<le> norm z" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1262 | then have z2: "e + norm (c (Suc n)) \<le> e * norm z" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1263 | using assms by (simp add: field_simps) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1264 | have "norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1265 | using M [OF z1] by simp | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1266 | then have "norm (\<Sum>i\<le>n. c i * z^i) + norm (c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1267 | by simp | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1268 | then have "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1269 | by (blast intro: norm_triangle_le elim: ) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1270 | also have "... \<le> (e + norm (c (Suc n))) * norm z ^ Suc n" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1271 | by (simp add: norm_power norm_mult algebra_simps) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1272 | also have "... \<le> (e * norm z) * norm z ^ Suc n" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1273 | by (metis z2 mult.commute mult_left_mono norm_ge_zero norm_power) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1274 | finally show "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc (Suc n)" | 
| 60162 | 1275 | by simp | 
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1276 | qed | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1277 | qed | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1278 | |
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1279 | lemma polyfun_extremal: (*COMPLEX_POLYFUN_EXTREMAL in HOL Light*) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1280 | fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1281 | assumes k: "c k \<noteq> 0" "1\<le>k" and kn: "k\<le>n" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1282 | shows "eventually (\<lambda>z. norm (\<Sum>i\<le>n. c(i) * z^i) \<ge> B) at_infinity" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1283 | using kn | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1284 | proof (induction n) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1285 | case 0 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1286 | then show ?case | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1287 | using k by simp | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1288 | next | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1289 | case (Suc m) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1290 | let ?even = ?case | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1291 | show ?even | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1292 | proof (cases "c (Suc m) = 0") | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1293 | case True | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1294 | then show ?even using Suc k | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1295 | by auto (metis antisym_conv less_eq_Suc_le not_le) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1296 | next | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1297 | case False | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1298 | then obtain M where M: | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1299 | "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>m. c i * z^i) \<le> norm (c (Suc m)) / 2 * norm z ^ Suc m" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1300 | using polyfun_extremal_lemma [of "norm(c (Suc m)) / 2" c m] Suc | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1301 | by auto | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1302 | have "\<exists>b. \<forall>z. b \<le> norm z \<longrightarrow> B \<le> norm (\<Sum>i\<le>Suc m. c i * z^i)" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1303 | proof (rule exI [where x="max M (max 1 (\<bar>B\<bar> / (norm(c (Suc m)) / 2)))"], clarsimp simp del: power_Suc) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1304 | fix z::'a | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1305 | assume z1: "M \<le> norm z" "1 \<le> norm z" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1306 | and "\<bar>B\<bar> * 2 / norm (c (Suc m)) \<le> norm z" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1307 | then have z2: "\<bar>B\<bar> \<le> norm (c (Suc m)) * norm z / 2" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1308 | using False by (simp add: field_simps) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1309 | have nz: "norm z \<le> norm z ^ Suc m" | 
| 60420 | 1310 | by (metis \<open>1 \<le> norm z\<close> One_nat_def less_eq_Suc_le power_increasing power_one_right zero_less_Suc) | 
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1311 | have *: "\<And>y x. norm (c (Suc m)) * norm z / 2 \<le> norm y - norm x \<Longrightarrow> B \<le> norm (x + y)" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1312 | by (metis abs_le_iff add.commute norm_diff_ineq order_trans z2) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1313 | have "norm z * norm (c (Suc m)) + 2 * norm (\<Sum>i\<le>m. c i * z^i) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1314 | \<le> norm (c (Suc m)) * norm z + norm (c (Suc m)) * norm z ^ Suc m" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1315 | using M [of z] Suc z1 by auto | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1316 | also have "... \<le> 2 * (norm (c (Suc m)) * norm z ^ Suc m)" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1317 | using nz by (simp add: mult_mono del: power_Suc) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1318 | finally show "B \<le> norm ((\<Sum>i\<le>m. c i * z^i) + c (Suc m) * z ^ Suc m)" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1319 | using Suc.IH | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1320 | apply (auto simp: eventually_at_infinity) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1321 | apply (rule *) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1322 | apply (simp add: field_simps norm_mult norm_power) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1323 | done | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1324 | qed | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1325 | then show ?even | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1326 | by (simp add: eventually_at_infinity) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1327 | qed | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1328 | qed | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1329 | |
| 56215 | 1330 | end |