| author | haftmann | 
| Mon, 26 Apr 2010 11:34:15 +0200 | |
| changeset 36348 | 89c54f51f55a | 
| parent 35216 | 7641e8d831d2 | 
| child 36776 | c137ae7673d3 | 
| permissions | -rw-r--r-- | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 1 | (* Title: HOL/Transcendental.thy | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2 | Author: Jacques D. Fleuriot, University of Cambridge, University of Edinburgh | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 3 | Author: Lawrence C Paulson | 
| 12196 | 4 | *) | 
| 5 | ||
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 6 | header{*Power Series, Transcendental Functions etc.*}
 | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 7 | |
| 15131 | 8 | theory Transcendental | 
| 25600 | 9 | imports Fact Series Deriv NthRoot | 
| 15131 | 10 | begin | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 11 | |
| 29164 | 12 | subsection {* Properties of Power Series *}
 | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 13 | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 14 | lemma lemma_realpow_diff: | 
| 31017 | 15 | fixes y :: "'a::monoid_mult" | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 16 | shows "p \<le> n \<Longrightarrow> y ^ (Suc n - p) = (y ^ (n - p)) * y" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 17 | proof - | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 18 | assume "p \<le> n" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 19 | hence "Suc n - p = Suc (n - p)" by (rule Suc_diff_le) | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30082diff
changeset | 20 | thus ?thesis by (simp add: power_commutes) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 21 | qed | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 22 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 23 | lemma lemma_realpow_diff_sumr: | 
| 31017 | 24 |   fixes y :: "'a::{comm_semiring_0,monoid_mult}" shows
 | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 25 | "(\<Sum>p=0..<Suc n. (x ^ p) * y ^ (Suc n - p)) = | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 26 | y * (\<Sum>p=0..<Suc n. (x ^ p) * y ^ (n - p))" | 
| 29163 | 27 | by (simp add: setsum_right_distrib lemma_realpow_diff mult_ac | 
| 33549 | 28 | del: setsum_op_ivl_Suc) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 29 | |
| 15229 | 30 | lemma lemma_realpow_diff_sumr2: | 
| 31017 | 31 |   fixes y :: "'a::{comm_ring,monoid_mult}" shows
 | 
| 15229 | 32 | "x ^ (Suc n) - y ^ (Suc n) = | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 33 | (x - y) * (\<Sum>p=0..<Suc n. (x ^ p) * y ^ (n - p))" | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30082diff
changeset | 34 | apply (induct n, simp) | 
| 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30082diff
changeset | 35 | apply (simp del: setsum_op_ivl_Suc) | 
| 15561 | 36 | apply (subst setsum_op_ivl_Suc) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 37 | apply (subst lemma_realpow_diff_sumr) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 38 | apply (simp add: right_distrib del: setsum_op_ivl_Suc) | 
| 34974 
18b41bba42b5
new theory Algebras.thy for generic algebraic structures
 haftmann parents: 
33667diff
changeset | 39 | apply (subst mult_left_commute [of "x - y"]) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 40 | apply (erule subst) | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30082diff
changeset | 41 | apply (simp add: algebra_simps) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 42 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 43 | |
| 15229 | 44 | lemma lemma_realpow_rev_sumr: | 
| 15539 | 45 | "(\<Sum>p=0..<Suc n. (x ^ p) * (y ^ (n - p))) = | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 46 | (\<Sum>p=0..<Suc n. (x ^ (n - p)) * (y ^ p))" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 47 | apply (rule setsum_reindex_cong [where f="\<lambda>i. n - i"]) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 48 | apply (rule inj_onI, simp) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 49 | apply auto | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 50 | apply (rule_tac x="n - x" in image_eqI, simp, simp) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 51 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 52 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 53 | text{*Power series has a `circle` of convergence, i.e. if it sums for @{term
 | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 54 | x}, then it sums absolutely for @{term z} with @{term "\<bar>z\<bar> < \<bar>x\<bar>"}.*}
 | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 55 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 56 | lemma powser_insidea: | 
| 31017 | 57 |   fixes x z :: "'a::{real_normed_field,banach}"
 | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 58 | assumes 1: "summable (\<lambda>n. f n * x ^ n)" | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 59 | assumes 2: "norm z < norm x" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 60 | shows "summable (\<lambda>n. norm (f n * z ^ n))" | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 61 | proof - | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 62 | from 2 have x_neq_0: "x \<noteq> 0" by clarsimp | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 63 | from 1 have "(\<lambda>n. f n * x ^ n) ----> 0" | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 64 | by (rule summable_LIMSEQ_zero) | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 65 | hence "convergent (\<lambda>n. f n * x ^ n)" | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 66 | by (rule convergentI) | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 67 | hence "Cauchy (\<lambda>n. f n * x ^ n)" | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 68 | by (simp add: Cauchy_convergent_iff) | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 69 | hence "Bseq (\<lambda>n. f n * x ^ n)" | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 70 | by (rule Cauchy_Bseq) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 71 | then obtain K where 3: "0 < K" and 4: "\<forall>n. norm (f n * x ^ n) \<le> K" | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 72 | by (simp add: Bseq_def, safe) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 73 | have "\<exists>N. \<forall>n\<ge>N. norm (norm (f n * z ^ n)) \<le> | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 74 | K * norm (z ^ n) * inverse (norm (x ^ n))" | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 75 | proof (intro exI allI impI) | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 76 | fix n::nat assume "0 \<le> n" | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 77 | have "norm (norm (f n * z ^ n)) * norm (x ^ n) = | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 78 | norm (f n * x ^ n) * norm (z ^ n)" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 79 | by (simp add: norm_mult abs_mult) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 80 | also have "\<dots> \<le> K * norm (z ^ n)" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 81 | by (simp only: mult_right_mono 4 norm_ge_zero) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 82 | also have "\<dots> = K * norm (z ^ n) * (inverse (norm (x ^ n)) * norm (x ^ n))" | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 83 | by (simp add: x_neq_0) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 84 | also have "\<dots> = K * norm (z ^ n) * inverse (norm (x ^ n)) * norm (x ^ n)" | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 85 | by (simp only: mult_assoc) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 86 | finally show "norm (norm (f n * z ^ n)) \<le> | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 87 | K * norm (z ^ n) * inverse (norm (x ^ n))" | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 88 | by (simp add: mult_le_cancel_right x_neq_0) | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 89 | qed | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 90 | moreover have "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))" | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 91 | proof - | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 92 | from 2 have "norm (norm (z * inverse x)) < 1" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 93 | using x_neq_0 | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 94 | by (simp add: nonzero_norm_divide divide_inverse [symmetric]) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 95 | hence "summable (\<lambda>n. norm (z * inverse x) ^ n)" | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 96 | by (rule summable_geometric) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 97 | hence "summable (\<lambda>n. K * norm (z * inverse x) ^ n)" | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 98 | by (rule summable_mult) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 99 | thus "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 100 | using x_neq_0 | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 101 | by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 102 | power_inverse norm_power mult_assoc) | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 103 | qed | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 104 | ultimately show "summable (\<lambda>n. norm (f n * z ^ n))" | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 105 | by (rule summable_comparison_test) | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 106 | qed | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 107 | |
| 15229 | 108 | lemma powser_inside: | 
| 31017 | 109 |   fixes f :: "nat \<Rightarrow> 'a::{real_normed_field,banach}" shows
 | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 110 | "[| summable (%n. f(n) * (x ^ n)); norm z < norm x |] | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 111 | ==> summable (%n. f(n) * (z ^ n))" | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 112 | by (rule powser_insidea [THEN summable_norm_cancel]) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 113 | |
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 114 | lemma sum_split_even_odd: fixes f :: "nat \<Rightarrow> real" shows | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 115 | "(\<Sum> i = 0 ..< 2 * n. if even i then f i else g i) = | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 116 | (\<Sum> i = 0 ..< n. f (2 * i)) + (\<Sum> i = 0 ..< n. g (2 * i + 1))" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 117 | proof (induct n) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 118 | case (Suc n) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 119 | have "(\<Sum> i = 0 ..< 2 * Suc n. if even i then f i else g i) = | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 120 | (\<Sum> i = 0 ..< n. f (2 * i)) + (\<Sum> i = 0 ..< n. g (2 * i + 1)) + (f (2 * n) + g (2 * n + 1))" | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 121 | using Suc.hyps unfolding One_nat_def by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 122 | also have "\<dots> = (\<Sum> i = 0 ..< Suc n. f (2 * i)) + (\<Sum> i = 0 ..< Suc n. g (2 * i + 1))" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 123 | finally show ?case . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 124 | qed auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 125 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 126 | lemma sums_if': fixes g :: "nat \<Rightarrow> real" assumes "g sums x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 127 | shows "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 128 | unfolding sums_def | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 129 | proof (rule LIMSEQ_I) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 130 | fix r :: real assume "0 < r" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 131 | from `g sums x`[unfolded sums_def, THEN LIMSEQ_D, OF this] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 132 |   obtain no where no_eq: "\<And> n. n \<ge> no \<Longrightarrow> (norm (setsum g { 0..<n } - x) < r)" by blast
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 133 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 134 | let ?SUM = "\<lambda> m. \<Sum> i = 0 ..< m. if even i then 0 else g ((i - 1) div 2)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 135 |   { fix m assume "m \<ge> 2 * no" hence "m div 2 \<ge> no" by auto
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 136 |     have sum_eq: "?SUM (2 * (m div 2)) = setsum g { 0 ..< m div 2 }" 
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 137 | using sum_split_even_odd by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 138 | hence "(norm (?SUM (2 * (m div 2)) - x) < r)" using no_eq unfolding sum_eq using `m div 2 \<ge> no` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 139 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 140 | have "?SUM (2 * (m div 2)) = ?SUM m" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 141 | proof (cases "even m") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 142 | case True show ?thesis unfolding even_nat_div_two_times_two[OF True, unfolded numeral_2_eq_2[symmetric]] .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 143 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 144 | case False hence "even (Suc m)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 145 | from even_nat_div_two_times_two[OF this, unfolded numeral_2_eq_2[symmetric]] odd_nat_plus_one_div_two[OF False, unfolded numeral_2_eq_2[symmetric]] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 146 | have eq: "Suc (2 * (m div 2)) = m" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 147 | hence "even (2 * (m div 2))" using `odd m` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 148 | have "?SUM m = ?SUM (Suc (2 * (m div 2)))" unfolding eq .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 149 | also have "\<dots> = ?SUM (2 * (m div 2))" using `even (2 * (m div 2))` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 150 | finally show ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 151 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 152 | ultimately have "(norm (?SUM m - x) < r)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 153 | } | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 154 | thus "\<exists> no. \<forall> m \<ge> no. norm (?SUM m - x) < r" by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 155 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 156 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 157 | lemma sums_if: fixes g :: "nat \<Rightarrow> real" assumes "g sums x" and "f sums y" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 158 | shows "(\<lambda> n. if even n then f (n div 2) else g ((n - 1) div 2)) sums (x + y)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 159 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 160 | let ?s = "\<lambda> n. if even n then 0 else f ((n - 1) div 2)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 161 |   { fix B T E have "(if B then (0 :: real) else E) + (if B then T else 0) = (if B then T else E)"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 162 | by (cases B) auto } note if_sum = this | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 163 | have g_sums: "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x" using sums_if'[OF `g sums x`] . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 164 |   { 
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 165 | have "?s 0 = 0" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 166 | have Suc_m1: "\<And> n. Suc n - 1 = n" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 167 |     { fix B T E have "(if \<not> B then T else E) = (if B then E else T)" by auto } note if_eq = this
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 168 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 169 | have "?s sums y" using sums_if'[OF `f sums y`] . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 170 | from this[unfolded sums_def, THEN LIMSEQ_Suc] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 171 | have "(\<lambda> n. if even n then f (n div 2) else 0) sums y" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 172 | unfolding sums_def setsum_shift_lb_Suc0_0_upt[where f="?s", OF `?s 0 = 0`, symmetric] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 173 | image_Suc_atLeastLessThan[symmetric] setsum_reindex[OF inj_Suc, unfolded comp_def] | 
| 31148 | 174 | even_Suc Suc_m1 if_eq . | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 175 | } from sums_add[OF g_sums this] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 176 | show ?thesis unfolding if_sum . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 177 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 178 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 179 | subsection {* Alternating series test / Leibniz formula *}
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 180 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 181 | lemma sums_alternating_upper_lower: | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 182 | fixes a :: "nat \<Rightarrow> real" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 183 | assumes mono: "\<And>n. a (Suc n) \<le> a n" and a_pos: "\<And>n. 0 \<le> a n" and "a ----> 0" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 184 | shows "\<exists>l. ((\<forall>n. (\<Sum>i=0..<2*n. -1^i*a i) \<le> l) \<and> (\<lambda> n. \<Sum>i=0..<2*n. -1^i*a i) ----> l) \<and> | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 185 | ((\<forall>n. l \<le> (\<Sum>i=0..<2*n + 1. -1^i*a i)) \<and> (\<lambda> n. \<Sum>i=0..<2*n + 1. -1^i*a i) ----> l)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 186 | (is "\<exists>l. ((\<forall>n. ?f n \<le> l) \<and> _) \<and> ((\<forall>n. l \<le> ?g n) \<and> _)") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 187 | proof - | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 188 | have fg_diff: "\<And>n. ?f n - ?g n = - a (2 * n)" unfolding One_nat_def by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 189 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 190 | have "\<forall> n. ?f n \<le> ?f (Suc n)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 191 | proof fix n show "?f n \<le> ?f (Suc n)" using mono[of "2*n"] by auto qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 192 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 193 | have "\<forall> n. ?g (Suc n) \<le> ?g n" | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 194 | proof fix n show "?g (Suc n) \<le> ?g n" using mono[of "Suc (2*n)"] | 
| 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 195 | unfolding One_nat_def by auto qed | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 196 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 197 | have "\<forall> n. ?f n \<le> ?g n" | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 198 | proof fix n show "?f n \<le> ?g n" using fg_diff a_pos | 
| 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 199 | unfolding One_nat_def by auto qed | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 200 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 201 | have "(\<lambda> n. ?f n - ?g n) ----> 0" unfolding fg_diff | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 202 | proof (rule LIMSEQ_I) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 203 | fix r :: real assume "0 < r" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 204 | with `a ----> 0`[THEN LIMSEQ_D] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 205 | obtain N where "\<And> n. n \<ge> N \<Longrightarrow> norm (a n - 0) < r" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 206 | hence "\<forall> n \<ge> N. norm (- a (2 * n) - 0) < r" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 207 | thus "\<exists> N. \<forall> n \<ge> N. norm (- a (2 * n) - 0) < r" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 208 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 209 | ultimately | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 210 | show ?thesis by (rule lemma_nest_unique) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 211 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 212 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 213 | lemma summable_Leibniz': fixes a :: "nat \<Rightarrow> real" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 214 | assumes a_zero: "a ----> 0" and a_pos: "\<And> n. 0 \<le> a n" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 215 | and a_monotone: "\<And> n. a (Suc n) \<le> a n" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 216 | shows summable: "summable (\<lambda> n. (-1)^n * a n)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 217 | and "\<And>n. (\<Sum>i=0..<2*n. (-1)^i*a i) \<le> (\<Sum>i. (-1)^i*a i)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 218 | and "(\<lambda>n. \<Sum>i=0..<2*n. (-1)^i*a i) ----> (\<Sum>i. (-1)^i*a i)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 219 | and "\<And>n. (\<Sum>i. (-1)^i*a i) \<le> (\<Sum>i=0..<2*n+1. (-1)^i*a i)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 220 | and "(\<lambda>n. \<Sum>i=0..<2*n+1. (-1)^i*a i) ----> (\<Sum>i. (-1)^i*a i)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 221 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 222 | let "?S n" = "(-1)^n * a n" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 223 | let "?P n" = "\<Sum>i=0..<n. ?S i" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 224 | let "?f n" = "?P (2 * n)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 225 | let "?g n" = "?P (2 * n + 1)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 226 | obtain l :: real where below_l: "\<forall> n. ?f n \<le> l" and "?f ----> l" and above_l: "\<forall> n. l \<le> ?g n" and "?g ----> l" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 227 | using sums_alternating_upper_lower[OF a_monotone a_pos a_zero] by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 228 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 229 | let ?Sa = "\<lambda> m. \<Sum> n = 0..<m. ?S n" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 230 | have "?Sa ----> l" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 231 | proof (rule LIMSEQ_I) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 232 | fix r :: real assume "0 < r" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 233 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 234 | with `?f ----> l`[THEN LIMSEQ_D] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 235 | obtain f_no where f: "\<And> n. n \<ge> f_no \<Longrightarrow> norm (?f n - l) < r" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 236 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 237 | from `0 < r` `?g ----> l`[THEN LIMSEQ_D] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 238 | obtain g_no where g: "\<And> n. n \<ge> g_no \<Longrightarrow> norm (?g n - l) < r" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 239 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 240 |     { fix n :: nat
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 241 | assume "n \<ge> (max (2 * f_no) (2 * g_no))" hence "n \<ge> 2 * f_no" and "n \<ge> 2 * g_no" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 242 | have "norm (?Sa n - l) < r" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 243 | proof (cases "even n") | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 244 | case True from even_nat_div_two_times_two[OF this] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 245 | have n_eq: "2 * (n div 2) = n" unfolding numeral_2_eq_2[symmetric] by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 246 | with `n \<ge> 2 * f_no` have "n div 2 \<ge> f_no" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 247 | from f[OF this] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 248 | show ?thesis unfolding n_eq atLeastLessThanSuc_atLeastAtMost . | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 249 | next | 
| 35213 | 250 | case False hence "even (n - 1)" by simp | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 251 | from even_nat_div_two_times_two[OF this] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 252 | have n_eq: "2 * ((n - 1) div 2) = n - 1" unfolding numeral_2_eq_2[symmetric] by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 253 | hence range_eq: "n - 1 + 1 = n" using odd_pos[OF False] by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 254 | |
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 255 | from n_eq `n \<ge> 2 * g_no` have "(n - 1) div 2 \<ge> g_no" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 256 | from g[OF this] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 257 | show ?thesis unfolding n_eq atLeastLessThanSuc_atLeastAtMost range_eq . | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 258 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 259 | } | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 260 | thus "\<exists> no. \<forall> n \<ge> no. norm (?Sa n - l) < r" by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 261 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 262 | hence sums_l: "(\<lambda>i. (-1)^i * a i) sums l" unfolding sums_def atLeastLessThanSuc_atLeastAtMost[symmetric] . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 263 | thus "summable ?S" using summable_def by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 264 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 265 | have "l = suminf ?S" using sums_unique[OF sums_l] . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 266 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 267 |   { fix n show "suminf ?S \<le> ?g n" unfolding sums_unique[OF sums_l, symmetric] using above_l by auto }
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 268 |   { fix n show "?f n \<le> suminf ?S" unfolding sums_unique[OF sums_l, symmetric] using below_l by auto }
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 269 | show "?g ----> suminf ?S" using `?g ----> l` `l = suminf ?S` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 270 | show "?f ----> suminf ?S" using `?f ----> l` `l = suminf ?S` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 271 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 272 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 273 | theorem summable_Leibniz: fixes a :: "nat \<Rightarrow> real" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 274 | assumes a_zero: "a ----> 0" and "monoseq a" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 275 | shows "summable (\<lambda> n. (-1)^n * a n)" (is "?summable") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 276 |   and "0 < a 0 \<longrightarrow> (\<forall>n. (\<Sum>i. -1^i*a i) \<in> { \<Sum>i=0..<2*n. -1^i * a i .. \<Sum>i=0..<2*n+1. -1^i * a i})" (is "?pos")
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 277 |   and "a 0 < 0 \<longrightarrow> (\<forall>n. (\<Sum>i. -1^i*a i) \<in> { \<Sum>i=0..<2*n+1. -1^i * a i .. \<Sum>i=0..<2*n. -1^i * a i})" (is "?neg")
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 278 | and "(\<lambda>n. \<Sum>i=0..<2*n. -1^i*a i) ----> (\<Sum>i. -1^i*a i)" (is "?f") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 279 | and "(\<lambda>n. \<Sum>i=0..<2*n+1. -1^i*a i) ----> (\<Sum>i. -1^i*a i)" (is "?g") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 280 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 281 | have "?summable \<and> ?pos \<and> ?neg \<and> ?f \<and> ?g" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 282 | proof (cases "(\<forall> n. 0 \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m)") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 283 | case True | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 284 | hence ord: "\<And>n m. m \<le> n \<Longrightarrow> a n \<le> a m" and ge0: "\<And> n. 0 \<le> a n" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 285 |     { fix n have "a (Suc n) \<le> a n" using ord[where n="Suc n" and m=n] by auto }
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 286 | note leibniz = summable_Leibniz'[OF `a ----> 0` ge0] and mono = this | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 287 | from leibniz[OF mono] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 288 | show ?thesis using `0 \<le> a 0` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 289 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 290 | let ?a = "\<lambda> n. - a n" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 291 | case False | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 292 | with monoseq_le[OF `monoseq a` `a ----> 0`] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 293 | have "(\<forall> n. a n \<le> 0) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 294 | hence ord: "\<And>n m. m \<le> n \<Longrightarrow> ?a n \<le> ?a m" and ge0: "\<And> n. 0 \<le> ?a n" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 295 |     { fix n have "?a (Suc n) \<le> ?a n" using ord[where n="Suc n" and m=n] by auto }
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 296 | note monotone = this | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 297 | note leibniz = summable_Leibniz'[OF _ ge0, of "\<lambda>x. x", OF LIMSEQ_minus[OF `a ----> 0`, unfolded minus_zero] monotone] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 298 | have "summable (\<lambda> n. (-1)^n * ?a n)" using leibniz(1) by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 299 | then obtain l where "(\<lambda> n. (-1)^n * ?a n) sums l" unfolding summable_def by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 300 | from this[THEN sums_minus] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 301 | have "(\<lambda> n. (-1)^n * a n) sums -l" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 302 | hence ?summable unfolding summable_def by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 303 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 304 | have "\<And> a b :: real. \<bar> - a - - b \<bar> = \<bar>a - b\<bar>" unfolding minus_diff_minus by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 305 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 306 | from suminf_minus[OF leibniz(1), unfolded mult_minus_right minus_minus] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 307 | have move_minus: "(\<Sum>n. - (-1 ^ n * a n)) = - (\<Sum>n. -1 ^ n * a n)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 308 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 309 | have ?pos using `0 \<le> ?a 0` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 310 | moreover have ?neg using leibniz(2,4) unfolding mult_minus_right setsum_negf move_minus neg_le_iff_le by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 311 | moreover have ?f and ?g using leibniz(3,5)[unfolded mult_minus_right setsum_negf move_minus, THEN LIMSEQ_minus_cancel] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 312 | ultimately show ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 313 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 314 | from this[THEN conjunct1] this[THEN conjunct2, THEN conjunct1] this[THEN conjunct2, THEN conjunct2, THEN conjunct1] this[THEN conjunct2, THEN conjunct2, THEN conjunct2, THEN conjunct1] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 315 | this[THEN conjunct2, THEN conjunct2, THEN conjunct2, THEN conjunct2] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 316 | show ?summable and ?pos and ?neg and ?f and ?g . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 317 | qed | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 318 | |
| 29164 | 319 | subsection {* Term-by-Term Differentiability of Power Series *}
 | 
| 23043 | 320 | |
| 321 | definition | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 322 | diffs :: "(nat => 'a::ring_1) => nat => 'a" where | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 323 | "diffs c = (%n. of_nat (Suc n) * c(Suc n))" | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 324 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 325 | text{*Lemma about distributing negation over it*}
 | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 326 | lemma diffs_minus: "diffs (%n. - c n) = (%n. - diffs c n)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 327 | by (simp add: diffs_def) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 328 | |
| 29163 | 329 | lemma sums_Suc_imp: | 
| 330 | assumes f: "f 0 = 0" | |
| 331 | shows "(\<lambda>n. f (Suc n)) sums s \<Longrightarrow> (\<lambda>n. f n) sums s" | |
| 332 | unfolding sums_def | |
| 333 | apply (rule LIMSEQ_imp_Suc) | |
| 334 | apply (subst setsum_shift_lb_Suc0_0_upt [where f=f, OF f, symmetric]) | |
| 335 | apply (simp only: setsum_shift_bounds_Suc_ivl) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 336 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 337 | |
| 15229 | 338 | lemma diffs_equiv: | 
| 339 | "summable (%n. (diffs c)(n) * (x ^ n)) ==> | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 340 | (%n. of_nat n * c(n) * (x ^ (n - Suc 0))) sums | 
| 15546 | 341 | (\<Sum>n. (diffs c)(n) * (x ^ n))" | 
| 29163 | 342 | unfolding diffs_def | 
| 343 | apply (drule summable_sums) | |
| 344 | apply (rule sums_Suc_imp, simp_all) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 345 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 346 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 347 | lemma lemma_termdiff1: | 
| 31017 | 348 |   fixes z :: "'a :: {monoid_mult,comm_ring}" shows
 | 
| 15539 | 349 | "(\<Sum>p=0..<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) = | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 350 | (\<Sum>p=0..<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))" | 
| 29667 | 351 | by(auto simp add: algebra_simps power_add [symmetric] cong: strong_setsum_cong) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 352 | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 353 | lemma sumr_diff_mult_const2: | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 354 |   "setsum f {0..<n} - of_nat n * (r::'a::ring_1) = (\<Sum>i = 0..<n. f i - r)"
 | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 355 | by (simp add: setsum_subtractf) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 356 | |
| 15229 | 357 | lemma lemma_termdiff2: | 
| 31017 | 358 |   fixes h :: "'a :: {field}"
 | 
| 20860 | 359 | assumes h: "h \<noteq> 0" shows | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 360 | "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) = | 
| 20860 | 361 | h * (\<Sum>p=0..< n - Suc 0. \<Sum>q=0..< n - Suc 0 - p. | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 362 | (z + h) ^ q * z ^ (n - 2 - q))" (is "?lhs = ?rhs") | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 363 | apply (subgoal_tac "h * ?lhs = h * ?rhs", simp add: h) | 
| 20860 | 364 | apply (simp add: right_diff_distrib diff_divide_distrib h) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 365 | apply (simp add: mult_assoc [symmetric]) | 
| 20860 | 366 | apply (cases "n", simp) | 
| 367 | apply (simp add: lemma_realpow_diff_sumr2 h | |
| 368 | right_diff_distrib [symmetric] mult_assoc | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30082diff
changeset | 369 | del: power_Suc setsum_op_ivl_Suc of_nat_Suc) | 
| 20860 | 370 | apply (subst lemma_realpow_rev_sumr) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 371 | apply (subst sumr_diff_mult_const2) | 
| 20860 | 372 | apply simp | 
| 373 | apply (simp only: lemma_termdiff1 setsum_right_distrib) | |
| 374 | apply (rule setsum_cong [OF refl]) | |
| 15539 | 375 | apply (simp add: diff_minus [symmetric] less_iff_Suc_add) | 
| 20860 | 376 | apply (clarify) | 
| 377 | apply (simp add: setsum_right_distrib lemma_realpow_diff_sumr2 mult_ac | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30082diff
changeset | 378 | del: setsum_op_ivl_Suc power_Suc) | 
| 20860 | 379 | apply (subst mult_assoc [symmetric], subst power_add [symmetric]) | 
| 380 | apply (simp add: mult_ac) | |
| 381 | done | |
| 382 | ||
| 383 | lemma real_setsum_nat_ivl_bounded2: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34974diff
changeset | 384 | fixes K :: "'a::linordered_semidom" | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 385 | assumes f: "\<And>p::nat. p < n \<Longrightarrow> f p \<le> K" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 386 | assumes K: "0 \<le> K" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 387 |   shows "setsum f {0..<n-k} \<le> of_nat n * K"
 | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 388 | apply (rule order_trans [OF setsum_mono]) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 389 | apply (rule f, simp) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 390 | apply (simp add: mult_right_mono K) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 391 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 392 | |
| 15229 | 393 | lemma lemma_termdiff3: | 
| 31017 | 394 |   fixes h z :: "'a::{real_normed_field}"
 | 
| 20860 | 395 | assumes 1: "h \<noteq> 0" | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 396 | assumes 2: "norm z \<le> K" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 397 | assumes 3: "norm (z + h) \<le> K" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 398 | shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 399 | \<le> of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h" | 
| 20860 | 400 | proof - | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 401 | have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) = | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 402 | norm (\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p. | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 403 | (z + h) ^ q * z ^ (n - 2 - q)) * norm h" | 
| 20860 | 404 | apply (subst lemma_termdiff2 [OF 1]) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 405 | apply (subst norm_mult) | 
| 20860 | 406 | apply (rule mult_commute) | 
| 407 | done | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 408 | also have "\<dots> \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 409 | proof (rule mult_right_mono [OF _ norm_ge_zero]) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 410 | from norm_ge_zero 2 have K: "0 \<le> K" by (rule order_trans) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 411 | have le_Kn: "\<And>i j n. i + j = n \<Longrightarrow> norm ((z + h) ^ i * z ^ j) \<le> K ^ n" | 
| 20860 | 412 | apply (erule subst) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 413 | apply (simp only: norm_mult norm_power power_add) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 414 | apply (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K) | 
| 20860 | 415 | done | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 416 | show "norm (\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p. | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 417 | (z + h) ^ q * z ^ (n - 2 - q)) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 418 | \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))" | 
| 20860 | 419 | apply (intro | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 420 | order_trans [OF norm_setsum] | 
| 20860 | 421 | real_setsum_nat_ivl_bounded2 | 
| 422 | mult_nonneg_nonneg | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 423 | zero_le_imp_of_nat | 
| 20860 | 424 | zero_le_power K) | 
| 425 | apply (rule le_Kn, simp) | |
| 426 | done | |
| 427 | qed | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 428 | also have "\<dots> = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h" | 
| 20860 | 429 | by (simp only: mult_assoc) | 
| 430 | finally show ?thesis . | |
| 431 | qed | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 432 | |
| 20860 | 433 | lemma lemma_termdiff4: | 
| 31017 | 434 |   fixes f :: "'a::{real_normed_field} \<Rightarrow>
 | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 435 | 'b::real_normed_vector" | 
| 20860 | 436 | assumes k: "0 < (k::real)" | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 437 | assumes le: "\<And>h. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (f h) \<le> K * norm h" | 
| 20860 | 438 | shows "f -- 0 --> 0" | 
| 31338 
d41a8ba25b67
generalize constants from Lim.thy to class metric_space
 huffman parents: 
31271diff
changeset | 439 | unfolding LIM_eq diff_0_right | 
| 29163 | 440 | proof (safe) | 
| 441 | let ?h = "of_real (k / 2)::'a" | |
| 442 | have "?h \<noteq> 0" and "norm ?h < k" using k by simp_all | |
| 443 | hence "norm (f ?h) \<le> K * norm ?h" by (rule le) | |
| 444 | hence "0 \<le> K * norm ?h" by (rule order_trans [OF norm_ge_zero]) | |
| 445 | hence zero_le_K: "0 \<le> K" using k by (simp add: zero_le_mult_iff) | |
| 446 | ||
| 20860 | 447 | fix r::real assume r: "0 < r" | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 448 | show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < s \<longrightarrow> norm (f x) < r)" | 
| 20860 | 449 | proof (cases) | 
| 450 | assume "K = 0" | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 451 | with k r le have "0 < k \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < k \<longrightarrow> norm (f x) < r)" | 
| 20860 | 452 | by simp | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 453 | thus "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < s \<longrightarrow> norm (f x) < r)" .. | 
| 20860 | 454 | next | 
| 455 | assume K_neq_zero: "K \<noteq> 0" | |
| 456 | with zero_le_K have K: "0 < K" by simp | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 457 | show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < s \<longrightarrow> norm (f x) < r)" | 
| 20860 | 458 | proof (rule exI, safe) | 
| 459 | from k r K show "0 < min k (r * inverse K / 2)" | |
| 460 | by (simp add: mult_pos_pos positive_imp_inverse_positive) | |
| 461 | next | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 462 | fix x::'a | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 463 | assume x1: "x \<noteq> 0" and x2: "norm x < min k (r * inverse K / 2)" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 464 | from x2 have x3: "norm x < k" and x4: "norm x < r * inverse K / 2" | 
| 20860 | 465 | by simp_all | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 466 | from x1 x3 le have "norm (f x) \<le> K * norm x" by simp | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 467 | also from x4 K have "K * norm x < K * (r * inverse K / 2)" | 
| 20860 | 468 | by (rule mult_strict_left_mono) | 
| 469 | also have "\<dots> = r / 2" | |
| 470 | using K_neq_zero by simp | |
| 471 | also have "r / 2 < r" | |
| 472 | using r by simp | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 473 | finally show "norm (f x) < r" . | 
| 20860 | 474 | qed | 
| 475 | qed | |
| 476 | qed | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 477 | |
| 15229 | 478 | lemma lemma_termdiff5: | 
| 31017 | 479 |   fixes g :: "'a::{real_normed_field} \<Rightarrow>
 | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 480 | nat \<Rightarrow> 'b::banach" | 
| 20860 | 481 | assumes k: "0 < (k::real)" | 
| 482 | assumes f: "summable f" | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 483 | assumes le: "\<And>h n. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (g h n) \<le> f n * norm h" | 
| 20860 | 484 | shows "(\<lambda>h. suminf (g h)) -- 0 --> 0" | 
| 485 | proof (rule lemma_termdiff4 [OF k]) | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 486 | fix h::'a assume "h \<noteq> 0" and "norm h < k" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 487 | hence A: "\<forall>n. norm (g h n) \<le> f n * norm h" | 
| 20860 | 488 | by (simp add: le) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 489 | hence "\<exists>N. \<forall>n\<ge>N. norm (norm (g h n)) \<le> f n * norm h" | 
| 20860 | 490 | by simp | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 491 | moreover from f have B: "summable (\<lambda>n. f n * norm h)" | 
| 20860 | 492 | by (rule summable_mult2) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 493 | ultimately have C: "summable (\<lambda>n. norm (g h n))" | 
| 20860 | 494 | by (rule summable_comparison_test) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 495 | hence "norm (suminf (g h)) \<le> (\<Sum>n. norm (g h n))" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 496 | by (rule summable_norm) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 497 | also from A C B have "(\<Sum>n. norm (g h n)) \<le> (\<Sum>n. f n * norm h)" | 
| 20860 | 498 | by (rule summable_le) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 499 | also from f have "(\<Sum>n. f n * norm h) = suminf f * norm h" | 
| 20860 | 500 | by (rule suminf_mult2 [symmetric]) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 501 | finally show "norm (suminf (g h)) \<le> suminf f * norm h" . | 
| 20860 | 502 | qed | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 503 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 504 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 505 | text{* FIXME: Long proofs*}
 | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 506 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 507 | lemma termdiffs_aux: | 
| 31017 | 508 |   fixes x :: "'a::{real_normed_field,banach}"
 | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 509 | assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)" | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 510 | assumes 2: "norm x < norm K" | 
| 20860 | 511 | shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 512 | - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0" | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 513 | proof - | 
| 20860 | 514 | from dense [OF 2] | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 515 | obtain r where r1: "norm x < r" and r2: "r < norm K" by fast | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 516 | from norm_ge_zero r1 have r: "0 < r" | 
| 20860 | 517 | by (rule order_le_less_trans) | 
| 518 | hence r_neq_0: "r \<noteq> 0" by simp | |
| 519 | show ?thesis | |
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 520 | proof (rule lemma_termdiff5) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 521 | show "0 < r - norm x" using r1 by simp | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 522 | next | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 523 | from r r2 have "norm (of_real r::'a) < norm K" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 524 | by simp | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 525 | with 1 have "summable (\<lambda>n. norm (diffs (diffs c) n * (of_real r ^ n)))" | 
| 20860 | 526 | by (rule powser_insidea) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 527 | hence "summable (\<lambda>n. diffs (diffs (\<lambda>n. norm (c n))) n * r ^ n)" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 528 | using r | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 529 | by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 530 | hence "summable (\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))" | 
| 20860 | 531 | by (rule diffs_equiv [THEN sums_summable]) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 532 | also have "(\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0)) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 533 | = (\<lambda>n. diffs (%m. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))" | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 534 | apply (rule ext) | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 535 | apply (simp add: diffs_def) | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 536 | apply (case_tac n, simp_all add: r_neq_0) | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 537 | done | 
| 20860 | 538 | finally have "summable | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 539 | (\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))" | 
| 20860 | 540 | by (rule diffs_equiv [THEN sums_summable]) | 
| 541 | also have | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 542 | "(\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * | 
| 20860 | 543 | r ^ (n - Suc 0)) = | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 544 | (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 545 | apply (rule ext) | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 546 | apply (case_tac "n", simp) | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 547 | apply (case_tac "nat", simp) | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 548 | apply (simp add: r_neq_0) | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 549 | done | 
| 20860 | 550 | finally show | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 551 | "summable (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" . | 
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 552 | next | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 553 | fix h::'a and n::nat | 
| 20860 | 554 | assume h: "h \<noteq> 0" | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 555 | assume "norm h < r - norm x" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 556 | hence "norm x + norm h < r" by simp | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 557 | with norm_triangle_ineq have xh: "norm (x + h) < r" | 
| 20860 | 558 | by (rule order_le_less_trans) | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 559 | show "norm (c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0))) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 560 | \<le> norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 561 | apply (simp only: norm_mult mult_assoc) | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 562 | apply (rule mult_left_mono [OF _ norm_ge_zero]) | 
| 20860 | 563 | apply (simp (no_asm) add: mult_assoc [symmetric]) | 
| 564 | apply (rule lemma_termdiff3) | |
| 565 | apply (rule h) | |
| 566 | apply (rule r1 [THEN order_less_imp_le]) | |
| 567 | apply (rule xh [THEN order_less_imp_le]) | |
| 568 | done | |
| 20849 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 569 | qed | 
| 
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
 huffman parents: 
20692diff
changeset | 570 | qed | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19765diff
changeset | 571 | |
| 20860 | 572 | lemma termdiffs: | 
| 31017 | 573 |   fixes K x :: "'a::{real_normed_field,banach}"
 | 
| 20860 | 574 | assumes 1: "summable (\<lambda>n. c n * K ^ n)" | 
| 575 | assumes 2: "summable (\<lambda>n. (diffs c) n * K ^ n)" | |
| 576 | assumes 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)" | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 577 | assumes 4: "norm x < norm K" | 
| 20860 | 578 | shows "DERIV (\<lambda>x. \<Sum>n. c n * x ^ n) x :> (\<Sum>n. (diffs c) n * x ^ n)" | 
| 29163 | 579 | unfolding deriv_def | 
| 580 | proof (rule LIM_zero_cancel) | |
| 20860 | 581 | show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x ^ n)) / h | 
| 582 | - suminf (\<lambda>n. diffs c n * x ^ n)) -- 0 --> 0" | |
| 583 | proof (rule LIM_equal2) | |
| 29163 | 584 | show "0 < norm K - norm x" using 4 by (simp add: less_diff_eq) | 
| 20860 | 585 | next | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 586 | fix h :: 'a | 
| 20860 | 587 | assume "h \<noteq> 0" | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 588 | assume "norm (h - 0) < norm K - norm x" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 589 | hence "norm x + norm h < norm K" by simp | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 590 | hence 5: "norm (x + h) < norm K" | 
| 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 591 | by (rule norm_triangle_ineq [THEN order_le_less_trans]) | 
| 20860 | 592 | have A: "summable (\<lambda>n. c n * x ^ n)" | 
| 593 | by (rule powser_inside [OF 1 4]) | |
| 594 | have B: "summable (\<lambda>n. c n * (x + h) ^ n)" | |
| 595 | by (rule powser_inside [OF 1 5]) | |
| 596 | have C: "summable (\<lambda>n. diffs c n * x ^ n)" | |
| 597 | by (rule powser_inside [OF 2 4]) | |
| 598 | show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x ^ n)) / h | |
| 599 | - (\<Sum>n. diffs c n * x ^ n) = | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 600 | (\<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0)))" | 
| 20860 | 601 | apply (subst sums_unique [OF diffs_equiv [OF C]]) | 
| 602 | apply (subst suminf_diff [OF B A]) | |
| 603 | apply (subst suminf_divide [symmetric]) | |
| 604 | apply (rule summable_diff [OF B A]) | |
| 605 | apply (subst suminf_diff) | |
| 606 | apply (rule summable_divide) | |
| 607 | apply (rule summable_diff [OF B A]) | |
| 608 | apply (rule sums_summable [OF diffs_equiv [OF C]]) | |
| 29163 | 609 | apply (rule arg_cong [where f="suminf"], rule ext) | 
| 29667 | 610 | apply (simp add: algebra_simps) | 
| 20860 | 611 | done | 
| 612 | next | |
| 613 | show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - | |
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 614 | of_nat n * x ^ (n - Suc 0))) -- 0 --> 0" | 
| 20860 | 615 | by (rule termdiffs_aux [OF 3 4]) | 
| 616 | qed | |
| 617 | qed | |
| 618 | ||
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 619 | |
| 29695 | 620 | subsection{* Some properties of factorials *}
 | 
| 621 | ||
| 32036 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31881diff
changeset | 622 | lemma real_of_nat_fact_not_zero [simp]: "real (fact (n::nat)) \<noteq> 0" | 
| 29695 | 623 | by auto | 
| 624 | ||
| 32036 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31881diff
changeset | 625 | lemma real_of_nat_fact_gt_zero [simp]: "0 < real(fact (n::nat))" | 
| 29695 | 626 | by auto | 
| 627 | ||
| 32036 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31881diff
changeset | 628 | lemma real_of_nat_fact_ge_zero [simp]: "0 \<le> real(fact (n::nat))" | 
| 29695 | 629 | by simp | 
| 630 | ||
| 32036 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31881diff
changeset | 631 | lemma inv_real_of_nat_fact_gt_zero [simp]: "0 < inverse (real (fact (n::nat)))" | 
| 29695 | 632 | by (auto simp add: positive_imp_inverse_positive) | 
| 633 | ||
| 32036 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31881diff
changeset | 634 | lemma inv_real_of_nat_fact_ge_zero [simp]: "0 \<le> inverse (real (fact (n::nat)))" | 
| 29695 | 635 | by (auto intro: order_less_imp_le) | 
| 636 | ||
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 637 | subsection {* Derivability of power series *}
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 638 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 639 | lemma DERIV_series': fixes f :: "real \<Rightarrow> nat \<Rightarrow> real" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 640 | assumes DERIV_f: "\<And> n. DERIV (\<lambda> x. f x n) x0 :> (f' x0 n)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 641 |   and allf_summable: "\<And> x. x \<in> {a <..< b} \<Longrightarrow> summable (f x)" and x0_in_I: "x0 \<in> {a <..< b}"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 642 | and "summable (f' x0)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 643 |   and "summable L" and L_def: "\<And> n x y. \<lbrakk> x \<in> { a <..< b} ; y \<in> { a <..< b} \<rbrakk> \<Longrightarrow> \<bar> f x n - f y n \<bar> \<le> L n * \<bar> x - y \<bar>"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 644 | shows "DERIV (\<lambda> x. suminf (f x)) x0 :> (suminf (f' x0))" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 645 | unfolding deriv_def | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 646 | proof (rule LIM_I) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 647 | fix r :: real assume "0 < r" hence "0 < r/3" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 648 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 649 | obtain N_L where N_L: "\<And> n. N_L \<le> n \<Longrightarrow> \<bar> \<Sum> i. L (i + n) \<bar> < r/3" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 650 | using suminf_exist_split[OF `0 < r/3` `summable L`] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 651 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 652 | obtain N_f' where N_f': "\<And> n. N_f' \<le> n \<Longrightarrow> \<bar> \<Sum> i. f' x0 (i + n) \<bar> < r/3" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 653 | using suminf_exist_split[OF `0 < r/3` `summable (f' x0)`] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 654 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 655 | let ?N = "Suc (max N_L N_f')" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 656 | have "\<bar> \<Sum> i. f' x0 (i + ?N) \<bar> < r/3" (is "?f'_part < r/3") and | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 657 | L_estimate: "\<bar> \<Sum> i. L (i + ?N) \<bar> < r/3" using N_L[of "?N"] and N_f' [of "?N"] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 658 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 659 | let "?diff i x" = "(f (x0 + x) i - f x0 i) / x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 660 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 661 | let ?r = "r / (3 * real ?N)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 662 | have "0 < 3 * real ?N" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 663 | from divide_pos_pos[OF `0 < r` this] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 664 | have "0 < ?r" . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 665 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 666 | let "?s n" = "SOME s. 0 < s \<and> (\<forall> x. x \<noteq> 0 \<and> \<bar> x \<bar> < s \<longrightarrow> \<bar> ?diff n x - f' x0 n \<bar> < ?r)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 667 |   def S' \<equiv> "Min (?s ` { 0 ..< ?N })"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 668 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 669 | have "0 < S'" unfolding S'_def | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 670 | proof (rule iffD2[OF Min_gr_iff]) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 671 |     show "\<forall> x \<in> (?s ` { 0 ..< ?N }). 0 < x"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 672 | proof (rule ballI) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 673 |       fix x assume "x \<in> ?s ` {0..<?N}"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 674 |       then obtain n where "x = ?s n" and "n \<in> {0..<?N}" using image_iff[THEN iffD1] by blast
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 675 | from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF `0 < ?r`, unfolded real_norm_def] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 676 | obtain s where s_bound: "0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 677 | have "0 < ?s n" by (rule someI2[where a=s], auto simp add: s_bound) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 678 | thus "0 < x" unfolding `x = ?s n` . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 679 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 680 | qed auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 681 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 682 | def S \<equiv> "min (min (x0 - a) (b - x0)) S'" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 683 | hence "0 < S" and S_a: "S \<le> x0 - a" and S_b: "S \<le> b - x0" and "S \<le> S'" using x0_in_I and `0 < S'` | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 684 | by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 685 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 686 |   { fix x assume "x \<noteq> 0" and "\<bar> x \<bar> < S"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 687 |     hence x_in_I: "x0 + x \<in> { a <..< b }" using S_a S_b by auto
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 688 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 689 | note diff_smbl = summable_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 690 | note div_smbl = summable_divide[OF diff_smbl] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 691 | note all_smbl = summable_diff[OF div_smbl `summable (f' x0)`] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 692 | note ign = summable_ignore_initial_segment[where k="?N"] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 693 | note diff_shft_smbl = summable_diff[OF ign[OF allf_summable[OF x_in_I]] ign[OF allf_summable[OF x0_in_I]]] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 694 | note div_shft_smbl = summable_divide[OF diff_shft_smbl] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 695 | note all_shft_smbl = summable_diff[OF div_smbl ign[OF `summable (f' x0)`]] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 696 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 697 |     { fix n
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 698 | have "\<bar> ?diff (n + ?N) x \<bar> \<le> L (n + ?N) * \<bar> (x0 + x) - x0 \<bar> / \<bar> x \<bar>" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 699 | using divide_right_mono[OF L_def[OF x_in_I x0_in_I] abs_ge_zero] unfolding abs_divide . | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 700 | hence "\<bar> ( \<bar> ?diff (n + ?N) x \<bar>) \<bar> \<le> L (n + ?N)" using `x \<noteq> 0` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 701 | } note L_ge = summable_le2[OF allI[OF this] ign[OF `summable L`]] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 702 | from order_trans[OF summable_rabs[OF conjunct1[OF L_ge]] L_ge[THEN conjunct2]] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 703 | have "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> (\<Sum> i. L (i + ?N))" . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 704 | hence "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> r / 3" (is "?L_part \<le> r/3") using L_estimate by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 705 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 706 |     have "\<bar>\<Sum>n \<in> { 0 ..< ?N}. ?diff n x - f' x0 n \<bar> \<le> (\<Sum>n \<in> { 0 ..< ?N}. \<bar>?diff n x - f' x0 n \<bar>)" ..
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 707 |     also have "\<dots> < (\<Sum>n \<in> { 0 ..< ?N}. ?r)"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 708 | proof (rule setsum_strict_mono) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 709 |       fix n assume "n \<in> { 0 ..< ?N}"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 710 | have "\<bar> x \<bar> < S" using `\<bar> x \<bar> < S` . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 711 | also have "S \<le> S'" using `S \<le> S'` . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 712 | also have "S' \<le> ?s n" unfolding S'_def | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 713 | proof (rule Min_le_iff[THEN iffD2]) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 714 |         have "?s n \<in> (?s ` {0..<?N}) \<and> ?s n \<le> ?s n" using `n \<in> { 0 ..< ?N}` by auto
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 715 |         thus "\<exists> a \<in> (?s ` {0..<?N}). a \<le> ?s n" by blast
 | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 716 | qed auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 717 | finally have "\<bar> x \<bar> < ?s n" . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 718 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 719 | from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF `0 < ?r`, unfolded real_norm_def diff_0_right, unfolded some_eq_ex[symmetric], THEN conjunct2] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 720 | have "\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < ?s n \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r" . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 721 | with `x \<noteq> 0` and `\<bar>x\<bar> < ?s n` | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 722 | show "\<bar>?diff n x - f' x0 n\<bar> < ?r" by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 723 | qed auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 724 |     also have "\<dots> = of_nat (card {0 ..< ?N}) * ?r" by (rule setsum_constant)
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 725 | also have "\<dots> = real ?N * ?r" unfolding real_eq_of_nat by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 726 | also have "\<dots> = r/3" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 727 |     finally have "\<bar>\<Sum>n \<in> { 0 ..< ?N}. ?diff n x - f' x0 n \<bar> < r / 3" (is "?diff_part < r / 3") .
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 728 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 729 | from suminf_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 730 | have "\<bar> (suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0) \<bar> = | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 731 | \<bar> \<Sum>n. ?diff n x - f' x0 n \<bar>" unfolding suminf_diff[OF div_smbl `summable (f' x0)`, symmetric] using suminf_divide[OF diff_smbl, symmetric] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 732 | also have "\<dots> \<le> ?diff_part + \<bar> (\<Sum>n. ?diff (n + ?N) x) - (\<Sum> n. f' x0 (n + ?N)) \<bar>" unfolding suminf_split_initial_segment[OF all_smbl, where k="?N"] unfolding suminf_diff[OF div_shft_smbl ign[OF `summable (f' x0)`]] by (rule abs_triangle_ineq) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 733 | also have "\<dots> \<le> ?diff_part + ?L_part + ?f'_part" using abs_triangle_ineq4 by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 734 | also have "\<dots> < r /3 + r/3 + r/3" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 735 | using `?diff_part < r/3` `?L_part \<le> r/3` and `?f'_part < r/3` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 736 | finally have "\<bar> (suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0) \<bar> < r" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 737 | by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 738 | } thus "\<exists> s > 0. \<forall> x. x \<noteq> 0 \<and> norm (x - 0) < s \<longrightarrow> | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 739 | norm (((\<Sum>n. f (x0 + x) n) - (\<Sum>n. f x0 n)) / x - (\<Sum>n. f' x0 n)) < r" using `0 < S` | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 740 | unfolding real_norm_def diff_0_right by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 741 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 742 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 743 | lemma DERIV_power_series': fixes f :: "nat \<Rightarrow> real" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 744 |   assumes converges: "\<And> x. x \<in> {-R <..< R} \<Longrightarrow> summable (\<lambda> n. f n * real (Suc n) * x^n)"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 745 |   and x0_in_I: "x0 \<in> {-R <..< R}" and "0 < R"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 746 | shows "DERIV (\<lambda> x. (\<Sum> n. f n * x^(Suc n))) x0 :> (\<Sum> n. f n * real (Suc n) * x0^n)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 747 | (is "DERIV (\<lambda> x. (suminf (?f x))) x0 :> (suminf (?f' x0))") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 748 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 749 |   { fix R' assume "0 < R'" and "R' < R" and "-R' < x0" and "x0 < R'"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 750 |     hence "x0 \<in> {-R' <..< R'}" and "R' \<in> {-R <..< R}" and "x0 \<in> {-R <..< R}" by auto
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 751 | have "DERIV (\<lambda> x. (suminf (?f x))) x0 :> (suminf (?f' x0))" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 752 | proof (rule DERIV_series') | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 753 | show "summable (\<lambda> n. \<bar>f n * real (Suc n) * R'^n\<bar>)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 754 | proof - | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 755 | have "(R' + R) / 2 < R" and "0 < (R' + R) / 2" using `0 < R'` `0 < R` `R' < R` by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 756 |         hence in_Rball: "(R' + R) / 2 \<in> {-R <..< R}" using `R' < R` by auto
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 757 | have "norm R' < norm ((R' + R) / 2)" using `0 < R'` `0 < R` `R' < R` by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 758 | from powser_insidea[OF converges[OF in_Rball] this] show ?thesis by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 759 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 760 |       { fix n x y assume "x \<in> {-R' <..< R'}" and "y \<in> {-R' <..< R'}"
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 761 | show "\<bar>?f x n - ?f y n\<bar> \<le> \<bar>f n * real (Suc n) * R'^n\<bar> * \<bar>x-y\<bar>" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 762 | proof - | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 763 | have "\<bar>f n * x ^ (Suc n) - f n * y ^ (Suc n)\<bar> = (\<bar>f n\<bar> * \<bar>x-y\<bar>) * \<bar>\<Sum>p = 0..<Suc n. x ^ p * y ^ (n - p)\<bar>" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 764 | unfolding right_diff_distrib[symmetric] lemma_realpow_diff_sumr2 abs_mult by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 765 | also have "\<dots> \<le> (\<bar>f n\<bar> * \<bar>x-y\<bar>) * (\<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 766 | proof (rule mult_left_mono) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 767 | have "\<bar>\<Sum>p = 0..<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> (\<Sum>p = 0..<Suc n. \<bar>x ^ p * y ^ (n - p)\<bar>)" by (rule setsum_abs) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 768 | also have "\<dots> \<le> (\<Sum>p = 0..<Suc n. R' ^ n)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 769 | proof (rule setsum_mono) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 770 |               fix p assume "p \<in> {0..<Suc n}" hence "p \<le> n" by auto
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 771 |               { fix n fix x :: real assume "x \<in> {-R'<..<R'}"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 772 | hence "\<bar>x\<bar> \<le> R'" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 773 | hence "\<bar>x^n\<bar> \<le> R'^n" unfolding power_abs by (rule power_mono, auto) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 774 |               } from mult_mono[OF this[OF `x \<in> {-R'<..<R'}`, of p] this[OF `y \<in> {-R'<..<R'}`, of "n-p"]] `0 < R'`
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 775 | have "\<bar>x^p * y^(n-p)\<bar> \<le> R'^p * R'^(n-p)" unfolding abs_mult by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 776 | thus "\<bar>x^p * y^(n-p)\<bar> \<le> R'^n" unfolding power_add[symmetric] using `p \<le> n` by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 777 | qed | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 778 | also have "\<dots> = real (Suc n) * R' ^ n" unfolding setsum_constant card_atLeastLessThan real_of_nat_def by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 779 | finally show "\<bar>\<Sum>p = 0..<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> \<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>" unfolding abs_real_of_nat_cancel abs_of_nonneg[OF zero_le_power[OF less_imp_le[OF `0 < R'`]]] . | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 780 | show "0 \<le> \<bar>f n\<bar> * \<bar>x - y\<bar>" unfolding abs_mult[symmetric] by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 781 | qed | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 782 | also have "\<dots> = \<bar>f n * real (Suc n) * R' ^ n\<bar> * \<bar>x - y\<bar>" unfolding abs_mult real_mult_assoc[symmetric] by algebra | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 783 | finally show ?thesis . | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 784 | qed } | 
| 31881 | 785 |       { fix n show "DERIV (\<lambda> x. ?f x n) x0 :> (?f' x0 n)"
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 786 | by (auto intro!: DERIV_intros simp del: power_Suc) } | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 787 |       { fix x assume "x \<in> {-R' <..< R'}" hence "R' \<in> {-R <..< R}" and "norm x < norm R'" using assms `R' < R` by auto
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 788 | have "summable (\<lambda> n. f n * x^n)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 789 |         proof (rule summable_le2[THEN conjunct1, OF _ powser_insidea[OF converges[OF `R' \<in> {-R <..< R}`] `norm x < norm R'`]], rule allI)
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 790 | fix n | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 791 | have le: "\<bar>f n\<bar> * 1 \<le> \<bar>f n\<bar> * real (Suc n)" by (rule mult_left_mono, auto) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 792 | show "\<bar>f n * x ^ n\<bar> \<le> norm (f n * real (Suc n) * x ^ n)" unfolding real_norm_def abs_mult | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 793 | by (rule mult_right_mono, auto simp add: le[unfolded mult_1_right]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 794 | qed | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 795 | from this[THEN summable_mult2[where c=x], unfolded real_mult_assoc, unfolded real_mult_commute] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 796 | show "summable (?f x)" by auto } | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 797 |       show "summable (?f' x0)" using converges[OF `x0 \<in> {-R <..< R}`] .
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 798 |       show "x0 \<in> {-R' <..< R'}" using `x0 \<in> {-R' <..< R'}` .
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 799 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 800 | } note for_subinterval = this | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 801 | let ?R = "(R + \<bar>x0\<bar>) / 2" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 802 | have "\<bar>x0\<bar> < ?R" using assms by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 803 | hence "- ?R < x0" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 804 | proof (cases "x0 < 0") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 805 | case True | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 806 | hence "- x0 < ?R" using `\<bar>x0\<bar> < ?R` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 807 | thus ?thesis unfolding neg_less_iff_less[symmetric, of "- x0"] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 808 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 809 | case False | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 810 | have "- ?R < 0" using assms by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 811 | also have "\<dots> \<le> x0" using False by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 812 | finally show ?thesis . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 813 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 814 | hence "0 < ?R" "?R < R" "- ?R < x0" and "x0 < ?R" using assms by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 815 | from for_subinterval[OF this] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 816 | show ?thesis . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 817 | qed | 
| 29695 | 818 | |
| 29164 | 819 | subsection {* Exponential Function *}
 | 
| 23043 | 820 | |
| 821 | definition | |
| 31017 | 822 |   exp :: "'a \<Rightarrow> 'a::{real_normed_field,banach}" where
 | 
| 25062 | 823 | "exp x = (\<Sum>n. x ^ n /\<^sub>R real (fact n))" | 
| 23043 | 824 | |
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 825 | lemma summable_exp_generic: | 
| 31017 | 826 |   fixes x :: "'a::{real_normed_algebra_1,banach}"
 | 
| 25062 | 827 | defines S_def: "S \<equiv> \<lambda>n. x ^ n /\<^sub>R real (fact n)" | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 828 | shows "summable S" | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 829 | proof - | 
| 25062 | 830 | have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R real (Suc n)" | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30082diff
changeset | 831 | unfolding S_def by (simp del: mult_Suc) | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 832 | obtain r :: real where r0: "0 < r" and r1: "r < 1" | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 833 | using dense [OF zero_less_one] by fast | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 834 | obtain N :: nat where N: "norm x < real N * r" | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 835 | using reals_Archimedean3 [OF r0] by fast | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 836 | from r1 show ?thesis | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 837 | proof (rule ratio_test [rule_format]) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 838 | fix n :: nat | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 839 | assume n: "N \<le> n" | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 840 | have "norm x \<le> real N * r" | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 841 | using N by (rule order_less_imp_le) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 842 | also have "real N * r \<le> real (Suc n) * r" | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 843 | using r0 n by (simp add: mult_right_mono) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 844 | finally have "norm x * norm (S n) \<le> real (Suc n) * r * norm (S n)" | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 845 | using norm_ge_zero by (rule mult_right_mono) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 846 | hence "norm (x * S n) \<le> real (Suc n) * r * norm (S n)" | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 847 | by (rule order_trans [OF norm_mult_ineq]) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 848 | hence "norm (x * S n) / real (Suc n) \<le> r * norm (S n)" | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 849 | by (simp add: pos_divide_le_eq mult_ac) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 850 | thus "norm (S (Suc n)) \<le> r * norm (S n)" | 
| 35216 | 851 | by (simp add: S_Suc inverse_eq_divide) | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 852 | qed | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 853 | qed | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 854 | |
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 855 | lemma summable_norm_exp: | 
| 31017 | 856 |   fixes x :: "'a::{real_normed_algebra_1,banach}"
 | 
| 25062 | 857 | shows "summable (\<lambda>n. norm (x ^ n /\<^sub>R real (fact n)))" | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 858 | proof (rule summable_norm_comparison_test [OF exI, rule_format]) | 
| 25062 | 859 | show "summable (\<lambda>n. norm x ^ n /\<^sub>R real (fact n))" | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 860 | by (rule summable_exp_generic) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 861 | next | 
| 25062 | 862 | fix n show "norm (x ^ n /\<^sub>R real (fact n)) \<le> norm x ^ n /\<^sub>R real (fact n)" | 
| 35216 | 863 | by (simp add: norm_power_ineq) | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 864 | qed | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 865 | |
| 23043 | 866 | lemma summable_exp: "summable (%n. inverse (real (fact n)) * x ^ n)" | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 867 | by (insert summable_exp_generic [where x=x], simp) | 
| 23043 | 868 | |
| 25062 | 869 | lemma exp_converges: "(\<lambda>n. x ^ n /\<^sub>R real (fact n)) sums exp x" | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 870 | unfolding exp_def by (rule summable_exp_generic [THEN summable_sums]) | 
| 23043 | 871 | |
| 872 | ||
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 873 | lemma exp_fdiffs: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 874 | "diffs (%n. inverse(real (fact n))) = (%n. inverse(real (fact n)))" | 
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23413diff
changeset | 875 | by (simp add: diffs_def mult_assoc [symmetric] real_of_nat_def of_nat_mult | 
| 23082 
ffef77eed382
generalize powerseries and termdiffs lemmas using axclasses
 huffman parents: 
23069diff
changeset | 876 | del: mult_Suc of_nat_Suc) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 877 | |
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 878 | lemma diffs_of_real: "diffs (\<lambda>n. of_real (f n)) = (\<lambda>n. of_real (diffs f n))" | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 879 | by (simp add: diffs_def) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 880 | |
| 25062 | 881 | lemma lemma_exp_ext: "exp = (\<lambda>x. \<Sum>n. x ^ n /\<^sub>R real (fact n))" | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 882 | by (auto intro!: ext simp add: exp_def) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 883 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 884 | lemma DERIV_exp [simp]: "DERIV exp x :> exp(x)" | 
| 15229 | 885 | apply (simp add: exp_def) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 886 | apply (subst lemma_exp_ext) | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 887 | apply (subgoal_tac "DERIV (\<lambda>u. \<Sum>n. of_real (inverse (real (fact n))) * u ^ n) x :> (\<Sum>n. diffs (\<lambda>n. of_real (inverse (real (fact n)))) n * x ^ n)") | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 888 | apply (rule_tac [2] K = "of_real (1 + norm x)" in termdiffs) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 889 | apply (simp_all only: diffs_of_real scaleR_conv_of_real exp_fdiffs) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 890 | apply (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])+ | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 891 | apply (simp del: of_real_add) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 892 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 893 | |
| 23045 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 894 | lemma isCont_exp [simp]: "isCont exp x" | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 895 | by (rule DERIV_exp [THEN DERIV_isCont]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 896 | |
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 897 | |
| 29167 | 898 | subsubsection {* Properties of the Exponential Function *}
 | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 899 | |
| 23278 | 900 | lemma powser_zero: | 
| 31017 | 901 |   fixes f :: "nat \<Rightarrow> 'a::{real_normed_algebra_1}"
 | 
| 23278 | 902 | shows "(\<Sum>n. f n * 0 ^ n) = f 0" | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 903 | proof - | 
| 23278 | 904 | have "(\<Sum>n = 0..<1. f n * 0 ^ n) = (\<Sum>n. f n * 0 ^ n)" | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 905 | by (rule sums_unique [OF series_zero], simp add: power_0_left) | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 906 | thus ?thesis unfolding One_nat_def by simp | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 907 | qed | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 908 | |
| 23278 | 909 | lemma exp_zero [simp]: "exp 0 = 1" | 
| 910 | unfolding exp_def by (simp add: scaleR_conv_of_real powser_zero) | |
| 911 | ||
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 912 | lemma setsum_cl_ivl_Suc2: | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 913 | "(\<Sum>i=m..Suc n. f i) = (if Suc n < m then 0 else f m + (\<Sum>i=m..n. f (Suc i)))" | 
| 28069 | 914 | by (simp add: setsum_head_Suc setsum_shift_bounds_cl_Suc_ivl | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 915 | del: setsum_cl_ivl_Suc) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 916 | |
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 917 | lemma exp_series_add: | 
| 31017 | 918 |   fixes x y :: "'a::{real_field}"
 | 
| 25062 | 919 | defines S_def: "S \<equiv> \<lambda>x n. x ^ n /\<^sub>R real (fact n)" | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 920 | shows "S (x + y) n = (\<Sum>i=0..n. S x i * S y (n - i))" | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 921 | proof (induct n) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 922 | case 0 | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 923 | show ?case | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 924 | unfolding S_def by simp | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 925 | next | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 926 | case (Suc n) | 
| 25062 | 927 | have S_Suc: "\<And>x n. S x (Suc n) = (x * S x n) /\<^sub>R real (Suc n)" | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30082diff
changeset | 928 | unfolding S_def by (simp del: mult_Suc) | 
| 25062 | 929 | hence times_S: "\<And>x n. x * S x n = real (Suc n) *\<^sub>R S x (Suc n)" | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 930 | by simp | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 931 | |
| 25062 | 932 | have "real (Suc n) *\<^sub>R S (x + y) (Suc n) = (x + y) * S (x + y) n" | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 933 | by (simp only: times_S) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 934 | also have "\<dots> = (x + y) * (\<Sum>i=0..n. S x i * S y (n-i))" | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 935 | by (simp only: Suc) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 936 | also have "\<dots> = x * (\<Sum>i=0..n. S x i * S y (n-i)) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 937 | + y * (\<Sum>i=0..n. S x i * S y (n-i))" | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 938 | by (rule left_distrib) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 939 | also have "\<dots> = (\<Sum>i=0..n. (x * S x i) * S y (n-i)) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 940 | + (\<Sum>i=0..n. S x i * (y * S y (n-i)))" | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 941 | by (simp only: setsum_right_distrib mult_ac) | 
| 25062 | 942 | also have "\<dots> = (\<Sum>i=0..n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i))) | 
| 943 | + (\<Sum>i=0..n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))" | |
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 944 | by (simp add: times_S Suc_diff_le) | 
| 25062 | 945 | also have "(\<Sum>i=0..n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i))) = | 
| 946 | (\<Sum>i=0..Suc n. real i *\<^sub>R (S x i * S y (Suc n-i)))" | |
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 947 | by (subst setsum_cl_ivl_Suc2, simp) | 
| 25062 | 948 | also have "(\<Sum>i=0..n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) = | 
| 949 | (\<Sum>i=0..Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))" | |
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 950 | by (subst setsum_cl_ivl_Suc, simp) | 
| 25062 | 951 | also have "(\<Sum>i=0..Suc n. real i *\<^sub>R (S x i * S y (Suc n-i))) + | 
| 952 | (\<Sum>i=0..Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) = | |
| 953 | (\<Sum>i=0..Suc n. real (Suc n) *\<^sub>R (S x i * S y (Suc n-i)))" | |
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 954 | by (simp only: setsum_addf [symmetric] scaleR_left_distrib [symmetric] | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 955 | real_of_nat_add [symmetric], simp) | 
| 25062 | 956 | also have "\<dots> = real (Suc n) *\<^sub>R (\<Sum>i=0..Suc n. S x i * S y (Suc n-i))" | 
| 23127 | 957 | by (simp only: scaleR_right.setsum) | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 958 | finally show | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 959 | "S (x + y) (Suc n) = (\<Sum>i=0..Suc n. S x i * S y (Suc n - i))" | 
| 35216 | 960 | by (simp del: setsum_cl_ivl_Suc) | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 961 | qed | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 962 | |
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 963 | lemma exp_add: "exp (x + y) = exp x * exp y" | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 964 | unfolding exp_def | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 965 | by (simp only: Cauchy_product summable_norm_exp exp_series_add) | 
| 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 966 | |
| 29170 | 967 | lemma mult_exp_exp: "exp x * exp y = exp (x + y)" | 
| 968 | by (rule exp_add [symmetric]) | |
| 969 | ||
| 23241 | 970 | lemma exp_of_real: "exp (of_real x) = of_real (exp x)" | 
| 971 | unfolding exp_def | |
| 972 | apply (subst of_real.suminf) | |
| 973 | apply (rule summable_exp_generic) | |
| 974 | apply (simp add: scaleR_conv_of_real) | |
| 975 | done | |
| 976 | ||
| 29170 | 977 | lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0" | 
| 978 | proof | |
| 979 | have "exp x * exp (- x) = 1" by (simp add: mult_exp_exp) | |
| 980 | also assume "exp x = 0" | |
| 981 | finally show "False" by simp | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 982 | qed | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 983 | |
| 29170 | 984 | lemma exp_minus: "exp (- x) = inverse (exp x)" | 
| 985 | by (rule inverse_unique [symmetric], simp add: mult_exp_exp) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 986 | |
| 29170 | 987 | lemma exp_diff: "exp (x - y) = exp x / exp y" | 
| 988 | unfolding diff_minus divide_inverse | |
| 989 | by (simp add: exp_add exp_minus) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 990 | |
| 29167 | 991 | |
| 992 | subsubsection {* Properties of the Exponential Function on Reals *}
 | |
| 993 | ||
| 29170 | 994 | text {* Comparisons of @{term "exp x"} with zero. *}
 | 
| 29167 | 995 | |
| 996 | text{*Proof: because every exponential can be seen as a square.*}
 | |
| 997 | lemma exp_ge_zero [simp]: "0 \<le> exp (x::real)" | |
| 998 | proof - | |
| 999 | have "0 \<le> exp (x/2) * exp (x/2)" by simp | |
| 1000 | thus ?thesis by (simp add: exp_add [symmetric]) | |
| 1001 | qed | |
| 1002 | ||
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 1003 | lemma exp_gt_zero [simp]: "0 < exp (x::real)" | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1004 | by (simp add: order_less_le) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1005 | |
| 29170 | 1006 | lemma not_exp_less_zero [simp]: "\<not> exp (x::real) < 0" | 
| 1007 | by (simp add: not_less) | |
| 1008 | ||
| 1009 | lemma not_exp_le_zero [simp]: "\<not> exp (x::real) \<le> 0" | |
| 1010 | by (simp add: not_le) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1011 | |
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 1012 | lemma abs_exp_cancel [simp]: "\<bar>exp x::real\<bar> = exp x" | 
| 29165 
562f95f06244
cleaned up some proofs; removed redundant simp rules
 huffman parents: 
29164diff
changeset | 1013 | by simp | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1014 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1015 | lemma exp_real_of_nat_mult: "exp(real n * x) = exp(x) ^ n" | 
| 15251 | 1016 | apply (induct "n") | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1017 | apply (auto simp add: real_of_nat_Suc right_distrib exp_add mult_commute) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1018 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1019 | |
| 29170 | 1020 | text {* Strict monotonicity of exponential. *}
 | 
| 1021 | ||
| 1022 | lemma exp_ge_add_one_self_aux: "0 \<le> (x::real) ==> (1 + x) \<le> exp(x)" | |
| 1023 | apply (drule order_le_imp_less_or_eq, auto) | |
| 1024 | apply (simp add: exp_def) | |
| 1025 | apply (rule real_le_trans) | |
| 1026 | apply (rule_tac [2] n = 2 and f = "(%n. inverse (real (fact n)) * x ^ n)" in series_pos_le) | |
| 1027 | apply (auto intro: summable_exp simp add: numeral_2_eq_2 zero_le_mult_iff) | |
| 1028 | done | |
| 1029 | ||
| 1030 | lemma exp_gt_one: "0 < (x::real) \<Longrightarrow> 1 < exp x" | |
| 1031 | proof - | |
| 1032 | assume x: "0 < x" | |
| 1033 | hence "1 < 1 + x" by simp | |
| 1034 | also from x have "1 + x \<le> exp x" | |
| 1035 | by (simp add: exp_ge_add_one_self_aux) | |
| 1036 | finally show ?thesis . | |
| 1037 | qed | |
| 1038 | ||
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1039 | lemma exp_less_mono: | 
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 1040 | fixes x y :: real | 
| 29165 
562f95f06244
cleaned up some proofs; removed redundant simp rules
 huffman parents: 
29164diff
changeset | 1041 | assumes "x < y" shows "exp x < exp y" | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1042 | proof - | 
| 29165 
562f95f06244
cleaned up some proofs; removed redundant simp rules
 huffman parents: 
29164diff
changeset | 1043 | from `x < y` have "0 < y - x" by simp | 
| 
562f95f06244
cleaned up some proofs; removed redundant simp rules
 huffman parents: 
29164diff
changeset | 1044 | hence "1 < exp (y - x)" by (rule exp_gt_one) | 
| 
562f95f06244
cleaned up some proofs; removed redundant simp rules
 huffman parents: 
29164diff
changeset | 1045 | hence "1 < exp y / exp x" by (simp only: exp_diff) | 
| 
562f95f06244
cleaned up some proofs; removed redundant simp rules
 huffman parents: 
29164diff
changeset | 1046 | thus "exp x < exp y" by simp | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1047 | qed | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1048 | |
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 1049 | lemma exp_less_cancel: "exp (x::real) < exp y ==> x < y" | 
| 29170 | 1050 | apply (simp add: linorder_not_le [symmetric]) | 
| 1051 | apply (auto simp add: order_le_less exp_less_mono) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1052 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1053 | |
| 29170 | 1054 | lemma exp_less_cancel_iff [iff]: "exp (x::real) < exp y \<longleftrightarrow> x < y" | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1055 | by (auto intro: exp_less_mono exp_less_cancel) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1056 | |
| 29170 | 1057 | lemma exp_le_cancel_iff [iff]: "exp (x::real) \<le> exp y \<longleftrightarrow> x \<le> y" | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1058 | by (auto simp add: linorder_not_less [symmetric]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1059 | |
| 29170 | 1060 | lemma exp_inj_iff [iff]: "exp (x::real) = exp y \<longleftrightarrow> x = y" | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1061 | by (simp add: order_eq_iff) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1062 | |
| 29170 | 1063 | text {* Comparisons of @{term "exp x"} with one. *}
 | 
| 1064 | ||
| 1065 | lemma one_less_exp_iff [simp]: "1 < exp (x::real) \<longleftrightarrow> 0 < x" | |
| 1066 | using exp_less_cancel_iff [where x=0 and y=x] by simp | |
| 1067 | ||
| 1068 | lemma exp_less_one_iff [simp]: "exp (x::real) < 1 \<longleftrightarrow> x < 0" | |
| 1069 | using exp_less_cancel_iff [where x=x and y=0] by simp | |
| 1070 | ||
| 1071 | lemma one_le_exp_iff [simp]: "1 \<le> exp (x::real) \<longleftrightarrow> 0 \<le> x" | |
| 1072 | using exp_le_cancel_iff [where x=0 and y=x] by simp | |
| 1073 | ||
| 1074 | lemma exp_le_one_iff [simp]: "exp (x::real) \<le> 1 \<longleftrightarrow> x \<le> 0" | |
| 1075 | using exp_le_cancel_iff [where x=x and y=0] by simp | |
| 1076 | ||
| 1077 | lemma exp_eq_one_iff [simp]: "exp (x::real) = 1 \<longleftrightarrow> x = 0" | |
| 1078 | using exp_inj_iff [where x=x and y=0] by simp | |
| 1079 | ||
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 1080 | lemma lemma_exp_total: "1 \<le> y ==> \<exists>x. 0 \<le> x & x \<le> y - 1 & exp(x::real) = y" | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1081 | apply (rule IVT) | 
| 23045 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 1082 | apply (auto intro: isCont_exp simp add: le_diff_eq) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1083 | apply (subgoal_tac "1 + (y - 1) \<le> exp (y - 1)") | 
| 29165 
562f95f06244
cleaned up some proofs; removed redundant simp rules
 huffman parents: 
29164diff
changeset | 1084 | apply simp | 
| 17014 
ad5ceb90877d
renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
 avigad parents: 
16924diff
changeset | 1085 | apply (rule exp_ge_add_one_self_aux, simp) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1086 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1087 | |
| 23115 
4615b2078592
generalized exp to work over any complete field; new proof of exp_add
 huffman parents: 
23112diff
changeset | 1088 | lemma exp_total: "0 < (y::real) ==> \<exists>x. exp x = y" | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1089 | apply (rule_tac x = 1 and y = y in linorder_cases) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1090 | apply (drule order_less_imp_le [THEN lemma_exp_total]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1091 | apply (rule_tac [2] x = 0 in exI) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1092 | apply (frule_tac [3] real_inverse_gt_one) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1093 | apply (drule_tac [4] order_less_imp_le [THEN lemma_exp_total], auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1094 | apply (rule_tac x = "-x" in exI) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1095 | apply (simp add: exp_minus) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1096 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1097 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1098 | |
| 29164 | 1099 | subsection {* Natural Logarithm *}
 | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1100 | |
| 23043 | 1101 | definition | 
| 1102 | ln :: "real => real" where | |
| 1103 | "ln x = (THE u. exp u = x)" | |
| 1104 | ||
| 1105 | lemma ln_exp [simp]: "ln (exp x) = x" | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1106 | by (simp add: ln_def) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1107 | |
| 22654 
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
 huffman parents: 
22653diff
changeset | 1108 | lemma exp_ln [simp]: "0 < x \<Longrightarrow> exp (ln x) = x" | 
| 
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
 huffman parents: 
22653diff
changeset | 1109 | by (auto dest: exp_total) | 
| 
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
 huffman parents: 
22653diff
changeset | 1110 | |
| 29171 | 1111 | lemma exp_ln_iff [simp]: "exp (ln x) = x \<longleftrightarrow> 0 < x" | 
| 1112 | apply (rule iffI) | |
| 1113 | apply (erule subst, rule exp_gt_zero) | |
| 1114 | apply (erule exp_ln) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1115 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1116 | |
| 29171 | 1117 | lemma ln_unique: "exp y = x \<Longrightarrow> ln x = y" | 
| 1118 | by (erule subst, rule ln_exp) | |
| 1119 | ||
| 1120 | lemma ln_one [simp]: "ln 1 = 0" | |
| 1121 | by (rule ln_unique, simp) | |
| 1122 | ||
| 1123 | lemma ln_mult: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln (x * y) = ln x + ln y" | |
| 1124 | by (rule ln_unique, simp add: exp_add) | |
| 1125 | ||
| 1126 | lemma ln_inverse: "0 < x \<Longrightarrow> ln (inverse x) = - ln x" | |
| 1127 | by (rule ln_unique, simp add: exp_minus) | |
| 1128 | ||
| 1129 | lemma ln_div: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln (x / y) = ln x - ln y" | |
| 1130 | by (rule ln_unique, simp add: exp_diff) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1131 | |
| 29171 | 1132 | lemma ln_realpow: "0 < x \<Longrightarrow> ln (x ^ n) = real n * ln x" | 
| 1133 | by (rule ln_unique, simp add: exp_real_of_nat_mult) | |
| 1134 | ||
| 1135 | lemma ln_less_cancel_iff [simp]: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln x < ln y \<longleftrightarrow> x < y" | |
| 1136 | by (subst exp_less_cancel_iff [symmetric], simp) | |
| 1137 | ||
| 1138 | lemma ln_le_cancel_iff [simp]: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln x \<le> ln y \<longleftrightarrow> x \<le> y" | |
| 1139 | by (simp add: linorder_not_less [symmetric]) | |
| 1140 | ||
| 1141 | lemma ln_inj_iff [simp]: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln x = ln y \<longleftrightarrow> x = y" | |
| 1142 | by (simp add: order_eq_iff) | |
| 1143 | ||
| 1144 | lemma ln_add_one_self_le_self [simp]: "0 \<le> x \<Longrightarrow> ln (1 + x) \<le> x" | |
| 1145 | apply (rule exp_le_cancel_iff [THEN iffD1]) | |
| 1146 | apply (simp add: exp_ge_add_one_self_aux) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1147 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1148 | |
| 29171 | 1149 | lemma ln_less_self [simp]: "0 < x \<Longrightarrow> ln x < x" | 
| 1150 | by (rule order_less_le_trans [where y="ln (1 + x)"]) simp_all | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1151 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1152 | lemma ln_ge_zero [simp]: | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1153 | assumes x: "1 \<le> x" shows "0 \<le> ln x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1154 | proof - | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1155 | have "0 < x" using x by arith | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1156 | hence "exp 0 \<le> exp (ln x)" | 
| 22915 | 1157 | by (simp add: x) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1158 | thus ?thesis by (simp only: exp_le_cancel_iff) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1159 | qed | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1160 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1161 | lemma ln_ge_zero_imp_ge_one: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1162 | assumes ln: "0 \<le> ln x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1163 | and x: "0 < x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1164 | shows "1 \<le> x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1165 | proof - | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1166 | from ln have "ln 1 \<le> ln x" by simp | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1167 | thus ?thesis by (simp add: x del: ln_one) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1168 | qed | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1169 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1170 | lemma ln_ge_zero_iff [simp]: "0 < x ==> (0 \<le> ln x) = (1 \<le> x)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1171 | by (blast intro: ln_ge_zero ln_ge_zero_imp_ge_one) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1172 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1173 | lemma ln_less_zero_iff [simp]: "0 < x ==> (ln x < 0) = (x < 1)" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1174 | by (insert ln_ge_zero_iff [of x], arith) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1175 | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1176 | lemma ln_gt_zero: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1177 | assumes x: "1 < x" shows "0 < ln x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1178 | proof - | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1179 | have "0 < x" using x by arith | 
| 22915 | 1180 | hence "exp 0 < exp (ln x)" by (simp add: x) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1181 | thus ?thesis by (simp only: exp_less_cancel_iff) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1182 | qed | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1183 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1184 | lemma ln_gt_zero_imp_gt_one: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1185 | assumes ln: "0 < ln x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1186 | and x: "0 < x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1187 | shows "1 < x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1188 | proof - | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1189 | from ln have "ln 1 < ln x" by simp | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1190 | thus ?thesis by (simp add: x del: ln_one) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1191 | qed | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1192 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1193 | lemma ln_gt_zero_iff [simp]: "0 < x ==> (0 < ln x) = (1 < x)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1194 | by (blast intro: ln_gt_zero ln_gt_zero_imp_gt_one) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1195 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1196 | lemma ln_eq_zero_iff [simp]: "0 < x ==> (ln x = 0) = (x = 1)" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1197 | by (insert ln_less_zero_iff [of x] ln_gt_zero_iff [of x], arith) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1198 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1199 | lemma ln_less_zero: "[| 0 < x; x < 1 |] ==> ln x < 0" | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1200 | by simp | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1201 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1202 | lemma exp_ln_eq: "exp u = x ==> ln x = u" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1203 | by auto | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1204 | |
| 23045 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 1205 | lemma isCont_ln: "0 < x \<Longrightarrow> isCont ln x" | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 1206 | apply (subgoal_tac "isCont ln (exp (ln x))", simp) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 1207 | apply (rule isCont_inverse_function [where f=exp], simp_all) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 1208 | done | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 1209 | |
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 1210 | lemma DERIV_ln: "0 < x \<Longrightarrow> DERIV ln x :> inverse x" | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 1211 | apply (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 1212 | apply (erule lemma_DERIV_subst [OF DERIV_exp exp_ln]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 1213 | apply (simp_all add: abs_if isCont_ln) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 1214 | done | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 1215 | |
| 33667 | 1216 | lemma DERIV_ln_divide: "0 < x ==> DERIV ln x :> 1 / x" | 
| 1217 | by (rule DERIV_ln[THEN DERIV_cong], simp, simp add: divide_inverse) | |
| 1218 | ||
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1219 | lemma ln_series: assumes "0 < x" and "x < 2" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1220 | shows "ln x = (\<Sum> n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))" (is "ln x = suminf (?f (x - 1))") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1221 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1222 | let "?f' x n" = "(-1)^n * (x - 1)^n" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1223 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1224 | have "ln x - suminf (?f (x - 1)) = ln 1 - suminf (?f (1 - 1))" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1225 | proof (rule DERIV_isconst3[where x=x]) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1226 |     fix x :: real assume "x \<in> {0 <..< 2}" hence "0 < x" and "x < 2" by auto
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1227 | have "norm (1 - x) < 1" using `0 < x` and `x < 2` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1228 | have "1 / x = 1 / (1 - (1 - x))" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1229 | also have "\<dots> = (\<Sum> n. (1 - x)^n)" using geometric_sums[OF `norm (1 - x) < 1`] by (rule sums_unique) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1230 | also have "\<dots> = suminf (?f' x)" unfolding power_mult_distrib[symmetric] by (rule arg_cong[where f=suminf], rule arg_cong[where f="op ^"], auto) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1231 | finally have "DERIV ln x :> suminf (?f' x)" using DERIV_ln[OF `0 < x`] unfolding real_divide_def by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1232 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1233 | have repos: "\<And> h x :: real. h - 1 + x = h + x - 1" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1234 | have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :> (\<Sum>n. (-1)^n * (1 / real (n + 1)) * real (Suc n) * (x - 1) ^ n)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1235 | proof (rule DERIV_power_series') | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1236 |       show "x - 1 \<in> {- 1<..<1}" and "(0 :: real) < 1" using `0 < x` `x < 2` by auto
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1237 |       { fix x :: real assume "x \<in> {- 1<..<1}" hence "norm (-x) < 1" by auto
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 1238 | show "summable (\<lambda>n. -1 ^ n * (1 / real (n + 1)) * real (Suc n) * x ^ n)" | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 1239 | unfolding One_nat_def | 
| 35216 | 1240 | by (auto simp add: power_mult_distrib[symmetric] summable_geometric[OF `norm (-x) < 1`]) | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1241 | } | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1242 | qed | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 1243 | hence "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :> suminf (?f' x)" unfolding One_nat_def by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1244 | hence "DERIV (\<lambda>x. suminf (?f (x - 1))) x :> suminf (?f' x)" unfolding DERIV_iff repos . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1245 | ultimately have "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> (suminf (?f' x) - suminf (?f' x))" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1246 | by (rule DERIV_diff) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1247 | thus "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> 0" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1248 | qed (auto simp add: assms) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1249 | thus ?thesis by (auto simp add: suminf_zero) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1250 | qed | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1251 | |
| 29164 | 1252 | subsection {* Sine and Cosine *}
 | 
| 1253 | ||
| 1254 | definition | |
| 31271 | 1255 | sin_coeff :: "nat \<Rightarrow> real" where | 
| 1256 | "sin_coeff = (\<lambda>n. if even n then 0 else -1 ^ ((n - Suc 0) div 2) / real (fact n))" | |
| 1257 | ||
| 1258 | definition | |
| 1259 | cos_coeff :: "nat \<Rightarrow> real" where | |
| 1260 | "cos_coeff = (\<lambda>n. if even n then (-1 ^ (n div 2)) / real (fact n) else 0)" | |
| 1261 | ||
| 1262 | definition | |
| 29164 | 1263 | sin :: "real => real" where | 
| 31271 | 1264 | "sin x = (\<Sum>n. sin_coeff n * x ^ n)" | 
| 1265 | ||
| 29164 | 1266 | definition | 
| 1267 | cos :: "real => real" where | |
| 31271 | 1268 | "cos x = (\<Sum>n. cos_coeff n * x ^ n)" | 
| 1269 | ||
| 1270 | lemma summable_sin: "summable (\<lambda>n. sin_coeff n * x ^ n)" | |
| 1271 | unfolding sin_coeff_def | |
| 29164 | 1272 | apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test) | 
| 1273 | apply (rule_tac [2] summable_exp) | |
| 1274 | apply (rule_tac x = 0 in exI) | |
| 1275 | apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff) | |
| 1276 | done | |
| 1277 | ||
| 31271 | 1278 | lemma summable_cos: "summable (\<lambda>n. cos_coeff n * x ^ n)" | 
| 1279 | unfolding cos_coeff_def | |
| 29164 | 1280 | apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test) | 
| 1281 | apply (rule_tac [2] summable_exp) | |
| 1282 | apply (rule_tac x = 0 in exI) | |
| 1283 | apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff) | |
| 1284 | done | |
| 1285 | ||
| 1286 | lemma lemma_STAR_sin: | |
| 1287 | "(if even n then 0 | |
| 1288 | else -1 ^ ((n - Suc 0) div 2)/(real (fact n))) * 0 ^ n = 0" | |
| 1289 | by (induct "n", auto) | |
| 1290 | ||
| 1291 | lemma lemma_STAR_cos: | |
| 1292 | "0 < n --> | |
| 1293 | -1 ^ (n div 2)/(real (fact n)) * 0 ^ n = 0" | |
| 1294 | by (induct "n", auto) | |
| 1295 | ||
| 1296 | lemma lemma_STAR_cos1: | |
| 1297 | "0 < n --> | |
| 1298 | (-1) ^ (n div 2)/(real (fact n)) * 0 ^ n = 0" | |
| 1299 | by (induct "n", auto) | |
| 1300 | ||
| 1301 | lemma lemma_STAR_cos2: | |
| 1302 | "(\<Sum>n=1..<n. if even n then -1 ^ (n div 2)/(real (fact n)) * 0 ^ n | |
| 1303 | else 0) = 0" | |
| 1304 | apply (induct "n") | |
| 1305 | apply (case_tac [2] "n", auto) | |
| 1306 | done | |
| 1307 | ||
| 31271 | 1308 | lemma sin_converges: "(\<lambda>n. sin_coeff n * x ^ n) sums sin(x)" | 
| 29164 | 1309 | unfolding sin_def by (rule summable_sin [THEN summable_sums]) | 
| 1310 | ||
| 31271 | 1311 | lemma cos_converges: "(\<lambda>n. cos_coeff n * x ^ n) sums cos(x)" | 
| 29164 | 1312 | unfolding cos_def by (rule summable_cos [THEN summable_sums]) | 
| 1313 | ||
| 31271 | 1314 | lemma sin_fdiffs: "diffs sin_coeff = cos_coeff" | 
| 1315 | unfolding sin_coeff_def cos_coeff_def | |
| 29164 | 1316 | by (auto intro!: ext | 
| 1317 | simp add: diffs_def divide_inverse real_of_nat_def of_nat_mult | |
| 1318 | simp del: mult_Suc of_nat_Suc) | |
| 1319 | ||
| 31271 | 1320 | lemma sin_fdiffs2: "diffs sin_coeff n = cos_coeff n" | 
| 29164 | 1321 | by (simp only: sin_fdiffs) | 
| 1322 | ||
| 31271 | 1323 | lemma cos_fdiffs: "diffs cos_coeff = (\<lambda>n. - sin_coeff n)" | 
| 1324 | unfolding sin_coeff_def cos_coeff_def | |
| 29164 | 1325 | by (auto intro!: ext | 
| 1326 | simp add: diffs_def divide_inverse odd_Suc_mult_two_ex real_of_nat_def of_nat_mult | |
| 1327 | simp del: mult_Suc of_nat_Suc) | |
| 1328 | ||
| 31271 | 1329 | lemma cos_fdiffs2: "diffs cos_coeff n = - sin_coeff n" | 
| 29164 | 1330 | by (simp only: cos_fdiffs) | 
| 1331 | ||
| 1332 | text{*Now at last we can get the derivatives of exp, sin and cos*}
 | |
| 1333 | ||
| 31271 | 1334 | lemma lemma_sin_minus: "- sin x = (\<Sum>n. - (sin_coeff n * x ^ n))" | 
| 29164 | 1335 | by (auto intro!: sums_unique sums_minus sin_converges) | 
| 1336 | ||
| 31271 | 1337 | lemma lemma_sin_ext: "sin = (\<lambda>x. \<Sum>n. sin_coeff n * x ^ n)" | 
| 29164 | 1338 | by (auto intro!: ext simp add: sin_def) | 
| 1339 | ||
| 31271 | 1340 | lemma lemma_cos_ext: "cos = (\<lambda>x. \<Sum>n. cos_coeff n * x ^ n)" | 
| 29164 | 1341 | by (auto intro!: ext simp add: cos_def) | 
| 1342 | ||
| 1343 | lemma DERIV_sin [simp]: "DERIV sin x :> cos(x)" | |
| 1344 | apply (simp add: cos_def) | |
| 1345 | apply (subst lemma_sin_ext) | |
| 1346 | apply (auto simp add: sin_fdiffs2 [symmetric]) | |
| 1347 | apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs) | |
| 1348 | apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs) | |
| 1349 | done | |
| 1350 | ||
| 1351 | lemma DERIV_cos [simp]: "DERIV cos x :> -sin(x)" | |
| 1352 | apply (subst lemma_cos_ext) | |
| 1353 | apply (auto simp add: lemma_sin_minus cos_fdiffs2 [symmetric] minus_mult_left) | |
| 1354 | apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs) | |
| 1355 | apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs diffs_minus) | |
| 1356 | done | |
| 1357 | ||
| 1358 | lemma isCont_sin [simp]: "isCont sin x" | |
| 1359 | by (rule DERIV_sin [THEN DERIV_isCont]) | |
| 1360 | ||
| 1361 | lemma isCont_cos [simp]: "isCont cos x" | |
| 1362 | by (rule DERIV_cos [THEN DERIV_isCont]) | |
| 1363 | ||
| 1364 | ||
| 31880 | 1365 | declare | 
| 1366 | DERIV_exp[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] | |
| 1367 | DERIV_ln[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] | |
| 1368 | DERIV_sin[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] | |
| 1369 | DERIV_cos[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] | |
| 1370 | ||
| 29164 | 1371 | subsection {* Properties of Sine and Cosine *}
 | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1372 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1373 | lemma sin_zero [simp]: "sin 0 = 0" | 
| 31271 | 1374 | unfolding sin_def sin_coeff_def by (simp add: powser_zero) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1375 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1376 | lemma cos_zero [simp]: "cos 0 = 1" | 
| 31271 | 1377 | unfolding cos_def cos_coeff_def by (simp add: powser_zero) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1378 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1379 | lemma DERIV_sin_sin_mult [simp]: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1380 | "DERIV (%x. sin(x)*sin(x)) x :> cos(x) * sin(x) + cos(x) * sin(x)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1381 | by (rule DERIV_mult, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1382 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1383 | lemma DERIV_sin_sin_mult2 [simp]: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1384 | "DERIV (%x. sin(x)*sin(x)) x :> 2 * cos(x) * sin(x)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1385 | apply (cut_tac x = x in DERIV_sin_sin_mult) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1386 | apply (auto simp add: mult_assoc) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1387 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1388 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1389 | lemma DERIV_sin_realpow2 [simp]: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1390 | "DERIV (%x. (sin x)\<twosuperior>) x :> cos(x) * sin(x) + cos(x) * sin(x)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1391 | by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1392 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1393 | lemma DERIV_sin_realpow2a [simp]: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1394 | "DERIV (%x. (sin x)\<twosuperior>) x :> 2 * cos(x) * sin(x)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1395 | by (auto simp add: numeral_2_eq_2) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1396 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1397 | lemma DERIV_cos_cos_mult [simp]: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1398 | "DERIV (%x. cos(x)*cos(x)) x :> -sin(x) * cos(x) + -sin(x) * cos(x)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1399 | by (rule DERIV_mult, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1400 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1401 | lemma DERIV_cos_cos_mult2 [simp]: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1402 | "DERIV (%x. cos(x)*cos(x)) x :> -2 * cos(x) * sin(x)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1403 | apply (cut_tac x = x in DERIV_cos_cos_mult) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1404 | apply (auto simp add: mult_ac) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1405 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1406 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1407 | lemma DERIV_cos_realpow2 [simp]: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1408 | "DERIV (%x. (cos x)\<twosuperior>) x :> -sin(x) * cos(x) + -sin(x) * cos(x)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1409 | by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1410 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1411 | lemma DERIV_cos_realpow2a [simp]: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1412 | "DERIV (%x. (cos x)\<twosuperior>) x :> -2 * cos(x) * sin(x)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1413 | by (auto simp add: numeral_2_eq_2) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1414 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1415 | lemma lemma_DERIV_subst: "[| DERIV f x :> D; D = E |] ==> DERIV f x :> E" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1416 | by auto | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1417 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1418 | lemma DERIV_cos_realpow2b: "DERIV (%x. (cos x)\<twosuperior>) x :> -(2 * cos(x) * sin(x))" | 
| 31881 | 1419 | by (auto intro!: DERIV_intros) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1420 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1421 | (* most useful *) | 
| 15229 | 1422 | lemma DERIV_cos_cos_mult3 [simp]: | 
| 1423 | "DERIV (%x. cos(x)*cos(x)) x :> -(2 * cos(x) * sin(x))" | |
| 31881 | 1424 | by (auto intro!: DERIV_intros) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1425 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1426 | lemma DERIV_sin_circle_all: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1427 | "\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :> | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1428 | (2*cos(x)*sin(x) - 2*cos(x)*sin(x))" | 
| 31881 | 1429 | by (auto intro!: DERIV_intros) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1430 | |
| 15229 | 1431 | lemma DERIV_sin_circle_all_zero [simp]: | 
| 1432 | "\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :> 0" | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1433 | by (cut_tac DERIV_sin_circle_all, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1434 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1435 | lemma sin_cos_squared_add [simp]: "((sin x)\<twosuperior>) + ((cos x)\<twosuperior>) = 1" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1436 | apply (cut_tac x = x and y = 0 in DERIV_sin_circle_all_zero [THEN DERIV_isconst_all]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1437 | apply (auto simp add: numeral_2_eq_2) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1438 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1439 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1440 | lemma sin_cos_squared_add2 [simp]: "((cos x)\<twosuperior>) + ((sin x)\<twosuperior>) = 1" | 
| 23286 | 1441 | apply (subst add_commute) | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30082diff
changeset | 1442 | apply (rule sin_cos_squared_add) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1443 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1444 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1445 | lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1446 | apply (cut_tac x = x in sin_cos_squared_add2) | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30082diff
changeset | 1447 | apply (simp add: power2_eq_square) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1448 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1449 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1450 | lemma sin_squared_eq: "(sin x)\<twosuperior> = 1 - (cos x)\<twosuperior>" | 
| 15229 | 1451 | apply (rule_tac a1 = "(cos x)\<twosuperior>" in add_right_cancel [THEN iffD1]) | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30082diff
changeset | 1452 | apply simp | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1453 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1454 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1455 | lemma cos_squared_eq: "(cos x)\<twosuperior> = 1 - (sin x)\<twosuperior>" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1456 | apply (rule_tac a1 = "(sin x)\<twosuperior>" in add_right_cancel [THEN iffD1]) | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30082diff
changeset | 1457 | apply simp | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1458 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1459 | |
| 15081 | 1460 | lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1" | 
| 23097 | 1461 | by (rule power2_le_imp_le, simp_all add: sin_squared_eq) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1462 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1463 | lemma sin_ge_minus_one [simp]: "-1 \<le> sin x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1464 | apply (insert abs_sin_le_one [of x]) | 
| 22998 | 1465 | apply (simp add: abs_le_iff del: abs_sin_le_one) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1466 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1467 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1468 | lemma sin_le_one [simp]: "sin x \<le> 1" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1469 | apply (insert abs_sin_le_one [of x]) | 
| 22998 | 1470 | apply (simp add: abs_le_iff del: abs_sin_le_one) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1471 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1472 | |
| 15081 | 1473 | lemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1" | 
| 23097 | 1474 | by (rule power2_le_imp_le, simp_all add: cos_squared_eq) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1475 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1476 | lemma cos_ge_minus_one [simp]: "-1 \<le> cos x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1477 | apply (insert abs_cos_le_one [of x]) | 
| 22998 | 1478 | apply (simp add: abs_le_iff del: abs_cos_le_one) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1479 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1480 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1481 | lemma cos_le_one [simp]: "cos x \<le> 1" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1482 | apply (insert abs_cos_le_one [of x]) | 
| 22998 | 1483 | apply (simp add: abs_le_iff del: abs_cos_le_one) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1484 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1485 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1486 | lemma DERIV_fun_pow: "DERIV g x :> m ==> | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1487 | DERIV (%x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m" | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 1488 | unfolding One_nat_def | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1489 | apply (rule lemma_DERIV_subst) | 
| 15229 | 1490 | apply (rule_tac f = "(%x. x ^ n)" in DERIV_chain2) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1491 | apply (rule DERIV_pow, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1492 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1493 | |
| 15229 | 1494 | lemma DERIV_fun_exp: | 
| 1495 | "DERIV g x :> m ==> DERIV (%x. exp(g x)) x :> exp(g x) * m" | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1496 | apply (rule lemma_DERIV_subst) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1497 | apply (rule_tac f = exp in DERIV_chain2) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1498 | apply (rule DERIV_exp, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1499 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1500 | |
| 15229 | 1501 | lemma DERIV_fun_sin: | 
| 1502 | "DERIV g x :> m ==> DERIV (%x. sin(g x)) x :> cos(g x) * m" | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1503 | apply (rule lemma_DERIV_subst) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1504 | apply (rule_tac f = sin in DERIV_chain2) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1505 | apply (rule DERIV_sin, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1506 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1507 | |
| 15229 | 1508 | lemma DERIV_fun_cos: | 
| 1509 | "DERIV g x :> m ==> DERIV (%x. cos(g x)) x :> -sin(g x) * m" | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1510 | apply (rule lemma_DERIV_subst) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1511 | apply (rule_tac f = cos in DERIV_chain2) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1512 | apply (rule DERIV_cos, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1513 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1514 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1515 | (* lemma *) | 
| 15229 | 1516 | lemma lemma_DERIV_sin_cos_add: | 
| 1517 | "\<forall>x. | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1518 | DERIV (%x. (sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 + | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1519 | (cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2) x :> 0" | 
| 31881 | 1520 | by (auto intro!: DERIV_intros simp add: algebra_simps) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1521 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1522 | lemma sin_cos_add [simp]: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1523 | "(sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 + | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1524 | (cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2 = 0" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1525 | apply (cut_tac y = 0 and x = x and y7 = y | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1526 | in lemma_DERIV_sin_cos_add [THEN DERIV_isconst_all]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1527 | apply (auto simp add: numeral_2_eq_2) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1528 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1529 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1530 | lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1531 | apply (cut_tac x = x and y = y in sin_cos_add) | 
| 22969 | 1532 | apply (simp del: sin_cos_add) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1533 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1534 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1535 | lemma cos_add: "cos (x + y) = cos x * cos y - sin x * sin y" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1536 | apply (cut_tac x = x and y = y in sin_cos_add) | 
| 22969 | 1537 | apply (simp del: sin_cos_add) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1538 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1539 | |
| 15085 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15081diff
changeset | 1540 | lemma lemma_DERIV_sin_cos_minus: | 
| 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15081diff
changeset | 1541 | "\<forall>x. DERIV (%x. (sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2) x :> 0" | 
| 31881 | 1542 | by (auto intro!: DERIV_intros simp add: algebra_simps) | 
| 1543 | ||
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1544 | |
| 29165 
562f95f06244
cleaned up some proofs; removed redundant simp rules
 huffman parents: 
29164diff
changeset | 1545 | lemma sin_cos_minus: | 
| 15085 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15081diff
changeset | 1546 | "(sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2 = 0" | 
| 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15081diff
changeset | 1547 | apply (cut_tac y = 0 and x = x | 
| 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15081diff
changeset | 1548 | in lemma_DERIV_sin_cos_minus [THEN DERIV_isconst_all]) | 
| 22969 | 1549 | apply simp | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1550 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1551 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1552 | lemma sin_minus [simp]: "sin (-x) = -sin(x)" | 
| 29165 
562f95f06244
cleaned up some proofs; removed redundant simp rules
 huffman parents: 
29164diff
changeset | 1553 | using sin_cos_minus [where x=x] by simp | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1554 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1555 | lemma cos_minus [simp]: "cos (-x) = cos(x)" | 
| 29165 
562f95f06244
cleaned up some proofs; removed redundant simp rules
 huffman parents: 
29164diff
changeset | 1556 | using sin_cos_minus [where x=x] by simp | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1557 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1558 | lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y" | 
| 22969 | 1559 | by (simp add: diff_minus sin_add) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1560 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1561 | lemma sin_diff2: "sin (x - y) = cos y * sin x - sin y * cos x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1562 | by (simp add: sin_diff mult_commute) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1563 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1564 | lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y" | 
| 22969 | 1565 | by (simp add: diff_minus cos_add) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1566 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1567 | lemma cos_diff2: "cos (x - y) = cos y * cos x + sin y * sin x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1568 | by (simp add: cos_diff mult_commute) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1569 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1570 | lemma sin_double [simp]: "sin(2 * x) = 2* sin x * cos x" | 
| 29165 
562f95f06244
cleaned up some proofs; removed redundant simp rules
 huffman parents: 
29164diff
changeset | 1571 | using sin_add [where x=x and y=x] by simp | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1572 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1573 | lemma cos_double: "cos(2* x) = ((cos x)\<twosuperior>) - ((sin x)\<twosuperior>)" | 
| 29165 
562f95f06244
cleaned up some proofs; removed redundant simp rules
 huffman parents: 
29164diff
changeset | 1574 | using cos_add [where x=x and y=x] | 
| 
562f95f06244
cleaned up some proofs; removed redundant simp rules
 huffman parents: 
29164diff
changeset | 1575 | by (simp add: power2_eq_square) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1576 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1577 | |
| 29164 | 1578 | subsection {* The Constant Pi *}
 | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1579 | |
| 23043 | 1580 | definition | 
| 1581 | pi :: "real" where | |
| 23053 | 1582 | "pi = 2 * (THE x. 0 \<le> (x::real) & x \<le> 2 & cos x = 0)" | 
| 23043 | 1583 | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1584 | text{*Show that there's a least positive @{term x} with @{term "cos(x) = 0"}; 
 | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1585 | hence define pi.*} | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1586 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1587 | lemma sin_paired: | 
| 23177 | 1588 | "(%n. -1 ^ n /(real (fact (2 * n + 1))) * x ^ (2 * n + 1)) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1589 | sums sin x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1590 | proof - | 
| 31271 | 1591 | have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. sin_coeff k * x ^ k) sums sin x" | 
| 23176 | 1592 | unfolding sin_def | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1593 | by (rule sin_converges [THEN sums_summable, THEN sums_group], simp) | 
| 31271 | 1594 | thus ?thesis unfolding One_nat_def sin_coeff_def by (simp add: mult_ac) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1595 | qed | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1596 | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30082diff
changeset | 1597 | text {* FIXME: This is a long, ugly proof! *}
 | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1598 | lemma sin_gt_zero: "[|0 < x; x < 2 |] ==> 0 < sin x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1599 | apply (subgoal_tac | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1600 | "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. | 
| 23177 | 1601 | -1 ^ k / real (fact (2 * k + 1)) * x ^ (2 * k + 1)) | 
| 1602 | sums (\<Sum>n. -1 ^ n / real (fact (2 * n + 1)) * x ^ (2 * n + 1))") | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1603 | prefer 2 | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1604 | apply (rule sin_paired [THEN sums_summable, THEN sums_group], simp) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1605 | apply (rotate_tac 2) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1606 | apply (drule sin_paired [THEN sums_unique, THEN ssubst]) | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 1607 | unfolding One_nat_def | 
| 32047 | 1608 | apply (auto simp del: fact_Suc) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1609 | apply (frule sums_unique) | 
| 32047 | 1610 | apply (auto simp del: fact_Suc) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1611 | apply (rule_tac n1 = 0 in series_pos_less [THEN [2] order_le_less_trans]) | 
| 32047 | 1612 | apply (auto simp del: fact_Suc) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1613 | apply (erule sums_summable) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1614 | apply (case_tac "m=0") | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1615 | apply (simp (no_asm_simp)) | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1616 | apply (subgoal_tac "6 * (x * (x * x) / real (Suc (Suc (Suc (Suc (Suc (Suc 0))))))) < 6 * x") | 
| 15539 | 1617 | apply (simp only: mult_less_cancel_left, simp) | 
| 1618 | apply (simp (no_asm_simp) add: numeral_2_eq_2 [symmetric] mult_assoc [symmetric]) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1619 | apply (subgoal_tac "x*x < 2*3", simp) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1620 | apply (rule mult_strict_mono) | 
| 32047 | 1621 | apply (auto simp add: real_0_less_add_iff real_of_nat_Suc simp del: fact_Suc) | 
| 1622 | apply (subst fact_Suc) | |
| 1623 | apply (subst fact_Suc) | |
| 1624 | apply (subst fact_Suc) | |
| 1625 | apply (subst fact_Suc) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1626 | apply (subst real_of_nat_mult) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1627 | apply (subst real_of_nat_mult) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1628 | apply (subst real_of_nat_mult) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1629 | apply (subst real_of_nat_mult) | 
| 32047 | 1630 | apply (simp (no_asm) add: divide_inverse del: fact_Suc) | 
| 1631 | apply (auto simp add: mult_assoc [symmetric] simp del: fact_Suc) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1632 | apply (rule_tac c="real (Suc (Suc (4*m)))" in mult_less_imp_less_right) | 
| 32047 | 1633 | apply (auto simp add: mult_assoc simp del: fact_Suc) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1634 | apply (rule_tac c="real (Suc (Suc (Suc (4*m))))" in mult_less_imp_less_right) | 
| 32047 | 1635 | apply (auto simp add: mult_assoc mult_less_cancel_left simp del: fact_Suc) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1636 | apply (subgoal_tac "x * (x * x ^ (4*m)) = (x ^ (4*m)) * (x * x)") | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1637 | apply (erule ssubst)+ | 
| 32047 | 1638 | apply (auto simp del: fact_Suc) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1639 | apply (subgoal_tac "0 < x ^ (4 * m) ") | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1640 | prefer 2 apply (simp only: zero_less_power) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1641 | apply (simp (no_asm_simp) add: mult_less_cancel_left) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1642 | apply (rule mult_strict_mono) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1643 | apply (simp_all (no_asm_simp)) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1644 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1645 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1646 | lemma sin_gt_zero1: "[|0 < x; x < 2 |] ==> 0 < sin x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1647 | by (auto intro: sin_gt_zero) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1648 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1649 | lemma cos_double_less_one: "[| 0 < x; x < 2 |] ==> cos (2 * x) < 1" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1650 | apply (cut_tac x = x in sin_gt_zero1) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1651 | apply (auto simp add: cos_squared_eq cos_double) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1652 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1653 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1654 | lemma cos_paired: | 
| 23177 | 1655 | "(%n. -1 ^ n /(real (fact (2 * n))) * x ^ (2 * n)) sums cos x" | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1656 | proof - | 
| 31271 | 1657 | have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. cos_coeff k * x ^ k) sums cos x" | 
| 23176 | 1658 | unfolding cos_def | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1659 | by (rule cos_converges [THEN sums_summable, THEN sums_group], simp) | 
| 31271 | 1660 | thus ?thesis unfolding cos_coeff_def by (simp add: mult_ac) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1661 | qed | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1662 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1663 | lemma fact_lemma: "real (n::nat) * 4 = real (4 * n)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1664 | by simp | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1665 | |
| 23053 | 1666 | lemma cos_two_less_zero [simp]: "cos (2) < 0" | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1667 | apply (cut_tac x = 2 in cos_paired) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1668 | apply (drule sums_minus) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1669 | apply (rule neg_less_iff_less [THEN iffD1]) | 
| 15539 | 1670 | apply (frule sums_unique, auto) | 
| 1671 | apply (rule_tac y = | |
| 23177 | 1672 | "\<Sum>n=0..< Suc(Suc(Suc 0)). - (-1 ^ n / (real(fact (2*n))) * 2 ^ (2*n))" | 
| 15481 | 1673 | in order_less_trans) | 
| 32047 | 1674 | apply (simp (no_asm) add: fact_num_eq_if_nat realpow_num_eq_if del: fact_Suc) | 
| 15561 | 1675 | apply (simp (no_asm) add: mult_assoc del: setsum_op_ivl_Suc) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1676 | apply (rule sumr_pos_lt_pair) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1677 | apply (erule sums_summable, safe) | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 1678 | unfolding One_nat_def | 
| 15085 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15081diff
changeset | 1679 | apply (simp (no_asm) add: divide_inverse real_0_less_add_iff mult_assoc [symmetric] | 
| 32047 | 1680 | del: fact_Suc) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1681 | apply (rule real_mult_inverse_cancel2) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1682 | apply (rule real_of_nat_fact_gt_zero)+ | 
| 32047 | 1683 | apply (simp (no_asm) add: mult_assoc [symmetric] del: fact_Suc) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1684 | apply (subst fact_lemma) | 
| 32047 | 1685 | apply (subst fact_Suc [of "Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))"]) | 
| 15481 | 1686 | apply (simp only: real_of_nat_mult) | 
| 23007 
e025695d9b0e
use mult_strict_mono instead of real_mult_less_mono
 huffman parents: 
22998diff
changeset | 1687 | apply (rule mult_strict_mono, force) | 
| 27483 
7c58324cd418
use real_of_nat_ge_zero instead of real_of_nat_fact_ge_zero
 huffman parents: 
25875diff
changeset | 1688 | apply (rule_tac [3] real_of_nat_ge_zero) | 
| 15481 | 1689 | prefer 2 apply force | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1690 | apply (rule real_of_nat_less_iff [THEN iffD2]) | 
| 32036 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31881diff
changeset | 1691 | apply (rule fact_less_mono_nat, auto) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1692 | done | 
| 23053 | 1693 | |
| 1694 | lemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq] | |
| 1695 | lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le] | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1696 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1697 | lemma cos_is_zero: "EX! x. 0 \<le> x & x \<le> 2 & cos x = 0" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1698 | apply (subgoal_tac "\<exists>x. 0 \<le> x & x \<le> 2 & cos x = 0") | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1699 | apply (rule_tac [2] IVT2) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1700 | apply (auto intro: DERIV_isCont DERIV_cos) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1701 | apply (cut_tac x = xa and y = y in linorder_less_linear) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1702 | apply (rule ccontr) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1703 | apply (subgoal_tac " (\<forall>x. cos differentiable x) & (\<forall>x. isCont cos x) ") | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1704 | apply (auto intro: DERIV_cos DERIV_isCont simp add: differentiable_def) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1705 | apply (drule_tac f = cos in Rolle) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1706 | apply (drule_tac [5] f = cos in Rolle) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1707 | apply (auto dest!: DERIV_cos [THEN DERIV_unique] simp add: differentiable_def) | 
| 33667 | 1708 | apply (metis order_less_le_trans real_less_def sin_gt_zero) | 
| 1709 | apply (metis order_less_le_trans real_less_def sin_gt_zero) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1710 | done | 
| 31880 | 1711 | |
| 23053 | 1712 | lemma pi_half: "pi/2 = (THE x. 0 \<le> x & x \<le> 2 & cos x = 0)" | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1713 | by (simp add: pi_def) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1714 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1715 | lemma cos_pi_half [simp]: "cos (pi / 2) = 0" | 
| 23053 | 1716 | by (simp add: pi_half cos_is_zero [THEN theI']) | 
| 1717 | ||
| 1718 | lemma pi_half_gt_zero [simp]: "0 < pi / 2" | |
| 1719 | apply (rule order_le_neq_trans) | |
| 1720 | apply (simp add: pi_half cos_is_zero [THEN theI']) | |
| 1721 | apply (rule notI, drule arg_cong [where f=cos], simp) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1722 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1723 | |
| 23053 | 1724 | lemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric] | 
| 1725 | lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le] | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1726 | |
| 23053 | 1727 | lemma pi_half_less_two [simp]: "pi / 2 < 2" | 
| 1728 | apply (rule order_le_neq_trans) | |
| 1729 | apply (simp add: pi_half cos_is_zero [THEN theI']) | |
| 1730 | apply (rule notI, drule arg_cong [where f=cos], simp) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1731 | done | 
| 23053 | 1732 | |
| 1733 | lemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq] | |
| 1734 | lemmas pi_half_le_two [simp] = pi_half_less_two [THEN order_less_imp_le] | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1735 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1736 | lemma pi_gt_zero [simp]: "0 < pi" | 
| 23053 | 1737 | by (insert pi_half_gt_zero, simp) | 
| 1738 | ||
| 1739 | lemma pi_ge_zero [simp]: "0 \<le> pi" | |
| 1740 | by (rule pi_gt_zero [THEN order_less_imp_le]) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1741 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1742 | lemma pi_neq_zero [simp]: "pi \<noteq> 0" | 
| 22998 | 1743 | by (rule pi_gt_zero [THEN less_imp_neq, THEN not_sym]) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1744 | |
| 23053 | 1745 | lemma pi_not_less_zero [simp]: "\<not> pi < 0" | 
| 1746 | by (simp add: linorder_not_less) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1747 | |
| 29165 
562f95f06244
cleaned up some proofs; removed redundant simp rules
 huffman parents: 
29164diff
changeset | 1748 | lemma minus_pi_half_less_zero: "-(pi/2) < 0" | 
| 
562f95f06244
cleaned up some proofs; removed redundant simp rules
 huffman parents: 
29164diff
changeset | 1749 | by simp | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1750 | |
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1751 | lemma m2pi_less_pi: "- (2 * pi) < pi" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1752 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1753 | have "- (2 * pi) < 0" and "0 < pi" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1754 | from order_less_trans[OF this] show ?thesis . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1755 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1756 | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1757 | lemma sin_pi_half [simp]: "sin(pi/2) = 1" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1758 | apply (cut_tac x = "pi/2" in sin_cos_squared_add2) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1759 | apply (cut_tac sin_gt_zero [OF pi_half_gt_zero pi_half_less_two]) | 
| 23053 | 1760 | apply (simp add: power2_eq_square) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1761 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1762 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1763 | lemma cos_pi [simp]: "cos pi = -1" | 
| 15539 | 1764 | by (cut_tac x = "pi/2" and y = "pi/2" in cos_add, simp) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1765 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1766 | lemma sin_pi [simp]: "sin pi = 0" | 
| 15539 | 1767 | by (cut_tac x = "pi/2" and y = "pi/2" in sin_add, simp) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1768 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1769 | lemma sin_cos_eq: "sin x = cos (pi/2 - x)" | 
| 15229 | 1770 | by (simp add: diff_minus cos_add) | 
| 23053 | 1771 | declare sin_cos_eq [symmetric, simp] | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1772 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1773 | lemma minus_sin_cos_eq: "-sin x = cos (x + pi/2)" | 
| 15229 | 1774 | by (simp add: cos_add) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1775 | declare minus_sin_cos_eq [symmetric, simp] | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1776 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1777 | lemma cos_sin_eq: "cos x = sin (pi/2 - x)" | 
| 15229 | 1778 | by (simp add: diff_minus sin_add) | 
| 23053 | 1779 | declare cos_sin_eq [symmetric, simp] | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1780 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1781 | lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x" | 
| 15229 | 1782 | by (simp add: sin_add) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1783 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1784 | lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x" | 
| 15229 | 1785 | by (simp add: sin_add) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1786 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1787 | lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x" | 
| 15229 | 1788 | by (simp add: cos_add) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1789 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1790 | lemma sin_periodic [simp]: "sin (x + 2*pi) = sin x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1791 | by (simp add: sin_add cos_double) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1792 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1793 | lemma cos_periodic [simp]: "cos (x + 2*pi) = cos x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1794 | by (simp add: cos_add cos_double) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1795 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1796 | lemma cos_npi [simp]: "cos (real n * pi) = -1 ^ n" | 
| 15251 | 1797 | apply (induct "n") | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1798 | apply (auto simp add: real_of_nat_Suc left_distrib) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1799 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1800 | |
| 15383 | 1801 | lemma cos_npi2 [simp]: "cos (pi * real n) = -1 ^ n" | 
| 1802 | proof - | |
| 1803 | have "cos (pi * real n) = cos (real n * pi)" by (simp only: mult_commute) | |
| 1804 | also have "... = -1 ^ n" by (rule cos_npi) | |
| 1805 | finally show ?thesis . | |
| 1806 | qed | |
| 1807 | ||
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1808 | lemma sin_npi [simp]: "sin (real (n::nat) * pi) = 0" | 
| 15251 | 1809 | apply (induct "n") | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1810 | apply (auto simp add: real_of_nat_Suc left_distrib) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1811 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1812 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1813 | lemma sin_npi2 [simp]: "sin (pi * real (n::nat)) = 0" | 
| 15383 | 1814 | by (simp add: mult_commute [of pi]) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1815 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1816 | lemma cos_two_pi [simp]: "cos (2 * pi) = 1" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1817 | by (simp add: cos_double) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1818 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1819 | lemma sin_two_pi [simp]: "sin (2 * pi) = 0" | 
| 15229 | 1820 | by simp | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1821 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1822 | lemma sin_gt_zero2: "[| 0 < x; x < pi/2 |] ==> 0 < sin x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1823 | apply (rule sin_gt_zero, assumption) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1824 | apply (rule order_less_trans, assumption) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1825 | apply (rule pi_half_less_two) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1826 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1827 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1828 | lemma sin_less_zero: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1829 | assumes lb: "- pi/2 < x" and "x < 0" shows "sin x < 0" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1830 | proof - | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1831 | have "0 < sin (- x)" using prems by (simp only: sin_gt_zero2) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1832 | thus ?thesis by simp | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1833 | qed | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1834 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1835 | lemma pi_less_4: "pi < 4" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1836 | by (cut_tac pi_half_less_two, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1837 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1838 | lemma cos_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < cos x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1839 | apply (cut_tac pi_less_4) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1840 | apply (cut_tac f = cos and a = 0 and b = x and y = 0 in IVT2_objl, safe, simp_all) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1841 | apply (cut_tac cos_is_zero, safe) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1842 | apply (rename_tac y z) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1843 | apply (drule_tac x = y in spec) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1844 | apply (drule_tac x = "pi/2" in spec, simp) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1845 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1846 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1847 | lemma cos_gt_zero_pi: "[| -(pi/2) < x; x < pi/2 |] ==> 0 < cos x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1848 | apply (rule_tac x = x and y = 0 in linorder_cases) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1849 | apply (rule cos_minus [THEN subst]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1850 | apply (rule cos_gt_zero) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1851 | apply (auto intro: cos_gt_zero) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1852 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1853 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1854 | lemma cos_ge_zero: "[| -(pi/2) \<le> x; x \<le> pi/2 |] ==> 0 \<le> cos x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1855 | apply (auto simp add: order_le_less cos_gt_zero_pi) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1856 | apply (subgoal_tac "x = pi/2", auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1857 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1858 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1859 | lemma sin_gt_zero_pi: "[| 0 < x; x < pi |] ==> 0 < sin x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1860 | apply (subst sin_cos_eq) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1861 | apply (rotate_tac 1) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1862 | apply (drule real_sum_of_halves [THEN ssubst]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1863 | apply (auto intro!: cos_gt_zero_pi simp del: sin_cos_eq [symmetric]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1864 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1865 | |
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1866 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1867 | lemma pi_ge_two: "2 \<le> pi" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1868 | proof (rule ccontr) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1869 | assume "\<not> 2 \<le> pi" hence "pi < 2" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1870 | have "\<exists>y > pi. y < 2 \<and> y < 2 * pi" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1871 | proof (cases "2 < 2 * pi") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1872 | case True with dense[OF `pi < 2`] show ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1873 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1874 | case False have "pi < 2 * pi" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1875 | from dense[OF this] and False show ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1876 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1877 | then obtain y where "pi < y" and "y < 2" and "y < 2 * pi" by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1878 | hence "0 < sin y" using sin_gt_zero by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1879 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1880 | have "sin y < 0" using sin_gt_zero_pi[of "y - pi"] `pi < y` and `y < 2 * pi` sin_periodic_pi[of "y - pi"] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1881 | ultimately show False by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1882 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1883 | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1884 | lemma sin_ge_zero: "[| 0 \<le> x; x \<le> pi |] ==> 0 \<le> sin x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1885 | by (auto simp add: order_le_less sin_gt_zero_pi) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1886 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1887 | lemma cos_total: "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. 0 \<le> x & x \<le> pi & (cos x = y)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1888 | apply (subgoal_tac "\<exists>x. 0 \<le> x & x \<le> pi & cos x = y") | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1889 | apply (rule_tac [2] IVT2) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1890 | apply (auto intro: order_less_imp_le DERIV_isCont DERIV_cos) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1891 | apply (cut_tac x = xa and y = y in linorder_less_linear) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1892 | apply (rule ccontr, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1893 | apply (drule_tac f = cos in Rolle) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1894 | apply (drule_tac [5] f = cos in Rolle) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1895 | apply (auto intro: order_less_imp_le DERIV_isCont DERIV_cos | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1896 | dest!: DERIV_cos [THEN DERIV_unique] | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1897 | simp add: differentiable_def) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1898 | apply (auto dest: sin_gt_zero_pi [OF order_le_less_trans order_less_le_trans]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1899 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1900 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1901 | lemma sin_total: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1902 | "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. -(pi/2) \<le> x & x \<le> pi/2 & (sin x = y)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1903 | apply (rule ccontr) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1904 | apply (subgoal_tac "\<forall>x. (- (pi/2) \<le> x & x \<le> pi/2 & (sin x = y)) = (0 \<le> (x + pi/2) & (x + pi/2) \<le> pi & (cos (x + pi/2) = -y))") | 
| 18585 | 1905 | apply (erule contrapos_np) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1906 | apply (simp del: minus_sin_cos_eq [symmetric]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1907 | apply (cut_tac y="-y" in cos_total, simp) apply simp | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1908 | apply (erule ex1E) | 
| 15229 | 1909 | apply (rule_tac a = "x - (pi/2)" in ex1I) | 
| 23286 | 1910 | apply (simp (no_asm) add: add_assoc) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1911 | apply (rotate_tac 3) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1912 | apply (drule_tac x = "xa + pi/2" in spec, safe, simp_all) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1913 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1914 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1915 | lemma reals_Archimedean4: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1916 | "[| 0 < y; 0 \<le> x |] ==> \<exists>n. real n * y \<le> x & x < real (Suc n) * y" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1917 | apply (auto dest!: reals_Archimedean3) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1918 | apply (drule_tac x = x in spec, clarify) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1919 | apply (subgoal_tac "x < real(LEAST m::nat. x < real m * y) * y") | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1920 | prefer 2 apply (erule LeastI) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1921 | apply (case_tac "LEAST m::nat. x < real m * y", simp) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1922 | apply (subgoal_tac "~ x < real nat * y") | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1923 | prefer 2 apply (rule not_less_Least, simp, force) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1924 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1925 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1926 | (* Pre Isabelle99-2 proof was simpler- numerals arithmetic | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1927 | now causes some unwanted re-arrangements of literals! *) | 
| 15229 | 1928 | lemma cos_zero_lemma: | 
| 1929 | "[| 0 \<le> x; cos x = 0 |] ==> | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1930 | \<exists>n::nat. ~even n & x = real n * (pi/2)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1931 | apply (drule pi_gt_zero [THEN reals_Archimedean4], safe) | 
| 15086 | 1932 | apply (subgoal_tac "0 \<le> x - real n * pi & | 
| 1933 | (x - real n * pi) \<le> pi & (cos (x - real n * pi) = 0) ") | |
| 29667 | 1934 | apply (auto simp add: algebra_simps real_of_nat_Suc) | 
| 1935 | prefer 2 apply (simp add: cos_diff) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1936 | apply (simp add: cos_diff) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1937 | apply (subgoal_tac "EX! x. 0 \<le> x & x \<le> pi & cos x = 0") | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1938 | apply (rule_tac [2] cos_total, safe) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1939 | apply (drule_tac x = "x - real n * pi" in spec) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1940 | apply (drule_tac x = "pi/2" in spec) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1941 | apply (simp add: cos_diff) | 
| 15229 | 1942 | apply (rule_tac x = "Suc (2 * n)" in exI) | 
| 29667 | 1943 | apply (simp add: real_of_nat_Suc algebra_simps, auto) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1944 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1945 | |
| 15229 | 1946 | lemma sin_zero_lemma: | 
| 1947 | "[| 0 \<le> x; sin x = 0 |] ==> | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1948 | \<exists>n::nat. even n & x = real n * (pi/2)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1949 | apply (subgoal_tac "\<exists>n::nat. ~ even n & x + pi/2 = real n * (pi/2) ") | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1950 | apply (clarify, rule_tac x = "n - 1" in exI) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1951 | apply (force simp add: odd_Suc_mult_two_ex real_of_nat_Suc left_distrib) | 
| 15085 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15081diff
changeset | 1952 | apply (rule cos_zero_lemma) | 
| 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15081diff
changeset | 1953 | apply (simp_all add: add_increasing) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1954 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1955 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1956 | |
| 15229 | 1957 | lemma cos_zero_iff: | 
| 1958 | "(cos x = 0) = | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1959 | ((\<exists>n::nat. ~even n & (x = real n * (pi/2))) | | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1960 | (\<exists>n::nat. ~even n & (x = -(real n * (pi/2)))))" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1961 | apply (rule iffI) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1962 | apply (cut_tac linorder_linear [of 0 x], safe) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1963 | apply (drule cos_zero_lemma, assumption+) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1964 | apply (cut_tac x="-x" in cos_zero_lemma, simp, simp) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1965 | apply (force simp add: minus_equation_iff [of x]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1966 | apply (auto simp only: odd_Suc_mult_two_ex real_of_nat_Suc left_distrib) | 
| 15539 | 1967 | apply (auto simp add: cos_add) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1968 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1969 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1970 | (* ditto: but to a lesser extent *) | 
| 15229 | 1971 | lemma sin_zero_iff: | 
| 1972 | "(sin x = 0) = | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1973 | ((\<exists>n::nat. even n & (x = real n * (pi/2))) | | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1974 | (\<exists>n::nat. even n & (x = -(real n * (pi/2)))))" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1975 | apply (rule iffI) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1976 | apply (cut_tac linorder_linear [of 0 x], safe) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1977 | apply (drule sin_zero_lemma, assumption+) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1978 | apply (cut_tac x="-x" in sin_zero_lemma, simp, simp, safe) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1979 | apply (force simp add: minus_equation_iff [of x]) | 
| 15539 | 1980 | apply (auto simp add: even_mult_two_ex) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1981 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 1982 | |
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1983 | lemma cos_monotone_0_pi: assumes "0 \<le> y" and "y < x" and "x \<le> pi" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1984 | shows "cos x < cos y" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1985 | proof - | 
| 33549 | 1986 | have "- (x - y) < 0" using assms by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1987 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1988 | from MVT2[OF `y < x` DERIV_cos[THEN impI, THEN allI]] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1989 | obtain z where "y < z" and "z < x" and cos_diff: "cos x - cos y = (x - y) * - sin z" by auto | 
| 33549 | 1990 | hence "0 < z" and "z < pi" using assms by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1991 | hence "0 < sin z" using sin_gt_zero_pi by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1992 | hence "cos x - cos y < 0" unfolding cos_diff minus_mult_commute[symmetric] using `- (x - y) < 0` by (rule mult_pos_neg2) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1993 | thus ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1994 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1995 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1996 | lemma cos_monotone_0_pi': assumes "0 \<le> y" and "y \<le> x" and "x \<le> pi" shows "cos x \<le> cos y" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1997 | proof (cases "y < x") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1998 | case True show ?thesis using cos_monotone_0_pi[OF `0 \<le> y` True `x \<le> pi`] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 1999 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2000 | case False hence "y = x" using `y \<le> x` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2001 | thus ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2002 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2003 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2004 | lemma cos_monotone_minus_pi_0: assumes "-pi \<le> y" and "y < x" and "x \<le> 0" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2005 | shows "cos y < cos x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2006 | proof - | 
| 33549 | 2007 | have "0 \<le> -x" and "-x < -y" and "-y \<le> pi" using assms by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2008 | from cos_monotone_0_pi[OF this] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2009 | show ?thesis unfolding cos_minus . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2010 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2011 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2012 | lemma cos_monotone_minus_pi_0': assumes "-pi \<le> y" and "y \<le> x" and "x \<le> 0" shows "cos y \<le> cos x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2013 | proof (cases "y < x") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2014 | case True show ?thesis using cos_monotone_minus_pi_0[OF `-pi \<le> y` True `x \<le> 0`] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2015 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2016 | case False hence "y = x" using `y \<le> x` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2017 | thus ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2018 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2019 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2020 | lemma sin_monotone_2pi': assumes "- (pi / 2) \<le> y" and "y \<le> x" and "x \<le> pi / 2" shows "sin y \<le> sin x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2021 | proof - | 
| 33549 | 2022 | have "0 \<le> y + pi / 2" and "y + pi / 2 \<le> x + pi / 2" and "x + pi /2 \<le> pi" | 
| 2023 | using pi_ge_two and assms by auto | |
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2024 | from cos_monotone_0_pi'[OF this] show ?thesis unfolding minus_sin_cos_eq[symmetric] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2025 | qed | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2026 | |
| 29164 | 2027 | subsection {* Tangent *}
 | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2028 | |
| 23043 | 2029 | definition | 
| 2030 | tan :: "real => real" where | |
| 2031 | "tan x = (sin x)/(cos x)" | |
| 2032 | ||
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2033 | lemma tan_zero [simp]: "tan 0 = 0" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2034 | by (simp add: tan_def) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2035 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2036 | lemma tan_pi [simp]: "tan pi = 0" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2037 | by (simp add: tan_def) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2038 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2039 | lemma tan_npi [simp]: "tan (real (n::nat) * pi) = 0" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2040 | by (simp add: tan_def) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2041 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2042 | lemma tan_minus [simp]: "tan (-x) = - tan x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2043 | by (simp add: tan_def minus_mult_left) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2044 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2045 | lemma tan_periodic [simp]: "tan (x + 2*pi) = tan x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2046 | by (simp add: tan_def) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2047 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2048 | lemma lemma_tan_add1: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2049 | "[| cos x \<noteq> 0; cos y \<noteq> 0 |] | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2050 | ==> 1 - tan(x)*tan(y) = cos (x + y)/(cos x * cos y)" | 
| 15229 | 2051 | apply (simp add: tan_def divide_inverse) | 
| 2052 | apply (auto simp del: inverse_mult_distrib | |
| 2053 | simp add: inverse_mult_distrib [symmetric] mult_ac) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2054 | apply (rule_tac c1 = "cos x * cos y" in real_mult_right_cancel [THEN subst]) | 
| 15229 | 2055 | apply (auto simp del: inverse_mult_distrib | 
| 2056 | simp add: mult_assoc left_diff_distrib cos_add) | |
| 29667 | 2057 | done | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2058 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2059 | lemma add_tan_eq: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2060 | "[| cos x \<noteq> 0; cos y \<noteq> 0 |] | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2061 | ==> tan x + tan y = sin(x + y)/(cos x * cos y)" | 
| 15229 | 2062 | apply (simp add: tan_def) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2063 | apply (rule_tac c1 = "cos x * cos y" in real_mult_right_cancel [THEN subst]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2064 | apply (auto simp add: mult_assoc left_distrib) | 
| 15539 | 2065 | apply (simp add: sin_add) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2066 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2067 | |
| 15229 | 2068 | lemma tan_add: | 
| 2069 | "[| cos x \<noteq> 0; cos y \<noteq> 0; cos (x + y) \<noteq> 0 |] | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2070 | ==> tan(x + y) = (tan(x) + tan(y))/(1 - tan(x) * tan(y))" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2071 | apply (simp (no_asm_simp) add: add_tan_eq lemma_tan_add1) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2072 | apply (simp add: tan_def) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2073 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2074 | |
| 15229 | 2075 | lemma tan_double: | 
| 2076 | "[| cos x \<noteq> 0; cos (2 * x) \<noteq> 0 |] | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2077 | ==> tan (2 * x) = (2 * tan x)/(1 - (tan(x) ^ 2))" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2078 | apply (insert tan_add [of x x]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2079 | apply (simp add: mult_2 [symmetric]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2080 | apply (auto simp add: numeral_2_eq_2) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2081 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2082 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2083 | lemma tan_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < tan x" | 
| 15229 | 2084 | by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2085 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2086 | lemma tan_less_zero: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2087 | assumes lb: "- pi/2 < x" and "x < 0" shows "tan x < 0" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2088 | proof - | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2089 | have "0 < tan (- x)" using prems by (simp only: tan_gt_zero) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2090 | thus ?thesis by simp | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2091 | qed | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2092 | |
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2093 | lemma tan_half: fixes x :: real assumes "- (pi / 2) < x" and "x < pi / 2" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2094 | shows "tan x = sin (2 * x) / (cos (2 * x) + 1)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2095 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2096 | from cos_gt_zero_pi[OF `- (pi / 2) < x` `x < pi / 2`] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2097 | have "cos x \<noteq> 0" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2098 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2099 | have minus_cos_2x: "\<And>X. X - cos (2*x) = X - (cos x) ^ 2 + (sin x) ^ 2" unfolding cos_double by algebra | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2100 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2101 | have "tan x = (tan x + tan x) / 2" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2102 | also have "\<dots> = sin (x + x) / (cos x * cos x) / 2" unfolding add_tan_eq[OF `cos x \<noteq> 0` `cos x \<noteq> 0`] .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2103 | also have "\<dots> = sin (2 * x) / ((cos x) ^ 2 + (cos x) ^ 2 + cos (2*x) - cos (2*x))" unfolding divide_divide_eq_left numeral_2_eq_2 by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2104 | also have "\<dots> = sin (2 * x) / ((cos x) ^ 2 + cos (2*x) + (sin x)^2)" unfolding minus_cos_2x by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2105 | also have "\<dots> = sin (2 * x) / (cos (2*x) + 1)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2106 | finally show ?thesis . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2107 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2108 | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2109 | lemma lemma_DERIV_tan: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2110 | "cos x \<noteq> 0 ==> DERIV (%x. sin(x)/cos(x)) x :> inverse((cos x)\<twosuperior>)" | 
| 31881 | 2111 | by (auto intro!: DERIV_intros simp add: field_simps numeral_2_eq_2) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2112 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2113 | lemma DERIV_tan [simp]: "cos x \<noteq> 0 ==> DERIV tan x :> inverse((cos x)\<twosuperior>)" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2114 | by (auto dest: lemma_DERIV_tan simp add: tan_def [symmetric]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2115 | |
| 23045 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2116 | lemma isCont_tan [simp]: "cos x \<noteq> 0 ==> isCont tan x" | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2117 | by (rule DERIV_tan [THEN DERIV_isCont]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2118 | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2119 | lemma LIM_cos_div_sin [simp]: "(%x. cos(x)/sin(x)) -- pi/2 --> 0" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2120 | apply (subgoal_tac "(\<lambda>x. cos x * inverse (sin x)) -- pi * inverse 2 --> 0*1") | 
| 15229 | 2121 | apply (simp add: divide_inverse [symmetric]) | 
| 22613 | 2122 | apply (rule LIM_mult) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2123 | apply (rule_tac [2] inverse_1 [THEN subst]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2124 | apply (rule_tac [2] LIM_inverse) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2125 | apply (simp_all add: divide_inverse [symmetric]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2126 | apply (simp_all only: isCont_def [symmetric] cos_pi_half [symmetric] sin_pi_half [symmetric]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2127 | apply (blast intro!: DERIV_isCont DERIV_sin DERIV_cos)+ | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2128 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2129 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2130 | lemma lemma_tan_total: "0 < y ==> \<exists>x. 0 < x & x < pi/2 & y < tan x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2131 | apply (cut_tac LIM_cos_div_sin) | 
| 31338 
d41a8ba25b67
generalize constants from Lim.thy to class metric_space
 huffman parents: 
31271diff
changeset | 2132 | apply (simp only: LIM_eq) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2133 | apply (drule_tac x = "inverse y" in spec, safe, force) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2134 | apply (drule_tac ?d1.0 = s in pi_half_gt_zero [THEN [2] real_lbound_gt_zero], safe) | 
| 15229 | 2135 | apply (rule_tac x = "(pi/2) - e" in exI) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2136 | apply (simp (no_asm_simp)) | 
| 15229 | 2137 | apply (drule_tac x = "(pi/2) - e" in spec) | 
| 2138 | apply (auto simp add: tan_def) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2139 | apply (rule inverse_less_iff_less [THEN iffD1]) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
15077diff
changeset | 2140 | apply (auto simp add: divide_inverse) | 
| 15229 | 2141 | apply (rule real_mult_order) | 
| 2142 | apply (subgoal_tac [3] "0 < sin e & 0 < cos e") | |
| 2143 | apply (auto intro: cos_gt_zero sin_gt_zero2 simp add: mult_commute) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2144 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2145 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2146 | lemma tan_total_pos: "0 \<le> y ==> \<exists>x. 0 \<le> x & x < pi/2 & tan x = y" | 
| 22998 | 2147 | apply (frule order_le_imp_less_or_eq, safe) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2148 | prefer 2 apply force | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2149 | apply (drule lemma_tan_total, safe) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2150 | apply (cut_tac f = tan and a = 0 and b = x and y = y in IVT_objl) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2151 | apply (auto intro!: DERIV_tan [THEN DERIV_isCont]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2152 | apply (drule_tac y = xa in order_le_imp_less_or_eq) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2153 | apply (auto dest: cos_gt_zero) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2154 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2155 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2156 | lemma lemma_tan_total1: "\<exists>x. -(pi/2) < x & x < (pi/2) & tan x = y" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2157 | apply (cut_tac linorder_linear [of 0 y], safe) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2158 | apply (drule tan_total_pos) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2159 | apply (cut_tac [2] y="-y" in tan_total_pos, safe) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2160 | apply (rule_tac [3] x = "-x" in exI) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2161 | apply (auto intro!: exI) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2162 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2163 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2164 | lemma tan_total: "EX! x. -(pi/2) < x & x < (pi/2) & tan x = y" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2165 | apply (cut_tac y = y in lemma_tan_total1, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2166 | apply (cut_tac x = xa and y = y in linorder_less_linear, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2167 | apply (subgoal_tac [2] "\<exists>z. y < z & z < xa & DERIV tan z :> 0") | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2168 | apply (subgoal_tac "\<exists>z. xa < z & z < y & DERIV tan z :> 0") | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2169 | apply (rule_tac [4] Rolle) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2170 | apply (rule_tac [2] Rolle) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2171 | apply (auto intro!: DERIV_tan DERIV_isCont exI | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2172 | simp add: differentiable_def) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2173 | txt{*Now, simulate TRYALL*}
 | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2174 | apply (rule_tac [!] DERIV_tan asm_rl) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2175 | apply (auto dest!: DERIV_unique [OF _ DERIV_tan] | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2176 | simp add: cos_gt_zero_pi [THEN less_imp_neq, THEN not_sym]) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2177 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2178 | |
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2179 | lemma tan_monotone: assumes "- (pi / 2) < y" and "y < x" and "x < pi / 2" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2180 | shows "tan y < tan x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2181 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2182 | have "\<forall> x'. y \<le> x' \<and> x' \<le> x \<longrightarrow> DERIV tan x' :> inverse (cos x'^2)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2183 | proof (rule allI, rule impI) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2184 | fix x' :: real assume "y \<le> x' \<and> x' \<le> x" | 
| 33549 | 2185 | hence "-(pi/2) < x'" and "x' < pi/2" using assms by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2186 | from cos_gt_zero_pi[OF this] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2187 | have "cos x' \<noteq> 0" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2188 | thus "DERIV tan x' :> inverse (cos x'^2)" by (rule DERIV_tan) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2189 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2190 | from MVT2[OF `y < x` this] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2191 | obtain z where "y < z" and "z < x" and tan_diff: "tan x - tan y = (x - y) * inverse ((cos z)\<twosuperior>)" by auto | 
| 33549 | 2192 | hence "- (pi / 2) < z" and "z < pi / 2" using assms by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2193 | hence "0 < cos z" using cos_gt_zero_pi by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2194 | hence inv_pos: "0 < inverse ((cos z)\<twosuperior>)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2195 | have "0 < x - y" using `y < x` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2196 | from real_mult_order[OF this inv_pos] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2197 | have "0 < tan x - tan y" unfolding tan_diff by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2198 | thus ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2199 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2200 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2201 | lemma tan_monotone': assumes "- (pi / 2) < y" and "y < pi / 2" and "- (pi / 2) < x" and "x < pi / 2" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2202 | shows "(y < x) = (tan y < tan x)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2203 | proof | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2204 | assume "y < x" thus "tan y < tan x" using tan_monotone and `- (pi / 2) < y` and `x < pi / 2` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2205 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2206 | assume "tan y < tan x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2207 | show "y < x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2208 | proof (rule ccontr) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2209 | assume "\<not> y < x" hence "x \<le> y" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2210 | hence "tan x \<le> tan y" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2211 | proof (cases "x = y") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2212 | case True thus ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2213 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2214 | case False hence "x < y" using `x \<le> y` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2215 | from tan_monotone[OF `- (pi/2) < x` this `y < pi / 2`] show ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2216 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2217 | thus False using `tan y < tan x` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2218 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2219 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2220 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2221 | lemma tan_inverse: "1 / (tan y) = tan (pi / 2 - y)" unfolding tan_def sin_cos_eq[of y] cos_sin_eq[of y] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2222 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2223 | lemma tan_periodic_pi[simp]: "tan (x + pi) = tan x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2224 | by (simp add: tan_def) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2225 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2226 | lemma tan_periodic_nat[simp]: fixes n :: nat shows "tan (x + real n * pi) = tan x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2227 | proof (induct n arbitrary: x) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2228 | case (Suc n) | 
| 31790 | 2229 | have split_pi_off: "x + real (Suc n) * pi = (x + real n * pi) + pi" unfolding Suc_eq_plus1 real_of_nat_add real_of_one real_add_mult_distrib by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2230 | show ?case unfolding split_pi_off using Suc by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2231 | qed auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2232 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2233 | lemma tan_periodic_int[simp]: fixes i :: int shows "tan (x + real i * pi) = tan x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2234 | proof (cases "0 \<le> i") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2235 | case True hence i_nat: "real i = real (nat i)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2236 | show ?thesis unfolding i_nat by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2237 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2238 | case False hence i_nat: "real i = - real (nat (-i))" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2239 | have "tan x = tan (x + real i * pi - real i * pi)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2240 | also have "\<dots> = tan (x + real i * pi)" unfolding i_nat mult_minus_left diff_minus_eq_add by (rule tan_periodic_nat) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2241 | finally show ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2242 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2243 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2244 | lemma tan_periodic_n[simp]: "tan (x + number_of n * pi) = tan x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2245 | using tan_periodic_int[of _ "number_of n" ] unfolding real_number_of . | 
| 23043 | 2246 | |
| 2247 | subsection {* Inverse Trigonometric Functions *}
 | |
| 2248 | ||
| 2249 | definition | |
| 2250 | arcsin :: "real => real" where | |
| 2251 | "arcsin y = (THE x. -(pi/2) \<le> x & x \<le> pi/2 & sin x = y)" | |
| 2252 | ||
| 2253 | definition | |
| 2254 | arccos :: "real => real" where | |
| 2255 | "arccos y = (THE x. 0 \<le> x & x \<le> pi & cos x = y)" | |
| 2256 | ||
| 2257 | definition | |
| 2258 | arctan :: "real => real" where | |
| 2259 | "arctan y = (THE x. -(pi/2) < x & x < pi/2 & tan x = y)" | |
| 2260 | ||
| 15229 | 2261 | lemma arcsin: | 
| 2262 | "[| -1 \<le> y; y \<le> 1 |] | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2263 | ==> -(pi/2) \<le> arcsin y & | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2264 | arcsin y \<le> pi/2 & sin(arcsin y) = y" | 
| 23011 | 2265 | unfolding arcsin_def by (rule theI' [OF sin_total]) | 
| 2266 | ||
| 2267 | lemma arcsin_pi: | |
| 2268 | "[| -1 \<le> y; y \<le> 1 |] | |
| 2269 | ==> -(pi/2) \<le> arcsin y & arcsin y \<le> pi & sin(arcsin y) = y" | |
| 2270 | apply (drule (1) arcsin) | |
| 2271 | apply (force intro: order_trans) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2272 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2273 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2274 | lemma sin_arcsin [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> sin(arcsin y) = y" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2275 | by (blast dest: arcsin) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2276 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2277 | lemma arcsin_bounded: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2278 | "[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y & arcsin y \<le> pi/2" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2279 | by (blast dest: arcsin) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2280 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2281 | lemma arcsin_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2282 | by (blast dest: arcsin) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2283 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2284 | lemma arcsin_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arcsin y \<le> pi/2" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2285 | by (blast dest: arcsin) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2286 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2287 | lemma arcsin_lt_bounded: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2288 | "[| -1 < y; y < 1 |] ==> -(pi/2) < arcsin y & arcsin y < pi/2" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2289 | apply (frule order_less_imp_le) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2290 | apply (frule_tac y = y in order_less_imp_le) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2291 | apply (frule arcsin_bounded) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2292 | apply (safe, simp) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2293 | apply (drule_tac y = "arcsin y" in order_le_imp_less_or_eq) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2294 | apply (drule_tac [2] y = "pi/2" in order_le_imp_less_or_eq, safe) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2295 | apply (drule_tac [!] f = sin in arg_cong, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2296 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2297 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2298 | lemma arcsin_sin: "[|-(pi/2) \<le> x; x \<le> pi/2 |] ==> arcsin(sin x) = x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2299 | apply (unfold arcsin_def) | 
| 23011 | 2300 | apply (rule the1_equality) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2301 | apply (rule sin_total, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2302 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2303 | |
| 22975 | 2304 | lemma arccos: | 
| 15229 | 2305 | "[| -1 \<le> y; y \<le> 1 |] | 
| 22975 | 2306 | ==> 0 \<le> arccos y & arccos y \<le> pi & cos(arccos y) = y" | 
| 23011 | 2307 | unfolding arccos_def by (rule theI' [OF cos_total]) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2308 | |
| 22975 | 2309 | lemma cos_arccos [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> cos(arccos y) = y" | 
| 2310 | by (blast dest: arccos) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2311 | |
| 22975 | 2312 | lemma arccos_bounded: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y & arccos y \<le> pi" | 
| 2313 | by (blast dest: arccos) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2314 | |
| 22975 | 2315 | lemma arccos_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y" | 
| 2316 | by (blast dest: arccos) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2317 | |
| 22975 | 2318 | lemma arccos_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arccos y \<le> pi" | 
| 2319 | by (blast dest: arccos) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2320 | |
| 22975 | 2321 | lemma arccos_lt_bounded: | 
| 15229 | 2322 | "[| -1 < y; y < 1 |] | 
| 22975 | 2323 | ==> 0 < arccos y & arccos y < pi" | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2324 | apply (frule order_less_imp_le) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2325 | apply (frule_tac y = y in order_less_imp_le) | 
| 22975 | 2326 | apply (frule arccos_bounded, auto) | 
| 2327 | apply (drule_tac y = "arccos y" in order_le_imp_less_or_eq) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2328 | apply (drule_tac [2] y = pi in order_le_imp_less_or_eq, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2329 | apply (drule_tac [!] f = cos in arg_cong, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2330 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2331 | |
| 22975 | 2332 | lemma arccos_cos: "[|0 \<le> x; x \<le> pi |] ==> arccos(cos x) = x" | 
| 2333 | apply (simp add: arccos_def) | |
| 23011 | 2334 | apply (auto intro!: the1_equality cos_total) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2335 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2336 | |
| 22975 | 2337 | lemma arccos_cos2: "[|x \<le> 0; -pi \<le> x |] ==> arccos(cos x) = -x" | 
| 2338 | apply (simp add: arccos_def) | |
| 23011 | 2339 | apply (auto intro!: the1_equality cos_total) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2340 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2341 | |
| 23045 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2342 | lemma cos_arcsin: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> cos (arcsin x) = sqrt (1 - x\<twosuperior>)" | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2343 | apply (subgoal_tac "x\<twosuperior> \<le> 1") | 
| 23052 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2344 | apply (rule power2_eq_imp_eq) | 
| 23045 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2345 | apply (simp add: cos_squared_eq) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2346 | apply (rule cos_ge_zero) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2347 | apply (erule (1) arcsin_lbound) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2348 | apply (erule (1) arcsin_ubound) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2349 | apply simp | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2350 | apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> \<le> 1\<twosuperior>", simp) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2351 | apply (rule power_mono, simp, simp) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2352 | done | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2353 | |
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2354 | lemma sin_arccos: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> sin (arccos x) = sqrt (1 - x\<twosuperior>)" | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2355 | apply (subgoal_tac "x\<twosuperior> \<le> 1") | 
| 23052 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2356 | apply (rule power2_eq_imp_eq) | 
| 23045 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2357 | apply (simp add: sin_squared_eq) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2358 | apply (rule sin_ge_zero) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2359 | apply (erule (1) arccos_lbound) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2360 | apply (erule (1) arccos_ubound) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2361 | apply simp | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2362 | apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> \<le> 1\<twosuperior>", simp) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2363 | apply (rule power_mono, simp, simp) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2364 | done | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2365 | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2366 | lemma arctan [simp]: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2367 | "- (pi/2) < arctan y & arctan y < pi/2 & tan (arctan y) = y" | 
| 23011 | 2368 | unfolding arctan_def by (rule theI' [OF tan_total]) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2369 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2370 | lemma tan_arctan: "tan(arctan y) = y" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2371 | by auto | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2372 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2373 | lemma arctan_bounded: "- (pi/2) < arctan y & arctan y < pi/2" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2374 | by (auto simp only: arctan) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2375 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2376 | lemma arctan_lbound: "- (pi/2) < arctan y" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2377 | by auto | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2378 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2379 | lemma arctan_ubound: "arctan y < pi/2" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2380 | by (auto simp only: arctan) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2381 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2382 | lemma arctan_tan: | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2383 | "[|-(pi/2) < x; x < pi/2 |] ==> arctan(tan x) = x" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2384 | apply (unfold arctan_def) | 
| 23011 | 2385 | apply (rule the1_equality) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2386 | apply (rule tan_total, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2387 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2388 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2389 | lemma arctan_zero_zero [simp]: "arctan 0 = 0" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2390 | by (insert arctan_tan [of 0], simp) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2391 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2392 | lemma cos_arctan_not_zero [simp]: "cos(arctan x) \<noteq> 0" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2393 | apply (auto simp add: cos_zero_iff) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2394 | apply (case_tac "n") | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2395 | apply (case_tac [3] "n") | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2396 | apply (cut_tac [2] y = x in arctan_ubound) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2397 | apply (cut_tac [4] y = x in arctan_lbound) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2398 | apply (auto simp add: real_of_nat_Suc left_distrib mult_less_0_iff) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2399 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2400 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2401 | lemma tan_sec: "cos x \<noteq> 0 ==> 1 + tan(x) ^ 2 = inverse(cos x) ^ 2" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2402 | apply (rule power_inverse [THEN subst]) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2403 | apply (rule_tac c1 = "(cos x)\<twosuperior>" in real_mult_right_cancel [THEN iffD1]) | 
| 22960 | 2404 | apply (auto dest: field_power_not_zero | 
| 20516 | 2405 | simp add: power_mult_distrib left_distrib power_divide tan_def | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30082diff
changeset | 2406 | mult_assoc power_inverse [symmetric]) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2407 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2408 | |
| 23045 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2409 | lemma isCont_inverse_function2: | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2410 | fixes f g :: "real \<Rightarrow> real" shows | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2411 | "\<lbrakk>a < x; x < b; | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2412 | \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> g (f z) = z; | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2413 | \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> isCont f z\<rbrakk> | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2414 | \<Longrightarrow> isCont g (f x)" | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2415 | apply (rule isCont_inverse_function | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2416 | [where f=f and d="min (x - a) (b - x)"]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2417 | apply (simp_all add: abs_le_iff) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2418 | done | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2419 | |
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2420 | lemma isCont_arcsin: "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> isCont arcsin x" | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2421 | apply (subgoal_tac "isCont arcsin (sin (arcsin x))", simp) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2422 | apply (rule isCont_inverse_function2 [where f=sin]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2423 | apply (erule (1) arcsin_lt_bounded [THEN conjunct1]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2424 | apply (erule (1) arcsin_lt_bounded [THEN conjunct2]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2425 | apply (fast intro: arcsin_sin, simp) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2426 | done | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2427 | |
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2428 | lemma isCont_arccos: "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> isCont arccos x" | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2429 | apply (subgoal_tac "isCont arccos (cos (arccos x))", simp) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2430 | apply (rule isCont_inverse_function2 [where f=cos]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2431 | apply (erule (1) arccos_lt_bounded [THEN conjunct1]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2432 | apply (erule (1) arccos_lt_bounded [THEN conjunct2]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2433 | apply (fast intro: arccos_cos, simp) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2434 | done | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2435 | |
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2436 | lemma isCont_arctan: "isCont arctan x" | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2437 | apply (rule arctan_lbound [of x, THEN dense, THEN exE], clarify) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2438 | apply (rule arctan_ubound [of x, THEN dense, THEN exE], clarify) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2439 | apply (subgoal_tac "isCont arctan (tan (arctan x))", simp) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2440 | apply (erule (1) isCont_inverse_function2 [where f=tan]) | 
| 33667 | 2441 | apply (metis arctan_tan order_le_less_trans order_less_le_trans) | 
| 2442 | apply (metis cos_gt_zero_pi isCont_tan order_less_le_trans real_less_def) | |
| 23045 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2443 | done | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2444 | |
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2445 | lemma DERIV_arcsin: | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2446 | "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arcsin x :> inverse (sqrt (1 - x\<twosuperior>))" | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2447 | apply (rule DERIV_inverse_function [where f=sin and a="-1" and b="1"]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2448 | apply (rule lemma_DERIV_subst [OF DERIV_sin]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2449 | apply (simp add: cos_arcsin) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2450 | apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> < 1\<twosuperior>", simp) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2451 | apply (rule power_strict_mono, simp, simp, simp) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2452 | apply assumption | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2453 | apply assumption | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2454 | apply simp | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2455 | apply (erule (1) isCont_arcsin) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2456 | done | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2457 | |
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2458 | lemma DERIV_arccos: | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2459 | "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arccos x :> inverse (- sqrt (1 - x\<twosuperior>))" | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2460 | apply (rule DERIV_inverse_function [where f=cos and a="-1" and b="1"]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2461 | apply (rule lemma_DERIV_subst [OF DERIV_cos]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2462 | apply (simp add: sin_arccos) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2463 | apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> < 1\<twosuperior>", simp) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2464 | apply (rule power_strict_mono, simp, simp, simp) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2465 | apply assumption | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2466 | apply assumption | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2467 | apply simp | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2468 | apply (erule (1) isCont_arccos) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2469 | done | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2470 | |
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2471 | lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x\<twosuperior>)" | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2472 | apply (rule DERIV_inverse_function [where f=tan and a="x - 1" and b="x + 1"]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2473 | apply (rule lemma_DERIV_subst [OF DERIV_tan]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2474 | apply (rule cos_arctan_not_zero) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2475 | apply (simp add: power_inverse tan_sec [symmetric]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2476 | apply (subgoal_tac "0 < 1 + x\<twosuperior>", simp) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2477 | apply (simp add: add_pos_nonneg) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2478 | apply (simp, simp, simp, rule isCont_arctan) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2479 | done | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 2480 | |
| 31880 | 2481 | declare | 
| 2482 | DERIV_arcsin[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] | |
| 2483 | DERIV_arccos[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] | |
| 2484 | DERIV_arctan[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] | |
| 2485 | ||
| 23043 | 2486 | subsection {* More Theorems about Sin and Cos *}
 | 
| 2487 | ||
| 23052 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2488 | lemma cos_45: "cos (pi / 4) = sqrt 2 / 2" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2489 | proof - | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2490 | let ?c = "cos (pi / 4)" and ?s = "sin (pi / 4)" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2491 | have nonneg: "0 \<le> ?c" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2492 | by (rule cos_ge_zero, rule order_trans [where y=0], simp_all) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2493 | have "0 = cos (pi / 4 + pi / 4)" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2494 | by simp | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2495 | also have "cos (pi / 4 + pi / 4) = ?c\<twosuperior> - ?s\<twosuperior>" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2496 | by (simp only: cos_add power2_eq_square) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2497 | also have "\<dots> = 2 * ?c\<twosuperior> - 1" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2498 | by (simp add: sin_squared_eq) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2499 | finally have "?c\<twosuperior> = (sqrt 2 / 2)\<twosuperior>" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2500 | by (simp add: power_divide) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2501 | thus ?thesis | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2502 | using nonneg by (rule power2_eq_imp_eq) simp | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2503 | qed | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2504 | |
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2505 | lemma cos_30: "cos (pi / 6) = sqrt 3 / 2" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2506 | proof - | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2507 | let ?c = "cos (pi / 6)" and ?s = "sin (pi / 6)" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2508 | have pos_c: "0 < ?c" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2509 | by (rule cos_gt_zero, simp, simp) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2510 | have "0 = cos (pi / 6 + pi / 6 + pi / 6)" | 
| 23066 
26a9157b620a
new field_combine_numerals simproc, which uses fractions as coefficients
 huffman parents: 
23053diff
changeset | 2511 | by simp | 
| 23052 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2512 | also have "\<dots> = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2513 | by (simp only: cos_add sin_add) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2514 | also have "\<dots> = ?c * (?c\<twosuperior> - 3 * ?s\<twosuperior>)" | 
| 29667 | 2515 | by (simp add: algebra_simps power2_eq_square) | 
| 23052 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2516 | finally have "?c\<twosuperior> = (sqrt 3 / 2)\<twosuperior>" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2517 | using pos_c by (simp add: sin_squared_eq power_divide) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2518 | thus ?thesis | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2519 | using pos_c [THEN order_less_imp_le] | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2520 | by (rule power2_eq_imp_eq) simp | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2521 | qed | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2522 | |
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2523 | lemma sin_45: "sin (pi / 4) = sqrt 2 / 2" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2524 | proof - | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2525 | have "sin (pi / 4) = cos (pi / 2 - pi / 4)" by (rule sin_cos_eq) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2526 | also have "pi / 2 - pi / 4 = pi / 4" by simp | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2527 | also have "cos (pi / 4) = sqrt 2 / 2" by (rule cos_45) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2528 | finally show ?thesis . | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2529 | qed | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2530 | |
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2531 | lemma sin_60: "sin (pi / 3) = sqrt 3 / 2" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2532 | proof - | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2533 | have "sin (pi / 3) = cos (pi / 2 - pi / 3)" by (rule sin_cos_eq) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2534 | also have "pi / 2 - pi / 3 = pi / 6" by simp | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2535 | also have "cos (pi / 6) = sqrt 3 / 2" by (rule cos_30) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2536 | finally show ?thesis . | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2537 | qed | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2538 | |
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2539 | lemma cos_60: "cos (pi / 3) = 1 / 2" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2540 | apply (rule power2_eq_imp_eq) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2541 | apply (simp add: cos_squared_eq sin_60 power_divide) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2542 | apply (rule cos_ge_zero, rule order_trans [where y=0], simp_all) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2543 | done | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2544 | |
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2545 | lemma sin_30: "sin (pi / 6) = 1 / 2" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2546 | proof - | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2547 | have "sin (pi / 6) = cos (pi / 2 - pi / 6)" by (rule sin_cos_eq) | 
| 23066 
26a9157b620a
new field_combine_numerals simproc, which uses fractions as coefficients
 huffman parents: 
23053diff
changeset | 2548 | also have "pi / 2 - pi / 6 = pi / 3" by simp | 
| 23052 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2549 | also have "cos (pi / 3) = 1 / 2" by (rule cos_60) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2550 | finally show ?thesis . | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2551 | qed | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2552 | |
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2553 | lemma tan_30: "tan (pi / 6) = 1 / sqrt 3" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2554 | unfolding tan_def by (simp add: sin_30 cos_30) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2555 | |
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2556 | lemma tan_45: "tan (pi / 4) = 1" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2557 | unfolding tan_def by (simp add: sin_45 cos_45) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2558 | |
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2559 | lemma tan_60: "tan (pi / 3) = sqrt 3" | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2560 | unfolding tan_def by (simp add: sin_60 cos_60) | 
| 
0e36f0dbfa1c
add lemmas for sin,cos,tan of 30,45,60 degrees; cleaned up
 huffman parents: 
23049diff
changeset | 2561 | |
| 15085 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15081diff
changeset | 2562 | text{*NEEDED??*}
 | 
| 15229 | 2563 | lemma [simp]: | 
| 2564 | "sin (x + 1 / 2 * real (Suc m) * pi) = | |
| 2565 | cos (x + 1 / 2 * real (m) * pi)" | |
| 2566 | by (simp only: cos_add sin_add real_of_nat_Suc left_distrib right_distrib, auto) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2567 | |
| 15085 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
 paulson parents: 
15081diff
changeset | 2568 | text{*NEEDED??*}
 | 
| 15229 | 2569 | lemma [simp]: | 
| 2570 | "sin (x + real (Suc m) * pi / 2) = | |
| 2571 | cos (x + real (m) * pi / 2)" | |
| 2572 | by (simp only: cos_add sin_add real_of_nat_Suc add_divide_distrib left_distrib, auto) | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2573 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2574 | lemma DERIV_sin_add [simp]: "DERIV (%x. sin (x + k)) xa :> cos (xa + k)" | 
| 31881 | 2575 | by (auto intro!: DERIV_intros) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2576 | |
| 15383 | 2577 | lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi / 2) = (-1) ^ n" | 
| 2578 | proof - | |
| 2579 | have "sin ((real n + 1/2) * pi) = cos (real n * pi)" | |
| 29667 | 2580 | by (auto simp add: algebra_simps sin_add) | 
| 15383 | 2581 | thus ?thesis | 
| 2582 | by (simp add: real_of_nat_Suc left_distrib add_divide_distrib | |
| 2583 | mult_commute [of pi]) | |
| 2584 | qed | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2585 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2586 | lemma cos_2npi [simp]: "cos (2 * real (n::nat) * pi) = 1" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2587 | by (simp add: cos_double mult_assoc power_add [symmetric] numeral_2_eq_2) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2588 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2589 | lemma cos_3over2_pi [simp]: "cos (3 / 2 * pi) = 0" | 
| 23066 
26a9157b620a
new field_combine_numerals simproc, which uses fractions as coefficients
 huffman parents: 
23053diff
changeset | 2590 | apply (subgoal_tac "cos (pi + pi/2) = 0", simp) | 
| 
26a9157b620a
new field_combine_numerals simproc, which uses fractions as coefficients
 huffman parents: 
23053diff
changeset | 2591 | apply (subst cos_add, simp) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2592 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2593 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2594 | lemma sin_2npi [simp]: "sin (2 * real (n::nat) * pi) = 0" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2595 | by (auto simp add: mult_assoc) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2596 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2597 | lemma sin_3over2_pi [simp]: "sin (3 / 2 * pi) = - 1" | 
| 23066 
26a9157b620a
new field_combine_numerals simproc, which uses fractions as coefficients
 huffman parents: 
23053diff
changeset | 2598 | apply (subgoal_tac "sin (pi + pi/2) = - 1", simp) | 
| 
26a9157b620a
new field_combine_numerals simproc, which uses fractions as coefficients
 huffman parents: 
23053diff
changeset | 2599 | apply (subst sin_add, simp) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2600 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2601 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2602 | (*NEEDED??*) | 
| 15229 | 2603 | lemma [simp]: | 
| 2604 | "cos(x + 1 / 2 * real(Suc m) * pi) = -sin (x + 1 / 2 * real m * pi)" | |
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2605 | apply (simp only: cos_add sin_add real_of_nat_Suc right_distrib left_distrib minus_mult_right, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2606 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2607 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2608 | (*NEEDED??*) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2609 | lemma [simp]: "cos (x + real(Suc m) * pi / 2) = -sin (x + real m * pi / 2)" | 
| 15229 | 2610 | by (simp only: cos_add sin_add real_of_nat_Suc left_distrib add_divide_distrib, auto) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2611 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2612 | lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0" | 
| 15229 | 2613 | by (simp only: cos_add sin_add real_of_nat_Suc left_distrib right_distrib add_divide_distrib, auto) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2614 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2615 | lemma DERIV_cos_add [simp]: "DERIV (%x. cos (x + k)) xa :> - sin (xa + k)" | 
| 31881 | 2616 | by (auto intro!: DERIV_intros) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2617 | |
| 15081 | 2618 | lemma sin_zero_abs_cos_one: "sin x = 0 ==> \<bar>cos x\<bar> = 1" | 
| 15539 | 2619 | by (auto simp add: sin_zero_iff even_mult_two_ex) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2620 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2621 | lemma cos_one_sin_zero: "cos x = 1 ==> sin x = 0" | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2622 | by (cut_tac x = x in sin_cos_squared_add3, auto) | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 2623 | |
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2624 | subsection {* Machins formula *}
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2625 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2626 | lemma tan_total_pi4: assumes "\<bar>x\<bar> < 1" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2627 | shows "\<exists> z. - (pi / 4) < z \<and> z < pi / 4 \<and> tan z = x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2628 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2629 | obtain z where "- (pi / 2) < z" and "z < pi / 2" and "tan z = x" using tan_total by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2630 | have "tan (pi / 4) = 1" and "tan (- (pi / 4)) = - 1" using tan_45 tan_minus by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2631 | have "z \<noteq> pi / 4" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2632 | proof (rule ccontr) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2633 | assume "\<not> (z \<noteq> pi / 4)" hence "z = pi / 4" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2634 | have "tan z = 1" unfolding `z = pi / 4` `tan (pi / 4) = 1` .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2635 | thus False unfolding `tan z = x` using `\<bar>x\<bar> < 1` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2636 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2637 | have "z \<noteq> - (pi / 4)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2638 | proof (rule ccontr) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2639 | assume "\<not> (z \<noteq> - (pi / 4))" hence "z = - (pi / 4)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2640 | have "tan z = - 1" unfolding `z = - (pi / 4)` `tan (- (pi / 4)) = - 1` .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2641 | thus False unfolding `tan z = x` using `\<bar>x\<bar> < 1` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2642 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2643 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2644 | have "z < pi / 4" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2645 | proof (rule ccontr) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2646 | assume "\<not> (z < pi / 4)" hence "pi / 4 < z" using `z \<noteq> pi / 4` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2647 | have "- (pi / 2) < pi / 4" using m2pi_less_pi by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2648 | from tan_monotone[OF this `pi / 4 < z` `z < pi / 2`] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2649 | have "1 < x" unfolding `tan z = x` `tan (pi / 4) = 1` . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2650 | thus False using `\<bar>x\<bar> < 1` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2651 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2652 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2653 | have "-(pi / 4) < z" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2654 | proof (rule ccontr) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2655 | assume "\<not> (-(pi / 4) < z)" hence "z < - (pi / 4)" using `z \<noteq> - (pi / 4)` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2656 | have "-(pi / 4) < pi / 2" using m2pi_less_pi by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2657 | from tan_monotone[OF `-(pi / 2) < z` `z < -(pi / 4)` this] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2658 | have "x < - 1" unfolding `tan z = x` `tan (-(pi / 4)) = - 1` . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2659 | thus False using `\<bar>x\<bar> < 1` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2660 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2661 | ultimately show ?thesis using `tan z = x` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2662 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2663 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2664 | lemma arctan_add: assumes "\<bar>x\<bar> \<le> 1" and "\<bar>y\<bar> < 1" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2665 | shows "arctan x + arctan y = arctan ((x + y) / (1 - x * y))" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2666 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2667 | obtain y' where "-(pi/4) < y'" and "y' < pi/4" and "tan y' = y" using tan_total_pi4[OF `\<bar>y\<bar> < 1`] by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2668 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2669 | have "pi / 4 < pi / 2" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2670 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2671 | have "\<exists> x'. -(pi/4) \<le> x' \<and> x' \<le> pi/4 \<and> tan x' = x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2672 | proof (cases "\<bar>x\<bar> < 1") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2673 | case True from tan_total_pi4[OF this] obtain x' where "-(pi/4) < x'" and "x' < pi/4" and "tan x' = x" by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2674 | hence "-(pi/4) \<le> x'" and "x' \<le> pi/4" and "tan x' = x" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2675 | thus ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2676 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2677 | case False | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2678 | show ?thesis | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2679 | proof (cases "x = 1") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2680 | case True hence "tan (pi/4) = x" using tan_45 by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2681 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2682 | have "- pi \<le> pi" unfolding minus_le_self_iff by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2683 | hence "-(pi/4) \<le> pi/4" and "pi/4 \<le> pi/4" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2684 | ultimately show ?thesis by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2685 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2686 | case False hence "x = -1" using `\<not> \<bar>x\<bar> < 1` and `\<bar>x\<bar> \<le> 1` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2687 | hence "tan (-(pi/4)) = x" using tan_45 tan_minus by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2688 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2689 | have "- pi \<le> pi" unfolding minus_le_self_iff by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2690 | hence "-(pi/4) \<le> pi/4" and "-(pi/4) \<le> -(pi/4)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2691 | ultimately show ?thesis by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2692 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2693 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2694 | then obtain x' where "-(pi/4) \<le> x'" and "x' \<le> pi/4" and "tan x' = x" by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2695 | hence "-(pi/2) < x'" and "x' < pi/2" using order_le_less_trans[OF `x' \<le> pi/4` `pi / 4 < pi / 2`] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2696 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2697 | have "cos x' \<noteq> 0" using cos_gt_zero_pi[THEN less_imp_neq] and `-(pi/2) < x'` and `x' < pi/2` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2698 | moreover have "cos y' \<noteq> 0" using cos_gt_zero_pi[THEN less_imp_neq] and `-(pi/4) < y'` and `y' < pi/4` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2699 | ultimately have "cos x' * cos y' \<noteq> 0" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2700 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2701 | have divide_nonzero_divide: "\<And> A B C :: real. C \<noteq> 0 \<Longrightarrow> (A / C) / (B / C) = A / B" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2702 | have divide_mult_commute: "\<And> A B C D :: real. A * B / (C * D) = (A / C) * (B / D)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2703 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2704 | have "tan (x' + y') = sin (x' + y') / (cos x' * cos y' - sin x' * sin y')" unfolding tan_def cos_add .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2705 | also have "\<dots> = (tan x' + tan y') / ((cos x' * cos y' - sin x' * sin y') / (cos x' * cos y'))" unfolding add_tan_eq[OF `cos x' \<noteq> 0` `cos y' \<noteq> 0`] divide_nonzero_divide[OF `cos x' * cos y' \<noteq> 0`] .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2706 | also have "\<dots> = (tan x' + tan y') / (1 - tan x' * tan y')" unfolding tan_def diff_divide_distrib divide_self[OF `cos x' * cos y' \<noteq> 0`] unfolding divide_mult_commute .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2707 | finally have tan_eq: "tan (x' + y') = (x + y) / (1 - x * y)" unfolding `tan y' = y` `tan x' = x` . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2708 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2709 | have "arctan (tan (x' + y')) = x' + y'" using `-(pi/4) < y'` `-(pi/4) \<le> x'` `y' < pi/4` and `x' \<le> pi/4` by (auto intro!: arctan_tan) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2710 | moreover have "arctan (tan (x')) = x'" using `-(pi/2) < x'` and `x' < pi/2` by (auto intro!: arctan_tan) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2711 | moreover have "arctan (tan (y')) = y'" using `-(pi/4) < y'` and `y' < pi/4` by (auto intro!: arctan_tan) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2712 | ultimately have "arctan x + arctan y = arctan (tan (x' + y'))" unfolding `tan y' = y` [symmetric] `tan x' = x`[symmetric] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2713 | thus "arctan x + arctan y = arctan ((x + y) / (1 - x * y))" unfolding tan_eq . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2714 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2715 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2716 | lemma arctan1_eq_pi4: "arctan 1 = pi / 4" unfolding tan_45[symmetric] by (rule arctan_tan, auto simp add: m2pi_less_pi) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2717 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2718 | theorem machin: "pi / 4 = 4 * arctan (1/5) - arctan (1 / 239)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2719 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2720 | have "\<bar>1 / 5\<bar> < (1 :: real)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2721 | from arctan_add[OF less_imp_le[OF this] this] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2722 | have "2 * arctan (1 / 5) = arctan (5 / 12)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2723 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2724 | have "\<bar>5 / 12\<bar> < (1 :: real)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2725 | from arctan_add[OF less_imp_le[OF this] this] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2726 | have "2 * arctan (5 / 12) = arctan (120 / 119)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2727 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2728 | have "\<bar>1\<bar> \<le> (1::real)" and "\<bar>1 / 239\<bar> < (1::real)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2729 | from arctan_add[OF this] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2730 | have "arctan 1 + arctan (1 / 239) = arctan (120 / 119)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2731 | ultimately have "arctan 1 + arctan (1 / 239) = 4 * arctan (1 / 5)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2732 | thus ?thesis unfolding arctan1_eq_pi4 by algebra | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2733 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2734 | subsection {* Introducing the arcus tangens power series *}
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2735 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2736 | lemma monoseq_arctan_series: fixes x :: real | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2737 | assumes "\<bar>x\<bar> \<le> 1" shows "monoseq (\<lambda> n. 1 / real (n*2+1) * x^(n*2+1))" (is "monoseq ?a") | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 2738 | proof (cases "x = 0") case True thus ?thesis unfolding monoseq_def One_nat_def by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2739 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2740 | case False | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2741 | have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x" using assms by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2742 | show "monoseq ?a" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2743 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2744 |     { fix n fix x :: real assume "0 \<le> x" and "x \<le> 1"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2745 | have "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<le> 1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2746 | proof (rule mult_mono) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2747 | show "1 / real (Suc (Suc n * 2)) \<le> 1 / real (Suc (n * 2))" by (rule frac_le) simp_all | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2748 | show "0 \<le> 1 / real (Suc (n * 2))" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2749 | show "x ^ Suc (Suc n * 2) \<le> x ^ Suc (n * 2)" by (rule power_decreasing) (simp_all add: `0 \<le> x` `x \<le> 1`) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2750 | show "0 \<le> x ^ Suc (Suc n * 2)" by (rule zero_le_power) (simp add: `0 \<le> x`) | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2751 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2752 | } note mono = this | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2753 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2754 | show ?thesis | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2755 | proof (cases "0 \<le> x") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2756 | case True from mono[OF this `x \<le> 1`, THEN allI] | 
| 31790 | 2757 | show ?thesis unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI2) | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2758 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2759 | case False hence "0 \<le> -x" and "-x \<le> 1" using `-1 \<le> x` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2760 | from mono[OF this] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2761 | have "\<And>n. 1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<ge> 1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" using `0 \<le> -x` by auto | 
| 31790 | 2762 | thus ?thesis unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI1[OF allI]) | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2763 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2764 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2765 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2766 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2767 | lemma zeroseq_arctan_series: fixes x :: real | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2768 | assumes "\<bar>x\<bar> \<le> 1" shows "(\<lambda> n. 1 / real (n*2+1) * x^(n*2+1)) ----> 0" (is "?a ----> 0") | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 2769 | proof (cases "x = 0") case True thus ?thesis unfolding One_nat_def by (auto simp add: LIMSEQ_const) | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2770 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2771 | case False | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2772 | have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x" using assms by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2773 | show "?a ----> 0" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2774 | proof (cases "\<bar>x\<bar> < 1") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2775 | case True hence "norm x < 1" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2776 | from LIMSEQ_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_power_zero[OF `norm x < 1`, THEN LIMSEQ_Suc]] | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 2777 | have "(\<lambda>n. 1 / real (n + 1) * x ^ (n + 1)) ----> 0" | 
| 31790 | 2778 | unfolding inverse_eq_divide Suc_eq_plus1 by simp | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 2779 | then show ?thesis using pos2 by (rule LIMSEQ_linear) | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2780 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2781 | case False hence "x = -1 \<or> x = 1" using `\<bar>x\<bar> \<le> 1` by auto | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 2782 | hence n_eq: "\<And> n. x ^ (n * 2 + 1) = x" unfolding One_nat_def by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2783 | from LIMSEQ_mult[OF LIMSEQ_inverse_real_of_nat[THEN LIMSEQ_linear, OF pos2, unfolded inverse_eq_divide] LIMSEQ_const[of x]] | 
| 31790 | 2784 | show ?thesis unfolding n_eq Suc_eq_plus1 by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2785 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2786 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2787 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2788 | lemma summable_arctan_series: fixes x :: real and n :: nat | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2789 | assumes "\<bar>x\<bar> \<le> 1" shows "summable (\<lambda> k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))" (is "summable (?c x)") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2790 | by (rule summable_Leibniz(1), rule zeroseq_arctan_series[OF assms], rule monoseq_arctan_series[OF assms]) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2791 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2792 | lemma less_one_imp_sqr_less_one: fixes x :: real assumes "\<bar>x\<bar> < 1" shows "x^2 < 1" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2793 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2794 | from mult_mono1[OF less_imp_le[OF `\<bar>x\<bar> < 1`] abs_ge_zero[of x]] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2795 | have "\<bar> x^2 \<bar> < 1" using `\<bar> x \<bar> < 1` unfolding numeral_2_eq_2 power_Suc2 by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2796 | thus ?thesis using zero_le_power2 by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2797 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2798 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2799 | lemma DERIV_arctan_series: assumes "\<bar> x \<bar> < 1" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2800 | shows "DERIV (\<lambda> x'. \<Sum> k. (-1)^k * (1 / real (k*2+1) * x' ^ (k*2+1))) x :> (\<Sum> k. (-1)^k * x^(k*2))" (is "DERIV ?arctan _ :> ?Int") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2801 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2802 | let "?f n" = "if even n then (-1)^(n div 2) * 1 / real (Suc n) else 0" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2803 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2804 |   { fix n :: nat assume "even n" hence "2 * (n div 2) = n" by presburger } note n_even=this
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2805 | have if_eq: "\<And> n x'. ?f n * real (Suc n) * x'^n = (if even n then (-1)^(n div 2) * x'^(2 * (n div 2)) else 0)" using n_even by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2806 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2807 |   { fix x :: real assume "\<bar>x\<bar> < 1" hence "x^2 < 1" by (rule less_one_imp_sqr_less_one)
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2808 | have "summable (\<lambda> n. -1 ^ n * (x^2) ^n)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2809 | by (rule summable_Leibniz(1), auto intro!: LIMSEQ_realpow_zero monoseq_realpow `x^2 < 1` order_less_imp_le[OF `x^2 < 1`]) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2810 | hence "summable (\<lambda> n. -1 ^ n * x^(2*n))" unfolding power_mult . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2811 | } note summable_Integral = this | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2812 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2813 |   { fix f :: "nat \<Rightarrow> real"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2814 | have "\<And> x. f sums x = (\<lambda> n. if even n then f (n div 2) else 0) sums x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2815 | proof | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2816 | fix x :: real assume "f sums x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2817 | from sums_if[OF sums_zero this] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2818 | show "(\<lambda> n. if even n then f (n div 2) else 0) sums x" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2819 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2820 | fix x :: real assume "(\<lambda> n. if even n then f (n div 2) else 0) sums x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2821 | from LIMSEQ_linear[OF this[unfolded sums_def] pos2, unfolded sum_split_even_odd[unfolded mult_commute]] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2822 | show "f sums x" unfolding sums_def by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2823 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2824 | hence "op sums f = op sums (\<lambda> n. if even n then f (n div 2) else 0)" .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2825 | } note sums_even = this | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2826 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2827 | have Int_eq: "(\<Sum> n. ?f n * real (Suc n) * x^n) = ?Int" unfolding if_eq mult_commute[of _ 2] suminf_def sums_even[of "\<lambda> n. -1 ^ n * x ^ (2 * n)", symmetric] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2828 | by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2829 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2830 |   { fix x :: real
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2831 | have if_eq': "\<And> n. (if even n then -1 ^ (n div 2) * 1 / real (Suc n) else 0) * x ^ Suc n = | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2832 | (if even n then -1 ^ (n div 2) * (1 / real (Suc (2 * (n div 2))) * x ^ Suc (2 * (n div 2))) else 0)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2833 | using n_even by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2834 | have idx_eq: "\<And> n. n * 2 + 1 = Suc (2 * n)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2835 | have "(\<Sum> n. ?f n * x^(Suc n)) = ?arctan x" unfolding if_eq' idx_eq suminf_def sums_even[of "\<lambda> n. -1 ^ n * (1 / real (Suc (2 * n)) * x ^ Suc (2 * n))", symmetric] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2836 | by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2837 | } note arctan_eq = this | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2838 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2839 | have "DERIV (\<lambda> x. \<Sum> n. ?f n * x^(Suc n)) x :> (\<Sum> n. ?f n * real (Suc n) * x^n)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2840 | proof (rule DERIV_power_series') | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2841 |     show "x \<in> {- 1 <..< 1}" using `\<bar> x \<bar> < 1` by auto
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2842 |     { fix x' :: real assume x'_bounds: "x' \<in> {- 1 <..< 1}"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2843 | hence "\<bar>x'\<bar> < 1" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2844 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2845 | let ?S = "\<Sum> n. (-1)^n * x'^(2 * n)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2846 | show "summable (\<lambda> n. ?f n * real (Suc n) * x'^n)" unfolding if_eq | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2847 | by (rule sums_summable[where l="0 + ?S"], rule sums_if, rule sums_zero, rule summable_sums, rule summable_Integral[OF `\<bar>x'\<bar> < 1`]) | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2848 | } | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2849 | qed auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2850 | thus ?thesis unfolding Int_eq arctan_eq . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2851 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2852 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2853 | lemma arctan_series: assumes "\<bar> x \<bar> \<le> 1" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2854 | shows "arctan x = (\<Sum> k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))" (is "_ = suminf (\<lambda> n. ?c x n)") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2855 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2856 | let "?c' x n" = "(-1)^n * x^(n*2)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2857 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2858 |   { fix r x :: real assume "0 < r" and "r < 1" and "\<bar> x \<bar> < r"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2859 | have "\<bar>x\<bar> < 1" using `r < 1` and `\<bar>x\<bar> < r` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2860 | from DERIV_arctan_series[OF this] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2861 | have "DERIV (\<lambda> x. suminf (?c x)) x :> (suminf (?c' x))" . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2862 | } note DERIV_arctan_suminf = this | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2863 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2864 |   { fix x :: real assume "\<bar>x\<bar> \<le> 1" note summable_Leibniz[OF zeroseq_arctan_series[OF this] monoseq_arctan_series[OF this]] }
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2865 | note arctan_series_borders = this | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2866 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2867 |   { fix x :: real assume "\<bar>x\<bar> < 1" have "arctan x = (\<Sum> k. ?c x k)"
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2868 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2869 | obtain r where "\<bar>x\<bar> < r" and "r < 1" using dense[OF `\<bar>x\<bar> < 1`] by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2870 | hence "0 < r" and "-r < x" and "x < r" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2871 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2872 | have suminf_eq_arctan_bounded: "\<And> x a b. \<lbrakk> -r < a ; b < r ; a < b ; a \<le> x ; x \<le> b \<rbrakk> \<Longrightarrow> suminf (?c x) - arctan x = suminf (?c a) - arctan a" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2873 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2874 | fix x a b assume "-r < a" and "b < r" and "a < b" and "a \<le> x" and "x \<le> b" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2875 | hence "\<bar>x\<bar> < r" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2876 | show "suminf (?c x) - arctan x = suminf (?c a) - arctan a" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2877 | proof (rule DERIV_isconst2[of "a" "b"]) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2878 | show "a < b" and "a \<le> x" and "x \<le> b" using `a < b` `a \<le> x` `x \<le> b` by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2879 | have "\<forall> x. -r < x \<and> x < r \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2880 | proof (rule allI, rule impI) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2881 | fix x assume "-r < x \<and> x < r" hence "\<bar>x\<bar> < r" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2882 | hence "\<bar>x\<bar> < 1" using `r < 1` by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2883 | have "\<bar> - (x^2) \<bar> < 1" using less_one_imp_sqr_less_one[OF `\<bar>x\<bar> < 1`] by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2884 | hence "(\<lambda> n. (- (x^2)) ^ n) sums (1 / (1 - (- (x^2))))" unfolding real_norm_def[symmetric] by (rule geometric_sums) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2885 | hence "(?c' x) sums (1 / (1 - (- (x^2))))" unfolding power_mult_distrib[symmetric] power_mult nat_mult_commute[of _ 2] by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2886 | hence suminf_c'_eq_geom: "inverse (1 + x^2) = suminf (?c' x)" using sums_unique unfolding inverse_eq_divide by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2887 | have "DERIV (\<lambda> x. suminf (?c x)) x :> (inverse (1 + x^2))" unfolding suminf_c'_eq_geom | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2888 | by (rule DERIV_arctan_suminf[OF `0 < r` `r < 1` `\<bar>x\<bar> < r`]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2889 | from DERIV_add_minus[OF this DERIV_arctan] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2890 | show "DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0" unfolding diff_minus by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2891 | qed | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2892 | hence DERIV_in_rball: "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0" using `-r < a` `b < r` by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2893 | thus "\<forall> y. a < y \<and> y < b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0" using `\<bar>x\<bar> < r` by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2894 | show "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> isCont (\<lambda> x. suminf (?c x) - arctan x) y" using DERIV_in_rball DERIV_isCont by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2895 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2896 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2897 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2898 | have suminf_arctan_zero: "suminf (?c 0) - arctan 0 = 0" | 
| 31790 | 2899 | unfolding Suc_eq_plus1[symmetric] power_Suc2 mult_zero_right arctan_zero_zero suminf_zero by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2900 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2901 | have "suminf (?c x) - arctan x = 0" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2902 | proof (cases "x = 0") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2903 | case True thus ?thesis using suminf_arctan_zero by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2904 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2905 | case False hence "0 < \<bar>x\<bar>" and "- \<bar>x\<bar> < \<bar>x\<bar>" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2906 | have "suminf (?c (-\<bar>x\<bar>)) - arctan (-\<bar>x\<bar>) = suminf (?c 0) - arctan 0" | 
| 35038 | 2907 | by (rule suminf_eq_arctan_bounded[where x="0" and a="-\<bar>x\<bar>" and b="\<bar>x\<bar>", symmetric]) | 
| 2908 | (simp_all only: `\<bar>x\<bar> < r` `-\<bar>x\<bar> < \<bar>x\<bar>` neg_less_iff_less) | |
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2909 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2910 | have "suminf (?c x) - arctan x = suminf (?c (-\<bar>x\<bar>)) - arctan (-\<bar>x\<bar>)" | 
| 35038 | 2911 | by (rule suminf_eq_arctan_bounded[where x="x" and a="-\<bar>x\<bar>" and b="\<bar>x\<bar>"]) | 
| 2912 | (simp_all only: `\<bar>x\<bar> < r` `-\<bar>x\<bar> < \<bar>x\<bar>` neg_less_iff_less) | |
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2913 | ultimately | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2914 | show ?thesis using suminf_arctan_zero by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2915 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2916 | thus ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2917 | qed } note when_less_one = this | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2918 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2919 | show "arctan x = suminf (\<lambda> n. ?c x n)" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2920 | proof (cases "\<bar>x\<bar> < 1") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2921 | case True thus ?thesis by (rule when_less_one) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2922 | next case False hence "\<bar>x\<bar> = 1" using `\<bar>x\<bar> \<le> 1` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2923 | let "?a x n" = "\<bar>1 / real (n*2+1) * x^(n*2+1)\<bar>" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2924 | let "?diff x n" = "\<bar> arctan x - (\<Sum> i = 0..<n. ?c x i)\<bar>" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2925 |     { fix n :: nat
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2926 | have "0 < (1 :: real)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2927 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2928 |       { fix x :: real assume "0 < x" and "x < 1" hence "\<bar>x\<bar> \<le> 1" and "\<bar>x\<bar> < 1" by auto
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2929 | from `0 < x` have "0 < 1 / real (0 * 2 + (1::nat)) * x ^ (0 * 2 + 1)" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2930 | note bounds = mp[OF arctan_series_borders(2)[OF `\<bar>x\<bar> \<le> 1`] this, unfolded when_less_one[OF `\<bar>x\<bar> < 1`, symmetric], THEN spec] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2931 | have "0 < 1 / real (n*2+1) * x^(n*2+1)" by (rule mult_pos_pos, auto simp only: zero_less_power[OF `0 < x`], auto) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2932 | hence a_pos: "?a x n = 1 / real (n*2+1) * x^(n*2+1)" by (rule abs_of_pos) | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2933 | have "?diff x n \<le> ?a x n" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2934 | proof (cases "even n") | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2935 | case True hence sgn_pos: "(-1)^n = (1::real)" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2936 | from `even n` obtain m where "2 * m = n" unfolding even_mult_two_ex by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2937 | from bounds[of m, unfolded this atLeastAtMost_iff] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2938 | have "\<bar>arctan x - (\<Sum>i = 0..<n. (?c x i))\<bar> \<le> (\<Sum>i = 0..<n + 1. (?c x i)) - (\<Sum>i = 0..<n. (?c x i))" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2939 | also have "\<dots> = ?c x n" unfolding One_nat_def by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2940 | also have "\<dots> = ?a x n" unfolding sgn_pos a_pos by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2941 | finally show ?thesis . | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2942 | next | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2943 | case False hence sgn_neg: "(-1)^n = (-1::real)" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2944 | from `odd n` obtain m where m_def: "2 * m + 1 = n" unfolding odd_Suc_mult_two_ex by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2945 | hence m_plus: "2 * (m + 1) = n + 1" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2946 | from bounds[of "m + 1", unfolded this atLeastAtMost_iff, THEN conjunct1] bounds[of m, unfolded m_def atLeastAtMost_iff, THEN conjunct2] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2947 | have "\<bar>arctan x - (\<Sum>i = 0..<n. (?c x i))\<bar> \<le> (\<Sum>i = 0..<n. (?c x i)) - (\<Sum>i = 0..<n+1. (?c x i))" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2948 | also have "\<dots> = - ?c x n" unfolding One_nat_def by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2949 | also have "\<dots> = ?a x n" unfolding sgn_neg a_pos by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2950 | finally show ?thesis . | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2951 | qed | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2952 | hence "0 \<le> ?a x n - ?diff x n" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2953 | } | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2954 |       hence "\<forall> x \<in> { 0 <..< 1 }. 0 \<le> ?a x n - ?diff x n" by auto
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2955 | moreover have "\<And>x. isCont (\<lambda> x. ?a x n - ?diff x n) x" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2956 | unfolding real_diff_def divide_inverse | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2957 | by (auto intro!: isCont_add isCont_rabs isCont_ident isCont_minus isCont_arctan isCont_inverse isCont_mult isCont_power isCont_const isCont_setsum) | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2958 | ultimately have "0 \<le> ?a 1 n - ?diff 1 n" by (rule LIM_less_bound) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2959 | hence "?diff 1 n \<le> ?a 1 n" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2960 | } | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 2961 | have "?a 1 ----> 0" | 
| 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 2962 | unfolding LIMSEQ_rabs_zero power_one divide_inverse One_nat_def | 
| 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 2963 | by (auto intro!: LIMSEQ_mult LIMSEQ_linear LIMSEQ_inverse_real_of_nat) | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2964 | have "?diff 1 ----> 0" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2965 | proof (rule LIMSEQ_I) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2966 | fix r :: real assume "0 < r" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2967 | obtain N :: nat where N_I: "\<And> n. N \<le> n \<Longrightarrow> ?a 1 n < r" using LIMSEQ_D[OF `?a 1 ----> 0` `0 < r`] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2968 |       { fix n assume "N \<le> n" from `?diff 1 n \<le> ?a 1 n` N_I[OF this]
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32047diff
changeset | 2969 | have "norm (?diff 1 n - 0) < r" by auto } | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2970 | thus "\<exists> N. \<forall> n \<ge> N. norm (?diff 1 n - 0) < r" by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2971 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2972 | from this[unfolded LIMSEQ_rabs_zero real_diff_def add_commute[of "arctan 1"], THEN LIMSEQ_add_const, of "- arctan 1", THEN LIMSEQ_minus] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2973 | have "(?c 1) sums (arctan 1)" unfolding sums_def by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2974 | hence "arctan 1 = (\<Sum> i. ?c 1 i)" by (rule sums_unique) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2975 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2976 | show ?thesis | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2977 | proof (cases "x = 1", simp add: `arctan 1 = (\<Sum> i. ?c 1 i)`) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2978 | assume "x \<noteq> 1" hence "x = -1" using `\<bar>x\<bar> = 1` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2979 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2980 | have "- (pi / 2) < 0" using pi_gt_zero by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2981 | have "- (2 * pi) < 0" using pi_gt_zero by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2982 | |
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 2983 | have c_minus_minus: "\<And> i. ?c (- 1) i = - ?c 1 i" unfolding One_nat_def by auto | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2984 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2985 | have "arctan (- 1) = arctan (tan (-(pi / 4)))" unfolding tan_45 tan_minus .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2986 | also have "\<dots> = - (pi / 4)" by (rule arctan_tan, auto simp add: order_less_trans[OF `- (pi / 2) < 0` pi_gt_zero]) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2987 | also have "\<dots> = - (arctan (tan (pi / 4)))" unfolding neg_equal_iff_equal by (rule arctan_tan[symmetric], auto simp add: order_less_trans[OF `- (2 * pi) < 0` pi_gt_zero]) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2988 | also have "\<dots> = - (arctan 1)" unfolding tan_45 .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2989 | also have "\<dots> = - (\<Sum> i. ?c 1 i)" using `arctan 1 = (\<Sum> i. ?c 1 i)` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2990 | also have "\<dots> = (\<Sum> i. ?c (- 1) i)" using suminf_minus[OF sums_summable[OF `(?c 1) sums (arctan 1)`]] unfolding c_minus_minus by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2991 | finally show ?thesis using `x = -1` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2992 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2993 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2994 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2995 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2996 | lemma arctan_half: fixes x :: real | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2997 | shows "arctan x = 2 * arctan (x / (1 + sqrt(1 + x^2)))" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2998 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 2999 | obtain y where low: "- (pi / 2) < y" and high: "y < pi / 2" and y_eq: "tan y = x" using tan_total by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3000 | hence low2: "- (pi / 2) < y / 2" and high2: "y / 2 < pi / 2" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3001 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3002 | have divide_nonzero_divide: "\<And> A B C :: real. C \<noteq> 0 \<Longrightarrow> A / B = (A / C) / (B / C)" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3003 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3004 | have "0 < cos y" using cos_gt_zero_pi[OF low high] . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3005 | hence "cos y \<noteq> 0" and cos_sqrt: "sqrt ((cos y) ^ 2) = cos y" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3006 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3007 | have "1 + (tan y)^2 = 1 + sin y^2 / cos y^2" unfolding tan_def power_divide .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3008 | also have "\<dots> = cos y^2 / cos y^2 + sin y^2 / cos y^2" using `cos y \<noteq> 0` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3009 | also have "\<dots> = 1 / cos y^2" unfolding add_divide_distrib[symmetric] sin_cos_squared_add2 .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3010 | finally have "1 + (tan y)^2 = 1 / cos y^2" . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3011 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3012 | have "sin y / (cos y + 1) = tan y / ((cos y + 1) / cos y)" unfolding tan_def divide_nonzero_divide[OF `cos y \<noteq> 0`, symmetric] .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3013 | also have "\<dots> = tan y / (1 + 1 / cos y)" using `cos y \<noteq> 0` unfolding add_divide_distrib by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3014 | also have "\<dots> = tan y / (1 + 1 / sqrt(cos y^2))" unfolding cos_sqrt .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3015 | also have "\<dots> = tan y / (1 + sqrt(1 / cos y^2))" unfolding real_sqrt_divide by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3016 | finally have eq: "sin y / (cos y + 1) = tan y / (1 + sqrt(1 + (tan y)^2))" unfolding `1 + (tan y)^2 = 1 / cos y^2` . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3017 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3018 | have "arctan x = y" using arctan_tan low high y_eq by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3019 | also have "\<dots> = 2 * (arctan (tan (y/2)))" using arctan_tan[OF low2 high2] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3020 | also have "\<dots> = 2 * (arctan (sin y / (cos y + 1)))" unfolding tan_half[OF low2 high2] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3021 | finally show ?thesis unfolding eq `tan y = x` . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3022 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3023 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3024 | lemma arctan_monotone: assumes "x < y" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3025 | shows "arctan x < arctan y" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3026 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3027 | obtain z where "-(pi / 2) < z" and "z < pi / 2" and "tan z = x" using tan_total by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3028 | obtain w where "-(pi / 2) < w" and "w < pi / 2" and "tan w = y" using tan_total by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3029 | have "z < w" unfolding tan_monotone'[OF `-(pi / 2) < z` `z < pi / 2` `-(pi / 2) < w` `w < pi / 2`] `tan z = x` `tan w = y` using `x < y` . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3030 | thus ?thesis | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3031 | unfolding `tan z = x`[symmetric] arctan_tan[OF `-(pi / 2) < z` `z < pi / 2`] | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3032 | unfolding `tan w = y`[symmetric] arctan_tan[OF `-(pi / 2) < w` `w < pi / 2`] . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3033 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3034 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3035 | lemma arctan_monotone': assumes "x \<le> y" shows "arctan x \<le> arctan y" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3036 | proof (cases "x = y") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3037 | case False hence "x < y" using `x \<le> y` by auto from arctan_monotone[OF this] show ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3038 | qed auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3039 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3040 | lemma arctan_minus: "arctan (- x) = - arctan x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3041 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3042 | obtain y where "- (pi / 2) < y" and "y < pi / 2" and "tan y = x" using tan_total by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3043 | thus ?thesis unfolding `tan y = x`[symmetric] tan_minus[symmetric] using arctan_tan[of y] arctan_tan[of "-y"] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3044 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3045 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3046 | lemma arctan_inverse: assumes "x \<noteq> 0" shows "arctan (1 / x) = sgn x * pi / 2 - arctan x" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3047 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3048 | obtain y where "- (pi / 2) < y" and "y < pi / 2" and "tan y = x" using tan_total by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3049 | hence "y = arctan x" unfolding `tan y = x`[symmetric] using arctan_tan by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3050 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3051 |   { fix y x :: real assume "0 < y" and "y < pi /2" and "y = arctan x" and "tan y = x" hence "- (pi / 2) < y" by auto
 | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3052 | have "tan y > 0" using tan_monotone'[OF _ _ `- (pi / 2) < y` `y < pi / 2`, of 0] tan_zero `0 < y` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3053 | hence "x > 0" using `tan y = x` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3054 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3055 | have "- (pi / 2) < pi / 2 - y" using `y > 0` `y < pi / 2` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3056 | moreover have "pi / 2 - y < pi / 2" using `y > 0` `y < pi / 2` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3057 | ultimately have "arctan (1 / x) = pi / 2 - y" unfolding `tan y = x`[symmetric] tan_inverse using arctan_tan by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3058 | hence "arctan (1 / x) = sgn x * pi / 2 - arctan x" unfolding `y = arctan x` real_sgn_pos[OF `x > 0`] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3059 | } note pos_y = this | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3060 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3061 | show ?thesis | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3062 | proof (cases "y > 0") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3063 | case True from pos_y[OF this `y < pi / 2` `y = arctan x` `tan y = x`] show ?thesis . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3064 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3065 | case False hence "y \<le> 0" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3066 | moreover have "y \<noteq> 0" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3067 | proof (rule ccontr) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3068 | assume "\<not> y \<noteq> 0" hence "y = 0" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3069 | have "x = 0" unfolding `tan y = x`[symmetric] `y = 0` tan_zero .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3070 | thus False using `x \<noteq> 0` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3071 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3072 | ultimately have "y < 0" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3073 | hence "0 < - y" and "-y < pi / 2" using `- (pi / 2) < y` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3074 | moreover have "-y = arctan (-x)" unfolding arctan_minus `y = arctan x` .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3075 | moreover have "tan (-y) = -x" unfolding tan_minus `tan y = x` .. | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3076 | ultimately have "arctan (1 / -x) = sgn (-x) * pi / 2 - arctan (-x)" using pos_y by blast | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3077 | hence "arctan (- (1 / x)) = - (sgn x * pi / 2 - arctan x)" unfolding arctan_minus[of x] divide_minus_right sgn_minus by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3078 | thus ?thesis unfolding arctan_minus neg_equal_iff_equal . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3079 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3080 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3081 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3082 | theorem pi_series: "pi / 4 = (\<Sum> k. (-1)^k * 1 / real (k*2+1))" (is "_ = ?SUM") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3083 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3084 | have "pi / 4 = arctan 1" using arctan1_eq_pi4 by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3085 | also have "\<dots> = ?SUM" using arctan_series[of 1] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3086 | finally show ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29695diff
changeset | 3087 | qed | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 3088 | |
| 22978 
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
 huffman parents: 
22977diff
changeset | 3089 | subsection {* Existence of Polar Coordinates *}
 | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 3090 | |
| 22978 
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
 huffman parents: 
22977diff
changeset | 3091 | lemma cos_x_y_le_one: "\<bar>x / sqrt (x\<twosuperior> + y\<twosuperior>)\<bar> \<le> 1" | 
| 
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
 huffman parents: 
22977diff
changeset | 3092 | apply (rule power2_le_imp_le [OF _ zero_le_one]) | 
| 35216 | 3093 | apply (simp add: power_divide divide_le_eq not_sum_power2_lt_zero) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 3094 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 3095 | |
| 22978 
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
 huffman parents: 
22977diff
changeset | 3096 | lemma cos_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> cos (arccos y) = y" | 
| 
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
 huffman parents: 
22977diff
changeset | 3097 | by (simp add: abs_le_iff) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 3098 | |
| 23045 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 3099 | lemma sin_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> sin (arccos y) = sqrt (1 - y\<twosuperior>)" | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 3100 | by (simp add: sin_arccos abs_le_iff) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 3101 | |
| 22978 
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
 huffman parents: 
22977diff
changeset | 3102 | lemmas cos_arccos_lemma1 = cos_arccos_abs [OF cos_x_y_le_one] | 
| 15228 | 3103 | |
| 23045 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 3104 | lemmas sin_arccos_lemma1 = sin_arccos_abs [OF cos_x_y_le_one] | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 3105 | |
| 15229 | 3106 | lemma polar_ex1: | 
| 22978 
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
 huffman parents: 
22977diff
changeset | 3107 | "0 < y ==> \<exists>r a. x = r * cos a & y = r * sin a" | 
| 15229 | 3108 | apply (rule_tac x = "sqrt (x\<twosuperior> + y\<twosuperior>)" in exI) | 
| 22978 
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
 huffman parents: 
22977diff
changeset | 3109 | apply (rule_tac x = "arccos (x / sqrt (x\<twosuperior> + y\<twosuperior>))" in exI) | 
| 
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
 huffman parents: 
22977diff
changeset | 3110 | apply (simp add: cos_arccos_lemma1) | 
| 23045 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 3111 | apply (simp add: sin_arccos_lemma1) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 3112 | apply (simp add: power_divide) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 3113 | apply (simp add: real_sqrt_mult [symmetric]) | 
| 
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
 huffman parents: 
23043diff
changeset | 3114 | apply (simp add: right_diff_distrib) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 3115 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 3116 | |
| 15229 | 3117 | lemma polar_ex2: | 
| 22978 
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
 huffman parents: 
22977diff
changeset | 3118 | "y < 0 ==> \<exists>r a. x = r * cos a & y = r * sin a" | 
| 
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
 huffman parents: 
22977diff
changeset | 3119 | apply (insert polar_ex1 [where x=x and y="-y"], simp, clarify) | 
| 33667 | 3120 | apply (metis cos_minus minus_minus minus_mult_right sin_minus) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 3121 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 3122 | |
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 3123 | lemma polar_Ex: "\<exists>r a. x = r * cos a & y = r * sin a" | 
| 22978 
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
 huffman parents: 
22977diff
changeset | 3124 | apply (rule_tac x=0 and y=y in linorder_cases) | 
| 
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
 huffman parents: 
22977diff
changeset | 3125 | apply (erule polar_ex1) | 
| 
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
 huffman parents: 
22977diff
changeset | 3126 | apply (rule_tac x=x in exI, rule_tac x=0 in exI, simp) | 
| 
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
 huffman parents: 
22977diff
changeset | 3127 | apply (erule polar_ex2) | 
| 15077 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 3128 | done | 
| 
89840837108e
converting Hyperreal/Transcendental to Isar script
 paulson parents: 
15013diff
changeset | 3129 | |
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29803diff
changeset | 3130 | end |