author | wenzelm |
Sun, 05 Jul 2020 11:06:09 +0200 | |
changeset 71999 | 720b72513ae5 |
parent 68442 | 477b3f7067c9 |
child 80103 | 577a2896ace9 |
permissions | -rw-r--r-- |
33154 | 1 |
(* Title: HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy |
2 |
Author: Amine Chaieb |
|
3 |
*) |
|
4 |
||
60533 | 5 |
section \<open>Implementation and verification of multivariate polynomials\<close> |
33154 | 6 |
|
7 |
theory Reflected_Multivariate_Polynomial |
|
67123 | 8 |
imports Complex_Main Rat_Pair Polynomial_List |
33154 | 9 |
begin |
10 |
||
60698 | 11 |
subsection \<open>Datatype of polynomial expressions\<close> |
33154 | 12 |
|
58310 | 13 |
datatype poly = C Num | Bound nat | Add poly poly | Sub poly poly |
33154 | 14 |
| Mul poly poly| Neg poly| Pw poly nat| CN poly nat poly |
15 |
||
35054 | 16 |
abbreviation poly_0 :: "poly" ("0\<^sub>p") where "0\<^sub>p \<equiv> C (0\<^sub>N)" |
50282
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
wenzelm
parents:
49962
diff
changeset
|
17 |
abbreviation poly_p :: "int \<Rightarrow> poly" ("'((_)')\<^sub>p") where "(i)\<^sub>p \<equiv> C (i)\<^sub>N" |
33154 | 18 |
|
52658 | 19 |
|
60533 | 20 |
subsection\<open>Boundedness, substitution and all that\<close> |
52658 | 21 |
|
22 |
primrec polysize:: "poly \<Rightarrow> nat" |
|
67123 | 23 |
where |
24 |
"polysize (C c) = 1" |
|
25 |
| "polysize (Bound n) = 1" |
|
26 |
| "polysize (Neg p) = 1 + polysize p" |
|
27 |
| "polysize (Add p q) = 1 + polysize p + polysize q" |
|
28 |
| "polysize (Sub p q) = 1 + polysize p + polysize q" |
|
29 |
| "polysize (Mul p q) = 1 + polysize p + polysize q" |
|
30 |
| "polysize (Pw p n) = 1 + polysize p" |
|
31 |
| "polysize (CN c n p) = 4 + polysize c + polysize p" |
|
33154 | 32 |
|
61586 | 33 |
primrec polybound0:: "poly \<Rightarrow> bool" \<comment> \<open>a poly is INDEPENDENT of Bound 0\<close> |
67123 | 34 |
where |
35 |
"polybound0 (C c) \<longleftrightarrow> True" |
|
36 |
| "polybound0 (Bound n) \<longleftrightarrow> n > 0" |
|
37 |
| "polybound0 (Neg a) \<longleftrightarrow> polybound0 a" |
|
38 |
| "polybound0 (Add a b) \<longleftrightarrow> polybound0 a \<and> polybound0 b" |
|
39 |
| "polybound0 (Sub a b) \<longleftrightarrow> polybound0 a \<and> polybound0 b" |
|
40 |
| "polybound0 (Mul a b) \<longleftrightarrow> polybound0 a \<and> polybound0 b" |
|
41 |
| "polybound0 (Pw p n) \<longleftrightarrow> polybound0 p" |
|
42 |
| "polybound0 (CN c n p) \<longleftrightarrow> n \<noteq> 0 \<and> polybound0 c \<and> polybound0 p" |
|
39246 | 43 |
|
61586 | 44 |
primrec polysubst0:: "poly \<Rightarrow> poly \<Rightarrow> poly" \<comment> \<open>substitute a poly into a poly for Bound 0\<close> |
67123 | 45 |
where |
46 |
"polysubst0 t (C c) = C c" |
|
47 |
| "polysubst0 t (Bound n) = (if n = 0 then t else Bound n)" |
|
48 |
| "polysubst0 t (Neg a) = Neg (polysubst0 t a)" |
|
49 |
| "polysubst0 t (Add a b) = Add (polysubst0 t a) (polysubst0 t b)" |
|
50 |
| "polysubst0 t (Sub a b) = Sub (polysubst0 t a) (polysubst0 t b)" |
|
51 |
| "polysubst0 t (Mul a b) = Mul (polysubst0 t a) (polysubst0 t b)" |
|
52 |
| "polysubst0 t (Pw p n) = Pw (polysubst0 t p) n" |
|
53 |
| "polysubst0 t (CN c n p) = |
|
54 |
(if n = 0 then Add (polysubst0 t c) (Mul t (polysubst0 t p)) |
|
55 |
else CN (polysubst0 t c) n (polysubst0 t p))" |
|
33154 | 56 |
|
52803 | 57 |
fun decrpoly:: "poly \<Rightarrow> poly" |
67123 | 58 |
where |
59 |
"decrpoly (Bound n) = Bound (n - 1)" |
|
60 |
| "decrpoly (Neg a) = Neg (decrpoly a)" |
|
61 |
| "decrpoly (Add a b) = Add (decrpoly a) (decrpoly b)" |
|
62 |
| "decrpoly (Sub a b) = Sub (decrpoly a) (decrpoly b)" |
|
63 |
| "decrpoly (Mul a b) = Mul (decrpoly a) (decrpoly b)" |
|
64 |
| "decrpoly (Pw p n) = Pw (decrpoly p) n" |
|
65 |
| "decrpoly (CN c n p) = CN (decrpoly c) (n - 1) (decrpoly p)" |
|
66 |
| "decrpoly a = a" |
|
33154 | 67 |
|
52658 | 68 |
|
60698 | 69 |
subsection \<open>Degrees and heads and coefficients\<close> |
33154 | 70 |
|
56207 | 71 |
fun degree :: "poly \<Rightarrow> nat" |
67123 | 72 |
where |
73 |
"degree (CN c 0 p) = 1 + degree p" |
|
74 |
| "degree p = 0" |
|
33154 | 75 |
|
56207 | 76 |
fun head :: "poly \<Rightarrow> poly" |
67123 | 77 |
where |
78 |
"head (CN c 0 p) = head p" |
|
79 |
| "head p = p" |
|
41808 | 80 |
|
60698 | 81 |
text \<open>More general notions of degree and head.\<close> |
82 |
||
56207 | 83 |
fun degreen :: "poly \<Rightarrow> nat \<Rightarrow> nat" |
67123 | 84 |
where |
85 |
"degreen (CN c n p) = (\<lambda>m. if n = m then 1 + degreen p n else 0)" |
|
86 |
| "degreen p = (\<lambda>m. 0)" |
|
33154 | 87 |
|
56207 | 88 |
fun headn :: "poly \<Rightarrow> nat \<Rightarrow> poly" |
67123 | 89 |
where |
90 |
"headn (CN c n p) = (\<lambda>m. if n \<le> m then headn p m else CN c n p)" |
|
91 |
| "headn p = (\<lambda>m. p)" |
|
33154 | 92 |
|
56207 | 93 |
fun coefficients :: "poly \<Rightarrow> poly list" |
67123 | 94 |
where |
95 |
"coefficients (CN c 0 p) = c # coefficients p" |
|
96 |
| "coefficients p = [p]" |
|
33154 | 97 |
|
56207 | 98 |
fun isconstant :: "poly \<Rightarrow> bool" |
67123 | 99 |
where |
100 |
"isconstant (CN c 0 p) = False" |
|
101 |
| "isconstant p = True" |
|
33154 | 102 |
|
56207 | 103 |
fun behead :: "poly \<Rightarrow> poly" |
67123 | 104 |
where |
105 |
"behead (CN c 0 p) = (let p' = behead p in if p' = 0\<^sub>p then c else CN c 0 p')" |
|
106 |
| "behead p = 0\<^sub>p" |
|
41808 | 107 |
|
56207 | 108 |
fun headconst :: "poly \<Rightarrow> Num" |
67123 | 109 |
where |
110 |
"headconst (CN c n p) = headconst p" |
|
111 |
| "headconst (C n) = n" |
|
33154 | 112 |
|
52658 | 113 |
|
60698 | 114 |
subsection \<open>Operations for normalization\<close> |
41812 | 115 |
|
116 |
declare if_cong[fundef_cong del] |
|
117 |
declare let_cong[fundef_cong del] |
|
118 |
||
67123 | 119 |
fun polyadd :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "+\<^sub>p" 60) |
120 |
where |
|
121 |
"polyadd (C c) (C c') = C (c +\<^sub>N c')" |
|
122 |
| "polyadd (C c) (CN c' n' p') = CN (polyadd (C c) c') n' p'" |
|
123 |
| "polyadd (CN c n p) (C c') = CN (polyadd c (C c')) n p" |
|
124 |
| "polyadd (CN c n p) (CN c' n' p') = |
|
125 |
(if n < n' then CN (polyadd c (CN c' n' p')) n p |
|
126 |
else if n' < n then CN (polyadd (CN c n p) c') n' p' |
|
127 |
else |
|
128 |
let |
|
129 |
cc' = polyadd c c'; |
|
130 |
pp' = polyadd p p' |
|
131 |
in if pp' = 0\<^sub>p then cc' else CN cc' n pp')" |
|
132 |
| "polyadd a b = Add a b" |
|
33154 | 133 |
|
41808 | 134 |
fun polyneg :: "poly \<Rightarrow> poly" ("~\<^sub>p") |
67123 | 135 |
where |
136 |
"polyneg (C c) = C (~\<^sub>N c)" |
|
137 |
| "polyneg (CN c n p) = CN (polyneg c) n (polyneg p)" |
|
138 |
| "polyneg a = Neg a" |
|
33154 | 139 |
|
67123 | 140 |
definition polysub :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "-\<^sub>p" 60) |
52658 | 141 |
where "p -\<^sub>p q = polyadd p (polyneg q)" |
41813 | 142 |
|
67123 | 143 |
fun polymul :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "*\<^sub>p" 60) |
144 |
where |
|
145 |
"polymul (C c) (C c') = C (c *\<^sub>N c')" |
|
146 |
| "polymul (C c) (CN c' n' p') = |
|
147 |
(if c = 0\<^sub>N then 0\<^sub>p else CN (polymul (C c) c') n' (polymul (C c) p'))" |
|
148 |
| "polymul (CN c n p) (C c') = |
|
149 |
(if c' = 0\<^sub>N then 0\<^sub>p else CN (polymul c (C c')) n (polymul p (C c')))" |
|
150 |
| "polymul (CN c n p) (CN c' n' p') = |
|
151 |
(if n < n' then CN (polymul c (CN c' n' p')) n (polymul p (CN c' n' p')) |
|
152 |
else if n' < n then CN (polymul (CN c n p) c') n' (polymul (CN c n p) p') |
|
153 |
else polyadd (polymul (CN c n p) c') (CN 0\<^sub>p n' (polymul (CN c n p) p')))" |
|
154 |
| "polymul a b = Mul a b" |
|
41808 | 155 |
|
41812 | 156 |
declare if_cong[fundef_cong] |
157 |
declare let_cong[fundef_cong] |
|
158 |
||
41808 | 159 |
fun polypow :: "nat \<Rightarrow> poly \<Rightarrow> poly" |
67123 | 160 |
where |
161 |
"polypow 0 = (\<lambda>p. (1)\<^sub>p)" |
|
162 |
| "polypow n = |
|
163 |
(\<lambda>p. |
|
164 |
let |
|
165 |
q = polypow (n div 2) p; |
|
166 |
d = polymul q q |
|
167 |
in if even n then d else polymul p d)" |
|
33154 | 168 |
|
67123 | 169 |
abbreviation poly_pow :: "poly \<Rightarrow> nat \<Rightarrow> poly" (infixl "^\<^sub>p" 60) |
35054 | 170 |
where "a ^\<^sub>p k \<equiv> polypow k a" |
33154 | 171 |
|
41808 | 172 |
function polynate :: "poly \<Rightarrow> poly" |
67123 | 173 |
where |
174 |
"polynate (Bound n) = CN 0\<^sub>p n (1)\<^sub>p" |
|
175 |
| "polynate (Add p q) = polynate p +\<^sub>p polynate q" |
|
176 |
| "polynate (Sub p q) = polynate p -\<^sub>p polynate q" |
|
177 |
| "polynate (Mul p q) = polynate p *\<^sub>p polynate q" |
|
178 |
| "polynate (Neg p) = ~\<^sub>p (polynate p)" |
|
179 |
| "polynate (Pw p n) = polynate p ^\<^sub>p n" |
|
180 |
| "polynate (CN c n p) = polynate (Add c (Mul (Bound n) p))" |
|
181 |
| "polynate (C c) = C (normNum c)" |
|
60698 | 182 |
by pat_completeness auto |
41808 | 183 |
termination by (relation "measure polysize") auto |
33154 | 184 |
|
52658 | 185 |
fun poly_cmul :: "Num \<Rightarrow> poly \<Rightarrow> poly" |
186 |
where |
|
33154 | 187 |
"poly_cmul y (C x) = C (y *\<^sub>N x)" |
188 |
| "poly_cmul y (CN c n p) = CN (poly_cmul y c) n (poly_cmul y p)" |
|
189 |
| "poly_cmul y p = C y *\<^sub>p p" |
|
190 |
||
56009 | 191 |
definition monic :: "poly \<Rightarrow> poly \<times> bool" |
67123 | 192 |
where "monic p = |
56000 | 193 |
(let h = headconst p |
194 |
in if h = 0\<^sub>N then (p, False) else (C (Ninv h) *\<^sub>p p, 0>\<^sub>N h))" |
|
33154 | 195 |
|
52658 | 196 |
|
60533 | 197 |
subsection \<open>Pseudo-division\<close> |
33154 | 198 |
|
52658 | 199 |
definition shift1 :: "poly \<Rightarrow> poly" |
56000 | 200 |
where "shift1 p = CN 0\<^sub>p 0 p" |
33154 | 201 |
|
56009 | 202 |
abbreviation funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" |
52658 | 203 |
where "funpow \<equiv> compow" |
39246 | 204 |
|
41403
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
krauss
parents:
39246
diff
changeset
|
205 |
partial_function (tailrec) polydivide_aux :: "poly \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> nat \<times> poly" |
52658 | 206 |
where |
52803 | 207 |
"polydivide_aux a n p k s = |
56000 | 208 |
(if s = 0\<^sub>p then (k, s) |
52803 | 209 |
else |
56000 | 210 |
let |
211 |
b = head s; |
|
212 |
m = degree s |
|
213 |
in |
|
214 |
if m < n then (k,s) |
|
215 |
else |
|
216 |
let p' = funpow (m - n) shift1 p |
|
217 |
in |
|
218 |
if a = b then polydivide_aux a n p k (s -\<^sub>p p') |
|
219 |
else polydivide_aux a n p (Suc k) ((a *\<^sub>p s) -\<^sub>p (b *\<^sub>p p')))" |
|
33154 | 220 |
|
56000 | 221 |
definition polydivide :: "poly \<Rightarrow> poly \<Rightarrow> nat \<times> poly" |
222 |
where "polydivide s p = polydivide_aux (head p) (degree p) p 0 s" |
|
33154 | 223 |
|
52658 | 224 |
fun poly_deriv_aux :: "nat \<Rightarrow> poly \<Rightarrow> poly" |
67123 | 225 |
where |
226 |
"poly_deriv_aux n (CN c 0 p) = CN (poly_cmul ((int n)\<^sub>N) c) 0 (poly_deriv_aux (n + 1) p)" |
|
227 |
| "poly_deriv_aux n p = poly_cmul ((int n)\<^sub>N) p" |
|
33154 | 228 |
|
52658 | 229 |
fun poly_deriv :: "poly \<Rightarrow> poly" |
67123 | 230 |
where |
231 |
"poly_deriv (CN c 0 p) = poly_deriv_aux 1 p" |
|
232 |
| "poly_deriv p = 0\<^sub>p" |
|
33154 | 233 |
|
52658 | 234 |
|
60698 | 235 |
subsection \<open>Semantics of the polynomial representation\<close> |
33154 | 236 |
|
68442 | 237 |
primrec Ipoly :: "'a list \<Rightarrow> poly \<Rightarrow> 'a::{field_char_0,power}" |
67123 | 238 |
where |
239 |
"Ipoly bs (C c) = INum c" |
|
240 |
| "Ipoly bs (Bound n) = bs!n" |
|
241 |
| "Ipoly bs (Neg a) = - Ipoly bs a" |
|
242 |
| "Ipoly bs (Add a b) = Ipoly bs a + Ipoly bs b" |
|
243 |
| "Ipoly bs (Sub a b) = Ipoly bs a - Ipoly bs b" |
|
244 |
| "Ipoly bs (Mul a b) = Ipoly bs a * Ipoly bs b" |
|
245 |
| "Ipoly bs (Pw t n) = Ipoly bs t ^ n" |
|
246 |
| "Ipoly bs (CN c n p) = Ipoly bs c + (bs!n) * Ipoly bs p" |
|
39246 | 247 |
|
68442 | 248 |
abbreviation Ipoly_syntax :: "poly \<Rightarrow> 'a list \<Rightarrow>'a::{field_char_0,power}" ("\<lparr>_\<rparr>\<^sub>p\<^bsup>_\<^esup>") |
35054 | 249 |
where "\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<equiv> Ipoly bs p" |
33154 | 250 |
|
56009 | 251 |
lemma Ipoly_CInt: "Ipoly bs (C (i, 1)) = of_int i" |
33154 | 252 |
by (simp add: INum_def) |
56000 | 253 |
|
52803 | 254 |
lemma Ipoly_CRat: "Ipoly bs (C (i, j)) = of_int i / of_int j" |
33154 | 255 |
by (simp add: INum_def) |
256 |
||
257 |
lemmas RIpoly_eqs = Ipoly.simps(2-7) Ipoly_CInt Ipoly_CRat |
|
258 |
||
52658 | 259 |
|
60533 | 260 |
subsection \<open>Normal form and normalization\<close> |
33154 | 261 |
|
41808 | 262 |
fun isnpolyh:: "poly \<Rightarrow> nat \<Rightarrow> bool" |
67123 | 263 |
where |
264 |
"isnpolyh (C c) = (\<lambda>k. isnormNum c)" |
|
265 |
| "isnpolyh (CN c n p) = (\<lambda>k. n \<ge> k \<and> isnpolyh c (Suc n) \<and> isnpolyh p n \<and> p \<noteq> 0\<^sub>p)" |
|
266 |
| "isnpolyh p = (\<lambda>k. False)" |
|
33154 | 267 |
|
56000 | 268 |
lemma isnpolyh_mono: "n' \<le> n \<Longrightarrow> isnpolyh p n \<Longrightarrow> isnpolyh p n'" |
52658 | 269 |
by (induct p rule: isnpolyh.induct) auto |
33154 | 270 |
|
52658 | 271 |
definition isnpoly :: "poly \<Rightarrow> bool" |
56000 | 272 |
where "isnpoly p = isnpolyh p 0" |
33154 | 273 |
|
60698 | 274 |
text \<open>polyadd preserves normal forms\<close> |
33154 | 275 |
|
56000 | 276 |
lemma polyadd_normh: "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> isnpolyh (polyadd p q) (min n0 n1)" |
52803 | 277 |
proof (induct p q arbitrary: n0 n1 rule: polyadd.induct) |
41812 | 278 |
case (2 ab c' n' p' n0 n1) |
56009 | 279 |
from 2 have th1: "isnpolyh (C ab) (Suc n')" |
280 |
by simp |
|
60698 | 281 |
from 2(3) have th2: "isnpolyh c' (Suc n')" and nplen1: "n' \<ge> n1" |
56009 | 282 |
by simp_all |
283 |
with isnpolyh_mono have cp: "isnpolyh c' (Suc n')" |
|
284 |
by simp |
|
285 |
with 2(1)[OF th1 th2] have th3:"isnpolyh (C ab +\<^sub>p c') (Suc n')" |
|
286 |
by simp |
|
287 |
from nplen1 have n01len1: "min n0 n1 \<le> n'" |
|
288 |
by simp |
|
289 |
then show ?case using 2 th3 |
|
290 |
by simp |
|
33154 | 291 |
next |
41812 | 292 |
case (3 c' n' p' ab n1 n0) |
56009 | 293 |
from 3 have th1: "isnpolyh (C ab) (Suc n')" |
294 |
by simp |
|
295 |
from 3(2) have th2: "isnpolyh c' (Suc n')" and nplen1: "n' \<ge> n1" |
|
296 |
by simp_all |
|
297 |
with isnpolyh_mono have cp: "isnpolyh c' (Suc n')" |
|
298 |
by simp |
|
299 |
with 3(1)[OF th2 th1] have th3:"isnpolyh (c' +\<^sub>p C ab) (Suc n')" |
|
300 |
by simp |
|
301 |
from nplen1 have n01len1: "min n0 n1 \<le> n'" |
|
302 |
by simp |
|
303 |
then show ?case using 3 th3 |
|
304 |
by simp |
|
33154 | 305 |
next |
306 |
case (4 c n p c' n' p' n0 n1) |
|
56009 | 307 |
then have nc: "isnpolyh c (Suc n)" and np: "isnpolyh p n" |
308 |
by simp_all |
|
309 |
from 4 have nc': "isnpolyh c' (Suc n')" and np': "isnpolyh p' n'" |
|
310 |
by simp_all |
|
311 |
from 4 have ngen0: "n \<ge> n0" |
|
312 |
by simp |
|
313 |
from 4 have n'gen1: "n' \<ge> n1" |
|
314 |
by simp |
|
60698 | 315 |
consider (eq) "n = n'" | (lt) "n < n'" | (gt) "n > n'" |
316 |
by arith |
|
317 |
then show ?case |
|
318 |
proof cases |
|
319 |
case eq |
|
52803 | 320 |
with "4.hyps"(3)[OF nc nc'] |
56009 | 321 |
have ncc':"isnpolyh (c +\<^sub>p c') (Suc n)" |
322 |
by auto |
|
323 |
then have ncc'n01: "isnpolyh (c +\<^sub>p c') (min n0 n1)" |
|
324 |
using isnpolyh_mono[where n'="min n0 n1" and n="Suc n"] ngen0 n'gen1 |
|
325 |
by auto |
|
326 |
from eq "4.hyps"(4)[OF np np'] have npp': "isnpolyh (p +\<^sub>p p') n" |
|
327 |
by simp |
|
328 |
have minle: "min n0 n1 \<le> n'" |
|
329 |
using ngen0 n'gen1 eq by simp |
|
60698 | 330 |
from minle npp' ncc'n01 4 eq ngen0 n'gen1 ncc' show ?thesis |
56009 | 331 |
by (simp add: Let_def) |
60698 | 332 |
next |
333 |
case lt |
|
56009 | 334 |
have "min n0 n1 \<le> n0" |
335 |
by simp |
|
336 |
with 4 lt have th1:"min n0 n1 \<le> n" |
|
337 |
by auto |
|
338 |
from 4 have th21: "isnpolyh c (Suc n)" |
|
339 |
by simp |
|
340 |
from 4 have th22: "isnpolyh (CN c' n' p') n'" |
|
341 |
by simp |
|
342 |
from lt have th23: "min (Suc n) n' = Suc n" |
|
343 |
by arith |
|
344 |
from "4.hyps"(1)[OF th21 th22] have "isnpolyh (polyadd c (CN c' n' p')) (Suc n)" |
|
345 |
using th23 by simp |
|
60698 | 346 |
with 4 lt th1 show ?thesis |
56009 | 347 |
by simp |
60698 | 348 |
next |
349 |
case gt |
|
56009 | 350 |
then have gt': "n' < n \<and> \<not> n < n'" |
351 |
by simp |
|
352 |
have "min n0 n1 \<le> n1" |
|
353 |
by simp |
|
354 |
with 4 gt have th1: "min n0 n1 \<le> n'" |
|
355 |
by auto |
|
356 |
from 4 have th21: "isnpolyh c' (Suc n')" |
|
357 |
by simp_all |
|
358 |
from 4 have th22: "isnpolyh (CN c n p) n" |
|
359 |
by simp |
|
360 |
from gt have th23: "min n (Suc n') = Suc n'" |
|
361 |
by arith |
|
362 |
from "4.hyps"(2)[OF th22 th21] have "isnpolyh (polyadd (CN c n p) c') (Suc n')" |
|
363 |
using th23 by simp |
|
60698 | 364 |
with 4 gt th1 show ?thesis |
56009 | 365 |
by simp |
60698 | 366 |
qed |
33154 | 367 |
qed auto |
368 |
||
41812 | 369 |
lemma polyadd[simp]: "Ipoly bs (polyadd p q) = Ipoly bs p + Ipoly bs q" |
52658 | 370 |
by (induct p q rule: polyadd.induct) |
58776
95e58e04e534
use NO_MATCH-simproc for distribution rules in field_simps, otherwise field_simps on '(a / (c + d)) * (e + f)' can be non-terminating
hoelzl
parents:
58710
diff
changeset
|
371 |
(auto simp add: Let_def field_simps distrib_left[symmetric] simp del: distrib_left_NO_MATCH) |
33154 | 372 |
|
56009 | 373 |
lemma polyadd_norm: "isnpoly p \<Longrightarrow> isnpoly q \<Longrightarrow> isnpoly (polyadd p q)" |
60698 | 374 |
using polyadd_normh[of p 0 q 0] isnpoly_def by simp |
33154 | 375 |
|
60698 | 376 |
text \<open>The degree of addition and other general lemmas needed for the normal form of polymul.\<close> |
33154 | 377 |
|
52803 | 378 |
lemma polyadd_different_degreen: |
56009 | 379 |
assumes "isnpolyh p n0" |
380 |
and "isnpolyh q n1" |
|
381 |
and "degreen p m \<noteq> degreen q m" |
|
382 |
and "m \<le> min n0 n1" |
|
383 |
shows "degreen (polyadd p q) m = max (degreen p m) (degreen q m)" |
|
384 |
using assms |
|
33154 | 385 |
proof (induct p q arbitrary: m n0 n1 rule: polyadd.induct) |
386 |
case (4 c n p c' n' p' m n0 n1) |
|
60698 | 387 |
show ?case |
388 |
proof (cases "n = n'") |
|
389 |
case True |
|
390 |
with 4(4)[of n n m] 4(3)[of "Suc n" "Suc n" m] 4(5-7) |
|
41763 | 391 |
show ?thesis by (auto simp: Let_def) |
392 |
next |
|
60698 | 393 |
case False |
41763 | 394 |
with 4 show ?thesis by auto |
395 |
qed |
|
396 |
qed auto |
|
33154 | 397 |
|
56009 | 398 |
lemma headnz[simp]: "isnpolyh p n \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> headn p m \<noteq> 0\<^sub>p" |
52658 | 399 |
by (induct p arbitrary: n rule: headn.induct) auto |
56009 | 400 |
|
33154 | 401 |
lemma degree_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> degree p = 0" |
52658 | 402 |
by (induct p arbitrary: n rule: degree.induct) auto |
56009 | 403 |
|
33154 | 404 |
lemma degreen_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> degreen p m = 0" |
52658 | 405 |
by (induct p arbitrary: n rule: degreen.induct) auto |
33154 | 406 |
|
407 |
lemma degree_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> degree p = 0" |
|
52658 | 408 |
by (induct p arbitrary: n rule: degree.induct) auto |
33154 | 409 |
|
410 |
lemma degree_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degree c = 0" |
|
411 |
using degree_isnpolyh_Suc by auto |
|
56009 | 412 |
|
33154 | 413 |
lemma degreen_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degreen c n = 0" |
414 |
using degreen_0 by auto |
|
415 |
||
416 |
||
417 |
lemma degreen_polyadd: |
|
56009 | 418 |
assumes np: "isnpolyh p n0" |
419 |
and nq: "isnpolyh q n1" |
|
420 |
and m: "m \<le> max n0 n1" |
|
33154 | 421 |
shows "degreen (p +\<^sub>p q) m \<le> max (degreen p m) (degreen q m)" |
422 |
using np nq m |
|
423 |
proof (induct p q arbitrary: n0 n1 m rule: polyadd.induct) |
|
52803 | 424 |
case (2 c c' n' p' n0 n1) |
56009 | 425 |
then show ?case |
426 |
by (cases n') simp_all |
|
33154 | 427 |
next |
52803 | 428 |
case (3 c n p c' n0 n1) |
56009 | 429 |
then show ?case |
430 |
by (cases n) auto |
|
33154 | 431 |
next |
52803 | 432 |
case (4 c n p c' n' p' n0 n1 m) |
60698 | 433 |
show ?case |
434 |
proof (cases "n = n'") |
|
435 |
case True |
|
436 |
with 4(4)[of n n m] 4(3)[of "Suc n" "Suc n" m] 4(5-7) |
|
41763 | 437 |
show ?thesis by (auto simp: Let_def) |
60698 | 438 |
next |
439 |
case False |
|
440 |
then show ?thesis by simp |
|
441 |
qed |
|
33154 | 442 |
qed auto |
443 |
||
56009 | 444 |
lemma polyadd_eq_const_degreen: |
445 |
assumes "isnpolyh p n0" |
|
446 |
and "isnpolyh q n1" |
|
447 |
and "polyadd p q = C c" |
|
448 |
shows "degreen p m = degreen q m" |
|
449 |
using assms |
|
33154 | 450 |
proof (induct p q arbitrary: m n0 n1 c rule: polyadd.induct) |
52803 | 451 |
case (4 c n p c' n' p' m n0 n1 x) |
60698 | 452 |
consider "n = n'" | "n > n' \<or> n < n'" by arith |
453 |
then show ?case |
|
454 |
proof cases |
|
455 |
case 1 |
|
456 |
with 4 show ?thesis |
|
457 |
by (cases "p +\<^sub>p p' = 0\<^sub>p") (auto simp add: Let_def) |
|
458 |
next |
|
459 |
case 2 |
|
460 |
with 4 show ?thesis by auto |
|
461 |
qed |
|
33154 | 462 |
qed simp_all |
463 |
||
464 |
lemma polymul_properties: |
|
68442 | 465 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
52658 | 466 |
and np: "isnpolyh p n0" |
467 |
and nq: "isnpolyh q n1" |
|
468 |
and m: "m \<le> min n0 n1" |
|
52803 | 469 |
shows "isnpolyh (p *\<^sub>p q) (min n0 n1)" |
56009 | 470 |
and "p *\<^sub>p q = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p \<or> q = 0\<^sub>p" |
471 |
and "degreen (p *\<^sub>p q) m = (if p = 0\<^sub>p \<or> q = 0\<^sub>p then 0 else degreen p m + degreen q m)" |
|
33154 | 472 |
using np nq m |
52658 | 473 |
proof (induct p q arbitrary: n0 n1 m rule: polymul.induct) |
52803 | 474 |
case (2 c c' n' p') |
56009 | 475 |
{ |
476 |
case (1 n0 n1) |
|
477 |
with "2.hyps"(4-6)[of n' n' n'] and "2.hyps"(1-3)[of "Suc n'" "Suc n'" n'] |
|
41811 | 478 |
show ?case by (auto simp add: min_def) |
33154 | 479 |
next |
56009 | 480 |
case (2 n0 n1) |
481 |
then show ?case by auto |
|
33154 | 482 |
next |
56009 | 483 |
case (3 n0 n1) |
60698 | 484 |
then show ?case using "2.hyps" by auto |
56009 | 485 |
} |
33154 | 486 |
next |
41813 | 487 |
case (3 c n p c') |
56009 | 488 |
{ |
489 |
case (1 n0 n1) |
|
490 |
with "3.hyps"(4-6)[of n n n] and "3.hyps"(1-3)[of "Suc n" "Suc n" n] |
|
41811 | 491 |
show ?case by (auto simp add: min_def) |
33154 | 492 |
next |
56009 | 493 |
case (2 n0 n1) |
494 |
then show ?case by auto |
|
33154 | 495 |
next |
56009 | 496 |
case (3 n0 n1) |
497 |
then show ?case using "3.hyps" by auto |
|
498 |
} |
|
33154 | 499 |
next |
500 |
case (4 c n p c' n' p') |
|
501 |
let ?cnp = "CN c n p" let ?cnp' = "CN c' n' p'" |
|
56009 | 502 |
{ |
503 |
case (1 n0 n1) |
|
504 |
then have cnp: "isnpolyh ?cnp n" |
|
505 |
and cnp': "isnpolyh ?cnp' n'" |
|
506 |
and np: "isnpolyh p n" |
|
507 |
and nc: "isnpolyh c (Suc n)" |
|
508 |
and np': "isnpolyh p' n'" |
|
509 |
and nc': "isnpolyh c' (Suc n')" |
|
510 |
and nn0: "n \<ge> n0" |
|
511 |
and nn1: "n' \<ge> n1" |
|
512 |
by simp_all |
|
67123 | 513 |
consider "n < n'" | "n' < n" | "n' = n" by arith |
514 |
then show ?case |
|
515 |
proof cases |
|
516 |
case 1 |
|
56009 | 517 |
with "4.hyps"(4-5)[OF np cnp', of n] and "4.hyps"(1)[OF nc cnp', of n] nn0 cnp |
67123 | 518 |
show ?thesis by (simp add: min_def) |
519 |
next |
|
520 |
case 2 |
|
56009 | 521 |
with "4.hyps"(16-17)[OF cnp np', of "n'"] and "4.hyps"(13)[OF cnp nc', of "Suc n'"] nn1 cnp' |
67123 | 522 |
show ?thesis by (cases "Suc n' = n") (simp_all add: min_def) |
523 |
next |
|
524 |
case 3 |
|
56009 | 525 |
with "4.hyps"(16-17)[OF cnp np', of n] and "4.hyps"(13)[OF cnp nc', of n] cnp cnp' nn1 nn0 |
67123 | 526 |
show ?thesis |
527 |
by (auto intro!: polyadd_normh) (simp_all add: min_def isnpolyh_mono[OF nn0]) |
|
528 |
qed |
|
56009 | 529 |
next |
530 |
fix n0 n1 m |
|
531 |
assume np: "isnpolyh ?cnp n0" |
|
532 |
assume np':"isnpolyh ?cnp' n1" |
|
533 |
assume m: "m \<le> min n0 n1" |
|
534 |
let ?d = "degreen (?cnp *\<^sub>p ?cnp') m" |
|
535 |
let ?d1 = "degreen ?cnp m" |
|
536 |
let ?d2 = "degreen ?cnp' m" |
|
537 |
let ?eq = "?d = (if ?cnp = 0\<^sub>p \<or> ?cnp' = 0\<^sub>p then 0 else ?d1 + ?d2)" |
|
67123 | 538 |
consider "n' < n \<or> n < n'" | "n' = n" by linarith |
539 |
then show ?eq |
|
540 |
proof cases |
|
541 |
case 1 |
|
542 |
with "4.hyps"(3,6,18) np np' m show ?thesis by auto |
|
543 |
next |
|
544 |
case 2 |
|
545 |
have nn': "n' = n" by fact |
|
56009 | 546 |
then have nn: "\<not> n' < n \<and> \<not> n < n'" by arith |
547 |
from "4.hyps"(16,18)[of n n' n] |
|
548 |
"4.hyps"(13,14)[of n "Suc n'" n] |
|
549 |
np np' nn' |
|
56043 | 550 |
have norm: |
551 |
"isnpolyh ?cnp n" |
|
552 |
"isnpolyh c' (Suc n)" |
|
553 |
"isnpolyh (?cnp *\<^sub>p c') n" |
|
554 |
"isnpolyh p' n" |
|
555 |
"isnpolyh (?cnp *\<^sub>p p') n" |
|
556 |
"isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" |
|
557 |
"?cnp *\<^sub>p c' = 0\<^sub>p \<longleftrightarrow> c' = 0\<^sub>p" |
|
558 |
"?cnp *\<^sub>p p' \<noteq> 0\<^sub>p" |
|
559 |
by (auto simp add: min_def) |
|
67123 | 560 |
show ?thesis |
561 |
proof (cases "m = n") |
|
562 |
case mn: True |
|
56009 | 563 |
from "4.hyps"(17,18)[OF norm(1,4), of n] |
564 |
"4.hyps"(13,15)[OF norm(1,2), of n] norm nn' mn |
|
565 |
have degs: |
|
566 |
"degreen (?cnp *\<^sub>p c') n = (if c' = 0\<^sub>p then 0 else ?d1 + degreen c' n)" |
|
567 |
"degreen (?cnp *\<^sub>p p') n = ?d1 + degreen p' n" |
|
568 |
by (simp_all add: min_def) |
|
569 |
from degs norm have th1: "degreen (?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" |
|
570 |
by simp |
|
571 |
then have neq: "degreen (?cnp *\<^sub>p c') n \<noteq> degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" |
|
572 |
by simp |
|
573 |
have nmin: "n \<le> min n n" |
|
574 |
by (simp add: min_def) |
|
575 |
from polyadd_different_degreen[OF norm(3,6) neq nmin] th1 |
|
576 |
have deg: "degreen (CN c n p *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n = |
|
577 |
degreen (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" |
|
578 |
by simp |
|
579 |
from "4.hyps"(16-18)[OF norm(1,4), of n] |
|
580 |
"4.hyps"(13-15)[OF norm(1,2), of n] |
|
581 |
mn norm m nn' deg |
|
67123 | 582 |
show ?thesis by simp |
583 |
next |
|
584 |
case mn: False |
|
56009 | 585 |
then have mn': "m < n" |
586 |
using m np by auto |
|
587 |
from nn' m np have max1: "m \<le> max n n" |
|
588 |
by simp |
|
589 |
then have min1: "m \<le> min n n" |
|
590 |
by simp |
|
591 |
then have min2: "m \<le> min n (Suc n)" |
|
592 |
by simp |
|
593 |
from "4.hyps"(16-18)[OF norm(1,4) min1] |
|
594 |
"4.hyps"(13-15)[OF norm(1,2) min2] |
|
595 |
degreen_polyadd[OF norm(3,6) max1] |
|
596 |
have "degreen (?cnp *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (?cnp *\<^sub>p p')) m \<le> |
|
597 |
max (degreen (?cnp *\<^sub>p c') m) (degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) m)" |
|
598 |
using mn nn' np np' by simp |
|
599 |
with "4.hyps"(16-18)[OF norm(1,4) min1] |
|
600 |
"4.hyps"(13-15)[OF norm(1,2) min2] |
|
601 |
degreen_0[OF norm(3) mn'] |
|
67123 | 602 |
nn' mn np np' |
603 |
show ?thesis by clarsimp |
|
604 |
qed |
|
605 |
qed |
|
56009 | 606 |
} |
607 |
{ |
|
608 |
case (2 n0 n1) |
|
609 |
then have np: "isnpolyh ?cnp n0" |
|
610 |
and np': "isnpolyh ?cnp' n1" |
|
56043 | 611 |
and m: "m \<le> min n0 n1" |
612 |
by simp_all |
|
56009 | 613 |
then have mn: "m \<le> n" by simp |
614 |
let ?c0p = "CN 0\<^sub>p n (?cnp *\<^sub>p p')" |
|
67123 | 615 |
have False if C: "?cnp *\<^sub>p c' +\<^sub>p ?c0p = 0\<^sub>p" "n' = n" |
616 |
proof - |
|
617 |
from C have nn: "\<not> n' < n \<and> \<not> n < n'" |
|
56009 | 618 |
by simp |
619 |
from "4.hyps"(16-18) [of n n n] |
|
620 |
"4.hyps"(13-15)[of n "Suc n" n] |
|
621 |
np np' C(2) mn |
|
622 |
have norm: |
|
623 |
"isnpolyh ?cnp n" |
|
624 |
"isnpolyh c' (Suc n)" |
|
625 |
"isnpolyh (?cnp *\<^sub>p c') n" |
|
626 |
"isnpolyh p' n" |
|
627 |
"isnpolyh (?cnp *\<^sub>p p') n" |
|
628 |
"isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" |
|
629 |
"?cnp *\<^sub>p c' = 0\<^sub>p \<longleftrightarrow> c' = 0\<^sub>p" |
|
630 |
"?cnp *\<^sub>p p' \<noteq> 0\<^sub>p" |
|
631 |
"degreen (?cnp *\<^sub>p c') n = (if c' = 0\<^sub>p then 0 else degreen ?cnp n + degreen c' n)" |
|
632 |
"degreen (?cnp *\<^sub>p p') n = degreen ?cnp n + degreen p' n" |
|
633 |
by (simp_all add: min_def) |
|
634 |
from norm have cn: "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" |
|
635 |
by simp |
|
636 |
have degneq: "degreen (?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" |
|
637 |
using norm by simp |
|
638 |
from polyadd_eq_const_degreen[OF norm(3) cn C(1), where m="n"] degneq |
|
67123 | 639 |
show ?thesis by simp |
640 |
qed |
|
56009 | 641 |
then show ?case using "4.hyps" by clarsimp |
642 |
} |
|
33154 | 643 |
qed auto |
644 |
||
56009 | 645 |
lemma polymul[simp]: "Ipoly bs (p *\<^sub>p q) = Ipoly bs p * Ipoly bs q" |
52658 | 646 |
by (induct p q rule: polymul.induct) (auto simp add: field_simps) |
33154 | 647 |
|
52803 | 648 |
lemma polymul_normh: |
68442 | 649 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
56009 | 650 |
shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> isnpolyh (p *\<^sub>p q) (min n0 n1)" |
52803 | 651 |
using polymul_properties(1) by blast |
52658 | 652 |
|
52803 | 653 |
lemma polymul_eq0_iff: |
68442 | 654 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
56009 | 655 |
shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> p *\<^sub>p q = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p \<or> q = 0\<^sub>p" |
52803 | 656 |
using polymul_properties(2) by blast |
52658 | 657 |
|
56207 | 658 |
lemma polymul_degreen: |
68442 | 659 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
56009 | 660 |
shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> m \<le> min n0 n1 \<Longrightarrow> |
661 |
degreen (p *\<^sub>p q) m = (if p = 0\<^sub>p \<or> q = 0\<^sub>p then 0 else degreen p m + degreen q m)" |
|
56207 | 662 |
by (fact polymul_properties(3)) |
52658 | 663 |
|
52803 | 664 |
lemma polymul_norm: |
68442 | 665 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
56009 | 666 |
shows "isnpoly p \<Longrightarrow> isnpoly q \<Longrightarrow> isnpoly (polymul p q)" |
33154 | 667 |
using polymul_normh[of "p" "0" "q" "0"] isnpoly_def by simp |
668 |
||
669 |
lemma headconst_zero: "isnpolyh p n0 \<Longrightarrow> headconst p = 0\<^sub>N \<longleftrightarrow> p = 0\<^sub>p" |
|
52658 | 670 |
by (induct p arbitrary: n0 rule: headconst.induct) auto |
33154 | 671 |
|
672 |
lemma headconst_isnormNum: "isnpolyh p n0 \<Longrightarrow> isnormNum (headconst p)" |
|
52658 | 673 |
by (induct p arbitrary: n0) auto |
33154 | 674 |
|
52658 | 675 |
lemma monic_eqI: |
52803 | 676 |
assumes np: "isnpolyh p n0" |
52658 | 677 |
shows "INum (headconst p) * Ipoly bs (fst (monic p)) = |
68442 | 678 |
(Ipoly bs p ::'a::{field_char_0, power})" |
33154 | 679 |
unfolding monic_def Let_def |
52658 | 680 |
proof (cases "headconst p = 0\<^sub>N", simp_all add: headconst_zero[OF np]) |
33154 | 681 |
let ?h = "headconst p" |
682 |
assume pz: "p \<noteq> 0\<^sub>p" |
|
56000 | 683 |
{ |
684 |
assume hz: "INum ?h = (0::'a)" |
|
56043 | 685 |
from headconst_isnormNum[OF np] have norm: "isnormNum ?h" "isnormNum 0\<^sub>N" |
686 |
by simp_all |
|
687 |
from isnormNum_unique[where ?'a = 'a, OF norm] hz have "?h = 0\<^sub>N" |
|
688 |
by simp |
|
689 |
with headconst_zero[OF np] have "p = 0\<^sub>p" |
|
690 |
by blast |
|
691 |
with pz have False |
|
692 |
by blast |
|
693 |
} |
|
694 |
then show "INum (headconst p) = (0::'a) \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0" |
|
695 |
by blast |
|
33154 | 696 |
qed |
697 |
||
698 |
||
60698 | 699 |
text \<open>polyneg is a negation and preserves normal forms\<close> |
33154 | 700 |
|
701 |
lemma polyneg[simp]: "Ipoly bs (polyneg p) = - Ipoly bs p" |
|
52658 | 702 |
by (induct p rule: polyneg.induct) auto |
33154 | 703 |
|
56009 | 704 |
lemma polyneg0: "isnpolyh p n \<Longrightarrow> (~\<^sub>p p) = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" |
52658 | 705 |
by (induct p arbitrary: n rule: polyneg.induct) (auto simp add: Nneg_def) |
56009 | 706 |
|
33154 | 707 |
lemma polyneg_polyneg: "isnpolyh p n0 \<Longrightarrow> ~\<^sub>p (~\<^sub>p p) = p" |
52658 | 708 |
by (induct p arbitrary: n0 rule: polyneg.induct) auto |
56009 | 709 |
|
710 |
lemma polyneg_normh: "isnpolyh p n \<Longrightarrow> isnpolyh (polyneg p) n" |
|
711 |
by (induct p arbitrary: n rule: polyneg.induct) (auto simp add: polyneg0) |
|
33154 | 712 |
|
713 |
lemma polyneg_norm: "isnpoly p \<Longrightarrow> isnpoly (polyneg p)" |
|
714 |
using isnpoly_def polyneg_normh by simp |
|
715 |
||
716 |
||
60698 | 717 |
text \<open>polysub is a substraction and preserves normal forms\<close> |
41404 | 718 |
|
56009 | 719 |
lemma polysub[simp]: "Ipoly bs (polysub p q) = Ipoly bs p - Ipoly bs q" |
52658 | 720 |
by (simp add: polysub_def) |
56009 | 721 |
|
722 |
lemma polysub_normh: "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> isnpolyh (polysub p q) (min n0 n1)" |
|
52658 | 723 |
by (simp add: polysub_def polyneg_normh polyadd_normh) |
33154 | 724 |
|
56009 | 725 |
lemma polysub_norm: "isnpoly p \<Longrightarrow> isnpoly q \<Longrightarrow> isnpoly (polysub p q)" |
52803 | 726 |
using polyadd_norm polyneg_norm by (simp add: polysub_def) |
56009 | 727 |
|
52658 | 728 |
lemma polysub_same_0[simp]: |
68442 | 729 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
41814 | 730 |
shows "isnpolyh p n0 \<Longrightarrow> polysub p p = 0\<^sub>p" |
52658 | 731 |
unfolding polysub_def split_def fst_conv snd_conv |
732 |
by (induct p arbitrary: n0) (auto simp add: Let_def Nsub0[simplified Nsub_def]) |
|
33154 | 733 |
|
52803 | 734 |
lemma polysub_0: |
68442 | 735 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
56009 | 736 |
shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> p -\<^sub>p q = 0\<^sub>p \<longleftrightarrow> p = q" |
33154 | 737 |
unfolding polysub_def split_def fst_conv snd_conv |
41763 | 738 |
by (induct p q arbitrary: n0 n1 rule:polyadd.induct) |
52658 | 739 |
(auto simp: Nsub0[simplified Nsub_def] Let_def) |
33154 | 740 |
|
60698 | 741 |
text \<open>polypow is a power function and preserves normal forms\<close> |
41404 | 742 |
|
68442 | 743 |
lemma polypow[simp]: "Ipoly bs (polypow n p) = (Ipoly bs p :: 'a::field_char_0) ^ n" |
52658 | 744 |
proof (induct n rule: polypow.induct) |
745 |
case 1 |
|
67123 | 746 |
then show ?case by simp |
33154 | 747 |
next |
748 |
case (2 n) |
|
749 |
let ?q = "polypow ((Suc n) div 2) p" |
|
41813 | 750 |
let ?d = "polymul ?q ?q" |
67123 | 751 |
consider "odd (Suc n)" | "even (Suc n)" by auto |
752 |
then show ?case |
|
753 |
proof cases |
|
754 |
case odd: 1 |
|
755 |
have *: "(Suc (Suc (Suc 0) * (Suc n div Suc (Suc 0)))) = Suc n div 2 + Suc n div 2 + 1" |
|
52658 | 756 |
by arith |
56043 | 757 |
from odd have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs (polymul p ?d)" |
758 |
by (simp add: Let_def) |
|
759 |
also have "\<dots> = (Ipoly bs p) * (Ipoly bs p)^(Suc n div 2) * (Ipoly bs p)^(Suc n div 2)" |
|
33154 | 760 |
using "2.hyps" by simp |
761 |
also have "\<dots> = (Ipoly bs p) ^ (Suc n div 2 + Suc n div 2 + 1)" |
|
52658 | 762 |
by (simp only: power_add power_one_right) simp |
56000 | 763 |
also have "\<dots> = (Ipoly bs p) ^ (Suc (Suc (Suc 0) * (Suc n div Suc (Suc 0))))" |
67123 | 764 |
by (simp only: *) |
765 |
finally show ?thesis |
|
766 |
unfolding numeral_2_eq_2 [symmetric] |
|
767 |
using odd_two_times_div_two_nat [OF odd] by simp |
|
768 |
next |
|
769 |
case even: 2 |
|
56043 | 770 |
from even have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs ?d" |
771 |
by (simp add: Let_def) |
|
58710
7216a10d69ba
augmented and tuned facts on even/odd and division
haftmann
parents:
58310
diff
changeset
|
772 |
also have "\<dots> = (Ipoly bs p) ^ (2 * (Suc n div 2))" |
7216a10d69ba
augmented and tuned facts on even/odd and division
haftmann
parents:
58310
diff
changeset
|
773 |
using "2.hyps" by (simp only: mult_2 power_add) simp |
67123 | 774 |
finally show ?thesis |
775 |
using even_two_times_div_two [OF even] by simp |
|
776 |
qed |
|
33154 | 777 |
qed |
778 |
||
52803 | 779 |
lemma polypow_normh: |
68442 | 780 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
33154 | 781 |
shows "isnpolyh p n \<Longrightarrow> isnpolyh (polypow k p) n" |
782 |
proof (induct k arbitrary: n rule: polypow.induct) |
|
56043 | 783 |
case 1 |
784 |
then show ?case by auto |
|
785 |
next |
|
33154 | 786 |
case (2 k n) |
787 |
let ?q = "polypow (Suc k div 2) p" |
|
41813 | 788 |
let ?d = "polymul ?q ?q" |
67123 | 789 |
from 2 have *: "isnpolyh ?q n" and **: "isnpolyh p n" |
56043 | 790 |
by blast+ |
67123 | 791 |
from polymul_normh[OF * *] have dn: "isnpolyh ?d n" |
56043 | 792 |
by simp |
67123 | 793 |
from polymul_normh[OF ** dn] have on: "isnpolyh (polymul p ?d) n" |
56043 | 794 |
by simp |
58710
7216a10d69ba
augmented and tuned facts on even/odd and division
haftmann
parents:
58310
diff
changeset
|
795 |
from dn on show ?case by (simp, unfold Let_def) auto |
56043 | 796 |
qed |
33154 | 797 |
|
52803 | 798 |
lemma polypow_norm: |
68442 | 799 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
33154 | 800 |
shows "isnpoly p \<Longrightarrow> isnpoly (polypow k p)" |
801 |
by (simp add: polypow_normh isnpoly_def) |
|
802 |
||
60698 | 803 |
text \<open>Finally the whole normalization\<close> |
33154 | 804 |
|
68442 | 805 |
lemma polynate [simp]: "Ipoly bs (polynate p) = (Ipoly bs p :: 'a ::field_char_0)" |
52658 | 806 |
by (induct p rule:polynate.induct) auto |
33154 | 807 |
|
52803 | 808 |
lemma polynate_norm[simp]: |
68442 | 809 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
33154 | 810 |
shows "isnpoly (polynate p)" |
52658 | 811 |
by (induct p rule: polynate.induct) |
812 |
(simp_all add: polyadd_norm polymul_norm polysub_norm polyneg_norm polypow_norm, |
|
813 |
simp_all add: isnpoly_def) |
|
33154 | 814 |
|
60698 | 815 |
text \<open>shift1\<close> |
33154 | 816 |
|
817 |
lemma shift1: "Ipoly bs (shift1 p) = Ipoly bs (Mul (Bound 0) p)" |
|
52658 | 818 |
by (simp add: shift1_def) |
33154 | 819 |
|
52803 | 820 |
lemma shift1_isnpoly: |
56207 | 821 |
assumes "isnpoly p" |
822 |
and "p \<noteq> 0\<^sub>p" |
|
52658 | 823 |
shows "isnpoly (shift1 p) " |
56207 | 824 |
using assms by (simp add: shift1_def isnpoly_def) |
33154 | 825 |
|
826 |
lemma shift1_nz[simp]:"shift1 p \<noteq> 0\<^sub>p" |
|
827 |
by (simp add: shift1_def) |
|
56043 | 828 |
|
829 |
lemma funpow_shift1_isnpoly: "isnpoly p \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> isnpoly (funpow n shift1 p)" |
|
39246 | 830 |
by (induct n arbitrary: p) (auto simp add: shift1_isnpoly funpow_swap1) |
33154 | 831 |
|
52803 | 832 |
lemma funpow_isnpolyh: |
56207 | 833 |
assumes "\<And>p. isnpolyh p n \<Longrightarrow> isnpolyh (f p) n" |
834 |
and "isnpolyh p n" |
|
33154 | 835 |
shows "isnpolyh (funpow k f p) n" |
56207 | 836 |
using assms by (induct k arbitrary: p) auto |
33154 | 837 |
|
52658 | 838 |
lemma funpow_shift1: |
68442 | 839 |
"(Ipoly bs (funpow n shift1 p) :: 'a :: field_char_0) = |
52658 | 840 |
Ipoly bs (Mul (Pw (Bound 0) n) p)" |
841 |
by (induct n arbitrary: p) (simp_all add: shift1_isnpoly shift1) |
|
33154 | 842 |
|
56043 | 843 |
lemma shift1_isnpolyh: "isnpolyh p n0 \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> isnpolyh (shift1 p) 0" |
33154 | 844 |
using isnpolyh_mono[where n="n0" and n'="0" and p="p"] by (simp add: shift1_def) |
845 |
||
52803 | 846 |
lemma funpow_shift1_1: |
68442 | 847 |
"(Ipoly bs (funpow n shift1 p) :: 'a :: field_char_0) = |
52658 | 848 |
Ipoly bs (funpow n shift1 (1)\<^sub>p *\<^sub>p p)" |
33154 | 849 |
by (simp add: funpow_shift1) |
850 |
||
851 |
lemma poly_cmul[simp]: "Ipoly bs (poly_cmul c p) = Ipoly bs (Mul (C c) p)" |
|
45129
1fce03e3e8ad
tuned proofs -- eliminated vacuous "induct arbitrary: ..." situations;
wenzelm
parents:
41842
diff
changeset
|
852 |
by (induct p rule: poly_cmul.induct) (auto simp add: field_simps) |
33154 | 853 |
|
854 |
lemma behead: |
|
56207 | 855 |
assumes "isnpolyh p n" |
52658 | 856 |
shows "Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) = |
68442 | 857 |
(Ipoly bs p :: 'a :: field_char_0)" |
56207 | 858 |
using assms |
33154 | 859 |
proof (induct p arbitrary: n rule: behead.induct) |
56009 | 860 |
case (1 c p n) |
861 |
then have pn: "isnpolyh p n" by simp |
|
52803 | 862 |
from 1(1)[OF pn] |
863 |
have th:"Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) = Ipoly bs p" . |
|
52658 | 864 |
then show ?case using "1.hyps" |
865 |
apply (simp add: Let_def,cases "behead p = 0\<^sub>p") |
|
866 |
apply (simp_all add: th[symmetric] field_simps) |
|
867 |
done |
|
33154 | 868 |
qed (auto simp add: Let_def) |
869 |
||
870 |
lemma behead_isnpolyh: |
|
56207 | 871 |
assumes "isnpolyh p n" |
52658 | 872 |
shows "isnpolyh (behead p) n" |
56207 | 873 |
using assms by (induct p rule: behead.induct) (auto simp add: Let_def isnpolyh_mono) |
52658 | 874 |
|
33154 | 875 |
|
60533 | 876 |
subsection \<open>Miscellaneous lemmas about indexes, decrementation, substitution etc ...\<close> |
52658 | 877 |
|
33154 | 878 |
lemma isnpolyh_polybound0: "isnpolyh p (Suc n) \<Longrightarrow> polybound0 p" |
61166
5976fe402824
renamed method "goals" to "goal_cases" to emphasize its meaning;
wenzelm
parents:
60698
diff
changeset
|
879 |
proof (induct p arbitrary: n rule: poly.induct, auto, goal_cases) |
60580 | 880 |
case prems: (1 c n p n') |
56009 | 881 |
then have "n = Suc (n - 1)" |
882 |
by simp |
|
883 |
then have "isnpolyh p (Suc (n - 1))" |
|
60533 | 884 |
using \<open>isnpolyh p n\<close> by simp |
60580 | 885 |
with prems(2) show ?case |
56009 | 886 |
by simp |
33154 | 887 |
qed |
888 |
||
889 |
lemma isconstant_polybound0: "isnpolyh p n0 \<Longrightarrow> isconstant p \<longleftrightarrow> polybound0 p" |
|
52658 | 890 |
by (induct p arbitrary: n0 rule: isconstant.induct) (auto simp add: isnpolyh_polybound0) |
33154 | 891 |
|
52658 | 892 |
lemma decrpoly_zero[simp]: "decrpoly p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" |
893 |
by (induct p) auto |
|
33154 | 894 |
|
895 |
lemma decrpoly_normh: "isnpolyh p n0 \<Longrightarrow> polybound0 p \<Longrightarrow> isnpolyh (decrpoly p) (n0 - 1)" |
|
52658 | 896 |
apply (induct p arbitrary: n0) |
67123 | 897 |
apply auto |
56043 | 898 |
apply atomize |
58259 | 899 |
apply (rename_tac nat a b, erule_tac x = "Suc nat" in allE) |
33154 | 900 |
apply auto |
901 |
done |
|
902 |
||
903 |
lemma head_polybound0: "isnpolyh p n0 \<Longrightarrow> polybound0 (head p)" |
|
52658 | 904 |
by (induct p arbitrary: n0 rule: head.induct) (auto intro: isnpolyh_polybound0) |
33154 | 905 |
|
906 |
lemma polybound0_I: |
|
56207 | 907 |
assumes "polybound0 a" |
56009 | 908 |
shows "Ipoly (b # bs) a = Ipoly (b' # bs) a" |
56207 | 909 |
using assms by (induct a rule: poly.induct) auto |
52658 | 910 |
|
56009 | 911 |
lemma polysubst0_I: "Ipoly (b # bs) (polysubst0 a t) = Ipoly ((Ipoly (b # bs) a) # bs) t" |
33154 | 912 |
by (induct t) simp_all |
913 |
||
914 |
lemma polysubst0_I': |
|
56207 | 915 |
assumes "polybound0 a" |
56009 | 916 |
shows "Ipoly (b # bs) (polysubst0 a t) = Ipoly ((Ipoly (b' # bs) a) # bs) t" |
56207 | 917 |
by (induct t) (simp_all add: polybound0_I[OF assms, where b="b" and b'="b'"]) |
33154 | 918 |
|
52658 | 919 |
lemma decrpoly: |
56207 | 920 |
assumes "polybound0 t" |
56043 | 921 |
shows "Ipoly (x # bs) t = Ipoly bs (decrpoly t)" |
56207 | 922 |
using assms by (induct t rule: decrpoly.induct) simp_all |
33154 | 923 |
|
52658 | 924 |
lemma polysubst0_polybound0: |
56207 | 925 |
assumes "polybound0 t" |
33154 | 926 |
shows "polybound0 (polysubst0 t a)" |
56207 | 927 |
using assms by (induct a rule: poly.induct) auto |
33154 | 928 |
|
929 |
lemma degree0_polybound0: "isnpolyh p n \<Longrightarrow> degree p = 0 \<Longrightarrow> polybound0 p" |
|
52658 | 930 |
by (induct p arbitrary: n rule: degree.induct) (auto simp add: isnpolyh_polybound0) |
33154 | 931 |
|
56043 | 932 |
primrec maxindex :: "poly \<Rightarrow> nat" |
67123 | 933 |
where |
934 |
"maxindex (Bound n) = n + 1" |
|
935 |
| "maxindex (CN c n p) = max (n + 1) (max (maxindex c) (maxindex p))" |
|
936 |
| "maxindex (Add p q) = max (maxindex p) (maxindex q)" |
|
937 |
| "maxindex (Sub p q) = max (maxindex p) (maxindex q)" |
|
938 |
| "maxindex (Mul p q) = max (maxindex p) (maxindex q)" |
|
939 |
| "maxindex (Neg p) = maxindex p" |
|
940 |
| "maxindex (Pw p n) = maxindex p" |
|
941 |
| "maxindex (C x) = 0" |
|
33154 | 942 |
|
52658 | 943 |
definition wf_bs :: "'a list \<Rightarrow> poly \<Rightarrow> bool" |
56000 | 944 |
where "wf_bs bs p \<longleftrightarrow> length bs \<ge> maxindex p" |
33154 | 945 |
|
56043 | 946 |
lemma wf_bs_coefficients: "wf_bs bs p \<Longrightarrow> \<forall>c \<in> set (coefficients p). wf_bs bs c" |
52658 | 947 |
proof (induct p rule: coefficients.induct) |
52803 | 948 |
case (1 c p) |
949 |
show ?case |
|
33154 | 950 |
proof |
56009 | 951 |
fix x |
67123 | 952 |
assume "x \<in> set (coefficients (CN c 0 p))" |
953 |
then consider "x = c" | "x \<in> set (coefficients p)" |
|
954 |
by auto |
|
955 |
then show "wf_bs bs x" |
|
956 |
proof cases |
|
957 |
case prems: 1 |
|
958 |
then show ?thesis |
|
959 |
using "1.prems" by (simp add: wf_bs_def) |
|
960 |
next |
|
961 |
case prems: 2 |
|
56009 | 962 |
from "1.prems" have "wf_bs bs p" |
67123 | 963 |
by (simp add: wf_bs_def) |
964 |
with "1.hyps" prems show ?thesis |
|
56009 | 965 |
by blast |
67123 | 966 |
qed |
33154 | 967 |
qed |
968 |
qed simp_all |
|
969 |
||
56043 | 970 |
lemma maxindex_coefficients: "\<forall>c \<in> set (coefficients p). maxindex c \<le> maxindex p" |
52658 | 971 |
by (induct p rule: coefficients.induct) auto |
33154 | 972 |
|
56000 | 973 |
lemma wf_bs_I: "wf_bs bs p \<Longrightarrow> Ipoly (bs @ bs') p = Ipoly bs p" |
67123 | 974 |
by (induct p) (auto simp add: nth_append wf_bs_def) |
33154 | 975 |
|
52658 | 976 |
lemma take_maxindex_wf: |
52803 | 977 |
assumes wf: "wf_bs bs p" |
33154 | 978 |
shows "Ipoly (take (maxindex p) bs) p = Ipoly bs p" |
56009 | 979 |
proof - |
33154 | 980 |
let ?ip = "maxindex p" |
981 |
let ?tbs = "take ?ip bs" |
|
56009 | 982 |
from wf have "length ?tbs = ?ip" |
983 |
unfolding wf_bs_def by simp |
|
984 |
then have wf': "wf_bs ?tbs p" |
|
985 |
unfolding wf_bs_def by simp |
|
56043 | 986 |
have eq: "bs = ?tbs @ drop ?ip bs" |
56009 | 987 |
by simp |
988 |
from wf_bs_I[OF wf', of "drop ?ip bs"] show ?thesis |
|
989 |
using eq by simp |
|
33154 | 990 |
qed |
991 |
||
992 |
lemma decr_maxindex: "polybound0 p \<Longrightarrow> maxindex (decrpoly p) = maxindex p - 1" |
|
52658 | 993 |
by (induct p) auto |
33154 | 994 |
|
995 |
lemma wf_bs_insensitive: "length bs = length bs' \<Longrightarrow> wf_bs bs p = wf_bs bs' p" |
|
67123 | 996 |
by (simp add: wf_bs_def) |
33154 | 997 |
|
56207 | 998 |
lemma wf_bs_insensitive': "wf_bs (x # bs) p = wf_bs (y # bs) p" |
67123 | 999 |
by (simp add: wf_bs_def) |
33154 | 1000 |
|
56207 | 1001 |
lemma wf_bs_coefficients': "\<forall>c \<in> set (coefficients p). wf_bs bs c \<Longrightarrow> wf_bs (x # bs) p" |
52658 | 1002 |
by (induct p rule: coefficients.induct) (auto simp add: wf_bs_def) |
56043 | 1003 |
|
33154 | 1004 |
lemma coefficients_Nil[simp]: "coefficients p \<noteq> []" |
52658 | 1005 |
by (induct p rule: coefficients.induct) simp_all |
33154 | 1006 |
|
1007 |
lemma coefficients_head: "last (coefficients p) = head p" |
|
52658 | 1008 |
by (induct p rule: coefficients.induct) auto |
33154 | 1009 |
|
56207 | 1010 |
lemma wf_bs_decrpoly: "wf_bs bs (decrpoly p) \<Longrightarrow> wf_bs (x # bs) p" |
52658 | 1011 |
unfolding wf_bs_def by (induct p rule: decrpoly.induct) auto |
33154 | 1012 |
|
56043 | 1013 |
lemma length_le_list_ex: "length xs \<le> n \<Longrightarrow> \<exists>ys. length (xs @ ys) = n" |
67123 | 1014 |
by (rule exI[where x="replicate (n - length xs) z" for z]) simp |
52658 | 1015 |
|
56043 | 1016 |
lemma isnpolyh_Suc_const: "isnpolyh p (Suc n) \<Longrightarrow> isconstant p" |
52658 | 1017 |
apply (cases p) |
67123 | 1018 |
apply auto |
58259 | 1019 |
apply (rename_tac nat a, case_tac "nat") |
67123 | 1020 |
apply simp_all |
52658 | 1021 |
done |
33154 | 1022 |
|
1023 |
lemma wf_bs_polyadd: "wf_bs bs p \<and> wf_bs bs q \<longrightarrow> wf_bs bs (p +\<^sub>p q)" |
|
67123 | 1024 |
by (induct p q rule: polyadd.induct) (auto simp add: Let_def wf_bs_def) |
33154 | 1025 |
|
1026 |
lemma wf_bs_polyul: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p *\<^sub>p q)" |
|
52803 | 1027 |
apply (induct p q arbitrary: bs rule: polymul.induct) |
67123 | 1028 |
apply (simp_all add: wf_bs_polyadd wf_bs_def) |
33154 | 1029 |
apply clarsimp |
1030 |
apply (rule wf_bs_polyadd[unfolded wf_bs_def, rule_format]) |
|
1031 |
apply auto |
|
1032 |
done |
|
1033 |
||
1034 |
lemma wf_bs_polyneg: "wf_bs bs p \<Longrightarrow> wf_bs bs (~\<^sub>p p)" |
|
67123 | 1035 |
by (induct p rule: polyneg.induct) (auto simp: wf_bs_def) |
33154 | 1036 |
|
1037 |
lemma wf_bs_polysub: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p -\<^sub>p q)" |
|
56043 | 1038 |
unfolding polysub_def split_def fst_conv snd_conv |
1039 |
using wf_bs_polyadd wf_bs_polyneg by blast |
|
33154 | 1040 |
|
52658 | 1041 |
|
60533 | 1042 |
subsection \<open>Canonicity of polynomial representation, see lemma isnpolyh_unique\<close> |
33154 | 1043 |
|
1044 |
definition "polypoly bs p = map (Ipoly bs) (coefficients p)" |
|
56043 | 1045 |
definition "polypoly' bs p = map (Ipoly bs \<circ> decrpoly) (coefficients p)" |
1046 |
definition "poly_nate bs p = map (Ipoly bs \<circ> decrpoly) (coefficients (polynate p))" |
|
33154 | 1047 |
|
56043 | 1048 |
lemma coefficients_normh: "isnpolyh p n0 \<Longrightarrow> \<forall>q \<in> set (coefficients p). isnpolyh q n0" |
33154 | 1049 |
proof (induct p arbitrary: n0 rule: coefficients.induct) |
1050 |
case (1 c p n0) |
|
56009 | 1051 |
have cp: "isnpolyh (CN c 0 p) n0" |
1052 |
by fact |
|
1053 |
then have norm: "isnpolyh c 0" "isnpolyh p 0" "p \<noteq> 0\<^sub>p" "n0 = 0" |
|
33154 | 1054 |
by (auto simp add: isnpolyh_mono[where n'=0]) |
56009 | 1055 |
from "1.hyps"[OF norm(2)] norm(1) norm(4) show ?case |
1056 |
by simp |
|
33154 | 1057 |
qed auto |
1058 |
||
56043 | 1059 |
lemma coefficients_isconst: "isnpolyh p n \<Longrightarrow> \<forall>q \<in> set (coefficients p). isconstant q" |
1060 |
by (induct p arbitrary: n rule: coefficients.induct) (auto simp add: isnpolyh_Suc_const) |
|
33154 | 1061 |
|
1062 |
lemma polypoly_polypoly': |
|
1063 |
assumes np: "isnpolyh p n0" |
|
56043 | 1064 |
shows "polypoly (x # bs) p = polypoly' bs p" |
1065 |
proof - |
|
33154 | 1066 |
let ?cf = "set (coefficients p)" |
1067 |
from coefficients_normh[OF np] have cn_norm: "\<forall> q\<in> ?cf. isnpolyh q n0" . |
|
67123 | 1068 |
have "polybound0 q" if "q \<in> ?cf" for q |
1069 |
proof - |
|
1070 |
from that cn_norm have *: "isnpolyh q n0" |
|
56043 | 1071 |
by blast |
67123 | 1072 |
from coefficients_isconst[OF np] that have "isconstant q" |
56043 | 1073 |
by blast |
67123 | 1074 |
with isconstant_polybound0[OF *] show ?thesis |
56043 | 1075 |
by blast |
67123 | 1076 |
qed |
56009 | 1077 |
then have "\<forall>q \<in> ?cf. polybound0 q" .. |
56043 | 1078 |
then have "\<forall>q \<in> ?cf. Ipoly (x # bs) q = Ipoly bs (decrpoly q)" |
33154 | 1079 |
using polybound0_I[where b=x and bs=bs and b'=y] decrpoly[where x=x and bs=bs] |
1080 |
by auto |
|
56043 | 1081 |
then show ?thesis |
1082 |
unfolding polypoly_def polypoly'_def by simp |
|
33154 | 1083 |
qed |
1084 |
||
1085 |
lemma polypoly_poly: |
|
56043 | 1086 |
assumes "isnpolyh p n0" |
1087 |
shows "Ipoly (x # bs) p = poly (polypoly (x # bs) p) x" |
|
1088 |
using assms |
|
52658 | 1089 |
by (induct p arbitrary: n0 bs rule: coefficients.induct) (auto simp add: polypoly_def) |
33154 | 1090 |
|
52803 | 1091 |
lemma polypoly'_poly: |
56043 | 1092 |
assumes "isnpolyh p n0" |
52658 | 1093 |
shows "\<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup> = poly (polypoly' bs p) x" |
56043 | 1094 |
using polypoly_poly[OF assms, simplified polypoly_polypoly'[OF assms]] . |
33154 | 1095 |
|
1096 |
||
1097 |
lemma polypoly_poly_polybound0: |
|
56043 | 1098 |
assumes "isnpolyh p n0" |
1099 |
and "polybound0 p" |
|
33154 | 1100 |
shows "polypoly bs p = [Ipoly bs p]" |
56043 | 1101 |
using assms |
1102 |
unfolding polypoly_def |
|
52658 | 1103 |
apply (cases p) |
67123 | 1104 |
apply auto |
58259 | 1105 |
apply (rename_tac nat a, case_tac nat) |
67123 | 1106 |
apply auto |
52658 | 1107 |
done |
33154 | 1108 |
|
52803 | 1109 |
lemma head_isnpolyh: "isnpolyh p n0 \<Longrightarrow> isnpolyh (head p) n0" |
52658 | 1110 |
by (induct p rule: head.induct) auto |
33154 | 1111 |
|
56043 | 1112 |
lemma headn_nz[simp]: "isnpolyh p n0 \<Longrightarrow> headn p m = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" |
52658 | 1113 |
by (cases p) auto |
33154 | 1114 |
|
1115 |
lemma head_eq_headn0: "head p = headn p 0" |
|
52658 | 1116 |
by (induct p rule: head.induct) simp_all |
33154 | 1117 |
|
56043 | 1118 |
lemma head_nz[simp]: "isnpolyh p n0 \<Longrightarrow> head p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" |
33154 | 1119 |
by (simp add: head_eq_headn0) |
1120 |
||
52803 | 1121 |
lemma isnpolyh_zero_iff: |
52658 | 1122 |
assumes nq: "isnpolyh p n0" |
68442 | 1123 |
and eq :"\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a::{field_char_0, power})" |
33154 | 1124 |
shows "p = 0\<^sub>p" |
52658 | 1125 |
using nq eq |
34915 | 1126 |
proof (induct "maxindex p" arbitrary: p n0 rule: less_induct) |
1127 |
case less |
|
60533 | 1128 |
note np = \<open>isnpolyh p n0\<close> and zp = \<open>\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)\<close> |
67123 | 1129 |
show "p = 0\<^sub>p" |
1130 |
proof (cases "maxindex p = 0") |
|
1131 |
case True |
|
1132 |
with np obtain c where "p = C c" by (cases p) auto |
|
1133 |
with zp np show ?thesis by (simp add: wf_bs_def) |
|
1134 |
next |
|
1135 |
case nz: False |
|
33154 | 1136 |
let ?h = "head p" |
1137 |
let ?hd = "decrpoly ?h" |
|
1138 |
let ?ihd = "maxindex ?hd" |
|
56000 | 1139 |
from head_isnpolyh[OF np] head_polybound0[OF np] |
1140 |
have h: "isnpolyh ?h n0" "polybound0 ?h" |
|
33154 | 1141 |
by simp_all |
56000 | 1142 |
then have nhd: "isnpolyh ?hd (n0 - 1)" |
1143 |
using decrpoly_normh by blast |
|
52803 | 1144 |
|
33154 | 1145 |
from maxindex_coefficients[of p] coefficients_head[of p, symmetric] |
56000 | 1146 |
have mihn: "maxindex ?h \<le> maxindex p" |
1147 |
by auto |
|
1148 |
with decr_maxindex[OF h(2)] nz have ihd_lt_n: "?ihd < maxindex p" |
|
1149 |
by auto |
|
67123 | 1150 |
|
1151 |
have "\<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0" if bs: "wf_bs bs ?hd" for bs :: "'a list" |
|
1152 |
proof - |
|
33154 | 1153 |
let ?ts = "take ?ihd bs" |
1154 |
let ?rs = "drop ?ihd bs" |
|
67123 | 1155 |
from bs have ts: "wf_bs ?ts ?hd" |
1156 |
by (simp add: wf_bs_def) |
|
56000 | 1157 |
have bs_ts_eq: "?ts @ ?rs = bs" |
1158 |
by simp |
|
1159 |
from wf_bs_decrpoly[OF ts] have tsh: " \<forall>x. wf_bs (x # ?ts) ?h" |
|
1160 |
by simp |
|
1161 |
from ihd_lt_n have "\<forall>x. length (x # ?ts) \<le> maxindex p" |
|
1162 |
by simp |
|
1163 |
with length_le_list_ex obtain xs where xs: "length ((x # ?ts) @ xs) = maxindex p" |
|
1164 |
by blast |
|
1165 |
then have "\<forall>x. wf_bs ((x # ?ts) @ xs) p" |
|
67123 | 1166 |
by (simp add: wf_bs_def) |
56000 | 1167 |
with zp have "\<forall>x. Ipoly ((x # ?ts) @ xs) p = 0" |
1168 |
by blast |
|
1169 |
then have "\<forall>x. Ipoly (x # (?ts @ xs)) p = 0" |
|
1170 |
by simp |
|
33154 | 1171 |
with polypoly_poly[OF np, where ?'a = 'a] polypoly_polypoly'[OF np, where ?'a = 'a] |
56000 | 1172 |
have "\<forall>x. poly (polypoly' (?ts @ xs) p) x = poly [] x" |
1173 |
by simp |
|
1174 |
then have "poly (polypoly' (?ts @ xs) p) = poly []" |
|
1175 |
by auto |
|
1176 |
then have "\<forall>c \<in> set (coefficients p). Ipoly (?ts @ xs) (decrpoly c) = 0" |
|
60537 | 1177 |
using poly_zero[where ?'a='a] by (simp add: polypoly'_def) |
33154 | 1178 |
with coefficients_head[of p, symmetric] |
67123 | 1179 |
have *: "Ipoly (?ts @ xs) ?hd = 0" |
56000 | 1180 |
by simp |
1181 |
from bs have wf'': "wf_bs ?ts ?hd" |
|
67123 | 1182 |
by (simp add: wf_bs_def) |
1183 |
with * wf_bs_I[of ?ts ?hd xs] have "Ipoly ?ts ?hd = 0" |
|
56000 | 1184 |
by simp |
67123 | 1185 |
with wf'' wf_bs_I[of ?ts ?hd ?rs] bs_ts_eq show ?thesis |
56000 | 1186 |
by simp |
67123 | 1187 |
qed |
56000 | 1188 |
then have hdz: "\<forall>bs. wf_bs bs ?hd \<longrightarrow> \<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)" |
1189 |
by blast |
|
1190 |
from less(1)[OF ihd_lt_n nhd] hdz have "?hd = 0\<^sub>p" |
|
1191 |
by blast |
|
1192 |
then have "?h = 0\<^sub>p" by simp |
|
67123 | 1193 |
with head_nz[OF np] show ?thesis by simp |
1194 |
qed |
|
33154 | 1195 |
qed |
1196 |
||
52803 | 1197 |
lemma isnpolyh_unique: |
56000 | 1198 |
assumes np: "isnpolyh p n0" |
52658 | 1199 |
and nq: "isnpolyh q n1" |
68442 | 1200 |
shows "(\<forall>bs. \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (\<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup> :: 'a::{field_char_0,power})) \<longleftrightarrow> p = q" |
56000 | 1201 |
proof auto |
67123 | 1202 |
assume "\<forall>bs. (\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> ::'a) = \<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup>" |
56000 | 1203 |
then have "\<forall>bs.\<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup>= (0::'a)" |
1204 |
by simp |
|
1205 |
then have "\<forall>bs. wf_bs bs (p -\<^sub>p q) \<longrightarrow> \<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)" |
|
33154 | 1206 |
using wf_bs_polysub[where p=p and q=q] by auto |
56000 | 1207 |
with isnpolyh_zero_iff[OF polysub_normh[OF np nq]] polysub_0[OF np nq] show "p = q" |
1208 |
by blast |
|
33154 | 1209 |
qed |
1210 |
||
1211 |
||
67123 | 1212 |
text \<open>Consequences of unicity on the algorithms for polynomial normalization.\<close> |
33154 | 1213 |
|
52658 | 1214 |
lemma polyadd_commute: |
68442 | 1215 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
52658 | 1216 |
and np: "isnpolyh p n0" |
1217 |
and nq: "isnpolyh q n1" |
|
1218 |
shows "p +\<^sub>p q = q +\<^sub>p p" |
|
56000 | 1219 |
using isnpolyh_unique[OF polyadd_normh[OF np nq] polyadd_normh[OF nq np]] |
1220 |
by simp |
|
33154 | 1221 |
|
56000 | 1222 |
lemma zero_normh: "isnpolyh 0\<^sub>p n" |
1223 |
by simp |
|
1224 |
||
1225 |
lemma one_normh: "isnpolyh (1)\<^sub>p n" |
|
1226 |
by simp |
|
52658 | 1227 |
|
52803 | 1228 |
lemma polyadd_0[simp]: |
68442 | 1229 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
52658 | 1230 |
and np: "isnpolyh p n0" |
56000 | 1231 |
shows "p +\<^sub>p 0\<^sub>p = p" |
1232 |
and "0\<^sub>p +\<^sub>p p = p" |
|
52803 | 1233 |
using isnpolyh_unique[OF polyadd_normh[OF np zero_normh] np] |
33154 | 1234 |
isnpolyh_unique[OF polyadd_normh[OF zero_normh np] np] by simp_all |
1235 |
||
52803 | 1236 |
lemma polymul_1[simp]: |
68442 | 1237 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
52658 | 1238 |
and np: "isnpolyh p n0" |
56000 | 1239 |
shows "p *\<^sub>p (1)\<^sub>p = p" |
1240 |
and "(1)\<^sub>p *\<^sub>p p = p" |
|
52803 | 1241 |
using isnpolyh_unique[OF polymul_normh[OF np one_normh] np] |
33154 | 1242 |
isnpolyh_unique[OF polymul_normh[OF one_normh np] np] by simp_all |
52658 | 1243 |
|
52803 | 1244 |
lemma polymul_0[simp]: |
68442 | 1245 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
52658 | 1246 |
and np: "isnpolyh p n0" |
56000 | 1247 |
shows "p *\<^sub>p 0\<^sub>p = 0\<^sub>p" |
1248 |
and "0\<^sub>p *\<^sub>p p = 0\<^sub>p" |
|
52803 | 1249 |
using isnpolyh_unique[OF polymul_normh[OF np zero_normh] zero_normh] |
33154 | 1250 |
isnpolyh_unique[OF polymul_normh[OF zero_normh np] zero_normh] by simp_all |
1251 |
||
52803 | 1252 |
lemma polymul_commute: |
68442 | 1253 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
56000 | 1254 |
and np: "isnpolyh p n0" |
52658 | 1255 |
and nq: "isnpolyh q n1" |
33154 | 1256 |
shows "p *\<^sub>p q = q *\<^sub>p p" |
56043 | 1257 |
using isnpolyh_unique[OF polymul_normh[OF np nq] polymul_normh[OF nq np], |
68442 | 1258 |
where ?'a = "'a::{field_char_0, power}"] |
52658 | 1259 |
by simp |
33154 | 1260 |
|
52658 | 1261 |
declare polyneg_polyneg [simp] |
52803 | 1262 |
|
1263 |
lemma isnpolyh_polynate_id [simp]: |
|
68442 | 1264 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
56000 | 1265 |
and np: "isnpolyh p n0" |
52658 | 1266 |
shows "polynate p = p" |
68442 | 1267 |
using isnpolyh_unique[where ?'a= "'a::field_char_0", |
56043 | 1268 |
OF polynate_norm[of p, unfolded isnpoly_def] np] |
68442 | 1269 |
polynate[where ?'a = "'a::field_char_0"] |
52658 | 1270 |
by simp |
33154 | 1271 |
|
52803 | 1272 |
lemma polynate_idempotent[simp]: |
68442 | 1273 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
33154 | 1274 |
shows "polynate (polynate p) = polynate p" |
1275 |
using isnpolyh_polynate_id[OF polynate_norm[of p, unfolded isnpoly_def]] . |
|
1276 |
||
1277 |
lemma poly_nate_polypoly': "poly_nate bs p = polypoly' bs (polynate p)" |
|
1278 |
unfolding poly_nate_def polypoly'_def .. |
|
52658 | 1279 |
|
1280 |
lemma poly_nate_poly: |
|
68442 | 1281 |
"poly (poly_nate bs p) = (\<lambda>x:: 'a ::field_char_0. \<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup>)" |
33154 | 1282 |
using polypoly'_poly[OF polynate_norm[unfolded isnpoly_def], symmetric, of bs p] |
52658 | 1283 |
unfolding poly_nate_polypoly' by auto |
1284 |
||
33154 | 1285 |
|
67123 | 1286 |
subsection \<open>Heads, degrees and all that\<close> |
52658 | 1287 |
|
33154 | 1288 |
lemma degree_eq_degreen0: "degree p = degreen p 0" |
52658 | 1289 |
by (induct p rule: degree.induct) simp_all |
33154 | 1290 |
|
52658 | 1291 |
lemma degree_polyneg: |
56043 | 1292 |
assumes "isnpolyh p n" |
33154 | 1293 |
shows "degree (polyneg p) = degree p" |
56043 | 1294 |
apply (induct p rule: polyneg.induct) |
1295 |
using assms |
|
67123 | 1296 |
apply simp_all |
52658 | 1297 |
apply (case_tac na) |
67123 | 1298 |
apply auto |
52658 | 1299 |
done |
33154 | 1300 |
|
1301 |
lemma degree_polyadd: |
|
56043 | 1302 |
assumes np: "isnpolyh p n0" |
1303 |
and nq: "isnpolyh q n1" |
|
33154 | 1304 |
shows "degree (p +\<^sub>p q) \<le> max (degree p) (degree q)" |
52658 | 1305 |
using degreen_polyadd[OF np nq, where m= "0"] degree_eq_degreen0 by simp |
33154 | 1306 |
|
1307 |
||
52658 | 1308 |
lemma degree_polysub: |
1309 |
assumes np: "isnpolyh p n0" |
|
1310 |
and nq: "isnpolyh q n1" |
|
33154 | 1311 |
shows "degree (p -\<^sub>p q) \<le> max (degree p) (degree q)" |
1312 |
proof- |
|
56043 | 1313 |
from nq have nq': "isnpolyh (~\<^sub>p q) n1" |
1314 |
using polyneg_normh by simp |
|
1315 |
from degree_polyadd[OF np nq'] show ?thesis |
|
1316 |
by (simp add: polysub_def degree_polyneg[OF nq]) |
|
33154 | 1317 |
qed |
1318 |
||
52803 | 1319 |
lemma degree_polysub_samehead: |
68442 | 1320 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
56043 | 1321 |
and np: "isnpolyh p n0" |
1322 |
and nq: "isnpolyh q n1" |
|
1323 |
and h: "head p = head q" |
|
52658 | 1324 |
and d: "degree p = degree q" |
33154 | 1325 |
shows "degree (p -\<^sub>p q) < degree p \<or> (p -\<^sub>p q = 0\<^sub>p)" |
52658 | 1326 |
unfolding polysub_def split_def fst_conv snd_conv |
1327 |
using np nq h d |
|
1328 |
proof (induct p q rule: polyadd.induct) |
|
1329 |
case (1 c c') |
|
56009 | 1330 |
then show ?case |
1331 |
by (simp add: Nsub_def Nsub0[simplified Nsub_def]) |
|
33154 | 1332 |
next |
52803 | 1333 |
case (2 c c' n' p') |
56009 | 1334 |
from 2 have "degree (C c) = degree (CN c' n' p')" |
1335 |
by simp |
|
1336 |
then have nz: "n' > 0" |
|
1337 |
by (cases n') auto |
|
1338 |
then have "head (CN c' n' p') = CN c' n' p'" |
|
1339 |
by (cases n') auto |
|
1340 |
with 2 show ?case |
|
1341 |
by simp |
|
33154 | 1342 |
next |
52803 | 1343 |
case (3 c n p c') |
56009 | 1344 |
then have "degree (C c') = degree (CN c n p)" |
1345 |
by simp |
|
1346 |
then have nz: "n > 0" |
|
1347 |
by (cases n) auto |
|
1348 |
then have "head (CN c n p) = CN c n p" |
|
1349 |
by (cases n) auto |
|
41807 | 1350 |
with 3 show ?case by simp |
33154 | 1351 |
next |
1352 |
case (4 c n p c' n' p') |
|
56009 | 1353 |
then have H: |
1354 |
"isnpolyh (CN c n p) n0" |
|
1355 |
"isnpolyh (CN c' n' p') n1" |
|
1356 |
"head (CN c n p) = head (CN c' n' p')" |
|
1357 |
"degree (CN c n p) = degree (CN c' n' p')" |
|
1358 |
by simp_all |
|
1359 |
then have degc: "degree c = 0" and degc': "degree c' = 0" |
|
1360 |
by simp_all |
|
1361 |
then have degnc: "degree (~\<^sub>p c) = 0" and degnc': "degree (~\<^sub>p c') = 0" |
|
33154 | 1362 |
using H(1-2) degree_polyneg by auto |
56009 | 1363 |
from H have cnh: "isnpolyh c (Suc n)" and c'nh: "isnpolyh c' (Suc n')" |
1364 |
by simp_all |
|
1365 |
from degree_polysub[OF cnh c'nh, simplified polysub_def] degc degc' |
|
1366 |
have degcmc': "degree (c +\<^sub>p ~\<^sub>pc') = 0" |
|
1367 |
by simp |
|
1368 |
from H have pnh: "isnpolyh p n" and p'nh: "isnpolyh p' n'" |
|
1369 |
by auto |
|
67123 | 1370 |
consider "n = n'" | "n < n'" | "n > n'" |
56009 | 1371 |
by arith |
67123 | 1372 |
then show ?case |
1373 |
proof cases |
|
1374 |
case nn': 1 |
|
1375 |
consider "n = 0" | "n > 0" by arith |
|
1376 |
then show ?thesis |
|
1377 |
proof cases |
|
1378 |
case 1 |
|
1379 |
with 4 nn' show ?thesis |
|
56009 | 1380 |
by (auto simp add: Let_def degcmc') |
67123 | 1381 |
next |
1382 |
case 2 |
|
1383 |
with nn' H(3) have "c = c'" and "p = p'" |
|
1384 |
by (cases n; auto)+ |
|
1385 |
with nn' 4 show ?thesis |
|
56009 | 1386 |
using polysub_same_0[OF p'nh, simplified polysub_def split_def fst_conv snd_conv] |
1387 |
using polysub_same_0[OF c'nh, simplified polysub_def] |
|
67123 | 1388 |
by (simp add: Let_def) |
1389 |
qed |
|
1390 |
next |
|
1391 |
case nn': 2 |
|
56009 | 1392 |
then have n'p: "n' > 0" |
1393 |
by simp |
|
1394 |
then have headcnp':"head (CN c' n' p') = CN c' n' p'" |
|
1395 |
by (cases n') simp_all |
|
67123 | 1396 |
with 4 nn' have degcnp': "degree (CN c' n' p') = 0" |
56009 | 1397 |
and degcnpeq: "degree (CN c n p) = degree (CN c' n' p')" |
67123 | 1398 |
by (cases n', simp_all) |
56009 | 1399 |
then have "n > 0" |
1400 |
by (cases n) simp_all |
|
1401 |
then have headcnp: "head (CN c n p) = CN c n p" |
|
1402 |
by (cases n) auto |
|
67123 | 1403 |
from H(3) headcnp headcnp' nn' show ?thesis |
56009 | 1404 |
by auto |
67123 | 1405 |
next |
1406 |
case nn': 3 |
|
56009 | 1407 |
then have np: "n > 0" by simp |
1408 |
then have headcnp:"head (CN c n p) = CN c n p" |
|
1409 |
by (cases n) simp_all |
|
1410 |
from 4 have degcnpeq: "degree (CN c' n' p') = degree (CN c n p)" |
|
1411 |
by simp |
|
1412 |
from np have degcnp: "degree (CN c n p) = 0" |
|
1413 |
by (cases n) simp_all |
|
1414 |
with degcnpeq have "n' > 0" |
|
1415 |
by (cases n') simp_all |
|
1416 |
then have headcnp': "head (CN c' n' p') = CN c' n' p'" |
|
1417 |
by (cases n') auto |
|
67123 | 1418 |
from H(3) headcnp headcnp' nn' show ?thesis by auto |
1419 |
qed |
|
41812 | 1420 |
qed auto |
52803 | 1421 |
|
33154 | 1422 |
lemma shift1_head : "isnpolyh p n0 \<Longrightarrow> head (shift1 p) = head p" |
52658 | 1423 |
by (induct p arbitrary: n0 rule: head.induct) (simp_all add: shift1_def) |
33154 | 1424 |
|
67123 | 1425 |
lemma funpow_shift1_head: "isnpolyh p n0 \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> head (funpow k shift1 p) = head p" |
52658 | 1426 |
proof (induct k arbitrary: n0 p) |
1427 |
case 0 |
|
56198 | 1428 |
then show ?case |
1429 |
by auto |
|
52658 | 1430 |
next |
1431 |
case (Suc k n0 p) |
|
56066 | 1432 |
then have "isnpolyh (shift1 p) 0" |
1433 |
by (simp add: shift1_isnpolyh) |
|
41807 | 1434 |
with Suc have "head (funpow k shift1 (shift1 p)) = head (shift1 p)" |
56066 | 1435 |
and "head (shift1 p) = head p" |
1436 |
by (simp_all add: shift1_head) |
|
1437 |
then show ?case |
|
1438 |
by (simp add: funpow_swap1) |
|
52658 | 1439 |
qed |
33154 | 1440 |
|
1441 |
lemma shift1_degree: "degree (shift1 p) = 1 + degree p" |
|
1442 |
by (simp add: shift1_def) |
|
56009 | 1443 |
|
33154 | 1444 |
lemma funpow_shift1_degree: "degree (funpow k shift1 p) = k + degree p " |
46991 | 1445 |
by (induct k arbitrary: p) (auto simp add: shift1_degree) |
33154 | 1446 |
|
1447 |
lemma funpow_shift1_nz: "p \<noteq> 0\<^sub>p \<Longrightarrow> funpow n shift1 p \<noteq> 0\<^sub>p" |
|
52658 | 1448 |
by (induct n arbitrary: p) simp_all |
33154 | 1449 |
|
1450 |
lemma head_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> head p = p" |
|
52658 | 1451 |
by (induct p arbitrary: n rule: degree.induct) auto |
33154 | 1452 |
lemma headn_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> headn p m = p" |
52658 | 1453 |
by (induct p arbitrary: n rule: degreen.induct) auto |
33154 | 1454 |
lemma head_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> head p = p" |
52658 | 1455 |
by (induct p arbitrary: n rule: degree.induct) auto |
33154 | 1456 |
lemma head_head[simp]: "isnpolyh p n0 \<Longrightarrow> head (head p) = head p" |
52658 | 1457 |
by (induct p rule: head.induct) auto |
33154 | 1458 |
|
52803 | 1459 |
lemma polyadd_eq_const_degree: |
52658 | 1460 |
"isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> polyadd p q = C c \<Longrightarrow> degree p = degree q" |
33154 | 1461 |
using polyadd_eq_const_degreen degree_eq_degreen0 by simp |
1462 |
||
52658 | 1463 |
lemma polyadd_head: |
1464 |
assumes np: "isnpolyh p n0" |
|
1465 |
and nq: "isnpolyh q n1" |
|
1466 |
and deg: "degree p \<noteq> degree q" |
|
33154 | 1467 |
shows "head (p +\<^sub>p q) = (if degree p < degree q then head q else head p)" |
52658 | 1468 |
using np nq deg |
1469 |
apply (induct p q arbitrary: n0 n1 rule: polyadd.induct) |
|
67123 | 1470 |
apply simp_all |
1471 |
apply (case_tac n', simp, simp) |
|
1472 |
apply (case_tac n, simp, simp) |
|
52658 | 1473 |
apply (case_tac n, case_tac n', simp add: Let_def) |
67123 | 1474 |
apply (auto simp add: polyadd_eq_const_degree)[2] |
1475 |
apply (metis head_nz) |
|
1476 |
apply (metis head_nz) |
|
52658 | 1477 |
apply (metis degree.simps(9) gr0_conv_Suc head.simps(1) less_Suc0 not_less_eq) |
1478 |
done |
|
33154 | 1479 |
|
52803 | 1480 |
lemma polymul_head_polyeq: |
68442 | 1481 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
56066 | 1482 |
shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> q \<noteq> 0\<^sub>p \<Longrightarrow> head (p *\<^sub>p q) = head p *\<^sub>p head q" |
33154 | 1483 |
proof (induct p q arbitrary: n0 n1 rule: polymul.induct) |
41813 | 1484 |
case (2 c c' n' p' n0 n1) |
56009 | 1485 |
then have "isnpolyh (head (CN c' n' p')) n1" "isnormNum c" |
1486 |
by (simp_all add: head_isnpolyh) |
|
1487 |
then show ?case |
|
1488 |
using 2 by (cases n') auto |
|
52803 | 1489 |
next |
1490 |
case (3 c n p c' n0 n1) |
|
56009 | 1491 |
then have "isnpolyh (head (CN c n p)) n0" "isnormNum c'" |
1492 |
by (simp_all add: head_isnpolyh) |
|
56066 | 1493 |
then show ?case |
1494 |
using 3 by (cases n) auto |
|
33154 | 1495 |
next |
1496 |
case (4 c n p c' n' p' n0 n1) |
|
56066 | 1497 |
then have norm: "isnpolyh p n" "isnpolyh c (Suc n)" "isnpolyh p' n'" "isnpolyh c' (Suc n')" |
33154 | 1498 |
"isnpolyh (CN c n p) n" "isnpolyh (CN c' n' p') n'" |
1499 |
by simp_all |
|
67123 | 1500 |
consider "n < n'" | "n' < n" | "n' = n" by arith |
1501 |
then show ?case |
|
1502 |
proof cases |
|
1503 |
case nn': 1 |
|
1504 |
then show ?thesis |
|
52658 | 1505 |
using norm "4.hyps"(2)[OF norm(1,6)] "4.hyps"(1)[OF norm(2,6)] |
1506 |
apply simp |
|
1507 |
apply (cases n) |
|
67123 | 1508 |
apply simp |
52658 | 1509 |
apply (cases n') |
67123 | 1510 |
apply simp_all |
56009 | 1511 |
done |
67123 | 1512 |
next |
1513 |
case nn': 2 |
|
1514 |
then show ?thesis |
|
52803 | 1515 |
using norm "4.hyps"(6) [OF norm(5,3)] "4.hyps"(5)[OF norm(5,4)] |
52658 | 1516 |
apply simp |
1517 |
apply (cases n') |
|
67123 | 1518 |
apply simp |
52658 | 1519 |
apply (cases n) |
67123 | 1520 |
apply auto |
56009 | 1521 |
done |
67123 | 1522 |
next |
1523 |
case nn': 3 |
|
52803 | 1524 |
from nn' polymul_normh[OF norm(5,4)] |
67123 | 1525 |
have ncnpc': "isnpolyh (CN c n p *\<^sub>p c') n" by (simp add: min_def) |
52803 | 1526 |
from nn' polymul_normh[OF norm(5,3)] norm |
67123 | 1527 |
have ncnpp': "isnpolyh (CN c n p *\<^sub>p p') n" by simp |
33154 | 1528 |
from nn' ncnpp' polymul_eq0_iff[OF norm(5,3)] norm(6) |
67123 | 1529 |
have ncnpp0': "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp |
52803 | 1530 |
from polyadd_normh[OF ncnpc' ncnpp0'] |
1531 |
have nth: "isnpolyh ((CN c n p *\<^sub>p c') +\<^sub>p (CN 0\<^sub>p n (CN c n p *\<^sub>p p'))) n" |
|
33154 | 1532 |
by (simp add: min_def) |
67123 | 1533 |
consider "n > 0" | "n = 0" by auto |
1534 |
then show ?thesis |
|
1535 |
proof cases |
|
1536 |
case np: 1 |
|
33154 | 1537 |
with nn' head_isnpolyh_Suc'[OF np nth] |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1538 |
head_isnpolyh_Suc'[OF np norm(5)] head_isnpolyh_Suc'[OF np norm(6)[simplified nn']] |
67123 | 1539 |
show ?thesis by simp |
1540 |
next |
|
1541 |
case nz: 2 |
|
33154 | 1542 |
from polymul_degreen[OF norm(5,4), where m="0"] |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1543 |
polymul_degreen[OF norm(5,3), where m="0"] nn' nz degree_eq_degreen0 |
67123 | 1544 |
norm(5,6) degree_npolyhCN[OF norm(6)] |
1545 |
have dth: "degree (CN c 0 p *\<^sub>p c') < degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))" |
|
1546 |
by simp |
|
1547 |
then have dth': "degree (CN c 0 p *\<^sub>p c') \<noteq> degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))" |
|
1548 |
by simp |
|
1549 |
from polyadd_head[OF ncnpc'[simplified nz] ncnpp0'[simplified nz] dth'] dth |
|
1550 |
show ?thesis |
|
1551 |
using norm "4.hyps"(6)[OF norm(5,3)] "4.hyps"(5)[OF norm(5,4)] nn' nz |
|
1552 |
by simp |
|
1553 |
qed |
|
1554 |
qed |
|
33154 | 1555 |
qed simp_all |
1556 |
||
1557 |
lemma degree_coefficients: "degree p = length (coefficients p) - 1" |
|
52658 | 1558 |
by (induct p rule: degree.induct) auto |
33154 | 1559 |
|
1560 |
lemma degree_head[simp]: "degree (head p) = 0" |
|
52658 | 1561 |
by (induct p rule: head.induct) auto |
33154 | 1562 |
|
41812 | 1563 |
lemma degree_CN: "isnpolyh p n \<Longrightarrow> degree (CN c n p) \<le> 1 + degree p" |
52658 | 1564 |
by (cases n) simp_all |
56066 | 1565 |
|
33154 | 1566 |
lemma degree_CN': "isnpolyh p n \<Longrightarrow> degree (CN c n p) \<ge> degree p" |
52658 | 1567 |
by (cases n) simp_all |
33154 | 1568 |
|
52658 | 1569 |
lemma polyadd_different_degree: |
56066 | 1570 |
"isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> degree p \<noteq> degree q \<Longrightarrow> |
52658 | 1571 |
degree (polyadd p q) = max (degree p) (degree q)" |
33154 | 1572 |
using polyadd_different_degreen degree_eq_degreen0 by simp |
1573 |
||
1574 |
lemma degreen_polyneg: "isnpolyh p n0 \<Longrightarrow> degreen (~\<^sub>p p) m = degreen p m" |
|
52658 | 1575 |
by (induct p arbitrary: n0 rule: polyneg.induct) auto |
33154 | 1576 |
|
1577 |
lemma degree_polymul: |
|
68442 | 1578 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
52658 | 1579 |
and np: "isnpolyh p n0" |
1580 |
and nq: "isnpolyh q n1" |
|
33154 | 1581 |
shows "degree (p *\<^sub>p q) \<le> degree p + degree q" |
1582 |
using polymul_degreen[OF np nq, where m="0"] degree_eq_degreen0 by simp |
|
1583 |
||
1584 |
lemma polyneg_degree: "isnpolyh p n \<Longrightarrow> degree (polyneg p) = degree p" |
|
52658 | 1585 |
by (induct p arbitrary: n rule: degree.induct) auto |
33154 | 1586 |
|
56207 | 1587 |
lemma polyneg_head: "isnpolyh p n \<Longrightarrow> head (polyneg p) = polyneg (head p)" |
52658 | 1588 |
by (induct p arbitrary: n rule: degree.induct) auto |
1589 |
||
33154 | 1590 |
|
60533 | 1591 |
subsection \<open>Correctness of polynomial pseudo division\<close> |
33154 | 1592 |
|
1593 |
lemma polydivide_aux_properties: |
|
68442 | 1594 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
52658 | 1595 |
and np: "isnpolyh p n0" |
1596 |
and ns: "isnpolyh s n1" |
|
1597 |
and ap: "head p = a" |
|
56198 | 1598 |
and ndp: "degree p = n" |
1599 |
and pnz: "p \<noteq> 0\<^sub>p" |
|
1600 |
shows "polydivide_aux a n p k s = (k', r) \<longrightarrow> k' \<ge> k \<and> (degree r = 0 \<or> degree r < degree p) \<and> |
|
56066 | 1601 |
(\<exists>nr. isnpolyh r nr) \<and> (\<exists>q n1. isnpolyh q n1 \<and> (polypow (k' - k) a) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)" |
33154 | 1602 |
using ns |
52658 | 1603 |
proof (induct "degree s" arbitrary: s k k' r n1 rule: less_induct) |
34915 | 1604 |
case less |
33154 | 1605 |
let ?qths = "\<exists>q n1. isnpolyh q n1 \<and> (a ^\<^sub>p (k' - k) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)" |
56066 | 1606 |
let ?ths = "polydivide_aux a n p k s = (k', r) \<longrightarrow> k \<le> k' \<and> |
1607 |
(degree r = 0 \<or> degree r < degree p) \<and> (\<exists>nr. isnpolyh r nr) \<and> ?qths" |
|
33154 | 1608 |
let ?b = "head s" |
34915 | 1609 |
let ?p' = "funpow (degree s - n) shift1 p" |
50282
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
wenzelm
parents:
49962
diff
changeset
|
1610 |
let ?xdn = "funpow (degree s - n) shift1 (1)\<^sub>p" |
33154 | 1611 |
let ?akk' = "a ^\<^sub>p (k' - k)" |
60533 | 1612 |
note ns = \<open>isnpolyh s n1\<close> |
52803 | 1613 |
from np have np0: "isnpolyh p 0" |
1614 |
using isnpolyh_mono[where n="n0" and n'="0" and p="p"] by simp |
|
1615 |
have np': "isnpolyh ?p' 0" |
|
1616 |
using funpow_shift1_isnpoly[OF np0[simplified isnpoly_def[symmetric]] pnz, where n="degree s - n"] isnpoly_def |
|
1617 |
by simp |
|
1618 |
have headp': "head ?p' = head p" |
|
1619 |
using funpow_shift1_head[OF np pnz] by simp |
|
1620 |
from funpow_shift1_isnpoly[where p="(1)\<^sub>p"] have nxdn: "isnpolyh ?xdn 0" |
|
1621 |
by (simp add: isnpoly_def) |
|
1622 |
from polypow_normh [OF head_isnpolyh[OF np0], where k="k' - k"] ap |
|
33154 | 1623 |
have nakk':"isnpolyh ?akk' 0" by blast |
67123 | 1624 |
show ?ths |
1625 |
proof (cases "s = 0\<^sub>p") |
|
1626 |
case True |
|
1627 |
with np show ?thesis |
|
1628 |
apply (clarsimp simp: polydivide_aux.simps) |
|
52658 | 1629 |
apply (rule exI[where x="0\<^sub>p"]) |
1630 |
apply simp |
|
56066 | 1631 |
done |
67123 | 1632 |
next |
1633 |
case sz: False |
|
1634 |
show ?thesis |
|
1635 |
proof (cases "degree s < n") |
|
1636 |
case True |
|
1637 |
then show ?thesis |
|
56066 | 1638 |
using ns ndp np polydivide_aux.simps |
52658 | 1639 |
apply auto |
1640 |
apply (rule exI[where x="0\<^sub>p"]) |
|
1641 |
apply simp |
|
56066 | 1642 |
done |
67123 | 1643 |
next |
1644 |
case dn': False |
|
56066 | 1645 |
then have dn: "degree s \<ge> n" |
1646 |
by arith |
|
52803 | 1647 |
have degsp': "degree s = degree ?p'" |
56066 | 1648 |
using dn ndp funpow_shift1_degree[where k = "degree s - n" and p="p"] |
1649 |
by simp |
|
67123 | 1650 |
show ?thesis |
1651 |
proof (cases "?b = a") |
|
1652 |
case ba: True |
|
56066 | 1653 |
then have headsp': "head s = head ?p'" |
52803 | 1654 |
using ap headp' by simp |
1655 |
have nr: "isnpolyh (s -\<^sub>p ?p') 0" |
|
1656 |
using polysub_normh[OF ns np'] by simp |
|
34915 | 1657 |
from degree_polysub_samehead[OF ns np' headsp' degsp'] |
67123 | 1658 |
consider "degree (s -\<^sub>p ?p') < degree s" | "s -\<^sub>p ?p' = 0\<^sub>p" by auto |
1659 |
then show ?thesis |
|
1660 |
proof cases |
|
1661 |
case deglt: 1 |
|
41403
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
krauss
parents:
39246
diff
changeset
|
1662 |
from polydivide_aux.simps sz dn' ba |
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
krauss
parents:
39246
diff
changeset
|
1663 |
have eq: "polydivide_aux a n p k s = polydivide_aux a n p k (s -\<^sub>p ?p')" |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1664 |
by (simp add: Let_def) |
67123 | 1665 |
have "k \<le> k' \<and> (degree r = 0 \<or> degree r < degree p) \<and> (\<exists>nr. isnpolyh r nr) \<and> ?qths" |
1666 |
if h1: "polydivide_aux a n p k s = (k', r)" |
|
1667 |
proof - |
|
52803 | 1668 |
from less(1)[OF deglt nr, of k k' r] trans[OF eq[symmetric] h1] |
1669 |
have kk': "k \<le> k'" |
|
56066 | 1670 |
and nr: "\<exists>nr. isnpolyh r nr" |
52803 | 1671 |
and dr: "degree r = 0 \<or> degree r < degree p" |
56066 | 1672 |
and q1: "\<exists>q nq. isnpolyh q nq \<and> a ^\<^sub>p k' - k *\<^sub>p (s -\<^sub>p ?p') = p *\<^sub>p q +\<^sub>p r" |
52803 | 1673 |
by auto |
1674 |
from q1 obtain q n1 where nq: "isnpolyh q n1" |
|
56066 | 1675 |
and asp: "a^\<^sub>p (k' - k) *\<^sub>p (s -\<^sub>p ?p') = p *\<^sub>p q +\<^sub>p r" |
1676 |
by blast |
|
1677 |
from nr obtain nr where nr': "isnpolyh r nr" |
|
1678 |
by blast |
|
52803 | 1679 |
from polymul_normh[OF nakk' ns] have nakks': "isnpolyh (a ^\<^sub>p (k' - k) *\<^sub>p s) 0" |
1680 |
by simp |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1681 |
from polyadd_normh[OF polymul_normh[OF nakk' nxdn] nq] |
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1682 |
have nq': "isnpolyh (?akk' *\<^sub>p ?xdn +\<^sub>p q) 0" by simp |
52803 | 1683 |
from polyadd_normh[OF polymul_normh[OF np |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1684 |
polyadd_normh[OF polymul_normh[OF nakk' nxdn] nq]] nr'] |
52803 | 1685 |
have nqr': "isnpolyh (p *\<^sub>p (?akk' *\<^sub>p ?xdn +\<^sub>p q) +\<^sub>p r) 0" |
1686 |
by simp |
|
68442 | 1687 |
from asp have "\<forall>bs :: 'a::field_char_0 list. |
56066 | 1688 |
Ipoly bs (a^\<^sub>p (k' - k) *\<^sub>p (s -\<^sub>p ?p')) = Ipoly bs (p *\<^sub>p q +\<^sub>p r)" |
1689 |
by simp |
|
68442 | 1690 |
then have "\<forall>bs :: 'a::field_char_0 list. |
56066 | 1691 |
Ipoly bs (a^\<^sub>p (k' - k)*\<^sub>p s) = |
52803 | 1692 |
Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs ?p' + Ipoly bs p * Ipoly bs q + Ipoly bs r" |
36349 | 1693 |
by (simp add: field_simps) |
68442 | 1694 |
then have "\<forall>bs :: 'a::field_char_0 list. |
56066 | 1695 |
Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = |
52803 | 1696 |
Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs (funpow (degree s - n) shift1 (1)\<^sub>p *\<^sub>p p) + |
1697 |
Ipoly bs p * Ipoly bs q + Ipoly bs r" |
|
1698 |
by (auto simp only: funpow_shift1_1) |
|
68442 | 1699 |
then have "\<forall>bs:: 'a::field_char_0 list. |
56066 | 1700 |
Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = |
52803 | 1701 |
Ipoly bs p * (Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs (funpow (degree s - n) shift1 (1)\<^sub>p) + |
1702 |
Ipoly bs q) + Ipoly bs r" |
|
1703 |
by (simp add: field_simps) |
|
68442 | 1704 |
then have "\<forall>bs:: 'a::field_char_0 list. |
56066 | 1705 |
Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = |
52803 | 1706 |
Ipoly bs (p *\<^sub>p ((a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 (1)\<^sub>p) +\<^sub>p q) +\<^sub>p r)" |
1707 |
by simp |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1708 |
with isnpolyh_unique[OF nakks' nqr'] |
52803 | 1709 |
have "a ^\<^sub>p (k' - k) *\<^sub>p s = |
1710 |
p *\<^sub>p ((a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 (1)\<^sub>p) +\<^sub>p q) +\<^sub>p r" |
|
1711 |
by blast |
|
67123 | 1712 |
with nq' have ?qths |
50282
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
wenzelm
parents:
49962
diff
changeset
|
1713 |
apply (rule_tac x="(a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 (1)\<^sub>p) +\<^sub>p q" in exI) |
52803 | 1714 |
apply (rule_tac x="0" in exI) |
1715 |
apply simp |
|
1716 |
done |
|
67123 | 1717 |
with kk' nr dr show ?thesis |
52803 | 1718 |
by blast |
67123 | 1719 |
qed |
1720 |
then show ?thesis by blast |
|
1721 |
next |
|
1722 |
case spz: 2 |
|
68442 | 1723 |
from spz isnpolyh_unique[OF polysub_normh[OF ns np'], where q="0\<^sub>p", symmetric, where ?'a = "'a::field_char_0"] |
1724 |
have "\<forall>bs:: 'a::field_char_0 list. Ipoly bs s = Ipoly bs ?p'" |
|
52803 | 1725 |
by simp |
68442 | 1726 |
with np nxdn have "\<forall>bs:: 'a::field_char_0 list. Ipoly bs s = Ipoly bs (?xdn *\<^sub>p p)" |
67123 | 1727 |
by (simp only: funpow_shift1_1) simp |
56066 | 1728 |
then have sp': "s = ?xdn *\<^sub>p p" |
1729 |
using isnpolyh_unique[OF ns polymul_normh[OF nxdn np]] |
|
52658 | 1730 |
by blast |
67123 | 1731 |
have ?thesis if h1: "polydivide_aux a n p k s = (k', r)" |
1732 |
proof - |
|
1733 |
from sz dn' ba |
|
1734 |
have "polydivide_aux a n p k s = polydivide_aux a n p k (s -\<^sub>p ?p')" |
|
1735 |
by (simp add: Let_def polydivide_aux.simps) |
|
52803 | 1736 |
also have "\<dots> = (k,0\<^sub>p)" |
67123 | 1737 |
using spz by (simp add: polydivide_aux.simps) |
56066 | 1738 |
finally have "(k', r) = (k, 0\<^sub>p)" |
67123 | 1739 |
by (simp add: h1) |
34915 | 1740 |
with sp'[symmetric] ns np nxdn polyadd_0(1)[OF polymul_normh[OF np nxdn]] |
67123 | 1741 |
polyadd_0(2)[OF polymul_normh[OF np nxdn]] show ?thesis |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1742 |
apply auto |
52803 | 1743 |
apply (rule exI[where x="?xdn"]) |
34915 | 1744 |
apply (auto simp add: polymul_commute[of p]) |
52803 | 1745 |
done |
67123 | 1746 |
qed |
1747 |
then show ?thesis by blast |
|
1748 |
qed |
|
1749 |
next |
|
1750 |
case ba: False |
|
52803 | 1751 |
from polysub_normh[OF polymul_normh[OF head_isnpolyh[OF np0, simplified ap] ns] |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1752 |
polymul_normh[OF head_isnpolyh[OF ns] np']] |
52803 | 1753 |
have nth: "isnpolyh ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) 0" |
1754 |
by (simp add: min_def) |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1755 |
have nzths: "a *\<^sub>p s \<noteq> 0\<^sub>p" "?b *\<^sub>p ?p' \<noteq> 0\<^sub>p" |
52803 | 1756 |
using polymul_eq0_iff[OF head_isnpolyh[OF np0, simplified ap] ns] |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1757 |
polymul_eq0_iff[OF head_isnpolyh[OF ns] np']head_nz[OF np0] ap pnz sz head_nz[OF ns] |
52803 | 1758 |
funpow_shift1_nz[OF pnz] |
1759 |
by simp_all |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1760 |
from polymul_head_polyeq[OF head_isnpolyh[OF np] ns] head_nz[OF np] sz ap head_head[OF np] pnz |
67123 | 1761 |
polymul_head_polyeq[OF head_isnpolyh[OF ns] np'] head_nz [OF ns] sz |
1762 |
funpow_shift1_nz[OF pnz, where n="degree s - n"] |
|
52803 | 1763 |
have hdth: "head (a *\<^sub>p s) = head (?b *\<^sub>p ?p')" |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1764 |
using head_head[OF ns] funpow_shift1_head[OF np pnz] |
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1765 |
polymul_commute[OF head_isnpolyh[OF np] head_isnpolyh[OF ns]] |
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1766 |
by (simp add: ap) |
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1767 |
from polymul_degreen[OF head_isnpolyh[OF np] ns, where m="0"] |
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1768 |
head_nz[OF np] pnz sz ap[symmetric] |
34915 | 1769 |
funpow_shift1_nz[OF pnz, where n="degree s - n"] |
52803 | 1770 |
polymul_degreen[OF head_isnpolyh[OF ns] np', where m="0"] head_nz[OF ns] |
34915 | 1771 |
ndp dn |
52803 | 1772 |
have degth: "degree (a *\<^sub>p s) = degree (?b *\<^sub>p ?p')" |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1773 |
by (simp add: degree_eq_degreen0[symmetric] funpow_shift1_degree) |
67123 | 1774 |
|
1775 |
consider "degree ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) < degree s" | "a *\<^sub>p s -\<^sub>p (?b *\<^sub>p ?p') = 0\<^sub>p" |
|
1776 |
using degree_polysub_samehead[OF polymul_normh[OF head_isnpolyh[OF np0, simplified ap] ns] |
|
1777 |
polymul_normh[OF head_isnpolyh[OF ns] np'] hdth degth] |
|
1778 |
polymul_degreen[OF head_isnpolyh[OF np] ns, where m="0"] |
|
1779 |
head_nz[OF np] pnz sz ap[symmetric] |
|
1780 |
by (auto simp add: degree_eq_degreen0[symmetric]) |
|
1781 |
then show ?thesis |
|
1782 |
proof cases |
|
1783 |
case dth: 1 |
|
52803 | 1784 |
from polysub_normh[OF polymul_normh[OF head_isnpolyh[OF np] ns] |
1785 |
polymul_normh[OF head_isnpolyh[OF ns]np']] ap |
|
1786 |
have nasbp': "isnpolyh ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) 0" |
|
1787 |
by simp |
|
67123 | 1788 |
have ?thesis if h1: "polydivide_aux a n p k s = (k', r)" |
1789 |
proof - |
|
41403
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
krauss
parents:
39246
diff
changeset
|
1790 |
from h1 polydivide_aux.simps sz dn' ba |
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
krauss
parents:
39246
diff
changeset
|
1791 |
have eq:"polydivide_aux a n p (Suc k) ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) = (k',r)" |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1792 |
by (simp add: Let_def) |
34915 | 1793 |
with less(1)[OF dth nasbp', of "Suc k" k' r] |
52803 | 1794 |
obtain q nq nr where kk': "Suc k \<le> k'" |
1795 |
and nr: "isnpolyh r nr" |
|
1796 |
and nq: "isnpolyh q nq" |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1797 |
and dr: "degree r = 0 \<or> degree r < degree p" |
52803 | 1798 |
and qr: "a ^\<^sub>p (k' - Suc k) *\<^sub>p ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) = p *\<^sub>p q +\<^sub>p r" |
1799 |
by auto |
|
56066 | 1800 |
from kk' have kk'': "Suc (k' - Suc k) = k' - k" |
1801 |
by arith |
|
67123 | 1802 |
have "Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = |
1803 |
Ipoly bs p * (Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?xdn) + Ipoly bs r" |
|
68442 | 1804 |
for bs :: "'a::field_char_0 list" |
67123 | 1805 |
proof - |
52803 | 1806 |
from qr isnpolyh_unique[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - Suc k", simplified ap] nasbp', symmetric] |
1807 |
have "Ipoly bs (a ^\<^sub>p (k' - Suc k) *\<^sub>p ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p'))) = Ipoly bs (p *\<^sub>p q +\<^sub>p r)" |
|
1808 |
by simp |
|
56066 | 1809 |
then have "Ipoly bs a ^ (Suc (k' - Suc k)) * Ipoly bs s = |
52803 | 1810 |
Ipoly bs p * Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?p' + Ipoly bs r" |
1811 |
by (simp add: field_simps) |
|
56066 | 1812 |
then have "Ipoly bs a ^ (k' - k) * Ipoly bs s = |
52803 | 1813 |
Ipoly bs p * Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?xdn * Ipoly bs p + Ipoly bs r" |
1814 |
by (simp add: kk'' funpow_shift1_1[where n="degree s - n" and p="p"]) |
|
67123 | 1815 |
then show ?thesis |
52803 | 1816 |
by (simp add: field_simps) |
67123 | 1817 |
qed |
68442 | 1818 |
then have ieq: "\<forall>bs :: 'a::field_char_0 list. |
56207 | 1819 |
Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = |
1820 |
Ipoly bs (p *\<^sub>p (q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)) +\<^sub>p r)" |
|
52803 | 1821 |
by auto |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1822 |
let ?q = "q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)" |
56207 | 1823 |
from polyadd_normh[OF nq polymul_normh[OF polymul_normh[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - Suc k"] head_isnpolyh[OF ns], simplified ap] nxdn]] |
52803 | 1824 |
have nqw: "isnpolyh ?q 0" |
1825 |
by simp |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1826 |
from ieq isnpolyh_unique[OF polymul_normh[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - k"] ns, simplified ap] polyadd_normh[OF polymul_normh[OF np nqw] nr]] |
52803 | 1827 |
have asth: "(a ^\<^sub>p (k' - k) *\<^sub>p s) = p *\<^sub>p (q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)) +\<^sub>p r" |
1828 |
by blast |
|
67123 | 1829 |
from dr kk' nr h1 asth nqw show ?thesis |
52803 | 1830 |
apply simp |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1831 |
apply (rule conjI) |
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1832 |
apply (rule exI[where x="nr"], simp) |
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1833 |
apply (rule exI[where x="(q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn))"], simp) |
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1834 |
apply (rule exI[where x="0"], simp) |
52803 | 1835 |
done |
67123 | 1836 |
qed |
1837 |
then show ?thesis by blast |
|
1838 |
next |
|
1839 |
case spz: 2 |
|
68442 | 1840 |
have hth: "\<forall>bs :: 'a::field_char_0 list. |
67123 | 1841 |
Ipoly bs (a *\<^sub>p s) = Ipoly bs (p *\<^sub>p (?b *\<^sub>p ?xdn))" |
1842 |
proof |
|
68442 | 1843 |
fix bs :: "'a::field_char_0 list" |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1844 |
from isnpolyh_unique[OF nth, where ?'a="'a" and q="0\<^sub>p",simplified,symmetric] spz |
52803 | 1845 |
have "Ipoly bs (a*\<^sub>p s) = Ipoly bs ?b * Ipoly bs ?p'" |
1846 |
by simp |
|
56066 | 1847 |
then have "Ipoly bs (a*\<^sub>p s) = Ipoly bs (?b *\<^sub>p ?xdn) * Ipoly bs p" |
52803 | 1848 |
by (simp add: funpow_shift1_1[where n="degree s - n" and p="p"]) |
67123 | 1849 |
then show "Ipoly bs (a*\<^sub>p s) = Ipoly bs (p *\<^sub>p (?b *\<^sub>p ?xdn))" |
52803 | 1850 |
by simp |
67123 | 1851 |
qed |
52803 | 1852 |
from hth have asq: "a *\<^sub>p s = p *\<^sub>p (?b *\<^sub>p ?xdn)" |
68442 | 1853 |
using isnpolyh_unique[where ?'a = "'a::field_char_0", OF polymul_normh[OF head_isnpolyh[OF np] ns] |
33154 | 1854 |
polymul_normh[OF np polymul_normh[OF head_isnpolyh[OF ns] nxdn]], |
56066 | 1855 |
simplified ap] |
1856 |
by simp |
|
67123 | 1857 |
have ?ths if h1: "polydivide_aux a n p k s = (k', r)" |
1858 |
proof - |
|
52803 | 1859 |
from h1 sz ba dn' spz polydivide_aux.simps polydivide_aux.simps |
56066 | 1860 |
have "(k', r) = (Suc k, 0\<^sub>p)" |
1861 |
by (simp add: Let_def) |
|
52803 | 1862 |
with h1 np head_isnpolyh[OF np, simplified ap] ns polymul_normh[OF head_isnpolyh[OF ns] nxdn] |
1863 |
polymul_normh[OF np polymul_normh[OF head_isnpolyh[OF ns] nxdn]] asq |
|
67123 | 1864 |
show ?thesis |
52803 | 1865 |
apply (clarsimp simp add: Let_def) |
1866 |
apply (rule exI[where x="?b *\<^sub>p ?xdn"]) |
|
1867 |
apply simp |
|
1868 |
apply (rule exI[where x="0"], simp) |
|
1869 |
done |
|
67123 | 1870 |
qed |
1871 |
then show ?thesis by blast |
|
1872 |
qed |
|
1873 |
qed |
|
1874 |
qed |
|
1875 |
qed |
|
33154 | 1876 |
qed |
1877 |
||
52803 | 1878 |
lemma polydivide_properties: |
68442 | 1879 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
56066 | 1880 |
and np: "isnpolyh p n0" |
1881 |
and ns: "isnpolyh s n1" |
|
1882 |
and pnz: "p \<noteq> 0\<^sub>p" |
|
1883 |
shows "\<exists>k r. polydivide s p = (k, r) \<and> |
|
52803 | 1884 |
(\<exists>nr. isnpolyh r nr) \<and> (degree r = 0 \<or> degree r < degree p) \<and> |
56066 | 1885 |
(\<exists>q n1. isnpolyh q n1 \<and> polypow k (head p) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)" |
52803 | 1886 |
proof - |
1887 |
have trv: "head p = head p" "degree p = degree p" |
|
1888 |
by simp_all |
|
1889 |
from polydivide_def[where s="s" and p="p"] have ex: "\<exists> k r. polydivide s p = (k,r)" |
|
1890 |
by auto |
|
1891 |
then obtain k r where kr: "polydivide s p = (k,r)" |
|
1892 |
by blast |
|
56000 | 1893 |
from trans[OF polydivide_def[where s="s"and p="p", symmetric] kr] |
33154 | 1894 |
polydivide_aux_properties[OF np ns trv pnz, where k="0" and k'="k" and r="r"] |
1895 |
have "(degree r = 0 \<or> degree r < degree p) \<and> |
|
52803 | 1896 |
(\<exists>nr. isnpolyh r nr) \<and> (\<exists>q n1. isnpolyh q n1 \<and> head p ^\<^sub>p k - 0 *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)" |
1897 |
by blast |
|
1898 |
with kr show ?thesis |
|
33154 | 1899 |
apply - |
1900 |
apply (rule exI[where x="k"]) |
|
1901 |
apply (rule exI[where x="r"]) |
|
1902 |
apply simp |
|
1903 |
done |
|
1904 |
qed |
|
1905 |
||
52658 | 1906 |
|
60533 | 1907 |
subsection \<open>More about polypoly and pnormal etc\<close> |
33154 | 1908 |
|
56000 | 1909 |
definition "isnonconstant p \<longleftrightarrow> \<not> isconstant p" |
33154 | 1910 |
|
52658 | 1911 |
lemma isnonconstant_pnormal_iff: |
56198 | 1912 |
assumes "isnonconstant p" |
52803 | 1913 |
shows "pnormal (polypoly bs p) \<longleftrightarrow> Ipoly bs (head p) \<noteq> 0" |
33154 | 1914 |
proof |
52803 | 1915 |
let ?p = "polypoly bs p" |
67123 | 1916 |
assume *: "pnormal ?p" |
1917 |
have "coefficients p \<noteq> []" |
|
56198 | 1918 |
using assms by (cases p) auto |
67123 | 1919 |
from coefficients_head[of p] last_map[OF this, of "Ipoly bs"] pnormal_last_nonzero[OF *] |
56066 | 1920 |
show "Ipoly bs (head p) \<noteq> 0" |
1921 |
by (simp add: polypoly_def) |
|
33154 | 1922 |
next |
67123 | 1923 |
assume *: "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" |
33154 | 1924 |
let ?p = "polypoly bs p" |
56066 | 1925 |
have csz: "coefficients p \<noteq> []" |
56198 | 1926 |
using assms by (cases p) auto |
56066 | 1927 |
then have pz: "?p \<noteq> []" |
1928 |
by (simp add: polypoly_def) |
|
1929 |
then have lg: "length ?p > 0" |
|
1930 |
by simp |
|
67123 | 1931 |
from * coefficients_head[of p] last_map[OF csz, of "Ipoly bs"] |
56066 | 1932 |
have lz: "last ?p \<noteq> 0" |
1933 |
by (simp add: polypoly_def) |
|
33154 | 1934 |
from pnormal_last_length[OF lg lz] show "pnormal ?p" . |
1935 |
qed |
|
1936 |
||
1937 |
lemma isnonconstant_coefficients_length: "isnonconstant p \<Longrightarrow> length (coefficients p) > 1" |
|
1938 |
unfolding isnonconstant_def |
|
52658 | 1939 |
apply (cases p) |
1940 |
apply simp_all |
|
58259 | 1941 |
apply (rename_tac nat a, case_tac nat) |
52658 | 1942 |
apply auto |
33154 | 1943 |
done |
52658 | 1944 |
|
1945 |
lemma isnonconstant_nonconstant: |
|
56198 | 1946 |
assumes "isnonconstant p" |
33154 | 1947 |
shows "nonconstant (polypoly bs p) \<longleftrightarrow> Ipoly bs (head p) \<noteq> 0" |
1948 |
proof |
|
1949 |
let ?p = "polypoly bs p" |
|
67123 | 1950 |
assume "nonconstant ?p" |
1951 |
with isnonconstant_pnormal_iff[OF assms, of bs] show "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" |
|
56066 | 1952 |
unfolding nonconstant_def by blast |
33154 | 1953 |
next |
1954 |
let ?p = "polypoly bs p" |
|
67123 | 1955 |
assume "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" |
1956 |
with isnonconstant_pnormal_iff[OF assms, of bs] have pn: "pnormal ?p" |
|
56066 | 1957 |
by blast |
67123 | 1958 |
have False if H: "?p = [x]" for x |
1959 |
proof - |
|
56009 | 1960 |
from H have "length (coefficients p) = 1" |
67123 | 1961 |
by (auto simp: polypoly_def) |
56198 | 1962 |
with isnonconstant_coefficients_length[OF assms] |
67123 | 1963 |
show ?thesis by arith |
1964 |
qed |
|
56009 | 1965 |
then show "nonconstant ?p" |
1966 |
using pn unfolding nonconstant_def by blast |
|
33154 | 1967 |
qed |
1968 |
||
56066 | 1969 |
lemma pnormal_length: "p \<noteq> [] \<Longrightarrow> pnormal p \<longleftrightarrow> length (pnormalize p) = length p" |
52658 | 1970 |
apply (induct p) |
67123 | 1971 |
apply (simp_all add: pnormal_def) |
52658 | 1972 |
apply (case_tac "p = []") |
67123 | 1973 |
apply simp_all |
52658 | 1974 |
done |
33154 | 1975 |
|
52658 | 1976 |
lemma degree_degree: |
56207 | 1977 |
assumes "isnonconstant p" |
33154 | 1978 |
shows "degree p = Polynomial_List.degree (polypoly bs p) \<longleftrightarrow> \<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" |
67123 | 1979 |
(is "?lhs \<longleftrightarrow> ?rhs") |
33154 | 1980 |
proof |
52803 | 1981 |
let ?p = "polypoly bs p" |
67123 | 1982 |
{ |
1983 |
assume ?lhs |
|
1984 |
from isnonconstant_coefficients_length[OF assms] have "?p \<noteq> []" |
|
1985 |
by (auto simp: polypoly_def) |
|
1986 |
from \<open>?lhs\<close> degree_coefficients[of p] isnonconstant_coefficients_length[OF assms] |
|
1987 |
have "length (pnormalize ?p) = length ?p" |
|
1988 |
by (simp add: Polynomial_List.degree_def polypoly_def) |
|
1989 |
with pnormal_length[OF \<open>?p \<noteq> []\<close>] have "pnormal ?p" |
|
1990 |
by blast |
|
1991 |
with isnonconstant_pnormal_iff[OF assms] show ?rhs |
|
1992 |
by blast |
|
1993 |
next |
|
1994 |
assume ?rhs |
|
1995 |
with isnonconstant_pnormal_iff[OF assms] have "pnormal ?p" |
|
1996 |
by blast |
|
1997 |
with degree_coefficients[of p] isnonconstant_coefficients_length[OF assms] show ?lhs |
|
1998 |
by (auto simp: polypoly_def pnormal_def Polynomial_List.degree_def) |
|
1999 |
} |
|
33154 | 2000 |
qed |
2001 |
||
52658 | 2002 |
|
67123 | 2003 |
section \<open>Swaps -- division by a certain variable\<close> |
52658 | 2004 |
|
56066 | 2005 |
primrec swap :: "nat \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> poly" |
67123 | 2006 |
where |
2007 |
"swap n m (C x) = C x" |
|
2008 |
| "swap n m (Bound k) = Bound (if k = n then m else if k = m then n else k)" |
|
2009 |
| "swap n m (Neg t) = Neg (swap n m t)" |
|
2010 |
| "swap n m (Add s t) = Add (swap n m s) (swap n m t)" |
|
2011 |
| "swap n m (Sub s t) = Sub (swap n m s) (swap n m t)" |
|
2012 |
| "swap n m (Mul s t) = Mul (swap n m s) (swap n m t)" |
|
2013 |
| "swap n m (Pw t k) = Pw (swap n m t) k" |
|
2014 |
| "swap n m (CN c k p) = CN (swap n m c) (if k = n then m else if k=m then n else k) (swap n m p)" |
|
33154 | 2015 |
|
52658 | 2016 |
lemma swap: |
56066 | 2017 |
assumes "n < length bs" |
2018 |
and "m < length bs" |
|
33154 | 2019 |
shows "Ipoly bs (swap n m t) = Ipoly ((bs[n:= bs!m])[m:= bs!n]) t" |
2020 |
proof (induct t) |
|
52658 | 2021 |
case (Bound k) |
56066 | 2022 |
then show ?case |
2023 |
using assms by simp |
|
33154 | 2024 |
next |
52658 | 2025 |
case (CN c k p) |
56066 | 2026 |
then show ?case |
2027 |
using assms by simp |
|
33154 | 2028 |
qed simp_all |
2029 |
||
52658 | 2030 |
lemma swap_swap_id [simp]: "swap n m (swap m n t) = t" |
2031 |
by (induct t) simp_all |
|
2032 |
||
2033 |
lemma swap_commute: "swap n m p = swap m n p" |
|
2034 |
by (induct p) simp_all |
|
33154 | 2035 |
|
2036 |
lemma swap_same_id[simp]: "swap n n t = t" |
|
52658 | 2037 |
by (induct t) simp_all |
33154 | 2038 |
|
2039 |
definition "swapnorm n m t = polynate (swap n m t)" |
|
2040 |
||
52658 | 2041 |
lemma swapnorm: |
2042 |
assumes nbs: "n < length bs" |
|
2043 |
and mbs: "m < length bs" |
|
68442 | 2044 |
shows "((Ipoly bs (swapnorm n m t) :: 'a::field_char_0)) = |
52658 | 2045 |
Ipoly ((bs[n:= bs!m])[m:= bs!n]) t" |
41807 | 2046 |
using swap[OF assms] swapnorm_def by simp |
33154 | 2047 |
|
52658 | 2048 |
lemma swapnorm_isnpoly [simp]: |
68442 | 2049 |
assumes "SORT_CONSTRAINT('a::field_char_0)" |
33154 | 2050 |
shows "isnpoly (swapnorm n m p)" |
2051 |
unfolding swapnorm_def by simp |
|
2052 |
||
52803 | 2053 |
definition "polydivideby n s p = |
56000 | 2054 |
(let |
2055 |
ss = swapnorm 0 n s; |
|
2056 |
sp = swapnorm 0 n p; |
|
2057 |
h = head sp; |
|
2058 |
(k, r) = polydivide ss sp |
|
2059 |
in (k, swapnorm 0 n h, swapnorm 0 n r))" |
|
33154 | 2060 |
|
56000 | 2061 |
lemma swap_nz [simp]: "swap n m p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" |
52658 | 2062 |
by (induct p) simp_all |
33154 | 2063 |
|
41808 | 2064 |
fun isweaknpoly :: "poly \<Rightarrow> bool" |
67123 | 2065 |
where |
2066 |
"isweaknpoly (C c) = True" |
|
2067 |
| "isweaknpoly (CN c n p) \<longleftrightarrow> isweaknpoly c \<and> isweaknpoly p" |
|
2068 |
| "isweaknpoly p = False" |
|
33154 | 2069 |
|
52803 | 2070 |
lemma isnpolyh_isweaknpoly: "isnpolyh p n0 \<Longrightarrow> isweaknpoly p" |
52658 | 2071 |
by (induct p arbitrary: n0) auto |
33154 | 2072 |
|
52803 | 2073 |
lemma swap_isweanpoly: "isweaknpoly p \<Longrightarrow> isweaknpoly (swap n m p)" |
52658 | 2074 |
by (induct p) auto |
33154 | 2075 |
|
62390 | 2076 |
end |