| author | wenzelm | 
| Wed, 26 Dec 2018 20:57:23 +0100 | |
| changeset 69506 | 7d59af98af29 | 
| parent 69286 | e4d5a07fecb6 | 
| child 69508 | 2a4c8a2a3f8e | 
| permissions | -rw-r--r-- | 
| 56215 | 1 | (* Author: John Harrison, Marco Maggesi, Graziano Gentili, Gianni Ciolli, Valentina Bruno | 
| 2 | Ported from "hol_light/Multivariate/canal.ml" by L C Paulson (2014) | |
| 3 | *) | |
| 4 | ||
| 60420 | 5 | section \<open>Complex Analysis Basics\<close> | 
| 56215 | 6 | |
| 7 | theory Complex_Analysis_Basics | |
| 66453 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
66252diff
changeset | 8 | imports Equivalence_Lebesgue_Henstock_Integration "HOL-Library.Nonpos_Ints" | 
| 56215 | 9 | begin | 
| 10 | ||
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 11 | (* TODO FIXME: A lot of the things in here have nothing to do with complex analysis *) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 12 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 13 | subsection%unimportant\<open>General lemmas\<close> | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 14 | |
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 15 | lemma nonneg_Reals_cmod_eq_Re: "z \<in> \<real>\<^sub>\<ge>\<^sub>0 \<Longrightarrow> norm z = Re z" | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 16 | by (simp add: complex_nonneg_Reals_iff cmod_eq_Re) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 17 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 18 | lemma has_derivative_mult_right: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 19 | fixes c:: "'a :: real_normed_algebra" | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 20 | shows "(((*) c) has_derivative ((*) c)) F" | 
| 68239 | 21 | by (rule has_derivative_mult_right [OF has_derivative_ident]) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 22 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 23 | lemma has_derivative_of_real[derivative_intros, simp]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 24 | "(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. of_real (f x)) has_derivative (\<lambda>x. of_real (f' x))) F" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 25 | using bounded_linear.has_derivative[OF bounded_linear_of_real] . | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 26 | |
| 66252 | 27 | lemma has_vector_derivative_real_field: | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61610diff
changeset | 28 | "DERIV f (of_real a) :> f' \<Longrightarrow> ((\<lambda>x. f (of_real x)) has_vector_derivative f') (at a within s)" | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 29 | using has_derivative_compose[of of_real of_real a _ f "(*) f'"] | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 30 | by (simp add: scaleR_conv_of_real ac_simps has_vector_derivative_def has_field_derivative_def) | 
| 66252 | 31 | lemmas has_vector_derivative_real_complex = has_vector_derivative_real_field | 
| 56215 | 32 | |
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 33 | lemma fact_cancel: | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 34 | fixes c :: "'a::real_field" | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 35 | shows "of_nat (Suc n) * c / (fact (Suc n)) = c / (fact n)" | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 36 | using of_nat_neq_0 by force | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 37 | |
| 56215 | 38 | lemma bilinear_times: | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 39 | fixes c::"'a::real_algebra" shows "bilinear (\<lambda>x y::'a. x*y)" | 
| 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 40 | by (auto simp: bilinear_def distrib_left distrib_right intro!: linearI) | 
| 56215 | 41 | |
| 42 | lemma linear_cnj: "linear cnj" | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 43 | using bounded_linear.linear[OF bounded_linear_cnj] . | 
| 56215 | 44 | |
| 68721 | 45 | lemma vector_derivative_cnj_within: | 
| 46 | assumes "at x within A \<noteq> bot" and "f differentiable at x within A" | |
| 47 | shows "vector_derivative (\<lambda>z. cnj (f z)) (at x within A) = | |
| 48 | cnj (vector_derivative f (at x within A))" (is "_ = cnj ?D") | |
| 49 | proof - | |
| 50 | let ?D = "vector_derivative f (at x within A)" | |
| 51 | from assms have "(f has_vector_derivative ?D) (at x within A)" | |
| 52 | by (subst (asm) vector_derivative_works) | |
| 53 | hence "((\<lambda>x. cnj (f x)) has_vector_derivative cnj ?D) (at x within A)" | |
| 54 | by (rule has_vector_derivative_cnj) | |
| 55 | thus ?thesis using assms by (auto dest: vector_derivative_within) | |
| 56 | qed | |
| 57 | ||
| 58 | lemma vector_derivative_cnj: | |
| 59 | assumes "f differentiable at x" | |
| 60 | shows "vector_derivative (\<lambda>z. cnj (f z)) (at x) = cnj (vector_derivative f (at x))" | |
| 61 | using assms by (intro vector_derivative_cnj_within) auto | |
| 62 | ||
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 63 | lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = (*) 0" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 64 | by auto | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 65 | |
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 66 | lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = (*) 1" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 67 | by auto | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 68 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56370diff
changeset | 69 | lemma uniformly_continuous_on_cmul_right [continuous_intros]: | 
| 56215 | 70 | fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra" | 
| 56332 | 71 | shows "uniformly_continuous_on s f \<Longrightarrow> uniformly_continuous_on s (\<lambda>x. f x * c)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 72 | using bounded_linear.uniformly_continuous_on[OF bounded_linear_mult_left] . | 
| 56215 | 73 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56370diff
changeset | 74 | lemma uniformly_continuous_on_cmul_left[continuous_intros]: | 
| 56215 | 75 | fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra" | 
| 76 | assumes "uniformly_continuous_on s f" | |
| 77 | shows "uniformly_continuous_on s (\<lambda>x. c * f x)" | |
| 78 | by (metis assms bounded_linear.uniformly_continuous_on bounded_linear_mult_right) | |
| 79 | ||
| 80 | lemma continuous_within_norm_id [continuous_intros]: "continuous (at x within S) norm" | |
| 81 | by (rule continuous_norm [OF continuous_ident]) | |
| 82 | ||
| 83 | lemma continuous_on_norm_id [continuous_intros]: "continuous_on S norm" | |
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 84 | by (intro continuous_on_id continuous_on_norm) | 
| 56215 | 85 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 86 | (*MOVE? But not to Finite_Cartesian_Product*) | 
| 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 87 | lemma sums_vec_nth : | 
| 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 88 | assumes "f sums a" | 
| 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 89 | shows "(\<lambda>x. f x $ i) sums a $ i" | 
| 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 90 | using assms unfolding sums_def | 
| 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 91 | by (auto dest: tendsto_vec_nth [where i=i]) | 
| 56215 | 92 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 93 | lemma summable_vec_nth : | 
| 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 94 | assumes "summable f" | 
| 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 95 | shows "summable (\<lambda>x. f x $ i)" | 
| 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 96 | using assms unfolding summable_def | 
| 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 97 | by (blast intro: sums_vec_nth) | 
| 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 98 | |
| 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 99 | (* TODO: Move? *) | 
| 56215 | 100 | lemma DERIV_zero_connected_constant: | 
| 101 |   fixes f :: "'a::{real_normed_field,euclidean_space} \<Rightarrow> 'a"
 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 102 | assumes "connected S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 103 | and "open S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 104 | and "finite K" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 105 | and "continuous_on S f" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 106 | and "\<forall>x\<in>(S - K). DERIV f x :> 0" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 107 | obtains c where "\<And>x. x \<in> S \<Longrightarrow> f(x) = c" | 
| 56215 | 108 | using has_derivative_zero_connected_constant [OF assms(1-4)] assms | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 109 | by (metis DERIV_const has_derivative_const Diff_iff at_within_open frechet_derivative_at has_field_derivative_def) | 
| 56215 | 110 | |
| 66252 | 111 | lemmas DERIV_zero_constant = has_field_derivative_zero_constant | 
| 56215 | 112 | |
| 113 | lemma DERIV_zero_unique: | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 114 | assumes "convex S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 115 | and d0: "\<And>x. x\<in>S \<Longrightarrow> (f has_field_derivative 0) (at x within S)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 116 | and "a \<in> S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 117 | and "x \<in> S" | 
| 56215 | 118 | shows "f x = f a" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 119 | by (rule has_derivative_zero_unique [OF assms(1) _ assms(4,3)]) | 
| 56332 | 120 | (metis d0 has_field_derivative_imp_has_derivative lambda_zero) | 
| 56215 | 121 | |
| 122 | lemma DERIV_zero_connected_unique: | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 123 | assumes "connected S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 124 | and "open S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 125 | and d0: "\<And>x. x\<in>S \<Longrightarrow> DERIV f x :> 0" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 126 | and "a \<in> S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 127 | and "x \<in> S" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 128 | shows "f x = f a" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 129 | by (rule has_derivative_zero_unique_connected [OF assms(2,1) _ assms(5,4)]) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 130 | (metis has_field_derivative_def lambda_zero d0) | 
| 56215 | 131 | |
| 132 | lemma DERIV_transform_within: | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 133 | assumes "(f has_field_derivative f') (at a within S)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 134 | and "0 < d" "a \<in> S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 135 | and "\<And>x. x\<in>S \<Longrightarrow> dist x a < d \<Longrightarrow> f x = g x" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 136 | shows "(g has_field_derivative f') (at a within S)" | 
| 56215 | 137 | using assms unfolding has_field_derivative_def | 
| 56332 | 138 | by (blast intro: has_derivative_transform_within) | 
| 56215 | 139 | |
| 140 | lemma DERIV_transform_within_open: | |
| 141 | assumes "DERIV f a :> f'" | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 142 | and "open S" "a \<in> S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 143 | and "\<And>x. x\<in>S \<Longrightarrow> f x = g x" | 
| 56215 | 144 | shows "DERIV g a :> f'" | 
| 145 | using assms unfolding has_field_derivative_def | |
| 146 | by (metis has_derivative_transform_within_open) | |
| 147 | ||
| 148 | lemma DERIV_transform_at: | |
| 149 | assumes "DERIV f a :> f'" | |
| 150 | and "0 < d" | |
| 151 | and "\<And>x. dist x a < d \<Longrightarrow> f x = g x" | |
| 152 | shows "DERIV g a :> f'" | |
| 153 | by (blast intro: assms DERIV_transform_within) | |
| 154 | ||
| 59615 
fdfdf89a83a6
A few new lemmas and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 155 | (*generalising DERIV_isconst_all, which requires type real (using the ordering)*) | 
| 
fdfdf89a83a6
A few new lemmas and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 156 | lemma DERIV_zero_UNIV_unique: | 
| 66252 | 157 | "(\<And>x. DERIV f x :> 0) \<Longrightarrow> f x = f a" | 
| 158 | by (metis DERIV_zero_unique UNIV_I convex_UNIV) | |
| 59615 
fdfdf89a83a6
A few new lemmas and a bit of tidying up
 paulson <lp15@cam.ac.uk> parents: 
59554diff
changeset | 159 | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 160 | lemma | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 161 |   shows open_halfspace_Re_lt: "open {z. Re(z) < b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 162 |     and open_halfspace_Re_gt: "open {z. Re(z) > b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 163 |     and closed_halfspace_Re_ge: "closed {z. Re(z) \<ge> b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 164 |     and closed_halfspace_Re_le: "closed {z. Re(z) \<le> b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 165 |     and closed_halfspace_Re_eq: "closed {z. Re(z) = b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 166 |     and open_halfspace_Im_lt: "open {z. Im(z) < b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 167 |     and open_halfspace_Im_gt: "open {z. Im(z) > b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 168 |     and closed_halfspace_Im_ge: "closed {z. Im(z) \<ge> b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 169 |     and closed_halfspace_Im_le: "closed {z. Im(z) \<le> b}"
 | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 170 |     and closed_halfspace_Im_eq: "closed {z. Im(z) = b}"
 | 
| 63332 | 171 | by (intro open_Collect_less closed_Collect_le closed_Collect_eq continuous_on_Re | 
| 172 | continuous_on_Im continuous_on_id continuous_on_const)+ | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 173 | |
| 61070 | 174 | lemma closed_complex_Reals: "closed (\<real> :: complex set)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 175 | proof - | 
| 61070 | 176 |   have "(\<real> :: complex set) = {z. Im z = 0}"
 | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 177 | by (auto simp: complex_is_Real_iff) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 178 | then show ?thesis | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 179 | by (metis closed_halfspace_Im_eq) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 180 | qed | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 181 | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 182 | lemma closed_Real_halfspace_Re_le: "closed (\<real> \<inter> {w. Re w \<le> x})"
 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 183 | by (simp add: closed_Int closed_complex_Reals closed_halfspace_Re_le) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 184 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 185 | lemma closed_nonpos_Reals_complex [simp]: "closed (\<real>\<^sub>\<le>\<^sub>0 :: complex set)" | 
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 186 | proof - | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 187 |   have "\<real>\<^sub>\<le>\<^sub>0 = \<real> \<inter> {z. Re(z) \<le> 0}"
 | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 188 | using complex_nonpos_Reals_iff complex_is_Real_iff by auto | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 189 | then show ?thesis | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 190 | by (metis closed_Real_halfspace_Re_le) | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 191 | qed | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 192 | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 193 | lemma closed_Real_halfspace_Re_ge: "closed (\<real> \<inter> {w. x \<le> Re(w)})"
 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 194 | using closed_halfspace_Re_ge | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 195 | by (simp add: closed_Int closed_complex_Reals) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 196 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 197 | lemma closed_nonneg_Reals_complex [simp]: "closed (\<real>\<^sub>\<ge>\<^sub>0 :: complex set)" | 
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 198 | proof - | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 199 |   have "\<real>\<^sub>\<ge>\<^sub>0 = \<real> \<inter> {z. Re(z) \<ge> 0}"
 | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 200 | using complex_nonneg_Reals_iff complex_is_Real_iff by auto | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 201 | then show ?thesis | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 202 | by (metis closed_Real_halfspace_Re_ge) | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 203 | qed | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 204 | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 205 | lemma closed_real_abs_le: "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 206 | proof - | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 207 |   have "{w \<in> \<real>. \<bar>Re w\<bar> \<le> r} = (\<real> \<inter> {w. Re w \<le> r}) \<inter> (\<real> \<inter> {w. Re w \<ge> -r})"
 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 208 | by auto | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 209 |   then show "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 210 | by (simp add: closed_Int closed_Real_halfspace_Re_ge closed_Real_halfspace_Re_le) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 211 | qed | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 212 | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 213 | lemma real_lim: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 214 | fixes l::complex | 
| 61973 | 215 | assumes "(f \<longlongrightarrow> l) F" and "~(trivial_limit F)" and "eventually P F" and "\<And>a. P a \<Longrightarrow> f a \<in> \<real>" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 216 | shows "l \<in> \<real>" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 217 | proof (rule Lim_in_closed_set[OF closed_complex_Reals _ assms(2,1)]) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 218 | show "eventually (\<lambda>x. f x \<in> \<real>) F" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 219 | using assms(3, 4) by (auto intro: eventually_mono) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 220 | qed | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 221 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 222 | lemma real_lim_sequentially: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 223 | fixes l::complex | 
| 61973 | 224 | shows "(f \<longlongrightarrow> l) sequentially \<Longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 225 | by (rule real_lim [where F=sequentially]) (auto simp: eventually_sequentially) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 226 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 227 | lemma real_series: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 228 | fixes l::complex | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 229 | shows "f sums l \<Longrightarrow> (\<And>n. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 230 | unfolding sums_def | 
| 64267 | 231 | by (metis real_lim_sequentially sum_in_Reals) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 232 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 233 | lemma Lim_null_comparison_Re: | 
| 61973 | 234 | assumes "eventually (\<lambda>x. norm(f x) \<le> Re(g x)) F" "(g \<longlongrightarrow> 0) F" shows "(f \<longlongrightarrow> 0) F" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56479diff
changeset | 235 | by (rule Lim_null_comparison[OF assms(1)] tendsto_eq_intros assms(2))+ simp | 
| 56215 | 236 | |
| 60420 | 237 | subsection\<open>Holomorphic functions\<close> | 
| 56215 | 238 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 239 | definition%important holomorphic_on :: "[complex \<Rightarrow> complex, complex set] \<Rightarrow> bool" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 240 | (infixl "(holomorphic'_on)" 50) | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 241 | where "f holomorphic_on s \<equiv> \<forall>x\<in>s. f field_differentiable (at x within s)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 242 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 243 | named_theorems%important holomorphic_intros "structural introduction rules for holomorphic_on" | 
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 244 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 245 | lemma holomorphic_onI [intro?]: "(\<And>x. x \<in> s \<Longrightarrow> f field_differentiable (at x within s)) \<Longrightarrow> f holomorphic_on s" | 
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 246 | by (simp add: holomorphic_on_def) | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 247 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 248 | lemma holomorphic_onD [dest?]: "\<lbrakk>f holomorphic_on s; x \<in> s\<rbrakk> \<Longrightarrow> f field_differentiable (at x within s)" | 
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 249 | by (simp add: holomorphic_on_def) | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 250 | |
| 64394 | 251 | lemma holomorphic_on_imp_differentiable_on: | 
| 252 | "f holomorphic_on s \<Longrightarrow> f differentiable_on s" | |
| 253 | unfolding holomorphic_on_def differentiable_on_def | |
| 254 | by (simp add: field_differentiable_imp_differentiable) | |
| 255 | ||
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 256 | lemma holomorphic_on_imp_differentiable_at: | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 257 | "\<lbrakk>f holomorphic_on s; open s; x \<in> s\<rbrakk> \<Longrightarrow> f field_differentiable (at x)" | 
| 62131 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 258 | using at_within_open holomorphic_on_def by fastforce | 
| 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 paulson parents: 
62087diff
changeset | 259 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 260 | lemma holomorphic_on_empty [holomorphic_intros]: "f holomorphic_on {}"
 | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 261 | by (simp add: holomorphic_on_def) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 262 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 263 | lemma holomorphic_on_open: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 264 | "open s \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>f'. DERIV f x :> f')" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 265 | by (auto simp: holomorphic_on_def field_differentiable_def has_field_derivative_def at_within_open [of _ s]) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 266 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 267 | lemma holomorphic_on_imp_continuous_on: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 268 | "f holomorphic_on s \<Longrightarrow> continuous_on s f" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 269 | by (metis field_differentiable_imp_continuous_at continuous_on_eq_continuous_within holomorphic_on_def) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 270 | |
| 62540 
f2fc5485e3b0
Wenda Li's new material: residue theorem, argument_principle, Rouche_theorem
 paulson <lp15@cam.ac.uk> parents: 
62534diff
changeset | 271 | lemma holomorphic_on_subset [elim]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 272 | "f holomorphic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f holomorphic_on t" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 273 | unfolding holomorphic_on_def | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 274 | by (metis field_differentiable_within_subset subsetD) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 275 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 276 | lemma holomorphic_transform: "\<lbrakk>f holomorphic_on s; \<And>x. x \<in> s \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 277 | by (metis field_differentiable_transform_within linordered_field_no_ub holomorphic_on_def) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 278 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 279 | lemma holomorphic_cong: "s = t ==> (\<And>x. x \<in> s \<Longrightarrow> f x = g x) \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> g holomorphic_on t" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 280 | by (metis holomorphic_transform) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 281 | |
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 282 | lemma holomorphic_on_linear [simp, holomorphic_intros]: "((*) c) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 283 | unfolding holomorphic_on_def by (metis field_differentiable_linear) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 284 | |
| 62217 | 285 | lemma holomorphic_on_const [simp, holomorphic_intros]: "(\<lambda>z. c) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 286 | unfolding holomorphic_on_def by (metis field_differentiable_const) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 287 | |
| 62217 | 288 | lemma holomorphic_on_ident [simp, holomorphic_intros]: "(\<lambda>x. x) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 289 | unfolding holomorphic_on_def by (metis field_differentiable_ident) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 290 | |
| 62217 | 291 | lemma holomorphic_on_id [simp, holomorphic_intros]: "id holomorphic_on s" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 292 | unfolding id_def by (rule holomorphic_on_ident) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 293 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 294 | lemma holomorphic_on_compose: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 295 | "f holomorphic_on s \<Longrightarrow> g holomorphic_on (f ` s) \<Longrightarrow> (g o f) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 296 | using field_differentiable_compose_within[of f _ s g] | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 297 | by (auto simp: holomorphic_on_def) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 298 | |
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 299 | lemma holomorphic_on_compose_gen: | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 300 | "f holomorphic_on s \<Longrightarrow> g holomorphic_on t \<Longrightarrow> f ` s \<subseteq> t \<Longrightarrow> (g o f) holomorphic_on s" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 301 | by (metis holomorphic_on_compose holomorphic_on_subset) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 302 | |
| 68721 | 303 | lemma holomorphic_on_balls_imp_entire: | 
| 304 | assumes "\<not>bdd_above A" "\<And>r. r \<in> A \<Longrightarrow> f holomorphic_on ball c r" | |
| 305 | shows "f holomorphic_on B" | |
| 306 | proof (rule holomorphic_on_subset) | |
| 307 | show "f holomorphic_on UNIV" unfolding holomorphic_on_def | |
| 308 | proof | |
| 309 | fix z :: complex | |
| 310 | from \<open>\<not>bdd_above A\<close> obtain r where r: "r \<in> A" "r > norm (z - c)" | |
| 311 | by (meson bdd_aboveI not_le) | |
| 312 | with assms(2) have "f holomorphic_on ball c r" by blast | |
| 313 | moreover from r have "z \<in> ball c r" by (auto simp: dist_norm norm_minus_commute) | |
| 314 | ultimately show "f field_differentiable at z" | |
| 315 | by (auto simp: holomorphic_on_def at_within_open[of _ "ball c r"]) | |
| 316 | qed | |
| 317 | qed auto | |
| 318 | ||
| 319 | lemma holomorphic_on_balls_imp_entire': | |
| 320 | assumes "\<And>r. r > 0 \<Longrightarrow> f holomorphic_on ball c r" | |
| 321 | shows "f holomorphic_on B" | |
| 322 | proof (rule holomorphic_on_balls_imp_entire) | |
| 323 |   {
 | |
| 324 | fix M :: real | |
| 325 | have "\<exists>x. x > max M 0" by (intro gt_ex) | |
| 326 | hence "\<exists>x>0. x > M" by auto | |
| 327 | } | |
| 328 |   thus "\<not>bdd_above {(0::real)<..}" unfolding bdd_above_def
 | |
| 329 | by (auto simp: not_le) | |
| 330 | qed (insert assms, auto) | |
| 331 | ||
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 332 | lemma holomorphic_on_minus [holomorphic_intros]: "f holomorphic_on s \<Longrightarrow> (\<lambda>z. -(f z)) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 333 | by (metis field_differentiable_minus holomorphic_on_def) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 334 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 335 | lemma holomorphic_on_add [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 336 | "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z + g z) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 337 | unfolding holomorphic_on_def by (metis field_differentiable_add) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 338 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 339 | lemma holomorphic_on_diff [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 340 | "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z - g z) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 341 | unfolding holomorphic_on_def by (metis field_differentiable_diff) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 342 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 343 | lemma holomorphic_on_mult [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 344 | "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z * g z) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 345 | unfolding holomorphic_on_def by (metis field_differentiable_mult) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 346 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 347 | lemma holomorphic_on_inverse [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 348 | "\<lbrakk>f holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. inverse (f z)) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 349 | unfolding holomorphic_on_def by (metis field_differentiable_inverse) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 350 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 351 | lemma holomorphic_on_divide [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 352 | "\<lbrakk>f holomorphic_on s; g holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. f z / g z) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 353 | unfolding holomorphic_on_def by (metis field_differentiable_divide) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 354 | |
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 355 | lemma holomorphic_on_power [holomorphic_intros]: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 356 | "f holomorphic_on s \<Longrightarrow> (\<lambda>z. (f z)^n) holomorphic_on s" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 357 | unfolding holomorphic_on_def by (metis field_differentiable_power) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 358 | |
| 64267 | 359 | lemma holomorphic_on_sum [holomorphic_intros]: | 
| 360 | "(\<And>i. i \<in> I \<Longrightarrow> (f i) holomorphic_on s) \<Longrightarrow> (\<lambda>x. sum (\<lambda>i. f i x) I) holomorphic_on s" | |
| 361 | unfolding holomorphic_on_def by (metis field_differentiable_sum) | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 362 | |
| 67135 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66827diff
changeset | 363 | lemma holomorphic_on_prod [holomorphic_intros]: | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66827diff
changeset | 364 | "(\<And>i. i \<in> I \<Longrightarrow> (f i) holomorphic_on s) \<Longrightarrow> (\<lambda>x. prod (\<lambda>i. f i x) I) holomorphic_on s" | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66827diff
changeset | 365 | by (induction I rule: infinite_finite_induct) (auto intro: holomorphic_intros) | 
| 
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
 Manuel Eberl <eberlm@in.tum.de> parents: 
66827diff
changeset | 366 | |
| 66486 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 367 | lemma holomorphic_pochhammer [holomorphic_intros]: | 
| 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 368 | "f holomorphic_on A \<Longrightarrow> (\<lambda>s. pochhammer (f s) n) holomorphic_on A" | 
| 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 369 | by (induction n) (auto intro!: holomorphic_intros simp: pochhammer_Suc) | 
| 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 370 | |
| 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 371 | lemma holomorphic_on_scaleR [holomorphic_intros]: | 
| 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 372 | "f holomorphic_on A \<Longrightarrow> (\<lambda>x. c *\<^sub>R f x) holomorphic_on A" | 
| 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 373 | by (auto simp: scaleR_conv_of_real intro!: holomorphic_intros) | 
| 
ffaaa83543b2
Lemmas about analysis and permutations
 Manuel Eberl <eberlm@in.tum.de> parents: 
66453diff
changeset | 374 | |
| 67167 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 375 | lemma holomorphic_on_Un [holomorphic_intros]: | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 376 | assumes "f holomorphic_on A" "f holomorphic_on B" "open A" "open B" | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 377 | shows "f holomorphic_on (A \<union> B)" | 
| 68239 | 378 | using assms by (auto simp: holomorphic_on_def at_within_open[of _ A] | 
| 67167 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 379 | at_within_open[of _ B] at_within_open[of _ "A \<union> B"] open_Un) | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 380 | |
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 381 | lemma holomorphic_on_If_Un [holomorphic_intros]: | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 382 | assumes "f holomorphic_on A" "g holomorphic_on B" "open A" "open B" | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 383 | assumes "\<And>z. z \<in> A \<Longrightarrow> z \<in> B \<Longrightarrow> f z = g z" | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 384 | shows "(\<lambda>z. if z \<in> A then f z else g z) holomorphic_on (A \<union> B)" (is "?h holomorphic_on _") | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 385 | proof (intro holomorphic_on_Un) | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 386 | note \<open>f holomorphic_on A\<close> | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 387 | also have "f holomorphic_on A \<longleftrightarrow> ?h holomorphic_on A" | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 388 | by (intro holomorphic_cong) auto | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 389 | finally show \<dots> . | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 390 | next | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 391 | note \<open>g holomorphic_on B\<close> | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 392 | also have "g holomorphic_on B \<longleftrightarrow> ?h holomorphic_on B" | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 393 | using assms by (intro holomorphic_cong) auto | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 394 | finally show \<dots> . | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 395 | qed (insert assms, auto) | 
| 
88d1c9d86f48
Moved analysis material from AFP
 Manuel Eberl <eberlm@in.tum.de> parents: 
67135diff
changeset | 396 | |
| 67371 
2d9cf74943e1
moved in some material from Euler-MacLaurin
 paulson <lp15@cam.ac.uk> parents: 
67167diff
changeset | 397 | lemma leibniz_rule_holomorphic: | 
| 
2d9cf74943e1
moved in some material from Euler-MacLaurin
 paulson <lp15@cam.ac.uk> parents: 
67167diff
changeset | 398 | fixes f::"complex \<Rightarrow> 'b::euclidean_space \<Rightarrow> complex" | 
| 
2d9cf74943e1
moved in some material from Euler-MacLaurin
 paulson <lp15@cam.ac.uk> parents: 
67167diff
changeset | 399 | assumes "\<And>x t. x \<in> U \<Longrightarrow> t \<in> cbox a b \<Longrightarrow> ((\<lambda>x. f x t) has_field_derivative fx x t) (at x within U)" | 
| 
2d9cf74943e1
moved in some material from Euler-MacLaurin
 paulson <lp15@cam.ac.uk> parents: 
67167diff
changeset | 400 | assumes "\<And>x. x \<in> U \<Longrightarrow> (f x) integrable_on cbox a b" | 
| 
2d9cf74943e1
moved in some material from Euler-MacLaurin
 paulson <lp15@cam.ac.uk> parents: 
67167diff
changeset | 401 | assumes "continuous_on (U \<times> (cbox a b)) (\<lambda>(x, t). fx x t)" | 
| 
2d9cf74943e1
moved in some material from Euler-MacLaurin
 paulson <lp15@cam.ac.uk> parents: 
67167diff
changeset | 402 | assumes "convex U" | 
| 
2d9cf74943e1
moved in some material from Euler-MacLaurin
 paulson <lp15@cam.ac.uk> parents: 
67167diff
changeset | 403 | shows "(\<lambda>x. integral (cbox a b) (f x)) holomorphic_on U" | 
| 
2d9cf74943e1
moved in some material from Euler-MacLaurin
 paulson <lp15@cam.ac.uk> parents: 
67167diff
changeset | 404 | using leibniz_rule_field_differentiable[OF assms(1-3) _ assms(4)] | 
| 
2d9cf74943e1
moved in some material from Euler-MacLaurin
 paulson <lp15@cam.ac.uk> parents: 
67167diff
changeset | 405 | by (auto simp: holomorphic_on_def) | 
| 
2d9cf74943e1
moved in some material from Euler-MacLaurin
 paulson <lp15@cam.ac.uk> parents: 
67167diff
changeset | 406 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 407 | lemma DERIV_deriv_iff_field_differentiable: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 408 | "DERIV f x :> deriv f x \<longleftrightarrow> f field_differentiable at x" | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 409 | unfolding field_differentiable_def by (metis DERIV_imp_deriv) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 410 | |
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 411 | lemma holomorphic_derivI: | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 412 | "\<lbrakk>f holomorphic_on S; open S; x \<in> S\<rbrakk> | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 413 | \<Longrightarrow> (f has_field_derivative deriv f x) (at x within T)" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 414 | by (metis DERIV_deriv_iff_field_differentiable at_within_open holomorphic_on_def has_field_derivative_at_within) | 
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 415 | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 416 | lemma complex_derivative_chain: | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 417 | "f field_differentiable at x \<Longrightarrow> g field_differentiable at (f x) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 418 | \<Longrightarrow> deriv (g o f) x = deriv g (f x) * deriv f x" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 419 | by (metis DERIV_deriv_iff_field_differentiable DERIV_chain DERIV_imp_deriv) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 420 | |
| 62397 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62217diff
changeset | 421 | lemma deriv_linear [simp]: "deriv (\<lambda>w. c * w) = (\<lambda>z. c)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 422 | by (metis DERIV_imp_deriv DERIV_cmult_Id) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 423 | |
| 62397 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62217diff
changeset | 424 | lemma deriv_ident [simp]: "deriv (\<lambda>w. w) = (\<lambda>z. 1)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 425 | by (metis DERIV_imp_deriv DERIV_ident) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 426 | |
| 62397 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62217diff
changeset | 427 | lemma deriv_id [simp]: "deriv id = (\<lambda>z. 1)" | 
| 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62217diff
changeset | 428 | by (simp add: id_def) | 
| 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62217diff
changeset | 429 | |
| 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62217diff
changeset | 430 | lemma deriv_const [simp]: "deriv (\<lambda>w. c) = (\<lambda>z. 0)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 431 | by (metis DERIV_imp_deriv DERIV_const) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 432 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 433 | lemma deriv_add [simp]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 434 | "\<lbrakk>f field_differentiable at z; g field_differentiable at z\<rbrakk> | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 435 | \<Longrightarrow> deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 436 | unfolding DERIV_deriv_iff_field_differentiable[symmetric] | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 437 | by (auto intro!: DERIV_imp_deriv derivative_intros) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 438 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 439 | lemma deriv_diff [simp]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 440 | "\<lbrakk>f field_differentiable at z; g field_differentiable at z\<rbrakk> | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 441 | \<Longrightarrow> deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 442 | unfolding DERIV_deriv_iff_field_differentiable[symmetric] | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 443 | by (auto intro!: DERIV_imp_deriv derivative_intros) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 444 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 445 | lemma deriv_mult [simp]: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 446 | "\<lbrakk>f field_differentiable at z; g field_differentiable at z\<rbrakk> | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 447 | \<Longrightarrow> deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 448 | unfolding DERIV_deriv_iff_field_differentiable[symmetric] | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 449 | by (auto intro!: DERIV_imp_deriv derivative_eq_intros) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 450 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 451 | lemma deriv_cmult: | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 452 | "f field_differentiable at z \<Longrightarrow> deriv (\<lambda>w. c * f w) z = c * deriv f z" | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 453 | by simp | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 454 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 455 | lemma deriv_cmult_right: | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 456 | "f field_differentiable at z \<Longrightarrow> deriv (\<lambda>w. f w * c) z = deriv f z * c" | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 457 | by simp | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 458 | |
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 459 | lemma deriv_inverse [simp]: | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 460 | "\<lbrakk>f field_differentiable at z; f z \<noteq> 0\<rbrakk> | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 461 | \<Longrightarrow> deriv (\<lambda>w. inverse (f w)) z = - deriv f z / f z ^ 2" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 462 | unfolding DERIV_deriv_iff_field_differentiable[symmetric] | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 463 | by (safe intro!: DERIV_imp_deriv derivative_eq_intros) (auto simp: divide_simps power2_eq_square) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 464 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 465 | lemma deriv_divide [simp]: | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 466 | "\<lbrakk>f field_differentiable at z; g field_differentiable at z; g z \<noteq> 0\<rbrakk> | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 467 | \<Longrightarrow> deriv (\<lambda>w. f w / g w) z = (deriv f z * g z - f z * deriv g z) / g z ^ 2" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 468 | by (simp add: field_class.field_divide_inverse field_differentiable_inverse) | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 469 | (simp add: divide_simps power2_eq_square) | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 470 | |
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 471 | lemma deriv_cdivide_right: | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 472 | "f field_differentiable at z \<Longrightarrow> deriv (\<lambda>w. f w / c) z = deriv f z / c" | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 473 | by (simp add: field_class.field_divide_inverse) | 
| 62217 | 474 | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 475 | lemma complex_derivative_transform_within_open: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 476 | "\<lbrakk>f holomorphic_on s; g holomorphic_on s; open s; z \<in> s; \<And>w. w \<in> s \<Longrightarrow> f w = g w\<rbrakk> | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 477 | \<Longrightarrow> deriv f z = deriv g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 478 | unfolding holomorphic_on_def | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 479 | by (rule DERIV_imp_deriv) | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 480 | (metis DERIV_deriv_iff_field_differentiable DERIV_transform_within_open at_within_open) | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 481 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 482 | lemma deriv_compose_linear: | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 483 | "f field_differentiable at (c * z) \<Longrightarrow> deriv (\<lambda>w. f (c * w)) z = c * deriv f (c * z)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 484 | apply (rule DERIV_imp_deriv) | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 485 | unfolding DERIV_deriv_iff_field_differentiable [symmetric] | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 486 | by (metis (full_types) DERIV_chain2 DERIV_cmult_Id mult.commute) | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 487 | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 488 | |
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 489 | lemma nonzero_deriv_nonconstant: | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 490 | assumes df: "DERIV f \<xi> :> df" and S: "open S" "\<xi> \<in> S" and "df \<noteq> 0" | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 491 | shows "\<not> f constant_on S" | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 492 | unfolding constant_on_def | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 493 | by (metis \<open>df \<noteq> 0\<close> DERIV_transform_within_open [OF df S] DERIV_const DERIV_unique) | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 494 | |
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 495 | lemma holomorphic_nonconstant: | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 496 | assumes holf: "f holomorphic_on S" and "open S" "\<xi> \<in> S" "deriv f \<xi> \<noteq> 0" | 
| 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 497 | shows "\<not> f constant_on S" | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 498 | by (rule nonzero_deriv_nonconstant [of f "deriv f \<xi>" \<xi> S]) | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 499 | (use assms in \<open>auto simp: holomorphic_derivI\<close>) | 
| 62533 
bc25f3916a99
new material to Blochj's theorem, as well as supporting lemmas
 paulson <lp15@cam.ac.uk> parents: 
62408diff
changeset | 500 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 501 | subsection%unimportant\<open>Caratheodory characterization\<close> | 
| 64394 | 502 | |
| 503 | lemma field_differentiable_caratheodory_at: | |
| 504 | "f field_differentiable (at z) \<longleftrightarrow> | |
| 505 | (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z) g)" | |
| 506 | using CARAT_DERIV [of f] | |
| 507 | by (simp add: field_differentiable_def has_field_derivative_def) | |
| 508 | ||
| 509 | lemma field_differentiable_caratheodory_within: | |
| 510 | "f field_differentiable (at z within s) \<longleftrightarrow> | |
| 511 | (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z within s) g)" | |
| 512 | using DERIV_caratheodory_within [of f] | |
| 513 | by (simp add: field_differentiable_def has_field_derivative_def) | |
| 514 | ||
| 60420 | 515 | subsection\<open>Analyticity on a set\<close> | 
| 56215 | 516 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 517 | definition%important analytic_on (infixl "(analytic'_on)" 50) | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 518 | where "f analytic_on S \<equiv> \<forall>x \<in> S. \<exists>e. 0 < e \<and> f holomorphic_on (ball x e)" | 
| 56215 | 519 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 520 | named_theorems%important analytic_intros "introduction rules for proving analyticity" | 
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 521 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 522 | lemma analytic_imp_holomorphic: "f analytic_on S \<Longrightarrow> f holomorphic_on S" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 523 | by (simp add: at_within_open [OF _ open_ball] analytic_on_def holomorphic_on_def) | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 524 | (metis centre_in_ball field_differentiable_at_within) | 
| 56215 | 525 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 526 | lemma analytic_on_open: "open S \<Longrightarrow> f analytic_on S \<longleftrightarrow> f holomorphic_on S" | 
| 56215 | 527 | apply (auto simp: analytic_imp_holomorphic) | 
| 528 | apply (auto simp: analytic_on_def holomorphic_on_def) | |
| 529 | by (metis holomorphic_on_def holomorphic_on_subset open_contains_ball) | |
| 530 | ||
| 531 | lemma analytic_on_imp_differentiable_at: | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 532 | "f analytic_on S \<Longrightarrow> x \<in> S \<Longrightarrow> f field_differentiable (at x)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 533 | apply (auto simp: analytic_on_def holomorphic_on_def) | 
| 66827 
c94531b5007d
Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
 paulson <lp15@cam.ac.uk> parents: 
66486diff
changeset | 534 | by (metis open_ball centre_in_ball field_differentiable_within_open) | 
| 56215 | 535 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 536 | lemma analytic_on_subset: "f analytic_on S \<Longrightarrow> T \<subseteq> S \<Longrightarrow> f analytic_on T" | 
| 56215 | 537 | by (auto simp: analytic_on_def) | 
| 538 | ||
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 539 | lemma analytic_on_Un: "f analytic_on (S \<union> T) \<longleftrightarrow> f analytic_on S \<and> f analytic_on T" | 
| 56215 | 540 | by (auto simp: analytic_on_def) | 
| 541 | ||
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 542 | lemma analytic_on_Union: "f analytic_on (\<Union>\<T>) \<longleftrightarrow> (\<forall>T \<in> \<T>. f analytic_on T)" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 543 | by (auto simp: analytic_on_def) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 544 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 545 | lemma analytic_on_UN: "f analytic_on (\<Union>i\<in>I. S i) \<longleftrightarrow> (\<forall>i\<in>I. f analytic_on (S i))" | 
| 56215 | 546 | by (auto simp: analytic_on_def) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 547 | |
| 56215 | 548 | lemma analytic_on_holomorphic: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 549 | "f analytic_on S \<longleftrightarrow> (\<exists>T. open T \<and> S \<subseteq> T \<and> f holomorphic_on T)" | 
| 56215 | 550 | (is "?lhs = ?rhs") | 
| 551 | proof - | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 552 | have "?lhs \<longleftrightarrow> (\<exists>T. open T \<and> S \<subseteq> T \<and> f analytic_on T)" | 
| 56215 | 553 | proof safe | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 554 | assume "f analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 555 | then show "\<exists>T. open T \<and> S \<subseteq> T \<and> f analytic_on T" | 
| 56215 | 556 | apply (simp add: analytic_on_def) | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 557 |       apply (rule exI [where x="\<Union>{U. open U \<and> f analytic_on U}"], auto)
 | 
| 66827 
c94531b5007d
Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
 paulson <lp15@cam.ac.uk> parents: 
66486diff
changeset | 558 | apply (metis open_ball analytic_on_open centre_in_ball) | 
| 56215 | 559 | by (metis analytic_on_def) | 
| 560 | next | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 561 | fix T | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 562 | assume "open T" "S \<subseteq> T" "f analytic_on T" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 563 | then show "f analytic_on S" | 
| 56215 | 564 | by (metis analytic_on_subset) | 
| 565 | qed | |
| 566 | also have "... \<longleftrightarrow> ?rhs" | |
| 567 | by (auto simp: analytic_on_open) | |
| 568 | finally show ?thesis . | |
| 569 | qed | |
| 570 | ||
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 571 | lemma analytic_on_linear [analytic_intros,simp]: "((*) c) analytic_on S" | 
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 572 | by (auto simp add: analytic_on_holomorphic) | 
| 56215 | 573 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 574 | lemma analytic_on_const [analytic_intros,simp]: "(\<lambda>z. c) analytic_on S" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 575 | by (metis analytic_on_def holomorphic_on_const zero_less_one) | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 576 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 577 | lemma analytic_on_ident [analytic_intros,simp]: "(\<lambda>x. x) analytic_on S" | 
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 578 | by (simp add: analytic_on_def gt_ex) | 
| 56215 | 579 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 580 | lemma analytic_on_id [analytic_intros]: "id analytic_on S" | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 581 | unfolding id_def by (rule analytic_on_ident) | 
| 56215 | 582 | |
| 583 | lemma analytic_on_compose: | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 584 | assumes f: "f analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 585 | and g: "g analytic_on (f ` S)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 586 | shows "(g o f) analytic_on S" | 
| 56215 | 587 | unfolding analytic_on_def | 
| 588 | proof (intro ballI) | |
| 589 | fix x | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 590 | assume x: "x \<in> S" | 
| 56215 | 591 | then obtain e where e: "0 < e" and fh: "f holomorphic_on ball x e" using f | 
| 592 | by (metis analytic_on_def) | |
| 593 | obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball (f x) e'" using g | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 594 | by (metis analytic_on_def g image_eqI x) | 
| 56215 | 595 | have "isCont f x" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 596 | by (metis analytic_on_imp_differentiable_at field_differentiable_imp_continuous_at f x) | 
| 56215 | 597 | with e' obtain d where d: "0 < d" and fd: "f ` ball x d \<subseteq> ball (f x) e'" | 
| 598 | by (auto simp: continuous_at_ball) | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 599 | have "g \<circ> f holomorphic_on ball x (min d e)" | 
| 56215 | 600 | apply (rule holomorphic_on_compose) | 
| 601 | apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | |
| 602 | by (metis fd gh holomorphic_on_subset image_mono min.cobounded1 subset_ball) | |
| 603 | then show "\<exists>e>0. g \<circ> f holomorphic_on ball x e" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 604 | by (metis d e min_less_iff_conj) | 
| 56215 | 605 | qed | 
| 606 | ||
| 607 | lemma analytic_on_compose_gen: | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 608 | "f analytic_on S \<Longrightarrow> g analytic_on T \<Longrightarrow> (\<And>z. z \<in> S \<Longrightarrow> f z \<in> T) | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 609 | \<Longrightarrow> g o f analytic_on S" | 
| 56215 | 610 | by (metis analytic_on_compose analytic_on_subset image_subset_iff) | 
| 611 | ||
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 612 | lemma analytic_on_neg [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 613 | "f analytic_on S \<Longrightarrow> (\<lambda>z. -(f z)) analytic_on S" | 
| 56215 | 614 | by (metis analytic_on_holomorphic holomorphic_on_minus) | 
| 615 | ||
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 616 | lemma analytic_on_add [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 617 | assumes f: "f analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 618 | and g: "g analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 619 | shows "(\<lambda>z. f z + g z) analytic_on S" | 
| 56215 | 620 | unfolding analytic_on_def | 
| 621 | proof (intro ballI) | |
| 622 | fix z | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 623 | assume z: "z \<in> S" | 
| 56215 | 624 | then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f | 
| 625 | by (metis analytic_on_def) | |
| 626 | obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 627 | by (metis analytic_on_def g z) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 628 | have "(\<lambda>z. f z + g z) holomorphic_on ball z (min e e')" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 629 | apply (rule holomorphic_on_add) | 
| 56215 | 630 | apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | 
| 631 | by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | |
| 632 | then show "\<exists>e>0. (\<lambda>z. f z + g z) holomorphic_on ball z e" | |
| 633 | by (metis e e' min_less_iff_conj) | |
| 634 | qed | |
| 635 | ||
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 636 | lemma analytic_on_diff [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 637 | assumes f: "f analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 638 | and g: "g analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 639 | shows "(\<lambda>z. f z - g z) analytic_on S" | 
| 56215 | 640 | unfolding analytic_on_def | 
| 641 | proof (intro ballI) | |
| 642 | fix z | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 643 | assume z: "z \<in> S" | 
| 56215 | 644 | then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f | 
| 645 | by (metis analytic_on_def) | |
| 646 | obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 647 | by (metis analytic_on_def g z) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 648 | have "(\<lambda>z. f z - g z) holomorphic_on ball z (min e e')" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 649 | apply (rule holomorphic_on_diff) | 
| 56215 | 650 | apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | 
| 651 | by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | |
| 652 | then show "\<exists>e>0. (\<lambda>z. f z - g z) holomorphic_on ball z e" | |
| 653 | by (metis e e' min_less_iff_conj) | |
| 654 | qed | |
| 655 | ||
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 656 | lemma analytic_on_mult [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 657 | assumes f: "f analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 658 | and g: "g analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 659 | shows "(\<lambda>z. f z * g z) analytic_on S" | 
| 56215 | 660 | unfolding analytic_on_def | 
| 661 | proof (intro ballI) | |
| 662 | fix z | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 663 | assume z: "z \<in> S" | 
| 56215 | 664 | then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f | 
| 665 | by (metis analytic_on_def) | |
| 666 | obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 667 | by (metis analytic_on_def g z) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 668 | have "(\<lambda>z. f z * g z) holomorphic_on ball z (min e e')" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 669 | apply (rule holomorphic_on_mult) | 
| 56215 | 670 | apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | 
| 671 | by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball) | |
| 672 | then show "\<exists>e>0. (\<lambda>z. f z * g z) holomorphic_on ball z e" | |
| 673 | by (metis e e' min_less_iff_conj) | |
| 674 | qed | |
| 675 | ||
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 676 | lemma analytic_on_inverse [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 677 | assumes f: "f analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 678 | and nz: "(\<And>z. z \<in> S \<Longrightarrow> f z \<noteq> 0)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 679 | shows "(\<lambda>z. inverse (f z)) analytic_on S" | 
| 56215 | 680 | unfolding analytic_on_def | 
| 681 | proof (intro ballI) | |
| 682 | fix z | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 683 | assume z: "z \<in> S" | 
| 56215 | 684 | then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f | 
| 685 | by (metis analytic_on_def) | |
| 686 | have "continuous_on (ball z e) f" | |
| 687 | by (metis fh holomorphic_on_imp_continuous_on) | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 688 | then obtain e' where e': "0 < e'" and nz': "\<And>y. dist z y < e' \<Longrightarrow> f y \<noteq> 0" | 
| 66827 
c94531b5007d
Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
 paulson <lp15@cam.ac.uk> parents: 
66486diff
changeset | 689 | by (metis open_ball centre_in_ball continuous_on_open_avoid e z nz) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 690 | have "(\<lambda>z. inverse (f z)) holomorphic_on ball z (min e e')" | 
| 56215 | 691 | apply (rule holomorphic_on_inverse) | 
| 692 | apply (metis fh holomorphic_on_subset min.cobounded2 min.commute subset_ball) | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 693 | by (metis nz' mem_ball min_less_iff_conj) | 
| 56215 | 694 | then show "\<exists>e>0. (\<lambda>z. inverse (f z)) holomorphic_on ball z e" | 
| 695 | by (metis e e' min_less_iff_conj) | |
| 696 | qed | |
| 697 | ||
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 698 | lemma analytic_on_divide [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 699 | assumes f: "f analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 700 | and g: "g analytic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 701 | and nz: "(\<And>z. z \<in> S \<Longrightarrow> g z \<noteq> 0)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 702 | shows "(\<lambda>z. f z / g z) analytic_on S" | 
| 56215 | 703 | unfolding divide_inverse | 
| 704 | by (metis analytic_on_inverse analytic_on_mult f g nz) | |
| 705 | ||
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 706 | lemma analytic_on_power [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 707 | "f analytic_on S \<Longrightarrow> (\<lambda>z. (f z) ^ n) analytic_on S" | 
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 708 | by (induct n) (auto simp: analytic_on_mult) | 
| 56215 | 709 | |
| 65587 
16a8991ab398
New material (and some tidying) purely in the Analysis directory
 paulson <lp15@cam.ac.uk> parents: 
64394diff
changeset | 710 | lemma analytic_on_sum [analytic_intros]: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 711 | "(\<And>i. i \<in> I \<Longrightarrow> (f i) analytic_on S) \<Longrightarrow> (\<lambda>x. sum (\<lambda>i. f i x) I) analytic_on S" | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 712 | by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_const analytic_on_add) | 
| 56215 | 713 | |
| 62408 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 714 | lemma deriv_left_inverse: | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 715 | assumes "f holomorphic_on S" and "g holomorphic_on T" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 716 | and "open S" and "open T" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 717 | and "f ` S \<subseteq> T" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 718 | and [simp]: "\<And>z. z \<in> S \<Longrightarrow> g (f z) = z" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 719 | and "w \<in> S" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 720 | shows "deriv f w * deriv g (f w) = 1" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 721 | proof - | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 722 | have "deriv f w * deriv g (f w) = deriv g (f w) * deriv f w" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 723 | by (simp add: algebra_simps) | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 724 | also have "... = deriv (g o f) w" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 725 | using assms | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 726 | by (metis analytic_on_imp_differentiable_at analytic_on_open complex_derivative_chain image_subset_iff) | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 727 | also have "... = deriv id w" | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 728 | proof (rule complex_derivative_transform_within_open [where s=S]) | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 729 | show "g \<circ> f holomorphic_on S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 730 | by (rule assms holomorphic_on_compose_gen holomorphic_intros)+ | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 731 | qed (use assms in auto) | 
| 62408 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 732 | also have "... = 1" | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 733 | by simp | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 734 | finally show ?thesis . | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 735 | qed | 
| 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 736 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 737 | subsection%unimportant\<open>Analyticity at a point\<close> | 
| 56215 | 738 | |
| 739 | lemma analytic_at_ball: | |
| 740 |   "f analytic_on {z} \<longleftrightarrow> (\<exists>e. 0<e \<and> f holomorphic_on ball z e)"
 | |
| 741 | by (metis analytic_on_def singleton_iff) | |
| 742 | ||
| 743 | lemma analytic_at: | |
| 744 |     "f analytic_on {z} \<longleftrightarrow> (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s)"
 | |
| 745 | by (metis analytic_on_holomorphic empty_subsetI insert_subset) | |
| 746 | ||
| 747 | lemma analytic_on_analytic_at: | |
| 748 |     "f analytic_on s \<longleftrightarrow> (\<forall>z \<in> s. f analytic_on {z})"
 | |
| 749 | by (metis analytic_at_ball analytic_on_def) | |
| 750 | ||
| 751 | lemma analytic_at_two: | |
| 752 |   "f analytic_on {z} \<and> g analytic_on {z} \<longleftrightarrow>
 | |
| 753 | (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s \<and> g holomorphic_on s)" | |
| 754 | (is "?lhs = ?rhs") | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 755 | proof | 
| 56215 | 756 | assume ?lhs | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 757 | then obtain s t | 
| 56215 | 758 | where st: "open s" "z \<in> s" "f holomorphic_on s" | 
| 759 | "open t" "z \<in> t" "g holomorphic_on t" | |
| 760 | by (auto simp: analytic_at) | |
| 761 | show ?rhs | |
| 762 | apply (rule_tac x="s \<inter> t" in exI) | |
| 763 | using st | |
| 69286 | 764 | apply (auto simp: holomorphic_on_subset) | 
| 56215 | 765 | done | 
| 766 | next | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 767 | assume ?rhs | 
| 56215 | 768 | then show ?lhs | 
| 769 | by (force simp add: analytic_at) | |
| 770 | qed | |
| 771 | ||
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 772 | subsection%unimportant\<open>Combining theorems for derivative with ``analytic at'' hypotheses\<close> | 
| 56215 | 773 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 774 | lemma | 
| 56215 | 775 |   assumes "f analytic_on {z}" "g analytic_on {z}"
 | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 776 | shows complex_derivative_add_at: "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 777 | and complex_derivative_diff_at: "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 778 | and complex_derivative_mult_at: "deriv (\<lambda>w. f w * g w) z = | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 779 | f z * deriv g z + deriv f z * g z" | 
| 56215 | 780 | proof - | 
| 781 | obtain s where s: "open s" "z \<in> s" "f holomorphic_on s" "g holomorphic_on s" | |
| 782 | using assms by (metis analytic_at_two) | |
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 783 | show "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 784 | apply (rule DERIV_imp_deriv [OF DERIV_add]) | 
| 56215 | 785 | using s | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 786 | apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable) | 
| 56215 | 787 | done | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 788 | show "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 789 | apply (rule DERIV_imp_deriv [OF DERIV_diff]) | 
| 56215 | 790 | using s | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 791 | apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable) | 
| 56215 | 792 | done | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 793 | show "deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z" | 
| 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 794 | apply (rule DERIV_imp_deriv [OF DERIV_mult']) | 
| 56215 | 795 | using s | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 796 | apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable) | 
| 56215 | 797 | done | 
| 798 | qed | |
| 799 | ||
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 800 | lemma deriv_cmult_at: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 801 |   "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. c * f w) z = c * deriv f z"
 | 
| 61848 | 802 | by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const) | 
| 56215 | 803 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 804 | lemma deriv_cmult_right_at: | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 805 |   "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. f w * c) z = deriv f z * c"
 | 
| 61848 | 806 | by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const) | 
| 56215 | 807 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 808 | subsection%unimportant\<open>Complex differentiation of sequences and series\<close> | 
| 56215 | 809 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 810 | (* TODO: Could probably be simplified using Uniform_Limit *) | 
| 56215 | 811 | lemma has_complex_derivative_sequence: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 812 | fixes S :: "complex set" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 813 | assumes cvs: "convex S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 814 | and df: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x within S)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 815 | and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> S \<longrightarrow> norm (f' n x - g' x) \<le> e" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 816 | and "\<exists>x l. x \<in> S \<and> ((\<lambda>n. f n x) \<longlongrightarrow> l) sequentially" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 817 | shows "\<exists>g. \<forall>x \<in> S. ((\<lambda>n. f n x) \<longlongrightarrow> g x) sequentially \<and> | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 818 | (g has_field_derivative (g' x)) (at x within S)" | 
| 56215 | 819 | proof - | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 820 | from assms obtain x l where x: "x \<in> S" and tf: "((\<lambda>n. f n x) \<longlongrightarrow> l) sequentially" | 
| 56215 | 821 | by blast | 
| 822 |   { fix e::real assume e: "e > 0"
 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 823 | then obtain N where N: "\<forall>n\<ge>N. \<forall>x. x \<in> S \<longrightarrow> cmod (f' n x - g' x) \<le> e" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 824 | by (metis conv) | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 825 | have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>S. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h" | 
| 56215 | 826 | proof (rule exI [of _ N], clarify) | 
| 827 | fix n y h | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 828 | assume "N \<le> n" "y \<in> S" | 
| 56215 | 829 | then have "cmod (f' n y - g' y) \<le> e" | 
| 830 | by (metis N) | |
| 831 | then have "cmod h * cmod (f' n y - g' y) \<le> cmod h * e" | |
| 832 | by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2) | |
| 833 | then show "cmod (f' n y * h - g' y * h) \<le> e * cmod h" | |
| 834 | by (simp add: norm_mult [symmetric] field_simps) | |
| 835 | qed | |
| 836 | } note ** = this | |
| 837 | show ?thesis | |
| 68055 | 838 | unfolding has_field_derivative_def | 
| 56215 | 839 | proof (rule has_derivative_sequence [OF cvs _ _ x]) | 
| 68239 | 840 | show "(\<lambda>n. f n x) \<longlonglongrightarrow> l" | 
| 841 | by (rule tf) | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 842 | next show "\<And>e. e > 0 \<Longrightarrow> \<forall>\<^sub>F n in sequentially. \<forall>x\<in>S. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h" | 
| 68239 | 843 | unfolding eventually_sequentially by (blast intro: **) | 
| 68055 | 844 | qed (metis has_field_derivative_def df) | 
| 56215 | 845 | qed | 
| 846 | ||
| 847 | lemma has_complex_derivative_series: | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 848 | fixes S :: "complex set" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 849 | assumes cvs: "convex S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 850 | and df: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x within S)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 851 | and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> S | 
| 56215 | 852 | \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e" | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 853 | and "\<exists>x l. x \<in> S \<and> ((\<lambda>n. f n x) sums l)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 854 | shows "\<exists>g. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((g has_field_derivative g' x) (at x within S))" | 
| 56215 | 855 | proof - | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 856 | from assms obtain x l where x: "x \<in> S" and sf: "((\<lambda>n. f n x) sums l)" | 
| 56215 | 857 | by blast | 
| 858 |   { fix e::real assume e: "e > 0"
 | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 859 | then obtain N where N: "\<forall>n x. n \<ge> N \<longrightarrow> x \<in> S | 
| 56215 | 860 | \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 861 | by (metis conv) | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 862 | have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>S. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h" | 
| 56215 | 863 | proof (rule exI [of _ N], clarify) | 
| 864 | fix n y h | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 865 | assume "N \<le> n" "y \<in> S" | 
| 56215 | 866 | then have "cmod ((\<Sum>i<n. f' i y) - g' y) \<le> e" | 
| 867 | by (metis N) | |
| 868 | then have "cmod h * cmod ((\<Sum>i<n. f' i y) - g' y) \<le> cmod h * e" | |
| 869 | by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2) | |
| 870 | then show "cmod ((\<Sum>i<n. h * f' i y) - g' y * h) \<le> e * cmod h" | |
| 64267 | 871 | by (simp add: norm_mult [symmetric] field_simps sum_distrib_left) | 
| 56215 | 872 | qed | 
| 873 | } note ** = this | |
| 874 | show ?thesis | |
| 875 | unfolding has_field_derivative_def | |
| 876 | proof (rule has_derivative_series [OF cvs _ _ x]) | |
| 877 | fix n x | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 878 | assume "x \<in> S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 879 | then show "((f n) has_derivative (\<lambda>z. z * f' n x)) (at x within S)" | 
| 56215 | 880 | by (metis df has_field_derivative_def mult_commute_abs) | 
| 881 | next show " ((\<lambda>n. f n x) sums l)" | |
| 882 | by (rule sf) | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 883 | next show "\<And>e. e>0 \<Longrightarrow> \<forall>\<^sub>F n in sequentially. \<forall>x\<in>S. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h" | 
| 68239 | 884 | unfolding eventually_sequentially by (blast intro: **) | 
| 56215 | 885 | qed | 
| 886 | qed | |
| 887 | ||
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 888 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 889 | lemma field_differentiable_series: | 
| 66252 | 890 |   fixes f :: "nat \<Rightarrow> 'a::{real_normed_field,banach} \<Rightarrow> 'a"
 | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 891 | assumes "convex S" "open S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 892 | assumes "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 893 | assumes "uniformly_convergent_on S (\<lambda>n x. \<Sum>i<n. f' i x)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 894 | assumes "x0 \<in> S" "summable (\<lambda>n. f n x0)" and x: "x \<in> S" | 
| 68055 | 895 | shows "(\<lambda>x. \<Sum>n. f n x) field_differentiable (at x)" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 896 | proof - | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 897 | from assms(4) obtain g' where A: "uniform_limit S (\<lambda>n x. \<Sum>i<n. f' i x) g' sequentially" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 898 | unfolding uniformly_convergent_on_def by blast | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 899 | from x and \<open>open S\<close> have S: "at x within S = at x" by (rule at_within_open) | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 900 | have "\<exists>g. \<forall>x\<in>S. (\<lambda>n. f n x) sums g x \<and> (g has_field_derivative g' x) (at x within S)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 901 | by (intro has_field_derivative_series[of S f f' g' x0] assms A has_field_derivative_at_within) | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 902 | then obtain g where g: "\<And>x. x \<in> S \<Longrightarrow> (\<lambda>n. f n x) sums g x" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 903 | "\<And>x. x \<in> S \<Longrightarrow> (g has_field_derivative g' x) (at x within S)" by blast | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 904 | from g(2)[OF x] have g': "(g has_derivative (*) (g' x)) (at x)" | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 905 | by (simp add: has_field_derivative_def S) | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68721diff
changeset | 906 | have "((\<lambda>x. \<Sum>n. f n x) has_derivative (*) (g' x)) (at x)" | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 907 | by (rule has_derivative_transform_within_open[OF g' \<open>open S\<close> x]) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 908 | (insert g, auto simp: sums_iff) | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 909 | thus "(\<lambda>x. \<Sum>n. f n x) field_differentiable (at x)" unfolding differentiable_def | 
| 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 910 | by (auto simp: summable_def field_differentiable_def has_field_derivative_def) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 911 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 912 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 913 | subsection%unimportant\<open>Bound theorem\<close> | 
| 56215 | 914 | |
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 915 | lemma field_differentiable_bound: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 916 | fixes S :: "'a::real_normed_field set" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 917 | assumes cvs: "convex S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 918 | and df: "\<And>z. z \<in> S \<Longrightarrow> (f has_field_derivative f' z) (at z within S)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 919 | and dn: "\<And>z. z \<in> S \<Longrightarrow> norm (f' z) \<le> B" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 920 | and "x \<in> S" "y \<in> S" | 
| 56215 | 921 | shows "norm(f x - f y) \<le> B * norm(x - y)" | 
| 922 | apply (rule differentiable_bound [OF cvs]) | |
| 68239 | 923 | apply (erule df [unfolded has_field_derivative_def]) | 
| 924 | apply (rule onorm_le, simp_all add: norm_mult mult_right_mono assms) | |
| 56215 | 925 | done | 
| 926 | ||
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 927 | subsection%unimportant\<open>Inverse function theorem for complex derivatives\<close> | 
| 56215 | 928 | |
| 66252 | 929 | lemma has_field_derivative_inverse_basic: | 
| 56215 | 930 | shows "DERIV f (g y) :> f' \<Longrightarrow> | 
| 931 | f' \<noteq> 0 \<Longrightarrow> | |
| 932 | continuous (at y) g \<Longrightarrow> | |
| 933 | open t \<Longrightarrow> | |
| 934 | y \<in> t \<Longrightarrow> | |
| 935 | (\<And>z. z \<in> t \<Longrightarrow> f (g z) = z) | |
| 936 | \<Longrightarrow> DERIV g y :> inverse (f')" | |
| 937 | unfolding has_field_derivative_def | |
| 938 | apply (rule has_derivative_inverse_basic) | |
| 939 | apply (auto simp: bounded_linear_mult_right) | |
| 940 | done | |
| 941 | ||
| 66252 | 942 | lemma has_field_derivative_inverse_strong: | 
| 943 |   fixes f :: "'a::{euclidean_space,real_normed_field} \<Rightarrow> 'a"
 | |
| 56215 | 944 | shows "DERIV f x :> f' \<Longrightarrow> | 
| 945 | f' \<noteq> 0 \<Longrightarrow> | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 946 | open S \<Longrightarrow> | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 947 | x \<in> S \<Longrightarrow> | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 948 | continuous_on S f \<Longrightarrow> | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 949 | (\<And>z. z \<in> S \<Longrightarrow> g (f z) = z) | 
| 56215 | 950 | \<Longrightarrow> DERIV g (f x) :> inverse (f')" | 
| 951 | unfolding has_field_derivative_def | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 952 | apply (rule has_derivative_inverse_strong [of S x f g ]) | 
| 56215 | 953 | by auto | 
| 954 | ||
| 66252 | 955 | lemma has_field_derivative_inverse_strong_x: | 
| 956 |   fixes f :: "'a::{euclidean_space,real_normed_field} \<Rightarrow> 'a"
 | |
| 56215 | 957 | shows "DERIV f (g y) :> f' \<Longrightarrow> | 
| 958 | f' \<noteq> 0 \<Longrightarrow> | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 959 | open S \<Longrightarrow> | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 960 | continuous_on S f \<Longrightarrow> | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 961 | g y \<in> S \<Longrightarrow> f(g y) = y \<Longrightarrow> | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 962 | (\<And>z. z \<in> S \<Longrightarrow> g (f z) = z) | 
| 56215 | 963 | \<Longrightarrow> DERIV g y :> inverse (f')" | 
| 964 | unfolding has_field_derivative_def | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 965 | apply (rule has_derivative_inverse_strong_x [of S g y f]) | 
| 56215 | 966 | by auto | 
| 967 | ||
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 968 | subsection%unimportant \<open>Taylor on Complex Numbers\<close> | 
| 56215 | 969 | |
| 64267 | 970 | lemma sum_Suc_reindex: | 
| 56215 | 971 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | 
| 64267 | 972 |     shows  "sum f {0..n} = f 0 - f (Suc n) + sum (\<lambda>i. f (Suc i)) {0..n}"
 | 
| 56215 | 973 | by (induct n) auto | 
| 974 | ||
| 66252 | 975 | lemma field_taylor: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 976 | assumes S: "convex S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 977 | and f: "\<And>i x. x \<in> S \<Longrightarrow> i \<le> n \<Longrightarrow> (f i has_field_derivative f (Suc i) x) (at x within S)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 978 | and B: "\<And>x. x \<in> S \<Longrightarrow> norm (f (Suc n) x) \<le> B" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 979 | and w: "w \<in> S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 980 | and z: "z \<in> S" | 
| 66252 | 981 | shows "norm(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / (fact i))) | 
| 982 | \<le> B * norm(z - w)^(Suc n) / fact n" | |
| 56215 | 983 | proof - | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 984 | have wzs: "closed_segment w z \<subseteq> S" using assms | 
| 56215 | 985 | by (metis convex_contains_segment) | 
| 986 |   { fix u
 | |
| 987 | assume "u \<in> closed_segment w z" | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 988 | then have "u \<in> S" | 
| 56215 | 989 | by (metis wzs subsetD) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 990 | have "(\<Sum>i\<le>n. f i u * (- of_nat i * (z-u)^(i - 1)) / (fact i) + | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 991 | f (Suc i) u * (z-u)^i / (fact i)) = | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 992 | f (Suc n) u * (z-u) ^ n / (fact n)" | 
| 56215 | 993 | proof (induction n) | 
| 994 | case 0 show ?case by simp | |
| 995 | next | |
| 996 | case (Suc n) | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 997 | have "(\<Sum>i\<le>Suc n. f i u * (- of_nat i * (z-u) ^ (i - 1)) / (fact i) + | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 998 | f (Suc i) u * (z-u) ^ i / (fact i)) = | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 999 | f (Suc n) u * (z-u) ^ n / (fact n) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1000 | f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / (fact (Suc n)) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1001 | f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / (fact (Suc n))" | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56409diff
changeset | 1002 | using Suc by simp | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1003 | also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n))" | 
| 56215 | 1004 | proof - | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1005 | have "(fact(Suc n)) * | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1006 | (f(Suc n) u *(z-u) ^ n / (fact n) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1007 | f(Suc(Suc n)) u *((z-u) *(z-u) ^ n) / (fact(Suc n)) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1008 | f(Suc n) u *((1 + of_nat n) *(z-u) ^ n) / (fact(Suc n))) = | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1009 | ((fact(Suc n)) *(f(Suc n) u *(z-u) ^ n)) / (fact n) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1010 | ((fact(Suc n)) *(f(Suc(Suc n)) u *((z-u) *(z-u) ^ n)) / (fact(Suc n))) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1011 | ((fact(Suc n)) *(f(Suc n) u *(of_nat(Suc n) *(z-u) ^ n))) / (fact(Suc n))" | 
| 63367 
6c731c8b7f03
simplified definitions of combinatorial functions
 haftmann parents: 
63332diff
changeset | 1012 | by (simp add: algebra_simps del: fact_Suc) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1013 | also have "... = ((fact (Suc n)) * (f (Suc n) u * (z-u) ^ n)) / (fact n) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1014 | (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1015 | (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))" | 
| 63367 
6c731c8b7f03
simplified definitions of combinatorial functions
 haftmann parents: 
63332diff
changeset | 1016 | by (simp del: fact_Suc) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1017 | also have "... = (of_nat (Suc n) * (f (Suc n) u * (z-u) ^ n)) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1018 | (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) - | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1019 | (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))" | 
| 63367 
6c731c8b7f03
simplified definitions of combinatorial functions
 haftmann parents: 
63332diff
changeset | 1020 | by (simp only: fact_Suc of_nat_mult ac_simps) simp | 
| 56215 | 1021 | also have "... = f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)" | 
| 1022 | by (simp add: algebra_simps) | |
| 1023 | finally show ?thesis | |
| 63367 
6c731c8b7f03
simplified definitions of combinatorial functions
 haftmann parents: 
63332diff
changeset | 1024 | by (simp add: mult_left_cancel [where c = "(fact (Suc n))", THEN iffD1] del: fact_Suc) | 
| 56215 | 1025 | qed | 
| 1026 | finally show ?case . | |
| 1027 | qed | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1028 | then have "((\<lambda>v. (\<Sum>i\<le>n. f i v * (z - v)^i / (fact i))) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1029 | has_field_derivative f (Suc n) u * (z-u) ^ n / (fact n)) | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 1030 | (at u within S)" | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 1031 | apply (intro derivative_eq_intros) | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 1032 | apply (blast intro: assms \<open>u \<in> S\<close>) | 
| 56215 | 1033 | apply (rule refl)+ | 
| 1034 | apply (auto simp: field_simps) | |
| 1035 | done | |
| 1036 | } note sum_deriv = this | |
| 1037 |   { fix u
 | |
| 1038 | assume u: "u \<in> closed_segment w z" | |
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 1039 | then have us: "u \<in> S" | 
| 56215 | 1040 | by (metis wzs subsetD) | 
| 66252 | 1041 | have "norm (f (Suc n) u) * norm (z - u) ^ n \<le> norm (f (Suc n) u) * norm (u - z) ^ n" | 
| 56215 | 1042 | by (metis norm_minus_commute order_refl) | 
| 66252 | 1043 | also have "... \<le> norm (f (Suc n) u) * norm (z - w) ^ n" | 
| 56215 | 1044 | by (metis mult_left_mono norm_ge_zero power_mono segment_bound [OF u]) | 
| 66252 | 1045 | also have "... \<le> B * norm (z - w) ^ n" | 
| 56215 | 1046 | by (metis norm_ge_zero zero_le_power mult_right_mono B [OF us]) | 
| 66252 | 1047 | finally have "norm (f (Suc n) u) * norm (z - u) ^ n \<le> B * norm (z - w) ^ n" . | 
| 56215 | 1048 | } note cmod_bound = this | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1049 | have "(\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)) = (\<Sum>i\<le>n. (f i z / (fact i)) * 0 ^ i)" | 
| 56215 | 1050 | by simp | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1051 | also have "\<dots> = f 0 z / (fact 0)" | 
| 64267 | 1052 | by (subst sum_zero_power) simp | 
| 66252 | 1053 | finally have "norm (f 0 z - (\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i))) | 
| 1054 | \<le> norm ((\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i)) - | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1055 | (\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)))" | 
| 56215 | 1056 | by (simp add: norm_minus_commute) | 
| 66252 | 1057 | also have "... \<le> B * norm (z - w) ^ n / (fact n) * norm (w - z)" | 
| 62534 
6855b348e828
complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 1058 | apply (rule field_differentiable_bound | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1059 | [where f' = "\<lambda>w. f (Suc n) w * (z - w)^n / (fact n)" | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 1060 | and S = "closed_segment w z", OF convex_closed_segment]) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1061 | apply (auto simp: ends_in_segment DERIV_subset [OF sum_deriv wzs] | 
| 56215 | 1062 | norm_divide norm_mult norm_power divide_le_cancel cmod_bound) | 
| 1063 | done | |
| 66252 | 1064 | also have "... \<le> B * norm (z - w) ^ Suc n / (fact n)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1065 | by (simp add: algebra_simps norm_minus_commute) | 
| 56215 | 1066 | finally show ?thesis . | 
| 1067 | qed | |
| 1068 | ||
| 66252 | 1069 | lemma complex_taylor: | 
| 68255 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 1070 | assumes S: "convex S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 1071 | and f: "\<And>i x. x \<in> S \<Longrightarrow> i \<le> n \<Longrightarrow> (f i has_field_derivative f (Suc i) x) (at x within S)" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 1072 | and B: "\<And>x. x \<in> S \<Longrightarrow> cmod (f (Suc n) x) \<le> B" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 1073 | and w: "w \<in> S" | 
| 
009f783d1bac
small clean-up of Complex_Analysis_Basics
 paulson <lp15@cam.ac.uk> parents: 
68239diff
changeset | 1074 | and z: "z \<in> S" | 
| 66252 | 1075 | shows "cmod(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / (fact i))) | 
| 1076 | \<le> B * cmod(z - w)^(Suc n) / fact n" | |
| 1077 | using assms by (rule field_taylor) | |
| 1078 | ||
| 1079 | ||
| 62408 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
62397diff
changeset | 1080 | text\<open>Something more like the traditional MVT for real components\<close> | 
| 56370 
7c717ba55a0b
reorder Complex_Analysis_Basics; rename DD to deriv
 hoelzl parents: 
56369diff
changeset | 1081 | |
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1082 | lemma complex_mvt_line: | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 1083 | assumes "\<And>u. u \<in> closed_segment w z \<Longrightarrow> (f has_field_derivative f'(u)) (at u)" | 
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61235diff
changeset | 1084 | shows "\<exists>u. u \<in> closed_segment w z \<and> Re(f z) - Re(f w) = Re(f'(u) * (z - w))" | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1085 | proof - | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1086 | have twz: "\<And>t. (1 - t) *\<^sub>R w + t *\<^sub>R z = w + t *\<^sub>R (z - w)" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1087 | by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib) | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 1088 | note assms[unfolded has_field_derivative_def, derivative_intros] | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1089 | show ?thesis | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1090 | apply (cut_tac mvt_simple | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1091 | [of 0 1 "Re o f o (\<lambda>t. (1 - t) *\<^sub>R w + t *\<^sub>R z)" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1092 | "\<lambda>u. Re o (\<lambda>h. f'((1 - u) *\<^sub>R w + u *\<^sub>R z) * h) o (\<lambda>t. t *\<^sub>R (z - w))"]) | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1093 | apply auto | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1094 | apply (rule_tac x="(1 - x) *\<^sub>R w + x *\<^sub>R z" in exI) | 
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61235diff
changeset | 1095 | apply (auto simp: closed_segment_def twz) [] | 
| 67979 
53323937ee25
new material about vec, real^1, etc.
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 1096 | apply (intro derivative_eq_intros has_derivative_at_withinI, simp_all) | 
| 56369 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 hoelzl parents: 
56332diff
changeset | 1097 | apply (simp add: fun_eq_iff real_vector.scale_right_diff_distrib) | 
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61235diff
changeset | 1098 | apply (force simp: twz closed_segment_def) | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1099 | done | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1100 | qed | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1101 | |
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1102 | lemma complex_taylor_mvt: | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1103 | assumes "\<And>i x. \<lbrakk>x \<in> closed_segment w z; i \<le> n\<rbrakk> \<Longrightarrow> ((f i) has_field_derivative f (Suc i) x) (at x)" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1104 | shows "\<exists>u. u \<in> closed_segment w z \<and> | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1105 | Re (f 0 z) = | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1106 | Re ((\<Sum>i = 0..n. f i w * (z - w) ^ i / (fact i)) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1107 | (f (Suc n) u * (z-u)^n / (fact n)) * (z - w))" | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1108 | proof - | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1109 |   { fix u
 | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1110 | assume u: "u \<in> closed_segment w z" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1111 | have "(\<Sum>i = 0..n. | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1112 | (f (Suc i) u * (z-u) ^ i - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1113 | (fact i)) = | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1114 | f (Suc 0) u - | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1115 | (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) / | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1116 | (fact (Suc n)) + | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1117 | (\<Sum>i = 0..n. | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1118 | (f (Suc (Suc i)) u * ((z-u) ^ Suc i) - of_nat (Suc i) * (f (Suc i) u * (z-u) ^ i)) / | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1119 | (fact (Suc i)))" | 
| 64267 | 1120 | by (subst sum_Suc_reindex) simp | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1121 | also have "... = f (Suc 0) u - | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1122 | (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) / | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1123 | (fact (Suc n)) + | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1124 | (\<Sum>i = 0..n. | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1125 | f (Suc (Suc i)) u * ((z-u) ^ Suc i) / (fact (Suc i)) - | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1126 | f (Suc i) u * (z-u) ^ i / (fact i))" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
56889diff
changeset | 1127 | by (simp only: diff_divide_distrib fact_cancel ac_simps) | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1128 | also have "... = f (Suc 0) u - | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1129 | (f (Suc (Suc n)) u * (z-u) ^ Suc n - of_nat (Suc n) * (z-u) ^ n * f (Suc n) u) / | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1130 | (fact (Suc n)) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1131 | f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n)) - f (Suc 0) u" | 
| 64267 | 1132 | by (subst sum_Suc_diff) auto | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1133 | also have "... = f (Suc n) u * (z-u) ^ n / (fact n)" | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1134 | by (simp only: algebra_simps diff_divide_distrib fact_cancel) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1135 | finally have "(\<Sum>i = 0..n. (f (Suc i) u * (z - u) ^ i | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1136 | - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / (fact i)) = | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1137 | f (Suc n) u * (z - u) ^ n / (fact n)" . | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1138 | then have "((\<lambda>u. \<Sum>i = 0..n. f i u * (z - u) ^ i / (fact i)) has_field_derivative | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1139 | f (Suc n) u * (z - u) ^ n / (fact n)) (at u)" | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56371diff
changeset | 1140 | apply (intro derivative_eq_intros)+ | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1141 | apply (force intro: u assms) | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1142 | apply (rule refl)+ | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
56889diff
changeset | 1143 | apply (auto simp: ac_simps) | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1144 | done | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1145 | } | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1146 | then show ?thesis | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1147 | apply (cut_tac complex_mvt_line [of w z "\<lambda>u. \<Sum>i = 0..n. f i u * (z-u) ^ i / (fact i)" | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59615diff
changeset | 1148 | "\<lambda>u. (f (Suc n) u * (z-u)^n / (fact n))"]) | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1149 | apply (auto simp add: intro: open_closed_segment) | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1150 | done | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1151 | qed | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56223diff
changeset | 1152 | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1153 | |
| 69180 
922833cc6839
Tagged some theories in HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69064diff
changeset | 1154 | subsection%unimportant \<open>Polynomal function extremal theorem, from HOL Light\<close> | 
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1155 | |
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1156 | lemma polyfun_extremal_lemma: (*COMPLEX_POLYFUN_EXTREMAL_LEMMA in HOL Light*) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1157 | fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1158 | assumes "0 < e" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1159 | shows "\<exists>M. \<forall>z. M \<le> norm(z) \<longrightarrow> norm (\<Sum>i\<le>n. c(i) * z^i) \<le> e * norm(z) ^ (Suc n)" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1160 | proof (induct n) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1161 | case 0 with assms | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1162 | show ?case | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1163 | apply (rule_tac x="norm (c 0) / e" in exI) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1164 | apply (auto simp: field_simps) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1165 | done | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1166 | next | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1167 | case (Suc n) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1168 | obtain M where M: "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1169 | using Suc assms by blast | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1170 | show ?case | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1171 | proof (rule exI [where x= "max M (1 + norm(c(Suc n)) / e)"], clarsimp simp del: power_Suc) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1172 | fix z::'a | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1173 | assume z1: "M \<le> norm z" and "1 + norm (c (Suc n)) / e \<le> norm z" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1174 | then have z2: "e + norm (c (Suc n)) \<le> e * norm z" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1175 | using assms by (simp add: field_simps) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1176 | have "norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1177 | using M [OF z1] by simp | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1178 | then have "norm (\<Sum>i\<le>n. c i * z^i) + norm (c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1179 | by simp | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1180 | then have "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1181 | by (blast intro: norm_triangle_le elim: ) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1182 | also have "... \<le> (e + norm (c (Suc n))) * norm z ^ Suc n" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1183 | by (simp add: norm_power norm_mult algebra_simps) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1184 | also have "... \<le> (e * norm z) * norm z ^ Suc n" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1185 | by (metis z2 mult.commute mult_left_mono norm_ge_zero norm_power) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1186 | finally show "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc (Suc n)" | 
| 60162 | 1187 | by simp | 
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1188 | qed | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1189 | qed | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1190 | |
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1191 | lemma polyfun_extremal: (*COMPLEX_POLYFUN_EXTREMAL in HOL Light*) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1192 | fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1193 | assumes k: "c k \<noteq> 0" "1\<le>k" and kn: "k\<le>n" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1194 | shows "eventually (\<lambda>z. norm (\<Sum>i\<le>n. c(i) * z^i) \<ge> B) at_infinity" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1195 | using kn | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1196 | proof (induction n) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1197 | case 0 | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1198 | then show ?case | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1199 | using k by simp | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1200 | next | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1201 | case (Suc m) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1202 | let ?even = ?case | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1203 | show ?even | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1204 | proof (cases "c (Suc m) = 0") | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1205 | case True | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1206 | then show ?even using Suc k | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1207 | by auto (metis antisym_conv less_eq_Suc_le not_le) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1208 | next | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1209 | case False | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1210 | then obtain M where M: | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1211 | "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>m. c i * z^i) \<le> norm (c (Suc m)) / 2 * norm z ^ Suc m" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1212 | using polyfun_extremal_lemma [of "norm(c (Suc m)) / 2" c m] Suc | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1213 | by auto | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1214 | have "\<exists>b. \<forall>z. b \<le> norm z \<longrightarrow> B \<le> norm (\<Sum>i\<le>Suc m. c i * z^i)" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1215 | proof (rule exI [where x="max M (max 1 (\<bar>B\<bar> / (norm(c (Suc m)) / 2)))"], clarsimp simp del: power_Suc) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1216 | fix z::'a | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1217 | assume z1: "M \<le> norm z" "1 \<le> norm z" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1218 | and "\<bar>B\<bar> * 2 / norm (c (Suc m)) \<le> norm z" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1219 | then have z2: "\<bar>B\<bar> \<le> norm (c (Suc m)) * norm z / 2" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1220 | using False by (simp add: field_simps) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1221 | have nz: "norm z \<le> norm z ^ Suc m" | 
| 60420 | 1222 | by (metis \<open>1 \<le> norm z\<close> One_nat_def less_eq_Suc_le power_increasing power_one_right zero_less_Suc) | 
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1223 | have *: "\<And>y x. norm (c (Suc m)) * norm z / 2 \<le> norm y - norm x \<Longrightarrow> B \<le> norm (x + y)" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1224 | by (metis abs_le_iff add.commute norm_diff_ineq order_trans z2) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1225 | have "norm z * norm (c (Suc m)) + 2 * norm (\<Sum>i\<le>m. c i * z^i) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1226 | \<le> norm (c (Suc m)) * norm z + norm (c (Suc m)) * norm z ^ Suc m" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1227 | using M [of z] Suc z1 by auto | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1228 | also have "... \<le> 2 * (norm (c (Suc m)) * norm z ^ Suc m)" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1229 | using nz by (simp add: mult_mono del: power_Suc) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1230 | finally show "B \<le> norm ((\<Sum>i\<le>m. c i * z^i) + c (Suc m) * z ^ Suc m)" | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1231 | using Suc.IH | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1232 | apply (auto simp: eventually_at_infinity) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1233 | apply (rule *) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1234 | apply (simp add: field_simps norm_mult norm_power) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1235 | done | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1236 | qed | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1237 | then show ?even | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1238 | by (simp add: eventually_at_infinity) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1239 | qed | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1240 | qed | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1241 | |
| 56215 | 1242 | end |