author | nipkow |
Sun, 09 Apr 2006 14:47:24 +0200 | |
changeset 19378 | 6cc9ac729eb5 |
parent 19323 | ec5cd5b1804c |
child 19656 | 09be06943252 |
permissions | -rw-r--r-- |
3981 | 1 |
(* Title: HOL/Map.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, based on a theory by David von Oheimb |
|
13908 | 4 |
Copyright 1997-2003 TU Muenchen |
3981 | 5 |
|
6 |
The datatype of `maps' (written ~=>); strongly resembles maps in VDM. |
|
7 |
*) |
|
8 |
||
13914 | 9 |
header {* Maps *} |
10 |
||
15131 | 11 |
theory Map |
15140 | 12 |
imports List |
15131 | 13 |
begin |
3981 | 14 |
|
13908 | 15 |
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0) |
14100 | 16 |
translations (type) "a ~=> b " <= (type) "a => b option" |
3981 | 17 |
|
19378 | 18 |
abbreviation |
19 |
empty :: "'a ~=> 'b" |
|
20 |
"empty == %x. None" |
|
21 |
||
22 |
constdefs |
|
23 |
map_comp :: "('b ~=> 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55) |
|
24 |
"f o_m g == (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)" |
|
25 |
||
3981 | 26 |
consts |
14100 | 27 |
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) |
15693 | 28 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" (infixl "|`" 110) |
5300 | 29 |
dom :: "('a ~=> 'b) => 'a set" |
30 |
ran :: "('a ~=> 'b) => 'b set" |
|
31 |
map_of :: "('a * 'b)list => 'a ~=> 'b" |
|
19323 | 32 |
map_upds:: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)" |
13910 | 33 |
map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) |
34 |
||
14180 | 35 |
nonterminals |
36 |
maplets maplet |
|
37 |
||
5300 | 38 |
syntax |
14180 | 39 |
"_maplet" :: "['a, 'a] => maplet" ("_ /|->/ _") |
40 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[|->]/ _") |
|
41 |
"" :: "maplet => maplets" ("_") |
|
42 |
"_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _") |
|
43 |
"_MapUpd" :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900) |
|
44 |
"_Map" :: "maplets => 'a ~=> 'b" ("(1[_])") |
|
3981 | 45 |
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10137
diff
changeset
|
46 |
syntax (xsymbols) |
14739 | 47 |
"~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) |
48 |
||
17391 | 49 |
map_comp :: "('b ~=> 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "\<circ>\<^sub>m" 55) |
14739 | 50 |
|
14180 | 51 |
"_maplet" :: "['a, 'a] => maplet" ("_ /\<mapsto>/ _") |
52 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[\<mapsto>]/ _") |
|
53 |
||
15693 | 54 |
syntax (latex output) |
15695 | 55 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110) |
56 |
--"requires amssymb!" |
|
15693 | 57 |
|
5300 | 58 |
translations |
14180 | 59 |
"_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" |
60 |
"_MapUpd m (_maplet x y)" == "m(x:=Some y)" |
|
61 |
"_MapUpd m (_maplets x y)" == "map_upds m x y" |
|
62 |
"_Map ms" == "_MapUpd empty ms" |
|
63 |
"_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" |
|
64 |
"_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" |
|
65 |
||
3981 | 66 |
defs |
14100 | 67 |
map_add_def: "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y" |
15693 | 68 |
restrict_map_def: "m|`A == %x. if x : A then m x else None" |
14025 | 69 |
|
70 |
map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" |
|
3981 | 71 |
|
13908 | 72 |
dom_def: "dom(m) == {a. m a ~= None}" |
14025 | 73 |
ran_def: "ran(m) == {b. EX a. m a = Some b}" |
3981 | 74 |
|
14376 | 75 |
map_le_def: "m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2 == ALL a : dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a" |
13910 | 76 |
|
5183 | 77 |
primrec |
78 |
"map_of [] = empty" |
|
5300 | 79 |
"map_of (p#ps) = (map_of ps)(fst p |-> snd p)" |
80 |
||
19323 | 81 |
(* special purpose constants that should be defined somewhere else and |
82 |
whose syntax is a bit odd as well: |
|
83 |
||
84 |
"@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)" |
|
85 |
("_/'(_/\<mapsto>\<lambda>_. _')" [900,0,0,0] 900) |
|
86 |
"m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m" |
|
87 |
||
88 |
map_upd_s::"('a ~=> 'b) => 'a set => 'b => |
|
89 |
('a ~=> 'b)" ("_/'(_{|->}_/')" [900,0,0]900) |
|
90 |
map_subst::"('a ~=> 'b) => 'b => 'b => |
|
91 |
('a ~=> 'b)" ("_/'(_~>_/')" [900,0,0]900) |
|
92 |
||
93 |
map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x" |
|
94 |
map_subst_def: "m(a~>b) == %x. if m x = Some a then Some b else m x" |
|
95 |
||
96 |
map_upd_s :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)" |
|
97 |
("_/'(_/{\<mapsto>}/_')" [900,0,0]900) |
|
98 |
map_subst :: "('a ~=> 'b) => 'b => 'b => |
|
99 |
('a ~=> 'b)" ("_/'(_\<leadsto>_/')" [900,0,0]900) |
|
100 |
||
101 |
||
102 |
subsection {* @{term [source] map_upd_s} *} |
|
103 |
||
104 |
lemma map_upd_s_apply [simp]: |
|
105 |
"(m(as{|->}b)) x = (if x : as then Some b else m x)" |
|
106 |
by (simp add: map_upd_s_def) |
|
107 |
||
108 |
lemma map_subst_apply [simp]: |
|
109 |
"(m(a~>b)) x = (if m x = Some a then Some b else m x)" |
|
110 |
by (simp add: map_subst_def) |
|
111 |
||
112 |
*) |
|
13908 | 113 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
114 |
subsection {* @{term [source] empty} *} |
13908 | 115 |
|
13910 | 116 |
lemma empty_upd_none[simp]: "empty(x := None) = empty" |
13908 | 117 |
apply (rule ext) |
118 |
apply (simp (no_asm)) |
|
119 |
done |
|
13910 | 120 |
|
13908 | 121 |
|
122 |
(* FIXME: what is this sum_case nonsense?? *) |
|
13910 | 123 |
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty" |
13908 | 124 |
apply (rule ext) |
125 |
apply (simp (no_asm) split add: sum.split) |
|
126 |
done |
|
127 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
128 |
subsection {* @{term [source] map_upd} *} |
13908 | 129 |
|
130 |
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" |
|
131 |
apply (rule ext) |
|
132 |
apply (simp (no_asm_simp)) |
|
133 |
done |
|
134 |
||
13910 | 135 |
lemma map_upd_nonempty[simp]: "t(k|->x) ~= empty" |
13908 | 136 |
apply safe |
14208 | 137 |
apply (drule_tac x = k in fun_cong) |
13908 | 138 |
apply (simp (no_asm_use)) |
139 |
done |
|
140 |
||
14100 | 141 |
lemma map_upd_eqD1: "m(a\<mapsto>x) = n(a\<mapsto>y) \<Longrightarrow> x = y" |
142 |
by (drule fun_cong [of _ _ a], auto) |
|
143 |
||
144 |
lemma map_upd_Some_unfold: |
|
145 |
"((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" |
|
146 |
by auto |
|
147 |
||
15303 | 148 |
lemma image_map_upd[simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A" |
149 |
by fastsimp |
|
150 |
||
13908 | 151 |
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" |
152 |
apply (unfold image_def) |
|
153 |
apply (simp (no_asm_use) add: full_SetCompr_eq) |
|
154 |
apply (rule finite_subset) |
|
14208 | 155 |
prefer 2 apply assumption |
13908 | 156 |
apply auto |
157 |
done |
|
158 |
||
159 |
||
160 |
(* FIXME: what is this sum_case nonsense?? *) |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
161 |
subsection {* @{term [source] sum_case} and @{term [source] empty}/@{term [source] map_upd} *} |
13908 | 162 |
|
13910 | 163 |
lemma sum_case_map_upd_empty[simp]: |
164 |
"sum_case (m(k|->y)) empty = (sum_case m empty)(Inl k|->y)" |
|
13908 | 165 |
apply (rule ext) |
166 |
apply (simp (no_asm) split add: sum.split) |
|
167 |
done |
|
168 |
||
13910 | 169 |
lemma sum_case_empty_map_upd[simp]: |
170 |
"sum_case empty (m(k|->y)) = (sum_case empty m)(Inr k|->y)" |
|
13908 | 171 |
apply (rule ext) |
172 |
apply (simp (no_asm) split add: sum.split) |
|
173 |
done |
|
174 |
||
13910 | 175 |
lemma sum_case_map_upd_map_upd[simp]: |
176 |
"sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)" |
|
13908 | 177 |
apply (rule ext) |
178 |
apply (simp (no_asm) split add: sum.split) |
|
179 |
done |
|
180 |
||
181 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
182 |
subsection {* @{term [source] map_of} *} |
13908 | 183 |
|
15304 | 184 |
lemma map_of_eq_None_iff: |
185 |
"(map_of xys x = None) = (x \<notin> fst ` (set xys))" |
|
186 |
by (induct xys) simp_all |
|
187 |
||
188 |
lemma map_of_is_SomeD: |
|
189 |
"map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys" |
|
190 |
apply(induct xys) |
|
191 |
apply simp |
|
192 |
apply(clarsimp split:if_splits) |
|
193 |
done |
|
194 |
||
195 |
lemma map_of_eq_Some_iff[simp]: |
|
196 |
"distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)" |
|
197 |
apply(induct xys) |
|
198 |
apply(simp) |
|
199 |
apply(auto simp:map_of_eq_None_iff[symmetric]) |
|
200 |
done |
|
201 |
||
202 |
lemma Some_eq_map_of_iff[simp]: |
|
203 |
"distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)" |
|
204 |
by(auto simp del:map_of_eq_Some_iff simp add:map_of_eq_Some_iff[symmetric]) |
|
205 |
||
17724 | 206 |
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk> |
15304 | 207 |
\<Longrightarrow> map_of xys x = Some y" |
208 |
apply (induct xys) |
|
209 |
apply simp |
|
210 |
apply force |
|
211 |
done |
|
212 |
||
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
213 |
lemma map_of_zip_is_None[simp]: |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
214 |
"length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)" |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
215 |
by (induct rule:list_induct2, simp_all) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
216 |
|
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
217 |
lemma finite_range_map_of: "finite (range (map_of xys))" |
15251 | 218 |
apply (induct xys) |
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
219 |
apply (simp_all (no_asm) add: image_constant) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
220 |
apply (rule finite_subset) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
221 |
prefer 2 apply assumption |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
222 |
apply auto |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
223 |
done |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
224 |
|
15369 | 225 |
lemma map_of_SomeD [rule_format]: "map_of xs k = Some y --> (k,y):set xs" |
15251 | 226 |
by (induct "xs", auto) |
13908 | 227 |
|
15369 | 228 |
lemma map_of_mapk_SomeI [rule_format]: |
229 |
"inj f ==> map_of t k = Some x --> |
|
230 |
map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" |
|
15251 | 231 |
apply (induct "t") |
13908 | 232 |
apply (auto simp add: inj_eq) |
233 |
done |
|
234 |
||
15369 | 235 |
lemma weak_map_of_SomeI [rule_format]: |
236 |
"(k, x) : set l --> (\<exists>x. map_of l k = Some x)" |
|
15251 | 237 |
by (induct "l", auto) |
13908 | 238 |
|
239 |
lemma map_of_filter_in: |
|
240 |
"[| map_of xs k = Some z; P k z |] ==> map_of (filter (split P) xs) k = Some z" |
|
241 |
apply (rule mp) |
|
14208 | 242 |
prefer 2 apply assumption |
13908 | 243 |
apply (erule thin_rl) |
15251 | 244 |
apply (induct "xs", auto) |
13908 | 245 |
done |
246 |
||
247 |
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" |
|
15251 | 248 |
by (induct "xs", auto) |
13908 | 249 |
|
250 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
251 |
subsection {* @{term [source] option_map} related *} |
13908 | 252 |
|
13910 | 253 |
lemma option_map_o_empty[simp]: "option_map f o empty = empty" |
13908 | 254 |
apply (rule ext) |
255 |
apply (simp (no_asm)) |
|
256 |
done |
|
257 |
||
13910 | 258 |
lemma option_map_o_map_upd[simp]: |
259 |
"option_map f o m(a|->b) = (option_map f o m)(a|->f b)" |
|
13908 | 260 |
apply (rule ext) |
261 |
apply (simp (no_asm)) |
|
262 |
done |
|
263 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
264 |
subsection {* @{term [source] map_comp} related *} |
17391 | 265 |
|
266 |
lemma map_comp_empty [simp]: |
|
267 |
"m \<circ>\<^sub>m empty = empty" |
|
268 |
"empty \<circ>\<^sub>m m = empty" |
|
269 |
by (auto simp add: map_comp_def intro: ext split: option.splits) |
|
270 |
||
271 |
lemma map_comp_simps [simp]: |
|
272 |
"m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None" |
|
273 |
"m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" |
|
274 |
by (auto simp add: map_comp_def) |
|
275 |
||
276 |
lemma map_comp_Some_iff: |
|
277 |
"((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" |
|
278 |
by (auto simp add: map_comp_def split: option.splits) |
|
279 |
||
280 |
lemma map_comp_None_iff: |
|
281 |
"((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " |
|
282 |
by (auto simp add: map_comp_def split: option.splits) |
|
13908 | 283 |
|
14100 | 284 |
subsection {* @{text "++"} *} |
13908 | 285 |
|
14025 | 286 |
lemma map_add_empty[simp]: "m ++ empty = m" |
287 |
apply (unfold map_add_def) |
|
13908 | 288 |
apply (simp (no_asm)) |
289 |
done |
|
290 |
||
14025 | 291 |
lemma empty_map_add[simp]: "empty ++ m = m" |
292 |
apply (unfold map_add_def) |
|
13908 | 293 |
apply (rule ext) |
294 |
apply (simp split add: option.split) |
|
295 |
done |
|
296 |
||
14025 | 297 |
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" |
298 |
apply(rule ext) |
|
299 |
apply(simp add: map_add_def split:option.split) |
|
300 |
done |
|
301 |
||
302 |
lemma map_add_Some_iff: |
|
13908 | 303 |
"((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" |
14025 | 304 |
apply (unfold map_add_def) |
13908 | 305 |
apply (simp (no_asm) split add: option.split) |
306 |
done |
|
307 |
||
14025 | 308 |
lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard] |
309 |
declare map_add_SomeD [dest!] |
|
13908 | 310 |
|
14025 | 311 |
lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" |
14208 | 312 |
by (subst map_add_Some_iff, fast) |
13908 | 313 |
|
14025 | 314 |
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" |
315 |
apply (unfold map_add_def) |
|
13908 | 316 |
apply (simp (no_asm) split add: option.split) |
317 |
done |
|
318 |
||
14025 | 319 |
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" |
320 |
apply (unfold map_add_def) |
|
14208 | 321 |
apply (rule ext, auto) |
13908 | 322 |
done |
323 |
||
14186 | 324 |
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" |
325 |
by(simp add:map_upds_def) |
|
326 |
||
14025 | 327 |
lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs" |
328 |
apply (unfold map_add_def) |
|
15251 | 329 |
apply (induct "xs") |
13908 | 330 |
apply (simp (no_asm)) |
331 |
apply (rule ext) |
|
332 |
apply (simp (no_asm_simp) split add: option.split) |
|
333 |
done |
|
334 |
||
335 |
declare fun_upd_apply [simp del] |
|
14025 | 336 |
lemma finite_range_map_of_map_add: |
337 |
"finite (range f) ==> finite (range (f ++ map_of l))" |
|
15251 | 338 |
apply (induct "l", auto) |
13908 | 339 |
apply (erule finite_range_updI) |
340 |
done |
|
341 |
declare fun_upd_apply [simp] |
|
342 |
||
15304 | 343 |
lemma inj_on_map_add_dom[iff]: |
344 |
"inj_on (m ++ m') (dom m') = inj_on m' (dom m')" |
|
345 |
by(fastsimp simp add:map_add_def dom_def inj_on_def split:option.splits) |
|
346 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
347 |
subsection {* @{term [source] restrict_map} *} |
14100 | 348 |
|
15693 | 349 |
lemma restrict_map_to_empty[simp]: "m|`{} = empty" |
14186 | 350 |
by(simp add: restrict_map_def) |
351 |
||
15693 | 352 |
lemma restrict_map_empty[simp]: "empty|`D = empty" |
14186 | 353 |
by(simp add: restrict_map_def) |
354 |
||
15693 | 355 |
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x" |
14100 | 356 |
by (auto simp: restrict_map_def) |
357 |
||
15693 | 358 |
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None" |
14100 | 359 |
by (auto simp: restrict_map_def) |
360 |
||
15693 | 361 |
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" |
14100 | 362 |
by (auto simp: restrict_map_def ran_def split: split_if_asm) |
363 |
||
15693 | 364 |
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A" |
14100 | 365 |
by (auto simp: restrict_map_def dom_def split: split_if_asm) |
366 |
||
15693 | 367 |
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})" |
14100 | 368 |
by (rule ext, auto simp: restrict_map_def) |
369 |
||
15693 | 370 |
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)" |
14100 | 371 |
by (rule ext, auto simp: restrict_map_def) |
372 |
||
14186 | 373 |
lemma restrict_fun_upd[simp]: |
15693 | 374 |
"m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)" |
14186 | 375 |
by(simp add: restrict_map_def expand_fun_eq) |
376 |
||
377 |
lemma fun_upd_None_restrict[simp]: |
|
15693 | 378 |
"(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)" |
14186 | 379 |
by(simp add: restrict_map_def expand_fun_eq) |
380 |
||
381 |
lemma fun_upd_restrict: |
|
15693 | 382 |
"(m|`D)(x := y) = (m|`(D-{x}))(x := y)" |
14186 | 383 |
by(simp add: restrict_map_def expand_fun_eq) |
384 |
||
385 |
lemma fun_upd_restrict_conv[simp]: |
|
15693 | 386 |
"x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)" |
14186 | 387 |
by(simp add: restrict_map_def expand_fun_eq) |
388 |
||
14100 | 389 |
|
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
390 |
subsection {* @{term [source] map_upds} *} |
14025 | 391 |
|
392 |
lemma map_upds_Nil1[simp]: "m([] [|->] bs) = m" |
|
393 |
by(simp add:map_upds_def) |
|
394 |
||
395 |
lemma map_upds_Nil2[simp]: "m(as [|->] []) = m" |
|
396 |
by(simp add:map_upds_def) |
|
397 |
||
398 |
lemma map_upds_Cons[simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" |
|
399 |
by(simp add:map_upds_def) |
|
400 |
||
14187 | 401 |
lemma map_upds_append1[simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> |
402 |
m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" |
|
403 |
apply(induct xs) |
|
404 |
apply(clarsimp simp add:neq_Nil_conv) |
|
14208 | 405 |
apply (case_tac ys, simp, simp) |
14187 | 406 |
done |
407 |
||
408 |
lemma map_upds_list_update2_drop[simp]: |
|
409 |
"\<And>m ys i. \<lbrakk>size xs \<le> i; i < size ys\<rbrakk> |
|
410 |
\<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" |
|
14208 | 411 |
apply (induct xs, simp) |
412 |
apply (case_tac ys, simp) |
|
14187 | 413 |
apply(simp split:nat.split) |
414 |
done |
|
14025 | 415 |
|
416 |
lemma map_upd_upds_conv_if: "!!x y ys f. |
|
417 |
(f(x|->y))(xs [|->] ys) = |
|
418 |
(if x : set(take (length ys) xs) then f(xs [|->] ys) |
|
419 |
else (f(xs [|->] ys))(x|->y))" |
|
14208 | 420 |
apply (induct xs, simp) |
14025 | 421 |
apply(case_tac ys) |
422 |
apply(auto split:split_if simp:fun_upd_twist) |
|
423 |
done |
|
424 |
||
425 |
lemma map_upds_twist [simp]: |
|
426 |
"a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" |
|
427 |
apply(insert set_take_subset) |
|
428 |
apply (fastsimp simp add: map_upd_upds_conv_if) |
|
429 |
done |
|
430 |
||
431 |
lemma map_upds_apply_nontin[simp]: |
|
432 |
"!!ys. x ~: set xs ==> (f(xs[|->]ys)) x = f x" |
|
14208 | 433 |
apply (induct xs, simp) |
14025 | 434 |
apply(case_tac ys) |
435 |
apply(auto simp: map_upd_upds_conv_if) |
|
436 |
done |
|
437 |
||
14300 | 438 |
lemma fun_upds_append_drop[simp]: |
439 |
"!!m ys. size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)" |
|
440 |
apply(induct xs) |
|
441 |
apply (simp) |
|
442 |
apply(case_tac ys) |
|
443 |
apply simp_all |
|
444 |
done |
|
445 |
||
446 |
lemma fun_upds_append2_drop[simp]: |
|
447 |
"!!m ys. size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)" |
|
448 |
apply(induct xs) |
|
449 |
apply (simp) |
|
450 |
apply(case_tac ys) |
|
451 |
apply simp_all |
|
452 |
done |
|
453 |
||
454 |
||
14186 | 455 |
lemma restrict_map_upds[simp]: "!!m ys. |
456 |
\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> |
|
15693 | 457 |
\<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)" |
14208 | 458 |
apply (induct xs, simp) |
459 |
apply (case_tac ys, simp) |
|
14186 | 460 |
apply(simp add:Diff_insert[symmetric] insert_absorb) |
461 |
apply(simp add: map_upd_upds_conv_if) |
|
462 |
done |
|
463 |
||
464 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
465 |
subsection {* @{term [source] dom} *} |
13908 | 466 |
|
467 |
lemma domI: "m a = Some b ==> a : dom m" |
|
14208 | 468 |
by (unfold dom_def, auto) |
14100 | 469 |
(* declare domI [intro]? *) |
13908 | 470 |
|
15369 | 471 |
lemma domD: "a : dom m ==> \<exists>b. m a = Some b" |
18447 | 472 |
apply (case_tac "m a") |
473 |
apply (auto simp add: dom_def) |
|
474 |
done |
|
13908 | 475 |
|
13910 | 476 |
lemma domIff[iff]: "(a : dom m) = (m a ~= None)" |
14208 | 477 |
by (unfold dom_def, auto) |
13908 | 478 |
declare domIff [simp del] |
479 |
||
13910 | 480 |
lemma dom_empty[simp]: "dom empty = {}" |
13908 | 481 |
apply (unfold dom_def) |
482 |
apply (simp (no_asm)) |
|
483 |
done |
|
484 |
||
13910 | 485 |
lemma dom_fun_upd[simp]: |
486 |
"dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))" |
|
487 |
by (simp add:dom_def) blast |
|
13908 | 488 |
|
13937 | 489 |
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}" |
490 |
apply(induct xys) |
|
491 |
apply(auto simp del:fun_upd_apply) |
|
492 |
done |
|
493 |
||
15304 | 494 |
lemma dom_map_of_conv_image_fst: |
495 |
"dom(map_of xys) = fst ` (set xys)" |
|
496 |
by(force simp: dom_map_of) |
|
497 |
||
15110
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
498 |
lemma dom_map_of_zip[simp]: "[| length xs = length ys; distinct xs |] ==> |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
499 |
dom(map_of(zip xs ys)) = set xs" |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
500 |
by(induct rule: list_induct2, simp_all) |
78b5636eabc7
Added a number of new thms and the new function remove1
nipkow
parents:
14739
diff
changeset
|
501 |
|
13908 | 502 |
lemma finite_dom_map_of: "finite (dom (map_of l))" |
503 |
apply (unfold dom_def) |
|
15251 | 504 |
apply (induct "l") |
13908 | 505 |
apply (auto simp add: insert_Collect [symmetric]) |
506 |
done |
|
507 |
||
14025 | 508 |
lemma dom_map_upds[simp]: |
509 |
"!!m ys. dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" |
|
14208 | 510 |
apply (induct xs, simp) |
511 |
apply (case_tac ys, auto) |
|
14025 | 512 |
done |
13910 | 513 |
|
14025 | 514 |
lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m" |
14208 | 515 |
by (unfold dom_def, auto) |
13910 | 516 |
|
15691 | 517 |
lemma dom_override_on[simp]: |
518 |
"dom(override_on f g A) = |
|
519 |
(dom f - {a. a : A - dom g}) Un {a. a : A Int dom g}" |
|
520 |
by(auto simp add: dom_def override_on_def) |
|
13908 | 521 |
|
14027 | 522 |
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1" |
523 |
apply(rule ext) |
|
18576 | 524 |
apply(force simp: map_add_def dom_def split:option.split) |
14027 | 525 |
done |
526 |
||
17399
56a3a4affedc
@{term [source] ...} in subsections probably more robust;
wenzelm
parents:
17391
diff
changeset
|
527 |
subsection {* @{term [source] ran} *} |
14100 | 528 |
|
529 |
lemma ranI: "m a = Some b ==> b : ran m" |
|
530 |
by (auto simp add: ran_def) |
|
531 |
(* declare ranI [intro]? *) |
|
13908 | 532 |
|
13910 | 533 |
lemma ran_empty[simp]: "ran empty = {}" |
13908 | 534 |
apply (unfold ran_def) |
535 |
apply (simp (no_asm)) |
|
536 |
done |
|
537 |
||
13910 | 538 |
lemma ran_map_upd[simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" |
14208 | 539 |
apply (unfold ran_def, auto) |
13908 | 540 |
apply (subgoal_tac "~ (aa = a) ") |
541 |
apply auto |
|
542 |
done |
|
13910 | 543 |
|
14100 | 544 |
subsection {* @{text "map_le"} *} |
13910 | 545 |
|
13912 | 546 |
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" |
13910 | 547 |
by(simp add:map_le_def) |
548 |
||
17724 | 549 |
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f" |
14187 | 550 |
by(force simp add:map_le_def) |
551 |
||
13910 | 552 |
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" |
553 |
by(fastsimp simp add:map_le_def) |
|
554 |
||
17724 | 555 |
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" |
14187 | 556 |
by(force simp add:map_le_def) |
557 |
||
13910 | 558 |
lemma map_le_upds[simp]: |
559 |
"!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" |
|
14208 | 560 |
apply (induct as, simp) |
561 |
apply (case_tac bs, auto) |
|
14025 | 562 |
done |
13908 | 563 |
|
14033 | 564 |
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" |
565 |
by (fastsimp simp add: map_le_def dom_def) |
|
566 |
||
567 |
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" |
|
568 |
by (simp add: map_le_def) |
|
569 |
||
14187 | 570 |
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" |
18447 | 571 |
by (auto simp add: map_le_def dom_def) |
14033 | 572 |
|
573 |
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" |
|
574 |
apply (unfold map_le_def) |
|
575 |
apply (rule ext) |
|
14208 | 576 |
apply (case_tac "x \<in> dom f", simp) |
577 |
apply (case_tac "x \<in> dom g", simp, fastsimp) |
|
14033 | 578 |
done |
579 |
||
580 |
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" |
|
18576 | 581 |
by (fastsimp simp add: map_le_def) |
14033 | 582 |
|
15304 | 583 |
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)" |
584 |
by(fastsimp simp add:map_add_def map_le_def expand_fun_eq split:option.splits) |
|
585 |
||
15303 | 586 |
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h" |
18576 | 587 |
by (fastsimp simp add: map_le_def map_add_def dom_def) |
15303 | 588 |
|
589 |
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h" |
|
590 |
by (clarsimp simp add: map_le_def map_add_def dom_def split:option.splits) |
|
591 |
||
3981 | 592 |
end |